mmu.c 90 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "irq.h"
  21. #include "mmu.h"
  22. #include "x86.h"
  23. #include "kvm_cache_regs.h"
  24. #include "x86.h"
  25. #include <linux/kvm_host.h>
  26. #include <linux/types.h>
  27. #include <linux/string.h>
  28. #include <linux/mm.h>
  29. #include <linux/highmem.h>
  30. #include <linux/module.h>
  31. #include <linux/swap.h>
  32. #include <linux/hugetlb.h>
  33. #include <linux/compiler.h>
  34. #include <linux/srcu.h>
  35. #include <linux/slab.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/page.h>
  38. #include <asm/cmpxchg.h>
  39. #include <asm/io.h>
  40. #include <asm/vmx.h>
  41. /*
  42. * When setting this variable to true it enables Two-Dimensional-Paging
  43. * where the hardware walks 2 page tables:
  44. * 1. the guest-virtual to guest-physical
  45. * 2. while doing 1. it walks guest-physical to host-physical
  46. * If the hardware supports that we don't need to do shadow paging.
  47. */
  48. bool tdp_enabled = false;
  49. enum {
  50. AUDIT_PRE_PAGE_FAULT,
  51. AUDIT_POST_PAGE_FAULT,
  52. AUDIT_PRE_PTE_WRITE,
  53. AUDIT_POST_PTE_WRITE,
  54. AUDIT_PRE_SYNC,
  55. AUDIT_POST_SYNC
  56. };
  57. char *audit_point_name[] = {
  58. "pre page fault",
  59. "post page fault",
  60. "pre pte write",
  61. "post pte write",
  62. "pre sync",
  63. "post sync"
  64. };
  65. #undef MMU_DEBUG
  66. #ifdef MMU_DEBUG
  67. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  68. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  69. #else
  70. #define pgprintk(x...) do { } while (0)
  71. #define rmap_printk(x...) do { } while (0)
  72. #endif
  73. #ifdef MMU_DEBUG
  74. static int dbg = 0;
  75. module_param(dbg, bool, 0644);
  76. #endif
  77. static int oos_shadow = 1;
  78. module_param(oos_shadow, bool, 0644);
  79. #ifndef MMU_DEBUG
  80. #define ASSERT(x) do { } while (0)
  81. #else
  82. #define ASSERT(x) \
  83. if (!(x)) { \
  84. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  85. __FILE__, __LINE__, #x); \
  86. }
  87. #endif
  88. #define PTE_PREFETCH_NUM 8
  89. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  90. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  91. #define PT64_LEVEL_BITS 9
  92. #define PT64_LEVEL_SHIFT(level) \
  93. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  94. #define PT64_INDEX(address, level)\
  95. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  96. #define PT32_LEVEL_BITS 10
  97. #define PT32_LEVEL_SHIFT(level) \
  98. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  99. #define PT32_LVL_OFFSET_MASK(level) \
  100. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT32_LEVEL_BITS))) - 1))
  102. #define PT32_INDEX(address, level)\
  103. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  104. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  105. #define PT64_DIR_BASE_ADDR_MASK \
  106. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  107. #define PT64_LVL_ADDR_MASK(level) \
  108. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT64_LEVEL_BITS))) - 1))
  110. #define PT64_LVL_OFFSET_MASK(level) \
  111. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  112. * PT64_LEVEL_BITS))) - 1))
  113. #define PT32_BASE_ADDR_MASK PAGE_MASK
  114. #define PT32_DIR_BASE_ADDR_MASK \
  115. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  116. #define PT32_LVL_ADDR_MASK(level) \
  117. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  118. * PT32_LEVEL_BITS))) - 1))
  119. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  120. | PT64_NX_MASK)
  121. #define PTE_LIST_EXT 4
  122. #define ACC_EXEC_MASK 1
  123. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  124. #define ACC_USER_MASK PT_USER_MASK
  125. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  126. #include <trace/events/kvm.h>
  127. #define CREATE_TRACE_POINTS
  128. #include "mmutrace.h"
  129. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  130. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  131. struct pte_list_desc {
  132. u64 *sptes[PTE_LIST_EXT];
  133. struct pte_list_desc *more;
  134. };
  135. struct kvm_shadow_walk_iterator {
  136. u64 addr;
  137. hpa_t shadow_addr;
  138. int level;
  139. u64 *sptep;
  140. unsigned index;
  141. };
  142. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  143. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  144. shadow_walk_okay(&(_walker)); \
  145. shadow_walk_next(&(_walker)))
  146. static struct kmem_cache *pte_list_desc_cache;
  147. static struct kmem_cache *mmu_page_header_cache;
  148. static struct percpu_counter kvm_total_used_mmu_pages;
  149. static u64 __read_mostly shadow_trap_nonpresent_pte;
  150. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  151. static u64 __read_mostly shadow_nx_mask;
  152. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  153. static u64 __read_mostly shadow_user_mask;
  154. static u64 __read_mostly shadow_accessed_mask;
  155. static u64 __read_mostly shadow_dirty_mask;
  156. static inline u64 rsvd_bits(int s, int e)
  157. {
  158. return ((1ULL << (e - s + 1)) - 1) << s;
  159. }
  160. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  161. {
  162. shadow_trap_nonpresent_pte = trap_pte;
  163. shadow_notrap_nonpresent_pte = notrap_pte;
  164. }
  165. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  166. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  167. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  168. {
  169. shadow_user_mask = user_mask;
  170. shadow_accessed_mask = accessed_mask;
  171. shadow_dirty_mask = dirty_mask;
  172. shadow_nx_mask = nx_mask;
  173. shadow_x_mask = x_mask;
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  176. static int is_cpuid_PSE36(void)
  177. {
  178. return 1;
  179. }
  180. static int is_nx(struct kvm_vcpu *vcpu)
  181. {
  182. return vcpu->arch.efer & EFER_NX;
  183. }
  184. static int is_shadow_present_pte(u64 pte)
  185. {
  186. return pte != shadow_trap_nonpresent_pte
  187. && pte != shadow_notrap_nonpresent_pte;
  188. }
  189. static int is_large_pte(u64 pte)
  190. {
  191. return pte & PT_PAGE_SIZE_MASK;
  192. }
  193. static int is_dirty_gpte(unsigned long pte)
  194. {
  195. return pte & PT_DIRTY_MASK;
  196. }
  197. static int is_rmap_spte(u64 pte)
  198. {
  199. return is_shadow_present_pte(pte);
  200. }
  201. static int is_last_spte(u64 pte, int level)
  202. {
  203. if (level == PT_PAGE_TABLE_LEVEL)
  204. return 1;
  205. if (is_large_pte(pte))
  206. return 1;
  207. return 0;
  208. }
  209. static pfn_t spte_to_pfn(u64 pte)
  210. {
  211. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  212. }
  213. static gfn_t pse36_gfn_delta(u32 gpte)
  214. {
  215. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  216. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  217. }
  218. static void __set_spte(u64 *sptep, u64 spte)
  219. {
  220. set_64bit(sptep, spte);
  221. }
  222. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  223. {
  224. #ifdef CONFIG_X86_64
  225. return xchg(sptep, new_spte);
  226. #else
  227. u64 old_spte;
  228. do {
  229. old_spte = *sptep;
  230. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  231. return old_spte;
  232. #endif
  233. }
  234. static bool spte_has_volatile_bits(u64 spte)
  235. {
  236. if (!shadow_accessed_mask)
  237. return false;
  238. if (!is_shadow_present_pte(spte))
  239. return false;
  240. if ((spte & shadow_accessed_mask) &&
  241. (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
  242. return false;
  243. return true;
  244. }
  245. static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
  246. {
  247. return (old_spte & bit_mask) && !(new_spte & bit_mask);
  248. }
  249. static void update_spte(u64 *sptep, u64 new_spte)
  250. {
  251. u64 mask, old_spte = *sptep;
  252. WARN_ON(!is_rmap_spte(new_spte));
  253. new_spte |= old_spte & shadow_dirty_mask;
  254. mask = shadow_accessed_mask;
  255. if (is_writable_pte(old_spte))
  256. mask |= shadow_dirty_mask;
  257. if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
  258. __set_spte(sptep, new_spte);
  259. else
  260. old_spte = __xchg_spte(sptep, new_spte);
  261. if (!shadow_accessed_mask)
  262. return;
  263. if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
  264. kvm_set_pfn_accessed(spte_to_pfn(old_spte));
  265. if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
  266. kvm_set_pfn_dirty(spte_to_pfn(old_spte));
  267. }
  268. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  269. struct kmem_cache *base_cache, int min)
  270. {
  271. void *obj;
  272. if (cache->nobjs >= min)
  273. return 0;
  274. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  275. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  276. if (!obj)
  277. return -ENOMEM;
  278. cache->objects[cache->nobjs++] = obj;
  279. }
  280. return 0;
  281. }
  282. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  283. struct kmem_cache *cache)
  284. {
  285. while (mc->nobjs)
  286. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  287. }
  288. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  289. int min)
  290. {
  291. void *page;
  292. if (cache->nobjs >= min)
  293. return 0;
  294. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  295. page = (void *)__get_free_page(GFP_KERNEL);
  296. if (!page)
  297. return -ENOMEM;
  298. cache->objects[cache->nobjs++] = page;
  299. }
  300. return 0;
  301. }
  302. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  303. {
  304. while (mc->nobjs)
  305. free_page((unsigned long)mc->objects[--mc->nobjs]);
  306. }
  307. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  308. {
  309. int r;
  310. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  311. pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
  312. if (r)
  313. goto out;
  314. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  315. if (r)
  316. goto out;
  317. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  318. mmu_page_header_cache, 4);
  319. out:
  320. return r;
  321. }
  322. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  323. {
  324. mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
  325. pte_list_desc_cache);
  326. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  327. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  328. mmu_page_header_cache);
  329. }
  330. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  331. size_t size)
  332. {
  333. void *p;
  334. BUG_ON(!mc->nobjs);
  335. p = mc->objects[--mc->nobjs];
  336. return p;
  337. }
  338. static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
  339. {
  340. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
  341. sizeof(struct pte_list_desc));
  342. }
  343. static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
  344. {
  345. kmem_cache_free(pte_list_desc_cache, pte_list_desc);
  346. }
  347. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  348. {
  349. if (!sp->role.direct)
  350. return sp->gfns[index];
  351. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  352. }
  353. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  354. {
  355. if (sp->role.direct)
  356. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  357. else
  358. sp->gfns[index] = gfn;
  359. }
  360. /*
  361. * Return the pointer to the large page information for a given gfn,
  362. * handling slots that are not large page aligned.
  363. */
  364. static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
  365. struct kvm_memory_slot *slot,
  366. int level)
  367. {
  368. unsigned long idx;
  369. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  370. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  371. return &slot->lpage_info[level - 2][idx];
  372. }
  373. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  374. {
  375. struct kvm_memory_slot *slot;
  376. struct kvm_lpage_info *linfo;
  377. int i;
  378. slot = gfn_to_memslot(kvm, gfn);
  379. for (i = PT_DIRECTORY_LEVEL;
  380. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  381. linfo = lpage_info_slot(gfn, slot, i);
  382. linfo->write_count += 1;
  383. }
  384. kvm->arch.indirect_shadow_pages++;
  385. }
  386. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  387. {
  388. struct kvm_memory_slot *slot;
  389. struct kvm_lpage_info *linfo;
  390. int i;
  391. slot = gfn_to_memslot(kvm, gfn);
  392. for (i = PT_DIRECTORY_LEVEL;
  393. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  394. linfo = lpage_info_slot(gfn, slot, i);
  395. linfo->write_count -= 1;
  396. WARN_ON(linfo->write_count < 0);
  397. }
  398. kvm->arch.indirect_shadow_pages--;
  399. }
  400. static int has_wrprotected_page(struct kvm *kvm,
  401. gfn_t gfn,
  402. int level)
  403. {
  404. struct kvm_memory_slot *slot;
  405. struct kvm_lpage_info *linfo;
  406. slot = gfn_to_memslot(kvm, gfn);
  407. if (slot) {
  408. linfo = lpage_info_slot(gfn, slot, level);
  409. return linfo->write_count;
  410. }
  411. return 1;
  412. }
  413. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  414. {
  415. unsigned long page_size;
  416. int i, ret = 0;
  417. page_size = kvm_host_page_size(kvm, gfn);
  418. for (i = PT_PAGE_TABLE_LEVEL;
  419. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  420. if (page_size >= KVM_HPAGE_SIZE(i))
  421. ret = i;
  422. else
  423. break;
  424. }
  425. return ret;
  426. }
  427. static struct kvm_memory_slot *
  428. gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
  429. bool no_dirty_log)
  430. {
  431. struct kvm_memory_slot *slot;
  432. slot = gfn_to_memslot(vcpu->kvm, gfn);
  433. if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
  434. (no_dirty_log && slot->dirty_bitmap))
  435. slot = NULL;
  436. return slot;
  437. }
  438. static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  439. {
  440. return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
  441. }
  442. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  443. {
  444. int host_level, level, max_level;
  445. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  446. if (host_level == PT_PAGE_TABLE_LEVEL)
  447. return host_level;
  448. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  449. kvm_x86_ops->get_lpage_level() : host_level;
  450. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  451. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  452. break;
  453. return level - 1;
  454. }
  455. /*
  456. * Pte mapping structures:
  457. *
  458. * If pte_list bit zero is zero, then pte_list point to the spte.
