intel_hdmi.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717
  1. /*
  2. * Copyright 2006 Dave Airlie <airlied@linux.ie>
  3. * Copyright © 2006-2009 Intel Corporation
  4. *
  5. * Permission is hereby granted, free of charge, to any person obtaining a
  6. * copy of this software and associated documentation files (the "Software"),
  7. * to deal in the Software without restriction, including without limitation
  8. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  9. * and/or sell copies of the Software, and to permit persons to whom the
  10. * Software is furnished to do so, subject to the following conditions:
  11. *
  12. * The above copyright notice and this permission notice (including the next
  13. * paragraph) shall be included in all copies or substantial portions of the
  14. * Software.
  15. *
  16. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  19. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  22. * DEALINGS IN THE SOFTWARE.
  23. *
  24. * Authors:
  25. * Eric Anholt <eric@anholt.net>
  26. * Jesse Barnes <jesse.barnes@intel.com>
  27. */
  28. #include <linux/i2c.h>
  29. #include <linux/slab.h>
  30. #include <linux/delay.h>
  31. #include <linux/hdmi.h>
  32. #include <drm/drmP.h>
  33. #include <drm/drm_crtc.h>
  34. #include <drm/drm_edid.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
  39. {
  40. return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
  41. }
  42. static void
  43. assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
  44. {
  45. struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
  46. struct drm_i915_private *dev_priv = dev->dev_private;
  47. uint32_t enabled_bits;
  48. enabled_bits = HAS_DDI(dev) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
  49. WARN(I915_READ(intel_hdmi->hdmi_reg) & enabled_bits,
  50. "HDMI port enabled, expecting disabled\n");
  51. }
  52. struct intel_hdmi *enc_to_intel_hdmi(struct drm_encoder *encoder)
  53. {
  54. struct intel_digital_port *intel_dig_port =
  55. container_of(encoder, struct intel_digital_port, base.base);
  56. return &intel_dig_port->hdmi;
  57. }
  58. static struct intel_hdmi *intel_attached_hdmi(struct drm_connector *connector)
  59. {
  60. return enc_to_intel_hdmi(&intel_attached_encoder(connector)->base);
  61. }
  62. static u32 g4x_infoframe_index(enum hdmi_infoframe_type type)
  63. {
  64. switch (type) {
  65. case HDMI_INFOFRAME_TYPE_AVI:
  66. return VIDEO_DIP_SELECT_AVI;
  67. case HDMI_INFOFRAME_TYPE_SPD:
  68. return VIDEO_DIP_SELECT_SPD;
  69. case HDMI_INFOFRAME_TYPE_VENDOR:
  70. return VIDEO_DIP_SELECT_VENDOR;
  71. default:
  72. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  73. return 0;
  74. }
  75. }
  76. static u32 g4x_infoframe_enable(enum hdmi_infoframe_type type)
  77. {
  78. switch (type) {
  79. case HDMI_INFOFRAME_TYPE_AVI:
  80. return VIDEO_DIP_ENABLE_AVI;
  81. case HDMI_INFOFRAME_TYPE_SPD:
  82. return VIDEO_DIP_ENABLE_SPD;
  83. case HDMI_INFOFRAME_TYPE_VENDOR:
  84. return VIDEO_DIP_ENABLE_VENDOR;
  85. default:
  86. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  87. return 0;
  88. }
  89. }
  90. static u32 hsw_infoframe_enable(enum hdmi_infoframe_type type)
  91. {
  92. switch (type) {
  93. case HDMI_INFOFRAME_TYPE_AVI:
  94. return VIDEO_DIP_ENABLE_AVI_HSW;
  95. case HDMI_INFOFRAME_TYPE_SPD:
  96. return VIDEO_DIP_ENABLE_SPD_HSW;
  97. case HDMI_INFOFRAME_TYPE_VENDOR:
  98. return VIDEO_DIP_ENABLE_VS_HSW;
  99. default:
  100. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  101. return 0;
  102. }
  103. }
  104. static u32 hsw_infoframe_data_reg(enum hdmi_infoframe_type type,
  105. enum transcoder cpu_transcoder,
  106. struct drm_i915_private *dev_priv)
  107. {
  108. switch (type) {
  109. case HDMI_INFOFRAME_TYPE_AVI:
  110. return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder);
  111. case HDMI_INFOFRAME_TYPE_SPD:
  112. return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder);
  113. case HDMI_INFOFRAME_TYPE_VENDOR:
  114. return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder);
  115. default:
  116. DRM_DEBUG_DRIVER("unknown info frame type %d\n", type);
  117. return 0;
  118. }
  119. }
  120. static void g4x_write_infoframe(struct drm_encoder *encoder,
  121. enum hdmi_infoframe_type type,
  122. const void *frame, ssize_t len)
  123. {
  124. const uint32_t *data = frame;
  125. struct drm_device *dev = encoder->dev;
  126. struct drm_i915_private *dev_priv = dev->dev_private;
  127. u32 val = I915_READ(VIDEO_DIP_CTL);
  128. int i;
  129. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  130. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  131. val |= g4x_infoframe_index(type);
  132. val &= ~g4x_infoframe_enable(type);
  133. I915_WRITE(VIDEO_DIP_CTL, val);
  134. mmiowb();
  135. for (i = 0; i < len; i += 4) {
  136. I915_WRITE(VIDEO_DIP_DATA, *data);
  137. data++;
  138. }
  139. /* Write every possible data byte to force correct ECC calculation. */
  140. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  141. I915_WRITE(VIDEO_DIP_DATA, 0);
  142. mmiowb();
  143. val |= g4x_infoframe_enable(type);
  144. val &= ~VIDEO_DIP_FREQ_MASK;
  145. val |= VIDEO_DIP_FREQ_VSYNC;
  146. I915_WRITE(VIDEO_DIP_CTL, val);
  147. POSTING_READ(VIDEO_DIP_CTL);
  148. }
  149. static void ibx_write_infoframe(struct drm_encoder *encoder,
  150. enum hdmi_infoframe_type type,
  151. const void *frame, ssize_t len)
  152. {
  153. const uint32_t *data = frame;
  154. struct drm_device *dev = encoder->dev;
  155. struct drm_i915_private *dev_priv = dev->dev_private;
  156. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  157. int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  158. u32 val = I915_READ(reg);
  159. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  160. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  161. val |= g4x_infoframe_index(type);
  162. val &= ~g4x_infoframe_enable(type);
  163. I915_WRITE(reg, val);
  164. mmiowb();
  165. for (i = 0; i < len; i += 4) {
  166. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  167. data++;
  168. }
  169. /* Write every possible data byte to force correct ECC calculation. */
  170. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  171. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  172. mmiowb();
  173. val |= g4x_infoframe_enable(type);
  174. val &= ~VIDEO_DIP_FREQ_MASK;
  175. val |= VIDEO_DIP_FREQ_VSYNC;
  176. I915_WRITE(reg, val);
  177. POSTING_READ(reg);
  178. }
  179. static void cpt_write_infoframe(struct drm_encoder *encoder,
  180. enum hdmi_infoframe_type type,
  181. const void *frame, ssize_t len)
  182. {
  183. const uint32_t *data = frame;
  184. struct drm_device *dev = encoder->dev;
  185. struct drm_i915_private *dev_priv = dev->dev_private;
