tree.c 133 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate_wait.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/sched/debug.h>
  39. #include <linux/nmi.h>
  40. #include <linux/atomic.h>
  41. #include <linux/bitops.h>
  42. #include <linux/export.h>
  43. #include <linux/completion.h>
  44. #include <linux/moduleparam.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <uapi/linux/sched/types.h>
  54. #include <linux/prefetch.h>
  55. #include <linux/delay.h>
  56. #include <linux/stop_machine.h>
  57. #include <linux/random.h>
  58. #include <linux/trace_events.h>
  59. #include <linux/suspend.h>
  60. #include <linux/ftrace.h>
  61. #include "tree.h"
  62. #include "rcu.h"
  63. #ifdef MODULE_PARAM_PREFIX
  64. #undef MODULE_PARAM_PREFIX
  65. #endif
  66. #define MODULE_PARAM_PREFIX "rcutree."
  67. /* Data structures. */
  68. /*
  69. * In order to export the rcu_state name to the tracing tools, it
  70. * needs to be added in the __tracepoint_string section.
  71. * This requires defining a separate variable tp_<sname>_varname
  72. * that points to the string being used, and this will allow
  73. * the tracing userspace tools to be able to decipher the string
  74. * address to the matching string.
  75. */
  76. #ifdef CONFIG_TRACING
  77. # define DEFINE_RCU_TPS(sname) \
  78. static char sname##_varname[] = #sname; \
  79. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  80. # define RCU_STATE_NAME(sname) sname##_varname
  81. #else
  82. # define DEFINE_RCU_TPS(sname)
  83. # define RCU_STATE_NAME(sname) __stringify(sname)
  84. #endif
  85. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  86. DEFINE_RCU_TPS(sname) \
  87. static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  88. struct rcu_state sname##_state = { \
  89. .level = { &sname##_state.node[0] }, \
  90. .rda = &sname##_data, \
  91. .call = cr, \
  92. .gp_state = RCU_GP_IDLE, \
  93. .gpnum = 0UL - 300UL, \
  94. .completed = 0UL - 300UL, \
  95. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  96. .name = RCU_STATE_NAME(sname), \
  97. .abbr = sabbr, \
  98. .exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
  99. .exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
  100. }
  101. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  102. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  103. static struct rcu_state *const rcu_state_p;
  104. LIST_HEAD(rcu_struct_flavors);
  105. /* Dump rcu_node combining tree at boot to verify correct setup. */
  106. static bool dump_tree;
  107. module_param(dump_tree, bool, 0444);
  108. /* Control rcu_node-tree auto-balancing at boot time. */
  109. static bool rcu_fanout_exact;
  110. module_param(rcu_fanout_exact, bool, 0444);
  111. /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
  112. static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
  113. module_param(rcu_fanout_leaf, int, 0444);
  114. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  115. /* Number of rcu_nodes at specified level. */
  116. int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
  117. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  118. /* panic() on RCU Stall sysctl. */
  119. int sysctl_panic_on_rcu_stall __read_mostly;
  120. /*
  121. * The rcu_scheduler_active variable is initialized to the value
  122. * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
  123. * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
  124. * RCU can assume that there is but one task, allowing RCU to (for example)
  125. * optimize synchronize_rcu() to a simple barrier(). When this variable
  126. * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
  127. * to detect real grace periods. This variable is also used to suppress
  128. * boot-time false positives from lockdep-RCU error checking. Finally, it
  129. * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
  130. * is fully initialized, including all of its kthreads having been spawned.
  131. */
  132. int rcu_scheduler_active __read_mostly;
  133. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  134. /*
  135. * The rcu_scheduler_fully_active variable transitions from zero to one
  136. * during the early_initcall() processing, which is after the scheduler
  137. * is capable of creating new tasks. So RCU processing (for example,
  138. * creating tasks for RCU priority boosting) must be delayed until after
  139. * rcu_scheduler_fully_active transitions from zero to one. We also
  140. * currently delay invocation of any RCU callbacks until after this point.
  141. *
  142. * It might later prove better for people registering RCU callbacks during
  143. * early boot to take responsibility for these callbacks, but one step at
  144. * a time.
  145. */
  146. static int rcu_scheduler_fully_active __read_mostly;
  147. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
  148. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
  149. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  150. static void invoke_rcu_core(void);
  151. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  152. static void rcu_report_exp_rdp(struct rcu_state *rsp,
  153. struct rcu_data *rdp, bool wake);
  154. static void sync_sched_exp_online_cleanup(int cpu);
  155. /* rcuc/rcub kthread realtime priority */
  156. static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
  157. module_param(kthread_prio, int, 0644);
  158. /* Delay in jiffies for grace-period initialization delays, debug only. */
  159. static int gp_preinit_delay;
  160. module_param(gp_preinit_delay, int, 0444);
  161. static int gp_init_delay;
  162. module_param(gp_init_delay, int, 0444);
  163. static int gp_cleanup_delay;
  164. module_param(gp_cleanup_delay, int, 0444);
  165. /*
  166. * Number of grace periods between delays, normalized by the duration of
  167. * the delay. The longer the delay, the more the grace periods between
  168. * each delay. The reason for this normalization is that it means that,
  169. * for non-zero delays, the overall slowdown of grace periods is constant
  170. * regardless of the duration of the delay. This arrangement balances
  171. * the need for long delays to increase some race probabilities with the
  172. * need for fast grace periods to increase other race probabilities.
  173. */
  174. #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
  175. /*
  176. * Track the rcutorture test sequence number and the update version
  177. * number within a given test. The rcutorture_testseq is incremented
  178. * on every rcutorture module load and unload, so has an odd value
  179. * when a test is running. The rcutorture_vernum is set to zero
  180. * when rcutorture starts and is incremented on each rcutorture update.
  181. * These variables enable correlating rcutorture output with the
  182. * RCU tracing information.
  183. */
  184. unsigned long rcutorture_testseq;
  185. unsigned long rcutorture_vernum;
  186. /*
  187. * Compute the mask of online CPUs for the specified rcu_node structure.
  188. * This will not be stable unless the rcu_node structure's ->lock is
  189. * held, but the bit corresponding to the current CPU will be stable
  190. * in most contexts.
  191. */
  192. unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
  193. {
  194. return READ_ONCE(rnp->qsmaskinitnext);
  195. }
  196. /*
  197. * Return true if an RCU grace period is in progress. The READ_ONCE()s
  198. * permit this function to be invoked without holding the root rcu_node
  199. * structure's ->lock, but of course results can be subject to change.
  200. */
  201. static int rcu_gp_in_progress(struct rcu_state *rsp)
  202. {
  203. return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
  204. }
  205. /*
  206. * Note a quiescent state. Because we do not need to know
  207. * how many quiescent states passed, just if there was at least
  208. * one since the start of the grace period, this just sets a flag.
  209. * The caller must have disabled preemption.
  210. */
  211. void rcu_sched_qs(void)
  212. {
  213. RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
  214. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
  215. return;
  216. trace_rcu_grace_period(TPS("rcu_sched"),
  217. __this_cpu_read(rcu_sched_data.gpnum),
  218. TPS("cpuqs"));
  219. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
  220. if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
  221. return;
  222. __this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
  223. rcu_report_exp_rdp(&rcu_sched_state,
  224. this_cpu_ptr(&rcu_sched_data), true);
  225. }
  226. void rcu_bh_qs(void)
  227. {
  228. RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
  229. if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
  230. trace_rcu_grace_period(TPS("rcu_bh"),
  231. __this_cpu_read(rcu_bh_data.gpnum),
  232. TPS("cpuqs"));
  233. __this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
  234. }
  235. }
  236. /*
  237. * Steal a bit from the bottom of ->dynticks for idle entry/exit
  238. * control. Initially this is for TLB flushing.
  239. */
  240. #define RCU_DYNTICK_CTRL_MASK 0x1
  241. #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
  242. #ifndef rcu_eqs_special_exit
  243. #define rcu_eqs_special_exit() do { } while (0)
  244. #endif
  245. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  246. .dynticks_nesting = 1,
  247. .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
  248. .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
  249. };
  250. /*
  251. * Record entry into an extended quiescent state. This is only to be
  252. * called when not already in an extended quiescent state.
  253. */
  254. static void rcu_dynticks_eqs_enter(void)
  255. {
  256. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  257. int seq;
  258. /*
  259. * CPUs seeing atomic_add_return() must see prior RCU read-side
  260. * critical sections, and we also must force ordering with the
  261. * next idle sojourn.
  262. */
  263. seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
  264. /* Better be in an extended quiescent state! */
  265. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  266. (seq & RCU_DYNTICK_CTRL_CTR));
  267. /* Better not have special action (TLB flush) pending! */
  268. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  269. (seq & RCU_DYNTICK_CTRL_MASK));
  270. }
  271. /*
  272. * Record exit from an extended quiescent state. This is only to be
  273. * called from an extended quiescent state.
  274. */
  275. static void rcu_dynticks_eqs_exit(void)
  276. {
  277. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  278. int seq;
  279. /*
  280. * CPUs seeing atomic_add_return() must see prior idle sojourns,
  281. * and we also must force ordering with the next RCU read-side
  282. * critical section.
  283. */
  284. seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
  285. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  286. !(seq & RCU_DYNTICK_CTRL_CTR));
  287. if (seq & RCU_DYNTICK_CTRL_MASK) {
  288. atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
  289. smp_mb__after_atomic(); /* _exit after clearing mask. */
  290. /* Prefer duplicate flushes to losing a flush. */
  291. rcu_eqs_special_exit();
  292. }
  293. }
  294. /*
  295. * Reset the current CPU's ->dynticks counter to indicate that the
  296. * newly onlined CPU is no longer in an extended quiescent state.
  297. * This will either leave the counter unchanged, or increment it
  298. * to the next non-quiescent value.
  299. *
  300. * The non-atomic test/increment sequence works because the upper bits
  301. * of the ->dynticks counter are manipulated only by the corresponding CPU,
  302. * or when the corresponding CPU is offline.
  303. */
  304. static void rcu_dynticks_eqs_online(void)
  305. {
  306. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  307. if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
  308. return;
  309. atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
  310. }
  311. /*
  312. * Is the current CPU in an extended quiescent state?
  313. *
  314. * No ordering, as we are sampling CPU-local information.
  315. */
  316. bool rcu_dynticks_curr_cpu_in_eqs(void)
  317. {
  318. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  319. return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
  320. }
  321. /*
  322. * Snapshot the ->dynticks counter with full ordering so as to allow
  323. * stable comparison of this counter with past and future snapshots.
  324. */
  325. int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
  326. {
  327. int snap = atomic_add_return(0, &rdtp->dynticks);
  328. return snap & ~RCU_DYNTICK_CTRL_MASK;
  329. }
  330. /*
  331. * Return true if the snapshot returned from rcu_dynticks_snap()
  332. * indicates that RCU is in an extended quiescent state.
  333. */
  334. static bool rcu_dynticks_in_eqs(int snap)
  335. {
  336. return !(snap & RCU_DYNTICK_CTRL_CTR);
  337. }
  338. /*
  339. * Return true if the CPU corresponding to the specified rcu_dynticks
  340. * structure has spent some time in an extended quiescent state since
  341. * rcu_dynticks_snap() returned the specified snapshot.
  342. */
  343. static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
  344. {
  345. return snap != rcu_dynticks_snap(rdtp);
  346. }
  347. /*
  348. * Do a double-increment of the ->dynticks counter to emulate a
  349. * momentary idle-CPU quiescent state.
  350. */
  351. static void rcu_dynticks_momentary_idle(void)
  352. {
  353. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  354. int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
  355. &rdtp->dynticks);
  356. /* It is illegal to call this from idle state. */
  357. WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
  358. }
  359. /*
  360. * Set the special (bottom) bit of the specified CPU so that it
  361. * will take special action (such as flushing its TLB) on the
  362. * next exit from an extended quiescent state. Returns true if
  363. * the bit was successfully set, or false if the CPU was not in
  364. * an extended quiescent state.
  365. */
  366. bool rcu_eqs_special_set(int cpu)
  367. {
  368. int old;
  369. int new;
  370. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  371. do {
  372. old = atomic_read(&rdtp->dynticks);
  373. if (old & RCU_DYNTICK_CTRL_CTR)
  374. return false;
  375. new = old | RCU_DYNTICK_CTRL_MASK;
  376. } while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
  377. return true;
  378. }
  379. /*
  380. * Let the RCU core know that this CPU has gone through the scheduler,
  381. * which is a quiescent state. This is called when the need for a
  382. * quiescent state is urgent, so we burn an atomic operation and full
  383. * memory barriers to let the RCU core know about it, regardless of what
  384. * this CPU might (or might not) do in the near future.
  385. *
  386. * We inform the RCU core by emulating a zero-duration dyntick-idle period.
  387. *
  388. * The caller must have disabled interrupts.
  389. */
  390. static void rcu_momentary_dyntick_idle(void)
  391. {
  392. raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
  393. rcu_dynticks_momentary_idle();
  394. }
  395. /*
  396. * Note a context switch. This is a quiescent state for RCU-sched,
  397. * and requires special handling for preemptible RCU.
  398. * The caller must have disabled interrupts.
  399. */
  400. void rcu_note_context_switch(bool preempt)
  401. {
  402. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  403. trace_rcu_utilization(TPS("Start context switch"));
  404. rcu_sched_qs();
  405. rcu_preempt_note_context_switch(preempt);
  406. /* Load rcu_urgent_qs before other flags. */
  407. if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
  408. goto out;
  409. this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
  410. if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
  411. rcu_momentary_dyntick_idle();
  412. this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
  413. if (!preempt)
  414. rcu_note_voluntary_context_switch_lite(current);
  415. out:
  416. trace_rcu_utilization(TPS("End context switch"));
  417. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  418. }
  419. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  420. /*
  421. * Register a quiescent state for all RCU flavors. If there is an
  422. * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
  423. * dyntick-idle quiescent state visible to other CPUs (but only for those
  424. * RCU flavors in desperate need of a quiescent state, which will normally
  425. * be none of them). Either way, do a lightweight quiescent state for
  426. * all RCU flavors.
  427. *
  428. * The barrier() calls are redundant in the common case when this is
  429. * called externally, but just in case this is called from within this
  430. * file.
  431. *
  432. */
  433. void rcu_all_qs(void)
  434. {
  435. unsigned long flags;
  436. if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
  437. return;
  438. preempt_disable();
  439. /* Load rcu_urgent_qs before other flags. */
  440. if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
  441. preempt_enable();
  442. return;
  443. }
  444. this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
  445. barrier(); /* Avoid RCU read-side critical sections leaking down. */
  446. if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
  447. local_irq_save(flags);
  448. rcu_momentary_dyntick_idle();
  449. local_irq_restore(flags);
  450. }
  451. if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
  452. rcu_sched_qs();
  453. this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
  454. barrier(); /* Avoid RCU read-side critical sections leaking up. */
  455. preempt_enable();
  456. }
  457. EXPORT_SYMBOL_GPL(rcu_all_qs);
  458. #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch. */
  459. static long blimit = DEFAULT_RCU_BLIMIT;
  460. #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
  461. static long qhimark = DEFAULT_RCU_QHIMARK;
  462. #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
  463. static long qlowmark = DEFAULT_RCU_QLOMARK;
  464. module_param(blimit, long, 0444);
  465. module_param(qhimark, long, 0444);
  466. module_param(qlowmark, long, 0444);
  467. static ulong jiffies_till_first_fqs = ULONG_MAX;
  468. static ulong jiffies_till_next_fqs = ULONG_MAX;
  469. static bool rcu_kick_kthreads;
  470. module_param(jiffies_till_first_fqs, ulong, 0644);
  471. module_param(jiffies_till_next_fqs, ulong, 0644);
  472. module_param(rcu_kick_kthreads, bool, 0644);
  473. /*
  474. * How long the grace period must be before we start recruiting
  475. * quiescent-state help from rcu_note_context_switch().
  476. */
  477. static ulong jiffies_till_sched_qs = HZ / 10;
  478. module_param(jiffies_till_sched_qs, ulong, 0444);
  479. static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  480. struct rcu_data *rdp);
  481. static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
  482. static void force_quiescent_state(struct rcu_state *rsp);
  483. static int rcu_pending(void);
  484. /*
  485. * Return the number of RCU batches started thus far for debug & stats.
  486. */
  487. unsigned long rcu_batches_started(void)
  488. {
  489. return rcu_state_p->gpnum;
  490. }
  491. EXPORT_SYMBOL_GPL(rcu_batches_started);
  492. /*
  493. * Return the number of RCU-sched batches started thus far for debug & stats.
  494. */
  495. unsigned long rcu_batches_started_sched(void)
  496. {
  497. return rcu_sched_state.gpnum;
  498. }
  499. EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
  500. /*
  501. * Return the number of RCU BH batches started thus far for debug & stats.
  502. */
  503. unsigned long rcu_batches_started_bh(void)
  504. {
  505. return rcu_bh_state.gpnum;
  506. }
  507. EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
  508. /*
  509. * Return the number of RCU batches completed thus far for debug & stats.
  510. */
  511. unsigned long rcu_batches_completed(void)
  512. {
  513. return rcu_state_p->completed;
  514. }
  515. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  516. /*
  517. * Return the number of RCU-sched batches completed thus far for debug & stats.
  518. */
  519. unsigned long rcu_batches_completed_sched(void)
  520. {
  521. return rcu_sched_state.completed;
  522. }
  523. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  524. /*
  525. * Return the number of RCU BH batches completed thus far for debug & stats.
  526. */
  527. unsigned long rcu_batches_completed_bh(void)
  528. {
  529. return rcu_bh_state.completed;
  530. }
  531. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  532. /*
  533. * Return the number of RCU expedited batches completed thus far for
  534. * debug & stats. Odd numbers mean that a batch is in progress, even
  535. * numbers mean idle. The value returned will thus be roughly double
  536. * the cumulative batches since boot.
  537. */
  538. unsigned long rcu_exp_batches_completed(void)
  539. {
  540. return rcu_state_p->expedited_sequence;
  541. }
  542. EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
  543. /*
  544. * Return the number of RCU-sched expedited batches completed thus far
  545. * for debug & stats. Similar to rcu_exp_batches_completed().