  459. *
  460. * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
  461. * pte_list_desc containing more mappings.
  462. *
  463. * Returns the number of pte entries before the spte was added or zero if
  464. * the spte was not added.
  465. *
  466. */
  467. static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
  468. unsigned long *pte_list)
  469. {
  470. struct pte_list_desc *desc;
  471. int i, count = 0;
  472. if (!*pte_list) {
  473. rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
  474. *pte_list = (unsigned long)spte;
  475. } else if (!(*pte_list & 1)) {
  476. rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
  477. desc = mmu_alloc_pte_list_desc(vcpu);
  478. desc->sptes[0] = (u64 *)*pte_list;
  479. desc->sptes[1] = spte;
  480. *pte_list = (unsigned long)desc | 1;
  481. ++count;
  482. } else {
  483. rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
  484. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  485. while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
  486. desc = desc->more;
  487. count += PTE_LIST_EXT;
  488. }
  489. if (desc->sptes[PTE_LIST_EXT-1]) {
  490. desc->more = mmu_alloc_pte_list_desc(vcpu);
  491. desc = desc->more;
  492. }
  493. for (i = 0; desc->sptes[i]; ++i)
  494. ++count;
  495. desc->sptes[i] = spte;
  496. }
  497. return count;
  498. }
  499. static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
  500. {
  501. struct pte_list_desc *desc;
  502. u64 *prev_spte;
  503. int i;
  504. if (!*pte_list)
  505. return NULL;
  506. else if (!(*pte_list & 1)) {
  507. if (!spte)
  508. return (u64 *)*pte_list;
  509. return NULL;
  510. }
  511. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  512. prev_spte = NULL;
  513. while (desc) {
  514. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
  515. if (prev_spte == spte)
  516. return desc->sptes[i];
  517. prev_spte = desc->sptes[i];
  518. }
  519. desc = desc->more;
  520. }
  521. return NULL;
  522. }
  523. static void
  524. pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
  525. int i, struct pte_list_desc *prev_desc)
  526. {
  527. int j;
  528. for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
  529. ;
  530. desc->sptes[i] = desc->sptes[j];
  531. desc->sptes[j] = NULL;
  532. if (j != 0)
  533. return;
  534. if (!prev_desc && !desc->more)
  535. *pte_list = (unsigned long)desc->sptes[0];
  536. else
  537. if (prev_desc)
  538. prev_desc->more = desc->more;
  539. else
  540. *pte_list = (unsigned long)desc->more | 1;
  541. mmu_free_pte_list_desc(desc);
  542. }
  543. static void pte_list_remove(u64 *spte, unsigned long *pte_list)
  544. {
  545. struct pte_list_desc *desc;
  546. struct pte_list_desc *prev_desc;
  547. int i;
  548. if (!*pte_list) {
  549. printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
  550. BUG();
  551. } else if (!(*pte_list & 1)) {
  552. rmap_printk("pte_list_remove: %p 1->0\n", spte);
  553. if ((u64 *)*pte_list != spte) {
  554. printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
  555. BUG();
  556. }
  557. *pte_list = 0;
  558. } else {
  559. rmap_printk("pte_list_remove: %p many->many\n", spte);
  560. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  561. prev_desc = NULL;
  562. while (desc) {
  563. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  564. if (desc->sptes[i] == spte) {
  565. pte_list_desc_remove_entry(pte_list,
  566. desc, i,
  567. prev_desc);
  568. return;
  569. }
  570. prev_desc = desc;
  571. desc = desc->more;
  572. }
  573. pr_err("pte_list_remove: %p many->many\n", spte);
  574. BUG();
  575. }
  576. }
  577. typedef void (*pte_list_walk_fn) (u64 *spte);
  578. static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
  579. {
  580. struct pte_list_desc *desc;
  581. int i;
  582. if (!*pte_list)
  583. return;
  584. if (!(*pte_list & 1))
  585. return fn((u64 *)*pte_list);
  586. desc = (struct pte_list_desc *)(*pte_list & ~1ul);
  587. while (desc) {
  588. for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
  589. fn(desc->sptes[i]);
  590. desc = desc->more;
  591. }
  592. }
  593. /*
  594. * Take gfn and return the reverse mapping to it.
  595. */
  596. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  597. {
  598. struct kvm_memory_slot *slot;
  599. struct kvm_lpage_info *linfo;
  600. slot = gfn_to_memslot(kvm, gfn);
  601. if (likely(level == PT_PAGE_TABLE_LEVEL))
  602. return &slot->rmap[gfn - slot->base_gfn];
  603. linfo = lpage_info_slot(gfn, slot, level);
  604. return &linfo->rmap_pde;
  605. }
  606. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  607. {
  608. struct kvm_mmu_page *sp;
  609. unsigned long *rmapp;
  610. sp = page_header(__pa(spte));
  611. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  612. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  613. return pte_list_add(vcpu, spte, rmapp);
  614. }
  615. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  616. {
  617. return pte_list_next(rmapp, spte);
  618. }
  619. static void rmap_remove(struct kvm *kvm, u64 *spte)
  620. {
  621. struct kvm_mmu_page *sp;
  622. gfn_t gfn;
  623. unsigned long *rmapp;
  624. sp = page_header(__pa(spte));
  625. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  626. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  627. pte_list_remove(spte, rmapp);
  628. }
  629. static int set_spte_track_bits(u64 *sptep, u64 new_spte)
  630. {
  631. pfn_t pfn;
  632. u64 old_spte = *sptep;
  633. if (!spte_has_volatile_bits(old_spte))
  634. __set_spte(sptep, new_spte);
  635. else
  636. old_spte = __xchg_spte(sptep, new_spte);
  637. if (!is_rmap_spte(old_spte))
  638. return 0;
  639. pfn = spte_to_pfn(old_spte);
  640. if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
  641. kvm_set_pfn_accessed(pfn);
  642. if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
  643. kvm_set_pfn_dirty(pfn);
  644. return 1;
  645. }
  646. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  647. {
  648. if (set_spte_track_bits(sptep, new_spte))
  649. rmap_remove(kvm, sptep);
  650. }
  651. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  652. {
  653. unsigned long *rmapp;
  654. u64 *spte;
  655. int i, write_protected = 0;
  656. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  657. spte = rmap_next(kvm, rmapp, NULL);
  658. while (spte) {
  659. BUG_ON(!spte);
  660. BUG_ON(!(*spte & PT_PRESENT_MASK));
  661. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  662. if (is_writable_pte(*spte)) {
  663. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  664. write_protected = 1;
  665. }
  666. spte = rmap_next(kvm, rmapp, spte);
  667. }
  668. /* check for huge page mappings */
  669. for (i = PT_DIRECTORY_LEVEL;
  670. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  671. rmapp = gfn_to_rmap(kvm, gfn, i);
  672. spte = rmap_next(kvm, rmapp, NULL);
  673. while (spte) {
  674. BUG_ON(!spte);
  675. BUG_ON(!(*spte & PT_PRESENT_MASK));
  676. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  677. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  678. if (is_writable_pte(*spte)) {
  679. drop_spte(kvm, spte,
  680. shadow_trap_nonpresent_pte);
  681. --kvm->stat.lpages;
  682. spte = NULL;
  683. write_protected = 1;
  684. }
  685. spte = rmap_next(kvm, rmapp, spte);
  686. }
  687. }
  688. return write_protected;
  689. }
  690. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  691. unsigned long data)
  692. {
  693. u64 *spte;
  694. int need_tlb_flush = 0;
  695. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  696. BUG_ON(!(*spte & PT_PRESENT_MASK));
  697. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  698. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  699. need_tlb_flush = 1;
  700. }
  701. return need_tlb_flush;
  702. }
  703. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  704. unsigned long data)
  705. {
  706. int need_flush = 0;
  707. u64 *spte, new_spte;
  708. pte_t *ptep = (pte_t *)data;
  709. pfn_t new_pfn;
  710. WARN_ON(pte_huge(*ptep));
  711. new_pfn = pte_pfn(*ptep);
  712. spte = rmap_next(kvm, rmapp, NULL);
  713. while (spte) {
  714. BUG_ON(!is_shadow_present_pte(*spte));
  715. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  716. need_flush = 1;
  717. if (pte_write(*ptep)) {
  718. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  719. spte = rmap_next(kvm, rmapp, NULL);
  720. } else {
  721. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  722. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  723. new_spte &= ~PT_WRITABLE_MASK;
  724. new_spte &= ~SPTE_HOST_WRITEABLE;
  725. new_spte &= ~shadow_accessed_mask;
  726. set_spte_track_bits(spte, new_spte);
  727. spte = rmap_next(kvm, rmapp, spte);
  728. }
  729. }
  730. if (need_flush)
  731. kvm_flush_remote_tlbs(kvm);
  732. return 0;
  733. }
  734. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  735. unsigned long data,
  736. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  737. unsigned long data))
  738. {
  739. int i, j;
  740. int ret;
  741. int retval = 0;
  742. struct kvm_memslots *slots;
  743. slots = kvm_memslots(kvm);
  744. for (i = 0; i < slots->nmemslots; i++) {
  745. struct kvm_memory_slot *memslot = &slots->memslots[i];
  746. unsigned long start = memslot->userspace_addr;
  747. unsigned long end;
  748. end = start + (memslot->npages << PAGE_SHIFT);
  749. if (hva >= start && hva < end) {
  750. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  751. gfn_t gfn = memslot->base_gfn + gfn_offset;
  752. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  753. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  754. struct kvm_lpage_info *linfo;
  755. linfo = lpage_info_slot(gfn, memslot,
  756. PT_DIRECTORY_LEVEL + j);
  757. ret |= handler(kvm, &linfo->rmap_pde, data);
  758. }
  759. trace_kvm_age_page(hva, memslot, ret);
  760. retval |= ret;
  761. }
  762. }
  763. return retval;
  764. }
  765. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  766. {
  767. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  768. }
  769. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  770. {
  771. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  772. }
  773. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  774. unsigned long data)
  775. {
  776. u64 *spte;
  777. int young = 0;
  778. /*
  779. * Emulate the accessed bit for EPT, by checking if this page has
  780. * an EPT mapping, and clearing it if it does. On the next access,
  781. * a new EPT mapping will be established.
  782. * This has some overhead, but not as much as the cost of swapping
  783. * out actively used pages or breaking up actively used hugepages.
  784. */
  785. if (!shadow_accessed_mask)
  786. return kvm_unmap_rmapp(kvm, rmapp, data);
  787. spte = rmap_next(kvm, rmapp, NULL);
  788. while (spte) {
  789. int _young;
  790. u64 _spte = *spte;
  791. BUG_ON(!(_spte & PT_PRESENT_MASK));
  792. _young = _spte & PT_ACCESSED_MASK;
  793. if (_young) {
  794. young = 1;
  795. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  796. }
  797. spte = rmap_next(kvm, rmapp, spte);
  798. }
  799. return young;
  800. }
  801. static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  802. unsigned long data)
  803. {
  804. u64 *spte;
  805. int young = 0;
  806. /*
  807. * If there's no access bit in the secondary pte set by the
  808. * hardware it's up to gup-fast/gup to set the access bit in
  809. * the primary pte or in the page structure.
