mtdpart.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. #include "mtdcore.h"
  33. /* Our partition linked list */
  34. static LIST_HEAD(mtd_partitions);
  35. static DEFINE_MUTEX(mtd_partitions_mutex);
  36. /**
  37. * struct mtd_part - our partition node structure
  38. *
  39. * @mtd: struct holding partition details
  40. * @parent: parent mtd - flash device or another partition
  41. * @offset: partition offset relative to the *flash device*
  42. */
  43. struct mtd_part {
  44. struct mtd_info mtd;
  45. struct mtd_info *parent;
  46. uint64_t offset;
  47. struct list_head list;
  48. };
  49. /*
  50. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  51. * the pointer to that structure.
  52. */
  53. static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
  54. {
  55. return container_of(mtd, struct mtd_part, mtd);
  56. }
  57. /*
  58. * MTD methods which simply translate the effective address and pass through
  59. * to the _real_ device.
  60. */
  61. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  62. size_t *retlen, u_char *buf)
  63. {
  64. struct mtd_part *part = mtd_to_part(mtd);
  65. struct mtd_ecc_stats stats;
  66. int res;
  67. stats = part->parent->ecc_stats;
  68. res = part->parent->_read(part->parent, from + part->offset, len,
  69. retlen, buf);
  70. if (unlikely(mtd_is_eccerr(res)))
  71. mtd->ecc_stats.failed +=
  72. part->parent->ecc_stats.failed - stats.failed;
  73. else
  74. mtd->ecc_stats.corrected +=
  75. part->parent->ecc_stats.corrected - stats.corrected;
  76. return res;
  77. }
  78. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  79. size_t *retlen, void **virt, resource_size_t *phys)
  80. {
  81. struct mtd_part *part = mtd_to_part(mtd);
  82. return part->parent->_point(part->parent, from + part->offset, len,
  83. retlen, virt, phys);
  84. }
  85. static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  86. {
  87. struct mtd_part *part = mtd_to_part(mtd);
  88. return part->parent->_unpoint(part->parent, from + part->offset, len);
  89. }
  90. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  91. unsigned long len,
  92. unsigned long offset,
  93. unsigned long flags)
  94. {
  95. struct mtd_part *part = mtd_to_part(mtd);
  96. offset += part->offset;
  97. return part->parent->_get_unmapped_area(part->parent, len, offset,
  98. flags);
  99. }
  100. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  101. struct mtd_oob_ops *ops)
  102. {
  103. struct mtd_part *part = mtd_to_part(mtd);
  104. int res;
  105. if (from >= mtd->size)
  106. return -EINVAL;
  107. if (ops->datbuf && from + ops->len > mtd->size)
  108. return -EINVAL;
  109. /*
  110. * If OOB is also requested, make sure that we do not read past the end
  111. * of this partition.