  546. */
  547. unsigned long rcu_exp_batches_completed_sched(void)
  548. {
  549. return rcu_sched_state.expedited_sequence;
  550. }
  551. EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
  552. /*
  553. * Force a quiescent state.
  554. */
  555. void rcu_force_quiescent_state(void)
  556. {
  557. force_quiescent_state(rcu_state_p);
  558. }
  559. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  560. /*
  561. * Force a quiescent state for RCU BH.
  562. */
  563. void rcu_bh_force_quiescent_state(void)
  564. {
  565. force_quiescent_state(&rcu_bh_state);
  566. }
  567. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  568. /*
  569. * Force a quiescent state for RCU-sched.
  570. */
  571. void rcu_sched_force_quiescent_state(void)
  572. {
  573. force_quiescent_state(&rcu_sched_state);
  574. }
  575. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  576. /*
  577. * Show the state of the grace-period kthreads.
  578. */
  579. void show_rcu_gp_kthreads(void)
  580. {
  581. struct rcu_state *rsp;
  582. for_each_rcu_flavor(rsp) {
  583. pr_info("%s: wait state: %d ->state: %#lx\n",
  584. rsp->name, rsp->gp_state, rsp->gp_kthread->state);
  585. /* sched_show_task(rsp->gp_kthread); */
  586. }
  587. }
  588. EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
  589. /*
  590. * Record the number of times rcutorture tests have been initiated and
  591. * terminated. This information allows the debugfs tracing stats to be
  592. * correlated to the rcutorture messages, even when the rcutorture module
  593. * is being repeatedly loaded and unloaded. In other words, we cannot
  594. * store this state in rcutorture itself.
  595. */
  596. void rcutorture_record_test_transition(void)
  597. {
  598. rcutorture_testseq++;
  599. rcutorture_vernum = 0;
  600. }
  601. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  602. /*
  603. * Send along grace-period-related data for rcutorture diagnostics.
  604. */
  605. void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  606. unsigned long *gpnum, unsigned long *completed)
  607. {
  608. struct rcu_state *rsp = NULL;
  609. switch (test_type) {
  610. case RCU_FLAVOR:
  611. rsp = rcu_state_p;
  612. break;
  613. case RCU_BH_FLAVOR:
  614. rsp = &rcu_bh_state;
  615. break;
  616. case RCU_SCHED_FLAVOR:
  617. rsp = &rcu_sched_state;
  618. break;
  619. default:
  620. break;
  621. }
  622. if (rsp == NULL)
  623. return;
  624. *flags = READ_ONCE(rsp->gp_flags);
  625. *gpnum = READ_ONCE(rsp->gpnum);
  626. *completed = READ_ONCE(rsp->completed);
  627. }
  628. EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
  629. /*
  630. * Record the number of writer passes through the current rcutorture test.
  631. * This is also used to correlate debugfs tracing stats with the rcutorture
  632. * messages.
  633. */
  634. void rcutorture_record_progress(unsigned long vernum)
  635. {
  636. rcutorture_vernum++;
  637. }
  638. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  639. /*
  640. * Return the root node of the specified rcu_state structure.
  641. */
  642. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  643. {
  644. return &rsp->node[0];
  645. }
  646. /*
  647. * Is there any need for future grace periods?
  648. * Interrupts must be disabled. If the caller does not hold the root
  649. * rnp_node structure's ->lock, the results are advisory only.
  650. */
  651. static int rcu_future_needs_gp(struct rcu_state *rsp)
  652. {
  653. struct rcu_node *rnp = rcu_get_root(rsp);
  654. int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
  655. int *fp = &rnp->need_future_gp[idx];
  656. lockdep_assert_irqs_disabled();
  657. return READ_ONCE(*fp);
  658. }
  659. /*
  660. * Does the current CPU require a not-yet-started grace period?
  661. * The caller must have disabled interrupts to prevent races with
  662. * normal callback registry.
  663. */
  664. static bool
  665. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  666. {
  667. lockdep_assert_irqs_disabled();
  668. if (rcu_gp_in_progress(rsp))
  669. return false; /* No, a grace period is already in progress. */
  670. if (rcu_future_needs_gp(rsp))
  671. return true; /* Yes, a no-CBs CPU needs one. */
  672. if (!rcu_segcblist_is_enabled(&rdp->cblist))
  673. return false; /* No, this is a no-CBs (or offline) CPU. */
  674. if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
  675. return true; /* Yes, CPU has newly registered callbacks. */
  676. if (rcu_segcblist_future_gp_needed(&rdp->cblist,
  677. READ_ONCE(rsp->completed)))
  678. return true; /* Yes, CBs for future grace period. */
  679. return false; /* No grace period needed. */
  680. }
  681. /*
  682. * rcu_eqs_enter_common - current CPU is entering an extended quiescent state
  683. *
  684. * Enter idle, doing appropriate accounting. The caller must have
  685. * disabled interrupts.
  686. */
  687. static void rcu_eqs_enter_common(bool user)
  688. {
  689. struct rcu_state *rsp;
  690. struct rcu_data *rdp;
  691. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  692. lockdep_assert_irqs_disabled();
  693. trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0);
  694. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  695. !user && !is_idle_task(current)) {
  696. struct task_struct *idle __maybe_unused =
  697. idle_task(smp_processor_id());
  698. trace_rcu_dyntick(TPS("Error on entry: not idle task"), rdtp->dynticks_nesting, 0);
  699. rcu_ftrace_dump(DUMP_ORIG);
  700. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  701. current->pid, current->comm,
  702. idle->pid, idle->comm); /* must be idle task! */
  703. }
  704. for_each_rcu_flavor(rsp) {
  705. rdp = this_cpu_ptr(rsp->rda);
  706. do_nocb_deferred_wakeup(rdp);
  707. }
  708. rcu_prepare_for_idle();
  709. rdtp->dynticks_nesting = 0;
  710. rcu_dynticks_eqs_enter();
  711. rcu_dynticks_task_enter();
  712. /*
  713. * It is illegal to enter an extended quiescent state while
  714. * in an RCU read-side critical section.
  715. */
  716. RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
  717. "Illegal idle entry in RCU read-side critical section.");
  718. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),
  719. "Illegal idle entry in RCU-bh read-side critical section.");
  720. RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),
  721. "Illegal idle entry in RCU-sched read-side critical section.");
  722. }
  723. /*
  724. * Enter an RCU extended quiescent state, which can be either the
  725. * idle loop or adaptive-tickless usermode execution.
  726. *
  727. * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
  728. * the possibility of usermode upcalls having messed up our count
  729. * of interrupt nesting level during the prior busy period.
  730. */
  731. static void rcu_eqs_enter(bool user)
  732. {
  733. struct rcu_dynticks *rdtp;
  734. rdtp = this_cpu_ptr(&rcu_dynticks);
  735. WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
  736. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  737. rdtp->dynticks_nesting == 0);
  738. if (rdtp->dynticks_nesting == 1)
  739. rcu_eqs_enter_common(user);
  740. else
  741. rdtp->dynticks_nesting--;
  742. }
  743. /**
  744. * rcu_idle_enter - inform RCU that current CPU is entering idle
  745. *
  746. * Enter idle mode, in other words, -leave- the mode in which RCU
  747. * read-side critical sections can occur. (Though RCU read-side
  748. * critical sections can occur in irq handlers in idle, a possibility
  749. * handled by irq_enter() and irq_exit().)
  750. *
  751. * If you add or remove a call to rcu_idle_enter(), be sure to test with
  752. * CONFIG_RCU_EQS_DEBUG=y.
  753. */
  754. void rcu_idle_enter(void)
  755. {
  756. lockdep_assert_irqs_disabled();
  757. rcu_eqs_enter(false);
  758. }
  759. #ifdef CONFIG_NO_HZ_FULL
  760. /**
  761. * rcu_user_enter - inform RCU that we are resuming userspace.
  762. *
  763. * Enter RCU idle mode right before resuming userspace. No use of RCU
  764. * is permitted between this call and rcu_user_exit(). This way the
  765. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  766. * when the CPU runs in userspace.
  767. *
  768. * If you add or remove a call to rcu_user_enter(), be sure to test with
  769. * CONFIG_RCU_EQS_DEBUG=y.
  770. */
  771. void rcu_user_enter(void)
  772. {
  773. lockdep_assert_irqs_disabled();
  774. rcu_eqs_enter(true);
  775. }
  776. #endif /* CONFIG_NO_HZ_FULL */
  777. /**
  778. * rcu_nmi_exit - inform RCU of exit from NMI context
  779. *
  780. * If we are returning from the outermost NMI handler that interrupted an
  781. * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
  782. * to let the RCU grace-period handling know that the CPU is back to
  783. * being RCU-idle.
  784. *
  785. * If you add or remove a call to rcu_nmi_exit(), be sure to test
  786. * with CONFIG_RCU_EQS_DEBUG=y.
  787. */
  788. void rcu_nmi_exit(void)
  789. {
  790. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  791. /*
  792. * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
  793. * (We are exiting an NMI handler, so RCU better be paying attention
  794. * to us!)
  795. */
  796. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
  797. WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
  798. /*
  799. * If the nesting level is not 1, the CPU wasn't RCU-idle, so
  800. * leave it in non-RCU-idle state.
  801. */
  802. if (rdtp->dynticks_nmi_nesting != 1) {
  803. trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting,
  804. rdtp->dynticks_nmi_nesting - 2);
  805. WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
  806. rdtp->dynticks_nmi_nesting - 2);
  807. return;
  808. }
  809. /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
  810. trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0);
  811. WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
  812. rcu_dynticks_eqs_enter();
  813. }
  814. /**
  815. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  816. *
  817. * Exit from an interrupt handler, which might possibly result in entering
  818. * idle mode, in other words, leaving the mode in which read-side critical
  819. * sections can occur. The caller must have disabled interrupts.
  820. *
  821. * This code assumes that the idle loop never does anything that might
  822. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  823. * architecture's idle loop violates this assumption, RCU will give you what
  824. * you deserve, good and hard. But very infrequently and irreproducibly.
  825. *
  826. * Use things like work queues to work around this limitation.
  827. *
  828. * You have been warned.
  829. *
  830. * If you add or remove a call to rcu_irq_exit(), be sure to test with
  831. * CONFIG_RCU_EQS_DEBUG=y.
  832. */
  833. void rcu_irq_exit(void)
  834. {
  835. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  836. lockdep_assert_irqs_disabled();
  837. if (rdtp->dynticks_nmi_nesting == 1)
  838. rcu_prepare_for_idle();
  839. rcu_nmi_exit();
  840. if (rdtp->dynticks_nmi_nesting == 0)
  841. rcu_dynticks_task_enter();
  842. }
  843. /*
  844. * Wrapper for rcu_irq_exit() where interrupts are enabled.
  845. *
  846. * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
  847. * with CONFIG_RCU_EQS_DEBUG=y.
  848. */
  849. void rcu_irq_exit_irqson(void)
  850. {
  851. unsigned long flags;
  852. local_irq_save(flags);
  853. rcu_irq_exit();
  854. local_irq_restore(flags);
  855. }
  856. /*
  857. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  858. *
  859. * If the new value of the ->dynticks_nesting counter was previously zero,
  860. * we really have exited idle, and must do the appropriate accounting.
  861. * The caller must have disabled interrupts.
  862. */
  863. static void rcu_eqs_exit_common(long long newval, int user)
  864. {
  865. RCU_TRACE(struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);)
  866. rcu_dynticks_task_exit();
  867. rcu_dynticks_eqs_exit();
  868. rcu_cleanup_after_idle();
  869. trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, newval);
  870. if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
  871. !user && !is_idle_task(current)) {
  872. struct task_struct *idle __maybe_unused =
  873. idle_task(smp_processor_id());
  874. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  875. rdtp->dynticks_nesting, newval);
  876. rcu_ftrace_dump(DUMP_ORIG);
  877. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  878. current->pid, current->comm,
  879. idle->pid, idle->comm); /* must be idle task! */
  880. }
  881. }
  882. /*
  883. * Exit an RCU extended quiescent state, which can be either the
  884. * idle loop or adaptive-tickless usermode execution.
  885. *
  886. * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
  887. * allow for the possibility of usermode upcalls messing up our count of
  888. * interrupt nesting level during the busy period that is just now starting.
  889. */
  890. static void rcu_eqs_exit(bool user)
  891. {
  892. struct rcu_dynticks *rdtp;
  893. long long oldval;
  894. lockdep_assert_irqs_disabled();
  895. rdtp = this_cpu_ptr(&rcu_dynticks);
  896. oldval = rdtp->dynticks_nesting;
  897. WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
  898. if (oldval) {
  899. rdtp->dynticks_nesting++;
  900. } else {
  901. rcu_eqs_exit_common(1, user);
  902. rdtp->dynticks_nesting = 1;
  903. WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
  904. }
  905. }
  906. /**
  907. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  908. *
  909. * Exit idle mode, in other words, -enter- the mode in which RCU
  910. * read-side critical sections can occur.
  911. *
  912. * If you add or remove a call to rcu_idle_exit(), be sure to test with
  913. * CONFIG_RCU_EQS_DEBUG=y.
  914. */
  915. void rcu_idle_exit(void)
  916. {
  917. unsigned long flags;
  918. local_irq_save(flags);
  919. rcu_eqs_exit(false);
  920. local_irq_restore(flags);
  921. }
  922. #ifdef CONFIG_NO_HZ_FULL
  923. /**
  924. * rcu_user_exit - inform RCU that we are exiting userspace.
  925. *
  926. * Exit RCU idle mode while entering the kernel because it can
  927. * run a RCU read side critical section anytime.
  928. *
  929. * If you add or remove a call to rcu_user_exit(), be sure to test with
  930. * CONFIG_RCU_EQS_DEBUG=y.
  931. */
  932. void rcu_user_exit(void)
  933. {
  934. rcu_eqs_exit(1);
  935. }
  936. #endif /* CONFIG_NO_HZ_FULL */
  937. /**
  938. * rcu_nmi_enter - inform RCU of entry to NMI context
  939. *
  940. * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
  941. * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
  942. * that the CPU is active. This implementation permits nested NMIs, as
  943. * long as the nesting level does not overflow an int. (You will probably
  944. * run out of stack space first.)
  945. *
  946. * If you add or remove a call to rcu_nmi_enter(), be sure to test
  947. * with CONFIG_RCU_EQS_DEBUG=y.
  948. */
  949. void rcu_nmi_enter(void)
  950. {
  951. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  952. int incby = 2;
  953. /* Complain about underflow. */
  954. WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
  955. /*
  956. * If idle from RCU viewpoint, atomically increment ->dynticks
  957. * to mark non-idle and increment ->dynticks_nmi_nesting by one.
  958. * Otherwise, increment ->dynticks_nmi_nesting by two. This means
  959. * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
  960. * to be in the outermost NMI handler that interrupted an RCU-idle
  961. * period (observation due to Andy Lutomirski).
  962. */
  963. if (rcu_dynticks_curr_cpu_in_eqs()) {
  964. rcu_dynticks_eqs_exit();
  965. incby = 1;
  966. }
  967. trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
  968. rdtp->dynticks_nmi_nesting,
  969. rdtp->dynticks_nmi_nesting + incby);
  970. WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
  971. rdtp->dynticks_nmi_nesting + incby);
  972. barrier();
  973. }
  974. /**
  975. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  976. *
  977. * Enter an interrupt handler, which might possibly result in exiting
  978. * idle mode, in other words, entering the mode in which read-side critical
  979. * sections can occur. The caller must have disabled interrupts.
  980. *
  981. * Note that the Linux kernel is fully capable of entering an interrupt
  982. * handler that it never exits, for example when doing upcalls to user mode!
  983. * This code assumes that the idle loop never does upcalls to user mode.
  984. * If your architecture's idle loop does do upcalls to user mode (or does
  985. * anything else that results in unbalanced calls to the irq_enter() and
  986. * irq_exit() functions), RCU will give you what you deserve, good and hard.
  987. * But very infrequently and irreproducibly.
  988. *
  989. * Use things like work queues to work around this limitation.
  990. *
  991. * You have been warned.
  992. *
  993. * If you add or remove a call to rcu_irq_enter(), be sure to test with
  994. * CONFIG_RCU_EQS_DEBUG=y.
  995. */
  996. void rcu_irq_enter(void)
  997. {
  998. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  999. lockdep_assert_irqs_disabled();
  1000. if (rdtp->dynticks_nmi_nesting == 0)
  1001. rcu_dynticks_task_exit();
  1002. rcu_nmi_enter();
  1003. if (rdtp->dynticks_nmi_nesting == 1)
  1004. rcu_cleanup_after_idle();
  1005. }
  1006. /*
  1007. * Wrapper for rcu_irq_enter() where interrupts are enabled.
  1008. *
  1009. * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
  1010. * with CONFIG_RCU_EQS_DEBUG=y.
  1011. */
  1012. void rcu_irq_enter_irqson(void)
  1013. {
  1014. unsigned long flags;
  1015. local_irq_save(flags);
  1016. rcu_irq_enter();
  1017. local_irq_restore(flags);
  1018. }
  1019. /**
  1020. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  1021. *
  1022. * Return true if RCU is watching the running CPU, which means that this
  1023. * CPU can safely enter RCU read-side critical sections. In other words,
  1024. * if the current CPU is in its idle loop and is neither in an interrupt
  1025. * or NMI handler, return true.
  1026. */
  1027. bool notrace rcu_is_watching(void)
  1028. {
  1029. bool ret;
  1030. preempt_disable_notrace();
  1031. ret = !rcu_dynticks_curr_cpu_in_eqs();
  1032. preempt_enable_notrace();
  1033. return ret;
  1034. }
  1035. EXPORT_SYMBOL_GPL(rcu_is_watching);
  1036. /*
  1037. * If a holdout task is actually running, request an urgent quiescent
  1038. * state from its CPU. This is unsynchronized, so migrations can cause
  1039. * the request to go to the wrong CPU. Which is OK, all that will happen
  1040. * is that the CPU's next context switch will be a bit slower and next
  1041. * time around this task will generate another request.