  810. */
  811. if (!shadow_accessed_mask)
  812. goto out;
  813. spte = rmap_next(kvm, rmapp, NULL);
  814. while (spte) {
  815. u64 _spte = *spte;
  816. BUG_ON(!(_spte & PT_PRESENT_MASK));
  817. young = _spte & PT_ACCESSED_MASK;
  818. if (young) {
  819. young = 1;
  820. break;
  821. }
  822. spte = rmap_next(kvm, rmapp, spte);
  823. }
  824. out:
  825. return young;
  826. }
  827. #define RMAP_RECYCLE_THRESHOLD 1000
  828. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  829. {
  830. unsigned long *rmapp;
  831. struct kvm_mmu_page *sp;
  832. sp = page_header(__pa(spte));
  833. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  834. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  835. kvm_flush_remote_tlbs(vcpu->kvm);
  836. }
  837. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  838. {
  839. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  840. }
  841. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  842. {
  843. return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
  844. }
  845. #ifdef MMU_DEBUG
  846. static int is_empty_shadow_page(u64 *spt)
  847. {
  848. u64 *pos;
  849. u64 *end;
  850. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  851. if (is_shadow_present_pte(*pos)) {
  852. printk(KERN_ERR "%s: %p %llx\n", __func__,
  853. pos, *pos);
  854. return 0;
  855. }
  856. return 1;
  857. }
  858. #endif
  859. /*
  860. * This value is the sum of all of the kvm instances's
  861. * kvm->arch.n_used_mmu_pages values. We need a global,
  862. * aggregate version in order to make the slab shrinker
  863. * faster
  864. */
  865. static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
  866. {
  867. kvm->arch.n_used_mmu_pages += nr;
  868. percpu_counter_add(&kvm_total_used_mmu_pages, nr);
  869. }
  870. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  871. {
  872. ASSERT(is_empty_shadow_page(sp->spt));
  873. hlist_del(&sp->hash_link);
  874. list_del(&sp->link);
  875. free_page((unsigned long)sp->spt);
  876. if (!sp->role.direct)
  877. free_page((unsigned long)sp->gfns);
  878. kmem_cache_free(mmu_page_header_cache, sp);
  879. kvm_mod_used_mmu_pages(kvm, -1);
  880. }
  881. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  882. {
  883. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  884. }
  885. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  886. struct kvm_mmu_page *sp, u64 *parent_pte)
  887. {
  888. if (!parent_pte)
  889. return;
  890. pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
  891. }
  892. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  893. u64 *parent_pte)
  894. {
  895. pte_list_remove(parent_pte, &sp->parent_ptes);
  896. }
  897. static void drop_parent_pte(struct kvm_mmu_page *sp,
  898. u64 *parent_pte)
  899. {
  900. mmu_page_remove_parent_pte(sp, parent_pte);
  901. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  902. }
  903. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  904. u64 *parent_pte, int direct)
  905. {
  906. struct kvm_mmu_page *sp;
  907. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
  908. sizeof *sp);
  909. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  910. if (!direct)
  911. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  912. PAGE_SIZE);
  913. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  914. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  915. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  916. sp->parent_ptes = 0;
  917. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  918. kvm_mod_used_mmu_pages(vcpu->kvm, +1);
  919. return sp;
  920. }
  921. static void mark_unsync(u64 *spte);
  922. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  923. {
  924. pte_list_walk(&sp->parent_ptes, mark_unsync);
  925. }
  926. static void mark_unsync(u64 *spte)
  927. {
  928. struct kvm_mmu_page *sp;
  929. unsigned int index;
  930. sp = page_header(__pa(spte));
  931. index = spte - sp->spt;
  932. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  933. return;
  934. if (sp->unsync_children++)
  935. return;
  936. kvm_mmu_mark_parents_unsync(sp);
  937. }
  938. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  939. struct kvm_mmu_page *sp)
  940. {
  941. int i;
  942. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  943. sp->spt[i] = shadow_trap_nonpresent_pte;
  944. }
  945. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  946. struct kvm_mmu_page *sp)
  947. {
  948. return 1;
  949. }
  950. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  951. {
  952. }
  953. static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
  954. struct kvm_mmu_page *sp, u64 *spte,
  955. const void *pte)
  956. {
  957. WARN_ON(1);
  958. }
  959. #define KVM_PAGE_ARRAY_NR 16
  960. struct kvm_mmu_pages {
  961. struct mmu_page_and_offset {
  962. struct kvm_mmu_page *sp;
  963. unsigned int idx;
  964. } page[KVM_PAGE_ARRAY_NR];
  965. unsigned int nr;
  966. };
  967. #define for_each_unsync_children(bitmap, idx) \
  968. for (idx = find_first_bit(bitmap, 512); \
  969. idx < 512; \
  970. idx = find_next_bit(bitmap, 512, idx+1))
  971. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  972. int idx)
  973. {
  974. int i;
  975. if (sp->unsync)
  976. for (i=0; i < pvec->nr; i++)
  977. if (pvec->page[i].sp == sp)
  978. return 0;
  979. pvec->page[pvec->nr].sp = sp;
  980. pvec->page[pvec->nr].idx = idx;
  981. pvec->nr++;
  982. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  983. }
  984. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  985. struct kvm_mmu_pages *pvec)
  986. {
  987. int i, ret, nr_unsync_leaf = 0;
  988. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  989. struct kvm_mmu_page *child;
  990. u64 ent = sp->spt[i];
  991. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  992. goto clear_child_bitmap;
  993. child = page_header(ent & PT64_BASE_ADDR_MASK);
  994. if (child->unsync_children) {
  995. if (mmu_pages_add(pvec, child, i))
  996. return -ENOSPC;
  997. ret = __mmu_unsync_walk(child, pvec);
  998. if (!ret)
  999. goto clear_child_bitmap;
  1000. else if (ret > 0)
  1001. nr_unsync_leaf += ret;
  1002. else
  1003. return ret;
  1004. } else if (child->unsync) {
  1005. nr_unsync_leaf++;
  1006. if (mmu_pages_add(pvec, child, i))
  1007. return -ENOSPC;
  1008. } else
  1009. goto clear_child_bitmap;
  1010. continue;
  1011. clear_child_bitmap:
  1012. __clear_bit(i, sp->unsync_child_bitmap);
  1013. sp->unsync_children--;
  1014. WARN_ON((int)sp->unsync_children < 0);
  1015. }
  1016. return nr_unsync_leaf;
  1017. }
  1018. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1019. struct kvm_mmu_pages *pvec)
  1020. {
  1021. if (!sp->unsync_children)
  1022. return 0;
  1023. mmu_pages_add(pvec, sp, 0);
  1024. return __mmu_unsync_walk(sp, pvec);
  1025. }
  1026. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1027. {
  1028. WARN_ON(!sp->unsync);
  1029. trace_kvm_mmu_sync_page(sp);
  1030. sp->unsync = 0;
  1031. --kvm->stat.mmu_unsync;
  1032. }
  1033. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1034. struct list_head *invalid_list);
  1035. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1036. struct list_head *invalid_list);
  1037. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1038. hlist_for_each_entry(sp, pos, \
  1039. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1040. if ((sp)->gfn != (gfn)) {} else
  1041. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1042. hlist_for_each_entry(sp, pos, \
  1043. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1044. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1045. (sp)->role.invalid) {} else
  1046. /* @sp->gfn should be write-protected at the call site */
  1047. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1048. struct list_head *invalid_list, bool clear_unsync)
  1049. {
  1050. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1051. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1052. return 1;
  1053. }
  1054. if (clear_unsync)
  1055. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1056. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1057. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1058. return 1;
  1059. }
  1060. kvm_mmu_flush_tlb(vcpu);
  1061. return 0;
  1062. }
  1063. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1064. struct kvm_mmu_page *sp)
  1065. {
  1066. LIST_HEAD(invalid_list);
  1067. int ret;
  1068. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1069. if (ret)
  1070. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1071. return ret;
  1072. }
  1073. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1074. struct list_head *invalid_list)
  1075. {
  1076. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1077. }
  1078. /* @gfn should be write-protected at the call site */
  1079. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1080. {
  1081. struct kvm_mmu_page *s;
  1082. struct hlist_node *node;
  1083. LIST_HEAD(invalid_list);
  1084. bool flush = false;
  1085. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1086. if (!s->unsync)
  1087. continue;
  1088. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1089. kvm_unlink_unsync_page(vcpu->kvm, s);
  1090. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1091. (vcpu->arch.mmu.sync_page(vcpu, s))) {
  1092. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1093. continue;
  1094. }
  1095. flush = true;
  1096. }
  1097. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1098. if (flush)
  1099. kvm_mmu_flush_tlb(vcpu);
  1100. }
  1101. struct mmu_page_path {
  1102. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1103. unsigned int idx[PT64_ROOT_LEVEL-1];
  1104. };
  1105. #define for_each_sp(pvec, sp, parents, i) \
  1106. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1107. sp = pvec.page[i].sp; \
  1108. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1109. i = mmu_pages_next(&pvec, &parents, i))
  1110. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1111. struct mmu_page_path *parents,
  1112. int i)
  1113. {
  1114. int n;
  1115. for (n = i+1; n < pvec->nr; n++) {
  1116. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1117. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1118. parents->idx[0] = pvec->page[n].idx;
  1119. return n;
  1120. }
  1121. parents->parent[sp->role.level-2] = sp;
  1122. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1123. }
  1124. return n;
  1125. }
  1126. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1127. {
  1128. struct kvm_mmu_page *sp;
  1129. unsigned int level = 0;
  1130. do {
  1131. unsigned int idx = parents->idx[level];
  1132. sp = parents->parent[level];
  1133. if (!sp)
  1134. return;
  1135. --sp->unsync_children;
  1136. WARN_ON((int)sp->unsync_children < 0);
  1137. __clear_bit(idx, sp->unsync_child_bitmap);
  1138. level++;
  1139. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1140. }
  1141. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1142. struct mmu_page_path *parents,
  1143. struct kvm_mmu_pages *pvec)
  1144. {
  1145. parents->parent[parent->role.level-1] = NULL;
  1146. pvec->nr = 0;
  1147. }
  1148. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1149. struct kvm_mmu_page *parent)
  1150. {
  1151. int i;
  1152. struct kvm_mmu_page *sp;
  1153. struct mmu_page_path parents;
  1154. struct kvm_mmu_pages pages;
  1155. LIST_HEAD(invalid_list);
  1156. kvm_mmu_pages_init(parent, &parents, &pages);
  1157. while (mmu_unsync_walk(parent, &pages)) {
  1158. int protected = 0;
  1159. for_each_sp(pages, sp, parents, i)
  1160. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1161. if (protected)
  1162. kvm_flush_remote_tlbs(vcpu->kvm);
  1163. for_each_sp(pages, sp, parents, i) {
  1164. kvm_sync_page(vcpu, sp, &invalid_list);
  1165. mmu_pages_clear_parents(&parents);
  1166. }
  1167. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1168. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1169. kvm_mmu_pages_init(parent, &parents, &pages);
  1170. }
  1171. }
  1172. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1173. gfn_t gfn,
  1174. gva_t gaddr,
  1175. unsigned level,
  1176. int direct,
  1177. unsigned access,
  1178. u64 *parent_pte)
  1179. {
  1180. union kvm_mmu_page_role role;
  1181. unsigned quadrant;
  1182. struct kvm_mmu_page *sp;
  1183. struct hlist_node *node;
  1184. bool need_sync = false;
  1185. role = vcpu->arch.mmu.base_role;
  1186. role.level = level;
  1187. role.direct = direct;
  1188. if (role.direct)
  1189. role.cr4_pae = 0;
  1190. role.access = access;
  1191. if (!vcpu->arch.mmu.direct_map
  1192. && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1193. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1194. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1195. role.quadrant = quadrant;
  1196. }
  1197. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1198. if (!need_sync && sp->unsync)
  1199. need_sync = true;
  1200. if (sp->role.word != role.word)
  1201. continue;
  1202. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1203. break;
  1204. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1205. if (sp->unsync_children) {
  1206. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1207. kvm_mmu_mark_parents_unsync(sp);
  1208. } else if (sp->unsync)
  1209. kvm_mmu_mark_parents_unsync(sp);
  1210. trace_kvm_mmu_get_page(sp, false);
  1211. return sp;
  1212. }
  1213. ++vcpu->kvm->stat.mmu_cache_miss;
  1214. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1215. if (!sp)
  1216. return sp;
  1217. sp->gfn = gfn;
  1218. sp->role = role;
  1219. hlist_add_head(&sp->hash_link,
  1220. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1221. if (!direct) {
  1222. if (rmap_write_protect(vcpu->kvm, gfn))
  1223. kvm_flush_remote_tlbs(vcpu->kvm);
  1224. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1225. kvm_sync_pages(vcpu, gfn);
  1226. account_shadowed(vcpu->kvm, gfn);
  1227. }
  1228. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1229. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1230. else
  1231. nonpaging_prefetch_page(vcpu, sp);
  1232. trace_kvm_mmu_get_page(sp, true);
  1233. return sp;
  1234. }
  1235. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1236. struct kvm_vcpu *vcpu, u64 addr)
  1237. {
  1238. iterator->addr = addr;
  1239. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1240. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1241. if (iterator->level == PT64_ROOT_LEVEL &&
  1242. vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
  1243. !vcpu->arch.mmu.direct_map)
  1244. --iterator->level;
  1245. if (iterator->level == PT32E_ROOT_LEVEL) {
  1246. iterator->shadow_addr
  1247. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1248. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1249. --iterator->level;
  1250. if (!iterator->shadow_addr)
  1251. iterator->level = 0;
  1252. }
  1253. }
  1254. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1255. {
  1256. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1257. return false;
  1258. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1259. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1260. return true;
  1261. }
  1262. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1263. {
  1264. if (is_last_spte(*iterator->sptep, iterator->level)) {
  1265. iterator->level = 0;
  1266. return;
  1267. }
  1268. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1269. --iterator->level;
  1270. }
  1271. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1272. {
  1273. u64 spte;
  1274. spte = __pa(sp->spt)
  1275. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1276. | PT_WRITABLE_MASK | PT_USER_MASK;
  1277. __set_spte(sptep, spte);
  1278. }
  1279. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1280. {
  1281. if (is_large_pte(*sptep)) {
  1282. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1283. kvm_flush_remote_tlbs(vcpu->kvm);
  1284. }
  1285. }
  1286. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1287. unsigned direct_access)
  1288. {
  1289. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1290. struct kvm_mmu_page *child;
  1291. /*
  1292. * For the direct sp, if the guest pte's dirty bit
  1293. * changed form clean to dirty, it will corrupt the
  1294. * sp's access: allow writable in the read-only sp,
  1295. * so we should update the spte at this point to get
  1296. * a new sp with the correct access.
