cmd_parser.c 88 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975
  1. /*
  2. * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  21. * SOFTWARE.
  22. *
  23. * Authors:
  24. * Ke Yu
  25. * Kevin Tian <kevin.tian@intel.com>
  26. * Zhiyuan Lv <zhiyuan.lv@intel.com>
  27. *
  28. * Contributors:
  29. * Min He <min.he@intel.com>
  30. * Ping Gao <ping.a.gao@intel.com>
  31. * Tina Zhang <tina.zhang@intel.com>
  32. * Yulei Zhang <yulei.zhang@intel.com>
  33. * Zhi Wang <zhi.a.wang@intel.com>
  34. *
  35. */
  36. #include <linux/slab.h>
  37. #include "i915_drv.h"
  38. #include "gvt.h"
  39. #include "i915_pvinfo.h"
  40. #include "trace.h"
  41. #define INVALID_OP (~0U)
  42. #define OP_LEN_MI 9
  43. #define OP_LEN_2D 10
  44. #define OP_LEN_3D_MEDIA 16
  45. #define OP_LEN_MFX_VC 16
  46. #define OP_LEN_VEBOX 16
  47. #define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
  48. struct sub_op_bits {
  49. int hi;
  50. int low;
  51. };
  52. struct decode_info {
  53. char *name;
  54. int op_len;
  55. int nr_sub_op;
  56. struct sub_op_bits *sub_op;
  57. };
  58. #define MAX_CMD_BUDGET 0x7fffffff
  59. #define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
  60. #define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
  61. #define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
  62. #define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
  63. #define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
  64. #define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
  65. /* Render Command Map */
  66. /* MI_* command Opcode (28:23) */
  67. #define OP_MI_NOOP 0x0
  68. #define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
  69. #define OP_MI_USER_INTERRUPT 0x2
  70. #define OP_MI_WAIT_FOR_EVENT 0x3
  71. #define OP_MI_FLUSH 0x4
  72. #define OP_MI_ARB_CHECK 0x5
  73. #define OP_MI_RS_CONTROL 0x6 /* HSW+ */
  74. #define OP_MI_REPORT_HEAD 0x7
  75. #define OP_MI_ARB_ON_OFF 0x8
  76. #define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
  77. #define OP_MI_BATCH_BUFFER_END 0xA
  78. #define OP_MI_SUSPEND_FLUSH 0xB
  79. #define OP_MI_PREDICATE 0xC /* IVB+ */
  80. #define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
  81. #define OP_MI_SET_APPID 0xE /* IVB+ */
  82. #define OP_MI_RS_CONTEXT 0xF /* HSW+ */
  83. #define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
  84. #define OP_MI_DISPLAY_FLIP 0x14
  85. #define OP_MI_SEMAPHORE_MBOX 0x16
  86. #define OP_MI_SET_CONTEXT 0x18
  87. #define OP_MI_MATH 0x1A
  88. #define OP_MI_URB_CLEAR 0x19
  89. #define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
  90. #define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
  91. #define OP_MI_STORE_DATA_IMM 0x20
  92. #define OP_MI_STORE_DATA_INDEX 0x21
  93. #define OP_MI_LOAD_REGISTER_IMM 0x22
  94. #define OP_MI_UPDATE_GTT 0x23
  95. #define OP_MI_STORE_REGISTER_MEM 0x24
  96. #define OP_MI_FLUSH_DW 0x26
  97. #define OP_MI_CLFLUSH 0x27
  98. #define OP_MI_REPORT_PERF_COUNT 0x28
  99. #define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
  100. #define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
  101. #define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
  102. #define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
  103. #define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
  104. #define OP_MI_2E 0x2E /* BDW+ */
  105. #define OP_MI_2F 0x2F /* BDW+ */
  106. #define OP_MI_BATCH_BUFFER_START 0x31
  107. /* Bit definition for dword 0 */
  108. #define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
  109. #define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
  110. #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
  111. #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
  112. #define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
  113. #define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
  114. /* 2D command: Opcode (28:22) */
  115. #define OP_2D(x) ((2<<7) | x)
  116. #define OP_XY_SETUP_BLT OP_2D(0x1)
  117. #define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
  118. #define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
  119. #define OP_XY_PIXEL_BLT OP_2D(0x24)
  120. #define OP_XY_SCANLINES_BLT OP_2D(0x25)
  121. #define OP_XY_TEXT_BLT OP_2D(0x26)
  122. #define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
  123. #define OP_XY_COLOR_BLT OP_2D(0x50)
  124. #define OP_XY_PAT_BLT OP_2D(0x51)
  125. #define OP_XY_MONO_PAT_BLT OP_2D(0x52)
  126. #define OP_XY_SRC_COPY_BLT OP_2D(0x53)
  127. #define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
  128. #define OP_XY_FULL_BLT OP_2D(0x55)
  129. #define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
  130. #define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
  131. #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
  132. #define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
  133. #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
  134. #define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
  135. #define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
  136. #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
  137. #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
  138. #define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
  139. #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
  140. /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
  141. #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
  142. ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
  143. #define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
  144. #define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
  145. #define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
  146. #define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
  147. #define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
  148. #define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
  149. #define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
  150. #define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
  151. #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
  152. #define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
  153. #define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
  154. #define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
  155. #define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
  156. #define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
  157. #define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
  158. #define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
  159. #define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
  160. #define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
  161. #define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
  162. #define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
  163. #define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
  164. #define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
  165. #define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
  166. #define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
  167. #define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
  168. #define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
  169. #define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
  170. #define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
  171. #define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
  172. #define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
  173. #define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
  174. #define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
  175. #define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
  176. #define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
  177. #define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
  178. #define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
  179. #define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
  180. #define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
  181. #define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
  182. #define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
  183. #define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
  184. #define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
  185. #define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
  186. #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
  187. #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
  188. #define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
  189. #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
  190. #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
  191. #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
  192. #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
  193. #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
  194. #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
  195. #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
  196. #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
  197. #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
  198. #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
  199. #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
  200. #define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
  201. #define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
  202. #define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
  203. #define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
  204. #define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
  205. #define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
  206. #define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
  207. #define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
  208. #define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
  209. #define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
  210. #define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
  211. #define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
  212. #define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
  213. #define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
  214. #define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
  215. #define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
  216. #define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
  217. #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
  218. #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
  219. #define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
  220. #define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
  221. #define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
  222. #define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
  223. #define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
  224. #define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
  225. #define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
  226. #define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
  227. #define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
  228. #define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
  229. #define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
  230. #define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
  231. #define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
  232. #define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
  233. #define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
  234. #define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
  235. #define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
  236. #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
  237. #define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
  238. #define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
  239. #define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
  240. #define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
  241. #define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
  242. #define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
  243. #define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
  244. #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
  245. #define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
  246. #define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
  247. #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
  248. #define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
  249. #define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
  250. #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
  251. #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
  252. #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
  253. #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
  254. #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
  255. #define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
  256. #define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
  257. #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
  258. #define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
  259. #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
  260. #define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
  261. #define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
  262. #define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
  263. /* VCCP Command Parser */
  264. /*
  265. * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
  266. * git://anongit.freedesktop.org/vaapi/intel-driver
  267. * src/i965_defines.h
  268. *
  269. */
  270. #define OP_MFX(pipeline, op, sub_opa, sub_opb) \
  271. (3 << 13 | \
  272. (pipeline) << 11 | \
  273. (op) << 8 | \
  274. (sub_opa) << 5 | \
  275. (sub_opb))
  276. #define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
  277. #define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
  278. #define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
  279. #define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
  280. #define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
  281. #define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
  282. #define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
  283. #define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
  284. #define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
  285. #define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
  286. #define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
  287. #define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
  288. #define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
  289. #define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
  290. #define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
  291. #define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
  292. #define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
  293. #define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
  294. #define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
  295. #define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
  296. #define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
  297. #define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
  298. #define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
  299. #define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
  300. #define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
  301. #define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
  302. #define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
  303. #define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
  304. #define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
  305. #define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
  306. #define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
  307. #define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
  308. #define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
  309. #define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
  310. #define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
  311. #define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
  312. #define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
  313. #define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
  314. #define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
  315. #define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
  316. #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
  317. (3 << 13 | \
  318. (pipeline) << 11 | \
  319. (op) << 8 | \
  320. (sub_opa) << 5 | \
  321. (sub_opb))
  322. #define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
  323. #define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
  324. #define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
  325. struct parser_exec_state;
  326. typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
  327. #define GVT_CMD_HASH_BITS 7
  328. /* which DWords need address fix */
  329. #define ADDR_FIX_1(x1) (1 << (x1))
  330. #define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
  331. #define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
  332. #define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
  333. #define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
  334. struct cmd_info {
  335. char *name;
  336. u32 opcode;
  337. #define F_LEN_MASK (1U<<0)
  338. #define F_LEN_CONST 1U
  339. #define F_LEN_VAR 0U
  340. /*
  341. * command has its own ip advance logic
  342. * e.g. MI_BATCH_START, MI_BATCH_END
  343. */
  344. #define F_IP_ADVANCE_CUSTOM (1<<1)
  345. #define F_POST_HANDLE (1<<2)
  346. u32 flag;
  347. #define R_RCS (1 << RCS)
  348. #define R_VCS1 (1 << VCS)
  349. #define R_VCS2 (1 << VCS2)
  350. #define R_VCS (R_VCS1 | R_VCS2)
  351. #define R_BCS (1 << BCS)
  352. #define R_VECS (1 << VECS)
  353. #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
  354. /* rings that support this cmd: BLT/RCS/VCS/VECS */
  355. uint16_t rings;
  356. /* devices that support this cmd: SNB/IVB/HSW/... */
  357. uint16_t devices;
  358. /* which DWords are address that need fix up.
  359. * bit 0 means a 32-bit non address operand in command
  360. * bit 1 means address operand, which could be 32-bit
  361. * or 64-bit depending on different architectures.(
  362. * defined by "gmadr_bytes_in_cmd" in intel_gvt.
  363. * No matter the address length, each address only takes
  364. * one bit in the bitmap.