  112. */
  113. if (ops->oobbuf) {
  114. size_t len, pages;
  115. len = mtd_oobavail(mtd, ops);
  116. pages = mtd_div_by_ws(mtd->size, mtd);
  117. pages -= mtd_div_by_ws(from, mtd);
  118. if (ops->ooboffs + ops->ooblen > pages * len)
  119. return -EINVAL;
  120. }
  121. res = part->parent->_read_oob(part->parent, from + part->offset, ops);
  122. if (unlikely(res)) {
  123. if (mtd_is_bitflip(res))
  124. mtd->ecc_stats.corrected++;
  125. if (mtd_is_eccerr(res))
  126. mtd->ecc_stats.failed++;
  127. }
  128. return res;
  129. }
  130. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  131. size_t len, size_t *retlen, u_char *buf)
  132. {
  133. struct mtd_part *part = mtd_to_part(mtd);
  134. return part->parent->_read_user_prot_reg(part->parent, from, len,
  135. retlen, buf);
  136. }
  137. static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
  138. size_t *retlen, struct otp_info *buf)
  139. {
  140. struct mtd_part *part = mtd_to_part(mtd);
  141. return part->parent->_get_user_prot_info(part->parent, len, retlen,
  142. buf);
  143. }
  144. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  145. size_t len, size_t *retlen, u_char *buf)
  146. {
  147. struct mtd_part *part = mtd_to_part(mtd);
  148. return part->parent->_read_fact_prot_reg(part->parent, from, len,
  149. retlen, buf);
  150. }
  151. static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
  152. size_t *retlen, struct otp_info *buf)
  153. {
  154. struct mtd_part *part = mtd_to_part(mtd);
  155. return part->parent->_get_fact_prot_info(part->parent, len, retlen,
  156. buf);
  157. }
  158. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  159. size_t *retlen, const u_char *buf)
  160. {
  161. struct mtd_part *part = mtd_to_part(mtd);
  162. return part->parent->_write(part->parent, to + part->offset, len,
  163. retlen, buf);
  164. }
  165. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  166. size_t *retlen, const u_char *buf)
  167. {
  168. struct mtd_part *part = mtd_to_part(mtd);
  169. return part->parent->_panic_write(part->parent, to + part->offset, len,
  170. retlen, buf);
  171. }
  172. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  173. struct mtd_oob_ops *ops)
  174. {
  175. struct mtd_part *part = mtd_to_part(mtd);
  176. if (to >= mtd->size)
  177. return -EINVAL;
  178. if (ops->datbuf && to + ops->len > mtd->size)
  179. return -EINVAL;
  180. return part->parent->_write_oob(part->parent, to + part->offset, ops);
  181. }
  182. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  183. size_t len, size_t *retlen, u_char *buf)
  184. {
  185. struct mtd_part *part = mtd_to_part(mtd);
  186. return part->parent->_write_user_prot_reg(part->parent, from, len,
  187. retlen, buf);
  188. }
  189. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  190. size_t len)
  191. {
  192. struct mtd_part *part = mtd_to_part(mtd);
  193. return part->parent->_lock_user_prot_reg(part->parent, from, len);
  194. }
  195. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  196. unsigned long count, loff_t to, size_t *retlen)
  197. {
  198. struct mtd_part *part = mtd_to_part(mtd);
  199. return part->parent->_writev(part->parent, vecs, count,
  200. to + part->offset, retlen);
  201. }
  202. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  203. {
  204. struct mtd_part *part = mtd_to_part(mtd);
  205. int ret;
  206. instr->addr += part->offset;
  207. ret = part->parent->_erase(part->parent, instr);
  208. if (ret) {
  209. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  210. instr->fail_addr -= part->offset;
  211. instr->addr -= part->offset;
  212. }
  213. return ret;
  214. }
  215. void mtd_erase_callback(struct erase_info *instr)
  216. {
  217. if (instr->mtd->_erase == part_erase) {
  218. struct mtd_part *part = mtd_to_part(instr->mtd);
  219. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  220. instr->fail_addr -= part->offset;