  186. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  187. int i, reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  188. u32 val = I915_READ(reg);
  189. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  190. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  191. val |= g4x_infoframe_index(type);
  192. /* The DIP control register spec says that we need to update the AVI
  193. * infoframe without clearing its enable bit */
  194. if (type != HDMI_INFOFRAME_TYPE_AVI)
  195. val &= ~g4x_infoframe_enable(type);
  196. I915_WRITE(reg, val);
  197. mmiowb();
  198. for (i = 0; i < len; i += 4) {
  199. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  200. data++;
  201. }
  202. /* Write every possible data byte to force correct ECC calculation. */
  203. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  204. I915_WRITE(TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  205. mmiowb();
  206. val |= g4x_infoframe_enable(type);
  207. val &= ~VIDEO_DIP_FREQ_MASK;
  208. val |= VIDEO_DIP_FREQ_VSYNC;
  209. I915_WRITE(reg, val);
  210. POSTING_READ(reg);
  211. }
  212. static void vlv_write_infoframe(struct drm_encoder *encoder,
  213. enum hdmi_infoframe_type type,
  214. const void *frame, ssize_t len)
  215. {
  216. const uint32_t *data = frame;
  217. struct drm_device *dev = encoder->dev;
  218. struct drm_i915_private *dev_priv = dev->dev_private;
  219. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  220. int i, reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  221. u32 val = I915_READ(reg);
  222. WARN(!(val & VIDEO_DIP_ENABLE), "Writing DIP with CTL reg disabled\n");
  223. val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
  224. val |= g4x_infoframe_index(type);
  225. val &= ~g4x_infoframe_enable(type);
  226. I915_WRITE(reg, val);
  227. mmiowb();
  228. for (i = 0; i < len; i += 4) {
  229. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
  230. data++;
  231. }
  232. /* Write every possible data byte to force correct ECC calculation. */
  233. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  234. I915_WRITE(VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
  235. mmiowb();
  236. val |= g4x_infoframe_enable(type);
  237. val &= ~VIDEO_DIP_FREQ_MASK;
  238. val |= VIDEO_DIP_FREQ_VSYNC;
  239. I915_WRITE(reg, val);
  240. POSTING_READ(reg);
  241. }
  242. static void hsw_write_infoframe(struct drm_encoder *encoder,
  243. enum hdmi_infoframe_type type,
  244. const void *frame, ssize_t len)
  245. {
  246. const uint32_t *data = frame;
  247. struct drm_device *dev = encoder->dev;
  248. struct drm_i915_private *dev_priv = dev->dev_private;
  249. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  250. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
  251. u32 data_reg;
  252. int i;
  253. u32 val = I915_READ(ctl_reg);
  254. data_reg = hsw_infoframe_data_reg(type,
  255. intel_crtc->config.cpu_transcoder,
  256. dev_priv);
  257. if (data_reg == 0)
  258. return;
  259. val &= ~hsw_infoframe_enable(type);
  260. I915_WRITE(ctl_reg, val);
  261. mmiowb();
  262. for (i = 0; i < len; i += 4) {
  263. I915_WRITE(data_reg + i, *data);
  264. data++;
  265. }
  266. /* Write every possible data byte to force correct ECC calculation. */
  267. for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
  268. I915_WRITE(data_reg + i, 0);
  269. mmiowb();
  270. val |= hsw_infoframe_enable(type);
  271. I915_WRITE(ctl_reg, val);
  272. POSTING_READ(ctl_reg);
  273. }
  274. /*
  275. * The data we write to the DIP data buffer registers is 1 byte bigger than the
  276. * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
  277. * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
  278. * used for both technologies.
  279. *
  280. * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
  281. * DW1: DB3 | DB2 | DB1 | DB0
  282. * DW2: DB7 | DB6 | DB5 | DB4
  283. * DW3: ...
  284. *
  285. * (HB is Header Byte, DB is Data Byte)
  286. *
  287. * The hdmi pack() functions don't know about that hardware specific hole so we
  288. * trick them by giving an offset into the buffer and moving back the header
  289. * bytes by one.
  290. */
  291. static void intel_write_infoframe(struct drm_encoder *encoder,
  292. union hdmi_infoframe *frame)
  293. {
  294. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  295. uint8_t buffer[VIDEO_DIP_DATA_SIZE];
  296. ssize_t len;
  297. /* see comment above for the reason for this offset */
  298. len = hdmi_infoframe_pack(frame, buffer + 1, sizeof(buffer) - 1);
  299. if (len < 0)
  300. return;
  301. /* Insert the 'hole' (see big comment above) at position 3 */
  302. buffer[0] = buffer[1];
  303. buffer[1] = buffer[2];
  304. buffer[2] = buffer[3];
  305. buffer[3] = 0;
  306. len++;
  307. intel_hdmi->write_infoframe(encoder, frame->any.type, buffer, len);
  308. }
  309. static void intel_hdmi_set_avi_infoframe(struct drm_encoder *encoder,
  310. struct drm_display_mode *adjusted_mode)
  311. {
  312. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  313. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  314. union hdmi_infoframe frame;
  315. int ret;
  316. /* Set user selected PAR to incoming mode's member */
  317. adjusted_mode->picture_aspect_ratio = intel_hdmi->aspect_ratio;
  318. ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi,
  319. adjusted_mode);
  320. if (ret < 0) {
  321. DRM_ERROR("couldn't fill AVI infoframe\n");
  322. return;
  323. }
  324. if (intel_hdmi->rgb_quant_range_selectable) {
  325. if (intel_crtc->config.limited_color_range)
  326. frame.avi.quantization_range =
  327. HDMI_QUANTIZATION_RANGE_LIMITED;
  328. else
  329. frame.avi.quantization_range =
  330. HDMI_QUANTIZATION_RANGE_FULL;
  331. }
  332. intel_write_infoframe(encoder, &frame);
  333. }
  334. static void intel_hdmi_set_spd_infoframe(struct drm_encoder *encoder)
  335. {
  336. union hdmi_infoframe frame;
  337. int ret;
  338. ret = hdmi_spd_infoframe_init(&frame.spd, "Intel", "Integrated gfx");
  339. if (ret < 0) {
  340. DRM_ERROR("couldn't fill SPD infoframe\n");
  341. return;
  342. }
  343. frame.spd.sdi = HDMI_SPD_SDI_PC;
  344. intel_write_infoframe(encoder, &frame);
  345. }
  346. static void
  347. intel_hdmi_set_hdmi_infoframe(struct drm_encoder *encoder,
  348. struct drm_display_mode *adjusted_mode)
  349. {
  350. union hdmi_infoframe frame;
  351. int ret;
  352. ret = drm_hdmi_vendor_infoframe_from_display_mode(&frame.vendor.hdmi,
  353. adjusted_mode);
  354. if (ret < 0)
  355. return;
  356. intel_write_infoframe(encoder, &frame);
  357. }
  358. static void g4x_set_infoframes(struct drm_encoder *encoder,
  359. bool enable,
  360. struct drm_display_mode *adjusted_mode)
  361. {
  362. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  363. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  364. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  365. u32 reg = VIDEO_DIP_CTL;
