intel_dp.c 115 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include <linux/export.h>
  30. #include <drm/drmP.h>
  31. #include <drm/drm_crtc.h>
  32. #include <drm/drm_crtc_helper.h>
  33. #include <drm/drm_edid.h>
  34. #include "intel_drv.h"
  35. #include <drm/i915_drm.h>
  36. #include "i915_drv.h"
  37. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  38. struct dp_link_dpll {
  39. int link_bw;
  40. struct dpll dpll;
  41. };
  42. static const struct dp_link_dpll gen4_dpll[] = {
  43. { DP_LINK_BW_1_62,
  44. { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
  45. { DP_LINK_BW_2_7,
  46. { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
  47. };
  48. static const struct dp_link_dpll pch_dpll[] = {
  49. { DP_LINK_BW_1_62,
  50. { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
  51. { DP_LINK_BW_2_7,
  52. { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
  53. };
  54. static const struct dp_link_dpll vlv_dpll[] = {
  55. { DP_LINK_BW_1_62,
  56. { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
  57. { DP_LINK_BW_2_7,
  58. { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
  59. };
  60. /**
  61. * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
  62. * @intel_dp: DP struct
  63. *
  64. * If a CPU or PCH DP output is attached to an eDP panel, this function
  65. * will return true, and false otherwise.
  66. */
  67. static bool is_edp(struct intel_dp *intel_dp)
  68. {
  69. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  70. return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
  71. }
  72. static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
  73. {
  74. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  75. return intel_dig_port->base.base.dev;
  76. }
  77. static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
  78. {
  79. return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  80. }
  81. static void intel_dp_link_down(struct intel_dp *intel_dp);
  82. static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
  83. static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
  84. static int
  85. intel_dp_max_link_bw(struct intel_dp *intel_dp)
  86. {
  87. int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
  88. struct drm_device *dev = intel_dp->attached_connector->base.dev;
  89. switch (max_link_bw) {
  90. case DP_LINK_BW_1_62:
  91. case DP_LINK_BW_2_7:
  92. break;
  93. case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
  94. if ((IS_HASWELL(dev) || INTEL_INFO(dev)->gen >= 8) &&
  95. intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
  96. max_link_bw = DP_LINK_BW_5_4;
  97. else
  98. max_link_bw = DP_LINK_BW_2_7;
  99. break;
  100. default:
  101. WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
  102. max_link_bw);
  103. max_link_bw = DP_LINK_BW_1_62;
  104. break;
  105. }
  106. return max_link_bw;
  107. }
  108. /*
  109. * The units on the numbers in the next two are... bizarre. Examples will
  110. * make it clearer; this one parallels an example in the eDP spec.
  111. *
  112. * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
  113. *
  114. * 270000 * 1 * 8 / 10 == 216000
  115. *
  116. * The actual data capacity of that configuration is 2.16Gbit/s, so the
  117. * units are decakilobits. ->clock in a drm_display_mode is in kilohertz -
  118. * or equivalently, kilopixels per second - so for 1680x1050R it'd be
  119. * 119000. At 18bpp that's 2142000 kilobits per second.
  120. *
  121. * Thus the strange-looking division by 10 in intel_dp_link_required, to
  122. * get the result in decakilobits instead of kilobits.