  221. instr->addr -= part->offset;
  222. }
  223. if (instr->callback)
  224. instr->callback(instr);
  225. }
  226. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  227. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  228. {
  229. struct mtd_part *part = mtd_to_part(mtd);
  230. return part->parent->_lock(part->parent, ofs + part->offset, len);
  231. }
  232. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  233. {
  234. struct mtd_part *part = mtd_to_part(mtd);
  235. return part->parent->_unlock(part->parent, ofs + part->offset, len);
  236. }
  237. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  238. {
  239. struct mtd_part *part = mtd_to_part(mtd);
  240. return part->parent->_is_locked(part->parent, ofs + part->offset, len);
  241. }
  242. static void part_sync(struct mtd_info *mtd)
  243. {
  244. struct mtd_part *part = mtd_to_part(mtd);
  245. part->parent->_sync(part->parent);
  246. }
  247. static int part_suspend(struct mtd_info *mtd)
  248. {
  249. struct mtd_part *part = mtd_to_part(mtd);
  250. return part->parent->_suspend(part->parent);
  251. }
  252. static void part_resume(struct mtd_info *mtd)
  253. {
  254. struct mtd_part *part = mtd_to_part(mtd);
  255. part->parent->_resume(part->parent);
  256. }
  257. static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
  258. {
  259. struct mtd_part *part = mtd_to_part(mtd);
  260. ofs += part->offset;
  261. return part->parent->_block_isreserved(part->parent, ofs);
  262. }
  263. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  264. {
  265. struct mtd_part *part = mtd_to_part(mtd);
  266. ofs += part->offset;
  267. return part->parent->_block_isbad(part->parent, ofs);
  268. }
  269. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  270. {
  271. struct mtd_part *part = mtd_to_part(mtd);
  272. int res;
  273. ofs += part->offset;
  274. res = part->parent->_block_markbad(part->parent, ofs);
  275. if (!res)
  276. mtd->ecc_stats.badblocks++;
  277. return res;
  278. }
  279. static int part_get_device(struct mtd_info *mtd)
  280. {
  281. struct mtd_part *part = mtd_to_part(mtd);
  282. return part->parent->_get_device(part->parent);
  283. }
  284. static void part_put_device(struct mtd_info *mtd)
  285. {
  286. struct mtd_part *part = mtd_to_part(mtd);
  287. part->parent->_put_device(part->parent);
  288. }
  289. static int part_ooblayout_ecc(struct mtd_info *mtd, int section,
  290. struct mtd_oob_region *oobregion)
  291. {
  292. struct mtd_part *part = mtd_to_part(mtd);
  293. return mtd_ooblayout_ecc(part->parent, section, oobregion);
  294. }
  295. static int part_ooblayout_free(struct mtd_info *mtd, int section,
  296. struct mtd_oob_region *oobregion)
  297. {
  298. struct mtd_part *part = mtd_to_part(mtd);
  299. return mtd_ooblayout_free(part->parent, section, oobregion);
  300. }
  301. static const struct mtd_ooblayout_ops part_ooblayout_ops = {
  302. .ecc = part_ooblayout_ecc,
  303. .free = part_ooblayout_free,
  304. };
  305. static int part_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len)
  306. {
  307. struct mtd_part *part = mtd_to_part(mtd);
  308. return part->parent->_max_bad_blocks(part->parent,
  309. ofs + part->offset, len);
  310. }
  311. static inline void free_partition(struct mtd_part *p)
  312. {
  313. kfree(p->mtd.name);
  314. kfree(p);
  315. }
  316. /**
  317. * mtd_parse_part - parse MTD partition looking for subpartitions
  318. *
  319. * @slave: part that is supposed to be a container and should be parsed
  320. * @types: NULL-terminated array with names of partition parsers to try
  321. *
  322. * Some partitions are kind of containers with extra subpartitions (volumes).
  323. * There can be various formats of such containers. This function tries to use
  324. * specified parsers to analyze given partition and registers found
  325. * subpartitions on success.
