xfs_ialloc_btree.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593
  1. /*
  2. * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_shared.h"
  21. #include "xfs_format.h"
  22. #include "xfs_log_format.h"
  23. #include "xfs_trans_resv.h"
  24. #include "xfs_bit.h"
  25. #include "xfs_mount.h"
  26. #include "xfs_inode.h"
  27. #include "xfs_btree.h"
  28. #include "xfs_ialloc.h"
  29. #include "xfs_ialloc_btree.h"
  30. #include "xfs_alloc.h"
  31. #include "xfs_error.h"
  32. #include "xfs_trace.h"
  33. #include "xfs_cksum.h"
  34. #include "xfs_trans.h"
  35. #include "xfs_rmap.h"
  36. STATIC int
  37. xfs_inobt_get_minrecs(
  38. struct xfs_btree_cur *cur,
  39. int level)
  40. {
  41. return cur->bc_mp->m_inobt_mnr[level != 0];
  42. }
  43. STATIC struct xfs_btree_cur *
  44. xfs_inobt_dup_cursor(
  45. struct xfs_btree_cur *cur)
  46. {
  47. return xfs_inobt_init_cursor(cur->bc_mp, cur->bc_tp,
  48. cur->bc_private.a.agbp, cur->bc_private.a.agno,
  49. cur->bc_btnum);
  50. }
  51. STATIC void
  52. xfs_inobt_set_root(
  53. struct xfs_btree_cur *cur,
  54. union xfs_btree_ptr *nptr,
  55. int inc) /* level change */
  56. {
  57. struct xfs_buf *agbp = cur->bc_private.a.agbp;
  58. struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
  59. agi->agi_root = nptr->s;
  60. be32_add_cpu(&agi->agi_level, inc);
  61. xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
  62. }
  63. STATIC void
  64. xfs_finobt_set_root(
  65. struct xfs_btree_cur *cur,
  66. union xfs_btree_ptr *nptr,
  67. int inc) /* level change */
  68. {
  69. struct xfs_buf *agbp = cur->bc_private.a.agbp;
  70. struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
  71. agi->agi_free_root = nptr->s;
  72. be32_add_cpu(&agi->agi_free_level, inc);
  73. xfs_ialloc_log_agi(cur->bc_tp, agbp,
  74. XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
  75. }
  76. STATIC int
  77. __xfs_inobt_alloc_block(
  78. struct xfs_btree_cur *cur,
  79. union xfs_btree_ptr *start,
  80. union xfs_btree_ptr *new,
  81. int *stat,
  82. enum xfs_ag_resv_type resv)
  83. {
  84. xfs_alloc_arg_t args; /* block allocation args */
  85. int error; /* error return value */
  86. xfs_agblock_t sbno = be32_to_cpu(start->s);
  87. XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
  88. memset(&args, 0, sizeof(args));
  89. args.tp = cur->bc_tp;
  90. args.mp = cur->bc_mp;
  91. xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INOBT);
  92. args.fsbno = XFS_AGB_TO_FSB(args.mp, cur->bc_private.a.agno, sbno);
  93. args.minlen = 1;
  94. args.maxlen = 1;
  95. args.prod = 1;
  96. args.type = XFS_ALLOCTYPE_NEAR_BNO;
  97. args.resv = resv;
  98. error = xfs_alloc_vextent(&args);
  99. if (error) {
  100. XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
  101. return error;
  102. }
  103. if (args.fsbno == NULLFSBLOCK) {
  104. XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
  105. *stat = 0;
  106. return 0;
  107. }
  108. ASSERT(args.len == 1);
  109. XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
  110. new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
  111. *stat = 1;
  112. return 0;
  113. }
  114. STATIC int
  115. xfs_inobt_alloc_block(
  116. struct xfs_btree_cur *cur,
  117. union xfs_btree_ptr *start,
  118. union xfs_btree_ptr *new,
  119. int *stat)
  120. {
  121. return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
  122. }
  123. STATIC int
  124. xfs_finobt_alloc_block(
  125. struct xfs_btree_cur *cur,
  126. union xfs_btree_ptr *start,