  366. u32 val = I915_READ(reg);
  367. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  368. assert_hdmi_port_disabled(intel_hdmi);
  369. /* If the registers were not initialized yet, they might be zeroes,
  370. * which means we're selecting the AVI DIP and we're setting its
  371. * frequency to once. This seems to really confuse the HW and make
  372. * things stop working (the register spec says the AVI always needs to
  373. * be sent every VSync). So here we avoid writing to the register more
  374. * than we need and also explicitly select the AVI DIP and explicitly
  375. * set its frequency to every VSync. Avoiding to write it twice seems to
  376. * be enough to solve the problem, but being defensive shouldn't hurt us
  377. * either. */
  378. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  379. if (!enable) {
  380. if (!(val & VIDEO_DIP_ENABLE))
  381. return;
  382. val &= ~VIDEO_DIP_ENABLE;
  383. I915_WRITE(reg, val);
  384. POSTING_READ(reg);
  385. return;
  386. }
  387. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  388. if (val & VIDEO_DIP_ENABLE) {
  389. val &= ~VIDEO_DIP_ENABLE;
  390. I915_WRITE(reg, val);
  391. POSTING_READ(reg);
  392. }
  393. val &= ~VIDEO_DIP_PORT_MASK;
  394. val |= port;
  395. }
  396. val |= VIDEO_DIP_ENABLE;
  397. val &= ~VIDEO_DIP_ENABLE_VENDOR;
  398. I915_WRITE(reg, val);
  399. POSTING_READ(reg);
  400. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  401. intel_hdmi_set_spd_infoframe(encoder);
  402. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  403. }
  404. static void ibx_set_infoframes(struct drm_encoder *encoder,
  405. bool enable,
  406. struct drm_display_mode *adjusted_mode)
  407. {
  408. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  409. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  410. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  411. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  412. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  413. u32 val = I915_READ(reg);
  414. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  415. assert_hdmi_port_disabled(intel_hdmi);
  416. /* See the big comment in g4x_set_infoframes() */
  417. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  418. if (!enable) {
  419. if (!(val & VIDEO_DIP_ENABLE))
  420. return;
  421. val &= ~VIDEO_DIP_ENABLE;
  422. I915_WRITE(reg, val);
  423. POSTING_READ(reg);
  424. return;
  425. }
  426. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  427. if (val & VIDEO_DIP_ENABLE) {
  428. val &= ~VIDEO_DIP_ENABLE;
  429. I915_WRITE(reg, val);
  430. POSTING_READ(reg);
  431. }
  432. val &= ~VIDEO_DIP_PORT_MASK;
  433. val |= port;
  434. }
  435. val |= VIDEO_DIP_ENABLE;
  436. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  437. VIDEO_DIP_ENABLE_GCP);
  438. I915_WRITE(reg, val);
  439. POSTING_READ(reg);
  440. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  441. intel_hdmi_set_spd_infoframe(encoder);
  442. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  443. }
  444. static void cpt_set_infoframes(struct drm_encoder *encoder,
  445. bool enable,
  446. struct drm_display_mode *adjusted_mode)
  447. {
  448. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  449. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  450. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  451. u32 reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
  452. u32 val = I915_READ(reg);
  453. assert_hdmi_port_disabled(intel_hdmi);
  454. /* See the big comment in g4x_set_infoframes() */
  455. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  456. if (!enable) {
  457. if (!(val & VIDEO_DIP_ENABLE))
  458. return;
  459. val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI);
  460. I915_WRITE(reg, val);
  461. POSTING_READ(reg);
  462. return;
  463. }
  464. /* Set both together, unset both together: see the spec. */
  465. val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
  466. val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
  467. VIDEO_DIP_ENABLE_GCP);
  468. I915_WRITE(reg, val);
  469. POSTING_READ(reg);
  470. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  471. intel_hdmi_set_spd_infoframe(encoder);
  472. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  473. }
  474. static void vlv_set_infoframes(struct drm_encoder *encoder,
  475. bool enable,
  476. struct drm_display_mode *adjusted_mode)
  477. {
  478. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  479. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  480. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  481. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  482. u32 reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
  483. u32 val = I915_READ(reg);
  484. u32 port = VIDEO_DIP_PORT(intel_dig_port->port);
  485. assert_hdmi_port_disabled(intel_hdmi);
  486. /* See the big comment in g4x_set_infoframes() */
  487. val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
  488. if (!enable) {
  489. if (!(val & VIDEO_DIP_ENABLE))
  490. return;
  491. val &= ~VIDEO_DIP_ENABLE;
  492. I915_WRITE(reg, val);
  493. POSTING_READ(reg);
  494. return;
  495. }
  496. if (port != (val & VIDEO_DIP_PORT_MASK)) {
  497. if (val & VIDEO_DIP_ENABLE) {
  498. val &= ~VIDEO_DIP_ENABLE;
  499. I915_WRITE(reg, val);
  500. POSTING_READ(reg);
  501. }
  502. val &= ~VIDEO_DIP_PORT_MASK;
  503. val |= port;
  504. }
  505. val |= VIDEO_DIP_ENABLE;
  506. val &= ~(VIDEO_DIP_ENABLE_AVI | VIDEO_DIP_ENABLE_VENDOR |
  507. VIDEO_DIP_ENABLE_GAMUT | VIDEO_DIP_ENABLE_GCP);
  508. I915_WRITE(reg, val);
  509. POSTING_READ(reg);
  510. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  511. intel_hdmi_set_spd_infoframe(encoder);
  512. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  513. }
  514. static void hsw_set_infoframes(struct drm_encoder *encoder,
  515. bool enable,
  516. struct drm_display_mode *adjusted_mode)
  517. {
  518. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  519. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->crtc);
  520. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  521. u32 reg = HSW_TVIDEO_DIP_CTL(intel_crtc->config.cpu_transcoder);
  522. u32 val = I915_READ(reg);
  523. assert_hdmi_port_disabled(intel_hdmi);
  524. if (!enable) {
  525. I915_WRITE(reg, 0);
  526. POSTING_READ(reg);
  527. return;
  528. }
  529. val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
  530. VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW);
  531. I915_WRITE(reg, val);
  532. POSTING_READ(reg);
  533. intel_hdmi_set_avi_infoframe(encoder, adjusted_mode);
  534. intel_hdmi_set_spd_infoframe(encoder);
  535. intel_hdmi_set_hdmi_infoframe(encoder, adjusted_mode);
  536. }