  1042. */
  1043. void rcu_request_urgent_qs_task(struct task_struct *t)
  1044. {
  1045. int cpu;
  1046. barrier();
  1047. cpu = task_cpu(t);
  1048. if (!task_curr(t))
  1049. return; /* This task is not running on that CPU. */
  1050. smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
  1051. }
  1052. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  1053. /*
  1054. * Is the current CPU online? Disable preemption to avoid false positives
  1055. * that could otherwise happen due to the current CPU number being sampled,
  1056. * this task being preempted, its old CPU being taken offline, resuming
  1057. * on some other CPU, then determining that its old CPU is now offline.
  1058. * It is OK to use RCU on an offline processor during initial boot, hence
  1059. * the check for rcu_scheduler_fully_active. Note also that it is OK
  1060. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  1061. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  1062. * offline to continue to use RCU for one jiffy after marking itself
  1063. * offline in the cpu_online_mask. This leniency is necessary given the
  1064. * non-atomic nature of the online and offline processing, for example,
  1065. * the fact that a CPU enters the scheduler after completing the teardown
  1066. * of the CPU.
  1067. *
  1068. * This is also why RCU internally marks CPUs online during in the
  1069. * preparation phase and offline after the CPU has been taken down.
  1070. *
  1071. * Disable checking if in an NMI handler because we cannot safely report
  1072. * errors from NMI handlers anyway.
  1073. */
  1074. bool rcu_lockdep_current_cpu_online(void)
  1075. {
  1076. struct rcu_data *rdp;
  1077. struct rcu_node *rnp;
  1078. bool ret;
  1079. if (in_nmi())
  1080. return true;
  1081. preempt_disable();
  1082. rdp = this_cpu_ptr(&rcu_sched_data);
  1083. rnp = rdp->mynode;
  1084. ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
  1085. !rcu_scheduler_fully_active;
  1086. preempt_enable();
  1087. return ret;
  1088. }
  1089. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  1090. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  1091. /**
  1092. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  1093. *
  1094. * If the current CPU is idle or running at a first-level (not nested)
  1095. * interrupt from idle, return true. The caller must have at least
  1096. * disabled preemption.
  1097. */
  1098. static int rcu_is_cpu_rrupt_from_idle(void)
  1099. {
  1100. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
  1101. __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
  1102. }
  1103. /*
  1104. * We are reporting a quiescent state on behalf of some other CPU, so
  1105. * it is our responsibility to check for and handle potential overflow
  1106. * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
  1107. * After all, the CPU might be in deep idle state, and thus executing no
  1108. * code whatsoever.
  1109. */
  1110. static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
  1111. {
  1112. lockdep_assert_held(&rnp->lock);
  1113. if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
  1114. WRITE_ONCE(rdp->gpwrap, true);
  1115. if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
  1116. rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
  1117. }
  1118. /*
  1119. * Snapshot the specified CPU's dynticks counter so that we can later
  1120. * credit them with an implicit quiescent state. Return 1 if this CPU
  1121. * is in dynticks idle mode, which is an extended quiescent state.
  1122. */
  1123. static int dyntick_save_progress_counter(struct rcu_data *rdp)
  1124. {
  1125. rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
  1126. if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
  1127. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  1128. rcu_gpnum_ovf(rdp->mynode, rdp);
  1129. return 1;
  1130. }
  1131. return 0;
  1132. }
  1133. /*
  1134. * Handler for the irq_work request posted when a grace period has
  1135. * gone on for too long, but not yet long enough for an RCU CPU
  1136. * stall warning. Set state appropriately, but just complain if
  1137. * there is unexpected state on entry.
  1138. */
  1139. static void rcu_iw_handler(struct irq_work *iwp)
  1140. {
  1141. struct rcu_data *rdp;
  1142. struct rcu_node *rnp;
  1143. rdp = container_of(iwp, struct rcu_data, rcu_iw);
  1144. rnp = rdp->mynode;
  1145. raw_spin_lock_rcu_node(rnp);
  1146. if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
  1147. rdp->rcu_iw_gpnum = rnp->gpnum;
  1148. rdp->rcu_iw_pending = false;
  1149. }
  1150. raw_spin_unlock_rcu_node(rnp);
  1151. }
  1152. /*
  1153. * Return true if the specified CPU has passed through a quiescent
  1154. * state by virtue of being in or having passed through an dynticks
  1155. * idle state since the last call to dyntick_save_progress_counter()
  1156. * for this same CPU, or by virtue of having been offline.
  1157. */
  1158. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
  1159. {
  1160. unsigned long jtsq;
  1161. bool *rnhqp;
  1162. bool *ruqp;
  1163. struct rcu_node *rnp = rdp->mynode;
  1164. /*
  1165. * If the CPU passed through or entered a dynticks idle phase with
  1166. * no active irq/NMI handlers, then we can safely pretend that the CPU
  1167. * already acknowledged the request to pass through a quiescent
  1168. * state. Either way, that CPU cannot possibly be in an RCU
  1169. * read-side critical section that started before the beginning
  1170. * of the current RCU grace period.
  1171. */
  1172. if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
  1173. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  1174. rdp->dynticks_fqs++;
  1175. rcu_gpnum_ovf(rnp, rdp);
  1176. return 1;
  1177. }
  1178. /*
  1179. * Has this CPU encountered a cond_resched_rcu_qs() since the
  1180. * beginning of the grace period? For this to be the case,
  1181. * the CPU has to have noticed the current grace period. This
  1182. * might not be the case for nohz_full CPUs looping in the kernel.
  1183. */
  1184. jtsq = jiffies_till_sched_qs;
  1185. ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
  1186. if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
  1187. READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
  1188. READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
  1189. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
  1190. rcu_gpnum_ovf(rnp, rdp);
  1191. return 1;
  1192. } else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
  1193. /* Load rcu_qs_ctr before store to rcu_urgent_qs. */
  1194. smp_store_release(ruqp, true);
  1195. }
  1196. /* Check for the CPU being offline. */
  1197. if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
  1198. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  1199. rdp->offline_fqs++;
  1200. rcu_gpnum_ovf(rnp, rdp);
  1201. return 1;
  1202. }
  1203. /*
  1204. * A CPU running for an extended time within the kernel can
  1205. * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
  1206. * even context-switching back and forth between a pair of
  1207. * in-kernel CPU-bound tasks cannot advance grace periods.
  1208. * So if the grace period is old enough, make the CPU pay attention.
  1209. * Note that the unsynchronized assignments to the per-CPU
  1210. * rcu_need_heavy_qs variable are safe. Yes, setting of
  1211. * bits can be lost, but they will be set again on the next
  1212. * force-quiescent-state pass. So lost bit sets do not result
  1213. * in incorrect behavior, merely in a grace period lasting
  1214. * a few jiffies longer than it might otherwise. Because
  1215. * there are at most four threads involved, and because the
  1216. * updates are only once every few jiffies, the probability of
  1217. * lossage (and thus of slight grace-period extension) is
  1218. * quite low.
  1219. */
  1220. rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
  1221. if (!READ_ONCE(*rnhqp) &&
  1222. (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
  1223. time_after(jiffies, rdp->rsp->jiffies_resched))) {
  1224. WRITE_ONCE(*rnhqp, true);
  1225. /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
  1226. smp_store_release(ruqp, true);
  1227. rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
  1228. }
  1229. /*
  1230. * If more than halfway to RCU CPU stall-warning time, do a
  1231. * resched_cpu() to try to loosen things up a bit. Also check to
  1232. * see if the CPU is getting hammered with interrupts, but only
  1233. * once per grace period, just to keep the IPIs down to a dull roar.
  1234. */
  1235. if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
  1236. resched_cpu(rdp->cpu);
  1237. if (IS_ENABLED(CONFIG_IRQ_WORK) &&
  1238. !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
  1239. (rnp->ffmask & rdp->grpmask)) {
  1240. init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
  1241. rdp->rcu_iw_pending = true;
  1242. rdp->rcu_iw_gpnum = rnp->gpnum;
  1243. irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
  1244. }
  1245. }
  1246. return 0;
  1247. }
  1248. static void record_gp_stall_check_time(struct rcu_state *rsp)
  1249. {
  1250. unsigned long j = jiffies;
  1251. unsigned long j1;
  1252. rsp->gp_start = j;
  1253. smp_wmb(); /* Record start time before stall time. */
  1254. j1 = rcu_jiffies_till_stall_check();
  1255. WRITE_ONCE(rsp->jiffies_stall, j + j1);
  1256. rsp->jiffies_resched = j + j1 / 2;
  1257. rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
  1258. }
  1259. /*
  1260. * Convert a ->gp_state value to a character string.
  1261. */
  1262. static const char *gp_state_getname(short gs)
  1263. {
  1264. if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
  1265. return "???";
  1266. return gp_state_names[gs];
  1267. }
  1268. /*
  1269. * Complain about starvation of grace-period kthread.
  1270. */
  1271. static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
  1272. {
  1273. unsigned long gpa;
  1274. unsigned long j;
  1275. j = jiffies;
  1276. gpa = READ_ONCE(rsp->gp_activity);
  1277. if (j - gpa > 2 * HZ) {
  1278. pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
  1279. rsp->name, j - gpa,
  1280. rsp->gpnum, rsp->completed,
  1281. rsp->gp_flags,
  1282. gp_state_getname(rsp->gp_state), rsp->gp_state,
  1283. rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
  1284. rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
  1285. if (rsp->gp_kthread) {
  1286. sched_show_task(rsp->gp_kthread);
  1287. wake_up_process(rsp->gp_kthread);
  1288. }
  1289. }
  1290. }
  1291. /*
  1292. * Dump stacks of all tasks running on stalled CPUs. First try using
  1293. * NMIs, but fall back to manual remote stack tracing on architectures
  1294. * that don't support NMI-based stack dumps. The NMI-triggered stack
  1295. * traces are more accurate because they are printed by the target CPU.
  1296. */
  1297. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  1298. {
  1299. int cpu;
  1300. unsigned long flags;
  1301. struct rcu_node *rnp;
  1302. rcu_for_each_leaf_node(rsp, rnp) {
  1303. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1304. for_each_leaf_node_possible_cpu(rnp, cpu)
  1305. if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
  1306. if (!trigger_single_cpu_backtrace(cpu))
  1307. dump_cpu_task(cpu);
  1308. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1309. }
  1310. }
  1311. /*
  1312. * If too much time has passed in the current grace period, and if
  1313. * so configured, go kick the relevant kthreads.
  1314. */
  1315. static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
  1316. {
  1317. unsigned long j;
  1318. if (!rcu_kick_kthreads)
  1319. return;
  1320. j = READ_ONCE(rsp->jiffies_kick_kthreads);
  1321. if (time_after(jiffies, j) && rsp->gp_kthread &&
  1322. (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
  1323. WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
  1324. rcu_ftrace_dump(DUMP_ALL);
  1325. wake_up_process(rsp->gp_kthread);
  1326. WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
  1327. }
  1328. }
  1329. static inline void panic_on_rcu_stall(void)
  1330. {
  1331. if (sysctl_panic_on_rcu_stall)
  1332. panic("RCU Stall\n");
  1333. }
  1334. static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
  1335. {
  1336. int cpu;
  1337. long delta;
  1338. unsigned long flags;
  1339. unsigned long gpa;
  1340. unsigned long j;
  1341. int ndetected = 0;
  1342. struct rcu_node *rnp = rcu_get_root(rsp);
  1343. long totqlen = 0;
  1344. /* Kick and suppress, if so configured. */
  1345. rcu_stall_kick_kthreads(rsp);
  1346. if (rcu_cpu_stall_suppress)
  1347. return;
  1348. /* Only let one CPU complain about others per time interval. */
  1349. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1350. delta = jiffies - READ_ONCE(rsp->jiffies_stall);
  1351. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  1352. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1353. return;
  1354. }
  1355. WRITE_ONCE(rsp->jiffies_stall,
  1356. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1357. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1358. /*
  1359. * OK, time to rat on our buddy...
  1360. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1361. * RCU CPU stall warnings.
  1362. */
  1363. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  1364. rsp->name);
  1365. print_cpu_stall_info_begin();
  1366. rcu_for_each_leaf_node(rsp, rnp) {
  1367. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1368. ndetected += rcu_print_task_stall(rnp);
  1369. if (rnp->qsmask != 0) {
  1370. for_each_leaf_node_possible_cpu(rnp, cpu)
  1371. if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
  1372. print_cpu_stall_info(rsp, cpu);
  1373. ndetected++;
  1374. }
  1375. }
  1376. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1377. }
  1378. print_cpu_stall_info_end();
  1379. for_each_possible_cpu(cpu)
  1380. totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
  1381. cpu)->cblist);
  1382. pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
  1383. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  1384. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1385. if (ndetected) {
  1386. rcu_dump_cpu_stacks(rsp);
  1387. /* Complain about tasks blocking the grace period. */
  1388. rcu_print_detail_task_stall(rsp);
  1389. } else {
  1390. if (READ_ONCE(rsp->gpnum) != gpnum ||
  1391. READ_ONCE(rsp->completed) == gpnum) {
  1392. pr_err("INFO: Stall ended before state dump start\n");
  1393. } else {
  1394. j = jiffies;
  1395. gpa = READ_ONCE(rsp->gp_activity);
  1396. pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
  1397. rsp->name, j - gpa, j, gpa,
  1398. jiffies_till_next_fqs,
  1399. rcu_get_root(rsp)->qsmask);
  1400. /* In this case, the current CPU might be at fault. */
  1401. sched_show_task(current);
  1402. }
  1403. }
  1404. rcu_check_gp_kthread_starvation(rsp);
  1405. panic_on_rcu_stall();
  1406. force_quiescent_state(rsp); /* Kick them all. */
  1407. }
  1408. static void print_cpu_stall(struct rcu_state *rsp)
  1409. {
  1410. int cpu;
  1411. unsigned long flags;
  1412. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1413. struct rcu_node *rnp = rcu_get_root(rsp);
  1414. long totqlen = 0;
  1415. /* Kick and suppress, if so configured. */
  1416. rcu_stall_kick_kthreads(rsp);
  1417. if (rcu_cpu_stall_suppress)
  1418. return;
  1419. /*
  1420. * OK, time to rat on ourselves...
  1421. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1422. * RCU CPU stall warnings.
  1423. */
  1424. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  1425. print_cpu_stall_info_begin();
  1426. raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
  1427. print_cpu_stall_info(rsp, smp_processor_id());
  1428. raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
  1429. print_cpu_stall_info_end();
  1430. for_each_possible_cpu(cpu)
  1431. totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
  1432. cpu)->cblist);
  1433. pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
  1434. jiffies - rsp->gp_start,
  1435. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1436. rcu_check_gp_kthread_starvation(rsp);
  1437. rcu_dump_cpu_stacks(rsp);
  1438. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  1439. if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
  1440. WRITE_ONCE(rsp->jiffies_stall,
  1441. jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
  1442. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1443. panic_on_rcu_stall();
  1444. /*
  1445. * Attempt to revive the RCU machinery by forcing a context switch.
  1446. *
  1447. * A context switch would normally allow the RCU state machine to make
  1448. * progress and it could be we're stuck in kernel space without context
  1449. * switches for an entirely unreasonable amount of time.
  1450. */
  1451. resched_cpu(smp_processor_id());
  1452. }
  1453. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  1454. {
  1455. unsigned long completed;
  1456. unsigned long gpnum;
  1457. unsigned long gps;
  1458. unsigned long j;
  1459. unsigned long js;
  1460. struct rcu_node *rnp;
  1461. if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
  1462. !rcu_gp_in_progress(rsp))
  1463. return;
  1464. rcu_stall_kick_kthreads(rsp);
  1465. j = jiffies;
  1466. /*
  1467. * Lots of memory barriers to reject false positives.
  1468. *
  1469. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  1470. * then rsp->gp_start, and finally rsp->completed. These values
  1471. * are updated in the opposite order with memory barriers (or
  1472. * equivalent) during grace-period initialization and cleanup.
  1473. * Now, a false positive can occur if we get an new value of
  1474. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  1475. * the memory barriers, the only way that this can happen is if one
  1476. * grace period ends and another starts between these two fetches.
  1477. * Detect this by comparing rsp->completed with the previous fetch
  1478. * from rsp->gpnum.
  1479. *
  1480. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  1481. * and rsp->gp_start suffice to forestall false positives.
  1482. */
  1483. gpnum = READ_ONCE(rsp->gpnum);
  1484. smp_rmb(); /* Pick up ->gpnum first... */
  1485. js = READ_ONCE(rsp->jiffies_stall);
  1486. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  1487. gps = READ_ONCE(rsp->gp_start);
  1488. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  1489. completed = READ_ONCE(rsp->completed);
  1490. if (ULONG_CMP_GE(completed, gpnum) ||
  1491. ULONG_CMP_LT(j, js) ||
  1492. ULONG_CMP_GE(gps, js))
  1493. return; /* No stall or GP completed since entering function. */
  1494. rnp = rdp->mynode;
  1495. if (rcu_gp_in_progress(rsp) &&
  1496. (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
  1497. /* We haven't checked in, so go dump stack. */
  1498. print_cpu_stall(rsp);
  1499. } else if (rcu_gp_in_progress(rsp) &&
  1500. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  1501. /* They had a few time units to dump stack, so complain. */
  1502. print_other_cpu_stall(rsp, gpnum);
  1503. }
  1504. }
  1505. /**
  1506. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  1507. *
  1508. * Set the stall-warning timeout way off into the future, thus preventing
  1509. * any RCU CPU stall-warning messages from appearing in the current set of
  1510. * RCU grace periods.
  1511. *
  1512. * The caller must disable hard irqs.
  1513. */
  1514. void rcu_cpu_stall_reset(void)
  1515. {
  1516. struct rcu_state *rsp;
  1517. for_each_rcu_flavor(rsp)
  1518. WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
  1519. }
  1520. /*
  1521. * Determine the value that ->completed will have at the end of the
  1522. * next subsequent grace period. This is used to tag callbacks so that
  1523. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  1524. * been dyntick-idle for an extended period with callbacks under the
  1525. * influence of RCU_FAST_NO_HZ.
  1526. *
  1527. * The caller must hold rnp->lock with interrupts disabled.
