memcontrol.h 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933
  1. /* memcontrol.h - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. */
  19. #ifndef _LINUX_MEMCONTROL_H
  20. #define _LINUX_MEMCONTROL_H
  21. #include <linux/cgroup.h>
  22. #include <linux/vm_event_item.h>
  23. #include <linux/hardirq.h>
  24. #include <linux/jump_label.h>
  25. #include <linux/page_counter.h>
  26. #include <linux/vmpressure.h>
  27. #include <linux/eventfd.h>
  28. #include <linux/mmzone.h>
  29. #include <linux/writeback.h>
  30. struct mem_cgroup;
  31. struct page;
  32. struct mm_struct;
  33. struct kmem_cache;
  34. /*
  35. * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
  36. * These two lists should keep in accord with each other.
  37. */
  38. enum mem_cgroup_stat_index {
  39. /*
  40. * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
  41. */
  42. MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
  43. MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
  44. MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
  45. MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
  46. MEM_CGROUP_STAT_DIRTY, /* # of dirty pages in page cache */
  47. MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
  48. MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
  49. MEM_CGROUP_STAT_NSTATS,
  50. };
  51. struct mem_cgroup_reclaim_cookie {
  52. struct zone *zone;
  53. int priority;
  54. unsigned int generation;
  55. };
  56. enum mem_cgroup_events_index {
  57. MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
  58. MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
  59. MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
  60. MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
  61. MEM_CGROUP_EVENTS_NSTATS,
  62. /* default hierarchy events */
  63. MEMCG_LOW = MEM_CGROUP_EVENTS_NSTATS,
  64. MEMCG_HIGH,
  65. MEMCG_MAX,
  66. MEMCG_OOM,
  67. MEMCG_NR_EVENTS,
  68. };
  69. /*
  70. * Per memcg event counter is incremented at every pagein/pageout. With THP,
  71. * it will be incremated by the number of pages. This counter is used for
  72. * for trigger some periodic events. This is straightforward and better
  73. * than using jiffies etc. to handle periodic memcg event.
  74. */
  75. enum mem_cgroup_events_target {
  76. MEM_CGROUP_TARGET_THRESH,
  77. MEM_CGROUP_TARGET_SOFTLIMIT,
  78. MEM_CGROUP_TARGET_NUMAINFO,
  79. MEM_CGROUP_NTARGETS,
  80. };
  81. /*
  82. * Bits in struct cg_proto.flags
  83. */
  84. enum cg_proto_flags {
  85. /* Currently active and new sockets should be assigned to cgroups */
  86. MEMCG_SOCK_ACTIVE,
  87. /* It was ever activated; we must disarm static keys on destruction */
  88. MEMCG_SOCK_ACTIVATED,
  89. };
  90. struct cg_proto {
  91. struct page_counter memory_allocated; /* Current allocated memory. */
  92. struct percpu_counter sockets_allocated; /* Current number of sockets. */
  93. int memory_pressure;
  94. long sysctl_mem[3];
  95. unsigned long flags;
  96. /*
  97. * memcg field is used to find which memcg we belong directly
  98. * Each memcg struct can hold more than one cg_proto, so container_of
  99. * won't really cut.
  100. *
  101. * The elegant solution would be having an inverse function to
  102. * proto_cgroup in struct proto, but that means polluting the structure
  103. * for everybody, instead of just for memcg users.
  104. */
  105. struct mem_cgroup *memcg;
  106. };
  107. #ifdef CONFIG_MEMCG
  108. struct mem_cgroup_stat_cpu {
  109. long count[MEM_CGROUP_STAT_NSTATS];
  110. unsigned long events[MEMCG_NR_EVENTS];
  111. unsigned long nr_page_events;
  112. unsigned long targets[MEM_CGROUP_NTARGETS];
  113. };
  114. struct mem_cgroup_reclaim_iter {
  115. struct mem_cgroup *position;
  116. /* scan generation, increased every round-trip */
  117. unsigned int generation;
  118. };
  119. /*
  120. * per-zone information in memory controller.