  537. static void intel_hdmi_prepare(struct intel_encoder *encoder)
  538. {
  539. struct drm_device *dev = encoder->base.dev;
  540. struct drm_i915_private *dev_priv = dev->dev_private;
  541. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  542. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  543. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  544. u32 hdmi_val;
  545. hdmi_val = SDVO_ENCODING_HDMI;
  546. if (!HAS_PCH_SPLIT(dev))
  547. hdmi_val |= intel_hdmi->color_range;
  548. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  549. hdmi_val |= SDVO_VSYNC_ACTIVE_HIGH;
  550. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  551. hdmi_val |= SDVO_HSYNC_ACTIVE_HIGH;
  552. if (crtc->config.pipe_bpp > 24)
  553. hdmi_val |= HDMI_COLOR_FORMAT_12bpc;
  554. else
  555. hdmi_val |= SDVO_COLOR_FORMAT_8bpc;
  556. if (crtc->config.has_hdmi_sink)
  557. hdmi_val |= HDMI_MODE_SELECT_HDMI;
  558. if (crtc->config.has_audio) {
  559. WARN_ON(!crtc->config.has_hdmi_sink);
  560. DRM_DEBUG_DRIVER("Enabling HDMI audio on pipe %c\n",
  561. pipe_name(crtc->pipe));
  562. hdmi_val |= SDVO_AUDIO_ENABLE;
  563. intel_write_eld(&encoder->base, adjusted_mode);
  564. }
  565. if (HAS_PCH_CPT(dev))
  566. hdmi_val |= SDVO_PIPE_SEL_CPT(crtc->pipe);
  567. else if (IS_CHERRYVIEW(dev))
  568. hdmi_val |= SDVO_PIPE_SEL_CHV(crtc->pipe);
  569. else
  570. hdmi_val |= SDVO_PIPE_SEL(crtc->pipe);
  571. I915_WRITE(intel_hdmi->hdmi_reg, hdmi_val);
  572. POSTING_READ(intel_hdmi->hdmi_reg);
  573. }
  574. static bool intel_hdmi_get_hw_state(struct intel_encoder *encoder,
  575. enum pipe *pipe)
  576. {
  577. struct drm_device *dev = encoder->base.dev;
  578. struct drm_i915_private *dev_priv = dev->dev_private;
  579. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  580. enum intel_display_power_domain power_domain;
  581. u32 tmp;
  582. power_domain = intel_display_port_power_domain(encoder);
  583. if (!intel_display_power_is_enabled(dev_priv, power_domain))
  584. return false;
  585. tmp = I915_READ(intel_hdmi->hdmi_reg);
  586. if (!(tmp & SDVO_ENABLE))
  587. return false;
  588. if (HAS_PCH_CPT(dev))
  589. *pipe = PORT_TO_PIPE_CPT(tmp);
  590. else if (IS_CHERRYVIEW(dev))
  591. *pipe = SDVO_PORT_TO_PIPE_CHV(tmp);
  592. else
  593. *pipe = PORT_TO_PIPE(tmp);
  594. return true;
  595. }
  596. static void intel_hdmi_get_config(struct intel_encoder *encoder,
  597. struct intel_crtc_config *pipe_config)
  598. {
  599. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  600. struct drm_device *dev = encoder->base.dev;
  601. struct drm_i915_private *dev_priv = dev->dev_private;
  602. u32 tmp, flags = 0;
  603. int dotclock;
  604. tmp = I915_READ(intel_hdmi->hdmi_reg);
  605. if (tmp & SDVO_HSYNC_ACTIVE_HIGH)
  606. flags |= DRM_MODE_FLAG_PHSYNC;
  607. else
  608. flags |= DRM_MODE_FLAG_NHSYNC;
  609. if (tmp & SDVO_VSYNC_ACTIVE_HIGH)
  610. flags |= DRM_MODE_FLAG_PVSYNC;
  611. else
  612. flags |= DRM_MODE_FLAG_NVSYNC;
  613. if (tmp & HDMI_MODE_SELECT_HDMI)
  614. pipe_config->has_hdmi_sink = true;
  615. if (tmp & SDVO_AUDIO_ENABLE)
  616. pipe_config->has_audio = true;
  617. if (!HAS_PCH_SPLIT(dev) &&
  618. tmp & HDMI_COLOR_RANGE_16_235)
  619. pipe_config->limited_color_range = true;
  620. pipe_config->adjusted_mode.flags |= flags;
  621. if ((tmp & SDVO_COLOR_FORMAT_MASK) == HDMI_COLOR_FORMAT_12bpc)
  622. dotclock = pipe_config->port_clock * 2 / 3;
  623. else
  624. dotclock = pipe_config->port_clock;
  625. if (HAS_PCH_SPLIT(dev_priv->dev))
  626. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  627. pipe_config->adjusted_mode.crtc_clock = dotclock;
  628. }
  629. static void intel_enable_hdmi(struct intel_encoder *encoder)
  630. {
  631. struct drm_device *dev = encoder->base.dev;
  632. struct drm_i915_private *dev_priv = dev->dev_private;
  633. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  634. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  635. u32 temp;
  636. u32 enable_bits = SDVO_ENABLE;
  637. if (intel_crtc->config.has_audio)
  638. enable_bits |= SDVO_AUDIO_ENABLE;
  639. temp = I915_READ(intel_hdmi->hdmi_reg);
  640. /* HW workaround for IBX, we need to move the port to transcoder A
  641. * before disabling it, so restore the transcoder select bit here. */
  642. if (HAS_PCH_IBX(dev))
  643. enable_bits |= SDVO_PIPE_SEL(intel_crtc->pipe);
  644. /* HW workaround, need to toggle enable bit off and on for 12bpc, but
  645. * we do this anyway which shows more stable in testing.
  646. */
  647. if (HAS_PCH_SPLIT(dev)) {
  648. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  649. POSTING_READ(intel_hdmi->hdmi_reg);
  650. }
  651. temp |= enable_bits;
  652. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  653. POSTING_READ(intel_hdmi->hdmi_reg);
  654. /* HW workaround, need to write this twice for issue that may result
  655. * in first write getting masked.
  656. */
  657. if (HAS_PCH_SPLIT(dev)) {
  658. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  659. POSTING_READ(intel_hdmi->hdmi_reg);
  660. }
  661. }
  662. static void vlv_enable_hdmi(struct intel_encoder *encoder)
  663. {
  664. }
  665. static void intel_disable_hdmi(struct intel_encoder *encoder)
  666. {
  667. struct drm_device *dev = encoder->base.dev;
  668. struct drm_i915_private *dev_priv = dev->dev_private;
  669. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  670. u32 temp;
  671. u32 enable_bits = SDVO_ENABLE | SDVO_AUDIO_ENABLE;
  672. temp = I915_READ(intel_hdmi->hdmi_reg);
  673. /* HW workaround for IBX, we need to move the port to transcoder A
  674. * before disabling it. */
  675. if (HAS_PCH_IBX(dev)) {
  676. struct drm_crtc *crtc = encoder->base.crtc;
  677. int pipe = crtc ? to_intel_crtc(crtc)->pipe : -1;
  678. if (temp & SDVO_PIPE_B_SELECT) {
  679. temp &= ~SDVO_PIPE_B_SELECT;
  680. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  681. POSTING_READ(intel_hdmi->hdmi_reg);
  682. /* Again we need to write this twice. */
  683. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  684. POSTING_READ(intel_hdmi->hdmi_reg);
  685. /* Transcoder selection bits only update
  686. * effectively on vblank. */
  687. if (crtc)
  688. intel_wait_for_vblank(dev, pipe);
  689. else
  690. msleep(50);
  691. }
  692. }
  693. /* HW workaround, need to toggle enable bit off and on for 12bpc, but
  694. * we do this anyway which shows more stable in testing.
  695. */
  696. if (HAS_PCH_SPLIT(dev)) {
  697. I915_WRITE(intel_hdmi->hdmi_reg, temp & ~SDVO_ENABLE);
  698. POSTING_READ(intel_hdmi->hdmi_reg);
  699. }
  700. temp &= ~enable_bits;
  701. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  702. POSTING_READ(intel_hdmi->hdmi_reg);
  703. /* HW workaround, need to write this twice for issue that may result
  704. * in first write getting masked.