  326. */
  327. static int mtd_parse_part(struct mtd_part *slave, const char *const *types)
  328. {
  329. struct mtd_partitions parsed;
  330. int err;
  331. err = parse_mtd_partitions(&slave->mtd, types, &parsed, NULL);
  332. if (err)
  333. return err;
  334. else if (!parsed.nr_parts)
  335. return -ENOENT;
  336. err = add_mtd_partitions(&slave->mtd, parsed.parts, parsed.nr_parts);
  337. mtd_part_parser_cleanup(&parsed);
  338. return err;
  339. }
  340. static struct mtd_part *allocate_partition(struct mtd_info *parent,
  341. const struct mtd_partition *part, int partno,
  342. uint64_t cur_offset)
  343. {
  344. int wr_alignment = (parent->flags & MTD_NO_ERASE) ? parent->writesize :
  345. parent->erasesize;
  346. struct mtd_part *slave;
  347. u32 remainder;
  348. char *name;
  349. u64 tmp;
  350. /* allocate the partition structure */
  351. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  352. name = kstrdup(part->name, GFP_KERNEL);
  353. if (!name || !slave) {
  354. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  355. parent->name);
  356. kfree(name);
  357. kfree(slave);
  358. return ERR_PTR(-ENOMEM);
  359. }
  360. /* set up the MTD object for this partition */
  361. slave->mtd.type = parent->type;
  362. slave->mtd.flags = parent->flags & ~part->mask_flags;
  363. slave->mtd.size = part->size;
  364. slave->mtd.writesize = parent->writesize;
  365. slave->mtd.writebufsize = parent->writebufsize;
  366. slave->mtd.oobsize = parent->oobsize;
  367. slave->mtd.oobavail = parent->oobavail;
  368. slave->mtd.subpage_sft = parent->subpage_sft;
  369. slave->mtd.pairing = parent->pairing;
  370. slave->mtd.name = name;
  371. slave->mtd.owner = parent->owner;
  372. /* NOTE: Historically, we didn't arrange MTDs as a tree out of
  373. * concern for showing the same data in multiple partitions.
  374. * However, it is very useful to have the master node present,
  375. * so the MTD_PARTITIONED_MASTER option allows that. The master
  376. * will have device nodes etc only if this is set, so make the
  377. * parent conditional on that option. Note, this is a way to
  378. * distinguish between the master and the partition in sysfs.
  379. */
  380. slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
  381. &parent->dev :
  382. parent->dev.parent;
  383. slave->mtd.dev.of_node = part->of_node;
  384. slave->mtd._read = part_read;
  385. slave->mtd._write = part_write;
  386. if (parent->_panic_write)
  387. slave->mtd._panic_write = part_panic_write;
  388. if (parent->_point && parent->_unpoint) {
  389. slave->mtd._point = part_point;
  390. slave->mtd._unpoint = part_unpoint;
  391. }
  392. if (parent->_get_unmapped_area)
  393. slave->mtd._get_unmapped_area = part_get_unmapped_area;
  394. if (parent->_read_oob)
  395. slave->mtd._read_oob = part_read_oob;
  396. if (parent->_write_oob)
  397. slave->mtd._write_oob = part_write_oob;
  398. if (parent->_read_user_prot_reg)
  399. slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
  400. if (parent->_read_fact_prot_reg)
  401. slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
  402. if (parent->_write_user_prot_reg)
  403. slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
  404. if (parent->_lock_user_prot_reg)
  405. slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
  406. if (parent->_get_user_prot_info)
  407. slave->mtd._get_user_prot_info = part_get_user_prot_info;
  408. if (parent->_get_fact_prot_info)
  409. slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
  410. if (parent->_sync)
  411. slave->mtd._sync = part_sync;
  412. if (!partno && !parent->dev.class && parent->_suspend &&
  413. parent->_resume) {
  414. slave->mtd._suspend = part_suspend;
  415. slave->mtd._resume = part_resume;