  121. */
  122. struct mem_cgroup_per_zone {
  123. struct lruvec lruvec;
  124. unsigned long lru_size[NR_LRU_LISTS];
  125. struct mem_cgroup_reclaim_iter iter[DEF_PRIORITY + 1];
  126. struct rb_node tree_node; /* RB tree node */
  127. unsigned long usage_in_excess;/* Set to the value by which */
  128. /* the soft limit is exceeded*/
  129. bool on_tree;
  130. struct mem_cgroup *memcg; /* Back pointer, we cannot */
  131. /* use container_of */
  132. };
  133. struct mem_cgroup_per_node {
  134. struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
  135. };
  136. struct mem_cgroup_threshold {
  137. struct eventfd_ctx *eventfd;
  138. unsigned long threshold;
  139. };
  140. /* For threshold */
  141. struct mem_cgroup_threshold_ary {
  142. /* An array index points to threshold just below or equal to usage. */
  143. int current_threshold;
  144. /* Size of entries[] */
  145. unsigned int size;
  146. /* Array of thresholds */
  147. struct mem_cgroup_threshold entries[0];
  148. };
  149. struct mem_cgroup_thresholds {
  150. /* Primary thresholds array */
  151. struct mem_cgroup_threshold_ary *primary;
  152. /*
  153. * Spare threshold array.
  154. * This is needed to make mem_cgroup_unregister_event() "never fail".
  155. * It must be able to store at least primary->size - 1 entries.
  156. */
  157. struct mem_cgroup_threshold_ary *spare;
  158. };
  159. /*
  160. * The memory controller data structure. The memory controller controls both
  161. * page cache and RSS per cgroup. We would eventually like to provide
  162. * statistics based on the statistics developed by Rik Van Riel for clock-pro,
  163. * to help the administrator determine what knobs to tune.
  164. */
  165. struct mem_cgroup {
  166. struct cgroup_subsys_state css;
  167. /* Accounted resources */
  168. struct page_counter memory;
  169. struct page_counter memsw;
  170. struct page_counter kmem;
  171. /* Normal memory consumption range */
  172. unsigned long low;
  173. unsigned long high;
  174. unsigned long soft_limit;
  175. /* vmpressure notifications */
  176. struct vmpressure vmpressure;
  177. /* css_online() has been completed */
  178. int initialized;
  179. /*
  180. * Should the accounting and control be hierarchical, per subtree?
  181. */
  182. bool use_hierarchy;
  183. /* protected by memcg_oom_lock */
  184. bool oom_lock;
  185. int under_oom;
  186. int swappiness;
  187. /* OOM-Killer disable */
  188. int oom_kill_disable;
  189. /* protect arrays of thresholds */
  190. struct mutex thresholds_lock;
  191. /* thresholds for memory usage. RCU-protected */
  192. struct mem_cgroup_thresholds thresholds;
  193. /* thresholds for mem+swap usage. RCU-protected */
  194. struct mem_cgroup_thresholds memsw_thresholds;
  195. /* For oom notifier event fd */
  196. struct list_head oom_notify;
  197. /*
  198. * Should we move charges of a task when a task is moved into this
  199. * mem_cgroup ? And what type of charges should we move ?
  200. */
  201. unsigned long move_charge_at_immigrate;
  202. /*
  203. * set > 0 if pages under this cgroup are moving to other cgroup.
  204. */
  205. atomic_t moving_account;
  206. /* taken only while moving_account > 0 */
  207. spinlock_t move_lock;
  208. struct task_struct *move_lock_task;
  209. unsigned long move_lock_flags;
  210. /*
  211. * percpu counter.