  705. */
  706. if (HAS_PCH_SPLIT(dev)) {
  707. I915_WRITE(intel_hdmi->hdmi_reg, temp);
  708. POSTING_READ(intel_hdmi->hdmi_reg);
  709. }
  710. }
  711. static int hdmi_portclock_limit(struct intel_hdmi *hdmi, bool respect_dvi_limit)
  712. {
  713. struct drm_device *dev = intel_hdmi_to_dev(hdmi);
  714. if ((respect_dvi_limit && !hdmi->has_hdmi_sink) || IS_G4X(dev))
  715. return 165000;
  716. else if (IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8)
  717. return 300000;
  718. else
  719. return 225000;
  720. }
  721. static enum drm_mode_status
  722. intel_hdmi_mode_valid(struct drm_connector *connector,
  723. struct drm_display_mode *mode)
  724. {
  725. int clock = mode->clock;
  726. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  727. clock *= 2;
  728. if (clock > hdmi_portclock_limit(intel_attached_hdmi(connector),
  729. true))
  730. return MODE_CLOCK_HIGH;
  731. if (clock < 20000)
  732. return MODE_CLOCK_LOW;
  733. if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
  734. return MODE_NO_DBLESCAN;
  735. return MODE_OK;
  736. }
  737. static bool hdmi_12bpc_possible(struct intel_crtc *crtc)
  738. {
  739. struct drm_device *dev = crtc->base.dev;
  740. struct intel_encoder *encoder;
  741. int count = 0, count_hdmi = 0;
  742. if (HAS_GMCH_DISPLAY(dev))
  743. return false;
  744. for_each_intel_encoder(dev, encoder) {
  745. if (encoder->new_crtc != crtc)
  746. continue;
  747. count_hdmi += encoder->type == INTEL_OUTPUT_HDMI;
  748. count++;
  749. }
  750. /*
  751. * HDMI 12bpc affects the clocks, so it's only possible
  752. * when not cloning with other encoder types.
  753. */
  754. return count_hdmi > 0 && count_hdmi == count;
  755. }
  756. bool intel_hdmi_compute_config(struct intel_encoder *encoder,
  757. struct intel_crtc_config *pipe_config)
  758. {
  759. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  760. struct drm_device *dev = encoder->base.dev;
  761. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  762. int clock_12bpc = pipe_config->adjusted_mode.crtc_clock * 3 / 2;
  763. int portclock_limit = hdmi_portclock_limit(intel_hdmi, false);
  764. int desired_bpp;
  765. pipe_config->has_hdmi_sink = intel_hdmi->has_hdmi_sink;
  766. if (intel_hdmi->color_range_auto) {
  767. /* See CEA-861-E - 5.1 Default Encoding Parameters */
  768. if (pipe_config->has_hdmi_sink &&
  769. drm_match_cea_mode(adjusted_mode) > 1)
  770. intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
  771. else
  772. intel_hdmi->color_range = 0;
  773. }
  774. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK) {
  775. pipe_config->pixel_multiplier = 2;
  776. }
  777. if (intel_hdmi->color_range)
  778. pipe_config->limited_color_range = true;
  779. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev))
  780. pipe_config->has_pch_encoder = true;
  781. if (pipe_config->has_hdmi_sink && intel_hdmi->has_audio)
  782. pipe_config->has_audio = true;
  783. /*
  784. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  785. * through, clamp it down. Note that g4x/vlv don't support 12bpc hdmi
  786. * outputs. We also need to check that the higher clock still fits
  787. * within limits.
  788. */
  789. if (pipe_config->pipe_bpp > 8*3 && pipe_config->has_hdmi_sink &&
  790. clock_12bpc <= portclock_limit &&
  791. hdmi_12bpc_possible(encoder->new_crtc)) {
  792. DRM_DEBUG_KMS("picking bpc to 12 for HDMI output\n");
  793. desired_bpp = 12*3;
  794. /* Need to adjust the port link by 1.5x for 12bpc. */
  795. pipe_config->port_clock = clock_12bpc;
  796. } else {
  797. DRM_DEBUG_KMS("picking bpc to 8 for HDMI output\n");
  798. desired_bpp = 8*3;
  799. }
  800. if (!pipe_config->bw_constrained) {
  801. DRM_DEBUG_KMS("forcing pipe bpc to %i for HDMI\n", desired_bpp);
  802. pipe_config->pipe_bpp = desired_bpp;
  803. }
  804. if (adjusted_mode->crtc_clock > portclock_limit) {
  805. DRM_DEBUG_KMS("too high HDMI clock, rejecting mode\n");
  806. return false;
  807. }
  808. return true;
  809. }
  810. static void
  811. intel_hdmi_unset_edid(struct drm_connector *connector)
  812. {
  813. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  814. intel_hdmi->has_hdmi_sink = false;
  815. intel_hdmi->has_audio = false;
  816. intel_hdmi->rgb_quant_range_selectable = false;
  817. kfree(to_intel_connector(connector)->detect_edid);
  818. to_intel_connector(connector)->detect_edid = NULL;
  819. }
  820. static bool
  821. intel_hdmi_set_edid(struct drm_connector *connector)
  822. {
  823. struct drm_i915_private *dev_priv = to_i915(connector->dev);
  824. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  825. struct intel_encoder *intel_encoder =
  826. &hdmi_to_dig_port(intel_hdmi)->base;
  827. enum intel_display_power_domain power_domain;
  828. struct edid *edid;
  829. bool connected = false;
  830. power_domain = intel_display_port_power_domain(intel_encoder);
  831. intel_display_power_get(dev_priv, power_domain);
  832. edid = drm_get_edid(connector,
  833. intel_gmbus_get_adapter(dev_priv,
  834. intel_hdmi->ddc_bus));
  835. intel_display_power_put(dev_priv, power_domain);
  836. to_intel_connector(connector)->detect_edid = edid;
  837. if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
  838. intel_hdmi->rgb_quant_range_selectable =
  839. drm_rgb_quant_range_selectable(edid);
  840. intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
  841. if (intel_hdmi->force_audio != HDMI_AUDIO_AUTO)
  842. intel_hdmi->has_audio =
  843. intel_hdmi->force_audio == HDMI_AUDIO_ON;
  844. if (intel_hdmi->force_audio != HDMI_AUDIO_OFF_DVI)
  845. intel_hdmi->has_hdmi_sink =
  846. drm_detect_hdmi_monitor(edid);
  847. connected = true;
  848. }
  849. return connected;
  850. }
  851. static enum drm_connector_status
  852. intel_hdmi_detect(struct drm_connector *connector, bool force)
  853. {
  854. enum drm_connector_status status;
  855. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  856. connector->base.id, connector->name);
  857. intel_hdmi_unset_edid(connector);
  858. if (intel_hdmi_set_edid(connector)) {
  859. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  860. hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
  861. status = connector_status_connected;
  862. } else
  863. status = connector_status_disconnected;
  864. return status;
  865. }
  866. static void
  867. intel_hdmi_force(struct drm_connector *connector)
  868. {
  869. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  870. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  871. connector->base.id, connector->name);
  872. intel_hdmi_unset_edid(connector);
  873. if (connector->status != connector_status_connected)
  874. return;
  875. intel_hdmi_set_edid(connector);
  876. hdmi_to_dig_port(intel_hdmi)->base.type = INTEL_OUTPUT_HDMI;
  877. }
  878. static int intel_hdmi_get_modes(struct drm_connector *connector)
  879. {
  880. struct edid *edid;
  881. edid = to_intel_connector(connector)->detect_edid;
  882. if (edid == NULL)
  883. return 0;
  884. return intel_connector_update_modes(connector, edid);
  885. }
  886. static bool
  887. intel_hdmi_detect_audio(struct drm_connector *connector)
  888. {
  889. bool has_audio = false;
  890. struct edid *edid;
  891. edid = to_intel_connector(connector)->detect_edid;
  892. if (edid && edid->input & DRM_EDID_INPUT_DIGITAL)
  893. has_audio = drm_detect_monitor_audio(edid);
  894. return has_audio;
  895. }
  896. static int
  897. intel_hdmi_set_property(struct drm_connector *connector,
  898. struct drm_property *property,
  899. uint64_t val)
  900. {
  901. struct intel_hdmi *intel_hdmi = intel_attached_hdmi(connector);
  902. struct intel_digital_port *intel_dig_port =
  903. hdmi_to_dig_port(intel_hdmi);
  904. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  905. int ret;