  365. */
  366. uint16_t addr_bitmap;
  367. /* flag == F_LEN_CONST : command length
  368. * flag == F_LEN_VAR : length bias bits
  369. * Note: length is in DWord
  370. */
  371. uint8_t len;
  372. parser_cmd_handler handler;
  373. };
  374. struct cmd_entry {
  375. struct hlist_node hlist;
  376. struct cmd_info *info;
  377. };
  378. enum {
  379. RING_BUFFER_INSTRUCTION,
  380. BATCH_BUFFER_INSTRUCTION,
  381. BATCH_BUFFER_2ND_LEVEL,
  382. };
  383. enum {
  384. GTT_BUFFER,
  385. PPGTT_BUFFER
  386. };
  387. struct parser_exec_state {
  388. struct intel_vgpu *vgpu;
  389. int ring_id;
  390. int buf_type;
  391. /* batch buffer address type */
  392. int buf_addr_type;
  393. /* graphics memory address of ring buffer start */
  394. unsigned long ring_start;
  395. unsigned long ring_size;
  396. unsigned long ring_head;
  397. unsigned long ring_tail;
  398. /* instruction graphics memory address */
  399. unsigned long ip_gma;
  400. /* mapped va of the instr_gma */
  401. void *ip_va;
  402. void *rb_va;
  403. void *ret_bb_va;
  404. /* next instruction when return from batch buffer to ring buffer */
  405. unsigned long ret_ip_gma_ring;
  406. /* next instruction when return from 2nd batch buffer to batch buffer */
  407. unsigned long ret_ip_gma_bb;
  408. /* batch buffer address type (GTT or PPGTT)
  409. * used when ret from 2nd level batch buffer
  410. */
  411. int saved_buf_addr_type;
  412. bool is_ctx_wa;
  413. struct cmd_info *info;
  414. struct intel_vgpu_workload *workload;
  415. };
  416. #define gmadr_dw_number(s) \
  417. (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
  418. static unsigned long bypass_scan_mask = 0;
  419. /* ring ALL, type = 0 */
  420. static struct sub_op_bits sub_op_mi[] = {
  421. {31, 29},
  422. {28, 23},
  423. };
  424. static struct decode_info decode_info_mi = {
  425. "MI",
  426. OP_LEN_MI,
  427. ARRAY_SIZE(sub_op_mi),
  428. sub_op_mi,
  429. };
  430. /* ring RCS, command type 2 */
  431. static struct sub_op_bits sub_op_2d[] = {
  432. {31, 29},
  433. {28, 22},
  434. };
  435. static struct decode_info decode_info_2d = {
  436. "2D",
  437. OP_LEN_2D,
  438. ARRAY_SIZE(sub_op_2d),
  439. sub_op_2d,
  440. };
  441. /* ring RCS, command type 3 */
  442. static struct sub_op_bits sub_op_3d_media[] = {
  443. {31, 29},
  444. {28, 27},
  445. {26, 24},
  446. {23, 16},
  447. };
  448. static struct decode_info decode_info_3d_media = {
  449. "3D_Media",
  450. OP_LEN_3D_MEDIA,
  451. ARRAY_SIZE(sub_op_3d_media),
  452. sub_op_3d_media,
  453. };
  454. /* ring VCS, command type 3 */
  455. static struct sub_op_bits sub_op_mfx_vc[] = {
  456. {31, 29},
  457. {28, 27},
  458. {26, 24},
  459. {23, 21},
  460. {20, 16},
  461. };
  462. static struct decode_info decode_info_mfx_vc = {
  463. "MFX_VC",
  464. OP_LEN_MFX_VC,
  465. ARRAY_SIZE(sub_op_mfx_vc),
  466. sub_op_mfx_vc,
  467. };
  468. /* ring VECS, command type 3 */
  469. static struct sub_op_bits sub_op_vebox[] = {
  470. {31, 29},
  471. {28, 27},
  472. {26, 24},
  473. {23, 21},
  474. {20, 16},
  475. };
  476. static struct decode_info decode_info_vebox = {
  477. "VEBOX",
  478. OP_LEN_VEBOX,
  479. ARRAY_SIZE(sub_op_vebox),
  480. sub_op_vebox,
  481. };
  482. static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
  483. [RCS] = {
  484. &decode_info_mi,
  485. NULL,
  486. NULL,
  487. &decode_info_3d_media,
  488. NULL,
  489. NULL,
  490. NULL,
  491. NULL,
  492. },
  493. [VCS] = {
  494. &decode_info_mi,
  495. NULL,
  496. NULL,
  497. &decode_info_mfx_vc,
  498. NULL,
  499. NULL,
  500. NULL,
  501. NULL,
  502. },
  503. [BCS] = {
  504. &decode_info_mi,
  505. NULL,
  506. &decode_info_2d,
  507. NULL,
  508. NULL,
  509. NULL,
  510. NULL,
  511. NULL,
  512. },
  513. [VECS] = {
  514. &decode_info_mi,
  515. NULL,
  516. NULL,
  517. &decode_info_vebox,
  518. NULL,
  519. NULL,
  520. NULL,
  521. NULL,
  522. },
  523. [VCS2] = {
  524. &decode_info_mi,
  525. NULL,
  526. NULL,
  527. &decode_info_mfx_vc,
  528. NULL,
  529. NULL,
  530. NULL,
  531. NULL,
  532. },
  533. };
  534. static inline u32 get_opcode(u32 cmd, int ring_id)
  535. {
  536. struct decode_info *d_info;
  537. d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
  538. if (d_info == NULL)
  539. return INVALID_OP;
  540. return cmd >> (32 - d_info->op_len);
  541. }
  542. static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
  543. unsigned int opcode, int ring_id)
  544. {
  545. struct cmd_entry *e;
  546. hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
  547. if ((opcode == e->info->opcode) &&
  548. (e->info->rings & (1 << ring_id)))
  549. return e->info;
  550. }
  551. return NULL;
  552. }
  553. static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
  554. u32 cmd, int ring_id)
  555. {
  556. u32 opcode;
  557. opcode = get_opcode(cmd, ring_id);
  558. if (opcode == INVALID_OP)
  559. return NULL;
  560. return find_cmd_entry(gvt, opcode, ring_id);
  561. }
  562. static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
  563. {
  564. return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
  565. }
  566. static inline void print_opcode(u32 cmd, int ring_id)
  567. {
  568. struct decode_info *d_info;
  569. int i;
  570. d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
  571. if (d_info == NULL)
  572. return;
  573. gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
  574. cmd >> (32 - d_info->op_len), d_info->name);
  575. for (i = 0; i < d_info->nr_sub_op; i++)
  576. pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
  577. d_info->sub_op[i].low));
  578. pr_err("\n");
  579. }
  580. static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
  581. {
  582. return s->ip_va + (index << 2);
  583. }
  584. static inline u32 cmd_val(struct parser_exec_state *s, int index)
  585. {
  586. return *cmd_ptr(s, index);
  587. }
  588. static void parser_exec_state_dump(struct parser_exec_state *s)
  589. {
  590. int cnt = 0;
  591. int i;
  592. gvt_dbg_cmd(" vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
  593. " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
  594. s->ring_id, s->ring_start, s->ring_start + s->ring_size,
  595. s->ring_head, s->ring_tail);
  596. gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
  597. s->buf_type == RING_BUFFER_INSTRUCTION ?
  598. "RING_BUFFER" : "BATCH_BUFFER",
  599. s->buf_addr_type == GTT_BUFFER ?
