radeon_kfd.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/fdtable.h>
  24. #include <linux/uaccess.h>
  25. #include <drm/drmP.h>
  26. #include "radeon.h"
  27. #include "cikd.h"
  28. #include "cik_reg.h"
  29. #include "radeon_kfd.h"
  30. #include "radeon_ucode.h"
  31. #include <linux/firmware.h>
  32. #include "cik_structs.h"
  33. #define CIK_PIPE_PER_MEC (4)
  34. static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
  35. TCP_WATCH0_ADDR_H, TCP_WATCH0_ADDR_L, TCP_WATCH0_CNTL,
  36. TCP_WATCH1_ADDR_H, TCP_WATCH1_ADDR_L, TCP_WATCH1_CNTL,
  37. TCP_WATCH2_ADDR_H, TCP_WATCH2_ADDR_L, TCP_WATCH2_CNTL,
  38. TCP_WATCH3_ADDR_H, TCP_WATCH3_ADDR_L, TCP_WATCH3_CNTL
  39. };
  40. struct kgd_mem {
  41. struct radeon_bo *bo;
  42. uint64_t gpu_addr;
  43. void *cpu_ptr;
  44. };
  45. static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
  46. void **mem_obj, uint64_t *gpu_addr,
  47. void **cpu_ptr);
  48. static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj);
  49. static uint64_t get_vmem_size(struct kgd_dev *kgd);
  50. static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd);
  51. static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd);
  52. static int alloc_pasid(unsigned int bits);
  53. static void free_pasid(unsigned int pasid);
  54. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);
  55. /*
  56. * Register access functions
  57. */
  58. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  59. uint32_t sh_mem_config, uint32_t sh_mem_ape1_base,
  60. uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);
  61. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  62. unsigned int vmid);
  63. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  64. uint32_t hpd_size, uint64_t hpd_gpu_addr);
  65. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
  66. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  67. uint32_t queue_id, uint32_t __user *wptr,
  68. uint32_t wptr_shift, uint32_t wptr_mask,
  69. struct mm_struct *mm);
  70. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
  71. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  72. uint32_t pipe_id, uint32_t queue_id);
  73. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, uint32_t reset_type,
  74. unsigned int timeout, uint32_t pipe_id,
  75. uint32_t queue_id);
  76. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
  77. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  78. unsigned int timeout);
  79. static int kgd_address_watch_disable(struct kgd_dev *kgd);
  80. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  81. unsigned int watch_point_id,
  82. uint32_t cntl_val,
  83. uint32_t addr_hi,
  84. uint32_t addr_lo);
  85. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  86. uint32_t gfx_index_val,
  87. uint32_t sq_cmd);
  88. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  89. unsigned int watch_point_id,
  90. unsigned int reg_offset);
  91. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
  92. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  93. uint8_t vmid);
  94. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);
  95. static const struct kfd2kgd_calls kfd2kgd = {
  96. .init_gtt_mem_allocation = alloc_gtt_mem,
  97. .free_gtt_mem = free_gtt_mem,
  98. .get_vmem_size = get_vmem_size,
  99. .get_gpu_clock_counter = get_gpu_clock_counter,
  100. .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
  101. .alloc_pasid = alloc_pasid,
  102. .free_pasid = free_pasid,
  103. .program_sh_mem_settings = kgd_program_sh_mem_settings,
  104. .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
  105. .init_pipeline = kgd_init_pipeline,
  106. .init_interrupts = kgd_init_interrupts,