  416. }
  417. if (parent->_writev)
  418. slave->mtd._writev = part_writev;
  419. if (parent->_lock)
  420. slave->mtd._lock = part_lock;
  421. if (parent->_unlock)
  422. slave->mtd._unlock = part_unlock;
  423. if (parent->_is_locked)
  424. slave->mtd._is_locked = part_is_locked;
  425. if (parent->_block_isreserved)
  426. slave->mtd._block_isreserved = part_block_isreserved;
  427. if (parent->_block_isbad)
  428. slave->mtd._block_isbad = part_block_isbad;
  429. if (parent->_block_markbad)
  430. slave->mtd._block_markbad = part_block_markbad;
  431. if (parent->_max_bad_blocks)
  432. slave->mtd._max_bad_blocks = part_max_bad_blocks;
  433. if (parent->_get_device)
  434. slave->mtd._get_device = part_get_device;
  435. if (parent->_put_device)
  436. slave->mtd._put_device = part_put_device;
  437. slave->mtd._erase = part_erase;
  438. slave->parent = parent;
  439. slave->offset = part->offset;
  440. if (slave->offset == MTDPART_OFS_APPEND)
  441. slave->offset = cur_offset;
  442. if (slave->offset == MTDPART_OFS_NXTBLK) {
  443. tmp = cur_offset;
  444. slave->offset = cur_offset;
  445. remainder = do_div(tmp, wr_alignment);
  446. if (remainder) {
  447. slave->offset += wr_alignment - remainder;
  448. printk(KERN_NOTICE "Moving partition %d: "
  449. "0x%012llx -> 0x%012llx\n", partno,
  450. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  451. }
  452. }
  453. if (slave->offset == MTDPART_OFS_RETAIN) {
  454. slave->offset = cur_offset;
  455. if (parent->size - slave->offset >= slave->mtd.size) {
  456. slave->mtd.size = parent->size - slave->offset
  457. - slave->mtd.size;
  458. } else {
  459. printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
  460. part->name, parent->size - slave->offset,
  461. slave->mtd.size);
  462. /* register to preserve ordering */
  463. goto out_register;
  464. }
  465. }
  466. if (slave->mtd.size == MTDPART_SIZ_FULL)
  467. slave->mtd.size = parent->size - slave->offset;
  468. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  469. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  470. /* let's do some sanity checks */
  471. if (slave->offset >= parent->size) {
  472. /* let's register it anyway to preserve ordering */
  473. slave->offset = 0;
  474. slave->mtd.size = 0;
  475. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  476. part->name);
  477. goto out_register;
  478. }
  479. if (slave->offset + slave->mtd.size > parent->size) {
  480. slave->mtd.size = parent->size - slave->offset;
  481. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  482. part->name, parent->name, (unsigned long long)slave->mtd.size);
  483. }
  484. if (parent->numeraseregions > 1) {
  485. /* Deal with variable erase size stuff */
  486. int i, max = parent->numeraseregions;
  487. u64 end = slave->offset + slave->mtd.size;
  488. struct mtd_erase_region_info *regions = parent->eraseregions;
  489. /* Find the first erase regions which is part of this
  490. * partition. */
  491. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  492. ;
  493. /* The loop searched for the region _behind_ the first one */
  494. if (i > 0)
  495. i--;
  496. /* Pick biggest erasesize */
  497. for (; i < max && regions[i].offset < end; i++) {
  498. if (slave->mtd.erasesize < regions[i].erasesize) {
  499. slave->mtd.erasesize = regions[i].erasesize;
  500. }
  501. }
  502. BUG_ON(slave->mtd.erasesize == 0);
  503. } else {
  504. /* Single erase size */
  505. slave->mtd.erasesize = parent->erasesize;
  506. }
  507. tmp = slave->offset;
  508. remainder = do_div(tmp, wr_alignment);
  509. if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
  510. /* Doesn't start on a boundary of major erase size */
  511. /* FIXME: Let it be writable if it is on a boundary of