  600. "GTT" : "PPGTT", s->ip_gma);
  601. if (s->ip_va == NULL) {
  602. gvt_dbg_cmd(" ip_va(NULL)");
  603. return;
  604. }
  605. gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
  606. s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
  607. cmd_val(s, 2), cmd_val(s, 3));
  608. print_opcode(cmd_val(s, 0), s->ring_id);
  609. s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
  610. while (cnt < 1024) {
  611. gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
  612. for (i = 0; i < 8; i++)
  613. gvt_dbg_cmd("%08x ", cmd_val(s, i));
  614. gvt_dbg_cmd("\n");
  615. s->ip_va += 8 * sizeof(u32);
  616. cnt += 8;
  617. }
  618. }
  619. static inline void update_ip_va(struct parser_exec_state *s)
  620. {
  621. unsigned long len = 0;
  622. if (WARN_ON(s->ring_head == s->ring_tail))
  623. return;
  624. if (s->buf_type == RING_BUFFER_INSTRUCTION) {
  625. unsigned long ring_top = s->ring_start + s->ring_size;
  626. if (s->ring_head > s->ring_tail) {
  627. if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
  628. len = (s->ip_gma - s->ring_head);
  629. else if (s->ip_gma >= s->ring_start &&
  630. s->ip_gma <= s->ring_tail)
  631. len = (ring_top - s->ring_head) +
  632. (s->ip_gma - s->ring_start);
  633. } else
  634. len = (s->ip_gma - s->ring_head);
  635. s->ip_va = s->rb_va + len;
  636. } else {/* shadow batch buffer */
  637. s->ip_va = s->ret_bb_va;
  638. }
  639. }
  640. static inline int ip_gma_set(struct parser_exec_state *s,
  641. unsigned long ip_gma)
  642. {
  643. WARN_ON(!IS_ALIGNED(ip_gma, 4));
  644. s->ip_gma = ip_gma;
  645. update_ip_va(s);
  646. return 0;
  647. }
  648. static inline int ip_gma_advance(struct parser_exec_state *s,
  649. unsigned int dw_len)
  650. {
  651. s->ip_gma += (dw_len << 2);
  652. if (s->buf_type == RING_BUFFER_INSTRUCTION) {
  653. if (s->ip_gma >= s->ring_start + s->ring_size)
  654. s->ip_gma -= s->ring_size;
  655. update_ip_va(s);
  656. } else {
  657. s->ip_va += (dw_len << 2);
  658. }
  659. return 0;
  660. }
  661. static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
  662. {
  663. if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
  664. return info->len;
  665. else
  666. return (cmd & ((1U << info->len) - 1)) + 2;
  667. return 0;
  668. }
  669. static inline int cmd_length(struct parser_exec_state *s)
  670. {
  671. return get_cmd_length(s->info, cmd_val(s, 0));
  672. }
  673. /* do not remove this, some platform may need clflush here */
  674. #define patch_value(s, addr, val) do { \
  675. *addr = val; \
  676. } while (0)
  677. static bool is_shadowed_mmio(unsigned int offset)
  678. {
  679. bool ret = false;
  680. if ((offset == 0x2168) || /*BB current head register UDW */
  681. (offset == 0x2140) || /*BB current header register */
  682. (offset == 0x211c) || /*second BB header register UDW */
  683. (offset == 0x2114)) { /*second BB header register UDW */
  684. ret = true;
  685. }
  686. return ret;
  687. }
  688. static inline bool is_force_nonpriv_mmio(unsigned int offset)
  689. {
  690. return (offset >= 0x24d0 && offset < 0x2500);
  691. }
  692. static int force_nonpriv_reg_handler(struct parser_exec_state *s,
  693. unsigned int offset, unsigned int index, char *cmd)
  694. {
  695. struct intel_gvt *gvt = s->vgpu->gvt;
  696. unsigned int data;
  697. u32 ring_base;
  698. u32 nopid;
  699. struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
  700. if (!strcmp(cmd, "lri"))
  701. data = cmd_val(s, index + 1);
  702. else {
  703. gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
  704. offset, cmd);
  705. return -EINVAL;
  706. }
  707. ring_base = dev_priv->engine[s->ring_id]->mmio_base;
  708. nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
  709. if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
  710. data != nopid) {
  711. gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
  712. offset, data);
  713. patch_value(s, cmd_ptr(s, index), nopid);
  714. return 0;
  715. }
  716. return 0;
  717. }
  718. static inline bool is_mocs_mmio(unsigned int offset)
  719. {
  720. return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
  721. ((offset >= 0xb020) && (offset <= 0xb0a0));
  722. }
  723. static int mocs_cmd_reg_handler(struct parser_exec_state *s,
  724. unsigned int offset, unsigned int index)
  725. {
  726. if (!is_mocs_mmio(offset))
  727. return -EINVAL;
  728. vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
  729. return 0;
  730. }
  731. static int cmd_reg_handler(struct parser_exec_state *s,
  732. unsigned int offset, unsigned int index, char *cmd)
  733. {
  734. struct intel_vgpu *vgpu = s->vgpu;
  735. struct intel_gvt *gvt = vgpu->gvt;
  736. u32 ctx_sr_ctl;
  737. if (offset + 4 > gvt->device_info.mmio_size) {
  738. gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
  739. cmd, offset);
  740. return -EFAULT;
  741. }
  742. if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
  743. gvt_vgpu_err("%s access to non-render register (%x)\n",
  744. cmd, offset);
  745. return 0;
  746. }
  747. if (is_shadowed_mmio(offset)) {
  748. gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
  749. return 0;
  750. }
  751. if (is_mocs_mmio(offset) &&
  752. mocs_cmd_reg_handler(s, offset, index))
  753. return -EINVAL;
  754. if (is_force_nonpriv_mmio(offset) &&
  755. force_nonpriv_reg_handler(s, offset, index, cmd))
  756. return -EPERM;
  757. if (offset == i915_mmio_reg_offset(DERRMR) ||
  758. offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
  759. /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
  760. patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
  761. }
  762. /* TODO
  763. * Right now only scan LRI command on KBL and in inhibit context.
  764. * It's good enough to support initializing mmio by lri command in
  765. * vgpu inhibit context on KBL.
  766. */
  767. if (IS_KABYLAKE(s->vgpu->gvt->dev_priv) &&
  768. intel_gvt_mmio_is_in_ctx(gvt, offset) &&
  769. !strncmp(cmd, "lri", 3)) {
  770. intel_gvt_hypervisor_read_gpa(s->vgpu,
  771. s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
  772. /* check inhibit context */
  773. if (ctx_sr_ctl & 1) {
  774. u32 data = cmd_val(s, index + 1);
  775. if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
  776. intel_vgpu_mask_mmio_write(vgpu,
  777. offset, &data, 4);
  778. else
  779. vgpu_vreg(vgpu, offset) = data;
  780. }
  781. }
  782. /* TODO: Update the global mask if this MMIO is a masked-MMIO */
  783. intel_gvt_mmio_set_cmd_accessed(gvt, offset);
  784. return 0;
  785. }
  786. #define cmd_reg(s, i) \
  787. (cmd_val(s, i) & GENMASK(22, 2))
  788. #define cmd_reg_inhibit(s, i) \
  789. (cmd_val(s, i) & GENMASK(22, 18))
  790. #define cmd_gma(s, i) \
  791. (cmd_val(s, i) & GENMASK(31, 2))
  792. #define cmd_gma_hi(s, i) \
  793. (cmd_val(s, i) & GENMASK(15, 0))
  794. static int cmd_handler_lri(struct parser_exec_state *s)
  795. {
  796. int i, ret = 0;
  797. int cmd_len = cmd_length(s);
  798. struct intel_gvt *gvt = s->vgpu->gvt;
  799. for (i = 1; i < cmd_len; i += 2) {
  800. if (IS_BROADWELL(gvt->dev_priv) &&
  801. (s->ring_id != RCS)) {
  802. if (s->ring_id == BCS &&
  803. cmd_reg(s, i) ==
  804. i915_mmio_reg_offset(DERRMR))
  805. ret |= 0;
  806. else
  807. ret |= (cmd_reg_inhibit(s, i)) ?
  808. -EBADRQC : 0;
  809. }
  810. if (ret)
  811. break;
  812. ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
  813. if (ret)
  814. break;
  815. }
  816. return ret;
  817. }
  818. static int cmd_handler_lrr(struct parser_exec_state *s)
  819. {
  820. int i, ret = 0;
  821. int cmd_len = cmd_length(s);
  822. for (i = 1; i < cmd_len; i += 2) {
  823. if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
  824. ret |= ((cmd_reg_inhibit(s, i) ||
  825. (cmd_reg_inhibit(s, i + 1)))) ?
  826. -EBADRQC : 0;
  827. if (ret)
  828. break;
  829. ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
  830. if (ret)
  831. break;
  832. ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
  833. if (ret)
  834. break;
  835. }
  836. return ret;
  837. }
  838. static inline int cmd_address_audit(struct parser_exec_state *s,
  839. unsigned long guest_gma, int op_size, bool index_mode);
  840. static int cmd_handler_lrm(struct parser_exec_state *s)
  841. {
  842. struct intel_gvt *gvt = s->vgpu->gvt;
  843. int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
  844. unsigned long gma;
  845. int i, ret = 0;
  846. int cmd_len = cmd_length(s);
  847. for (i = 1; i < cmd_len;) {
  848. if (IS_BROADWELL(gvt->dev_priv))
  849. ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
  850. if (ret)
  851. break;
  852. ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
  853. if (ret)
  854. break;
  855. if (cmd_val(s, 0) & (1 << 22)) {
  856. gma = cmd_gma(s, i + 1);
  857. if (gmadr_bytes == 8)
  858. gma |= (cmd_gma_hi(s, i + 2)) << 32;
  859. ret |= cmd_address_audit(s, gma, sizeof(u32), false);
  860. if (ret)
  861. break;
  862. }
  863. i += gmadr_dw_number(s) + 1;
  864. }
  865. return ret;
  866. }
  867. static int cmd_handler_srm(struct parser_exec_state *s)
  868. {
  869. int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
  870. unsigned long gma;
  871. int i, ret = 0;
  872. int cmd_len = cmd_length(s);
  873. for (i = 1; i < cmd_len;) {
  874. ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
  875. if (ret)
  876. break;
  877. if (cmd_val(s, 0) & (1 << 22)) {
  878. gma = cmd_gma(s, i + 1);
  879. if (gmadr_bytes == 8)
  880. gma |= (cmd_gma_hi(s, i + 2)) << 32;
  881. ret |= cmd_address_audit(s, gma, sizeof(u32), false);
  882. if (ret)
  883. break;
  884. }
  885. i += gmadr_dw_number(s) + 1;
  886. }
  887. return ret;
  888. }
  889. struct cmd_interrupt_event {
  890. int pipe_control_notify;
  891. int mi_flush_dw;
  892. int mi_user_interrupt;
  893. };
  894. static struct cmd_interrupt_event cmd_interrupt_events[] = {
  895. [RCS] = {
  896. .pipe_control_notify = RCS_PIPE_CONTROL,
  897. .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
  898. .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
  899. },
  900. [BCS] = {
  901. .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
  902. .mi_flush_dw = BCS_MI_FLUSH_DW,
  903. .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
  904. },
  905. [VCS] = {
  906. .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
  907. .mi_flush_dw = VCS_MI_FLUSH_DW,
  908. .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
  909. },
  910. [VCS2] = {
  911. .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
  912. .mi_flush_dw = VCS2_MI_FLUSH_DW,
  913. .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
  914. },
  915. [VECS] = {
  916. .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