  1528. */
  1529. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  1530. struct rcu_node *rnp)
  1531. {
  1532. lockdep_assert_held(&rnp->lock);
  1533. /*
  1534. * If RCU is idle, we just wait for the next grace period.
  1535. * But we can only be sure that RCU is idle if we are looking
  1536. * at the root rcu_node structure -- otherwise, a new grace
  1537. * period might have started, but just not yet gotten around
  1538. * to initializing the current non-root rcu_node structure.
  1539. */
  1540. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  1541. return rnp->completed + 1;
  1542. /*
  1543. * Otherwise, wait for a possible partial grace period and
  1544. * then the subsequent full grace period.
  1545. */
  1546. return rnp->completed + 2;
  1547. }
  1548. /*
  1549. * Trace-event helper function for rcu_start_future_gp() and
  1550. * rcu_nocb_wait_gp().
  1551. */
  1552. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1553. unsigned long c, const char *s)
  1554. {
  1555. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  1556. rnp->completed, c, rnp->level,
  1557. rnp->grplo, rnp->grphi, s);
  1558. }
  1559. /*
  1560. * Start some future grace period, as needed to handle newly arrived
  1561. * callbacks. The required future grace periods are recorded in each
  1562. * rcu_node structure's ->need_future_gp field. Returns true if there
  1563. * is reason to awaken the grace-period kthread.
  1564. *
  1565. * The caller must hold the specified rcu_node structure's ->lock.
  1566. */
  1567. static bool __maybe_unused
  1568. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1569. unsigned long *c_out)
  1570. {
  1571. unsigned long c;
  1572. bool ret = false;
  1573. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  1574. lockdep_assert_held(&rnp->lock);
  1575. /*
  1576. * Pick up grace-period number for new callbacks. If this
  1577. * grace period is already marked as needed, return to the caller.
  1578. */
  1579. c = rcu_cbs_completed(rdp->rsp, rnp);
  1580. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  1581. if (rnp->need_future_gp[c & 0x1]) {
  1582. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  1583. goto out;
  1584. }
  1585. /*
  1586. * If either this rcu_node structure or the root rcu_node structure
  1587. * believe that a grace period is in progress, then we must wait
  1588. * for the one following, which is in "c". Because our request
  1589. * will be noticed at the end of the current grace period, we don't
  1590. * need to explicitly start one. We only do the lockless check
  1591. * of rnp_root's fields if the current rcu_node structure thinks
  1592. * there is no grace period in flight, and because we hold rnp->lock,
  1593. * the only possible change is when rnp_root's two fields are
  1594. * equal, in which case rnp_root->gpnum might be concurrently
  1595. * incremented. But that is OK, as it will just result in our
  1596. * doing some extra useless work.
  1597. */
  1598. if (rnp->gpnum != rnp->completed ||
  1599. READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
  1600. rnp->need_future_gp[c & 0x1]++;
  1601. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1602. goto out;
  1603. }
  1604. /*
  1605. * There might be no grace period in progress. If we don't already
  1606. * hold it, acquire the root rcu_node structure's lock in order to
  1607. * start one (if needed).
  1608. */
  1609. if (rnp != rnp_root)
  1610. raw_spin_lock_rcu_node(rnp_root);
  1611. /*
  1612. * Get a new grace-period number. If there really is no grace
  1613. * period in progress, it will be smaller than the one we obtained
  1614. * earlier. Adjust callbacks as needed.
  1615. */
  1616. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1617. if (!rcu_is_nocb_cpu(rdp->cpu))
  1618. (void)rcu_segcblist_accelerate(&rdp->cblist, c);
  1619. /*
  1620. * If the needed for the required grace period is already
  1621. * recorded, trace and leave.
  1622. */
  1623. if (rnp_root->need_future_gp[c & 0x1]) {
  1624. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1625. goto unlock_out;
  1626. }
  1627. /* Record the need for the future grace period. */
  1628. rnp_root->need_future_gp[c & 0x1]++;
  1629. /* If a grace period is not already in progress, start one. */
  1630. if (rnp_root->gpnum != rnp_root->completed) {
  1631. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1632. } else {
  1633. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1634. ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1635. }
  1636. unlock_out:
  1637. if (rnp != rnp_root)
  1638. raw_spin_unlock_rcu_node(rnp_root);
  1639. out:
  1640. if (c_out != NULL)
  1641. *c_out = c;
  1642. return ret;
  1643. }
  1644. /*
  1645. * Clean up any old requests for the just-ended grace period. Also return
  1646. * whether any additional grace periods have been requested.
  1647. */
  1648. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1649. {
  1650. int c = rnp->completed;
  1651. int needmore;
  1652. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1653. rnp->need_future_gp[c & 0x1] = 0;
  1654. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1655. trace_rcu_future_gp(rnp, rdp, c,
  1656. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1657. return needmore;
  1658. }
  1659. /*
  1660. * Awaken the grace-period kthread for the specified flavor of RCU.
  1661. * Don't do a self-awaken, and don't bother awakening when there is
  1662. * nothing for the grace-period kthread to do (as in several CPUs
  1663. * raced to awaken, and we lost), and finally don't try to awaken
  1664. * a kthread that has not yet been created.
  1665. */
  1666. static void rcu_gp_kthread_wake(struct rcu_state *rsp)
  1667. {
  1668. if (current == rsp->gp_kthread ||
  1669. !READ_ONCE(rsp->gp_flags) ||
  1670. !rsp->gp_kthread)
  1671. return;
  1672. swake_up(&rsp->gp_wq);
  1673. }
  1674. /*
  1675. * If there is room, assign a ->completed number to any callbacks on
  1676. * this CPU that have not already been assigned. Also accelerate any
  1677. * callbacks that were previously assigned a ->completed number that has
  1678. * since proven to be too conservative, which can happen if callbacks get
  1679. * assigned a ->completed number while RCU is idle, but with reference to
  1680. * a non-root rcu_node structure. This function is idempotent, so it does
  1681. * not hurt to call it repeatedly. Returns an flag saying that we should
  1682. * awaken the RCU grace-period kthread.
  1683. *
  1684. * The caller must hold rnp->lock with interrupts disabled.
  1685. */
  1686. static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1687. struct rcu_data *rdp)
  1688. {
  1689. bool ret = false;
  1690. lockdep_assert_held(&rnp->lock);
  1691. /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
  1692. if (!rcu_segcblist_pend_cbs(&rdp->cblist))
  1693. return false;
  1694. /*
  1695. * Callbacks are often registered with incomplete grace-period
  1696. * information. Something about the fact that getting exact
  1697. * information requires acquiring a global lock... RCU therefore
  1698. * makes a conservative estimate of the grace period number at which
  1699. * a given callback will become ready to invoke. The following
  1700. * code checks this estimate and improves it when possible, thus
  1701. * accelerating callback invocation to an earlier grace-period
  1702. * number.
  1703. */
  1704. if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
  1705. ret = rcu_start_future_gp(rnp, rdp, NULL);
  1706. /* Trace depending on how much we were able to accelerate. */
  1707. if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
  1708. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1709. else
  1710. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1711. return ret;
  1712. }
  1713. /*
  1714. * Move any callbacks whose grace period has completed to the
  1715. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1716. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1717. * sublist. This function is idempotent, so it does not hurt to
  1718. * invoke it repeatedly. As long as it is not invoked -too- often...
  1719. * Returns true if the RCU grace-period kthread needs to be awakened.
  1720. *
  1721. * The caller must hold rnp->lock with interrupts disabled.
  1722. */
  1723. static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1724. struct rcu_data *rdp)
  1725. {
  1726. lockdep_assert_held(&rnp->lock);
  1727. /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
  1728. if (!rcu_segcblist_pend_cbs(&rdp->cblist))
  1729. return false;
  1730. /*
  1731. * Find all callbacks whose ->completed numbers indicate that they
  1732. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1733. */
  1734. rcu_segcblist_advance(&rdp->cblist, rnp->completed);
  1735. /* Classify any remaining callbacks. */
  1736. return rcu_accelerate_cbs(rsp, rnp, rdp);
  1737. }
  1738. /*
  1739. * Update CPU-local rcu_data state to record the beginnings and ends of
  1740. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1741. * structure corresponding to the current CPU, and must have irqs disabled.
  1742. * Returns true if the grace-period kthread needs to be awakened.
  1743. */
  1744. static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
  1745. struct rcu_data *rdp)
  1746. {
  1747. bool ret;
  1748. bool need_gp;
  1749. lockdep_assert_held(&rnp->lock);
  1750. /* Handle the ends of any preceding grace periods first. */
  1751. if (rdp->completed == rnp->completed &&
  1752. !unlikely(READ_ONCE(rdp->gpwrap))) {
  1753. /* No grace period end, so just accelerate recent callbacks. */
  1754. ret = rcu_accelerate_cbs(rsp, rnp, rdp);
  1755. } else {
  1756. /* Advance callbacks. */
  1757. ret = rcu_advance_cbs(rsp, rnp, rdp);
  1758. /* Remember that we saw this grace-period completion. */
  1759. rdp->completed = rnp->completed;
  1760. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1761. }
  1762. if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
  1763. /*
  1764. * If the current grace period is waiting for this CPU,
  1765. * set up to detect a quiescent state, otherwise don't
  1766. * go looking for one.
  1767. */
  1768. rdp->gpnum = rnp->gpnum;
  1769. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1770. need_gp = !!(rnp->qsmask & rdp->grpmask);
  1771. rdp->cpu_no_qs.b.norm = need_gp;
  1772. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
  1773. rdp->core_needs_qs = need_gp;
  1774. zero_cpu_stall_ticks(rdp);
  1775. WRITE_ONCE(rdp->gpwrap, false);
  1776. rcu_gpnum_ovf(rnp, rdp);
  1777. }
  1778. return ret;
  1779. }
  1780. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1781. {
  1782. unsigned long flags;
  1783. bool needwake;
  1784. struct rcu_node *rnp;
  1785. local_irq_save(flags);
  1786. rnp = rdp->mynode;
  1787. if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
  1788. rdp->completed == READ_ONCE(rnp->completed) &&
  1789. !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
  1790. !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
  1791. local_irq_restore(flags);
  1792. return;
  1793. }
  1794. needwake = __note_gp_changes(rsp, rnp, rdp);
  1795. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  1796. if (needwake)
  1797. rcu_gp_kthread_wake(rsp);
  1798. }
  1799. static void rcu_gp_slow(struct rcu_state *rsp, int delay)
  1800. {
  1801. if (delay > 0 &&
  1802. !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
  1803. schedule_timeout_uninterruptible(delay);
  1804. }
  1805. /*
  1806. * Initialize a new grace period. Return false if no grace period required.
  1807. */
  1808. static bool rcu_gp_init(struct rcu_state *rsp)
  1809. {
  1810. unsigned long oldmask;
  1811. struct rcu_data *rdp;
  1812. struct rcu_node *rnp = rcu_get_root(rsp);
  1813. WRITE_ONCE(rsp->gp_activity, jiffies);
  1814. raw_spin_lock_irq_rcu_node(rnp);
  1815. if (!READ_ONCE(rsp->gp_flags)) {
  1816. /* Spurious wakeup, tell caller to go back to sleep. */
  1817. raw_spin_unlock_irq_rcu_node(rnp);
  1818. return false;
  1819. }
  1820. WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
  1821. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1822. /*
  1823. * Grace period already in progress, don't start another.
  1824. * Not supposed to be able to happen.
  1825. */
  1826. raw_spin_unlock_irq_rcu_node(rnp);
  1827. return false;
  1828. }
  1829. /* Advance to a new grace period and initialize state. */
  1830. record_gp_stall_check_time(rsp);
  1831. /* Record GP times before starting GP, hence smp_store_release(). */
  1832. smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
  1833. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1834. raw_spin_unlock_irq_rcu_node(rnp);
  1835. /*
  1836. * Apply per-leaf buffered online and offline operations to the
  1837. * rcu_node tree. Note that this new grace period need not wait
  1838. * for subsequent online CPUs, and that quiescent-state forcing
  1839. * will handle subsequent offline CPUs.
  1840. */
  1841. rcu_for_each_leaf_node(rsp, rnp) {
  1842. rcu_gp_slow(rsp, gp_preinit_delay);
  1843. raw_spin_lock_irq_rcu_node(rnp);
  1844. if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
  1845. !rnp->wait_blkd_tasks) {
  1846. /* Nothing to do on this leaf rcu_node structure. */
  1847. raw_spin_unlock_irq_rcu_node(rnp);
  1848. continue;
  1849. }
  1850. /* Record old state, apply changes to ->qsmaskinit field. */
  1851. oldmask = rnp->qsmaskinit;
  1852. rnp->qsmaskinit = rnp->qsmaskinitnext;
  1853. /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
  1854. if (!oldmask != !rnp->qsmaskinit) {
  1855. if (!oldmask) /* First online CPU for this rcu_node. */
  1856. rcu_init_new_rnp(rnp);
  1857. else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
  1858. rnp->wait_blkd_tasks = true;
  1859. else /* Last offline CPU and can propagate. */
  1860. rcu_cleanup_dead_rnp(rnp);
  1861. }
  1862. /*
  1863. * If all waited-on tasks from prior grace period are
  1864. * done, and if all this rcu_node structure's CPUs are
  1865. * still offline, propagate up the rcu_node tree and
  1866. * clear ->wait_blkd_tasks. Otherwise, if one of this
  1867. * rcu_node structure's CPUs has since come back online,
  1868. * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
  1869. * checks for this, so just call it unconditionally).
  1870. */
  1871. if (rnp->wait_blkd_tasks &&
  1872. (!rcu_preempt_has_tasks(rnp) ||
  1873. rnp->qsmaskinit)) {
  1874. rnp->wait_blkd_tasks = false;
  1875. rcu_cleanup_dead_rnp(rnp);
  1876. }
  1877. raw_spin_unlock_irq_rcu_node(rnp);
  1878. }
  1879. /*
  1880. * Set the quiescent-state-needed bits in all the rcu_node
  1881. * structures for all currently online CPUs in breadth-first order,
  1882. * starting from the root rcu_node structure, relying on the layout
  1883. * of the tree within the rsp->node[] array. Note that other CPUs
  1884. * will access only the leaves of the hierarchy, thus seeing that no
  1885. * grace period is in progress, at least until the corresponding
  1886. * leaf node has been initialized.
  1887. *
  1888. * The grace period cannot complete until the initialization
  1889. * process finishes, because this kthread handles both.
  1890. */
  1891. rcu_for_each_node_breadth_first(rsp, rnp) {
  1892. rcu_gp_slow(rsp, gp_init_delay);
  1893. raw_spin_lock_irq_rcu_node(rnp);
  1894. rdp = this_cpu_ptr(rsp->rda);
  1895. rcu_preempt_check_blocked_tasks(rnp);
  1896. rnp->qsmask = rnp->qsmaskinit;
  1897. WRITE_ONCE(rnp->gpnum, rsp->gpnum);
  1898. if (WARN_ON_ONCE(rnp->completed != rsp->completed))
  1899. WRITE_ONCE(rnp->completed, rsp->completed);
  1900. if (rnp == rdp->mynode)
  1901. (void)__note_gp_changes(rsp, rnp, rdp);
  1902. rcu_preempt_boost_start_gp(rnp);
  1903. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1904. rnp->level, rnp->grplo,
  1905. rnp->grphi, rnp->qsmask);
  1906. raw_spin_unlock_irq_rcu_node(rnp);
  1907. cond_resched_rcu_qs();
  1908. WRITE_ONCE(rsp->gp_activity, jiffies);
  1909. }
  1910. return true;
  1911. }
  1912. /*
  1913. * Helper function for swait_event_idle() wakeup at force-quiescent-state
  1914. * time.
  1915. */
  1916. static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
  1917. {
  1918. struct rcu_node *rnp = rcu_get_root(rsp);
  1919. /* Someone like call_rcu() requested a force-quiescent-state scan. */
  1920. *gfp = READ_ONCE(rsp->gp_flags);
  1921. if (*gfp & RCU_GP_FLAG_FQS)
  1922. return true;
  1923. /* The current grace period has completed. */
  1924. if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
  1925. return true;
  1926. return false;
  1927. }
  1928. /*
  1929. * Do one round of quiescent-state forcing.
  1930. */
  1931. static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
  1932. {
  1933. struct rcu_node *rnp = rcu_get_root(rsp);
  1934. WRITE_ONCE(rsp->gp_activity, jiffies);
  1935. rsp->n_force_qs++;
  1936. if (first_time) {
  1937. /* Collect dyntick-idle snapshots. */
  1938. force_qs_rnp(rsp, dyntick_save_progress_counter);
  1939. } else {
  1940. /* Handle dyntick-idle and offline CPUs. */
  1941. force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
  1942. }
  1943. /* Clear flag to prevent immediate re-entry. */
  1944. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1945. raw_spin_lock_irq_rcu_node(rnp);
  1946. WRITE_ONCE(rsp->gp_flags,
  1947. READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
  1948. raw_spin_unlock_irq_rcu_node(rnp);
  1949. }
  1950. }
  1951. /*
  1952. * Clean up after the old grace period.
  1953. */
  1954. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1955. {
  1956. unsigned long gp_duration;
  1957. bool needgp = false;
  1958. int nocb = 0;
  1959. struct rcu_data *rdp;
  1960. struct rcu_node *rnp = rcu_get_root(rsp);
  1961. struct swait_queue_head *sq;
  1962. WRITE_ONCE(rsp->gp_activity, jiffies);
  1963. raw_spin_lock_irq_rcu_node(rnp);
  1964. gp_duration = jiffies - rsp->gp_start;
  1965. if (gp_duration > rsp->gp_max)
  1966. rsp->gp_max = gp_duration;
  1967. /*
  1968. * We know the grace period is complete, but to everyone else
  1969. * it appears to still be ongoing. But it is also the case
  1970. * that to everyone else it looks like there is nothing that
  1971. * they can do to advance the grace period. It is therefore
  1972. * safe for us to drop the lock in order to mark the grace
  1973. * period as completed in all of the rcu_node structures.