  1297. */
  1298. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1299. if (child->role.access == direct_access)
  1300. return;
  1301. drop_parent_pte(child, sptep);
  1302. kvm_flush_remote_tlbs(vcpu->kvm);
  1303. }
  1304. }
  1305. static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
  1306. u64 *spte)
  1307. {
  1308. u64 pte;
  1309. struct kvm_mmu_page *child;
  1310. pte = *spte;
  1311. if (is_shadow_present_pte(pte)) {
  1312. if (is_last_spte(pte, sp->role.level))
  1313. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  1314. else {
  1315. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1316. drop_parent_pte(child, spte);
  1317. }
  1318. }
  1319. __set_spte(spte, shadow_trap_nonpresent_pte);
  1320. if (is_large_pte(pte))
  1321. --kvm->stat.lpages;
  1322. }
  1323. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1324. struct kvm_mmu_page *sp)
  1325. {
  1326. unsigned i;
  1327. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1328. mmu_page_zap_pte(kvm, sp, sp->spt + i);
  1329. }
  1330. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1331. {
  1332. mmu_page_remove_parent_pte(sp, parent_pte);
  1333. }
  1334. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1335. {
  1336. int i;
  1337. struct kvm_vcpu *vcpu;
  1338. kvm_for_each_vcpu(i, vcpu, kvm)
  1339. vcpu->arch.last_pte_updated = NULL;
  1340. }
  1341. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1342. {
  1343. u64 *parent_pte;
  1344. while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
  1345. drop_parent_pte(sp, parent_pte);
  1346. }
  1347. static int mmu_zap_unsync_children(struct kvm *kvm,
  1348. struct kvm_mmu_page *parent,
  1349. struct list_head *invalid_list)
  1350. {
  1351. int i, zapped = 0;
  1352. struct mmu_page_path parents;
  1353. struct kvm_mmu_pages pages;
  1354. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1355. return 0;
  1356. kvm_mmu_pages_init(parent, &parents, &pages);
  1357. while (mmu_unsync_walk(parent, &pages)) {
  1358. struct kvm_mmu_page *sp;
  1359. for_each_sp(pages, sp, parents, i) {
  1360. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1361. mmu_pages_clear_parents(&parents);
  1362. zapped++;
  1363. }
  1364. kvm_mmu_pages_init(parent, &parents, &pages);
  1365. }
  1366. return zapped;
  1367. }
  1368. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1369. struct list_head *invalid_list)
  1370. {
  1371. int ret;
  1372. trace_kvm_mmu_prepare_zap_page(sp);
  1373. ++kvm->stat.mmu_shadow_zapped;
  1374. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1375. kvm_mmu_page_unlink_children(kvm, sp);
  1376. kvm_mmu_unlink_parents(kvm, sp);
  1377. if (!sp->role.invalid && !sp->role.direct)
  1378. unaccount_shadowed(kvm, sp->gfn);
  1379. if (sp->unsync)
  1380. kvm_unlink_unsync_page(kvm, sp);
  1381. if (!sp->root_count) {
  1382. /* Count self */
  1383. ret++;
  1384. list_move(&sp->link, invalid_list);
  1385. } else {
  1386. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1387. kvm_reload_remote_mmus(kvm);
  1388. }
  1389. sp->role.invalid = 1;
  1390. kvm_mmu_reset_last_pte_updated(kvm);
  1391. return ret;
  1392. }
  1393. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1394. struct list_head *invalid_list)
  1395. {
  1396. struct kvm_mmu_page *sp;
  1397. if (list_empty(invalid_list))
  1398. return;
  1399. kvm_flush_remote_tlbs(kvm);
  1400. do {
  1401. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1402. WARN_ON(!sp->role.invalid || sp->root_count);
  1403. kvm_mmu_free_page(kvm, sp);
  1404. } while (!list_empty(invalid_list));
  1405. }
  1406. /*
  1407. * Changing the number of mmu pages allocated to the vm
  1408. * Note: if goal_nr_mmu_pages is too small, you will get dead lock
  1409. */
  1410. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
  1411. {
  1412. LIST_HEAD(invalid_list);
  1413. /*
  1414. * If we set the number of mmu pages to be smaller be than the
  1415. * number of actived pages , we must to free some mmu pages before we
  1416. * change the value
  1417. */
  1418. if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
  1419. while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
  1420. !list_empty(&kvm->arch.active_mmu_pages)) {
  1421. struct kvm_mmu_page *page;
  1422. page = container_of(kvm->arch.active_mmu_pages.prev,
  1423. struct kvm_mmu_page, link);
  1424. kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
  1425. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1426. }
  1427. goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
  1428. }
  1429. kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
  1430. }
  1431. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1432. {
  1433. struct kvm_mmu_page *sp;
  1434. struct hlist_node *node;
  1435. LIST_HEAD(invalid_list);
  1436. int r;
  1437. pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
  1438. r = 0;
  1439. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1440. pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
  1441. sp->role.word);
  1442. r = 1;
  1443. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1444. }
  1445. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1446. return r;
  1447. }
  1448. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1449. {
  1450. struct kvm_mmu_page *sp;
  1451. struct hlist_node *node;
  1452. LIST_HEAD(invalid_list);
  1453. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1454. pgprintk("%s: zap %llx %x\n",
  1455. __func__, gfn, sp->role.word);
  1456. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1457. }
  1458. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1459. }
  1460. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1461. {
  1462. int slot = memslot_id(kvm, gfn);
  1463. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1464. __set_bit(slot, sp->slot_bitmap);
  1465. }
  1466. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1467. {
  1468. int i;
  1469. u64 *pt = sp->spt;
  1470. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1471. return;
  1472. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1473. if (pt[i] == shadow_notrap_nonpresent_pte)
  1474. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1475. }
  1476. }
  1477. /*
  1478. * The function is based on mtrr_type_lookup() in
  1479. * arch/x86/kernel/cpu/mtrr/generic.c
  1480. */
  1481. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1482. u64 start, u64 end)
  1483. {
  1484. int i;
  1485. u64 base, mask;
  1486. u8 prev_match, curr_match;
  1487. int num_var_ranges = KVM_NR_VAR_MTRR;
  1488. if (!mtrr_state->enabled)
  1489. return 0xFF;
  1490. /* Make end inclusive end, instead of exclusive */
  1491. end--;
  1492. /* Look in fixed ranges. Just return the type as per start */
  1493. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1494. int idx;
  1495. if (start < 0x80000) {
  1496. idx = 0;
  1497. idx += (start >> 16);
  1498. return mtrr_state->fixed_ranges[idx];
  1499. } else if (start < 0xC0000) {
  1500. idx = 1 * 8;
  1501. idx += ((start - 0x80000) >> 14);
  1502. return mtrr_state->fixed_ranges[idx];
  1503. } else if (start < 0x1000000) {
  1504. idx = 3 * 8;
  1505. idx += ((start - 0xC0000) >> 12);
  1506. return mtrr_state->fixed_ranges[idx];
  1507. }
  1508. }
  1509. /*
  1510. * Look in variable ranges
  1511. * Look of multiple ranges matching this address and pick type
  1512. * as per MTRR precedence
  1513. */
  1514. if (!(mtrr_state->enabled & 2))
  1515. return mtrr_state->def_type;
  1516. prev_match = 0xFF;
  1517. for (i = 0; i < num_var_ranges; ++i) {
  1518. unsigned short start_state, end_state;
  1519. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1520. continue;
  1521. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1522. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1523. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1524. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1525. start_state = ((start & mask) == (base & mask));
  1526. end_state = ((end & mask) == (base & mask));
  1527. if (start_state != end_state)
  1528. return 0xFE;
  1529. if ((start & mask) != (base & mask))
  1530. continue;
  1531. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1532. if (prev_match == 0xFF) {
  1533. prev_match = curr_match;
  1534. continue;
  1535. }
  1536. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1537. curr_match == MTRR_TYPE_UNCACHABLE)
  1538. return MTRR_TYPE_UNCACHABLE;
  1539. if ((prev_match == MTRR_TYPE_WRBACK &&
  1540. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1541. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1542. curr_match == MTRR_TYPE_WRBACK)) {
  1543. prev_match = MTRR_TYPE_WRTHROUGH;
  1544. curr_match = MTRR_TYPE_WRTHROUGH;
  1545. }
  1546. if (prev_match != curr_match)
  1547. return MTRR_TYPE_UNCACHABLE;
  1548. }
  1549. if (prev_match != 0xFF)
  1550. return prev_match;
  1551. return mtrr_state->def_type;
  1552. }
  1553. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1554. {
  1555. u8 mtrr;
  1556. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1557. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1558. if (mtrr == 0xfe || mtrr == 0xff)
  1559. mtrr = MTRR_TYPE_WRBACK;
  1560. return mtrr;
  1561. }
  1562. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1563. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1564. {
  1565. trace_kvm_mmu_unsync_page(sp);
  1566. ++vcpu->kvm->stat.mmu_unsync;
  1567. sp->unsync = 1;
  1568. kvm_mmu_mark_parents_unsync(sp);
  1569. mmu_convert_notrap(sp);
  1570. }
  1571. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1572. {
  1573. struct kvm_mmu_page *s;
  1574. struct hlist_node *node;
  1575. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1576. if (s->unsync)
  1577. continue;
  1578. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1579. __kvm_unsync_page(vcpu, s);
  1580. }
  1581. }
  1582. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1583. bool can_unsync)
  1584. {
  1585. struct kvm_mmu_page *s;
  1586. struct hlist_node *node;
  1587. bool need_unsync = false;
  1588. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1589. if (!can_unsync)
  1590. return 1;
  1591. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1592. return 1;
  1593. if (!need_unsync && !s->unsync) {
  1594. if (!oos_shadow)
  1595. return 1;
  1596. need_unsync = true;
  1597. }
  1598. }
  1599. if (need_unsync)
  1600. kvm_unsync_pages(vcpu, gfn);
  1601. return 0;
  1602. }
  1603. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1604. unsigned pte_access, int user_fault,
  1605. int write_fault, int dirty, int level,
  1606. gfn_t gfn, pfn_t pfn, bool speculative,
  1607. bool can_unsync, bool host_writable)
  1608. {
  1609. u64 spte, entry = *sptep;
  1610. int ret = 0;
  1611. /*
  1612. * We don't set the accessed bit, since we sometimes want to see
  1613. * whether the guest actually used the pte (in order to detect
  1614. * demand paging).
  1615. */
  1616. spte = PT_PRESENT_MASK;
  1617. if (!speculative)
  1618. spte |= shadow_accessed_mask;
  1619. if (!dirty)
  1620. pte_access &= ~ACC_WRITE_MASK;
  1621. if (pte_access & ACC_EXEC_MASK)
  1622. spte |= shadow_x_mask;
  1623. else
  1624. spte |= shadow_nx_mask;
  1625. if (pte_access & ACC_USER_MASK)
  1626. spte |= shadow_user_mask;
  1627. if (level > PT_PAGE_TABLE_LEVEL)
  1628. spte |= PT_PAGE_SIZE_MASK;
  1629. if (tdp_enabled)
  1630. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1631. kvm_is_mmio_pfn(pfn));
  1632. if (host_writable)
  1633. spte |= SPTE_HOST_WRITEABLE;
  1634. else
  1635. pte_access &= ~ACC_WRITE_MASK;
  1636. spte |= (u64)pfn << PAGE_SHIFT;
  1637. if ((pte_access & ACC_WRITE_MASK)
  1638. || (!vcpu->arch.mmu.direct_map && write_fault
  1639. && !is_write_protection(vcpu) && !user_fault)) {
  1640. if (level > PT_PAGE_TABLE_LEVEL &&
  1641. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1642. ret = 1;
  1643. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1644. goto done;
  1645. }
  1646. spte |= PT_WRITABLE_MASK;
  1647. if (!vcpu->arch.mmu.direct_map
  1648. && !(pte_access & ACC_WRITE_MASK)) {
  1649. spte &= ~PT_USER_MASK;
  1650. /*
  1651. * If we converted a user page to a kernel page,
  1652. * so that the kernel can write to it when cr0.wp=0,
  1653. * then we should prevent the kernel from executing it
  1654. * if SMEP is enabled.