  127. union xfs_btree_ptr *new,
  128. int *stat)
  129. {
  130. return __xfs_inobt_alloc_block(cur, start, new, stat,
  131. XFS_AG_RESV_METADATA);
  132. }
  133. STATIC int
  134. xfs_inobt_free_block(
  135. struct xfs_btree_cur *cur,
  136. struct xfs_buf *bp)
  137. {
  138. struct xfs_owner_info oinfo;
  139. xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INOBT);
  140. return xfs_free_extent(cur->bc_tp,
  141. XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
  142. &oinfo, XFS_AG_RESV_NONE);
  143. }
  144. STATIC int
  145. xfs_inobt_get_maxrecs(
  146. struct xfs_btree_cur *cur,
  147. int level)
  148. {
  149. return cur->bc_mp->m_inobt_mxr[level != 0];
  150. }
  151. STATIC void
  152. xfs_inobt_init_key_from_rec(
  153. union xfs_btree_key *key,
  154. union xfs_btree_rec *rec)
  155. {
  156. key->inobt.ir_startino = rec->inobt.ir_startino;
  157. }
  158. STATIC void
  159. xfs_inobt_init_high_key_from_rec(
  160. union xfs_btree_key *key,
  161. union xfs_btree_rec *rec)
  162. {
  163. __u32 x;
  164. x = be32_to_cpu(rec->inobt.ir_startino);
  165. x += XFS_INODES_PER_CHUNK - 1;
  166. key->inobt.ir_startino = cpu_to_be32(x);
  167. }
  168. STATIC void
  169. xfs_inobt_init_rec_from_cur(
  170. struct xfs_btree_cur *cur,
  171. union xfs_btree_rec *rec)
  172. {
  173. rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
  174. if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
  175. rec->inobt.ir_u.sp.ir_holemask =
  176. cpu_to_be16(cur->bc_rec.i.ir_holemask);
  177. rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
  178. rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
  179. } else {
  180. /* ir_holemask/ir_count not supported on-disk */
  181. rec->inobt.ir_u.f.ir_freecount =
  182. cpu_to_be32(cur->bc_rec.i.ir_freecount);
  183. }
  184. rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
  185. }
  186. /*
  187. * initial value of ptr for lookup
  188. */
  189. STATIC void
  190. xfs_inobt_init_ptr_from_cur(
  191. struct xfs_btree_cur *cur,
  192. union xfs_btree_ptr *ptr)
  193. {
  194. struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
  195. ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
  196. ptr->s = agi->agi_root;
  197. }
  198. STATIC void
  199. xfs_finobt_init_ptr_from_cur(
  200. struct xfs_btree_cur *cur,
  201. union xfs_btree_ptr *ptr)
  202. {
  203. struct xfs_agi *agi = XFS_BUF_TO_AGI(cur->bc_private.a.agbp);
  204. ASSERT(cur->bc_private.a.agno == be32_to_cpu(agi->agi_seqno));
  205. ptr->s = agi->agi_free_root;
  206. }
  207. STATIC int64_t
  208. xfs_inobt_key_diff(
  209. struct xfs_btree_cur *cur,
  210. union xfs_btree_key *key)
  211. {
  212. return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
  213. cur->bc_rec.i.ir_startino;
  214. }
  215. STATIC int64_t
  216. xfs_inobt_diff_two_keys(
  217. struct xfs_btree_cur *cur,
  218. union xfs_btree_key *k1,
  219. union xfs_btree_key *k2)
  220. {
  221. return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
  222. be32_to_cpu(k2->inobt.ir_startino);
  223. }
  224. static xfs_failaddr_t
  225. xfs_inobt_verify(
  226. struct xfs_buf *bp)
  227. {
  228. struct xfs_mount *mp = bp->b_target->bt_mount;
  229. struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
  230. xfs_failaddr_t fa;
  231. unsigned int level;
  232. /*
  233. * During growfs operations, we can't verify the exact owner as the
  234. * perag is not fully initialised and hence not attached to the buffer.