  123. */
  124. static int
  125. intel_dp_link_required(int pixel_clock, int bpp)
  126. {
  127. return (pixel_clock * bpp + 9) / 10;
  128. }
  129. static int
  130. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  131. {
  132. return (max_link_clock * max_lanes * 8) / 10;
  133. }
  134. static enum drm_mode_status
  135. intel_dp_mode_valid(struct drm_connector *connector,
  136. struct drm_display_mode *mode)
  137. {
  138. struct intel_dp *intel_dp = intel_attached_dp(connector);
  139. struct intel_connector *intel_connector = to_intel_connector(connector);
  140. struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
  141. int target_clock = mode->clock;
  142. int max_rate, mode_rate, max_lanes, max_link_clock;
  143. if (is_edp(intel_dp) && fixed_mode) {
  144. if (mode->hdisplay > fixed_mode->hdisplay)
  145. return MODE_PANEL;
  146. if (mode->vdisplay > fixed_mode->vdisplay)
  147. return MODE_PANEL;
  148. target_clock = fixed_mode->clock;
  149. }
  150. max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
  151. max_lanes = drm_dp_max_lane_count(intel_dp->dpcd);
  152. max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
  153. mode_rate = intel_dp_link_required(target_clock, 18);
  154. if (mode_rate > max_rate)
  155. return MODE_CLOCK_HIGH;
  156. if (mode->clock < 10000)
  157. return MODE_CLOCK_LOW;
  158. if (mode->flags & DRM_MODE_FLAG_DBLCLK)
  159. return MODE_H_ILLEGAL;
  160. return MODE_OK;
  161. }
  162. static uint32_t
  163. pack_aux(uint8_t *src, int src_bytes)
  164. {
  165. int i;
  166. uint32_t v = 0;
  167. if (src_bytes > 4)
  168. src_bytes = 4;
  169. for (i = 0; i < src_bytes; i++)
  170. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  171. return v;
  172. }
  173. static void
  174. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  175. {
  176. int i;
  177. if (dst_bytes > 4)
  178. dst_bytes = 4;
  179. for (i = 0; i < dst_bytes; i++)
  180. dst[i] = src >> ((3-i) * 8);
  181. }
  182. /* hrawclock is 1/4 the FSB frequency */
  183. static int
  184. intel_hrawclk(struct drm_device *dev)
  185. {
  186. struct drm_i915_private *dev_priv = dev->dev_private;
  187. uint32_t clkcfg;
  188. /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
  189. if (IS_VALLEYVIEW(dev))
  190. return 200;
  191. clkcfg = I915_READ(CLKCFG);
  192. switch (clkcfg & CLKCFG_FSB_MASK) {
  193. case CLKCFG_FSB_400:
  194. return 100;
  195. case CLKCFG_FSB_533:
  196. return 133;
  197. case CLKCFG_FSB_667:
  198. return 166;
  199. case CLKCFG_FSB_800:
  200. return 200;
  201. case CLKCFG_FSB_1067:
  202. return 266;
  203. case CLKCFG_FSB_1333:
  204. return 333;
  205. /* these two are just a guess; one of them might be right */
  206. case CLKCFG_FSB_1600:
  207. case CLKCFG_FSB_1600_ALT:
  208. return 400;
  209. default:
  210. return 133;
  211. }
  212. }
  213. static void
  214. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  215. struct intel_dp *intel_dp,
  216. struct edp_power_seq *out);
  217. static void
  218. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  219. struct intel_dp *intel_dp,
  220. struct edp_power_seq *out);
  221. static enum pipe
  222. vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
  223. {
  224. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  225. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  226. struct drm_device *dev = intel_dig_port->base.base.dev;
  227. struct drm_i915_private *dev_priv = dev->dev_private;
  228. enum port port = intel_dig_port->port;
  229. enum pipe pipe;
  230. /* modeset should have pipe */
  231. if (crtc)
  232. return to_intel_crtc(crtc)->pipe;
  233. /* init time, try to find a pipe with this port selected */
  234. for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
  235. u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
  236. PANEL_PORT_SELECT_MASK;
  237. if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
  238. return pipe;
  239. if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
  240. return pipe;
  241. }
  242. /* shrug */
  243. return PIPE_A;
  244. }
  245. static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
  246. {
  247. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  248. if (HAS_PCH_SPLIT(dev))
  249. return PCH_PP_CONTROL;
  250. else
  251. return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
  252. }
  253. static u32 _pp_stat_reg(struct intel_dp *intel_dp)
  254. {
  255. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  256. if (HAS_PCH_SPLIT(dev))
  257. return PCH_PP_STATUS;
  258. else
  259. return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
  260. }
  261. static bool edp_have_panel_power(struct intel_dp *intel_dp)
  262. {
  263. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  264. struct drm_i915_private *dev_priv = dev->dev_private;
  265. return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
  266. }
  267. static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
  268. {
  269. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  270. struct drm_i915_private *dev_priv = dev->dev_private;
  271. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  272. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  273. enum intel_display_power_domain power_domain;