  906. ret = drm_object_property_set_value(&connector->base, property, val);
  907. if (ret)
  908. return ret;
  909. if (property == dev_priv->force_audio_property) {
  910. enum hdmi_force_audio i = val;
  911. bool has_audio;
  912. if (i == intel_hdmi->force_audio)
  913. return 0;
  914. intel_hdmi->force_audio = i;
  915. if (i == HDMI_AUDIO_AUTO)
  916. has_audio = intel_hdmi_detect_audio(connector);
  917. else
  918. has_audio = (i == HDMI_AUDIO_ON);
  919. if (i == HDMI_AUDIO_OFF_DVI)
  920. intel_hdmi->has_hdmi_sink = 0;
  921. intel_hdmi->has_audio = has_audio;
  922. goto done;
  923. }
  924. if (property == dev_priv->broadcast_rgb_property) {
  925. bool old_auto = intel_hdmi->color_range_auto;
  926. uint32_t old_range = intel_hdmi->color_range;
  927. switch (val) {
  928. case INTEL_BROADCAST_RGB_AUTO:
  929. intel_hdmi->color_range_auto = true;
  930. break;
  931. case INTEL_BROADCAST_RGB_FULL:
  932. intel_hdmi->color_range_auto = false;
  933. intel_hdmi->color_range = 0;
  934. break;
  935. case INTEL_BROADCAST_RGB_LIMITED:
  936. intel_hdmi->color_range_auto = false;
  937. intel_hdmi->color_range = HDMI_COLOR_RANGE_16_235;
  938. break;
  939. default:
  940. return -EINVAL;
  941. }
  942. if (old_auto == intel_hdmi->color_range_auto &&
  943. old_range == intel_hdmi->color_range)
  944. return 0;
  945. goto done;
  946. }
  947. if (property == connector->dev->mode_config.aspect_ratio_property) {
  948. switch (val) {
  949. case DRM_MODE_PICTURE_ASPECT_NONE:
  950. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
  951. break;
  952. case DRM_MODE_PICTURE_ASPECT_4_3:
  953. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_4_3;
  954. break;
  955. case DRM_MODE_PICTURE_ASPECT_16_9:
  956. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_16_9;
  957. break;
  958. default:
  959. return -EINVAL;
  960. }
  961. goto done;
  962. }
  963. return -EINVAL;
  964. done:
  965. if (intel_dig_port->base.base.crtc)
  966. intel_crtc_restore_mode(intel_dig_port->base.base.crtc);
  967. return 0;
  968. }
  969. static void intel_hdmi_pre_enable(struct intel_encoder *encoder)
  970. {
  971. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  972. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  973. struct drm_display_mode *adjusted_mode =
  974. &intel_crtc->config.adjusted_mode;
  975. intel_hdmi_prepare(encoder);
  976. intel_hdmi->set_infoframes(&encoder->base,
  977. intel_crtc->config.has_hdmi_sink,
  978. adjusted_mode);
  979. }
  980. static void vlv_hdmi_pre_enable(struct intel_encoder *encoder)
  981. {
  982. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  983. struct intel_hdmi *intel_hdmi = &dport->hdmi;
  984. struct drm_device *dev = encoder->base.dev;
  985. struct drm_i915_private *dev_priv = dev->dev_private;
  986. struct intel_crtc *intel_crtc =
  987. to_intel_crtc(encoder->base.crtc);
  988. struct drm_display_mode *adjusted_mode =
  989. &intel_crtc->config.adjusted_mode;
  990. enum dpio_channel port = vlv_dport_to_channel(dport);
  991. int pipe = intel_crtc->pipe;
  992. u32 val;
  993. /* Enable clock channels for this port */
  994. mutex_lock(&dev_priv->dpio_lock);
  995. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
  996. val = 0;
  997. if (pipe)
  998. val |= (1<<21);
  999. else
  1000. val &= ~(1<<21);
  1001. val |= 0x001000c4;
  1002. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
  1003. /* HDMI 1.0V-2dB */
  1004. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0);
  1005. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), 0x2b245f5f);
  1006. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port), 0x5578b83a);
  1007. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0c782040);
  1008. vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), 0x2b247878);
  1009. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
  1010. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
  1011. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
  1012. /* Program lane clock */
  1013. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
  1014. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
  1015. mutex_unlock(&dev_priv->dpio_lock);
  1016. intel_hdmi->set_infoframes(&encoder->base,
  1017. intel_crtc->config.has_hdmi_sink,
  1018. adjusted_mode);
  1019. intel_enable_hdmi(encoder);
  1020. vlv_wait_port_ready(dev_priv, dport);
  1021. }
  1022. static void vlv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
  1023. {
  1024. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1025. struct drm_device *dev = encoder->base.dev;
  1026. struct drm_i915_private *dev_priv = dev->dev_private;
  1027. struct intel_crtc *intel_crtc =
  1028. to_intel_crtc(encoder->base.crtc);
  1029. enum dpio_channel port = vlv_dport_to_channel(dport);
  1030. int pipe = intel_crtc->pipe;
  1031. intel_hdmi_prepare(encoder);
  1032. /* Program Tx lane resets to default */
  1033. mutex_lock(&dev_priv->dpio_lock);
  1034. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
  1035. DPIO_PCS_TX_LANE2_RESET |
  1036. DPIO_PCS_TX_LANE1_RESET);
  1037. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
  1038. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1039. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1040. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1041. DPIO_PCS_CLK_SOFT_RESET);
  1042. /* Fix up inter-pair skew failure */
  1043. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
  1044. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
  1045. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
  1046. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), 0x00002000);
  1047. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
  1048. mutex_unlock(&dev_priv->dpio_lock);
  1049. }
  1050. static void chv_hdmi_pre_pll_enable(struct intel_encoder *encoder)
  1051. {
  1052. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1053. struct drm_device *dev = encoder->base.dev;
  1054. struct drm_i915_private *dev_priv = dev->dev_private;
  1055. struct intel_crtc *intel_crtc =
  1056. to_intel_crtc(encoder->base.crtc);
  1057. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1058. enum pipe pipe = intel_crtc->pipe;
  1059. u32 val;
  1060. intel_hdmi_prepare(encoder);
  1061. mutex_lock(&dev_priv->dpio_lock);
  1062. /* program left/right clock distribution */
  1063. if (pipe != PIPE_B) {
  1064. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
  1065. val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
  1066. if (ch == DPIO_CH0)
  1067. val |= CHV_BUFLEFTENA1_FORCE;
  1068. if (ch == DPIO_CH1)
  1069. val |= CHV_BUFRIGHTENA1_FORCE;
  1070. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
  1071. } else {
  1072. val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
  1073. val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
  1074. if (ch == DPIO_CH0)
  1075. val |= CHV_BUFLEFTENA2_FORCE;
  1076. if (ch == DPIO_CH1)
  1077. val |= CHV_BUFRIGHTENA2_FORCE;
  1078. vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
  1079. }
  1080. /* program clock channel usage */
  1081. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
  1082. val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
  1083. if (pipe != PIPE_B)
  1084. val &= ~CHV_PCS_USEDCLKCHANNEL;
  1085. else
  1086. val |= CHV_PCS_USEDCLKCHANNEL;
  1087. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
  1088. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
  1089. val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
  1090. if (pipe != PIPE_B)
  1091. val &= ~CHV_PCS_USEDCLKCHANNEL;
  1092. else
  1093. val |= CHV_PCS_USEDCLKCHANNEL;
  1094. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
  1095. /*
  1096. * This a a bit weird since generally CL
  1097. * matches the pipe, but here we need to
  1098. * pick the CL based on the port.