  107. .hqd_load = kgd_hqd_load,
  108. .hqd_sdma_load = kgd_hqd_sdma_load,
  109. .hqd_is_occupied = kgd_hqd_is_occupied,
  110. .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
  111. .hqd_destroy = kgd_hqd_destroy,
  112. .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
  113. .address_watch_disable = kgd_address_watch_disable,
  114. .address_watch_execute = kgd_address_watch_execute,
  115. .wave_control_execute = kgd_wave_control_execute,
  116. .address_watch_get_offset = kgd_address_watch_get_offset,
  117. .get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
  118. .get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
  119. .write_vmid_invalidate_request = write_vmid_invalidate_request,
  120. .get_fw_version = get_fw_version
  121. };
  122. static const struct kgd2kfd_calls *kgd2kfd;
  123. int radeon_kfd_init(void)
  124. {
  125. int ret;
  126. #if defined(CONFIG_HSA_AMD_MODULE)
  127. int (*kgd2kfd_init_p)(unsigned, const struct kgd2kfd_calls**);
  128. kgd2kfd_init_p = symbol_request(kgd2kfd_init);
  129. if (kgd2kfd_init_p == NULL)
  130. return -ENOENT;
  131. ret = kgd2kfd_init_p(KFD_INTERFACE_VERSION, &kgd2kfd);
  132. if (ret) {
  133. symbol_put(kgd2kfd_init);
  134. kgd2kfd = NULL;
  135. }
  136. #elif defined(CONFIG_HSA_AMD)
  137. ret = kgd2kfd_init(KFD_INTERFACE_VERSION, &kgd2kfd);
  138. if (ret)
  139. kgd2kfd = NULL;
  140. #else
  141. ret = -ENOENT;
  142. #endif
  143. return ret;
  144. }
  145. void radeon_kfd_fini(void)
  146. {
  147. if (kgd2kfd) {
  148. kgd2kfd->exit();
  149. symbol_put(kgd2kfd_init);
  150. }
  151. }
  152. void radeon_kfd_device_probe(struct radeon_device *rdev)
  153. {
  154. if (kgd2kfd)
  155. rdev->kfd = kgd2kfd->probe((struct kgd_dev *)rdev,
  156. rdev->pdev, &kfd2kgd);
  157. }
  158. void radeon_kfd_device_init(struct radeon_device *rdev)
  159. {
  160. int i, queue, pipe, mec;
  161. if (rdev->kfd) {
  162. struct kgd2kfd_shared_resources gpu_resources = {
  163. .compute_vmid_bitmap = 0xFF00,
  164. .num_pipe_per_mec = 4,
  165. .num_queue_per_pipe = 8
  166. };
  167. bitmap_zero(gpu_resources.queue_bitmap, KGD_MAX_QUEUES);
  168. for (i = 0; i < KGD_MAX_QUEUES; ++i) {
  169. queue = i % gpu_resources.num_queue_per_pipe;
  170. pipe = (i / gpu_resources.num_queue_per_pipe)
  171. % gpu_resources.num_pipe_per_mec;
  172. mec = (i / gpu_resources.num_queue_per_pipe)
  173. / gpu_resources.num_pipe_per_mec;
  174. if (mec == 0 && pipe > 0)
  175. set_bit(i, gpu_resources.queue_bitmap);
  176. }
  177. radeon_doorbell_get_kfd_info(rdev,
  178. &gpu_resources.doorbell_physical_address,
  179. &gpu_resources.doorbell_aperture_size,
  180. &gpu_resources.doorbell_start_offset);
  181. kgd2kfd->device_init(rdev->kfd, &gpu_resources);
  182. }
  183. }
  184. void radeon_kfd_device_fini(struct radeon_device *rdev)
  185. {
  186. if (rdev->kfd) {
  187. kgd2kfd->device_exit(rdev->kfd);
  188. rdev->kfd = NULL;
  189. }
  190. }
  191. void radeon_kfd_interrupt(struct radeon_device *rdev, const void *ih_ring_entry)
  192. {
  193. if (rdev->kfd)
  194. kgd2kfd->interrupt(rdev->kfd, ih_ring_entry);
  195. }
  196. void radeon_kfd_suspend(struct radeon_device *rdev)
  197. {
  198. if (rdev->kfd)
  199. kgd2kfd->suspend(rdev->kfd);
  200. }
  201. int radeon_kfd_resume(struct radeon_device *rdev)
  202. {
  203. int r = 0;
  204. if (rdev->kfd)
  205. r = kgd2kfd->resume(rdev->kfd);
  206. return r;
  207. }
  208. static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
  209. void **mem_obj, uint64_t *gpu_addr,
  210. void **cpu_ptr)
  211. {
  212. struct radeon_device *rdev = (struct radeon_device *)kgd;
  213. struct kgd_mem **mem = (struct kgd_mem **) mem_obj;
  214. int r;