  512. * _minor_ erase size though */
  513. slave->mtd.flags &= ~MTD_WRITEABLE;
  514. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
  515. part->name);
  516. }
  517. tmp = slave->mtd.size;
  518. remainder = do_div(tmp, wr_alignment);
  519. if ((slave->mtd.flags & MTD_WRITEABLE) && remainder) {
  520. slave->mtd.flags &= ~MTD_WRITEABLE;
  521. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
  522. part->name);
  523. }
  524. mtd_set_ooblayout(&slave->mtd, &part_ooblayout_ops);
  525. slave->mtd.ecc_step_size = parent->ecc_step_size;
  526. slave->mtd.ecc_strength = parent->ecc_strength;
  527. slave->mtd.bitflip_threshold = parent->bitflip_threshold;
  528. if (parent->_block_isbad) {
  529. uint64_t offs = 0;
  530. while (offs < slave->mtd.size) {
  531. if (mtd_block_isreserved(parent, offs + slave->offset))
  532. slave->mtd.ecc_stats.bbtblocks++;
  533. else if (mtd_block_isbad(parent, offs + slave->offset))
  534. slave->mtd.ecc_stats.badblocks++;
  535. offs += slave->mtd.erasesize;
  536. }
  537. }
  538. out_register:
  539. return slave;
  540. }
  541. static ssize_t mtd_partition_offset_show(struct device *dev,
  542. struct device_attribute *attr, char *buf)
  543. {
  544. struct mtd_info *mtd = dev_get_drvdata(dev);
  545. struct mtd_part *part = mtd_to_part(mtd);
  546. return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
  547. }
  548. static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
  549. static const struct attribute *mtd_partition_attrs[] = {
  550. &dev_attr_offset.attr,
  551. NULL
  552. };
  553. static int mtd_add_partition_attrs(struct mtd_part *new)
  554. {
  555. int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
  556. if (ret)
  557. printk(KERN_WARNING
  558. "mtd: failed to create partition attrs, err=%d\n", ret);
  559. return ret;
  560. }
  561. int mtd_add_partition(struct mtd_info *parent, const char *name,
  562. long long offset, long long length)
  563. {
  564. struct mtd_partition part;
  565. struct mtd_part *new;
  566. int ret = 0;
  567. /* the direct offset is expected */
  568. if (offset == MTDPART_OFS_APPEND ||
  569. offset == MTDPART_OFS_NXTBLK)
  570. return -EINVAL;
  571. if (length == MTDPART_SIZ_FULL)
  572. length = parent->size - offset;
  573. if (length <= 0)
  574. return -EINVAL;
  575. memset(&part, 0, sizeof(part));
  576. part.name = name;
  577. part.size = length;
  578. part.offset = offset;
  579. new = allocate_partition(parent, &part, -1, offset);
  580. if (IS_ERR(new))
  581. return PTR_ERR(new);
  582. mutex_lock(&mtd_partitions_mutex);
  583. list_add(&new->list, &mtd_partitions);
  584. mutex_unlock(&mtd_partitions_mutex);
  585. add_mtd_device(&new->mtd);
  586. mtd_add_partition_attrs(new);
  587. return ret;
  588. }
  589. EXPORT_SYMBOL_GPL(mtd_add_partition);
  590. /**
  591. * __mtd_del_partition - delete MTD partition
  592. *
  593. * @priv: internal MTD struct for partition to be deleted
  594. *
  595. * This function must be called with the partitions mutex locked.
  596. */
  597. static int __mtd_del_partition(struct mtd_part *priv)
  598. {
  599. struct mtd_part *child, *next;
  600. int err;
  601. list_for_each_entry_safe(child, next, &mtd_partitions, list) {
  602. if (child->parent == &priv->mtd) {
  603. err = __mtd_del_partition(child);
  604. if (err)
  605. return err;
  606. }
  607. }
  608. sysfs_remove_files(&priv->mtd.dev.kobj, mtd_partition_attrs);
  609. err = del_mtd_device(&priv->mtd);
  610. if (err)
  611. return err;
  612. list_del(&priv->list);
  613. free_partition(priv);
  614. return 0;
  615. }
  616. /*
  617. * This function unregisters and destroy all slave MTD objects which are
  618. * attached to the given MTD object.