  917. .mi_flush_dw = VECS_MI_FLUSH_DW,
  918. .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
  919. },
  920. };
  921. static int cmd_handler_pipe_control(struct parser_exec_state *s)
  922. {
  923. int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
  924. unsigned long gma;
  925. bool index_mode = false;
  926. unsigned int post_sync;
  927. int ret = 0;
  928. post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
  929. /* LRI post sync */
  930. if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
  931. ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
  932. /* post sync */
  933. else if (post_sync) {
  934. if (post_sync == 2)
  935. ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
  936. else if (post_sync == 3)
  937. ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
  938. else if (post_sync == 1) {
  939. /* check ggtt*/
  940. if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
  941. gma = cmd_val(s, 2) & GENMASK(31, 3);
  942. if (gmadr_bytes == 8)
  943. gma |= (cmd_gma_hi(s, 3)) << 32;
  944. /* Store Data Index */
  945. if (cmd_val(s, 1) & (1 << 21))
  946. index_mode = true;
  947. ret |= cmd_address_audit(s, gma, sizeof(u64),
  948. index_mode);
  949. }
  950. }
  951. }
  952. if (ret)
  953. return ret;
  954. if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
  955. set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
  956. s->workload->pending_events);
  957. return 0;
  958. }
  959. static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
  960. {
  961. set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
  962. s->workload->pending_events);
  963. patch_value(s, cmd_ptr(s, 0), MI_NOOP);
  964. return 0;
  965. }
  966. static int cmd_advance_default(struct parser_exec_state *s)
  967. {
  968. return ip_gma_advance(s, cmd_length(s));
  969. }
  970. static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
  971. {
  972. int ret;
  973. if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
  974. s->buf_type = BATCH_BUFFER_INSTRUCTION;
  975. ret = ip_gma_set(s, s->ret_ip_gma_bb);
  976. s->buf_addr_type = s->saved_buf_addr_type;
  977. } else {
  978. s->buf_type = RING_BUFFER_INSTRUCTION;
  979. s->buf_addr_type = GTT_BUFFER;
  980. if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
  981. s->ret_ip_gma_ring -= s->ring_size;
  982. ret = ip_gma_set(s, s->ret_ip_gma_ring);
  983. }
  984. return ret;
  985. }
  986. struct mi_display_flip_command_info {
  987. int pipe;
  988. int plane;
  989. int event;
  990. i915_reg_t stride_reg;
  991. i915_reg_t ctrl_reg;
  992. i915_reg_t surf_reg;
  993. u64 stride_val;
  994. u64 tile_val;
  995. u64 surf_val;
  996. bool async_flip;
  997. };
  998. struct plane_code_mapping {
  999. int pipe;
  1000. int plane;
  1001. int event;
  1002. };
  1003. static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
  1004. struct mi_display_flip_command_info *info)
  1005. {
  1006. struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
  1007. struct plane_code_mapping gen8_plane_code[] = {
  1008. [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
  1009. [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
  1010. [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
  1011. [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
  1012. [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
  1013. [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
  1014. };
  1015. u32 dword0, dword1, dword2;
  1016. u32 v;
  1017. dword0 = cmd_val(s, 0);
  1018. dword1 = cmd_val(s, 1);
  1019. dword2 = cmd_val(s, 2);
  1020. v = (dword0 & GENMASK(21, 19)) >> 19;
  1021. if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
  1022. return -EBADRQC;
  1023. info->pipe = gen8_plane_code[v].pipe;
  1024. info->plane = gen8_plane_code[v].plane;
  1025. info->event = gen8_plane_code[v].event;
  1026. info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
  1027. info->tile_val = (dword1 & 0x1);
  1028. info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
  1029. info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
  1030. if (info->plane == PLANE_A) {
  1031. info->ctrl_reg = DSPCNTR(info->pipe);
  1032. info->stride_reg = DSPSTRIDE(info->pipe);
  1033. info->surf_reg = DSPSURF(info->pipe);
  1034. } else if (info->plane == PLANE_B) {
  1035. info->ctrl_reg = SPRCTL(info->pipe);
  1036. info->stride_reg = SPRSTRIDE(info->pipe);
  1037. info->surf_reg = SPRSURF(info->pipe);
  1038. } else {
  1039. WARN_ON(1);
  1040. return -EBADRQC;
  1041. }
  1042. return 0;
  1043. }
  1044. static int skl_decode_mi_display_flip(struct parser_exec_state *s,
  1045. struct mi_display_flip_command_info *info)
  1046. {
  1047. struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
  1048. struct intel_vgpu *vgpu = s->vgpu;
  1049. u32 dword0 = cmd_val(s, 0);
  1050. u32 dword1 = cmd_val(s, 1);
  1051. u32 dword2 = cmd_val(s, 2);
  1052. u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
  1053. info->plane = PRIMARY_PLANE;
  1054. switch (plane) {
  1055. case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
  1056. info->pipe = PIPE_A;
  1057. info->event = PRIMARY_A_FLIP_DONE;
  1058. break;
  1059. case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
  1060. info->pipe = PIPE_B;
  1061. info->event = PRIMARY_B_FLIP_DONE;
  1062. break;
  1063. case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
  1064. info->pipe = PIPE_C;
  1065. info->event = PRIMARY_C_FLIP_DONE;
  1066. break;
  1067. case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
  1068. info->pipe = PIPE_A;
  1069. info->event = SPRITE_A_FLIP_DONE;
  1070. info->plane = SPRITE_PLANE;
  1071. break;
  1072. case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
  1073. info->pipe = PIPE_B;
  1074. info->event = SPRITE_B_FLIP_DONE;
  1075. info->plane = SPRITE_PLANE;
  1076. break;
  1077. case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
  1078. info->pipe = PIPE_C;
  1079. info->event = SPRITE_C_FLIP_DONE;
  1080. info->plane = SPRITE_PLANE;
  1081. break;
  1082. default:
  1083. gvt_vgpu_err("unknown plane code %d\n", plane);
  1084. return -EBADRQC;
  1085. }
  1086. info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
  1087. info->tile_val = (dword1 & GENMASK(2, 0));
  1088. info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
  1089. info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
  1090. info->ctrl_reg = DSPCNTR(info->pipe);
  1091. info->stride_reg = DSPSTRIDE(info->pipe);
  1092. info->surf_reg = DSPSURF(info->pipe);
  1093. return 0;
  1094. }
  1095. static int gen8_check_mi_display_flip(struct parser_exec_state *s,
  1096. struct mi_display_flip_command_info *info)
  1097. {
  1098. struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
  1099. u32 stride, tile;
  1100. if (!info->async_flip)
  1101. return 0;
  1102. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  1103. stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
  1104. tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
  1105. GENMASK(12, 10)) >> 10;
  1106. } else {
  1107. stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
  1108. GENMASK(15, 6)) >> 6;
  1109. tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
  1110. }
  1111. if (stride != info->stride_val)
  1112. gvt_dbg_cmd("cannot change stride during async flip\n");
  1113. if (tile != info->tile_val)
  1114. gvt_dbg_cmd("cannot change tile during async flip\n");
  1115. return 0;
  1116. }
  1117. static int gen8_update_plane_mmio_from_mi_display_flip(
  1118. struct parser_exec_state *s,
  1119. struct mi_display_flip_command_info *info)
  1120. {
  1121. struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
  1122. struct intel_vgpu *vgpu = s->vgpu;
  1123. set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
  1124. info->surf_val << 12);
  1125. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
  1126. set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
  1127. info->stride_val);
  1128. set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
  1129. info->tile_val << 10);
  1130. } else {
  1131. set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
  1132. info->stride_val << 6);
  1133. set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
  1134. info->tile_val << 10);
  1135. }
  1136. vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
  1137. intel_vgpu_trigger_virtual_event(vgpu, info->event);
  1138. return 0;
  1139. }
  1140. static int decode_mi_display_flip(struct parser_exec_state *s,
  1141. struct mi_display_flip_command_info *info)
  1142. {
  1143. struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
  1144. if (IS_BROADWELL(dev_priv))
  1145. return gen8_decode_mi_display_flip(s, info);
  1146. if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
  1147. return skl_decode_mi_display_flip(s, info);
  1148. return -ENODEV;
  1149. }
  1150. static int check_mi_display_flip(struct parser_exec_state *s,
  1151. struct mi_display_flip_command_info *info)
  1152. {
  1153. struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
  1154. if (IS_BROADWELL(dev_priv)
  1155. || IS_SKYLAKE(dev_priv)
  1156. || IS_KABYLAKE(dev_priv))
  1157. return gen8_check_mi_display_flip(s, info);
  1158. return -ENODEV;
  1159. }
  1160. static int update_plane_mmio_from_mi_display_flip(
  1161. struct parser_exec_state *s,
  1162. struct mi_display_flip_command_info *info)
  1163. {
  1164. struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
  1165. if (IS_BROADWELL(dev_priv)
  1166. || IS_SKYLAKE(dev_priv)
  1167. || IS_KABYLAKE(dev_priv))
  1168. return gen8_update_plane_mmio_from_mi_display_flip(s, info);
  1169. return -ENODEV;
  1170. }
  1171. static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
  1172. {
  1173. struct mi_display_flip_command_info info;
  1174. struct intel_vgpu *vgpu = s->vgpu;
  1175. int ret;
  1176. int i;
  1177. int len = cmd_length(s);
  1178. ret = decode_mi_display_flip(s, &info);
  1179. if (ret) {
  1180. gvt_vgpu_err("fail to decode MI display flip command\n");
  1181. return ret;
  1182. }
  1183. ret = check_mi_display_flip(s, &info);
  1184. if (ret) {
  1185. gvt_vgpu_err("invalid MI display flip command\n");
  1186. return ret;
  1187. }
  1188. ret = update_plane_mmio_from_mi_display_flip(s, &info);
  1189. if (ret) {
  1190. gvt_vgpu_err("fail to update plane mmio\n");
  1191. return ret;
  1192. }
  1193. for (i = 0; i < len; i++)
  1194. patch_value(s, cmd_ptr(s, i), MI_NOOP);
  1195. return 0;
  1196. }
  1197. static bool is_wait_for_flip_pending(u32 cmd)
  1198. {
  1199. return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
  1200. MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