  215. BUG_ON(kgd == NULL);
  216. BUG_ON(gpu_addr == NULL);
  217. BUG_ON(cpu_ptr == NULL);
  218. *mem = kmalloc(sizeof(struct kgd_mem), GFP_KERNEL);
  219. if ((*mem) == NULL)
  220. return -ENOMEM;
  221. r = radeon_bo_create(rdev, size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT,
  222. RADEON_GEM_GTT_WC, NULL, NULL, &(*mem)->bo);
  223. if (r) {
  224. dev_err(rdev->dev,
  225. "failed to allocate BO for amdkfd (%d)\n", r);
  226. return r;
  227. }
  228. /* map the buffer */
  229. r = radeon_bo_reserve((*mem)->bo, true);
  230. if (r) {
  231. dev_err(rdev->dev, "(%d) failed to reserve bo for amdkfd\n", r);
  232. goto allocate_mem_reserve_bo_failed;
  233. }
  234. r = radeon_bo_pin((*mem)->bo, RADEON_GEM_DOMAIN_GTT,
  235. &(*mem)->gpu_addr);
  236. if (r) {
  237. dev_err(rdev->dev, "(%d) failed to pin bo for amdkfd\n", r);
  238. goto allocate_mem_pin_bo_failed;
  239. }
  240. *gpu_addr = (*mem)->gpu_addr;
  241. r = radeon_bo_kmap((*mem)->bo, &(*mem)->cpu_ptr);
  242. if (r) {
  243. dev_err(rdev->dev,
  244. "(%d) failed to map bo to kernel for amdkfd\n", r);
  245. goto allocate_mem_kmap_bo_failed;
  246. }
  247. *cpu_ptr = (*mem)->cpu_ptr;
  248. radeon_bo_unreserve((*mem)->bo);
  249. return 0;
  250. allocate_mem_kmap_bo_failed:
  251. radeon_bo_unpin((*mem)->bo);
  252. allocate_mem_pin_bo_failed:
  253. radeon_bo_unreserve((*mem)->bo);
  254. allocate_mem_reserve_bo_failed:
  255. radeon_bo_unref(&(*mem)->bo);
  256. return r;
  257. }
  258. static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj)
  259. {
  260. struct kgd_mem *mem = (struct kgd_mem *) mem_obj;
  261. BUG_ON(mem == NULL);
  262. radeon_bo_reserve(mem->bo, true);
  263. radeon_bo_kunmap(mem->bo);
  264. radeon_bo_unpin(mem->bo);
  265. radeon_bo_unreserve(mem->bo);
  266. radeon_bo_unref(&(mem->bo));
  267. kfree(mem);
  268. }
  269. static uint64_t get_vmem_size(struct kgd_dev *kgd)
  270. {
  271. struct radeon_device *rdev = (struct radeon_device *)kgd;
  272. BUG_ON(kgd == NULL);
  273. return rdev->mc.real_vram_size;
  274. }
  275. static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd)
  276. {
  277. struct radeon_device *rdev = (struct radeon_device *)kgd;
  278. return rdev->asic->get_gpu_clock_counter(rdev);
  279. }
  280. static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd)
  281. {
  282. struct radeon_device *rdev = (struct radeon_device *)kgd;
  283. /* The sclk is in quantas of 10kHz */
  284. return rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk / 100;
  285. }
  286. /*
  287. * PASID manager
  288. */
  289. static DEFINE_IDA(pasid_ida);
  290. static int alloc_pasid(unsigned int bits)
  291. {
  292. int pasid = -EINVAL;
  293. for (bits = min(bits, 31U); bits > 0; bits--) {
  294. pasid = ida_simple_get(&pasid_ida,
  295. 1U << (bits - 1), 1U << bits,
  296. GFP_KERNEL);
  297. if (pasid != -ENOSPC)
  298. break;
  299. }
  300. return pasid;
  301. }
  302. static void free_pasid(unsigned int pasid)
  303. {
  304. ida_simple_remove(&pasid_ida, pasid);
  305. }
  306. static inline struct radeon_device *get_radeon_device(struct kgd_dev *kgd)
  307. {
  308. return (struct radeon_device *)kgd;
  309. }
  310. static void write_register(struct kgd_dev *kgd, uint32_t offset, uint32_t value)
  311. {
  312. struct radeon_device *rdev = get_radeon_device(kgd);
  313. writel(value, (void __iomem *)(rdev->rmmio + offset));
  314. }
  315. static uint32_t read_register(struct kgd_dev *kgd, uint32_t offset)
  316. {
  317. struct radeon_device *rdev = get_radeon_device(kgd);
  318. return readl((void __iomem *)(rdev->rmmio + offset));
  319. }
  320. static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
  321. uint32_t queue, uint32_t vmid)