  1974. */
  1975. raw_spin_unlock_irq_rcu_node(rnp);
  1976. /*
  1977. * Propagate new ->completed value to rcu_node structures so
  1978. * that other CPUs don't have to wait until the start of the next
  1979. * grace period to process their callbacks. This also avoids
  1980. * some nasty RCU grace-period initialization races by forcing
  1981. * the end of the current grace period to be completely recorded in
  1982. * all of the rcu_node structures before the beginning of the next
  1983. * grace period is recorded in any of the rcu_node structures.
  1984. */
  1985. rcu_for_each_node_breadth_first(rsp, rnp) {
  1986. raw_spin_lock_irq_rcu_node(rnp);
  1987. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  1988. WARN_ON_ONCE(rnp->qsmask);
  1989. WRITE_ONCE(rnp->completed, rsp->gpnum);
  1990. rdp = this_cpu_ptr(rsp->rda);
  1991. if (rnp == rdp->mynode)
  1992. needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
  1993. /* smp_mb() provided by prior unlock-lock pair. */
  1994. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1995. sq = rcu_nocb_gp_get(rnp);
  1996. raw_spin_unlock_irq_rcu_node(rnp);
  1997. rcu_nocb_gp_cleanup(sq);
  1998. cond_resched_rcu_qs();
  1999. WRITE_ONCE(rsp->gp_activity, jiffies);
  2000. rcu_gp_slow(rsp, gp_cleanup_delay);
  2001. }
  2002. rnp = rcu_get_root(rsp);
  2003. raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
  2004. rcu_nocb_gp_set(rnp, nocb);
  2005. /* Declare grace period done. */
  2006. WRITE_ONCE(rsp->completed, rsp->gpnum);
  2007. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  2008. rsp->gp_state = RCU_GP_IDLE;
  2009. rdp = this_cpu_ptr(rsp->rda);
  2010. /* Advance CBs to reduce false positives below. */
  2011. needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
  2012. if (needgp || cpu_needs_another_gp(rsp, rdp)) {
  2013. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  2014. trace_rcu_grace_period(rsp->name,
  2015. READ_ONCE(rsp->gpnum),
  2016. TPS("newreq"));
  2017. }
  2018. raw_spin_unlock_irq_rcu_node(rnp);
  2019. }
  2020. /*
  2021. * Body of kthread that handles grace periods.
  2022. */
  2023. static int __noreturn rcu_gp_kthread(void *arg)
  2024. {
  2025. bool first_gp_fqs;
  2026. int gf;
  2027. unsigned long j;
  2028. int ret;
  2029. struct rcu_state *rsp = arg;
  2030. struct rcu_node *rnp = rcu_get_root(rsp);
  2031. rcu_bind_gp_kthread();
  2032. for (;;) {
  2033. /* Handle grace-period start. */
  2034. for (;;) {
  2035. trace_rcu_grace_period(rsp->name,
  2036. READ_ONCE(rsp->gpnum),
  2037. TPS("reqwait"));
  2038. rsp->gp_state = RCU_GP_WAIT_GPS;
  2039. swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
  2040. RCU_GP_FLAG_INIT);
  2041. rsp->gp_state = RCU_GP_DONE_GPS;
  2042. /* Locking provides needed memory barrier. */
  2043. if (rcu_gp_init(rsp))
  2044. break;
  2045. cond_resched_rcu_qs();
  2046. WRITE_ONCE(rsp->gp_activity, jiffies);
  2047. WARN_ON(signal_pending(current));
  2048. trace_rcu_grace_period(rsp->name,
  2049. READ_ONCE(rsp->gpnum),
  2050. TPS("reqwaitsig"));
  2051. }
  2052. /* Handle quiescent-state forcing. */
  2053. first_gp_fqs = true;
  2054. j = jiffies_till_first_fqs;
  2055. if (j > HZ) {
  2056. j = HZ;
  2057. jiffies_till_first_fqs = HZ;
  2058. }
  2059. ret = 0;
  2060. for (;;) {
  2061. if (!ret) {
  2062. rsp->jiffies_force_qs = jiffies + j;
  2063. WRITE_ONCE(rsp->jiffies_kick_kthreads,
  2064. jiffies + 3 * j);
  2065. }
  2066. trace_rcu_grace_period(rsp->name,
  2067. READ_ONCE(rsp->gpnum),
  2068. TPS("fqswait"));
  2069. rsp->gp_state = RCU_GP_WAIT_FQS;
  2070. ret = swait_event_idle_timeout(rsp->gp_wq,
  2071. rcu_gp_fqs_check_wake(rsp, &gf), j);
  2072. rsp->gp_state = RCU_GP_DOING_FQS;
  2073. /* Locking provides needed memory barriers. */
  2074. /* If grace period done, leave loop. */
  2075. if (!READ_ONCE(rnp->qsmask) &&
  2076. !rcu_preempt_blocked_readers_cgp(rnp))
  2077. break;
  2078. /* If time for quiescent-state forcing, do it. */
  2079. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  2080. (gf & RCU_GP_FLAG_FQS)) {
  2081. trace_rcu_grace_period(rsp->name,
  2082. READ_ONCE(rsp->gpnum),
  2083. TPS("fqsstart"));
  2084. rcu_gp_fqs(rsp, first_gp_fqs);
  2085. first_gp_fqs = false;
  2086. trace_rcu_grace_period(rsp->name,
  2087. READ_ONCE(rsp->gpnum),
  2088. TPS("fqsend"));
  2089. cond_resched_rcu_qs();
  2090. WRITE_ONCE(rsp->gp_activity, jiffies);
  2091. ret = 0; /* Force full wait till next FQS. */
  2092. j = jiffies_till_next_fqs;
  2093. if (j > HZ) {
  2094. j = HZ;
  2095. jiffies_till_next_fqs = HZ;
  2096. } else if (j < 1) {
  2097. j = 1;
  2098. jiffies_till_next_fqs = 1;
  2099. }
  2100. } else {
  2101. /* Deal with stray signal. */
  2102. cond_resched_rcu_qs();
  2103. WRITE_ONCE(rsp->gp_activity, jiffies);
  2104. WARN_ON(signal_pending(current));
  2105. trace_rcu_grace_period(rsp->name,
  2106. READ_ONCE(rsp->gpnum),
  2107. TPS("fqswaitsig"));
  2108. ret = 1; /* Keep old FQS timing. */
  2109. j = jiffies;
  2110. if (time_after(jiffies, rsp->jiffies_force_qs))
  2111. j = 1;
  2112. else
  2113. j = rsp->jiffies_force_qs - j;
  2114. }
  2115. }
  2116. /* Handle grace-period end. */
  2117. rsp->gp_state = RCU_GP_CLEANUP;
  2118. rcu_gp_cleanup(rsp);
  2119. rsp->gp_state = RCU_GP_CLEANED;
  2120. }
  2121. }
  2122. /*
  2123. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  2124. * in preparation for detecting the next grace period. The caller must hold
  2125. * the root node's ->lock and hard irqs must be disabled.
  2126. *
  2127. * Note that it is legal for a dying CPU (which is marked as offline) to
  2128. * invoke this function. This can happen when the dying CPU reports its
  2129. * quiescent state.
  2130. *
  2131. * Returns true if the grace-period kthread must be awakened.
  2132. */
  2133. static bool
  2134. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  2135. struct rcu_data *rdp)
  2136. {
  2137. lockdep_assert_held(&rnp->lock);
  2138. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  2139. /*
  2140. * Either we have not yet spawned the grace-period
  2141. * task, this CPU does not need another grace period,
  2142. * or a grace period is already in progress.
  2143. * Either way, don't start a new grace period.
  2144. */
  2145. return false;
  2146. }
  2147. WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
  2148. trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
  2149. TPS("newreq"));
  2150. /*
  2151. * We can't do wakeups while holding the rnp->lock, as that
  2152. * could cause possible deadlocks with the rq->lock. Defer
  2153. * the wakeup to our caller.
  2154. */
  2155. return true;
  2156. }
  2157. /*
  2158. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  2159. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  2160. * is invoked indirectly from rcu_advance_cbs(), which would result in
  2161. * endless recursion -- or would do so if it wasn't for the self-deadlock
  2162. * that is encountered beforehand.
  2163. *
  2164. * Returns true if the grace-period kthread needs to be awakened.
  2165. */
  2166. static bool rcu_start_gp(struct rcu_state *rsp)
  2167. {
  2168. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  2169. struct rcu_node *rnp = rcu_get_root(rsp);
  2170. bool ret = false;
  2171. /*
  2172. * If there is no grace period in progress right now, any
  2173. * callbacks we have up to this point will be satisfied by the
  2174. * next grace period. Also, advancing the callbacks reduces the
  2175. * probability of false positives from cpu_needs_another_gp()
  2176. * resulting in pointless grace periods. So, advance callbacks
  2177. * then start the grace period!
  2178. */
  2179. ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
  2180. ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
  2181. return ret;
  2182. }
  2183. /*
  2184. * Report a full set of quiescent states to the specified rcu_state data
  2185. * structure. Invoke rcu_gp_kthread_wake() to awaken the grace-period
  2186. * kthread if another grace period is required. Whether we wake
  2187. * the grace-period kthread or it awakens itself for the next round
  2188. * of quiescent-state forcing, that kthread will clean up after the
  2189. * just-completed grace period. Note that the caller must hold rnp->lock,
  2190. * which is released before return.
  2191. */
  2192. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  2193. __releases(rcu_get_root(rsp)->lock)
  2194. {
  2195. lockdep_assert_held(&rcu_get_root(rsp)->lock);
  2196. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  2197. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2198. raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
  2199. rcu_gp_kthread_wake(rsp);
  2200. }
  2201. /*
  2202. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  2203. * Allows quiescent states for a group of CPUs to be reported at one go
  2204. * to the specified rcu_node structure, though all the CPUs in the group
  2205. * must be represented by the same rcu_node structure (which need not be a
  2206. * leaf rcu_node structure, though it often will be). The gps parameter
  2207. * is the grace-period snapshot, which means that the quiescent states
  2208. * are valid only if rnp->gpnum is equal to gps. That structure's lock
  2209. * must be held upon entry, and it is released before return.
  2210. */
  2211. static void
  2212. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  2213. struct rcu_node *rnp, unsigned long gps, unsigned long flags)
  2214. __releases(rnp->lock)
  2215. {
  2216. unsigned long oldmask = 0;
  2217. struct rcu_node *rnp_c;
  2218. lockdep_assert_held(&rnp->lock);
  2219. /* Walk up the rcu_node hierarchy. */
  2220. for (;;) {
  2221. if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
  2222. /*
  2223. * Our bit has already been cleared, or the
  2224. * relevant grace period is already over, so done.
  2225. */
  2226. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2227. return;
  2228. }
  2229. WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
  2230. WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
  2231. rcu_preempt_blocked_readers_cgp(rnp));
  2232. rnp->qsmask &= ~mask;
  2233. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  2234. mask, rnp->qsmask, rnp->level,
  2235. rnp->grplo, rnp->grphi,
  2236. !!rnp->gp_tasks);
  2237. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2238. /* Other bits still set at this level, so done. */
  2239. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2240. return;
  2241. }
  2242. mask = rnp->grpmask;
  2243. if (rnp->parent == NULL) {
  2244. /* No more levels. Exit loop holding root lock. */
  2245. break;
  2246. }
  2247. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2248. rnp_c = rnp;
  2249. rnp = rnp->parent;
  2250. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2251. oldmask = rnp_c->qsmask;
  2252. }
  2253. /*
  2254. * Get here if we are the last CPU to pass through a quiescent
  2255. * state for this grace period. Invoke rcu_report_qs_rsp()
  2256. * to clean up and start the next grace period if one is needed.
  2257. */
  2258. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  2259. }
  2260. /*
  2261. * Record a quiescent state for all tasks that were previously queued
  2262. * on the specified rcu_node structure and that were blocking the current
  2263. * RCU grace period. The caller must hold the specified rnp->lock with
  2264. * irqs disabled, and this lock is released upon return, but irqs remain
  2265. * disabled.
  2266. */
  2267. static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
  2268. struct rcu_node *rnp, unsigned long flags)
  2269. __releases(rnp->lock)
  2270. {
  2271. unsigned long gps;
  2272. unsigned long mask;
  2273. struct rcu_node *rnp_p;
  2274. lockdep_assert_held(&rnp->lock);
  2275. if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
  2276. rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  2277. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2278. return; /* Still need more quiescent states! */
  2279. }
  2280. rnp_p = rnp->parent;
  2281. if (rnp_p == NULL) {
  2282. /*
  2283. * Only one rcu_node structure in the tree, so don't
  2284. * try to report up to its nonexistent parent!
  2285. */
  2286. rcu_report_qs_rsp(rsp, flags);
  2287. return;
  2288. }
  2289. /* Report up the rest of the hierarchy, tracking current ->gpnum. */
  2290. gps = rnp->gpnum;
  2291. mask = rnp->grpmask;
  2292. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  2293. raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
  2294. rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
  2295. }
  2296. /*
  2297. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  2298. * structure. This must be called from the specified CPU.
  2299. */
  2300. static void
  2301. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  2302. {
  2303. unsigned long flags;
  2304. unsigned long mask;
  2305. bool needwake;
  2306. struct rcu_node *rnp;
  2307. rnp = rdp->mynode;
  2308. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2309. if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
  2310. rnp->completed == rnp->gpnum || rdp->gpwrap) {
  2311. /*
  2312. * The grace period in which this quiescent state was
  2313. * recorded has ended, so don't report it upwards.
  2314. * We will instead need a new quiescent state that lies
  2315. * within the current grace period.
  2316. */
  2317. rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
  2318. rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
  2319. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2320. return;
  2321. }
  2322. mask = rdp->grpmask;
  2323. if ((rnp->qsmask & mask) == 0) {
  2324. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2325. } else {
  2326. rdp->core_needs_qs = false;
  2327. /*
  2328. * This GP can't end until cpu checks in, so all of our
  2329. * callbacks can be processed during the next GP.
  2330. */
  2331. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  2332. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2333. /* ^^^ Released rnp->lock */
  2334. if (needwake)
  2335. rcu_gp_kthread_wake(rsp);
  2336. }
  2337. }
  2338. /*
  2339. * Check to see if there is a new grace period of which this CPU
  2340. * is not yet aware, and if so, set up local rcu_data state for it.
  2341. * Otherwise, see if this CPU has just passed through its first
  2342. * quiescent state for this grace period, and record that fact if so.
  2343. */
  2344. static void
  2345. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  2346. {
  2347. /* Check for grace-period ends and beginnings. */
  2348. note_gp_changes(rsp, rdp);
  2349. /*
  2350. * Does this CPU still need to do its part for current grace period?
  2351. * If no, return and let the other CPUs do their part as well.
  2352. */
  2353. if (!rdp->core_needs_qs)
  2354. return;
  2355. /*
  2356. * Was there a quiescent state since the beginning of the grace
  2357. * period? If no, then exit and wait for the next call.
  2358. */
  2359. if (rdp->cpu_no_qs.b.norm)
  2360. return;
  2361. /*
  2362. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  2363. * judge of that).
  2364. */
  2365. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  2366. }
  2367. /*
  2368. * Trace the fact that this CPU is going offline.
  2369. */
  2370. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  2371. {
  2372. RCU_TRACE(unsigned long mask;)
  2373. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
  2374. RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
  2375. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2376. return;
  2377. RCU_TRACE(mask = rdp->grpmask;)
  2378. trace_rcu_grace_period(rsp->name,
  2379. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  2380. TPS("cpuofl"));
  2381. }
  2382. /*
  2383. * All CPUs for the specified rcu_node structure have gone offline,
  2384. * and all tasks that were preempted within an RCU read-side critical
  2385. * section while running on one of those CPUs have since exited their RCU
  2386. * read-side critical section. Some other CPU is reporting this fact with
  2387. * the specified rcu_node structure's ->lock held and interrupts disabled.
  2388. * This function therefore goes up the tree of rcu_node structures,
  2389. * clearing the corresponding bits in the ->qsmaskinit fields. Note that
  2390. * the leaf rcu_node structure's ->qsmaskinit field has already been
  2391. * updated
  2392. *
  2393. * This function does check that the specified rcu_node structure has
  2394. * all CPUs offline and no blocked tasks, so it is OK to invoke it
  2395. * prematurely. That said, invoking it after the fact will cost you
  2396. * a needless lock acquisition. So once it has done its work, don't
  2397. * invoke it again.
  2398. */
  2399. static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
  2400. {
  2401. long mask;
  2402. struct rcu_node *rnp = rnp_leaf;
  2403. lockdep_assert_held(&rnp->lock);
  2404. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
  2405. rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
  2406. return;
  2407. for (;;) {
  2408. mask = rnp->grpmask;
  2409. rnp = rnp->parent;
  2410. if (!rnp)
  2411. break;
  2412. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  2413. rnp->qsmaskinit &= ~mask;
  2414. rnp->qsmask &= ~mask;
  2415. if (rnp->qsmaskinit) {
  2416. raw_spin_unlock_rcu_node(rnp);
  2417. /* irqs remain disabled. */
  2418. return;
  2419. }
  2420. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  2421. }
  2422. }
  2423. /*
  2424. * The CPU has been completely removed, and some other CPU is reporting
  2425. * this fact from process context. Do the remainder of the cleanup.
  2426. * There can only be one CPU hotplug operation at a time, so no need for
  2427. * explicit locking.
  2428. */
  2429. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  2430. {
  2431. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2432. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2433. if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
  2434. return;
  2435. /* Adjust any no-longer-needed kthreads. */
  2436. rcu_boost_kthread_setaffinity(rnp, -1);
  2437. }
  2438. /*
  2439. * Invoke any RCU callbacks that have made it to the end of their grace
  2440. * period. Thottle as specified by rdp->blimit.
  2441. */
  2442. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  2443. {
  2444. unsigned long flags;
  2445. struct rcu_head *rhp;
  2446. struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
  2447. long bl, count;
  2448. /* If no callbacks are ready, just return. */
  2449. if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
  2450. trace_rcu_batch_start(rsp->name,
  2451. rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2452. rcu_segcblist_n_cbs(&rdp->cblist), 0);
  2453. trace_rcu_batch_end(rsp->name, 0,
  2454. !rcu_segcblist_empty(&rdp->cblist),
  2455. need_resched(), is_idle_task(current),
  2456. rcu_is_callbacks_kthread());
  2457. return;
  2458. }
  2459. /*
  2460. * Extract the list of ready callbacks, disabling to prevent
  2461. * races with call_rcu() from interrupt handlers. Leave the
  2462. * callback counts, as rcu_barrier() needs to be conservative.