  274. power_domain = intel_display_port_power_domain(intel_encoder);
  275. return intel_display_power_enabled(dev_priv, power_domain) &&
  276. (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
  277. }
  278. static void
  279. intel_dp_check_edp(struct intel_dp *intel_dp)
  280. {
  281. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  282. struct drm_i915_private *dev_priv = dev->dev_private;
  283. if (!is_edp(intel_dp))
  284. return;
  285. if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
  286. WARN(1, "eDP powered off while attempting aux channel communication.\n");
  287. DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
  288. I915_READ(_pp_stat_reg(intel_dp)),
  289. I915_READ(_pp_ctrl_reg(intel_dp)));
  290. }
  291. }
  292. static uint32_t
  293. intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
  294. {
  295. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  296. struct drm_device *dev = intel_dig_port->base.base.dev;
  297. struct drm_i915_private *dev_priv = dev->dev_private;
  298. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  299. uint32_t status;
  300. bool done;
  301. #define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  302. if (has_aux_irq)
  303. done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
  304. msecs_to_jiffies_timeout(10));
  305. else
  306. done = wait_for_atomic(C, 10) == 0;
  307. if (!done)
  308. DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
  309. has_aux_irq);
  310. #undef C
  311. return status;
  312. }
  313. static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  314. {
  315. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  316. struct drm_device *dev = intel_dig_port->base.base.dev;
  317. /*
  318. * The clock divider is based off the hrawclk, and would like to run at
  319. * 2MHz. So, take the hrawclk value and divide by 2 and use that
  320. */
  321. return index ? 0 : intel_hrawclk(dev) / 2;
  322. }
  323. static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  324. {
  325. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  326. struct drm_device *dev = intel_dig_port->base.base.dev;
  327. if (index)
  328. return 0;
  329. if (intel_dig_port->port == PORT_A) {
  330. if (IS_GEN6(dev) || IS_GEN7(dev))
  331. return 200; /* SNB & IVB eDP input clock at 400Mhz */
  332. else
  333. return 225; /* eDP input clock at 450Mhz */
  334. } else {
  335. return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  336. }
  337. }
  338. static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  339. {
  340. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  341. struct drm_device *dev = intel_dig_port->base.base.dev;
  342. struct drm_i915_private *dev_priv = dev->dev_private;
  343. if (intel_dig_port->port == PORT_A) {
  344. if (index)
  345. return 0;
  346. return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
  347. } else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
  348. /* Workaround for non-ULT HSW */
  349. switch (index) {
  350. case 0: return 63;
  351. case 1: return 72;
  352. default: return 0;
  353. }
  354. } else {
  355. return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
  356. }
  357. }
  358. static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
  359. {
  360. return index ? 0 : 100;
  361. }
  362. static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
  363. bool has_aux_irq,
  364. int send_bytes,
  365. uint32_t aux_clock_divider)
  366. {
  367. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  368. struct drm_device *dev = intel_dig_port->base.base.dev;
  369. uint32_t precharge, timeout;
  370. if (IS_GEN6(dev))
  371. precharge = 3;
  372. else
  373. precharge = 5;
  374. if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
  375. timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
  376. else
  377. timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
  378. return DP_AUX_CH_CTL_SEND_BUSY |
  379. DP_AUX_CH_CTL_DONE |
  380. (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
  381. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  382. timeout |
  383. DP_AUX_CH_CTL_RECEIVE_ERROR |
  384. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  385. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  386. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
  387. }
  388. static int
  389. intel_dp_aux_ch(struct intel_dp *intel_dp,
  390. uint8_t *send, int send_bytes,
  391. uint8_t *recv, int recv_size)
  392. {
  393. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  394. struct drm_device *dev = intel_dig_port->base.base.dev;
  395. struct drm_i915_private *dev_priv = dev->dev_private;
  396. uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
  397. uint32_t ch_data = ch_ctl + 4;
  398. uint32_t aux_clock_divider;
  399. int i, ret, recv_bytes;
  400. uint32_t status;
  401. int try, clock = 0;
  402. bool has_aux_irq = HAS_AUX_IRQ(dev);
  403. bool vdd;
  404. vdd = _edp_panel_vdd_on(intel_dp);
  405. /* dp aux is extremely sensitive to irq latency, hence request the
  406. * lowest possible wakeup latency and so prevent the cpu from going into
  407. * deep sleep states.