  1201. MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
  1202. MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
  1203. MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
  1204. MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
  1205. }
  1206. static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
  1207. {
  1208. u32 cmd = cmd_val(s, 0);
  1209. if (!is_wait_for_flip_pending(cmd))
  1210. return 0;
  1211. patch_value(s, cmd_ptr(s, 0), MI_NOOP);
  1212. return 0;
  1213. }
  1214. static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
  1215. {
  1216. unsigned long addr;
  1217. unsigned long gma_high, gma_low;
  1218. struct intel_vgpu *vgpu = s->vgpu;
  1219. int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
  1220. if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
  1221. gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
  1222. return INTEL_GVT_INVALID_ADDR;
  1223. }
  1224. gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
  1225. if (gmadr_bytes == 4) {
  1226. addr = gma_low;
  1227. } else {
  1228. gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
  1229. addr = (((unsigned long)gma_high) << 32) | gma_low;
  1230. }
  1231. return addr;
  1232. }
  1233. static inline int cmd_address_audit(struct parser_exec_state *s,
  1234. unsigned long guest_gma, int op_size, bool index_mode)
  1235. {
  1236. struct intel_vgpu *vgpu = s->vgpu;
  1237. u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
  1238. int i;
  1239. int ret;
  1240. if (op_size > max_surface_size) {
  1241. gvt_vgpu_err("command address audit fail name %s\n",
  1242. s->info->name);
  1243. return -EFAULT;
  1244. }
  1245. if (index_mode) {
  1246. if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) {
  1247. ret = -EFAULT;
  1248. goto err;
  1249. }
  1250. } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
  1251. ret = -EFAULT;
  1252. goto err;
  1253. }
  1254. return 0;
  1255. err:
  1256. gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
  1257. s->info->name, guest_gma, op_size);
  1258. pr_err("cmd dump: ");
  1259. for (i = 0; i < cmd_length(s); i++) {
  1260. if (!(i % 4))
  1261. pr_err("\n%08x ", cmd_val(s, i));
  1262. else
  1263. pr_err("%08x ", cmd_val(s, i));
  1264. }
  1265. pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
  1266. vgpu->id,
  1267. vgpu_aperture_gmadr_base(vgpu),
  1268. vgpu_aperture_gmadr_end(vgpu),
  1269. vgpu_hidden_gmadr_base(vgpu),
  1270. vgpu_hidden_gmadr_end(vgpu));
  1271. return ret;
  1272. }
  1273. static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
  1274. {
  1275. int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
  1276. int op_size = (cmd_length(s) - 3) * sizeof(u32);
  1277. int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
  1278. unsigned long gma, gma_low, gma_high;
  1279. int ret = 0;
  1280. /* check ppggt */
  1281. if (!(cmd_val(s, 0) & (1 << 22)))
  1282. return 0;
  1283. gma = cmd_val(s, 2) & GENMASK(31, 2);
  1284. if (gmadr_bytes == 8) {
  1285. gma_low = cmd_val(s, 1) & GENMASK(31, 2);
  1286. gma_high = cmd_val(s, 2) & GENMASK(15, 0);
  1287. gma = (gma_high << 32) | gma_low;
  1288. core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
  1289. }
  1290. ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
  1291. return ret;
  1292. }
  1293. static inline int unexpected_cmd(struct parser_exec_state *s)
  1294. {
  1295. struct intel_vgpu *vgpu = s->vgpu;
  1296. gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
  1297. return -EBADRQC;
  1298. }
  1299. static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
  1300. {
  1301. return unexpected_cmd(s);
  1302. }
  1303. static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
  1304. {
  1305. return unexpected_cmd(s);
  1306. }
  1307. static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
  1308. {
  1309. return unexpected_cmd(s);
  1310. }
  1311. static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
  1312. {
  1313. int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
  1314. int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
  1315. sizeof(u32);
  1316. unsigned long gma, gma_high;
  1317. int ret = 0;
  1318. if (!(cmd_val(s, 0) & (1 << 22)))
  1319. return ret;
  1320. gma = cmd_val(s, 1) & GENMASK(31, 2);
  1321. if (gmadr_bytes == 8) {
  1322. gma_high = cmd_val(s, 2) & GENMASK(15, 0);
  1323. gma = (gma_high << 32) | gma;
  1324. }
  1325. ret = cmd_address_audit(s, gma, op_size, false);
  1326. return ret;
  1327. }
  1328. static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
  1329. {
  1330. return unexpected_cmd(s);
  1331. }
  1332. static int cmd_handler_mi_clflush(struct parser_exec_state *s)
  1333. {
  1334. return unexpected_cmd(s);
  1335. }
  1336. static int cmd_handler_mi_conditional_batch_buffer_end(
  1337. struct parser_exec_state *s)
  1338. {
  1339. return unexpected_cmd(s);
  1340. }
  1341. static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
  1342. {
  1343. return unexpected_cmd(s);
  1344. }
  1345. static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
  1346. {
  1347. int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
  1348. unsigned long gma;
  1349. bool index_mode = false;
  1350. int ret = 0;
  1351. /* Check post-sync and ppgtt bit */
  1352. if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
  1353. gma = cmd_val(s, 1) & GENMASK(31, 3);
  1354. if (gmadr_bytes == 8)
  1355. gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
  1356. /* Store Data Index */
  1357. if (cmd_val(s, 0) & (1 << 21))
  1358. index_mode = true;
  1359. ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
  1360. }
  1361. /* Check notify bit */
  1362. if ((cmd_val(s, 0) & (1 << 8)))
  1363. set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
  1364. s->workload->pending_events);
  1365. return ret;
  1366. }
  1367. static void addr_type_update_snb(struct parser_exec_state *s)
  1368. {
  1369. if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
  1370. (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
  1371. s->buf_addr_type = PPGTT_BUFFER;
  1372. }
  1373. }
  1374. static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
  1375. unsigned long gma, unsigned long end_gma, void *va)
  1376. {
  1377. unsigned long copy_len, offset;
  1378. unsigned long len = 0;
  1379. unsigned long gpa;
  1380. while (gma != end_gma) {
  1381. gpa = intel_vgpu_gma_to_gpa(mm, gma);
  1382. if (gpa == INTEL_GVT_INVALID_ADDR) {
  1383. gvt_vgpu_err("invalid gma address: %lx\n", gma);
  1384. return -EFAULT;
  1385. }
  1386. offset = gma & (I915_GTT_PAGE_SIZE - 1);
  1387. copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
  1388. I915_GTT_PAGE_SIZE - offset : end_gma - gma;
  1389. intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
  1390. len += copy_len;
  1391. gma += copy_len;
  1392. }
  1393. return len;
  1394. }
  1395. /*
  1396. * Check whether a batch buffer needs to be scanned. Currently
  1397. * the only criteria is based on privilege.
  1398. */
  1399. static int batch_buffer_needs_scan(struct parser_exec_state *s)
  1400. {
  1401. struct intel_gvt *gvt = s->vgpu->gvt;
  1402. if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
  1403. || IS_KABYLAKE(gvt->dev_priv)) {
  1404. /* BDW decides privilege based on address space */
  1405. if (cmd_val(s, 0) & (1 << 8) &&
  1406. !(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
  1407. return 0;
  1408. }
  1409. return 1;
  1410. }
  1411. static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
  1412. {
  1413. unsigned long gma = 0;
  1414. struct cmd_info *info;
  1415. uint32_t cmd_len = 0;
  1416. bool bb_end = false;
  1417. struct intel_vgpu *vgpu = s->vgpu;
  1418. u32 cmd;
  1419. struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
  1420. s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
  1421. *bb_size = 0;
  1422. /* get the start gm address of the batch buffer */
  1423. gma = get_gma_bb_from_cmd(s, 1);
  1424. if (gma == INTEL_GVT_INVALID_ADDR)
  1425. return -EFAULT;
  1426. cmd = cmd_val(s, 0);
  1427. info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
  1428. if (info == NULL) {
  1429. gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
  1430. cmd, get_opcode(cmd, s->ring_id),
  1431. (s->buf_addr_type == PPGTT_BUFFER) ?
  1432. "ppgtt" : "ggtt", s->ring_id, s->workload);
  1433. return -EBADRQC;
  1434. }
  1435. do {
  1436. if (copy_gma_to_hva(s->vgpu, mm,
  1437. gma, gma + 4, &cmd) < 0)
  1438. return -EFAULT;
  1439. info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
  1440. if (info == NULL) {
  1441. gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
  1442. cmd, get_opcode(cmd, s->ring_id),
  1443. (s->buf_addr_type == PPGTT_BUFFER) ?
  1444. "ppgtt" : "ggtt", s->ring_id, s->workload);
  1445. return -EBADRQC;
  1446. }
  1447. if (info->opcode == OP_MI_BATCH_BUFFER_END) {
  1448. bb_end = true;
  1449. } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
  1450. if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
  1451. /* chained batch buffer */
  1452. bb_end = true;
  1453. }
  1454. cmd_len = get_cmd_length(info, cmd) << 2;
  1455. *bb_size += cmd_len;
  1456. gma += cmd_len;
  1457. } while (!bb_end);
  1458. return 0;
  1459. }
  1460. static int perform_bb_shadow(struct parser_exec_state *s)
  1461. {
  1462. struct intel_vgpu *vgpu = s->vgpu;
  1463. struct intel_vgpu_shadow_bb *bb;
  1464. unsigned long gma = 0;
  1465. unsigned long bb_size;
  1466. int ret = 0;
  1467. struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
  1468. s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
  1469. unsigned long gma_start_offset = 0;
  1470. /* get the start gm address of the batch buffer */
  1471. gma = get_gma_bb_from_cmd(s, 1);
  1472. if (gma == INTEL_GVT_INVALID_ADDR)
  1473. return -EFAULT;
  1474. ret = find_bb_size(s, &bb_size);
  1475. if (ret)
  1476. return ret;
  1477. bb = kzalloc(sizeof(*bb), GFP_KERNEL);
  1478. if (!bb)
  1479. return -ENOMEM;
  1480. bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
  1481. /* the gma_start_offset stores the batch buffer's start gma's
  1482. * offset relative to page boundary. so for non-privileged batch
  1483. * buffer, the shadowed gem object holds exactly the same page
  1484. * layout as original gem object. This is for the convience of
  1485. * replacing the whole non-privilged batch buffer page to this
  1486. * shadowed one in PPGTT at the same gma address. (this replacing
  1487. * action is not implemented yet now, but may be necessary in
  1488. * future).
  1489. * for prileged batch buffer, we just change start gma address to
  1490. * that of shadowed page.