  212. */
  213. struct mem_cgroup_stat_cpu __percpu *stat;
  214. #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
  215. struct cg_proto tcp_mem;
  216. #endif
  217. #if defined(CONFIG_MEMCG_KMEM)
  218. /* Index in the kmem_cache->memcg_params.memcg_caches array */
  219. int kmemcg_id;
  220. bool kmem_acct_activated;
  221. bool kmem_acct_active;
  222. #endif
  223. int last_scanned_node;
  224. #if MAX_NUMNODES > 1
  225. nodemask_t scan_nodes;
  226. atomic_t numainfo_events;
  227. atomic_t numainfo_updating;
  228. #endif
  229. #ifdef CONFIG_CGROUP_WRITEBACK
  230. struct list_head cgwb_list;
  231. struct wb_domain cgwb_domain;
  232. #endif
  233. /* List of events which userspace want to receive */
  234. struct list_head event_list;
  235. spinlock_t event_list_lock;
  236. struct mem_cgroup_per_node *nodeinfo[0];
  237. /* WARNING: nodeinfo must be the last member here */
  238. };
  239. extern struct cgroup_subsys_state *mem_cgroup_root_css;
  240. /**
  241. * mem_cgroup_events - count memory events against a cgroup
  242. * @memcg: the memory cgroup
  243. * @idx: the event index
  244. * @nr: the number of events to account for
  245. */
  246. static inline void mem_cgroup_events(struct mem_cgroup *memcg,
  247. enum mem_cgroup_events_index idx,
  248. unsigned int nr)
  249. {
  250. this_cpu_add(memcg->stat->events[idx], nr);
  251. }
  252. bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg);
  253. int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
  254. gfp_t gfp_mask, struct mem_cgroup **memcgp);
  255. void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
  256. bool lrucare);
  257. void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
  258. void mem_cgroup_uncharge(struct page *page);
  259. void mem_cgroup_uncharge_list(struct list_head *page_list);
  260. void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
  261. bool lrucare);
  262. struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
  263. struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
  264. bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg);
  265. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
  266. struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
  267. static inline
  268. struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
  269. return css ? container_of(css, struct mem_cgroup, css) : NULL;
  270. }
  271. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
  272. struct mem_cgroup *,
  273. struct mem_cgroup_reclaim_cookie *);
  274. void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
  275. static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
  276. struct mem_cgroup *root)
  277. {
  278. if (root == memcg)
  279. return true;
  280. if (!root->use_hierarchy)
  281. return false;
  282. return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
  283. }
  284. static inline bool mm_match_cgroup(struct mm_struct *mm,
  285. struct mem_cgroup *memcg)
  286. {
  287. struct mem_cgroup *task_memcg;
  288. bool match = false;
  289. rcu_read_lock();
  290. task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  291. if (task_memcg)
  292. match = mem_cgroup_is_descendant(task_memcg, memcg);
  293. rcu_read_unlock();
  294. return match;
  295. }
  296. struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
  297. ino_t page_cgroup_ino(struct page *page);
  298. static inline bool mem_cgroup_disabled(void)
  299. {
  300. if (memory_cgrp_subsys.disabled)
  301. return true;
  302. return false;
  303. }
  304. /*
  305. * For memory reclaim.
  306. */
  307. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
  308. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  309. int nr_pages);
  310. static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
  311. {
  312. struct mem_cgroup_per_zone *mz;
  313. struct mem_cgroup *memcg;
  314. if (mem_cgroup_disabled())
  315. return true;
  316. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  317. memcg = mz->memcg;
  318. return !!(memcg->css.flags & CSS_ONLINE);
  319. }
  320. static inline
  321. unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  322. {
  323. struct mem_cgroup_per_zone *mz;
  324. mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
  325. return mz->lru_size[lru];
  326. }
  327. static inline int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
  328. {
  329. unsigned long inactive_ratio;
  330. unsigned long inactive;
  331. unsigned long active;
  332. unsigned long gb;
  333. inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
  334. active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
  335. gb = (inactive + active) >> (30 - PAGE_SHIFT);
  336. if (gb)
  337. inactive_ratio = int_sqrt(10 * gb);
  338. else
  339. inactive_ratio = 1;
  340. return inactive * inactive_ratio < active;
  341. }
  342. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
  343. struct task_struct *p);
  344. static inline void mem_cgroup_oom_enable(void)
  345. {
  346. WARN_ON(current->memcg_oom.may_oom);
  347. current->memcg_oom.may_oom = 1;
  348. }
  349. static inline void mem_cgroup_oom_disable(void)
  350. {
  351. WARN_ON(!current->memcg_oom.may_oom);
  352. current->memcg_oom.may_oom = 0;
  353. }
  354. static inline bool task_in_memcg_oom(struct task_struct *p)
  355. {
  356. return p->memcg_oom.memcg;
  357. }
  358. bool mem_cgroup_oom_synchronize(bool wait);
  359. #ifdef CONFIG_MEMCG_SWAP
  360. extern int do_swap_account;
  361. #endif
  362. struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page);
  363. void mem_cgroup_end_page_stat(struct mem_cgroup *memcg);
  364. /**
  365. * mem_cgroup_update_page_stat - update page state statistics
  366. * @memcg: memcg to account against
  367. * @idx: page state item to account
  368. * @val: number of pages (positive or negative)
  369. *
  370. * See mem_cgroup_begin_page_stat() for locking requirements.