  235. *
  236. * Similarly, during log recovery we will have a perag structure
  237. * attached, but the agi information will not yet have been initialised
  238. * from the on disk AGI. We don't currently use any of this information,
  239. * but beware of the landmine (i.e. need to check pag->pagi_init) if we
  240. * ever do.
  241. */
  242. switch (block->bb_magic) {
  243. case cpu_to_be32(XFS_IBT_CRC_MAGIC):
  244. case cpu_to_be32(XFS_FIBT_CRC_MAGIC):
  245. fa = xfs_btree_sblock_v5hdr_verify(bp);
  246. if (fa)
  247. return fa;
  248. /* fall through */
  249. case cpu_to_be32(XFS_IBT_MAGIC):
  250. case cpu_to_be32(XFS_FIBT_MAGIC):
  251. break;
  252. default:
  253. return NULL;
  254. }
  255. /* level verification */
  256. level = be16_to_cpu(block->bb_level);
  257. if (level >= mp->m_in_maxlevels)
  258. return __this_address;
  259. return xfs_btree_sblock_verify(bp, mp->m_inobt_mxr[level != 0]);
  260. }
  261. static void
  262. xfs_inobt_read_verify(
  263. struct xfs_buf *bp)
  264. {
  265. xfs_failaddr_t fa;
  266. if (!xfs_btree_sblock_verify_crc(bp))
  267. xfs_verifier_error(bp, -EFSBADCRC, __this_address);
  268. else {
  269. fa = xfs_inobt_verify(bp);
  270. if (fa)
  271. xfs_verifier_error(bp, -EFSCORRUPTED, fa);
  272. }
  273. if (bp->b_error)
  274. trace_xfs_btree_corrupt(bp, _RET_IP_);
  275. }
  276. static void
  277. xfs_inobt_write_verify(
  278. struct xfs_buf *bp)
  279. {
  280. xfs_failaddr_t fa;
  281. fa = xfs_inobt_verify(bp);
  282. if (fa) {
  283. trace_xfs_btree_corrupt(bp, _RET_IP_);
  284. xfs_verifier_error(bp, -EFSCORRUPTED, fa);
  285. return;
  286. }
  287. xfs_btree_sblock_calc_crc(bp);
  288. }
  289. const struct xfs_buf_ops xfs_inobt_buf_ops = {
  290. .name = "xfs_inobt",
  291. .verify_read = xfs_inobt_read_verify,
  292. .verify_write = xfs_inobt_write_verify,
  293. };
  294. STATIC int
  295. xfs_inobt_keys_inorder(
  296. struct xfs_btree_cur *cur,
  297. union xfs_btree_key *k1,
  298. union xfs_btree_key *k2)
  299. {
  300. return be32_to_cpu(k1->inobt.ir_startino) <
  301. be32_to_cpu(k2->inobt.ir_startino);
  302. }
  303. STATIC int
  304. xfs_inobt_recs_inorder(
  305. struct xfs_btree_cur *cur,
  306. union xfs_btree_rec *r1,
  307. union xfs_btree_rec *r2)
  308. {
  309. return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
  310. be32_to_cpu(r2->inobt.ir_startino);
  311. }
  312. static const struct xfs_btree_ops xfs_inobt_ops = {
  313. .rec_len = sizeof(xfs_inobt_rec_t),
  314. .key_len = sizeof(xfs_inobt_key_t),
  315. .dup_cursor = xfs_inobt_dup_cursor,
  316. .set_root = xfs_inobt_set_root,
  317. .alloc_block = xfs_inobt_alloc_block,
  318. .free_block = xfs_inobt_free_block,
  319. .get_minrecs = xfs_inobt_get_minrecs,
  320. .get_maxrecs = xfs_inobt_get_maxrecs,
  321. .init_key_from_rec = xfs_inobt_init_key_from_rec,
  322. .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
  323. .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
  324. .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
  325. .key_diff = xfs_inobt_key_diff,
  326. .buf_ops = &xfs_inobt_buf_ops,
  327. .diff_two_keys = xfs_inobt_diff_two_keys,
  328. .keys_inorder = xfs_inobt_keys_inorder,
  329. .recs_inorder = xfs_inobt_recs_inorder,
  330. };
  331. static const struct xfs_btree_ops xfs_finobt_ops = {