  619. */
  620. int del_mtd_partitions(struct mtd_info *mtd)
  621. {
  622. struct mtd_part *slave, *next;
  623. int ret, err = 0;
  624. mutex_lock(&mtd_partitions_mutex);
  625. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  626. if (slave->parent == mtd) {
  627. ret = __mtd_del_partition(slave);
  628. if (ret < 0)
  629. err = ret;
  630. }
  631. mutex_unlock(&mtd_partitions_mutex);
  632. return err;
  633. }
  634. int mtd_del_partition(struct mtd_info *mtd, int partno)
  635. {
  636. struct mtd_part *slave, *next;
  637. int ret = -EINVAL;
  638. mutex_lock(&mtd_partitions_mutex);
  639. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  640. if ((slave->parent == mtd) &&
  641. (slave->mtd.index == partno)) {
  642. ret = __mtd_del_partition(slave);
  643. break;
  644. }
  645. mutex_unlock(&mtd_partitions_mutex);
  646. return ret;
  647. }
  648. EXPORT_SYMBOL_GPL(mtd_del_partition);
  649. /*
  650. * This function, given a master MTD object and a partition table, creates
  651. * and registers slave MTD objects which are bound to the master according to
  652. * the partition definitions.
  653. *
  654. * For historical reasons, this function's caller only registers the master
  655. * if the MTD_PARTITIONED_MASTER config option is set.
  656. */
  657. int add_mtd_partitions(struct mtd_info *master,
  658. const struct mtd_partition *parts,
  659. int nbparts)
  660. {
  661. struct mtd_part *slave;
  662. uint64_t cur_offset = 0;
  663. int i;
  664. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  665. for (i = 0; i < nbparts; i++) {
  666. slave = allocate_partition(master, parts + i, i, cur_offset);
  667. if (IS_ERR(slave)) {
  668. del_mtd_partitions(master);
  669. return PTR_ERR(slave);
  670. }
  671. mutex_lock(&mtd_partitions_mutex);
  672. list_add(&slave->list, &mtd_partitions);
  673. mutex_unlock(&mtd_partitions_mutex);
  674. add_mtd_device(&slave->mtd);
  675. mtd_add_partition_attrs(slave);
  676. if (parts[i].types)
  677. mtd_parse_part(slave, parts[i].types);
  678. cur_offset = slave->offset + slave->mtd.size;
  679. }
  680. return 0;
  681. }
  682. static DEFINE_SPINLOCK(part_parser_lock);
  683. static LIST_HEAD(part_parsers);
  684. static struct mtd_part_parser *mtd_part_parser_get(const char *name)
  685. {
  686. struct mtd_part_parser *p, *ret = NULL;
  687. spin_lock(&part_parser_lock);
  688. list_for_each_entry(p, &part_parsers, list)
  689. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  690. ret = p;
  691. break;
  692. }
  693. spin_unlock(&part_parser_lock);
  694. return ret;
  695. }
  696. static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
  697. {
  698. module_put(p->owner);
  699. }
  700. /*
  701. * Many partition parsers just expected the core to kfree() all their data in
  702. * one chunk. Do that by default.
  703. */
  704. static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
  705. int nr_parts)
  706. {
  707. kfree(pparts);
  708. }
  709. int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
  710. {
  711. p->owner = owner;
  712. if (!p->cleanup)
  713. p->cleanup = &mtd_part_parser_cleanup_default;
  714. spin_lock(&part_parser_lock);
  715. list_add(&p->list, &part_parsers);
  716. spin_unlock(&part_parser_lock);
  717. return 0;
  718. }
  719. EXPORT_SYMBOL_GPL(__register_mtd_parser);
  720. void deregister_mtd_parser(struct mtd_part_parser *p)
  721. {
  722. spin_lock(&part_parser_lock);
  723. list_del(&p->list);
  724. spin_unlock(&part_parser_lock);
  725. }
  726. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  727. /*
  728. * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
  729. * are changing this array!