  371. */
  372. static inline void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
  373. enum mem_cgroup_stat_index idx, int val)
  374. {
  375. VM_BUG_ON(!rcu_read_lock_held());
  376. if (memcg)
  377. this_cpu_add(memcg->stat->count[idx], val);
  378. }
  379. static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
  380. enum mem_cgroup_stat_index idx)
  381. {
  382. mem_cgroup_update_page_stat(memcg, idx, 1);
  383. }
  384. static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
  385. enum mem_cgroup_stat_index idx)
  386. {
  387. mem_cgroup_update_page_stat(memcg, idx, -1);
  388. }
  389. unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
  390. gfp_t gfp_mask,
  391. unsigned long *total_scanned);
  392. static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
  393. enum vm_event_item idx)
  394. {
  395. struct mem_cgroup *memcg;
  396. if (mem_cgroup_disabled())
  397. return;
  398. rcu_read_lock();
  399. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  400. if (unlikely(!memcg))
  401. goto out;
  402. switch (idx) {
  403. case PGFAULT:
  404. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
  405. break;
  406. case PGMAJFAULT:
  407. this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
  408. break;
  409. default:
  410. BUG();
  411. }
  412. out:
  413. rcu_read_unlock();
  414. }
  415. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  416. void mem_cgroup_split_huge_fixup(struct page *head);
  417. #endif
  418. #else /* CONFIG_MEMCG */
  419. struct mem_cgroup;
  420. static inline void mem_cgroup_events(struct mem_cgroup *memcg,
  421. enum mem_cgroup_events_index idx,
  422. unsigned int nr)
  423. {
  424. }
  425. static inline bool mem_cgroup_low(struct mem_cgroup *root,
  426. struct mem_cgroup *memcg)
  427. {
  428. return false;
  429. }
  430. static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
  431. gfp_t gfp_mask,
  432. struct mem_cgroup **memcgp)
  433. {
  434. *memcgp = NULL;
  435. return 0;
  436. }
  437. static inline void mem_cgroup_commit_charge(struct page *page,
  438. struct mem_cgroup *memcg,
  439. bool lrucare)
  440. {
  441. }
  442. static inline void mem_cgroup_cancel_charge(struct page *page,
  443. struct mem_cgroup *memcg)
  444. {
  445. }
  446. static inline void mem_cgroup_uncharge(struct page *page)
  447. {
  448. }
  449. static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
  450. {
  451. }
  452. static inline void mem_cgroup_migrate(struct page *oldpage,
  453. struct page *newpage,
  454. bool lrucare)
  455. {
  456. }
  457. static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
  458. struct mem_cgroup *memcg)
  459. {
  460. return &zone->lruvec;
  461. }
  462. static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
  463. struct zone *zone)
  464. {
  465. return &zone->lruvec;
  466. }
  467. static inline bool mm_match_cgroup(struct mm_struct *mm,
  468. struct mem_cgroup *memcg)
  469. {
  470. return true;
  471. }
  472. static inline bool task_in_mem_cgroup(struct task_struct *task,
  473. const struct mem_cgroup *memcg)
  474. {
  475. return true;
  476. }
  477. static inline struct mem_cgroup *
  478. mem_cgroup_iter(struct mem_cgroup *root,
  479. struct mem_cgroup *prev,
  480. struct mem_cgroup_reclaim_cookie *reclaim)
  481. {
  482. return NULL;
  483. }
  484. static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
  485. struct mem_cgroup *prev)
  486. {
  487. }
  488. static inline bool mem_cgroup_disabled(void)
  489. {
  490. return true;
  491. }
  492. static inline int
  493. mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
  494. {
  495. return 1;
  496. }
  497. static inline bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
  498. {
  499. return true;
  500. }
  501. static inline unsigned long
  502. mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
  503. {
  504. return 0;
  505. }
  506. static inline void
  507. mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  508. int increment)
  509. {
  510. }
  511. static inline void
  512. mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  513. {
  514. }
  515. static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
  516. {
  517. return NULL;
  518. }
  519. static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
  520. {
  521. }
  522. static inline void mem_cgroup_oom_enable(void)
  523. {
  524. }
  525. static inline void mem_cgroup_oom_disable(void)
  526. {
  527. }
  528. static inline bool task_in_memcg_oom(struct task_struct *p)