  1099. */
  1100. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
  1101. if (pipe != PIPE_B)
  1102. val &= ~CHV_CMN_USEDCLKCHANNEL;
  1103. else
  1104. val |= CHV_CMN_USEDCLKCHANNEL;
  1105. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
  1106. mutex_unlock(&dev_priv->dpio_lock);
  1107. }
  1108. static void vlv_hdmi_post_disable(struct intel_encoder *encoder)
  1109. {
  1110. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1111. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1112. struct intel_crtc *intel_crtc =
  1113. to_intel_crtc(encoder->base.crtc);
  1114. enum dpio_channel port = vlv_dport_to_channel(dport);
  1115. int pipe = intel_crtc->pipe;
  1116. /* Reset lanes to avoid HDMI flicker (VLV w/a) */
  1117. mutex_lock(&dev_priv->dpio_lock);
  1118. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
  1119. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
  1120. mutex_unlock(&dev_priv->dpio_lock);
  1121. }
  1122. static void chv_hdmi_post_disable(struct intel_encoder *encoder)
  1123. {
  1124. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1125. struct drm_device *dev = encoder->base.dev;
  1126. struct drm_i915_private *dev_priv = dev->dev_private;
  1127. struct intel_crtc *intel_crtc =
  1128. to_intel_crtc(encoder->base.crtc);
  1129. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1130. enum pipe pipe = intel_crtc->pipe;
  1131. u32 val;
  1132. mutex_lock(&dev_priv->dpio_lock);
  1133. /* Propagate soft reset to data lane reset */
  1134. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1135. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1136. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1137. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1138. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1139. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1140. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1141. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1142. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1143. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1144. val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1145. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1146. mutex_unlock(&dev_priv->dpio_lock);
  1147. }
  1148. static void chv_hdmi_pre_enable(struct intel_encoder *encoder)
  1149. {
  1150. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1151. struct drm_device *dev = encoder->base.dev;
  1152. struct drm_i915_private *dev_priv = dev->dev_private;
  1153. struct intel_crtc *intel_crtc =
  1154. to_intel_crtc(encoder->base.crtc);
  1155. enum dpio_channel ch = vlv_dport_to_channel(dport);
  1156. int pipe = intel_crtc->pipe;
  1157. int data, i;
  1158. u32 val;
  1159. mutex_lock(&dev_priv->dpio_lock);
  1160. /* allow hardware to manage TX FIFO reset source */
  1161. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
  1162. val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
  1163. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
  1164. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
  1165. val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
  1166. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
  1167. /* Deassert soft data lane reset*/
  1168. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
  1169. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1170. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
  1171. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
  1172. val |= CHV_PCS_REQ_SOFTRESET_EN;
  1173. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
  1174. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
  1175. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1176. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
  1177. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
  1178. val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
  1179. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
  1180. /* Program Tx latency optimal setting */
  1181. for (i = 0; i < 4; i++) {
  1182. /* Set the latency optimal bit */
  1183. data = (i == 1) ? 0x0 : 0x6;
  1184. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
  1185. data << DPIO_FRC_LATENCY_SHFIT);
  1186. /* Set the upar bit */
  1187. data = (i == 1) ? 0x0 : 0x1;
  1188. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
  1189. data << DPIO_UPAR_SHIFT);
  1190. }
  1191. /* Data lane stagger programming */
  1192. /* FIXME: Fix up value only after power analysis */
  1193. /* Clear calc init */
  1194. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  1195. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  1196. val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
  1197. val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
  1198. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  1199. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  1200. val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
  1201. val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
  1202. val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
  1203. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  1204. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
  1205. val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
  1206. val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
  1207. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
  1208. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
  1209. val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
  1210. val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
  1211. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
  1212. /* FIXME: Program the support xxx V-dB */
  1213. /* Use 800mV-0dB */
  1214. for (i = 0; i < 4; i++) {
  1215. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
  1216. val &= ~DPIO_SWING_DEEMPH9P5_MASK;
  1217. val |= 128 << DPIO_SWING_DEEMPH9P5_SHIFT;
  1218. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
  1219. }
  1220. for (i = 0; i < 4; i++) {
  1221. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
  1222. val &= ~DPIO_SWING_MARGIN000_MASK;
  1223. val |= 102 << DPIO_SWING_MARGIN000_SHIFT;
  1224. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
  1225. }
  1226. /* Disable unique transition scale */
  1227. for (i = 0; i < 4; i++) {
  1228. val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
  1229. val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
  1230. vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
  1231. }
  1232. /* Additional steps for 1200mV-0dB */
  1233. #if 0
  1234. val = vlv_dpio_read(dev_priv, pipe, VLV_TX_DW3(ch));
  1235. if (ch)
  1236. val |= DPIO_TX_UNIQ_TRANS_SCALE_CH1;
  1237. else
  1238. val |= DPIO_TX_UNIQ_TRANS_SCALE_CH0;
  1239. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(ch), val);
  1240. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(ch),
  1241. vlv_dpio_read(dev_priv, pipe, VLV_TX_DW2(ch)) |
  1242. (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT));
  1243. #endif
  1244. /* Start swing calculation */
  1245. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
  1246. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  1247. vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
  1248. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
  1249. val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