  332. .rec_len = sizeof(xfs_inobt_rec_t),
  333. .key_len = sizeof(xfs_inobt_key_t),
  334. .dup_cursor = xfs_inobt_dup_cursor,
  335. .set_root = xfs_finobt_set_root,
  336. .alloc_block = xfs_finobt_alloc_block,
  337. .free_block = xfs_inobt_free_block,
  338. .get_minrecs = xfs_inobt_get_minrecs,
  339. .get_maxrecs = xfs_inobt_get_maxrecs,
  340. .init_key_from_rec = xfs_inobt_init_key_from_rec,
  341. .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
  342. .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
  343. .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
  344. .key_diff = xfs_inobt_key_diff,
  345. .buf_ops = &xfs_inobt_buf_ops,
  346. .diff_two_keys = xfs_inobt_diff_two_keys,
  347. .keys_inorder = xfs_inobt_keys_inorder,
  348. .recs_inorder = xfs_inobt_recs_inorder,
  349. };
  350. /*
  351. * Allocate a new inode btree cursor.
  352. */
  353. struct xfs_btree_cur * /* new inode btree cursor */
  354. xfs_inobt_init_cursor(
  355. struct xfs_mount *mp, /* file system mount point */
  356. struct xfs_trans *tp, /* transaction pointer */
  357. struct xfs_buf *agbp, /* buffer for agi structure */
  358. xfs_agnumber_t agno, /* allocation group number */
  359. xfs_btnum_t btnum) /* ialloc or free ino btree */
  360. {
  361. struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
  362. struct xfs_btree_cur *cur;
  363. cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
  364. cur->bc_tp = tp;
  365. cur->bc_mp = mp;
  366. cur->bc_btnum = btnum;
  367. if (btnum == XFS_BTNUM_INO) {
  368. cur->bc_nlevels = be32_to_cpu(agi->agi_level);
  369. cur->bc_ops = &xfs_inobt_ops;
  370. cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
  371. } else {
  372. cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
  373. cur->bc_ops = &xfs_finobt_ops;
  374. cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
  375. }
  376. cur->bc_blocklog = mp->m_sb.sb_blocklog;
  377. if (xfs_sb_version_hascrc(&mp->m_sb))
  378. cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
  379. cur->bc_private.a.agbp = agbp;
  380. cur->bc_private.a.agno = agno;
  381. return cur;
  382. }
  383. /*
  384. * Calculate number of records in an inobt btree block.
  385. */
  386. int
  387. xfs_inobt_maxrecs(
  388. struct xfs_mount *mp,
  389. int blocklen,
  390. int leaf)
  391. {
  392. blocklen -= XFS_INOBT_BLOCK_LEN(mp);
  393. if (leaf)
  394. return blocklen / sizeof(xfs_inobt_rec_t);
  395. return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
  396. }
  397. /*
  398. * Convert the inode record holemask to an inode allocation bitmap. The inode
  399. * allocation bitmap is inode granularity and specifies whether an inode is
  400. * physically allocated on disk (not whether the inode is considered allocated
  401. * or free by the fs).
  402. *
  403. * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
  404. */
  405. uint64_t
  406. xfs_inobt_irec_to_allocmask(
  407. struct xfs_inobt_rec_incore *rec)
  408. {
  409. uint64_t bitmap = 0;
  410. uint64_t inodespbit;
  411. int nextbit;
  412. uint allocbitmap;
  413. /*
  414. * The holemask has 16-bits for a 64 inode record. Therefore each
  415. * holemask bit represents multiple inodes. Create a mask of bits to set
  416. * in the allocmask for each holemask bit.