  322. {
  323. struct radeon_device *rdev = get_radeon_device(kgd);
  324. uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);
  325. mutex_lock(&rdev->srbm_mutex);
  326. write_register(kgd, SRBM_GFX_CNTL, value);
  327. }
  328. static void unlock_srbm(struct kgd_dev *kgd)
  329. {
  330. struct radeon_device *rdev = get_radeon_device(kgd);
  331. write_register(kgd, SRBM_GFX_CNTL, 0);
  332. mutex_unlock(&rdev->srbm_mutex);
  333. }
  334. static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
  335. uint32_t queue_id)
  336. {
  337. uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
  338. uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);
  339. lock_srbm(kgd, mec, pipe, queue_id, 0);
  340. }
  341. static void release_queue(struct kgd_dev *kgd)
  342. {
  343. unlock_srbm(kgd);
  344. }
  345. static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
  346. uint32_t sh_mem_config,
  347. uint32_t sh_mem_ape1_base,
  348. uint32_t sh_mem_ape1_limit,
  349. uint32_t sh_mem_bases)
  350. {
  351. lock_srbm(kgd, 0, 0, 0, vmid);
  352. write_register(kgd, SH_MEM_CONFIG, sh_mem_config);
  353. write_register(kgd, SH_MEM_APE1_BASE, sh_mem_ape1_base);
  354. write_register(kgd, SH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
  355. write_register(kgd, SH_MEM_BASES, sh_mem_bases);
  356. unlock_srbm(kgd);
  357. }
  358. static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
  359. unsigned int vmid)
  360. {
  361. /*
  362. * We have to assume that there is no outstanding mapping.
  363. * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0
  364. * because a mapping is in progress or because a mapping finished and
  365. * the SW cleared it.
  366. * So the protocol is to always wait & clear.
  367. */
  368. uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
  369. ATC_VMID_PASID_MAPPING_VALID_MASK;
  370. write_register(kgd, ATC_VMID0_PASID_MAPPING + vmid*sizeof(uint32_t),
  371. pasid_mapping);
  372. while (!(read_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS) &
  373. (1U << vmid)))
  374. cpu_relax();
  375. write_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);
  376. /* Mapping vmid to pasid also for IH block */
  377. write_register(kgd, IH_VMID_0_LUT + vmid * sizeof(uint32_t),
  378. pasid_mapping);
  379. return 0;
  380. }
  381. static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
  382. uint32_t hpd_size, uint64_t hpd_gpu_addr)
  383. {
  384. /* nothing to do here */
  385. return 0;
  386. }
  387. static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
  388. {
  389. uint32_t mec;
  390. uint32_t pipe;
  391. mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
  392. pipe = (pipe_id % CIK_PIPE_PER_MEC);
  393. lock_srbm(kgd, mec, pipe, 0, 0);
  394. write_register(kgd, CPC_INT_CNTL,
  395. TIME_STAMP_INT_ENABLE | OPCODE_ERROR_INT_ENABLE);
  396. unlock_srbm(kgd);
  397. return 0;
  398. }
  399. static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
  400. {
  401. uint32_t retval;
  402. retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
  403. m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
  404. pr_debug("kfd: sdma base address: 0x%x\n", retval);
  405. return retval;
  406. }
  407. static inline struct cik_mqd *get_mqd(void *mqd)
  408. {
  409. return (struct cik_mqd *)mqd;
  410. }
  411. static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
  412. {
  413. return (struct cik_sdma_rlc_registers *)mqd;
  414. }
  415. static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
  416. uint32_t queue_id, uint32_t __user *wptr,
  417. uint32_t wptr_shift, uint32_t wptr_mask,
  418. struct mm_struct *mm)
  419. {