  730. */
  731. static const char * const default_mtd_part_types[] = {
  732. "cmdlinepart",
  733. "ofpart",
  734. NULL
  735. };
  736. static int mtd_part_do_parse(struct mtd_part_parser *parser,
  737. struct mtd_info *master,
  738. struct mtd_partitions *pparts,
  739. struct mtd_part_parser_data *data)
  740. {
  741. int ret;
  742. ret = (*parser->parse_fn)(master, &pparts->parts, data);
  743. pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
  744. if (ret <= 0)
  745. return ret;
  746. pr_notice("%d %s partitions found on MTD device %s\n", ret,
  747. parser->name, master->name);
  748. pparts->nr_parts = ret;
  749. pparts->parser = parser;
  750. return ret;
  751. }
  752. /**
  753. * parse_mtd_partitions - parse MTD partitions
  754. * @master: the master partition (describes whole MTD device)
  755. * @types: names of partition parsers to try or %NULL
  756. * @pparts: info about partitions found is returned here
  757. * @data: MTD partition parser-specific data
  758. *
  759. * This function tries to find partition on MTD device @master. It uses MTD
  760. * partition parsers, specified in @types. However, if @types is %NULL, then
  761. * the default list of parsers is used. The default list contains only the
  762. * "cmdlinepart" and "ofpart" parsers ATM.
  763. * Note: If there are more then one parser in @types, the kernel only takes the
  764. * partitions parsed out by the first parser.
  765. *
  766. * This function may return:
  767. * o a negative error code in case of failure
  768. * o zero otherwise, and @pparts will describe the partitions, number of
  769. * partitions, and the parser which parsed them. Caller must release
  770. * resources with mtd_part_parser_cleanup() when finished with the returned
  771. * data.
  772. */
  773. int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
  774. struct mtd_partitions *pparts,
  775. struct mtd_part_parser_data *data)
  776. {
  777. struct mtd_part_parser *parser;
  778. int ret, err = 0;
  779. if (!types)
  780. types = default_mtd_part_types;
  781. for ( ; *types; types++) {
  782. pr_debug("%s: parsing partitions %s\n", master->name, *types);
  783. parser = mtd_part_parser_get(*types);
  784. if (!parser && !request_module("%s", *types))
  785. parser = mtd_part_parser_get(*types);
  786. pr_debug("%s: got parser %s\n", master->name,
  787. parser ? parser->name : NULL);
  788. if (!parser)
  789. continue;
  790. ret = mtd_part_do_parse(parser, master, pparts, data);
  791. /* Found partitions! */
  792. if (ret > 0)
  793. return 0;
  794. mtd_part_parser_put(parser);
  795. /*
  796. * Stash the first error we see; only report it if no parser
  797. * succeeds
  798. */
  799. if (ret < 0 && !err)
  800. err = ret;
  801. }
  802. return err;
  803. }
  804. void mtd_part_parser_cleanup(struct mtd_partitions *parts)
  805. {
  806. const struct mtd_part_parser *parser;
  807. if (!parts)
  808. return;
  809. parser = parts->parser;
  810. if (parser) {
  811. if (parser->cleanup)
  812. parser->cleanup(parts->parts, parts->nr_parts);
  813. mtd_part_parser_put(parser);
  814. }
  815. }
  816. int mtd_is_partition(const struct mtd_info *mtd)
  817. {
  818. struct mtd_part *part;
  819. int ispart = 0;
  820. mutex_lock(&mtd_partitions_mutex);
  821. list_for_each_entry(part, &mtd_partitions, list)
  822. if (&part->mtd == mtd) {
  823. ispart = 1;
  824. break;
  825. }
  826. mutex_unlock(&mtd_partitions_mutex);
  827. return ispart;
  828. }
  829. EXPORT_SYMBOL_GPL(mtd_is_partition);
  830. /* Returns the size of the entire flash chip */
  831. uint64_t mtd_get_device_size(const struct mtd_info *mtd)
  832. {
  833. if (!mtd_is_partition(mtd))
  834. return mtd->size;
  835. return mtd_get_device_size(mtd_to_part(mtd)->parent);
  836. }
  837. EXPORT_SYMBOL_GPL(mtd_get_device_size);