  2463. */
  2464. local_irq_save(flags);
  2465. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  2466. bl = rdp->blimit;
  2467. trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2468. rcu_segcblist_n_cbs(&rdp->cblist), bl);
  2469. rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
  2470. local_irq_restore(flags);
  2471. /* Invoke callbacks. */
  2472. rhp = rcu_cblist_dequeue(&rcl);
  2473. for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
  2474. debug_rcu_head_unqueue(rhp);
  2475. if (__rcu_reclaim(rsp->name, rhp))
  2476. rcu_cblist_dequeued_lazy(&rcl);
  2477. /*
  2478. * Stop only if limit reached and CPU has something to do.
  2479. * Note: The rcl structure counts down from zero.
  2480. */
  2481. if (-rcl.len >= bl &&
  2482. (need_resched() ||
  2483. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  2484. break;
  2485. }
  2486. local_irq_save(flags);
  2487. count = -rcl.len;
  2488. trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
  2489. is_idle_task(current), rcu_is_callbacks_kthread());
  2490. /* Update counts and requeue any remaining callbacks. */
  2491. rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
  2492. smp_mb(); /* List handling before counting for rcu_barrier(). */
  2493. rdp->n_cbs_invoked += count;
  2494. rcu_segcblist_insert_count(&rdp->cblist, &rcl);
  2495. /* Reinstate batch limit if we have worked down the excess. */
  2496. count = rcu_segcblist_n_cbs(&rdp->cblist);
  2497. if (rdp->blimit == LONG_MAX && count <= qlowmark)
  2498. rdp->blimit = blimit;
  2499. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  2500. if (count == 0 && rdp->qlen_last_fqs_check != 0) {
  2501. rdp->qlen_last_fqs_check = 0;
  2502. rdp->n_force_qs_snap = rsp->n_force_qs;
  2503. } else if (count < rdp->qlen_last_fqs_check - qhimark)
  2504. rdp->qlen_last_fqs_check = count;
  2505. WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
  2506. local_irq_restore(flags);
  2507. /* Re-invoke RCU core processing if there are callbacks remaining. */
  2508. if (rcu_segcblist_ready_cbs(&rdp->cblist))
  2509. invoke_rcu_core();
  2510. }
  2511. /*
  2512. * Check to see if this CPU is in a non-context-switch quiescent state
  2513. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  2514. * Also schedule RCU core processing.
  2515. *
  2516. * This function must be called from hardirq context. It is normally
  2517. * invoked from the scheduling-clock interrupt.
  2518. */
  2519. void rcu_check_callbacks(int user)
  2520. {
  2521. trace_rcu_utilization(TPS("Start scheduler-tick"));
  2522. increment_cpu_stall_ticks();
  2523. if (user || rcu_is_cpu_rrupt_from_idle()) {
  2524. /*
  2525. * Get here if this CPU took its interrupt from user
  2526. * mode or from the idle loop, and if this is not a
  2527. * nested interrupt. In this case, the CPU is in
  2528. * a quiescent state, so note it.
  2529. *
  2530. * No memory barrier is required here because both
  2531. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  2532. * variables that other CPUs neither access nor modify,
  2533. * at least not while the corresponding CPU is online.
  2534. */
  2535. rcu_sched_qs();
  2536. rcu_bh_qs();
  2537. } else if (!in_softirq()) {
  2538. /*
  2539. * Get here if this CPU did not take its interrupt from
  2540. * softirq, in other words, if it is not interrupting
  2541. * a rcu_bh read-side critical section. This is an _bh
  2542. * critical section, so note it.
  2543. */
  2544. rcu_bh_qs();
  2545. }
  2546. rcu_preempt_check_callbacks();
  2547. if (rcu_pending())
  2548. invoke_rcu_core();
  2549. if (user)
  2550. rcu_note_voluntary_context_switch(current);
  2551. trace_rcu_utilization(TPS("End scheduler-tick"));
  2552. }
  2553. /*
  2554. * Scan the leaf rcu_node structures, processing dyntick state for any that
  2555. * have not yet encountered a quiescent state, using the function specified.
  2556. * Also initiate boosting for any threads blocked on the root rcu_node.
  2557. *
  2558. * The caller must have suppressed start of new grace periods.
  2559. */
  2560. static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
  2561. {
  2562. int cpu;
  2563. unsigned long flags;
  2564. unsigned long mask;
  2565. struct rcu_node *rnp;
  2566. rcu_for_each_leaf_node(rsp, rnp) {
  2567. cond_resched_rcu_qs();
  2568. mask = 0;
  2569. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  2570. if (rnp->qsmask == 0) {
  2571. if (rcu_state_p == &rcu_sched_state ||
  2572. rsp != rcu_state_p ||
  2573. rcu_preempt_blocked_readers_cgp(rnp)) {
  2574. /*
  2575. * No point in scanning bits because they
  2576. * are all zero. But we might need to
  2577. * priority-boost blocked readers.
  2578. */
  2579. rcu_initiate_boost(rnp, flags);
  2580. /* rcu_initiate_boost() releases rnp->lock */
  2581. continue;
  2582. }
  2583. if (rnp->parent &&
  2584. (rnp->parent->qsmask & rnp->grpmask)) {
  2585. /*
  2586. * Race between grace-period
  2587. * initialization and task exiting RCU
  2588. * read-side critical section: Report.
  2589. */
  2590. rcu_report_unblock_qs_rnp(rsp, rnp, flags);
  2591. /* rcu_report_unblock_qs_rnp() rlses ->lock */
  2592. continue;
  2593. }
  2594. }
  2595. for_each_leaf_node_possible_cpu(rnp, cpu) {
  2596. unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
  2597. if ((rnp->qsmask & bit) != 0) {
  2598. if (f(per_cpu_ptr(rsp->rda, cpu)))
  2599. mask |= bit;
  2600. }
  2601. }
  2602. if (mask != 0) {
  2603. /* Idle/offline CPUs, report (releases rnp->lock. */
  2604. rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
  2605. } else {
  2606. /* Nothing to do here, so just drop the lock. */
  2607. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  2608. }
  2609. }
  2610. }
  2611. /*
  2612. * Force quiescent states on reluctant CPUs, and also detect which
  2613. * CPUs are in dyntick-idle mode.
  2614. */
  2615. static void force_quiescent_state(struct rcu_state *rsp)
  2616. {
  2617. unsigned long flags;
  2618. bool ret;
  2619. struct rcu_node *rnp;
  2620. struct rcu_node *rnp_old = NULL;
  2621. /* Funnel through hierarchy to reduce memory contention. */
  2622. rnp = __this_cpu_read(rsp->rda->mynode);
  2623. for (; rnp != NULL; rnp = rnp->parent) {
  2624. ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2625. !raw_spin_trylock(&rnp->fqslock);
  2626. if (rnp_old != NULL)
  2627. raw_spin_unlock(&rnp_old->fqslock);
  2628. if (ret) {
  2629. rsp->n_force_qs_lh++;
  2630. return;
  2631. }
  2632. rnp_old = rnp;
  2633. }
  2634. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2635. /* Reached the root of the rcu_node tree, acquire lock. */
  2636. raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
  2637. raw_spin_unlock(&rnp_old->fqslock);
  2638. if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2639. rsp->n_force_qs_lh++;
  2640. raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
  2641. return; /* Someone beat us to it. */
  2642. }
  2643. WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
  2644. raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
  2645. rcu_gp_kthread_wake(rsp);
  2646. }
  2647. /*
  2648. * This does the RCU core processing work for the specified rcu_state
  2649. * and rcu_data structures. This may be called only from the CPU to
  2650. * whom the rdp belongs.
  2651. */
  2652. static void
  2653. __rcu_process_callbacks(struct rcu_state *rsp)
  2654. {
  2655. unsigned long flags;
  2656. bool needwake;
  2657. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2658. WARN_ON_ONCE(!rdp->beenonline);
  2659. /* Update RCU state based on any recent quiescent states. */
  2660. rcu_check_quiescent_state(rsp, rdp);
  2661. /* Does this CPU require a not-yet-started grace period? */
  2662. local_irq_save(flags);
  2663. if (cpu_needs_another_gp(rsp, rdp)) {
  2664. raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
  2665. needwake = rcu_start_gp(rsp);
  2666. raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
  2667. if (needwake)
  2668. rcu_gp_kthread_wake(rsp);
  2669. } else {
  2670. local_irq_restore(flags);
  2671. }
  2672. /* If there are callbacks ready, invoke them. */
  2673. if (rcu_segcblist_ready_cbs(&rdp->cblist))
  2674. invoke_rcu_callbacks(rsp, rdp);
  2675. /* Do any needed deferred wakeups of rcuo kthreads. */
  2676. do_nocb_deferred_wakeup(rdp);
  2677. }
  2678. /*
  2679. * Do RCU core processing for the current CPU.
  2680. */
  2681. static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
  2682. {
  2683. struct rcu_state *rsp;
  2684. if (cpu_is_offline(smp_processor_id()))
  2685. return;
  2686. trace_rcu_utilization(TPS("Start RCU core"));
  2687. for_each_rcu_flavor(rsp)
  2688. __rcu_process_callbacks(rsp);
  2689. trace_rcu_utilization(TPS("End RCU core"));
  2690. }
  2691. /*
  2692. * Schedule RCU callback invocation. If the specified type of RCU
  2693. * does not support RCU priority boosting, just do a direct call,
  2694. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2695. * are running on the current CPU with softirqs disabled, the
  2696. * rcu_cpu_kthread_task cannot disappear out from under us.
  2697. */
  2698. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2699. {
  2700. if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
  2701. return;
  2702. if (likely(!rsp->boost)) {
  2703. rcu_do_batch(rsp, rdp);
  2704. return;
  2705. }
  2706. invoke_rcu_callbacks_kthread();
  2707. }
  2708. static void invoke_rcu_core(void)
  2709. {
  2710. if (cpu_online(smp_processor_id()))
  2711. raise_softirq(RCU_SOFTIRQ);
  2712. }
  2713. /*
  2714. * Handle any core-RCU processing required by a call_rcu() invocation.
  2715. */
  2716. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2717. struct rcu_head *head, unsigned long flags)
  2718. {
  2719. bool needwake;
  2720. /*
  2721. * If called from an extended quiescent state, invoke the RCU
  2722. * core in order to force a re-evaluation of RCU's idleness.
  2723. */
  2724. if (!rcu_is_watching())
  2725. invoke_rcu_core();
  2726. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2727. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2728. return;
  2729. /*
  2730. * Force the grace period if too many callbacks or too long waiting.
  2731. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2732. * if some other CPU has recently done so. Also, don't bother
  2733. * invoking force_quiescent_state() if the newly enqueued callback
  2734. * is the only one waiting for a grace period to complete.
  2735. */
  2736. if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
  2737. rdp->qlen_last_fqs_check + qhimark)) {
  2738. /* Are we ignoring a completed grace period? */
  2739. note_gp_changes(rsp, rdp);
  2740. /* Start a new grace period if one not already started. */
  2741. if (!rcu_gp_in_progress(rsp)) {
  2742. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2743. raw_spin_lock_rcu_node(rnp_root);
  2744. needwake = rcu_start_gp(rsp);
  2745. raw_spin_unlock_rcu_node(rnp_root);
  2746. if (needwake)
  2747. rcu_gp_kthread_wake(rsp);
  2748. } else {
  2749. /* Give the grace period a kick. */
  2750. rdp->blimit = LONG_MAX;
  2751. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2752. rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
  2753. force_quiescent_state(rsp);
  2754. rdp->n_force_qs_snap = rsp->n_force_qs;
  2755. rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
  2756. }
  2757. }
  2758. }
  2759. /*
  2760. * RCU callback function to leak a callback.
  2761. */
  2762. static void rcu_leak_callback(struct rcu_head *rhp)
  2763. {
  2764. }
  2765. /*
  2766. * Helper function for call_rcu() and friends. The cpu argument will
  2767. * normally be -1, indicating "currently running CPU". It may specify
  2768. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2769. * is expected to specify a CPU.
  2770. */
  2771. static void
  2772. __call_rcu(struct rcu_head *head, rcu_callback_t func,
  2773. struct rcu_state *rsp, int cpu, bool lazy)
  2774. {
  2775. unsigned long flags;
  2776. struct rcu_data *rdp;
  2777. /* Misaligned rcu_head! */
  2778. WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
  2779. if (debug_rcu_head_queue(head)) {
  2780. /*
  2781. * Probable double call_rcu(), so leak the callback.
  2782. * Use rcu:rcu_callback trace event to find the previous
  2783. * time callback was passed to __call_rcu().
  2784. */
  2785. WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
  2786. head, head->func);
  2787. WRITE_ONCE(head->func, rcu_leak_callback);
  2788. return;
  2789. }
  2790. head->func = func;
  2791. head->next = NULL;
  2792. local_irq_save(flags);
  2793. rdp = this_cpu_ptr(rsp->rda);
  2794. /* Add the callback to our list. */
  2795. if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
  2796. int offline;
  2797. if (cpu != -1)
  2798. rdp = per_cpu_ptr(rsp->rda, cpu);
  2799. if (likely(rdp->mynode)) {
  2800. /* Post-boot, so this should be for a no-CBs CPU. */
  2801. offline = !__call_rcu_nocb(rdp, head, lazy, flags);
  2802. WARN_ON_ONCE(offline);
  2803. /* Offline CPU, _call_rcu() illegal, leak callback. */
  2804. local_irq_restore(flags);
  2805. return;
  2806. }
  2807. /*
  2808. * Very early boot, before rcu_init(). Initialize if needed
  2809. * and then drop through to queue the callback.
  2810. */
  2811. BUG_ON(cpu != -1);
  2812. WARN_ON_ONCE(!rcu_is_watching());
  2813. if (rcu_segcblist_empty(&rdp->cblist))
  2814. rcu_segcblist_init(&rdp->cblist);
  2815. }
  2816. rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
  2817. if (!lazy)
  2818. rcu_idle_count_callbacks_posted();
  2819. if (__is_kfree_rcu_offset((unsigned long)func))
  2820. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2821. rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2822. rcu_segcblist_n_cbs(&rdp->cblist));
  2823. else
  2824. trace_rcu_callback(rsp->name, head,
  2825. rcu_segcblist_n_lazy_cbs(&rdp->cblist),
  2826. rcu_segcblist_n_cbs(&rdp->cblist));
  2827. /* Go handle any RCU core processing required. */
  2828. __call_rcu_core(rsp, rdp, head, flags);
  2829. local_irq_restore(flags);
  2830. }
  2831. /**
  2832. * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
  2833. * @head: structure to be used for queueing the RCU updates.
  2834. * @func: actual callback function to be invoked after the grace period
  2835. *
  2836. * The callback function will be invoked some time after a full grace
  2837. * period elapses, in other words after all currently executing RCU
  2838. * read-side critical sections have completed. call_rcu_sched() assumes
  2839. * that the read-side critical sections end on enabling of preemption
  2840. * or on voluntary preemption.
  2841. * RCU read-side critical sections are delimited by:
  2842. *
  2843. * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
  2844. * - anything that disables preemption.
  2845. *
  2846. * These may be nested.
  2847. *
  2848. * See the description of call_rcu() for more detailed information on
  2849. * memory ordering guarantees.
  2850. */
  2851. void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
  2852. {
  2853. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2854. }
  2855. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2856. /**
  2857. * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
  2858. * @head: structure to be used for queueing the RCU updates.
  2859. * @func: actual callback function to be invoked after the grace period
  2860. *
  2861. * The callback function will be invoked some time after a full grace
  2862. * period elapses, in other words after all currently executing RCU
  2863. * read-side critical sections have completed. call_rcu_bh() assumes
  2864. * that the read-side critical sections end on completion of a softirq
  2865. * handler. This means that read-side critical sections in process
  2866. * context must not be interrupted by softirqs. This interface is to be
  2867. * used when most of the read-side critical sections are in softirq context.
  2868. * RCU read-side critical sections are delimited by:
  2869. *
  2870. * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context, OR
  2871. * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
  2872. *
  2873. * These may be nested.
  2874. *
  2875. * See the description of call_rcu() for more detailed information on
  2876. * memory ordering guarantees.
  2877. */
  2878. void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
  2879. {
  2880. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2881. }
  2882. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2883. /*
  2884. * Queue an RCU callback for lazy invocation after a grace period.
  2885. * This will likely be later named something like "call_rcu_lazy()",
  2886. * but this change will require some way of tagging the lazy RCU
  2887. * callbacks in the list of pending callbacks. Until then, this
  2888. * function may only be called from __kfree_rcu().
  2889. */
  2890. void kfree_call_rcu(struct rcu_head *head,
  2891. rcu_callback_t func)
  2892. {
  2893. __call_rcu(head, func, rcu_state_p, -1, 1);
  2894. }
  2895. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  2896. /*
  2897. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2898. * any blocking grace-period wait automatically implies a grace period
  2899. * if there is only one CPU online at any point time during execution
  2900. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2901. * occasionally incorrectly indicate that there are multiple CPUs online
  2902. * when there was in fact only one the whole time, as this just adds
  2903. * some overhead: RCU still operates correctly.
  2904. */
  2905. static inline int rcu_blocking_is_gp(void)
  2906. {
  2907. int ret;
  2908. might_sleep(); /* Check for RCU read-side critical section. */
  2909. preempt_disable();
  2910. ret = num_online_cpus() <= 1;
  2911. preempt_enable();
  2912. return ret;
  2913. }
  2914. /**
  2915. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2916. *
  2917. * Control will return to the caller some time after a full rcu-sched
  2918. * grace period has elapsed, in other words after all currently executing
  2919. * rcu-sched read-side critical sections have completed. These read-side
  2920. * critical sections are delimited by rcu_read_lock_sched() and
  2921. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2922. * local_irq_disable(), and so on may be used in place of
  2923. * rcu_read_lock_sched().