  1491. */
  1492. if (bb->ppgtt)
  1493. gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
  1494. bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
  1495. roundup(bb_size + gma_start_offset, PAGE_SIZE));
  1496. if (IS_ERR(bb->obj)) {
  1497. ret = PTR_ERR(bb->obj);
  1498. goto err_free_bb;
  1499. }
  1500. ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
  1501. if (ret)
  1502. goto err_free_obj;
  1503. bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
  1504. if (IS_ERR(bb->va)) {
  1505. ret = PTR_ERR(bb->va);
  1506. goto err_finish_shmem_access;
  1507. }
  1508. if (bb->clflush & CLFLUSH_BEFORE) {
  1509. drm_clflush_virt_range(bb->va, bb->obj->base.size);
  1510. bb->clflush &= ~CLFLUSH_BEFORE;
  1511. }
  1512. ret = copy_gma_to_hva(s->vgpu, mm,
  1513. gma, gma + bb_size,
  1514. bb->va + gma_start_offset);
  1515. if (ret < 0) {
  1516. gvt_vgpu_err("fail to copy guest ring buffer\n");
  1517. ret = -EFAULT;
  1518. goto err_unmap;
  1519. }
  1520. INIT_LIST_HEAD(&bb->list);
  1521. list_add(&bb->list, &s->workload->shadow_bb);
  1522. bb->accessing = true;
  1523. bb->bb_start_cmd_va = s->ip_va;
  1524. if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
  1525. bb->bb_offset = s->ip_va - s->rb_va;
  1526. else
  1527. bb->bb_offset = 0;
  1528. /*
  1529. * ip_va saves the virtual address of the shadow batch buffer, while
  1530. * ip_gma saves the graphics address of the original batch buffer.
  1531. * As the shadow batch buffer is just a copy from the originial one,
  1532. * it should be right to use shadow batch buffer'va and original batch
  1533. * buffer's gma in pair. After all, we don't want to pin the shadow
  1534. * buffer here (too early).
  1535. */
  1536. s->ip_va = bb->va + gma_start_offset;
  1537. s->ip_gma = gma;
  1538. return 0;
  1539. err_unmap:
  1540. i915_gem_object_unpin_map(bb->obj);
  1541. err_finish_shmem_access:
  1542. i915_gem_obj_finish_shmem_access(bb->obj);
  1543. err_free_obj:
  1544. i915_gem_object_put(bb->obj);
  1545. err_free_bb:
  1546. kfree(bb);
  1547. return ret;
  1548. }
  1549. static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
  1550. {
  1551. bool second_level;
  1552. int ret = 0;
  1553. struct intel_vgpu *vgpu = s->vgpu;
  1554. if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
  1555. gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
  1556. return -EFAULT;
  1557. }
  1558. second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
  1559. if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
  1560. gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
  1561. return -EFAULT;
  1562. }
  1563. s->saved_buf_addr_type = s->buf_addr_type;
  1564. addr_type_update_snb(s);
  1565. if (s->buf_type == RING_BUFFER_INSTRUCTION) {
  1566. s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
  1567. s->buf_type = BATCH_BUFFER_INSTRUCTION;
  1568. } else if (second_level) {
  1569. s->buf_type = BATCH_BUFFER_2ND_LEVEL;
  1570. s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
  1571. s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
  1572. }
  1573. if (batch_buffer_needs_scan(s)) {
  1574. ret = perform_bb_shadow(s);
  1575. if (ret < 0)
  1576. gvt_vgpu_err("invalid shadow batch buffer\n");
  1577. } else {
  1578. /* emulate a batch buffer end to do return right */
  1579. ret = cmd_handler_mi_batch_buffer_end(s);
  1580. if (ret < 0)
  1581. return ret;
  1582. }
  1583. return ret;
  1584. }
  1585. static struct cmd_info cmd_info[] = {
  1586. {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
  1587. {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
  1588. 0, 1, NULL},
  1589. {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
  1590. 0, 1, cmd_handler_mi_user_interrupt},
  1591. {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
  1592. D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
  1593. {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
  1594. {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
  1595. NULL},
  1596. {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
  1597. NULL},
  1598. {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
  1599. NULL},
  1600. {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
  1601. NULL},
  1602. {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
  1603. D_ALL, 0, 1, NULL},
  1604. {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
  1605. F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
  1606. cmd_handler_mi_batch_buffer_end},
  1607. {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
  1608. 0, 1, NULL},
  1609. {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
  1610. NULL},
  1611. {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
  1612. D_ALL, 0, 1, NULL},
  1613. {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
  1614. NULL},
  1615. {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
  1616. NULL},
  1617. {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
  1618. R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
  1619. {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
  1620. 0, 8, NULL},
  1621. {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
  1622. {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1623. {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
  1624. D_BDW_PLUS, 0, 8, NULL},
  1625. {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
  1626. ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
  1627. {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
  1628. ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
  1629. {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
  1630. 0, 8, cmd_handler_mi_store_data_index},
  1631. {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
  1632. D_ALL, 0, 8, cmd_handler_lri},
  1633. {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
  1634. cmd_handler_mi_update_gtt},
  1635. {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
  1636. D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
  1637. {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
  1638. cmd_handler_mi_flush_dw},
  1639. {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
  1640. 10, cmd_handler_mi_clflush},
  1641. {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
  1642. D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
  1643. {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
  1644. D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
  1645. {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
  1646. D_ALL, 0, 8, cmd_handler_lrr},
  1647. {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
  1648. D_ALL, 0, 8, NULL},
  1649. {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
  1650. ADDR_FIX_1(2), 8, NULL},
  1651. {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
  1652. ADDR_FIX_1(2), 8, NULL},
  1653. {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
  1654. 8, cmd_handler_mi_op_2e},
  1655. {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
  1656. 8, cmd_handler_mi_op_2f},
  1657. {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
  1658. F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
  1659. cmd_handler_mi_batch_buffer_start},
  1660. {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
  1661. F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
  1662. cmd_handler_mi_conditional_batch_buffer_end},
  1663. {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
  1664. R_RCS | R_BCS, D_ALL, 0, 2, NULL},
  1665. {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
  1666. ADDR_FIX_2(4, 7), 8, NULL},
  1667. {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
  1668. 0, 8, NULL},
  1669. {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
  1670. F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
  1671. {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
  1672. {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
  1673. 0, 8, NULL},
  1674. {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
  1675. ADDR_FIX_1(3), 8, NULL},
  1676. {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
  1677. D_ALL, 0, 8, NULL},
  1678. {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
  1679. ADDR_FIX_1(4), 8, NULL},
  1680. {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
  1681. ADDR_FIX_2(4, 5), 8, NULL},
  1682. {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
  1683. ADDR_FIX_1(4), 8, NULL},
  1684. {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
  1685. ADDR_FIX_2(4, 7), 8, NULL},
  1686. {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
  1687. D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
  1688. {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
  1689. {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
  1690. D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
  1691. {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
  1692. R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
  1693. {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
  1694. OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
  1695. F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
  1696. {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
  1697. D_ALL, ADDR_FIX_1(4), 8, NULL},
  1698. {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
  1699. F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
  1700. {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
  1701. D_ALL, ADDR_FIX_1(4), 8, NULL},
  1702. {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
  1703. D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
  1704. {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
  1705. F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
  1706. {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
  1707. OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
  1708. F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
  1709. {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
  1710. ADDR_FIX_2(4, 5), 8, NULL},
  1711. {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
  1712. F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
  1713. {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
  1714. OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
  1715. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1716. {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
  1717. OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
  1718. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1719. {"3DSTATE_BLEND_STATE_POINTERS",
  1720. OP_3DSTATE_BLEND_STATE_POINTERS,
  1721. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1722. {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
  1723. OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
  1724. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1725. {"3DSTATE_BINDING_TABLE_POINTERS_VS",
  1726. OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
  1727. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1728. {"3DSTATE_BINDING_TABLE_POINTERS_HS",
  1729. OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
  1730. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1731. {"3DSTATE_BINDING_TABLE_POINTERS_DS",
  1732. OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
  1733. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1734. {"3DSTATE_BINDING_TABLE_POINTERS_GS",
  1735. OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
  1736. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1737. {"3DSTATE_BINDING_TABLE_POINTERS_PS",
  1738. OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
  1739. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1740. {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
  1741. OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
  1742. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1743. {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
  1744. OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
  1745. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1746. {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
  1747. OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
  1748. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1749. {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
  1750. OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
  1751. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1752. {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
  1753. OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
  1754. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1755. {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
  1756. 0, 8, NULL},
  1757. {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
  1758. 0, 8, NULL},
  1759. {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
  1760. 0, 8, NULL},
  1761. {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
  1762. 0, 8, NULL},
  1763. {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
  1764. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1765. {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
  1766. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1767. {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
  1768. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1769. {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
  1770. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1771. {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
  1772. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1773. {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
  1774. F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
  1775. {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
  1776. F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
  1777. {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
  1778. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1779. {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
  1780. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1781. {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
  1782. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1783. {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
  1784. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1785. {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
  1786. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1787. {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
  1788. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1789. {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
  1790. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1791. {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
  1792. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1793. {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