  417. */
  418. inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
  419. /*
  420. * Allocated inodes are represented by 0 bits in holemask. Invert the 0
  421. * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
  422. * anything beyond the 16 holemask bits since this casts to a larger
  423. * type.
  424. */
  425. allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
  426. /*
  427. * allocbitmap is the inverted holemask so every set bit represents
  428. * allocated inodes. To expand from 16-bit holemask granularity to
  429. * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
  430. * bitmap for every holemask bit.
  431. */
  432. nextbit = xfs_next_bit(&allocbitmap, 1, 0);
  433. while (nextbit != -1) {
  434. ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
  435. bitmap |= (inodespbit <<
  436. (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
  437. nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
  438. }
  439. return bitmap;
  440. }
  441. #if defined(DEBUG) || defined(XFS_WARN)
  442. /*
  443. * Verify that an in-core inode record has a valid inode count.
  444. */
  445. int
  446. xfs_inobt_rec_check_count(
  447. struct xfs_mount *mp,
  448. struct xfs_inobt_rec_incore *rec)
  449. {
  450. int inocount = 0;
  451. int nextbit = 0;
  452. uint64_t allocbmap;
  453. int wordsz;
  454. wordsz = sizeof(allocbmap) / sizeof(unsigned int);
  455. allocbmap = xfs_inobt_irec_to_allocmask(rec);
  456. nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
  457. while (nextbit != -1) {
  458. inocount++;
  459. nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
  460. nextbit + 1);
  461. }
  462. if (inocount != rec->ir_count)
  463. return -EFSCORRUPTED;
  464. return 0;
  465. }
  466. #endif /* DEBUG */
  467. static xfs_extlen_t
  468. xfs_inobt_max_size(
  469. struct xfs_mount *mp)
  470. {
  471. /* Bail out if we're uninitialized, which can happen in mkfs. */
  472. if (mp->m_inobt_mxr[0] == 0)
  473. return 0;
  474. return xfs_btree_calc_size(mp, mp->m_inobt_mnr,
  475. (uint64_t)mp->m_sb.sb_agblocks * mp->m_sb.sb_inopblock /
  476. XFS_INODES_PER_CHUNK);
  477. }
  478. static int
  479. xfs_inobt_count_blocks(
  480. struct xfs_mount *mp,
  481. xfs_agnumber_t agno,
  482. xfs_btnum_t btnum,
  483. xfs_extlen_t *tree_blocks)
  484. {
  485. struct xfs_buf *agbp;
  486. struct xfs_btree_cur *cur;
  487. int error;
  488. error = xfs_ialloc_read_agi(mp, NULL, agno, &agbp);
  489. if (error)
  490. return error;
  491. cur = xfs_inobt_init_cursor(mp, NULL, agbp, agno, btnum);
  492. error = xfs_btree_count_blocks(cur, tree_blocks);
  493. xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
  494. xfs_buf_relse(agbp);
  495. return error;
  496. }
  497. /*
  498. * Figure out how many blocks to reserve and how many are used by this btree.
  499. */
  500. int
  501. xfs_finobt_calc_reserves(
  502. struct xfs_mount *mp,
  503. xfs_agnumber_t agno,
  504. xfs_extlen_t *ask,
  505. xfs_extlen_t *used)
  506. {
  507. xfs_extlen_t tree_len = 0;
  508. int error;
  509. if (!xfs_sb_version_hasfinobt(&mp->m_sb))
  510. return 0;
  511. error = xfs_inobt_count_blocks(mp, agno, XFS_BTNUM_FINO, &tree_len);
  512. if (error)
  513. return error;
  514. *ask += xfs_inobt_max_size(mp);
  515. *used += tree_len;
  516. return 0;
  517. }