  2924. *
  2925. * This means that all preempt_disable code sequences, including NMI and
  2926. * non-threaded hardware-interrupt handlers, in progress on entry will
  2927. * have completed before this primitive returns. However, this does not
  2928. * guarantee that softirq handlers will have completed, since in some
  2929. * kernels, these handlers can run in process context, and can block.
  2930. *
  2931. * Note that this guarantee implies further memory-ordering guarantees.
  2932. * On systems with more than one CPU, when synchronize_sched() returns,
  2933. * each CPU is guaranteed to have executed a full memory barrier since the
  2934. * end of its last RCU-sched read-side critical section whose beginning
  2935. * preceded the call to synchronize_sched(). In addition, each CPU having
  2936. * an RCU read-side critical section that extends beyond the return from
  2937. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2938. * after the beginning of synchronize_sched() and before the beginning of
  2939. * that RCU read-side critical section. Note that these guarantees include
  2940. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2941. * that are executing in the kernel.
  2942. *
  2943. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2944. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2945. * to have executed a full memory barrier during the execution of
  2946. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2947. * again only if the system has more than one CPU).
  2948. */
  2949. void synchronize_sched(void)
  2950. {
  2951. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2952. lock_is_held(&rcu_lock_map) ||
  2953. lock_is_held(&rcu_sched_lock_map),
  2954. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2955. if (rcu_blocking_is_gp())
  2956. return;
  2957. if (rcu_gp_is_expedited())
  2958. synchronize_sched_expedited();
  2959. else
  2960. wait_rcu_gp(call_rcu_sched);
  2961. }
  2962. EXPORT_SYMBOL_GPL(synchronize_sched);
  2963. /**
  2964. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2965. *
  2966. * Control will return to the caller some time after a full rcu_bh grace
  2967. * period has elapsed, in other words after all currently executing rcu_bh
  2968. * read-side critical sections have completed. RCU read-side critical
  2969. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2970. * and may be nested.
  2971. *
  2972. * See the description of synchronize_sched() for more detailed information
  2973. * on memory ordering guarantees.
  2974. */
  2975. void synchronize_rcu_bh(void)
  2976. {
  2977. RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
  2978. lock_is_held(&rcu_lock_map) ||
  2979. lock_is_held(&rcu_sched_lock_map),
  2980. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2981. if (rcu_blocking_is_gp())
  2982. return;
  2983. if (rcu_gp_is_expedited())
  2984. synchronize_rcu_bh_expedited();
  2985. else
  2986. wait_rcu_gp(call_rcu_bh);
  2987. }
  2988. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2989. /**
  2990. * get_state_synchronize_rcu - Snapshot current RCU state
  2991. *
  2992. * Returns a cookie that is used by a later call to cond_synchronize_rcu()
  2993. * to determine whether or not a full grace period has elapsed in the
  2994. * meantime.
  2995. */
  2996. unsigned long get_state_synchronize_rcu(void)
  2997. {
  2998. /*
  2999. * Any prior manipulation of RCU-protected data must happen
  3000. * before the load from ->gpnum.
  3001. */
  3002. smp_mb(); /* ^^^ */
  3003. /*
  3004. * Make sure this load happens before the purportedly
  3005. * time-consuming work between get_state_synchronize_rcu()
  3006. * and cond_synchronize_rcu().
  3007. */
  3008. return smp_load_acquire(&rcu_state_p->gpnum);
  3009. }
  3010. EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
  3011. /**
  3012. * cond_synchronize_rcu - Conditionally wait for an RCU grace period
  3013. *
  3014. * @oldstate: return value from earlier call to get_state_synchronize_rcu()
  3015. *
  3016. * If a full RCU grace period has elapsed since the earlier call to
  3017. * get_state_synchronize_rcu(), just return. Otherwise, invoke
  3018. * synchronize_rcu() to wait for a full grace period.
  3019. *
  3020. * Yes, this function does not take counter wrap into account. But
  3021. * counter wrap is harmless. If the counter wraps, we have waited for
  3022. * more than 2 billion grace periods (and way more on a 64-bit system!),
  3023. * so waiting for one additional grace period should be just fine.
  3024. */
  3025. void cond_synchronize_rcu(unsigned long oldstate)
  3026. {
  3027. unsigned long newstate;
  3028. /*
  3029. * Ensure that this load happens before any RCU-destructive
  3030. * actions the caller might carry out after we return.
  3031. */
  3032. newstate = smp_load_acquire(&rcu_state_p->completed);
  3033. if (ULONG_CMP_GE(oldstate, newstate))
  3034. synchronize_rcu();
  3035. }
  3036. EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
  3037. /**
  3038. * get_state_synchronize_sched - Snapshot current RCU-sched state
  3039. *
  3040. * Returns a cookie that is used by a later call to cond_synchronize_sched()
  3041. * to determine whether or not a full grace period has elapsed in the
  3042. * meantime.
  3043. */
  3044. unsigned long get_state_synchronize_sched(void)
  3045. {
  3046. /*
  3047. * Any prior manipulation of RCU-protected data must happen
  3048. * before the load from ->gpnum.
  3049. */
  3050. smp_mb(); /* ^^^ */
  3051. /*
  3052. * Make sure this load happens before the purportedly
  3053. * time-consuming work between get_state_synchronize_sched()
  3054. * and cond_synchronize_sched().
  3055. */
  3056. return smp_load_acquire(&rcu_sched_state.gpnum);
  3057. }
  3058. EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
  3059. /**
  3060. * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
  3061. *
  3062. * @oldstate: return value from earlier call to get_state_synchronize_sched()
  3063. *
  3064. * If a full RCU-sched grace period has elapsed since the earlier call to
  3065. * get_state_synchronize_sched(), just return. Otherwise, invoke
  3066. * synchronize_sched() to wait for a full grace period.
  3067. *
  3068. * Yes, this function does not take counter wrap into account. But
  3069. * counter wrap is harmless. If the counter wraps, we have waited for
  3070. * more than 2 billion grace periods (and way more on a 64-bit system!),
  3071. * so waiting for one additional grace period should be just fine.
  3072. */
  3073. void cond_synchronize_sched(unsigned long oldstate)
  3074. {
  3075. unsigned long newstate;
  3076. /*
  3077. * Ensure that this load happens before any RCU-destructive
  3078. * actions the caller might carry out after we return.
  3079. */
  3080. newstate = smp_load_acquire(&rcu_sched_state.completed);
  3081. if (ULONG_CMP_GE(oldstate, newstate))
  3082. synchronize_sched();
  3083. }
  3084. EXPORT_SYMBOL_GPL(cond_synchronize_sched);
  3085. /*
  3086. * Check to see if there is any immediate RCU-related work to be done
  3087. * by the current CPU, for the specified type of RCU, returning 1 if so.
  3088. * The checks are in order of increasing expense: checks that can be
  3089. * carried out against CPU-local state are performed first. However,
  3090. * we must check for CPU stalls first, else we might not get a chance.
  3091. */
  3092. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  3093. {
  3094. struct rcu_node *rnp = rdp->mynode;
  3095. rdp->n_rcu_pending++;
  3096. /* Check for CPU stalls, if enabled. */
  3097. check_cpu_stall(rsp, rdp);
  3098. /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
  3099. if (rcu_nohz_full_cpu(rsp))
  3100. return 0;
  3101. /* Is the RCU core waiting for a quiescent state from this CPU? */
  3102. if (rcu_scheduler_fully_active &&
  3103. rdp->core_needs_qs && rdp->cpu_no_qs.b.norm &&
  3104. rdp->rcu_qs_ctr_snap == __this_cpu_read(rcu_dynticks.rcu_qs_ctr)) {
  3105. rdp->n_rp_core_needs_qs++;
  3106. } else if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm) {
  3107. rdp->n_rp_report_qs++;
  3108. return 1;
  3109. }
  3110. /* Does this CPU have callbacks ready to invoke? */
  3111. if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
  3112. rdp->n_rp_cb_ready++;
  3113. return 1;
  3114. }
  3115. /* Has RCU gone idle with this CPU needing another grace period? */
  3116. if (cpu_needs_another_gp(rsp, rdp)) {
  3117. rdp->n_rp_cpu_needs_gp++;
  3118. return 1;
  3119. }
  3120. /* Has another RCU grace period completed? */
  3121. if (READ_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  3122. rdp->n_rp_gp_completed++;
  3123. return 1;
  3124. }
  3125. /* Has a new RCU grace period started? */
  3126. if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
  3127. unlikely(READ_ONCE(rdp->gpwrap))) { /* outside lock */
  3128. rdp->n_rp_gp_started++;
  3129. return 1;
  3130. }
  3131. /* Does this CPU need a deferred NOCB wakeup? */
  3132. if (rcu_nocb_need_deferred_wakeup(rdp)) {
  3133. rdp->n_rp_nocb_defer_wakeup++;
  3134. return 1;
  3135. }
  3136. /* nothing to do */
  3137. rdp->n_rp_need_nothing++;
  3138. return 0;
  3139. }
  3140. /*
  3141. * Check to see if there is any immediate RCU-related work to be done
  3142. * by the current CPU, returning 1 if so. This function is part of the
  3143. * RCU implementation; it is -not- an exported member of the RCU API.
  3144. */
  3145. static int rcu_pending(void)
  3146. {
  3147. struct rcu_state *rsp;
  3148. for_each_rcu_flavor(rsp)
  3149. if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
  3150. return 1;
  3151. return 0;
  3152. }
  3153. /*
  3154. * Return true if the specified CPU has any callback. If all_lazy is
  3155. * non-NULL, store an indication of whether all callbacks are lazy.
  3156. * (If there are no callbacks, all of them are deemed to be lazy.)
  3157. */
  3158. static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
  3159. {
  3160. bool al = true;
  3161. bool hc = false;
  3162. struct rcu_data *rdp;
  3163. struct rcu_state *rsp;
  3164. for_each_rcu_flavor(rsp) {
  3165. rdp = this_cpu_ptr(rsp->rda);
  3166. if (rcu_segcblist_empty(&rdp->cblist))
  3167. continue;
  3168. hc = true;
  3169. if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
  3170. al = false;
  3171. break;
  3172. }
  3173. }
  3174. if (all_lazy)
  3175. *all_lazy = al;
  3176. return hc;
  3177. }
  3178. /*
  3179. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  3180. * the compiler is expected to optimize this away.
  3181. */
  3182. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  3183. int cpu, unsigned long done)
  3184. {
  3185. trace_rcu_barrier(rsp->name, s, cpu,
  3186. atomic_read(&rsp->barrier_cpu_count), done);
  3187. }
  3188. /*
  3189. * RCU callback function for _rcu_barrier(). If we are last, wake
  3190. * up the task executing _rcu_barrier().
  3191. */
  3192. static void rcu_barrier_callback(struct rcu_head *rhp)
  3193. {
  3194. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  3195. struct rcu_state *rsp = rdp->rsp;
  3196. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  3197. _rcu_barrier_trace(rsp, TPS("LastCB"), -1,
  3198. rsp->barrier_sequence);
  3199. complete(&rsp->barrier_completion);
  3200. } else {
  3201. _rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
  3202. }
  3203. }
  3204. /*
  3205. * Called with preemption disabled, and from cross-cpu IRQ context.
  3206. */
  3207. static void rcu_barrier_func(void *type)
  3208. {
  3209. struct rcu_state *rsp = type;
  3210. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  3211. _rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
  3212. rdp->barrier_head.func = rcu_barrier_callback;
  3213. debug_rcu_head_queue(&rdp->barrier_head);
  3214. if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
  3215. atomic_inc(&rsp->barrier_cpu_count);
  3216. } else {
  3217. debug_rcu_head_unqueue(&rdp->barrier_head);
  3218. _rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
  3219. rsp->barrier_sequence);
  3220. }
  3221. }
  3222. /*
  3223. * Orchestrate the specified type of RCU barrier, waiting for all
  3224. * RCU callbacks of the specified type to complete.
  3225. */
  3226. static void _rcu_barrier(struct rcu_state *rsp)
  3227. {
  3228. int cpu;
  3229. struct rcu_data *rdp;
  3230. unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
  3231. _rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
  3232. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  3233. mutex_lock(&rsp->barrier_mutex);
  3234. /* Did someone else do our work for us? */
  3235. if (rcu_seq_done(&rsp->barrier_sequence, s)) {
  3236. _rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
  3237. rsp->barrier_sequence);
  3238. smp_mb(); /* caller's subsequent code after above check. */
  3239. mutex_unlock(&rsp->barrier_mutex);
  3240. return;
  3241. }
  3242. /* Mark the start of the barrier operation. */
  3243. rcu_seq_start(&rsp->barrier_sequence);
  3244. _rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
  3245. /*
  3246. * Initialize the count to one rather than to zero in order to
  3247. * avoid a too-soon return to zero in case of a short grace period
  3248. * (or preemption of this task). Exclude CPU-hotplug operations
  3249. * to ensure that no offline CPU has callbacks queued.
  3250. */
  3251. init_completion(&rsp->barrier_completion);
  3252. atomic_set(&rsp->barrier_cpu_count, 1);
  3253. get_online_cpus();
  3254. /*
  3255. * Force each CPU with callbacks to register a new callback.
  3256. * When that callback is invoked, we will know that all of the
  3257. * corresponding CPU's preceding callbacks have been invoked.
  3258. */
  3259. for_each_possible_cpu(cpu) {
  3260. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  3261. continue;
  3262. rdp = per_cpu_ptr(rsp->rda, cpu);
  3263. if (rcu_is_nocb_cpu(cpu)) {
  3264. if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
  3265. _rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
  3266. rsp->barrier_sequence);
  3267. } else {
  3268. _rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
  3269. rsp->barrier_sequence);
  3270. smp_mb__before_atomic();
  3271. atomic_inc(&rsp->barrier_cpu_count);
  3272. __call_rcu(&rdp->barrier_head,
  3273. rcu_barrier_callback, rsp, cpu, 0);
  3274. }
  3275. } else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
  3276. _rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
  3277. rsp->barrier_sequence);
  3278. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  3279. } else {
  3280. _rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
  3281. rsp->barrier_sequence);
  3282. }
  3283. }
  3284. put_online_cpus();
  3285. /*
  3286. * Now that we have an rcu_barrier_callback() callback on each
  3287. * CPU, and thus each counted, remove the initial count.
  3288. */
  3289. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  3290. complete(&rsp->barrier_completion);
  3291. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  3292. wait_for_completion(&rsp->barrier_completion);
  3293. /* Mark the end of the barrier operation. */
  3294. _rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
  3295. rcu_seq_end(&rsp->barrier_sequence);
  3296. /* Other rcu_barrier() invocations can now safely proceed. */
  3297. mutex_unlock(&rsp->barrier_mutex);
  3298. }
  3299. /**
  3300. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  3301. */
  3302. void rcu_barrier_bh(void)
  3303. {
  3304. _rcu_barrier(&rcu_bh_state);
  3305. }
  3306. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  3307. /**
  3308. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  3309. */
  3310. void rcu_barrier_sched(void)
  3311. {
  3312. _rcu_barrier(&rcu_sched_state);
  3313. }
  3314. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  3315. /*
  3316. * Propagate ->qsinitmask bits up the rcu_node tree to account for the
  3317. * first CPU in a given leaf rcu_node structure coming online. The caller
  3318. * must hold the corresponding leaf rcu_node ->lock with interrrupts
  3319. * disabled.
  3320. */
  3321. static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
  3322. {
  3323. long mask;
  3324. struct rcu_node *rnp = rnp_leaf;
  3325. lockdep_assert_held(&rnp->lock);
  3326. for (;;) {
  3327. mask = rnp->grpmask;
  3328. rnp = rnp->parent;
  3329. if (rnp == NULL)
  3330. return;
  3331. raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
  3332. rnp->qsmaskinit |= mask;
  3333. raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
  3334. }
  3335. }
  3336. /*
  3337. * Do boot-time initialization of a CPU's per-CPU RCU data.
  3338. */
  3339. static void __init
  3340. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  3341. {
  3342. unsigned long flags;
  3343. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3344. struct rcu_node *rnp = rcu_get_root(rsp);
  3345. /* Set up local state, ensuring consistent view of global state. */
  3346. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3347. rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
  3348. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  3349. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
  3350. WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
  3351. rdp->cpu = cpu;
  3352. rdp->rsp = rsp;
  3353. rcu_boot_init_nocb_percpu_data(rdp);
  3354. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3355. }
  3356. /*
  3357. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  3358. * offline event can be happening at a given time. Note also that we
  3359. * can accept some slop in the rsp->completed access due to the fact
  3360. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  3361. */
  3362. static void
  3363. rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
  3364. {
  3365. unsigned long flags;
  3366. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3367. struct rcu_node *rnp = rcu_get_root(rsp);
  3368. /* Set up local state, ensuring consistent view of global state. */
  3369. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3370. rdp->qlen_last_fqs_check = 0;
  3371. rdp->n_force_qs_snap = rsp->n_force_qs;
  3372. rdp->blimit = blimit;
  3373. if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
  3374. !init_nocb_callback_list(rdp))
  3375. rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
  3376. rdp->dynticks->dynticks_nesting = 1;
  3377. rcu_dynticks_eqs_online();
  3378. raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
  3379. /*
  3380. * Add CPU to leaf rcu_node pending-online bitmask. Any needed
  3381. * propagation up the rcu_node tree will happen at the beginning
  3382. * of the next grace period.
  3383. */
  3384. rnp = rdp->mynode;
  3385. raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
  3386. rdp->beenonline = true; /* We have now been online. */
  3387. rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
  3388. rdp->completed = rnp->completed;
  3389. rdp->cpu_no_qs.b.norm = true;
  3390. rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
  3391. rdp->core_needs_qs = false;
  3392. rdp->rcu_iw_pending = false;
  3393. rdp->rcu_iw_gpnum = rnp->gpnum - 1;
  3394. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  3395. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3396. }
  3397. /*
  3398. * Invoked early in the CPU-online process, when pretty much all
  3399. * services are available. The incoming CPU is not present.