  529. {
  530. return false;
  531. }
  532. static inline bool mem_cgroup_oom_synchronize(bool wait)
  533. {
  534. return false;
  535. }
  536. static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
  537. enum mem_cgroup_stat_index idx)
  538. {
  539. }
  540. static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
  541. enum mem_cgroup_stat_index idx)
  542. {
  543. }
  544. static inline
  545. unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
  546. gfp_t gfp_mask,
  547. unsigned long *total_scanned)
  548. {
  549. return 0;
  550. }
  551. static inline void mem_cgroup_split_huge_fixup(struct page *head)
  552. {
  553. }
  554. static inline
  555. void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
  556. {
  557. }
  558. #endif /* CONFIG_MEMCG */
  559. enum {
  560. UNDER_LIMIT,
  561. SOFT_LIMIT,
  562. OVER_LIMIT,
  563. };
  564. #ifdef CONFIG_CGROUP_WRITEBACK
  565. struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg);
  566. struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
  567. void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pavail,
  568. unsigned long *pdirty, unsigned long *pwriteback);
  569. #else /* CONFIG_CGROUP_WRITEBACK */
  570. static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
  571. {
  572. return NULL;
  573. }
  574. static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
  575. unsigned long *pavail,
  576. unsigned long *pdirty,
  577. unsigned long *pwriteback)
  578. {
  579. }
  580. #endif /* CONFIG_CGROUP_WRITEBACK */
  581. struct sock;
  582. #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
  583. void sock_update_memcg(struct sock *sk);
  584. void sock_release_memcg(struct sock *sk);
  585. #else
  586. static inline void sock_update_memcg(struct sock *sk)
  587. {
  588. }
  589. static inline void sock_release_memcg(struct sock *sk)
  590. {
  591. }
  592. #endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
  593. #ifdef CONFIG_MEMCG_KMEM
  594. extern struct static_key memcg_kmem_enabled_key;
  595. extern int memcg_nr_cache_ids;
  596. void memcg_get_cache_ids(void);
  597. void memcg_put_cache_ids(void);
  598. /*
  599. * Helper macro to loop through all memcg-specific caches. Callers must still
  600. * check if the cache is valid (it is either valid or NULL).
  601. * the slab_mutex must be held when looping through those caches
  602. */
  603. #define for_each_memcg_cache_index(_idx) \
  604. for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
  605. static inline bool memcg_kmem_enabled(void)
  606. {
  607. return static_key_false(&memcg_kmem_enabled_key);
  608. }
  609. static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
  610. {
  611. return memcg->kmem_acct_active;
  612. }
  613. /*
  614. * In general, we'll do everything in our power to not incur in any overhead
  615. * for non-memcg users for the kmem functions. Not even a function call, if we
  616. * can avoid it.
  617. *
  618. * Therefore, we'll inline all those functions so that in the best case, we'll
  619. * see that kmemcg is off for everybody and proceed quickly. If it is on,
  620. * we'll still do most of the flag checking inline. We check a lot of
  621. * conditions, but because they are pretty simple, they are expected to be
  622. * fast.
  623. */
  624. bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
  625. int order);
  626. void __memcg_kmem_commit_charge(struct page *page,
  627. struct mem_cgroup *memcg, int order);
  628. void __memcg_kmem_uncharge_pages(struct page *page, int order);
  629. /*
  630. * helper for acessing a memcg's index. It will be used as an index in the
  631. * child cache array in kmem_cache, and also to derive its name. This function
  632. * will return -1 when this is not a kmem-limited memcg.
  633. */
  634. static inline int memcg_cache_id(struct mem_cgroup *memcg)
  635. {
  636. return memcg ? memcg->kmemcg_id : -1;
  637. }
  638. struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep);
  639. void __memcg_kmem_put_cache(struct kmem_cache *cachep);
  640. struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr);
  641. int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
  642. unsigned long nr_pages);
  643. void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages);
  644. /**
  645. * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
  646. * @gfp: the gfp allocation flags.
  647. * @memcg: a pointer to the memcg this was charged against.
  648. * @order: allocation order.