  1655. */
  1656. if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
  1657. spte |= PT64_NX_MASK;
  1658. }
  1659. /*
  1660. * Optimization: for pte sync, if spte was writable the hash
  1661. * lookup is unnecessary (and expensive). Write protection
  1662. * is responsibility of mmu_get_page / kvm_sync_page.
  1663. * Same reasoning can be applied to dirty page accounting.
  1664. */
  1665. if (!can_unsync && is_writable_pte(*sptep))
  1666. goto set_pte;
  1667. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1668. pgprintk("%s: found shadow page for %llx, marking ro\n",
  1669. __func__, gfn);
  1670. ret = 1;
  1671. pte_access &= ~ACC_WRITE_MASK;
  1672. if (is_writable_pte(spte))
  1673. spte &= ~PT_WRITABLE_MASK;
  1674. }
  1675. }
  1676. if (pte_access & ACC_WRITE_MASK)
  1677. mark_page_dirty(vcpu->kvm, gfn);
  1678. set_pte:
  1679. update_spte(sptep, spte);
  1680. /*
  1681. * If we overwrite a writable spte with a read-only one we
  1682. * should flush remote TLBs. Otherwise rmap_write_protect
  1683. * will find a read-only spte, even though the writable spte
  1684. * might be cached on a CPU's TLB.
  1685. */
  1686. if (is_writable_pte(entry) && !is_writable_pte(*sptep))
  1687. kvm_flush_remote_tlbs(vcpu->kvm);
  1688. done:
  1689. return ret;
  1690. }
  1691. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1692. unsigned pt_access, unsigned pte_access,
  1693. int user_fault, int write_fault, int dirty,
  1694. int *ptwrite, int level, gfn_t gfn,
  1695. pfn_t pfn, bool speculative,
  1696. bool host_writable)
  1697. {
  1698. int was_rmapped = 0;
  1699. int rmap_count;
  1700. pgprintk("%s: spte %llx access %x write_fault %d"
  1701. " user_fault %d gfn %llx\n",
  1702. __func__, *sptep, pt_access,
  1703. write_fault, user_fault, gfn);
  1704. if (is_rmap_spte(*sptep)) {
  1705. /*
  1706. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1707. * the parent of the now unreachable PTE.
  1708. */
  1709. if (level > PT_PAGE_TABLE_LEVEL &&
  1710. !is_large_pte(*sptep)) {
  1711. struct kvm_mmu_page *child;
  1712. u64 pte = *sptep;
  1713. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1714. drop_parent_pte(child, sptep);
  1715. kvm_flush_remote_tlbs(vcpu->kvm);
  1716. } else if (pfn != spte_to_pfn(*sptep)) {
  1717. pgprintk("hfn old %llx new %llx\n",
  1718. spte_to_pfn(*sptep), pfn);
  1719. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1720. kvm_flush_remote_tlbs(vcpu->kvm);
  1721. } else
  1722. was_rmapped = 1;
  1723. }
  1724. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1725. dirty, level, gfn, pfn, speculative, true,
  1726. host_writable)) {
  1727. if (write_fault)
  1728. *ptwrite = 1;
  1729. kvm_mmu_flush_tlb(vcpu);
  1730. }
  1731. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1732. pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
  1733. is_large_pte(*sptep)? "2MB" : "4kB",
  1734. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1735. *sptep, sptep);
  1736. if (!was_rmapped && is_large_pte(*sptep))
  1737. ++vcpu->kvm->stat.lpages;
  1738. if (is_shadow_present_pte(*sptep)) {
  1739. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1740. if (!was_rmapped) {
  1741. rmap_count = rmap_add(vcpu, sptep, gfn);
  1742. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1743. rmap_recycle(vcpu, sptep, gfn);
  1744. }
  1745. }
  1746. kvm_release_pfn_clean(pfn);
  1747. if (speculative) {
  1748. vcpu->arch.last_pte_updated = sptep;
  1749. vcpu->arch.last_pte_gfn = gfn;
  1750. }
  1751. }
  1752. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1753. {
  1754. }
  1755. static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
  1756. bool no_dirty_log)
  1757. {
  1758. struct kvm_memory_slot *slot;
  1759. unsigned long hva;
  1760. slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
  1761. if (!slot) {
  1762. get_page(bad_page);
  1763. return page_to_pfn(bad_page);
  1764. }
  1765. hva = gfn_to_hva_memslot(slot, gfn);
  1766. return hva_to_pfn_atomic(vcpu->kvm, hva);
  1767. }
  1768. static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
  1769. struct kvm_mmu_page *sp,
  1770. u64 *start, u64 *end)
  1771. {
  1772. struct page *pages[PTE_PREFETCH_NUM];
  1773. unsigned access = sp->role.access;
  1774. int i, ret;
  1775. gfn_t gfn;
  1776. gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
  1777. if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
  1778. return -1;
  1779. ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
  1780. if (ret <= 0)
  1781. return -1;
  1782. for (i = 0; i < ret; i++, gfn++, start++)
  1783. mmu_set_spte(vcpu, start, ACC_ALL,
  1784. access, 0, 0, 1, NULL,
  1785. sp->role.level, gfn,
  1786. page_to_pfn(pages[i]), true, true);
  1787. return 0;
  1788. }
  1789. static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
  1790. struct kvm_mmu_page *sp, u64 *sptep)
  1791. {
  1792. u64 *spte, *start = NULL;
  1793. int i;
  1794. WARN_ON(!sp->role.direct);
  1795. i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
  1796. spte = sp->spt + i;
  1797. for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
  1798. if (*spte != shadow_trap_nonpresent_pte || spte == sptep) {
  1799. if (!start)
  1800. continue;
  1801. if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
  1802. break;
  1803. start = NULL;
  1804. } else if (!start)
  1805. start = spte;
  1806. }
  1807. }
  1808. static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
  1809. {
  1810. struct kvm_mmu_page *sp;
  1811. /*
  1812. * Since it's no accessed bit on EPT, it's no way to
  1813. * distinguish between actually accessed translations
  1814. * and prefetched, so disable pte prefetch if EPT is
  1815. * enabled.
  1816. */
  1817. if (!shadow_accessed_mask)
  1818. return;
  1819. sp = page_header(__pa(sptep));
  1820. if (sp->role.level > PT_PAGE_TABLE_LEVEL)
  1821. return;
  1822. __direct_pte_prefetch(vcpu, sp, sptep);
  1823. }
  1824. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1825. int map_writable, int level, gfn_t gfn, pfn_t pfn,
  1826. bool prefault)
  1827. {
  1828. struct kvm_shadow_walk_iterator iterator;
  1829. struct kvm_mmu_page *sp;
  1830. int pt_write = 0;
  1831. gfn_t pseudo_gfn;
  1832. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1833. if (iterator.level == level) {
  1834. unsigned pte_access = ACC_ALL;
  1835. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
  1836. 0, write, 1, &pt_write,
  1837. level, gfn, pfn, prefault, map_writable);
  1838. direct_pte_prefetch(vcpu, iterator.sptep);
  1839. ++vcpu->stat.pf_fixed;
  1840. break;
  1841. }
  1842. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1843. u64 base_addr = iterator.addr;
  1844. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1845. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1846. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1847. iterator.level - 1,
  1848. 1, ACC_ALL, iterator.sptep);
  1849. if (!sp) {
  1850. pgprintk("nonpaging_map: ENOMEM\n");
  1851. kvm_release_pfn_clean(pfn);
  1852. return -ENOMEM;
  1853. }
  1854. __set_spte(iterator.sptep,
  1855. __pa(sp->spt)
  1856. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1857. | shadow_user_mask | shadow_x_mask
  1858. | shadow_accessed_mask);
  1859. }
  1860. }
  1861. return pt_write;
  1862. }
  1863. static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
  1864. {
  1865. siginfo_t info;
  1866. info.si_signo = SIGBUS;
  1867. info.si_errno = 0;
  1868. info.si_code = BUS_MCEERR_AR;
  1869. info.si_addr = (void __user *)address;
  1870. info.si_addr_lsb = PAGE_SHIFT;
  1871. send_sig_info(SIGBUS, &info, tsk);
  1872. }
  1873. static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gva_t gva,
  1874. unsigned access, gfn_t gfn, pfn_t pfn)
  1875. {
  1876. kvm_release_pfn_clean(pfn);
  1877. if (is_hwpoison_pfn(pfn)) {
  1878. kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
  1879. return 0;
  1880. } else if (is_fault_pfn(pfn))
  1881. return -EFAULT;
  1882. vcpu_cache_mmio_info(vcpu, gva, gfn, access);
  1883. return 1;
  1884. }
  1885. static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
  1886. gfn_t *gfnp, pfn_t *pfnp, int *levelp)
  1887. {
  1888. pfn_t pfn = *pfnp;
  1889. gfn_t gfn = *gfnp;
  1890. int level = *levelp;
  1891. /*
  1892. * Check if it's a transparent hugepage. If this would be an
  1893. * hugetlbfs page, level wouldn't be set to
  1894. * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
  1895. * here.
  1896. */
  1897. if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
  1898. level == PT_PAGE_TABLE_LEVEL &&
  1899. PageTransCompound(pfn_to_page(pfn)) &&
  1900. !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
  1901. unsigned long mask;
  1902. /*
  1903. * mmu_notifier_retry was successful and we hold the
  1904. * mmu_lock here, so the pmd can't become splitting
  1905. * from under us, and in turn
  1906. * __split_huge_page_refcount() can't run from under
  1907. * us and we can safely transfer the refcount from
  1908. * PG_tail to PG_head as we switch the pfn to tail to
  1909. * head.
  1910. */
  1911. *levelp = level = PT_DIRECTORY_LEVEL;
  1912. mask = KVM_PAGES_PER_HPAGE(level) - 1;
  1913. VM_BUG_ON((gfn & mask) != (pfn & mask));
  1914. if (pfn & mask) {
  1915. gfn &= ~mask;
  1916. *gfnp = gfn;
  1917. kvm_release_pfn_clean(pfn);
  1918. pfn &= ~mask;
  1919. if (!get_page_unless_zero(pfn_to_page(pfn)))
  1920. BUG();
  1921. *pfnp = pfn;
  1922. }
  1923. }
  1924. }
  1925. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  1926. gva_t gva, pfn_t *pfn, bool write, bool *writable);
  1927. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
  1928. bool prefault)
  1929. {
  1930. int r;
  1931. int level;
  1932. int force_pt_level;
  1933. pfn_t pfn;
  1934. unsigned long mmu_seq;
  1935. bool map_writable;
  1936. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  1937. if (likely(!force_pt_level)) {
  1938. level = mapping_level(vcpu, gfn);
  1939. /*
  1940. * This path builds a PAE pagetable - so we can map
  1941. * 2mb pages at maximum. Therefore check if the level
  1942. * is larger than that.
  1943. */
  1944. if (level > PT_DIRECTORY_LEVEL)
  1945. level = PT_DIRECTORY_LEVEL;
  1946. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1947. } else
  1948. level = PT_PAGE_TABLE_LEVEL;
  1949. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1950. smp_rmb();
  1951. if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
  1952. return 0;
  1953. /* mmio */
  1954. if (is_error_pfn(pfn))
  1955. return kvm_handle_bad_page(vcpu, v, ACC_ALL, gfn, pfn);
  1956. spin_lock(&vcpu->kvm->mmu_lock);
  1957. if (mmu_notifier_retry(vcpu, mmu_seq))
  1958. goto out_unlock;
  1959. kvm_mmu_free_some_pages(vcpu);
  1960. if (likely(!force_pt_level))
  1961. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  1962. r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
  1963. prefault);
  1964. spin_unlock(&vcpu->kvm->mmu_lock);
  1965. return r;
  1966. out_unlock:
  1967. spin_unlock(&vcpu->kvm->mmu_lock);
  1968. kvm_release_pfn_clean(pfn);
  1969. return 0;
  1970. }
  1971. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1972. {
  1973. int i;
  1974. struct kvm_mmu_page *sp;
  1975. LIST_HEAD(invalid_list);
  1976. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1977. return;
  1978. spin_lock(&vcpu->kvm->mmu_lock);
  1979. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
  1980. (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
  1981. vcpu->arch.mmu.direct_map)) {
  1982. hpa_t root = vcpu->arch.mmu.root_hpa;
  1983. sp = page_header(root);
  1984. --sp->root_count;
  1985. if (!sp->root_count && sp->role.invalid) {
  1986. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1987. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1988. }
  1989. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1990. spin_unlock(&vcpu->kvm->mmu_lock);
  1991. return;
  1992. }
  1993. for (i = 0; i < 4; ++i) {
  1994. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1995. if (root) {
  1996. root &= PT64_BASE_ADDR_MASK;
  1997. sp = page_header(root);
  1998. --sp->root_count;
  1999. if (!sp->root_count && sp->role.invalid)
  2000. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2001. &invalid_list);
  2002. }
  2003. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2004. }
  2005. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2006. spin_unlock(&vcpu->kvm->mmu_lock);
  2007. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2008. }
  2009. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  2010. {
  2011. int ret = 0;
  2012. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  2013. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2014. ret = 1;
  2015. }
  2016. return ret;
  2017. }
  2018. static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
  2019. {
  2020. struct kvm_mmu_page *sp;
  2021. unsigned i;
  2022. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2023. spin_lock(&vcpu->kvm->mmu_lock);
  2024. kvm_mmu_free_some_pages(vcpu);
  2025. sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
  2026. 1, ACC_ALL, NULL);
  2027. ++sp->root_count;
  2028. spin_unlock(&vcpu->kvm->mmu_lock);
  2029. vcpu->arch.mmu.root_hpa = __pa(sp->spt);
  2030. } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
  2031. for (i = 0; i < 4; ++i) {
  2032. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2033. ASSERT(!VALID_PAGE(root));
  2034. spin_lock(&vcpu->kvm->mmu_lock);
  2035. kvm_mmu_free_some_pages(vcpu);
  2036. sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
  2037. i << 30,
  2038. PT32_ROOT_LEVEL, 1, ACC_ALL,
  2039. NULL);
  2040. root = __pa(sp->spt);
  2041. ++sp->root_count;
  2042. spin_unlock(&vcpu->kvm->mmu_lock);
  2043. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  2044. }
  2045. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2046. } else
  2047. BUG();
  2048. return 0;
  2049. }
  2050. static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
  2051. {
  2052. struct kvm_mmu_page *sp;
  2053. u64 pdptr, pm_mask;
  2054. gfn_t root_gfn;
  2055. int i;
  2056. root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
  2057. if (mmu_check_root(vcpu, root_gfn))
  2058. return 1;
  2059. /*
  2060. * Do we shadow a long mode page table? If so we need to
  2061. * write-protect the guests page table root.