  1250. vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
  1251. /* LRC Bypass */
  1252. val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
  1253. val |= DPIO_LRC_BYPASS;
  1254. vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);
  1255. mutex_unlock(&dev_priv->dpio_lock);
  1256. intel_enable_hdmi(encoder);
  1257. vlv_wait_port_ready(dev_priv, dport);
  1258. }
  1259. static void intel_hdmi_destroy(struct drm_connector *connector)
  1260. {
  1261. kfree(to_intel_connector(connector)->detect_edid);
  1262. drm_connector_cleanup(connector);
  1263. kfree(connector);
  1264. }
  1265. static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
  1266. .dpms = intel_connector_dpms,
  1267. .detect = intel_hdmi_detect,
  1268. .force = intel_hdmi_force,
  1269. .fill_modes = drm_helper_probe_single_connector_modes,
  1270. .set_property = intel_hdmi_set_property,
  1271. .destroy = intel_hdmi_destroy,
  1272. };
  1273. static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
  1274. .get_modes = intel_hdmi_get_modes,
  1275. .mode_valid = intel_hdmi_mode_valid,
  1276. .best_encoder = intel_best_encoder,
  1277. };
  1278. static const struct drm_encoder_funcs intel_hdmi_enc_funcs = {
  1279. .destroy = intel_encoder_destroy,
  1280. };
  1281. static void
  1282. intel_attach_aspect_ratio_property(struct drm_connector *connector)
  1283. {
  1284. if (!drm_mode_create_aspect_ratio_property(connector->dev))
  1285. drm_object_attach_property(&connector->base,
  1286. connector->dev->mode_config.aspect_ratio_property,
  1287. DRM_MODE_PICTURE_ASPECT_NONE);
  1288. }
  1289. static void
  1290. intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
  1291. {
  1292. intel_attach_force_audio_property(connector);
  1293. intel_attach_broadcast_rgb_property(connector);
  1294. intel_hdmi->color_range_auto = true;
  1295. intel_attach_aspect_ratio_property(connector);
  1296. intel_hdmi->aspect_ratio = HDMI_PICTURE_ASPECT_NONE;
  1297. }
  1298. void intel_hdmi_init_connector(struct intel_digital_port *intel_dig_port,
  1299. struct intel_connector *intel_connector)
  1300. {
  1301. struct drm_connector *connector = &intel_connector->base;
  1302. struct intel_hdmi *intel_hdmi = &intel_dig_port->hdmi;
  1303. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1304. struct drm_device *dev = intel_encoder->base.dev;
  1305. struct drm_i915_private *dev_priv = dev->dev_private;
  1306. enum port port = intel_dig_port->port;
  1307. drm_connector_init(dev, connector, &intel_hdmi_connector_funcs,
  1308. DRM_MODE_CONNECTOR_HDMIA);
  1309. drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
  1310. connector->interlace_allowed = 1;
  1311. connector->doublescan_allowed = 0;
  1312. connector->stereo_allowed = 1;
  1313. switch (port) {
  1314. case PORT_B:
  1315. intel_hdmi->ddc_bus = GMBUS_PORT_DPB;
  1316. intel_encoder->hpd_pin = HPD_PORT_B;
  1317. break;
  1318. case PORT_C:
  1319. intel_hdmi->ddc_bus = GMBUS_PORT_DPC;
  1320. intel_encoder->hpd_pin = HPD_PORT_C;
  1321. break;
  1322. case PORT_D:
  1323. if (IS_CHERRYVIEW(dev))
  1324. intel_hdmi->ddc_bus = GMBUS_PORT_DPD_CHV;
  1325. else
  1326. intel_hdmi->ddc_bus = GMBUS_PORT_DPD;
  1327. intel_encoder->hpd_pin = HPD_PORT_D;
  1328. break;
  1329. case PORT_A:
  1330. intel_encoder->hpd_pin = HPD_PORT_A;
  1331. /* Internal port only for eDP. */
  1332. default:
  1333. BUG();
  1334. }
  1335. if (IS_VALLEYVIEW(dev)) {
  1336. intel_hdmi->write_infoframe = vlv_write_infoframe;
  1337. intel_hdmi->set_infoframes = vlv_set_infoframes;
  1338. } else if (IS_G4X(dev)) {
  1339. intel_hdmi->write_infoframe = g4x_write_infoframe;
  1340. intel_hdmi->set_infoframes = g4x_set_infoframes;
  1341. } else if (HAS_DDI(dev)) {
  1342. intel_hdmi->write_infoframe = hsw_write_infoframe;
  1343. intel_hdmi->set_infoframes = hsw_set_infoframes;
  1344. } else if (HAS_PCH_IBX(dev)) {
  1345. intel_hdmi->write_infoframe = ibx_write_infoframe;
  1346. intel_hdmi->set_infoframes = ibx_set_infoframes;
  1347. } else {
  1348. intel_hdmi->write_infoframe = cpt_write_infoframe;
  1349. intel_hdmi->set_infoframes = cpt_set_infoframes;
  1350. }
  1351. if (HAS_DDI(dev))
  1352. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  1353. else
  1354. intel_connector->get_hw_state = intel_connector_get_hw_state;
  1355. intel_connector->unregister = intel_connector_unregister;
  1356. intel_hdmi_add_properties(intel_hdmi, connector);
  1357. intel_connector_attach_encoder(intel_connector, intel_encoder);
  1358. drm_connector_register(connector);
  1359. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1360. * 0xd. Failure to do so will result in spurious interrupts being
  1361. * generated on the port when a cable is not attached.
  1362. */
  1363. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1364. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1365. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1366. }
  1367. }
  1368. void intel_hdmi_init(struct drm_device *dev, int hdmi_reg, enum port port)
  1369. {
  1370. struct intel_digital_port *intel_dig_port;
  1371. struct intel_encoder *intel_encoder;
  1372. struct intel_connector *intel_connector;
  1373. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1374. if (!intel_dig_port)
  1375. return;
  1376. intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
  1377. if (!intel_connector) {
  1378. kfree(intel_dig_port);
  1379. return;
  1380. }
  1381. intel_encoder = &intel_dig_port->base;
  1382. drm_encoder_init(dev, &intel_encoder->base, &intel_hdmi_enc_funcs,
  1383. DRM_MODE_ENCODER_TMDS);
  1384. intel_encoder->compute_config = intel_hdmi_compute_config;
  1385. intel_encoder->disable = intel_disable_hdmi;
  1386. intel_encoder->get_hw_state = intel_hdmi_get_hw_state;
  1387. intel_encoder->get_config = intel_hdmi_get_config;
  1388. if (IS_CHERRYVIEW(dev)) {
  1389. intel_encoder->pre_pll_enable = chv_hdmi_pre_pll_enable;
  1390. intel_encoder->pre_enable = chv_hdmi_pre_enable;
  1391. intel_encoder->enable = vlv_enable_hdmi;
  1392. intel_encoder->post_disable = chv_hdmi_post_disable;
  1393. } else if (IS_VALLEYVIEW(dev)) {
  1394. intel_encoder->pre_pll_enable = vlv_hdmi_pre_pll_enable;
  1395. intel_encoder->pre_enable = vlv_hdmi_pre_enable;
  1396. intel_encoder->enable = vlv_enable_hdmi;
  1397. intel_encoder->post_disable = vlv_hdmi_post_disable;
  1398. } else {
  1399. intel_encoder->pre_enable = intel_hdmi_pre_enable;
  1400. intel_encoder->enable = intel_enable_hdmi;
  1401. }
  1402. intel_encoder->type = INTEL_OUTPUT_HDMI;
  1403. if (IS_CHERRYVIEW(dev)) {
  1404. if (port == PORT_D)
  1405. intel_encoder->crtc_mask = 1 << 2;
  1406. else
  1407. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1408. } else {
  1409. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1410. }
  1411. intel_encoder->cloneable = 1 << INTEL_OUTPUT_ANALOG;
  1412. /*
  1413. * BSpec is unclear about HDMI+HDMI cloning on g4x, but it seems
  1414. * to work on real hardware. And since g4x can send infoframes to
  1415. * only one port anyway, nothing is lost by allowing it.
  1416. */
  1417. if (IS_G4X(dev))
  1418. intel_encoder->cloneable |= 1 << INTEL_OUTPUT_HDMI;
  1419. intel_dig_port->port = port;
  1420. intel_dig_port->hdmi.hdmi_reg = hdmi_reg;
  1421. intel_dig_port->dp.output_reg = 0;
  1422. intel_hdmi_init_connector(intel_dig_port, intel_connector);
  1423. }