  1794. F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
  1795. {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
  1796. F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
  1797. {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
  1798. F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
  1799. {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
  1800. F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
  1801. {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
  1802. F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
  1803. {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
  1804. D_BDW_PLUS, 0, 8, NULL},
  1805. {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
  1806. NULL},
  1807. {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
  1808. D_BDW_PLUS, 0, 8, NULL},
  1809. {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
  1810. D_BDW_PLUS, 0, 8, NULL},
  1811. {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
  1812. 8, NULL},
  1813. {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
  1814. R_RCS, D_BDW_PLUS, 0, 8, NULL},
  1815. {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
  1816. 8, NULL},
  1817. {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
  1818. NULL},
  1819. {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
  1820. NULL},
  1821. {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
  1822. NULL},
  1823. {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
  1824. D_BDW_PLUS, 0, 8, NULL},
  1825. {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
  1826. R_RCS, D_ALL, 0, 8, NULL},
  1827. {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
  1828. D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
  1829. {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
  1830. R_RCS, D_ALL, 0, 1, NULL},
  1831. {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1832. {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
  1833. R_RCS, D_ALL, 0, 8, NULL},
  1834. {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
  1835. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1836. {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1837. {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1838. {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1839. {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
  1840. D_BDW_PLUS, 0, 8, NULL},
  1841. {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
  1842. D_BDW_PLUS, 0, 8, NULL},
  1843. {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
  1844. D_ALL, 0, 8, NULL},
  1845. {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
  1846. D_BDW_PLUS, 0, 8, NULL},
  1847. {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
  1848. D_BDW_PLUS, 0, 8, NULL},
  1849. {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1850. {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1851. {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1852. {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
  1853. D_ALL, 0, 8, NULL},
  1854. {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1855. {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1856. {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
  1857. R_RCS, D_ALL, 0, 8, NULL},
  1858. {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
  1859. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1860. {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
  1861. 0, 8, NULL},
  1862. {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
  1863. D_ALL, ADDR_FIX_1(2), 8, NULL},
  1864. {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
  1865. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1866. {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
  1867. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1868. {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
  1869. D_ALL, 0, 8, NULL},
  1870. {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
  1871. D_ALL, 0, 8, NULL},
  1872. {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
  1873. D_ALL, 0, 8, NULL},
  1874. {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
  1875. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1876. {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
  1877. D_BDW_PLUS, 0, 8, NULL},
  1878. {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
  1879. D_ALL, ADDR_FIX_1(2), 8, NULL},
  1880. {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
  1881. R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
  1882. {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
  1883. R_RCS, D_ALL, 0, 8, NULL},
  1884. {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
  1885. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1886. {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
  1887. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1888. {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
  1889. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1890. {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
  1891. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1892. {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
  1893. F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1894. {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
  1895. R_RCS, D_ALL, 0, 8, NULL},
  1896. {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
  1897. D_ALL, 0, 9, NULL},
  1898. {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
  1899. ADDR_FIX_2(2, 4), 8, NULL},
  1900. {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
  1901. OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
  1902. F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
  1903. {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
  1904. F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
  1905. {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
  1906. OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
  1907. F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
  1908. {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
  1909. D_BDW_PLUS, 0, 8, NULL},
  1910. {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
  1911. ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
  1912. {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1913. {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
  1914. 1, NULL},
  1915. {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
  1916. ADDR_FIX_1(1), 8, NULL},
  1917. {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1918. {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
  1919. ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
  1920. {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
  1921. ADDR_FIX_1(1), 8, NULL},
  1922. {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1923. {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
  1924. {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
  1925. 0, 8, NULL},
  1926. {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
  1927. D_SKL_PLUS, 0, 8, NULL},
  1928. {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
  1929. F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
  1930. {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
  1931. 0, 16, NULL},
  1932. {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
  1933. 0, 16, NULL},
  1934. {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
  1935. {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
  1936. 0, 16, NULL},
  1937. {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
  1938. 0, 16, NULL},
  1939. {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
  1940. 0, 16, NULL},
  1941. {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
  1942. 0, 8, NULL},
  1943. {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
  1944. NULL},
  1945. {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
  1946. F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
  1947. {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
  1948. R_VCS, D_ALL, 0, 12, NULL},
  1949. {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
  1950. R_VCS, D_ALL, 0, 12, NULL},
  1951. {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
  1952. R_VCS, D_BDW_PLUS, 0, 12, NULL},
  1953. {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
  1954. F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
  1955. {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
  1956. F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
  1957. {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
  1958. {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
  1959. R_VCS, D_ALL, 0, 12, NULL},
  1960. {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
  1961. R_VCS, D_ALL, 0, 12, NULL},
  1962. {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
  1963. R_VCS, D_ALL, 0, 12, NULL},
  1964. {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
  1965. R_VCS, D_ALL, 0, 12, NULL},
  1966. {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
  1967. R_VCS, D_ALL, 0, 12, NULL},
  1968. {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
  1969. R_VCS, D_ALL, 0, 12, NULL},
  1970. {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
  1971. R_VCS, D_ALL, 0, 6, NULL},
  1972. {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
  1973. R_VCS, D_ALL, 0, 12, NULL},
  1974. {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
  1975. R_VCS, D_ALL, 0, 12, NULL},
  1976. {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
  1977. R_VCS, D_ALL, 0, 12, NULL},
  1978. {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
  1979. R_VCS, D_ALL, 0, 12, NULL},
  1980. {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
  1981. R_VCS, D_ALL, 0, 12, NULL},
  1982. {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
  1983. R_VCS, D_ALL, 0, 12, NULL},
  1984. {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
  1985. R_VCS, D_ALL, 0, 12, NULL},
  1986. {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
  1987. R_VCS, D_ALL, 0, 12, NULL},
  1988. {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
  1989. R_VCS, D_ALL, 0, 12, NULL},
  1990. {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
  1991. R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
  1992. {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
  1993. R_VCS, D_ALL, 0, 12, NULL},
  1994. {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
  1995. R_VCS, D_ALL, 0, 12, NULL},
  1996. {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
  1997. R_VCS, D_ALL, 0, 12, NULL},
  1998. {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
  1999. R_VCS, D_ALL, 0, 12, NULL},
  2000. {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
  2001. R_VCS, D_ALL, 0, 12, NULL},
  2002. {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
  2003. R_VCS, D_ALL, 0, 12, NULL},
  2004. {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
  2005. R_VCS, D_ALL, 0, 12, NULL},
  2006. {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
  2007. R_VCS, D_ALL, 0, 12, NULL},
  2008. {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
  2009. R_VCS, D_ALL, 0, 12, NULL},
  2010. {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
  2011. R_VCS, D_ALL, 0, 12, NULL},
  2012. {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
  2013. R_VCS, D_ALL, 0, 12, NULL},
  2014. {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
  2015. 0, 16, NULL},
  2016. {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
  2017. {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
  2018. {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
  2019. R_VCS, D_ALL, 0, 12, NULL},
  2020. {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
  2021. R_VCS, D_ALL, 0, 12, NULL},
  2022. {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
  2023. R_VCS, D_ALL, 0, 12, NULL},
  2024. {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
  2025. {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
  2026. 0, 12, NULL},
  2027. {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
  2028. 0, 20, NULL},
  2029. };
  2030. static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
  2031. {
  2032. hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
  2033. }
  2034. /* call the cmd handler, and advance ip */
  2035. static int cmd_parser_exec(struct parser_exec_state *s)
  2036. {
  2037. struct intel_vgpu *vgpu = s->vgpu;
  2038. struct cmd_info *info;
  2039. u32 cmd;
  2040. int ret = 0;
  2041. cmd = cmd_val(s, 0);
  2042. info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
  2043. if (info == NULL) {
  2044. gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
  2045. cmd, get_opcode(cmd, s->ring_id),
  2046. (s->buf_addr_type == PPGTT_BUFFER) ?
  2047. "ppgtt" : "ggtt", s->ring_id, s->workload);
  2048. return -EBADRQC;
  2049. }
  2050. s->info = info;
  2051. trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
  2052. cmd_length(s), s->buf_type, s->buf_addr_type,
  2053. s->workload, info->name);
  2054. if (info->handler) {
  2055. ret = info->handler(s);
  2056. if (ret < 0) {
  2057. gvt_vgpu_err("%s handler error\n", info->name);
  2058. return ret;
  2059. }
  2060. }
  2061. if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
  2062. ret = cmd_advance_default(s);
  2063. if (ret) {
  2064. gvt_vgpu_err("%s IP advance error\n", info->name);
  2065. return ret;
  2066. }
  2067. }
  2068. return 0;
  2069. }
  2070. static inline bool gma_out_of_range(unsigned long gma,
  2071. unsigned long gma_head, unsigned int gma_tail)
  2072. {
  2073. if (gma_tail >= gma_head)
  2074. return (gma < gma_head) || (gma > gma_tail);
  2075. else
  2076. return (gma > gma_tail) && (gma < gma_head);
  2077. }
  2078. /* Keep the consistent return type, e.g EBADRQC for unknown
  2079. * cmd, EFAULT for invalid address, EPERM for nonpriv. later
  2080. * works as the input of VM healthy status.
  2081. */
  2082. static int command_scan(struct parser_exec_state *s,
  2083. unsigned long rb_head, unsigned long rb_tail,
  2084. unsigned long rb_start, unsigned long rb_len)
  2085. {
  2086. unsigned long gma_head, gma_tail, gma_bottom;
  2087. int ret = 0;
  2088. struct intel_vgpu *vgpu = s->vgpu;
  2089. gma_head = rb_start + rb_head;
  2090. gma_tail = rb_start + rb_tail;
  2091. gma_bottom = rb_start + rb_len;
  2092. while (s->ip_gma != gma_tail) {
  2093. if (s->buf_type == RING_BUFFER_INSTRUCTION) {
  2094. if (!(s->ip_gma >= rb_start) ||
  2095. !(s->ip_gma < gma_bottom)) {
  2096. gvt_vgpu_err("ip_gma %lx out of ring scope."
  2097. "(base:0x%lx, bottom: 0x%lx)\n",
  2098. s->ip_gma, rb_start,
  2099. gma_bottom);
  2100. parser_exec_state_dump(s);
  2101. return -EFAULT;
  2102. }
  2103. if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
  2104. gvt_vgpu_err("ip_gma %lx out of range."