  2062. */
  2063. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2064. hpa_t root = vcpu->arch.mmu.root_hpa;
  2065. ASSERT(!VALID_PAGE(root));
  2066. spin_lock(&vcpu->kvm->mmu_lock);
  2067. kvm_mmu_free_some_pages(vcpu);
  2068. sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
  2069. 0, ACC_ALL, NULL);
  2070. root = __pa(sp->spt);
  2071. ++sp->root_count;
  2072. spin_unlock(&vcpu->kvm->mmu_lock);
  2073. vcpu->arch.mmu.root_hpa = root;
  2074. return 0;
  2075. }
  2076. /*
  2077. * We shadow a 32 bit page table. This may be a legacy 2-level
  2078. * or a PAE 3-level page table. In either case we need to be aware that
  2079. * the shadow page table may be a PAE or a long mode page table.
  2080. */
  2081. pm_mask = PT_PRESENT_MASK;
  2082. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
  2083. pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
  2084. for (i = 0; i < 4; ++i) {
  2085. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2086. ASSERT(!VALID_PAGE(root));
  2087. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  2088. pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
  2089. if (!is_present_gpte(pdptr)) {
  2090. vcpu->arch.mmu.pae_root[i] = 0;
  2091. continue;
  2092. }
  2093. root_gfn = pdptr >> PAGE_SHIFT;
  2094. if (mmu_check_root(vcpu, root_gfn))
  2095. return 1;
  2096. }
  2097. spin_lock(&vcpu->kvm->mmu_lock);
  2098. kvm_mmu_free_some_pages(vcpu);
  2099. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  2100. PT32_ROOT_LEVEL, 0,
  2101. ACC_ALL, NULL);
  2102. root = __pa(sp->spt);
  2103. ++sp->root_count;
  2104. spin_unlock(&vcpu->kvm->mmu_lock);
  2105. vcpu->arch.mmu.pae_root[i] = root | pm_mask;
  2106. }
  2107. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  2108. /*
  2109. * If we shadow a 32 bit page table with a long mode page
  2110. * table we enter this path.
  2111. */
  2112. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2113. if (vcpu->arch.mmu.lm_root == NULL) {
  2114. /*
  2115. * The additional page necessary for this is only
  2116. * allocated on demand.
  2117. */
  2118. u64 *lm_root;
  2119. lm_root = (void*)get_zeroed_page(GFP_KERNEL);
  2120. if (lm_root == NULL)
  2121. return 1;
  2122. lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
  2123. vcpu->arch.mmu.lm_root = lm_root;
  2124. }
  2125. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
  2126. }
  2127. return 0;
  2128. }
  2129. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  2130. {
  2131. if (vcpu->arch.mmu.direct_map)
  2132. return mmu_alloc_direct_roots(vcpu);
  2133. else
  2134. return mmu_alloc_shadow_roots(vcpu);
  2135. }
  2136. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  2137. {
  2138. int i;
  2139. struct kvm_mmu_page *sp;
  2140. if (vcpu->arch.mmu.direct_map)
  2141. return;
  2142. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2143. return;
  2144. vcpu_clear_mmio_info(vcpu, ~0ul);
  2145. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
  2146. if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
  2147. hpa_t root = vcpu->arch.mmu.root_hpa;
  2148. sp = page_header(root);
  2149. mmu_sync_children(vcpu, sp);
  2150. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2151. return;
  2152. }
  2153. for (i = 0; i < 4; ++i) {
  2154. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2155. if (root && VALID_PAGE(root)) {
  2156. root &= PT64_BASE_ADDR_MASK;
  2157. sp = page_header(root);
  2158. mmu_sync_children(vcpu, sp);
  2159. }
  2160. }
  2161. trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
  2162. }
  2163. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  2164. {
  2165. spin_lock(&vcpu->kvm->mmu_lock);
  2166. mmu_sync_roots(vcpu);
  2167. spin_unlock(&vcpu->kvm->mmu_lock);
  2168. }
  2169. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  2170. u32 access, struct x86_exception *exception)
  2171. {
  2172. if (exception)
  2173. exception->error_code = 0;
  2174. return vaddr;
  2175. }
  2176. static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
  2177. u32 access,
  2178. struct x86_exception *exception)
  2179. {
  2180. if (exception)
  2181. exception->error_code = 0;
  2182. return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
  2183. }
  2184. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  2185. u32 error_code, bool prefault)
  2186. {
  2187. gfn_t gfn;
  2188. int r;
  2189. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  2190. r = mmu_topup_memory_caches(vcpu);
  2191. if (r)
  2192. return r;
  2193. ASSERT(vcpu);
  2194. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2195. gfn = gva >> PAGE_SHIFT;
  2196. return nonpaging_map(vcpu, gva & PAGE_MASK,
  2197. error_code & PFERR_WRITE_MASK, gfn, prefault);
  2198. }
  2199. static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
  2200. {
  2201. struct kvm_arch_async_pf arch;
  2202. arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
  2203. arch.gfn = gfn;
  2204. arch.direct_map = vcpu->arch.mmu.direct_map;
  2205. arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
  2206. return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
  2207. }
  2208. static bool can_do_async_pf(struct kvm_vcpu *vcpu)
  2209. {
  2210. if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
  2211. kvm_event_needs_reinjection(vcpu)))
  2212. return false;
  2213. return kvm_x86_ops->interrupt_allowed(vcpu);
  2214. }
  2215. static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
  2216. gva_t gva, pfn_t *pfn, bool write, bool *writable)
  2217. {
  2218. bool async;
  2219. *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
  2220. if (!async)
  2221. return false; /* *pfn has correct page already */
  2222. put_page(pfn_to_page(*pfn));
  2223. if (!prefault && can_do_async_pf(vcpu)) {
  2224. trace_kvm_try_async_get_page(gva, gfn);
  2225. if (kvm_find_async_pf_gfn(vcpu, gfn)) {
  2226. trace_kvm_async_pf_doublefault(gva, gfn);
  2227. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  2228. return true;
  2229. } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
  2230. return true;
  2231. }
  2232. *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
  2233. return false;
  2234. }
  2235. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
  2236. bool prefault)
  2237. {
  2238. pfn_t pfn;
  2239. int r;
  2240. int level;
  2241. int force_pt_level;
  2242. gfn_t gfn = gpa >> PAGE_SHIFT;
  2243. unsigned long mmu_seq;
  2244. int write = error_code & PFERR_WRITE_MASK;
  2245. bool map_writable;
  2246. ASSERT(vcpu);
  2247. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2248. r = mmu_topup_memory_caches(vcpu);
  2249. if (r)
  2250. return r;
  2251. force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
  2252. if (likely(!force_pt_level)) {
  2253. level = mapping_level(vcpu, gfn);
  2254. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  2255. } else
  2256. level = PT_PAGE_TABLE_LEVEL;
  2257. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2258. smp_rmb();
  2259. if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
  2260. return 0;
  2261. /* mmio */
  2262. if (is_error_pfn(pfn))
  2263. return kvm_handle_bad_page(vcpu, 0, 0, gfn, pfn);
  2264. spin_lock(&vcpu->kvm->mmu_lock);
  2265. if (mmu_notifier_retry(vcpu, mmu_seq))
  2266. goto out_unlock;
  2267. kvm_mmu_free_some_pages(vcpu);
  2268. if (likely(!force_pt_level))
  2269. transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
  2270. r = __direct_map(vcpu, gpa, write, map_writable,
  2271. level, gfn, pfn, prefault);
  2272. spin_unlock(&vcpu->kvm->mmu_lock);
  2273. return r;
  2274. out_unlock:
  2275. spin_unlock(&vcpu->kvm->mmu_lock);
  2276. kvm_release_pfn_clean(pfn);
  2277. return 0;
  2278. }
  2279. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2280. {
  2281. mmu_free_roots(vcpu);
  2282. }
  2283. static int nonpaging_init_context(struct kvm_vcpu *vcpu,
  2284. struct kvm_mmu *context)
  2285. {
  2286. context->new_cr3 = nonpaging_new_cr3;
  2287. context->page_fault = nonpaging_page_fault;
  2288. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2289. context->free = nonpaging_free;
  2290. context->prefetch_page = nonpaging_prefetch_page;
  2291. context->sync_page = nonpaging_sync_page;
  2292. context->invlpg = nonpaging_invlpg;
  2293. context->update_pte = nonpaging_update_pte;
  2294. context->root_level = 0;
  2295. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2296. context->root_hpa = INVALID_PAGE;
  2297. context->direct_map = true;
  2298. context->nx = false;
  2299. return 0;
  2300. }
  2301. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2302. {
  2303. ++vcpu->stat.tlb_flush;
  2304. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2305. }
  2306. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2307. {
  2308. pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
  2309. mmu_free_roots(vcpu);
  2310. }
  2311. static unsigned long get_cr3(struct kvm_vcpu *vcpu)
  2312. {
  2313. return kvm_read_cr3(vcpu);
  2314. }
  2315. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2316. struct x86_exception *fault)
  2317. {
  2318. vcpu->arch.mmu.inject_page_fault(vcpu, fault);
  2319. }
  2320. static void paging_free(struct kvm_vcpu *vcpu)
  2321. {
  2322. nonpaging_free(vcpu);
  2323. }
  2324. static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
  2325. {
  2326. int bit7;
  2327. bit7 = (gpte >> 7) & 1;
  2328. return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
  2329. }
  2330. #define PTTYPE 64
  2331. #include "paging_tmpl.h"
  2332. #undef PTTYPE
  2333. #define PTTYPE 32
  2334. #include "paging_tmpl.h"
  2335. #undef PTTYPE
  2336. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
  2337. struct kvm_mmu *context,
  2338. int level)
  2339. {
  2340. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2341. u64 exb_bit_rsvd = 0;
  2342. if (!context->nx)
  2343. exb_bit_rsvd = rsvd_bits(63, 63);
  2344. switch (level) {
  2345. case PT32_ROOT_LEVEL:
  2346. /* no rsvd bits for 2 level 4K page table entries */
  2347. context->rsvd_bits_mask[0][1] = 0;
  2348. context->rsvd_bits_mask[0][0] = 0;
  2349. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2350. if (!is_pse(vcpu)) {
  2351. context->rsvd_bits_mask[1][1] = 0;
  2352. break;
  2353. }
  2354. if (is_cpuid_PSE36())
  2355. /* 36bits PSE 4MB page */
  2356. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2357. else
  2358. /* 32 bits PSE 4MB page */
  2359. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2360. break;
  2361. case PT32E_ROOT_LEVEL:
  2362. context->rsvd_bits_mask[0][2] =
  2363. rsvd_bits(maxphyaddr, 63) |
  2364. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2365. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2366. rsvd_bits(maxphyaddr, 62); /* PDE */
  2367. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2368. rsvd_bits(maxphyaddr, 62); /* PTE */
  2369. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2370. rsvd_bits(maxphyaddr, 62) |
  2371. rsvd_bits(13, 20); /* large page */
  2372. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2373. break;
  2374. case PT64_ROOT_LEVEL:
  2375. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2376. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2377. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2378. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2379. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2380. rsvd_bits(maxphyaddr, 51);
  2381. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2382. rsvd_bits(maxphyaddr, 51);
  2383. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2384. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2385. rsvd_bits(maxphyaddr, 51) |
  2386. rsvd_bits(13, 29);
  2387. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2388. rsvd_bits(maxphyaddr, 51) |
  2389. rsvd_bits(13, 20); /* large page */
  2390. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2391. break;
  2392. }
  2393. }
  2394. static int paging64_init_context_common(struct kvm_vcpu *vcpu,
  2395. struct kvm_mmu *context,
  2396. int level)
  2397. {
  2398. context->nx = is_nx(vcpu);
  2399. reset_rsvds_bits_mask(vcpu, context, level);
  2400. ASSERT(is_pae(vcpu));
  2401. context->new_cr3 = paging_new_cr3;
  2402. context->page_fault = paging64_page_fault;
  2403. context->gva_to_gpa = paging64_gva_to_gpa;
  2404. context->prefetch_page = paging64_prefetch_page;