  649. *
  650. * returns true if the memcg where the current task belongs can hold this
  651. * allocation.
  652. *
  653. * We return true automatically if this allocation is not to be accounted to
  654. * any memcg.
  655. */
  656. static inline bool
  657. memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
  658. {
  659. if (!memcg_kmem_enabled())
  660. return true;
  661. if (gfp & __GFP_NOACCOUNT)
  662. return true;
  663. /*
  664. * __GFP_NOFAIL allocations will move on even if charging is not
  665. * possible. Therefore we don't even try, and have this allocation
  666. * unaccounted. We could in theory charge it forcibly, but we hope
  667. * those allocations are rare, and won't be worth the trouble.
  668. */
  669. if (gfp & __GFP_NOFAIL)
  670. return true;
  671. if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
  672. return true;
  673. /* If the test is dying, just let it go. */
  674. if (unlikely(fatal_signal_pending(current)))
  675. return true;
  676. return __memcg_kmem_newpage_charge(gfp, memcg, order);
  677. }
  678. /**
  679. * memcg_kmem_uncharge_pages: uncharge pages from memcg
  680. * @page: pointer to struct page being freed
  681. * @order: allocation order.
  682. */
  683. static inline void
  684. memcg_kmem_uncharge_pages(struct page *page, int order)
  685. {
  686. if (memcg_kmem_enabled())
  687. __memcg_kmem_uncharge_pages(page, order);
  688. }
  689. /**
  690. * memcg_kmem_commit_charge: embeds correct memcg in a page
  691. * @page: pointer to struct page recently allocated
  692. * @memcg: the memcg structure we charged against
  693. * @order: allocation order.
  694. *
  695. * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
  696. * failure of the allocation. if @page is NULL, this function will revert the
  697. * charges. Otherwise, it will commit @page to @memcg.
  698. */
  699. static inline void
  700. memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
  701. {
  702. if (memcg_kmem_enabled() && memcg)
  703. __memcg_kmem_commit_charge(page, memcg, order);
  704. }
  705. /**
  706. * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
  707. * @cachep: the original global kmem cache
  708. * @gfp: allocation flags.
  709. *
  710. * All memory allocated from a per-memcg cache is charged to the owner memcg.
  711. */
  712. static __always_inline struct kmem_cache *
  713. memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
  714. {
  715. if (!memcg_kmem_enabled())
  716. return cachep;
  717. if (gfp & __GFP_NOACCOUNT)
  718. return cachep;
  719. if (gfp & __GFP_NOFAIL)
  720. return cachep;
  721. if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
  722. return cachep;
  723. if (unlikely(fatal_signal_pending(current)))
  724. return cachep;
  725. return __memcg_kmem_get_cache(cachep);
  726. }
  727. static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
  728. {
  729. if (memcg_kmem_enabled())
  730. __memcg_kmem_put_cache(cachep);
  731. }
  732. static __always_inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
  733. {
  734. if (!memcg_kmem_enabled())
  735. return NULL;
  736. return __mem_cgroup_from_kmem(ptr);
  737. }
  738. #else
  739. #define for_each_memcg_cache_index(_idx) \
  740. for (; NULL; )
  741. static inline bool memcg_kmem_enabled(void)
  742. {
  743. return false;
  744. }
  745. static inline bool memcg_kmem_is_active(struct mem_cgroup *memcg)
  746. {
  747. return false;
  748. }
  749. static inline bool
  750. memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
  751. {
  752. return true;
  753. }
  754. static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
  755. {
  756. }
  757. static inline void
  758. memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
  759. {
  760. }
  761. static inline int memcg_cache_id(struct mem_cgroup *memcg)
  762. {
  763. return -1;
  764. }
  765. static inline void memcg_get_cache_ids(void)
  766. {
  767. }
  768. static inline void memcg_put_cache_ids(void)
  769. {
  770. }
  771. static inline struct kmem_cache *
  772. memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
  773. {
  774. return cachep;
  775. }
  776. static inline void memcg_kmem_put_cache(struct kmem_cache *cachep)
  777. {
  778. }
  779. static inline struct mem_cgroup *mem_cgroup_from_kmem(void *ptr)
  780. {
  781. return NULL;
  782. }
  783. #endif /* CONFIG_MEMCG_KMEM */
  784. #endif /* _LINUX_MEMCONTROL_H */