  3400. */
  3401. int rcutree_prepare_cpu(unsigned int cpu)
  3402. {
  3403. struct rcu_state *rsp;
  3404. for_each_rcu_flavor(rsp)
  3405. rcu_init_percpu_data(cpu, rsp);
  3406. rcu_prepare_kthreads(cpu);
  3407. rcu_spawn_all_nocb_kthreads(cpu);
  3408. return 0;
  3409. }
  3410. /*
  3411. * Update RCU priority boot kthread affinity for CPU-hotplug changes.
  3412. */
  3413. static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
  3414. {
  3415. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  3416. rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
  3417. }
  3418. /*
  3419. * Near the end of the CPU-online process. Pretty much all services
  3420. * enabled, and the CPU is now very much alive.
  3421. */
  3422. int rcutree_online_cpu(unsigned int cpu)
  3423. {
  3424. unsigned long flags;
  3425. struct rcu_data *rdp;
  3426. struct rcu_node *rnp;
  3427. struct rcu_state *rsp;
  3428. for_each_rcu_flavor(rsp) {
  3429. rdp = per_cpu_ptr(rsp->rda, cpu);
  3430. rnp = rdp->mynode;
  3431. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3432. rnp->ffmask |= rdp->grpmask;
  3433. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3434. }
  3435. if (IS_ENABLED(CONFIG_TREE_SRCU))
  3436. srcu_online_cpu(cpu);
  3437. if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
  3438. return 0; /* Too early in boot for scheduler work. */
  3439. sync_sched_exp_online_cleanup(cpu);
  3440. rcutree_affinity_setting(cpu, -1);
  3441. return 0;
  3442. }
  3443. /*
  3444. * Near the beginning of the process. The CPU is still very much alive
  3445. * with pretty much all services enabled.
  3446. */
  3447. int rcutree_offline_cpu(unsigned int cpu)
  3448. {
  3449. unsigned long flags;
  3450. struct rcu_data *rdp;
  3451. struct rcu_node *rnp;
  3452. struct rcu_state *rsp;
  3453. for_each_rcu_flavor(rsp) {
  3454. rdp = per_cpu_ptr(rsp->rda, cpu);
  3455. rnp = rdp->mynode;
  3456. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3457. rnp->ffmask &= ~rdp->grpmask;
  3458. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3459. }
  3460. rcutree_affinity_setting(cpu, cpu);
  3461. if (IS_ENABLED(CONFIG_TREE_SRCU))
  3462. srcu_offline_cpu(cpu);
  3463. return 0;
  3464. }
  3465. /*
  3466. * Near the end of the offline process. We do only tracing here.
  3467. */
  3468. int rcutree_dying_cpu(unsigned int cpu)
  3469. {
  3470. struct rcu_state *rsp;
  3471. for_each_rcu_flavor(rsp)
  3472. rcu_cleanup_dying_cpu(rsp);
  3473. return 0;
  3474. }
  3475. /*
  3476. * The outgoing CPU is gone and we are running elsewhere.
  3477. */
  3478. int rcutree_dead_cpu(unsigned int cpu)
  3479. {
  3480. struct rcu_state *rsp;
  3481. for_each_rcu_flavor(rsp) {
  3482. rcu_cleanup_dead_cpu(cpu, rsp);
  3483. do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
  3484. }
  3485. return 0;
  3486. }
  3487. /*
  3488. * Mark the specified CPU as being online so that subsequent grace periods
  3489. * (both expedited and normal) will wait on it. Note that this means that
  3490. * incoming CPUs are not allowed to use RCU read-side critical sections
  3491. * until this function is called. Failing to observe this restriction
  3492. * will result in lockdep splats.
  3493. *
  3494. * Note that this function is special in that it is invoked directly
  3495. * from the incoming CPU rather than from the cpuhp_step mechanism.
  3496. * This is because this function must be invoked at a precise location.
  3497. */
  3498. void rcu_cpu_starting(unsigned int cpu)
  3499. {
  3500. unsigned long flags;
  3501. unsigned long mask;
  3502. int nbits;
  3503. unsigned long oldmask;
  3504. struct rcu_data *rdp;
  3505. struct rcu_node *rnp;
  3506. struct rcu_state *rsp;
  3507. for_each_rcu_flavor(rsp) {
  3508. rdp = per_cpu_ptr(rsp->rda, cpu);
  3509. rnp = rdp->mynode;
  3510. mask = rdp->grpmask;
  3511. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3512. rnp->qsmaskinitnext |= mask;
  3513. oldmask = rnp->expmaskinitnext;
  3514. rnp->expmaskinitnext |= mask;
  3515. oldmask ^= rnp->expmaskinitnext;
  3516. nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
  3517. /* Allow lockless access for expedited grace periods. */
  3518. smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
  3519. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3520. }
  3521. smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
  3522. }
  3523. #ifdef CONFIG_HOTPLUG_CPU
  3524. /*
  3525. * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
  3526. * function. We now remove it from the rcu_node tree's ->qsmaskinit
  3527. * bit masks.
  3528. */
  3529. static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
  3530. {
  3531. unsigned long flags;
  3532. unsigned long mask;
  3533. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3534. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  3535. /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
  3536. mask = rdp->grpmask;
  3537. raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
  3538. rnp->qsmaskinitnext &= ~mask;
  3539. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3540. }
  3541. /*
  3542. * The outgoing function has no further need of RCU, so remove it from
  3543. * the list of CPUs that RCU must track.
  3544. *
  3545. * Note that this function is special in that it is invoked directly
  3546. * from the outgoing CPU rather than from the cpuhp_step mechanism.
  3547. * This is because this function must be invoked at a precise location.
  3548. */
  3549. void rcu_report_dead(unsigned int cpu)
  3550. {
  3551. struct rcu_state *rsp;
  3552. /* QS for any half-done expedited RCU-sched GP. */
  3553. preempt_disable();
  3554. rcu_report_exp_rdp(&rcu_sched_state,
  3555. this_cpu_ptr(rcu_sched_state.rda), true);
  3556. preempt_enable();
  3557. for_each_rcu_flavor(rsp)
  3558. rcu_cleanup_dying_idle_cpu(cpu, rsp);
  3559. }
  3560. /* Migrate the dead CPU's callbacks to the current CPU. */
  3561. static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
  3562. {
  3563. unsigned long flags;
  3564. struct rcu_data *my_rdp;
  3565. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3566. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  3567. if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
  3568. return; /* No callbacks to migrate. */
  3569. local_irq_save(flags);
  3570. my_rdp = this_cpu_ptr(rsp->rda);
  3571. if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
  3572. local_irq_restore(flags);
  3573. return;
  3574. }
  3575. raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
  3576. rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
  3577. rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
  3578. rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
  3579. WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
  3580. !rcu_segcblist_n_cbs(&my_rdp->cblist));
  3581. raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
  3582. WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
  3583. !rcu_segcblist_empty(&rdp->cblist),
  3584. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
  3585. cpu, rcu_segcblist_n_cbs(&rdp->cblist),
  3586. rcu_segcblist_first_cb(&rdp->cblist));
  3587. }
  3588. /*
  3589. * The outgoing CPU has just passed through the dying-idle state,
  3590. * and we are being invoked from the CPU that was IPIed to continue the
  3591. * offline operation. We need to migrate the outgoing CPU's callbacks.
  3592. */
  3593. void rcutree_migrate_callbacks(int cpu)
  3594. {
  3595. struct rcu_state *rsp;
  3596. for_each_rcu_flavor(rsp)
  3597. rcu_migrate_callbacks(cpu, rsp);
  3598. }
  3599. #endif
  3600. /*
  3601. * On non-huge systems, use expedited RCU grace periods to make suspend
  3602. * and hibernation run faster.
  3603. */
  3604. static int rcu_pm_notify(struct notifier_block *self,
  3605. unsigned long action, void *hcpu)
  3606. {
  3607. switch (action) {
  3608. case PM_HIBERNATION_PREPARE:
  3609. case PM_SUSPEND_PREPARE:
  3610. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3611. rcu_expedite_gp();
  3612. break;
  3613. case PM_POST_HIBERNATION:
  3614. case PM_POST_SUSPEND:
  3615. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3616. rcu_unexpedite_gp();
  3617. break;
  3618. default:
  3619. break;
  3620. }
  3621. return NOTIFY_OK;
  3622. }
  3623. /*
  3624. * Spawn the kthreads that handle each RCU flavor's grace periods.
  3625. */
  3626. static int __init rcu_spawn_gp_kthread(void)
  3627. {
  3628. unsigned long flags;
  3629. int kthread_prio_in = kthread_prio;
  3630. struct rcu_node *rnp;
  3631. struct rcu_state *rsp;
  3632. struct sched_param sp;
  3633. struct task_struct *t;
  3634. /* Force priority into range. */
  3635. if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
  3636. kthread_prio = 1;
  3637. else if (kthread_prio < 0)
  3638. kthread_prio = 0;
  3639. else if (kthread_prio > 99)
  3640. kthread_prio = 99;
  3641. if (kthread_prio != kthread_prio_in)
  3642. pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
  3643. kthread_prio, kthread_prio_in);
  3644. rcu_scheduler_fully_active = 1;
  3645. for_each_rcu_flavor(rsp) {
  3646. t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
  3647. BUG_ON(IS_ERR(t));
  3648. rnp = rcu_get_root(rsp);
  3649. raw_spin_lock_irqsave_rcu_node(rnp, flags);
  3650. rsp->gp_kthread = t;
  3651. if (kthread_prio) {
  3652. sp.sched_priority = kthread_prio;
  3653. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  3654. }
  3655. raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
  3656. wake_up_process(t);
  3657. }
  3658. rcu_spawn_nocb_kthreads();
  3659. rcu_spawn_boost_kthreads();
  3660. return 0;
  3661. }
  3662. early_initcall(rcu_spawn_gp_kthread);
  3663. /*
  3664. * This function is invoked towards the end of the scheduler's
  3665. * initialization process. Before this is called, the idle task might
  3666. * contain synchronous grace-period primitives (during which time, this idle
  3667. * task is booting the system, and such primitives are no-ops). After this
  3668. * function is called, any synchronous grace-period primitives are run as
  3669. * expedited, with the requesting task driving the grace period forward.
  3670. * A later core_initcall() rcu_set_runtime_mode() will switch to full
  3671. * runtime RCU functionality.
  3672. */
  3673. void rcu_scheduler_starting(void)
  3674. {
  3675. WARN_ON(num_online_cpus() != 1);
  3676. WARN_ON(nr_context_switches() > 0);
  3677. rcu_test_sync_prims();
  3678. rcu_scheduler_active = RCU_SCHEDULER_INIT;
  3679. rcu_test_sync_prims();
  3680. }
  3681. /*
  3682. * Helper function for rcu_init() that initializes one rcu_state structure.
  3683. */
  3684. static void __init rcu_init_one(struct rcu_state *rsp)
  3685. {
  3686. static const char * const buf[] = RCU_NODE_NAME_INIT;
  3687. static const char * const fqs[] = RCU_FQS_NAME_INIT;
  3688. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  3689. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  3690. int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
  3691. int cpustride = 1;
  3692. int i;
  3693. int j;
  3694. struct rcu_node *rnp;
  3695. BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  3696. /* Silence gcc 4.8 false positive about array index out of range. */
  3697. if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
  3698. panic("rcu_init_one: rcu_num_lvls out of range");
  3699. /* Initialize the level-tracking arrays. */
  3700. for (i = 1; i < rcu_num_lvls; i++)
  3701. rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
  3702. rcu_init_levelspread(levelspread, num_rcu_lvl);
  3703. /* Initialize the elements themselves, starting from the leaves. */
  3704. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3705. cpustride *= levelspread[i];
  3706. rnp = rsp->level[i];
  3707. for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
  3708. raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
  3709. lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
  3710. &rcu_node_class[i], buf[i]);
  3711. raw_spin_lock_init(&rnp->fqslock);
  3712. lockdep_set_class_and_name(&rnp->fqslock,
  3713. &rcu_fqs_class[i], fqs[i]);
  3714. rnp->gpnum = rsp->gpnum;
  3715. rnp->completed = rsp->completed;
  3716. rnp->qsmask = 0;
  3717. rnp->qsmaskinit = 0;
  3718. rnp->grplo = j * cpustride;
  3719. rnp->grphi = (j + 1) * cpustride - 1;
  3720. if (rnp->grphi >= nr_cpu_ids)
  3721. rnp->grphi = nr_cpu_ids - 1;
  3722. if (i == 0) {
  3723. rnp->grpnum = 0;
  3724. rnp->grpmask = 0;
  3725. rnp->parent = NULL;
  3726. } else {
  3727. rnp->grpnum = j % levelspread[i - 1];
  3728. rnp->grpmask = 1UL << rnp->grpnum;
  3729. rnp->parent = rsp->level[i - 1] +
  3730. j / levelspread[i - 1];
  3731. }
  3732. rnp->level = i;
  3733. INIT_LIST_HEAD(&rnp->blkd_tasks);
  3734. rcu_init_one_nocb(rnp);
  3735. init_waitqueue_head(&rnp->exp_wq[0]);
  3736. init_waitqueue_head(&rnp->exp_wq[1]);
  3737. init_waitqueue_head(&rnp->exp_wq[2]);
  3738. init_waitqueue_head(&rnp->exp_wq[3]);
  3739. spin_lock_init(&rnp->exp_lock);
  3740. }
  3741. }
  3742. init_swait_queue_head(&rsp->gp_wq);
  3743. init_swait_queue_head(&rsp->expedited_wq);
  3744. rnp = rsp->level[rcu_num_lvls - 1];
  3745. for_each_possible_cpu(i) {
  3746. while (i > rnp->grphi)
  3747. rnp++;
  3748. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  3749. rcu_boot_init_percpu_data(i, rsp);
  3750. }
  3751. list_add(&rsp->flavors, &rcu_struct_flavors);
  3752. }
  3753. /*
  3754. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  3755. * replace the definitions in tree.h because those are needed to size
  3756. * the ->node array in the rcu_state structure.
  3757. */
  3758. static void __init rcu_init_geometry(void)
  3759. {
  3760. ulong d;
  3761. int i;
  3762. int rcu_capacity[RCU_NUM_LVLS];
  3763. /*
  3764. * Initialize any unspecified boot parameters.
  3765. * The default values of jiffies_till_first_fqs and
  3766. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  3767. * value, which is a function of HZ, then adding one for each
  3768. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  3769. */
  3770. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  3771. if (jiffies_till_first_fqs == ULONG_MAX)
  3772. jiffies_till_first_fqs = d;
  3773. if (jiffies_till_next_fqs == ULONG_MAX)
  3774. jiffies_till_next_fqs = d;
  3775. /* If the compile-time values are accurate, just leave. */
  3776. if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
  3777. nr_cpu_ids == NR_CPUS)
  3778. return;
  3779. pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
  3780. rcu_fanout_leaf, nr_cpu_ids);
  3781. /*
  3782. * The boot-time rcu_fanout_leaf parameter must be at least two
  3783. * and cannot exceed the number of bits in the rcu_node masks.
  3784. * Complain and fall back to the compile-time values if this
  3785. * limit is exceeded.
  3786. */
  3787. if (rcu_fanout_leaf < 2 ||
  3788. rcu_fanout_leaf > sizeof(unsigned long) * 8) {
  3789. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  3790. WARN_ON(1);
  3791. return;
  3792. }
  3793. /*
  3794. * Compute number of nodes that can be handled an rcu_node tree
  3795. * with the given number of levels.
  3796. */
  3797. rcu_capacity[0] = rcu_fanout_leaf;
  3798. for (i = 1; i < RCU_NUM_LVLS; i++)
  3799. rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
  3800. /*
  3801. * The tree must be able to accommodate the configured number of CPUs.
  3802. * If this limit is exceeded, fall back to the compile-time values.
  3803. */
  3804. if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
  3805. rcu_fanout_leaf = RCU_FANOUT_LEAF;
  3806. WARN_ON(1);
  3807. return;
  3808. }
  3809. /* Calculate the number of levels in the tree. */
  3810. for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
  3811. }
  3812. rcu_num_lvls = i + 1;
  3813. /* Calculate the number of rcu_nodes at each level of the tree. */
  3814. for (i = 0; i < rcu_num_lvls; i++) {
  3815. int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
  3816. num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
  3817. }
  3818. /* Calculate the total number of rcu_node structures. */
  3819. rcu_num_nodes = 0;
  3820. for (i = 0; i < rcu_num_lvls; i++)
  3821. rcu_num_nodes += num_rcu_lvl[i];
  3822. }
  3823. /*
  3824. * Dump out the structure of the rcu_node combining tree associated
  3825. * with the rcu_state structure referenced by rsp.
  3826. */
  3827. static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
  3828. {
  3829. int level = 0;
  3830. struct rcu_node *rnp;
  3831. pr_info("rcu_node tree layout dump\n");
  3832. pr_info(" ");
  3833. rcu_for_each_node_breadth_first(rsp, rnp) {
  3834. if (rnp->level != level) {
  3835. pr_cont("\n");
  3836. pr_info(" ");
  3837. level = rnp->level;
  3838. }
  3839. pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
  3840. }
  3841. pr_cont("\n");
  3842. }
  3843. void __init rcu_init(void)
  3844. {
  3845. int cpu;
  3846. rcu_early_boot_tests();
  3847. rcu_bootup_announce();
  3848. rcu_init_geometry();
  3849. rcu_init_one(&rcu_bh_state);
  3850. rcu_init_one(&rcu_sched_state);
  3851. if (dump_tree)
  3852. rcu_dump_rcu_node_tree(&rcu_sched_state);
  3853. __rcu_init_preempt();
  3854. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  3855. /*
  3856. * We don't need protection against CPU-hotplug here because
  3857. * this is called early in boot, before either interrupts
  3858. * or the scheduler are operational.
  3859. */
  3860. pm_notifier(rcu_pm_notify, 0);
  3861. for_each_online_cpu(cpu) {
  3862. rcutree_prepare_cpu(cpu);
  3863. rcu_cpu_starting(cpu);
  3864. rcutree_online_cpu(cpu);
  3865. }
  3866. }
  3867. #include "tree_exp.h"
  3868. #include "tree_plugin.h"