  2105. "base 0x%lx head 0x%lx tail 0x%lx\n",
  2106. s->ip_gma, rb_start,
  2107. rb_head, rb_tail);
  2108. parser_exec_state_dump(s);
  2109. break;
  2110. }
  2111. }
  2112. ret = cmd_parser_exec(s);
  2113. if (ret) {
  2114. gvt_vgpu_err("cmd parser error\n");
  2115. parser_exec_state_dump(s);
  2116. break;
  2117. }
  2118. }
  2119. return ret;
  2120. }
  2121. static int scan_workload(struct intel_vgpu_workload *workload)
  2122. {
  2123. unsigned long gma_head, gma_tail, gma_bottom;
  2124. struct parser_exec_state s;
  2125. int ret = 0;
  2126. /* ring base is page aligned */
  2127. if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
  2128. return -EINVAL;
  2129. gma_head = workload->rb_start + workload->rb_head;
  2130. gma_tail = workload->rb_start + workload->rb_tail;
  2131. gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
  2132. s.buf_type = RING_BUFFER_INSTRUCTION;
  2133. s.buf_addr_type = GTT_BUFFER;
  2134. s.vgpu = workload->vgpu;
  2135. s.ring_id = workload->ring_id;
  2136. s.ring_start = workload->rb_start;
  2137. s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
  2138. s.ring_head = gma_head;
  2139. s.ring_tail = gma_tail;
  2140. s.rb_va = workload->shadow_ring_buffer_va;
  2141. s.workload = workload;
  2142. s.is_ctx_wa = false;
  2143. if ((bypass_scan_mask & (1 << workload->ring_id)) ||
  2144. gma_head == gma_tail)
  2145. return 0;
  2146. if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
  2147. ret = -EINVAL;
  2148. goto out;
  2149. }
  2150. ret = ip_gma_set(&s, gma_head);
  2151. if (ret)
  2152. goto out;
  2153. ret = command_scan(&s, workload->rb_head, workload->rb_tail,
  2154. workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
  2155. out:
  2156. return ret;
  2157. }
  2158. static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
  2159. {
  2160. unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
  2161. struct parser_exec_state s;
  2162. int ret = 0;
  2163. struct intel_vgpu_workload *workload = container_of(wa_ctx,
  2164. struct intel_vgpu_workload,
  2165. wa_ctx);
  2166. /* ring base is page aligned */
  2167. if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
  2168. I915_GTT_PAGE_SIZE)))
  2169. return -EINVAL;
  2170. ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
  2171. ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
  2172. PAGE_SIZE);
  2173. gma_head = wa_ctx->indirect_ctx.guest_gma;
  2174. gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
  2175. gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
  2176. s.buf_type = RING_BUFFER_INSTRUCTION;
  2177. s.buf_addr_type = GTT_BUFFER;
  2178. s.vgpu = workload->vgpu;
  2179. s.ring_id = workload->ring_id;
  2180. s.ring_start = wa_ctx->indirect_ctx.guest_gma;
  2181. s.ring_size = ring_size;
  2182. s.ring_head = gma_head;
  2183. s.ring_tail = gma_tail;
  2184. s.rb_va = wa_ctx->indirect_ctx.shadow_va;
  2185. s.workload = workload;
  2186. s.is_ctx_wa = true;
  2187. if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
  2188. ret = -EINVAL;
  2189. goto out;
  2190. }
  2191. ret = ip_gma_set(&s, gma_head);
  2192. if (ret)
  2193. goto out;
  2194. ret = command_scan(&s, 0, ring_tail,
  2195. wa_ctx->indirect_ctx.guest_gma, ring_size);
  2196. out:
  2197. return ret;
  2198. }
  2199. static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
  2200. {
  2201. struct intel_vgpu *vgpu = workload->vgpu;
  2202. struct intel_vgpu_submission *s = &vgpu->submission;
  2203. unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
  2204. void *shadow_ring_buffer_va;
  2205. int ring_id = workload->ring_id;
  2206. int ret;
  2207. guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
  2208. /* calculate workload ring buffer size */
  2209. workload->rb_len = (workload->rb_tail + guest_rb_size -
  2210. workload->rb_head) % guest_rb_size;
  2211. gma_head = workload->rb_start + workload->rb_head;
  2212. gma_tail = workload->rb_start + workload->rb_tail;
  2213. gma_top = workload->rb_start + guest_rb_size;
  2214. if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
  2215. void *p;
  2216. /* realloc the new ring buffer if needed */
  2217. p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
  2218. GFP_KERNEL);
  2219. if (!p) {
  2220. gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
  2221. return -ENOMEM;
  2222. }
  2223. s->ring_scan_buffer[ring_id] = p;
  2224. s->ring_scan_buffer_size[ring_id] = workload->rb_len;
  2225. }
  2226. shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
  2227. /* get shadow ring buffer va */
  2228. workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
  2229. /* head > tail --> copy head <-> top */
  2230. if (gma_head > gma_tail) {
  2231. ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
  2232. gma_head, gma_top, shadow_ring_buffer_va);
  2233. if (ret < 0) {
  2234. gvt_vgpu_err("fail to copy guest ring buffer\n");
  2235. return ret;
  2236. }
  2237. shadow_ring_buffer_va += ret;
  2238. gma_head = workload->rb_start;
  2239. }
  2240. /* copy head or start <-> tail */
  2241. ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
  2242. shadow_ring_buffer_va);
  2243. if (ret < 0) {
  2244. gvt_vgpu_err("fail to copy guest ring buffer\n");
  2245. return ret;
  2246. }
  2247. return 0;
  2248. }
  2249. int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
  2250. {
  2251. int ret;
  2252. struct intel_vgpu *vgpu = workload->vgpu;
  2253. ret = shadow_workload_ring_buffer(workload);
  2254. if (ret) {
  2255. gvt_vgpu_err("fail to shadow workload ring_buffer\n");
  2256. return ret;
  2257. }
  2258. ret = scan_workload(workload);
  2259. if (ret) {
  2260. gvt_vgpu_err("scan workload error\n");
  2261. return ret;
  2262. }
  2263. return 0;
  2264. }
  2265. static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
  2266. {
  2267. int ctx_size = wa_ctx->indirect_ctx.size;
  2268. unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
  2269. struct intel_vgpu_workload *workload = container_of(wa_ctx,
  2270. struct intel_vgpu_workload,
  2271. wa_ctx);
  2272. struct intel_vgpu *vgpu = workload->vgpu;
  2273. struct drm_i915_gem_object *obj;
  2274. int ret = 0;
  2275. void *map;
  2276. obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
  2277. roundup(ctx_size + CACHELINE_BYTES,
  2278. PAGE_SIZE));
  2279. if (IS_ERR(obj))
  2280. return PTR_ERR(obj);
  2281. /* get the va of the shadow batch buffer */
  2282. map = i915_gem_object_pin_map(obj, I915_MAP_WB);
  2283. if (IS_ERR(map)) {
  2284. gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
  2285. ret = PTR_ERR(map);
  2286. goto put_obj;
  2287. }
  2288. ret = i915_gem_object_set_to_cpu_domain(obj, false);
  2289. if (ret) {
  2290. gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
  2291. goto unmap_src;
  2292. }
  2293. ret = copy_gma_to_hva(workload->vgpu,
  2294. workload->vgpu->gtt.ggtt_mm,
  2295. guest_gma, guest_gma + ctx_size,
  2296. map);
  2297. if (ret < 0) {
  2298. gvt_vgpu_err("fail to copy guest indirect ctx\n");
  2299. goto unmap_src;
  2300. }
  2301. wa_ctx->indirect_ctx.obj = obj;
  2302. wa_ctx->indirect_ctx.shadow_va = map;
  2303. return 0;
  2304. unmap_src:
  2305. i915_gem_object_unpin_map(obj);
  2306. put_obj:
  2307. i915_gem_object_put(obj);
  2308. return ret;
  2309. }
  2310. static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
  2311. {
  2312. uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
  2313. unsigned char *bb_start_sva;
  2314. if (!wa_ctx->per_ctx.valid)
  2315. return 0;
  2316. per_ctx_start[0] = 0x18800001;
  2317. per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
  2318. bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
  2319. wa_ctx->indirect_ctx.size;
  2320. memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
  2321. return 0;
  2322. }
  2323. int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
  2324. {
  2325. int ret;
  2326. struct intel_vgpu_workload *workload = container_of(wa_ctx,
  2327. struct intel_vgpu_workload,
  2328. wa_ctx);
  2329. struct intel_vgpu *vgpu = workload->vgpu;
  2330. if (wa_ctx->indirect_ctx.size == 0)
  2331. return 0;
  2332. ret = shadow_indirect_ctx(wa_ctx);
  2333. if (ret) {
  2334. gvt_vgpu_err("fail to shadow indirect ctx\n");
  2335. return ret;
  2336. }
  2337. combine_wa_ctx(wa_ctx);
  2338. ret = scan_wa_ctx(wa_ctx);
  2339. if (ret) {
  2340. gvt_vgpu_err("scan wa ctx error\n");
  2341. return ret;
  2342. }
  2343. return 0;
  2344. }
  2345. static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
  2346. unsigned int opcode, unsigned long rings)
  2347. {
  2348. struct cmd_info *info = NULL;
  2349. unsigned int ring;
  2350. for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
  2351. info = find_cmd_entry(gvt, opcode, ring);
  2352. if (info)
  2353. break;
  2354. }
  2355. return info;
  2356. }
  2357. static int init_cmd_table(struct intel_gvt *gvt)
  2358. {
  2359. int i;
  2360. struct cmd_entry *e;
  2361. struct cmd_info *info;
  2362. unsigned int gen_type;
  2363. gen_type = intel_gvt_get_device_type(gvt);
  2364. for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
  2365. if (!(cmd_info[i].devices & gen_type))
  2366. continue;
  2367. e = kzalloc(sizeof(*e), GFP_KERNEL);
  2368. if (!e)
  2369. return -ENOMEM;
  2370. e->info = &cmd_info[i];
  2371. info = find_cmd_entry_any_ring(gvt,
  2372. e->info->opcode, e->info->rings);
  2373. if (info) {
  2374. gvt_err("%s %s duplicated\n", e->info->name,
  2375. info->name);
  2376. kfree(e);
  2377. return -EEXIST;
  2378. }
  2379. INIT_HLIST_NODE(&e->hlist);
  2380. add_cmd_entry(gvt, e);
  2381. gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
  2382. e->info->name, e->info->opcode, e->info->flag,
  2383. e->info->devices, e->info->rings);
  2384. }
  2385. return 0;
  2386. }
  2387. static void clean_cmd_table(struct intel_gvt *gvt)
  2388. {
  2389. struct hlist_node *tmp;
  2390. struct cmd_entry *e;
  2391. int i;
  2392. hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
  2393. kfree(e);
  2394. hash_init(gvt->cmd_table);
  2395. }
  2396. void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
  2397. {
  2398. clean_cmd_table(gvt);
  2399. }
  2400. int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
  2401. {
  2402. int ret;
  2403. ret = init_cmd_table(gvt);
  2404. if (ret) {
  2405. intel_gvt_clean_cmd_parser(gvt);
  2406. return ret;
  2407. }
  2408. return 0;
  2409. }