  420. uint32_t wptr_shadow, is_wptr_shadow_valid;
  421. struct cik_mqd *m;
  422. m = get_mqd(mqd);
  423. is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);
  424. acquire_queue(kgd, pipe_id, queue_id);
  425. write_register(kgd, CP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
  426. write_register(kgd, CP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
  427. write_register(kgd, CP_MQD_CONTROL, m->cp_mqd_control);
  428. write_register(kgd, CP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
  429. write_register(kgd, CP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
  430. write_register(kgd, CP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);
  431. write_register(kgd, CP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
  432. write_register(kgd, CP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
  433. write_register(kgd, CP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);
  434. write_register(kgd, CP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);
  435. write_register(kgd, CP_HQD_PERSISTENT_STATE,
  436. m->cp_hqd_persistent_state);
  437. write_register(kgd, CP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
  438. write_register(kgd, CP_HQD_MSG_TYPE, m->cp_hqd_msg_type);
  439. write_register(kgd, CP_HQD_ATOMIC0_PREOP_LO,
  440. m->cp_hqd_atomic0_preop_lo);
  441. write_register(kgd, CP_HQD_ATOMIC0_PREOP_HI,
  442. m->cp_hqd_atomic0_preop_hi);
  443. write_register(kgd, CP_HQD_ATOMIC1_PREOP_LO,
  444. m->cp_hqd_atomic1_preop_lo);
  445. write_register(kgd, CP_HQD_ATOMIC1_PREOP_HI,
  446. m->cp_hqd_atomic1_preop_hi);
  447. write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR,
  448. m->cp_hqd_pq_rptr_report_addr_lo);
  449. write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR_HI,
  450. m->cp_hqd_pq_rptr_report_addr_hi);
  451. write_register(kgd, CP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);
  452. write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR,
  453. m->cp_hqd_pq_wptr_poll_addr_lo);
  454. write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR_HI,
  455. m->cp_hqd_pq_wptr_poll_addr_hi);
  456. write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL,
  457. m->cp_hqd_pq_doorbell_control);
  458. write_register(kgd, CP_HQD_VMID, m->cp_hqd_vmid);
  459. write_register(kgd, CP_HQD_QUANTUM, m->cp_hqd_quantum);
  460. write_register(kgd, CP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
  461. write_register(kgd, CP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);
  462. write_register(kgd, CP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);
  463. if (is_wptr_shadow_valid)
  464. write_register(kgd, CP_HQD_PQ_WPTR, wptr_shadow);
  465. write_register(kgd, CP_HQD_ACTIVE, m->cp_hqd_active);
  466. release_queue(kgd);
  467. return 0;
  468. }
  469. static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
  470. {
  471. struct cik_sdma_rlc_registers *m;
  472. uint32_t sdma_base_addr;
  473. m = get_sdma_mqd(mqd);
  474. sdma_base_addr = get_sdma_base_addr(m);
  475. write_register(kgd,
  476. sdma_base_addr + SDMA0_RLC0_VIRTUAL_ADDR,
  477. m->sdma_rlc_virtual_addr);
  478. write_register(kgd,
  479. sdma_base_addr + SDMA0_RLC0_RB_BASE,
  480. m->sdma_rlc_rb_base);
  481. write_register(kgd,
  482. sdma_base_addr + SDMA0_RLC0_RB_BASE_HI,
  483. m->sdma_rlc_rb_base_hi);
  484. write_register(kgd,
  485. sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_LO,
  486. m->sdma_rlc_rb_rptr_addr_lo);
  487. write_register(kgd,
  488. sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_HI,
  489. m->sdma_rlc_rb_rptr_addr_hi);
  490. write_register(kgd,
  491. sdma_base_addr + SDMA0_RLC0_DOORBELL,
  492. m->sdma_rlc_doorbell);
  493. write_register(kgd,