  2405. context->sync_page = paging64_sync_page;
  2406. context->invlpg = paging64_invlpg;
  2407. context->update_pte = paging64_update_pte;
  2408. context->free = paging_free;
  2409. context->root_level = level;
  2410. context->shadow_root_level = level;
  2411. context->root_hpa = INVALID_PAGE;
  2412. context->direct_map = false;
  2413. return 0;
  2414. }
  2415. static int paging64_init_context(struct kvm_vcpu *vcpu,
  2416. struct kvm_mmu *context)
  2417. {
  2418. return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
  2419. }
  2420. static int paging32_init_context(struct kvm_vcpu *vcpu,
  2421. struct kvm_mmu *context)
  2422. {
  2423. context->nx = false;
  2424. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2425. context->new_cr3 = paging_new_cr3;
  2426. context->page_fault = paging32_page_fault;
  2427. context->gva_to_gpa = paging32_gva_to_gpa;
  2428. context->free = paging_free;
  2429. context->prefetch_page = paging32_prefetch_page;
  2430. context->sync_page = paging32_sync_page;
  2431. context->invlpg = paging32_invlpg;
  2432. context->update_pte = paging32_update_pte;
  2433. context->root_level = PT32_ROOT_LEVEL;
  2434. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2435. context->root_hpa = INVALID_PAGE;
  2436. context->direct_map = false;
  2437. return 0;
  2438. }
  2439. static int paging32E_init_context(struct kvm_vcpu *vcpu,
  2440. struct kvm_mmu *context)
  2441. {
  2442. return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
  2443. }
  2444. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2445. {
  2446. struct kvm_mmu *context = vcpu->arch.walk_mmu;
  2447. context->base_role.word = 0;
  2448. context->new_cr3 = nonpaging_new_cr3;
  2449. context->page_fault = tdp_page_fault;
  2450. context->free = nonpaging_free;
  2451. context->prefetch_page = nonpaging_prefetch_page;
  2452. context->sync_page = nonpaging_sync_page;
  2453. context->invlpg = nonpaging_invlpg;
  2454. context->update_pte = nonpaging_update_pte;
  2455. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2456. context->root_hpa = INVALID_PAGE;
  2457. context->direct_map = true;
  2458. context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
  2459. context->get_cr3 = get_cr3;
  2460. context->inject_page_fault = kvm_inject_page_fault;
  2461. context->nx = is_nx(vcpu);
  2462. if (!is_paging(vcpu)) {
  2463. context->nx = false;
  2464. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2465. context->root_level = 0;
  2466. } else if (is_long_mode(vcpu)) {
  2467. context->nx = is_nx(vcpu);
  2468. reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
  2469. context->gva_to_gpa = paging64_gva_to_gpa;
  2470. context->root_level = PT64_ROOT_LEVEL;
  2471. } else if (is_pae(vcpu)) {
  2472. context->nx = is_nx(vcpu);
  2473. reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
  2474. context->gva_to_gpa = paging64_gva_to_gpa;
  2475. context->root_level = PT32E_ROOT_LEVEL;
  2476. } else {
  2477. context->nx = false;
  2478. reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
  2479. context->gva_to_gpa = paging32_gva_to_gpa;
  2480. context->root_level = PT32_ROOT_LEVEL;
  2481. }
  2482. return 0;
  2483. }
  2484. int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
  2485. {
  2486. int r;
  2487. bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
  2488. ASSERT(vcpu);
  2489. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2490. if (!is_paging(vcpu))
  2491. r = nonpaging_init_context(vcpu, context);
  2492. else if (is_long_mode(vcpu))
  2493. r = paging64_init_context(vcpu, context);
  2494. else if (is_pae(vcpu))
  2495. r = paging32E_init_context(vcpu, context);
  2496. else
  2497. r = paging32_init_context(vcpu, context);
  2498. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2499. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2500. vcpu->arch.mmu.base_role.smep_andnot_wp
  2501. = smep && !is_write_protection(vcpu);
  2502. return r;
  2503. }
  2504. EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
  2505. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2506. {
  2507. int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
  2508. vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
  2509. vcpu->arch.walk_mmu->get_cr3 = get_cr3;
  2510. vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
  2511. return r;
  2512. }
  2513. static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
  2514. {
  2515. struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
  2516. g_context->get_cr3 = get_cr3;
  2517. g_context->inject_page_fault = kvm_inject_page_fault;
  2518. /*
  2519. * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
  2520. * translation of l2_gpa to l1_gpa addresses is done using the
  2521. * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
  2522. * functions between mmu and nested_mmu are swapped.
  2523. */
  2524. if (!is_paging(vcpu)) {
  2525. g_context->nx = false;
  2526. g_context->root_level = 0;
  2527. g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
  2528. } else if (is_long_mode(vcpu)) {
  2529. g_context->nx = is_nx(vcpu);
  2530. reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
  2531. g_context->root_level = PT64_ROOT_LEVEL;
  2532. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2533. } else if (is_pae(vcpu)) {
  2534. g_context->nx = is_nx(vcpu);
  2535. reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
  2536. g_context->root_level = PT32E_ROOT_LEVEL;
  2537. g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
  2538. } else {
  2539. g_context->nx = false;
  2540. reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
  2541. g_context->root_level = PT32_ROOT_LEVEL;
  2542. g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
  2543. }
  2544. return 0;
  2545. }
  2546. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2547. {
  2548. if (mmu_is_nested(vcpu))
  2549. return init_kvm_nested_mmu(vcpu);
  2550. else if (tdp_enabled)
  2551. return init_kvm_tdp_mmu(vcpu);
  2552. else
  2553. return init_kvm_softmmu(vcpu);
  2554. }
  2555. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2556. {
  2557. ASSERT(vcpu);
  2558. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2559. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2560. vcpu->arch.mmu.free(vcpu);
  2561. }
  2562. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2563. {
  2564. destroy_kvm_mmu(vcpu);
  2565. return init_kvm_mmu(vcpu);
  2566. }
  2567. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2568. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2569. {
  2570. int r;
  2571. r = mmu_topup_memory_caches(vcpu);
  2572. if (r)
  2573. goto out;
  2574. r = mmu_alloc_roots(vcpu);
  2575. spin_lock(&vcpu->kvm->mmu_lock);
  2576. mmu_sync_roots(vcpu);
  2577. spin_unlock(&vcpu->kvm->mmu_lock);
  2578. if (r)
  2579. goto out;
  2580. /* set_cr3() should ensure TLB has been flushed */
  2581. vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2582. out:
  2583. return r;
  2584. }
  2585. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2586. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2587. {
  2588. mmu_free_roots(vcpu);
  2589. }
  2590. EXPORT_SYMBOL_GPL(kvm_mmu_unload);
  2591. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2592. struct kvm_mmu_page *sp, u64 *spte,
  2593. const void *new)
  2594. {
  2595. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2596. ++vcpu->kvm->stat.mmu_pde_zapped;
  2597. return;
  2598. }
  2599. ++vcpu->kvm->stat.mmu_pte_updated;
  2600. vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
  2601. }
  2602. static bool need_remote_flush(u64 old, u64 new)
  2603. {
  2604. if (!is_shadow_present_pte(old))
  2605. return false;
  2606. if (!is_shadow_present_pte(new))
  2607. return true;
  2608. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2609. return true;
  2610. old ^= PT64_NX_MASK;
  2611. new ^= PT64_NX_MASK;
  2612. return (old & ~new & PT64_PERM_MASK) != 0;
  2613. }
  2614. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2615. bool remote_flush, bool local_flush)
  2616. {
  2617. if (zap_page)
  2618. return;
  2619. if (remote_flush)
  2620. kvm_flush_remote_tlbs(vcpu->kvm);
  2621. else if (local_flush)
  2622. kvm_mmu_flush_tlb(vcpu);
  2623. }
  2624. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2625. {
  2626. u64 *spte = vcpu->arch.last_pte_updated;
  2627. return !!(spte && (*spte & shadow_accessed_mask));
  2628. }
  2629. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2630. {
  2631. u64 *spte = vcpu->arch.last_pte_updated;
  2632. if (spte
  2633. && vcpu->arch.last_pte_gfn == gfn
  2634. && shadow_accessed_mask
  2635. && !(*spte & shadow_accessed_mask)
  2636. && is_shadow_present_pte(*spte))
  2637. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2638. }
  2639. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2640. const u8 *new, int bytes,
  2641. bool guest_initiated)
  2642. {
  2643. gfn_t gfn = gpa >> PAGE_SHIFT;
  2644. union kvm_mmu_page_role mask = { .word = 0 };
  2645. struct kvm_mmu_page *sp;
  2646. struct hlist_node *node;
  2647. LIST_HEAD(invalid_list);
  2648. u64 entry, gentry, *spte;
  2649. unsigned pte_size, page_offset, misaligned, quadrant, offset;
  2650. int level, npte, invlpg_counter, r, flooded = 0;
  2651. bool remote_flush, local_flush, zap_page;
  2652. /*
  2653. * If we don't have indirect shadow pages, it means no page is
  2654. * write-protected, so we can exit simply.
  2655. */
  2656. if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
  2657. return;
  2658. zap_page = remote_flush = local_flush = false;
  2659. offset = offset_in_page(gpa);
  2660. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2661. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2662. /*
  2663. * Assume that the pte write on a page table of the same type
  2664. * as the current vcpu paging mode since we update the sptes only
  2665. * when they have the same mode.
  2666. */
  2667. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2668. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2669. if (is_pae(vcpu)) {
  2670. gpa &= ~(gpa_t)7;
  2671. bytes = 8;
  2672. }
  2673. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2674. if (r)
  2675. gentry = 0;
  2676. new = (const u8 *)&gentry;
  2677. }
  2678. switch (bytes) {
  2679. case 4:
  2680. gentry = *(const u32 *)new;
  2681. break;
  2682. case 8:
  2683. gentry = *(const u64 *)new;
  2684. break;
  2685. default:
  2686. gentry = 0;
  2687. break;
  2688. }
  2689. spin_lock(&vcpu->kvm->mmu_lock);
  2690. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2691. gentry = 0;
  2692. kvm_mmu_free_some_pages(vcpu);
  2693. ++vcpu->kvm->stat.mmu_pte_write;
  2694. trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
  2695. if (guest_initiated) {
  2696. kvm_mmu_access_page(vcpu, gfn);
  2697. if (gfn == vcpu->arch.last_pt_write_gfn
  2698. && !last_updated_pte_accessed(vcpu)) {
  2699. ++vcpu->arch.last_pt_write_count;
  2700. if (vcpu->arch.last_pt_write_count >= 3)
  2701. flooded = 1;
  2702. } else {
  2703. vcpu->arch.last_pt_write_gfn = gfn;
  2704. vcpu->arch.last_pt_write_count = 1;
  2705. vcpu->arch.last_pte_updated = NULL;
  2706. }
  2707. }
  2708. mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
  2709. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2710. pte_size = sp->role.cr4_pae ? 8 : 4;
  2711. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2712. misaligned |= bytes < 4;
  2713. if (misaligned || flooded) {
  2714. /*
  2715. * Misaligned accesses are too much trouble to fix
  2716. * up; also, they usually indicate a page is not used
  2717. * as a page table.
  2718. *
  2719. * If we're seeing too many writes to a page,
  2720. * it may no longer be a page table, or we may be
  2721. * forking, in which case it is better to unmap the
  2722. * page.
  2723. */
  2724. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2725. gpa, bytes, sp->role.word);
  2726. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2727. &invalid_list);
  2728. ++vcpu->kvm->stat.mmu_flooded;
  2729. continue;
  2730. }
  2731. page_offset = offset;
  2732. level = sp->role.level;
  2733. npte = 1;
  2734. if (!sp->role.cr4_pae) {
  2735. page_offset <<= 1; /* 32->64 */
  2736. /*
  2737. * A 32-bit pde maps 4MB while the shadow pdes map
  2738. * only 2MB. So we need to double the offset again
  2739. * and zap two pdes instead of one.