  494. sdma_base_addr + SDMA0_RLC0_RB_CNTL,
  495. m->sdma_rlc_rb_cntl);
  496. return 0;
  497. }
  498. static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
  499. uint32_t pipe_id, uint32_t queue_id)
  500. {
  501. uint32_t act;
  502. bool retval = false;
  503. uint32_t low, high;
  504. acquire_queue(kgd, pipe_id, queue_id);
  505. act = read_register(kgd, CP_HQD_ACTIVE);
  506. if (act) {
  507. low = lower_32_bits(queue_address >> 8);
  508. high = upper_32_bits(queue_address >> 8);
  509. if (low == read_register(kgd, CP_HQD_PQ_BASE) &&
  510. high == read_register(kgd, CP_HQD_PQ_BASE_HI))
  511. retval = true;
  512. }
  513. release_queue(kgd);
  514. return retval;
  515. }
  516. static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
  517. {
  518. struct cik_sdma_rlc_registers *m;
  519. uint32_t sdma_base_addr;
  520. uint32_t sdma_rlc_rb_cntl;
  521. m = get_sdma_mqd(mqd);
  522. sdma_base_addr = get_sdma_base_addr(m);
  523. sdma_rlc_rb_cntl = read_register(kgd,
  524. sdma_base_addr + SDMA0_RLC0_RB_CNTL);
  525. if (sdma_rlc_rb_cntl & SDMA_RB_ENABLE)
  526. return true;
  527. return false;
  528. }
  529. static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd, uint32_t reset_type,
  530. unsigned int timeout, uint32_t pipe_id,
  531. uint32_t queue_id)
  532. {
  533. uint32_t temp;
  534. acquire_queue(kgd, pipe_id, queue_id);
  535. write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL, 0);
  536. write_register(kgd, CP_HQD_DEQUEUE_REQUEST, reset_type);
  537. while (true) {
  538. temp = read_register(kgd, CP_HQD_ACTIVE);
  539. if (temp & 0x1)
  540. break;
  541. if (timeout == 0) {
  542. pr_err("kfd: cp queue preemption time out (%dms)\n",
  543. temp);
  544. release_queue(kgd);
  545. return -ETIME;
  546. }
  547. msleep(20);
  548. timeout -= 20;
  549. }
  550. release_queue(kgd);
  551. return 0;
  552. }
  553. static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
  554. unsigned int timeout)
  555. {
  556. struct cik_sdma_rlc_registers *m;
  557. uint32_t sdma_base_addr;
  558. uint32_t temp;
  559. m = get_sdma_mqd(mqd);
  560. sdma_base_addr = get_sdma_base_addr(m);
  561. temp = read_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL);
  562. temp = temp & ~SDMA_RB_ENABLE;
  563. write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL, temp);
  564. while (true) {
  565. temp = read_register(kgd, sdma_base_addr +
  566. SDMA0_RLC0_CONTEXT_STATUS);
  567. if (temp & SDMA_RLC_IDLE)
  568. break;
  569. if (timeout == 0)
  570. return -ETIME;
  571. msleep(20);
  572. timeout -= 20;
  573. }
  574. write_register(kgd, sdma_base_addr + SDMA0_RLC0_DOORBELL, 0);
  575. write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_RPTR, 0);
  576. write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_WPTR, 0);
  577. write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_BASE, 0);
  578. return 0;
  579. }
  580. static int kgd_address_watch_disable(struct kgd_dev *kgd)
  581. {
  582. union TCP_WATCH_CNTL_BITS cntl;
  583. unsigned int i;
  584. cntl.u32All = 0;
  585. cntl.bitfields.valid = 0;
  586. cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
  587. cntl.bitfields.atc = 1;
  588. /* Turning off this address until we set all the registers */
  589. for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
  590. write_register(kgd,
  591. watchRegs[i * ADDRESS_WATCH_REG_MAX +
  592. ADDRESS_WATCH_REG_CNTL],
  593. cntl.u32All);
  594. return 0;
  595. }
  596. static int kgd_address_watch_execute(struct kgd_dev *kgd,
  597. unsigned int watch_point_id,
  598. uint32_t cntl_val,
  599. uint32_t addr_hi,
  600. uint32_t addr_lo)
  601. {
  602. union TCP_WATCH_CNTL_BITS cntl;
  603. cntl.u32All = cntl_val;
  604. /* Turning off this watch point until we set all the registers */
  605. cntl.bitfields.valid = 0;
  606. write_register(kgd,
  607. watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  608. ADDRESS_WATCH_REG_CNTL],
  609. cntl.u32All);
  610. write_register(kgd,
  611. watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  612. ADDRESS_WATCH_REG_ADDR_HI],
  613. addr_hi);
  614. write_register(kgd,
  615. watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  616. ADDRESS_WATCH_REG_ADDR_LO],
  617. addr_lo);
  618. /* Enable the watch point */
  619. cntl.bitfields.valid = 1;
  620. write_register(kgd,
  621. watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
  622. ADDRESS_WATCH_REG_CNTL],
  623. cntl.u32All);
  624. return 0;
  625. }
  626. static int kgd_wave_control_execute(struct kgd_dev *kgd,
  627. uint32_t gfx_index_val,
  628. uint32_t sq_cmd)
  629. {
  630. struct radeon_device *rdev = get_radeon_device(kgd);
  631. uint32_t data;
  632. mutex_lock(&rdev->grbm_idx_mutex);
  633. write_register(kgd, GRBM_GFX_INDEX, gfx_index_val);
  634. write_register(kgd, SQ_CMD, sq_cmd);
  635. /* Restore the GRBM_GFX_INDEX register */
  636. data = INSTANCE_BROADCAST_WRITES | SH_BROADCAST_WRITES |
  637. SE_BROADCAST_WRITES;
  638. write_register(kgd, GRBM_GFX_INDEX, data);
  639. mutex_unlock(&rdev->grbm_idx_mutex);
  640. return 0;
  641. }
  642. static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
  643. unsigned int watch_point_id,
  644. unsigned int reg_offset)
  645. {
  646. return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset]
  647. / 4;
  648. }
  649. static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid)
  650. {
  651. uint32_t reg;
  652. struct radeon_device *rdev = (struct radeon_device *) kgd;
  653. reg = RREG32(ATC_VMID0_PASID_MAPPING + vmid*4);
  654. return reg & ATC_VMID_PASID_MAPPING_VALID_MASK;
  655. }
  656. static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
  657. uint8_t vmid)
  658. {
  659. uint32_t reg;
  660. struct radeon_device *rdev = (struct radeon_device *) kgd;
  661. reg = RREG32(ATC_VMID0_PASID_MAPPING + vmid*4);
  662. return reg & ATC_VMID_PASID_MAPPING_PASID_MASK;
  663. }
  664. static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
  665. {
  666. struct radeon_device *rdev = (struct radeon_device *) kgd;
  667. return WREG32(VM_INVALIDATE_REQUEST, 1 << vmid);
  668. }
  669. static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
  670. {
  671. struct radeon_device *rdev = (struct radeon_device *) kgd;
  672. const union radeon_firmware_header *hdr;
  673. BUG_ON(kgd == NULL || rdev->mec_fw == NULL);
  674. switch (type) {
  675. case KGD_ENGINE_PFP:
  676. hdr = (const union radeon_firmware_header *) rdev->pfp_fw->data;
  677. break;
  678. case KGD_ENGINE_ME:
  679. hdr = (const union radeon_firmware_header *) rdev->me_fw->data;
  680. break;
  681. case KGD_ENGINE_CE:
  682. hdr = (const union radeon_firmware_header *) rdev->ce_fw->data;
  683. break;
  684. case KGD_ENGINE_MEC1:
  685. hdr = (const union radeon_firmware_header *) rdev->mec_fw->data;
  686. break;
  687. case KGD_ENGINE_MEC2:
  688. hdr = (const union radeon_firmware_header *)
  689. rdev->mec2_fw->data;
  690. break;
  691. case KGD_ENGINE_RLC:
  692. hdr = (const union radeon_firmware_header *) rdev->rlc_fw->data;
  693. break;
  694. case KGD_ENGINE_SDMA1:
  695. case KGD_ENGINE_SDMA2:
  696. hdr = (const union radeon_firmware_header *)
  697. rdev->sdma_fw->data;
  698. break;
  699. default:
  700. return 0;
  701. }
  702. if (hdr == NULL)
  703. return 0;
  704. /* Only 12 bit in use*/
  705. return hdr->common.ucode_version;
  706. }