  2740. */
  2741. if (level == PT32_ROOT_LEVEL) {
  2742. page_offset &= ~7; /* kill rounding error */
  2743. page_offset <<= 1;
  2744. npte = 2;
  2745. }
  2746. quadrant = page_offset >> PAGE_SHIFT;
  2747. page_offset &= ~PAGE_MASK;
  2748. if (quadrant != sp->role.quadrant)
  2749. continue;
  2750. }
  2751. local_flush = true;
  2752. spte = &sp->spt[page_offset / sizeof(*spte)];
  2753. while (npte--) {
  2754. entry = *spte;
  2755. mmu_page_zap_pte(vcpu->kvm, sp, spte);
  2756. if (gentry &&
  2757. !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
  2758. & mask.word))
  2759. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2760. if (!remote_flush && need_remote_flush(entry, *spte))
  2761. remote_flush = true;
  2762. ++spte;
  2763. }
  2764. }
  2765. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2766. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2767. trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
  2768. spin_unlock(&vcpu->kvm->mmu_lock);
  2769. }
  2770. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2771. {
  2772. gpa_t gpa;
  2773. int r;
  2774. if (vcpu->arch.mmu.direct_map)
  2775. return 0;
  2776. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2777. spin_lock(&vcpu->kvm->mmu_lock);
  2778. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2779. spin_unlock(&vcpu->kvm->mmu_lock);
  2780. return r;
  2781. }
  2782. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2783. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2784. {
  2785. LIST_HEAD(invalid_list);
  2786. while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
  2787. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2788. struct kvm_mmu_page *sp;
  2789. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2790. struct kvm_mmu_page, link);
  2791. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  2792. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2793. ++vcpu->kvm->stat.mmu_recycled;
  2794. }
  2795. }
  2796. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
  2797. void *insn, int insn_len)
  2798. {
  2799. int r;
  2800. enum emulation_result er;
  2801. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
  2802. if (r < 0)
  2803. goto out;
  2804. if (!r) {
  2805. r = 1;
  2806. goto out;
  2807. }
  2808. r = mmu_topup_memory_caches(vcpu);
  2809. if (r)
  2810. goto out;
  2811. er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
  2812. switch (er) {
  2813. case EMULATE_DONE:
  2814. return 1;
  2815. case EMULATE_DO_MMIO:
  2816. ++vcpu->stat.mmio_exits;
  2817. /* fall through */
  2818. case EMULATE_FAIL:
  2819. return 0;
  2820. default:
  2821. BUG();
  2822. }
  2823. out:
  2824. return r;
  2825. }
  2826. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2827. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2828. {
  2829. vcpu->arch.mmu.invlpg(vcpu, gva);
  2830. kvm_mmu_flush_tlb(vcpu);
  2831. ++vcpu->stat.invlpg;
  2832. }
  2833. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2834. void kvm_enable_tdp(void)
  2835. {
  2836. tdp_enabled = true;
  2837. }
  2838. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2839. void kvm_disable_tdp(void)
  2840. {
  2841. tdp_enabled = false;
  2842. }
  2843. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2844. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2845. {
  2846. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2847. if (vcpu->arch.mmu.lm_root != NULL)
  2848. free_page((unsigned long)vcpu->arch.mmu.lm_root);
  2849. }
  2850. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2851. {
  2852. struct page *page;
  2853. int i;
  2854. ASSERT(vcpu);
  2855. /*
  2856. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2857. * Therefore we need to allocate shadow page tables in the first
  2858. * 4GB of memory, which happens to fit the DMA32 zone.
  2859. */
  2860. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2861. if (!page)
  2862. return -ENOMEM;
  2863. vcpu->arch.mmu.pae_root = page_address(page);
  2864. for (i = 0; i < 4; ++i)
  2865. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2866. return 0;
  2867. }
  2868. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2869. {
  2870. ASSERT(vcpu);
  2871. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2872. return alloc_mmu_pages(vcpu);
  2873. }
  2874. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2875. {
  2876. ASSERT(vcpu);
  2877. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2878. return init_kvm_mmu(vcpu);
  2879. }
  2880. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2881. {
  2882. struct kvm_mmu_page *sp;
  2883. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2884. int i;
  2885. u64 *pt;
  2886. if (!test_bit(slot, sp->slot_bitmap))
  2887. continue;
  2888. pt = sp->spt;
  2889. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2890. if (!is_shadow_present_pte(pt[i]) ||
  2891. !is_last_spte(pt[i], sp->role.level))
  2892. continue;
  2893. if (is_large_pte(pt[i])) {
  2894. drop_spte(kvm, &pt[i],
  2895. shadow_trap_nonpresent_pte);
  2896. --kvm->stat.lpages;
  2897. continue;
  2898. }
  2899. /* avoid RMW */
  2900. if (is_writable_pte(pt[i]))
  2901. update_spte(&pt[i], pt[i] & ~PT_WRITABLE_MASK);
  2902. }
  2903. }
  2904. kvm_flush_remote_tlbs(kvm);
  2905. }
  2906. void kvm_mmu_zap_all(struct kvm *kvm)
  2907. {
  2908. struct kvm_mmu_page *sp, *node;
  2909. LIST_HEAD(invalid_list);
  2910. spin_lock(&kvm->mmu_lock);
  2911. restart:
  2912. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2913. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2914. goto restart;
  2915. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2916. spin_unlock(&kvm->mmu_lock);
  2917. }
  2918. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2919. struct list_head *invalid_list)
  2920. {
  2921. struct kvm_mmu_page *page;
  2922. page = container_of(kvm->arch.active_mmu_pages.prev,
  2923. struct kvm_mmu_page, link);
  2924. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2925. }
  2926. static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
  2927. {
  2928. struct kvm *kvm;
  2929. struct kvm *kvm_freed = NULL;
  2930. int nr_to_scan = sc->nr_to_scan;
  2931. if (nr_to_scan == 0)
  2932. goto out;
  2933. raw_spin_lock(&kvm_lock);
  2934. list_for_each_entry(kvm, &vm_list, vm_list) {
  2935. int idx, freed_pages;
  2936. LIST_HEAD(invalid_list);
  2937. idx = srcu_read_lock(&kvm->srcu);
  2938. spin_lock(&kvm->mmu_lock);
  2939. if (!kvm_freed && nr_to_scan > 0 &&
  2940. kvm->arch.n_used_mmu_pages > 0) {
  2941. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2942. &invalid_list);
  2943. kvm_freed = kvm;
  2944. }
  2945. nr_to_scan--;
  2946. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2947. spin_unlock(&kvm->mmu_lock);
  2948. srcu_read_unlock(&kvm->srcu, idx);
  2949. }
  2950. if (kvm_freed)
  2951. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2952. raw_spin_unlock(&kvm_lock);
  2953. out:
  2954. return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
  2955. }
  2956. static struct shrinker mmu_shrinker = {
  2957. .shrink = mmu_shrink,
  2958. .seeks = DEFAULT_SEEKS * 10,
  2959. };
  2960. static void mmu_destroy_caches(void)
  2961. {
  2962. if (pte_list_desc_cache)
  2963. kmem_cache_destroy(pte_list_desc_cache);
  2964. if (mmu_page_header_cache)
  2965. kmem_cache_destroy(mmu_page_header_cache);
  2966. }
  2967. int kvm_mmu_module_init(void)
  2968. {
  2969. pte_list_desc_cache = kmem_cache_create("pte_list_desc",
  2970. sizeof(struct pte_list_desc),
  2971. 0, 0, NULL);
  2972. if (!pte_list_desc_cache)
  2973. goto nomem;
  2974. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2975. sizeof(struct kvm_mmu_page),
  2976. 0, 0, NULL);
  2977. if (!mmu_page_header_cache)
  2978. goto nomem;
  2979. if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
  2980. goto nomem;
  2981. register_shrinker(&mmu_shrinker);
  2982. return 0;
  2983. nomem:
  2984. mmu_destroy_caches();
  2985. return -ENOMEM;
  2986. }
  2987. /*
  2988. * Caculate mmu pages needed for kvm.
  2989. */
  2990. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2991. {
  2992. int i;
  2993. unsigned int nr_mmu_pages;
  2994. unsigned int nr_pages = 0;
  2995. struct kvm_memslots *slots;
  2996. slots = kvm_memslots(kvm);
  2997. for (i = 0; i < slots->nmemslots; i++)
  2998. nr_pages += slots->memslots[i].npages;
  2999. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  3000. nr_mmu_pages = max(nr_mmu_pages,
  3001. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  3002. return nr_mmu_pages;
  3003. }
  3004. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3005. unsigned len)
  3006. {
  3007. if (len > buffer->len)
  3008. return NULL;
  3009. return buffer->ptr;
  3010. }
  3011. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  3012. unsigned len)
  3013. {
  3014. void *ret;
  3015. ret = pv_mmu_peek_buffer(buffer, len);
  3016. if (!ret)
  3017. return ret;
  3018. buffer->ptr += len;
  3019. buffer->len -= len;
  3020. buffer->processed += len;
  3021. return ret;
  3022. }
  3023. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  3024. gpa_t addr, gpa_t value)
  3025. {
  3026. int bytes = 8;
  3027. int r;
  3028. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  3029. bytes = 4;
  3030. r = mmu_topup_memory_caches(vcpu);
  3031. if (r)
  3032. return r;
  3033. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  3034. return -EFAULT;
  3035. return 1;
  3036. }
  3037. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  3038. {
  3039. (void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
  3040. return 1;
  3041. }
  3042. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  3043. {
  3044. spin_lock(&vcpu->kvm->mmu_lock);
  3045. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  3046. spin_unlock(&vcpu->kvm->mmu_lock);
  3047. return 1;
  3048. }
  3049. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  3050. struct kvm_pv_mmu_op_buffer *buffer)
  3051. {
  3052. struct kvm_mmu_op_header *header;
  3053. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  3054. if (!header)
  3055. return 0;
  3056. switch (header->op) {
  3057. case KVM_MMU_OP_WRITE_PTE: {
  3058. struct kvm_mmu_op_write_pte *wpte;
  3059. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  3060. if (!wpte)
  3061. return 0;
  3062. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  3063. wpte->pte_val);
  3064. }
  3065. case KVM_MMU_OP_FLUSH_TLB: {
  3066. struct kvm_mmu_op_flush_tlb *ftlb;
  3067. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  3068. if (!ftlb)
  3069. return 0;
  3070. return kvm_pv_mmu_flush_tlb(vcpu);
  3071. }
  3072. case KVM_MMU_OP_RELEASE_PT: {
  3073. struct kvm_mmu_op_release_pt *rpt;
  3074. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  3075. if (!rpt)
  3076. return 0;
  3077. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  3078. }
  3079. default: return 0;
  3080. }
  3081. }
  3082. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  3083. gpa_t addr, unsigned long *ret)
  3084. {
  3085. int r;
  3086. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  3087. buffer->ptr = buffer->buf;
  3088. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  3089. buffer->processed = 0;
  3090. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  3091. if (r)
  3092. goto out;
  3093. while (buffer->len) {
  3094. r = kvm_pv_mmu_op_one(vcpu, buffer);
  3095. if (r < 0)
  3096. goto out;
  3097. if (r == 0)
  3098. break;
  3099. }
  3100. r = 1;
  3101. out:
  3102. *ret = buffer->processed;
  3103. return r;
  3104. }
  3105. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  3106. {
  3107. struct kvm_shadow_walk_iterator iterator;
  3108. int nr_sptes = 0;
  3109. spin_lock(&vcpu->kvm->mmu_lock);
  3110. for_each_shadow_entry(vcpu, addr, iterator) {
  3111. sptes[iterator.level-1] = *iterator.sptep;
  3112. nr_sptes++;
  3113. if (!is_shadow_present_pte(*iterator.sptep))
  3114. break;
  3115. }
  3116. spin_unlock(&vcpu->kvm->mmu_lock);
  3117. return nr_sptes;
  3118. }
  3119. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  3120. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  3121. {
  3122. ASSERT(vcpu);
  3123. destroy_kvm_mmu(vcpu);
  3124. free_mmu_pages(vcpu);
  3125. mmu_free_memory_caches(vcpu);
  3126. }
  3127. #ifdef CONFIG_KVM_MMU_AUDIT
  3128. #include "mmu_audit.c"
  3129. #else
  3130. static void mmu_audit_disable(void) { }
  3131. #endif
  3132. void kvm_mmu_module_exit(void)
  3133. {
  3134. mmu_destroy_caches();
  3135. percpu_counter_destroy(&kvm_total_used_mmu_pages);
  3136. unregister_shrinker(&mmu_shrinker);
  3137. mmu_audit_disable();
  3138. }