  408. */
  409. pm_qos_update_request(&dev_priv->pm_qos, 0);
  410. intel_dp_check_edp(intel_dp);
  411. intel_aux_display_runtime_get(dev_priv);
  412. /* Try to wait for any previous AUX channel activity */
  413. for (try = 0; try < 3; try++) {
  414. status = I915_READ_NOTRACE(ch_ctl);
  415. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  416. break;
  417. msleep(1);
  418. }
  419. if (try == 3) {
  420. WARN(1, "dp_aux_ch not started status 0x%08x\n",
  421. I915_READ(ch_ctl));
  422. ret = -EBUSY;
  423. goto out;
  424. }
  425. /* Only 5 data registers! */
  426. if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
  427. ret = -E2BIG;
  428. goto out;
  429. }
  430. while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
  431. u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
  432. has_aux_irq,
  433. send_bytes,
  434. aux_clock_divider);
  435. /* Must try at least 3 times according to DP spec */
  436. for (try = 0; try < 5; try++) {
  437. /* Load the send data into the aux channel data registers */
  438. for (i = 0; i < send_bytes; i += 4)
  439. I915_WRITE(ch_data + i,
  440. pack_aux(send + i, send_bytes - i));
  441. /* Send the command and wait for it to complete */
  442. I915_WRITE(ch_ctl, send_ctl);
  443. status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);
  444. /* Clear done status and any errors */
  445. I915_WRITE(ch_ctl,
  446. status |
  447. DP_AUX_CH_CTL_DONE |
  448. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  449. DP_AUX_CH_CTL_RECEIVE_ERROR);
  450. if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
  451. DP_AUX_CH_CTL_RECEIVE_ERROR))
  452. continue;
  453. if (status & DP_AUX_CH_CTL_DONE)
  454. break;
  455. }
  456. if (status & DP_AUX_CH_CTL_DONE)
  457. break;
  458. }
  459. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  460. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  461. ret = -EBUSY;
  462. goto out;
  463. }
  464. /* Check for timeout or receive error.
  465. * Timeouts occur when the sink is not connected
  466. */
  467. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  468. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  469. ret = -EIO;
  470. goto out;
  471. }
  472. /* Timeouts occur when the device isn't connected, so they're
  473. * "normal" -- don't fill the kernel log with these */
  474. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  475. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  476. ret = -ETIMEDOUT;
  477. goto out;
  478. }
  479. /* Unload any bytes sent back from the other side */
  480. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  481. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  482. if (recv_bytes > recv_size)
  483. recv_bytes = recv_size;
  484. for (i = 0; i < recv_bytes; i += 4)
  485. unpack_aux(I915_READ(ch_data + i),
  486. recv + i, recv_bytes - i);
  487. ret = recv_bytes;
  488. out:
  489. pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
  490. intel_aux_display_runtime_put(dev_priv);
  491. if (vdd)
  492. edp_panel_vdd_off(intel_dp, false);
  493. return ret;
  494. }
  495. #define BARE_ADDRESS_SIZE 3
  496. #define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
  497. static ssize_t
  498. intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
  499. {
  500. struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
  501. uint8_t txbuf[20], rxbuf[20];
  502. size_t txsize, rxsize;
  503. int ret;
  504. txbuf[0] = msg->request << 4;
  505. txbuf[1] = msg->address >> 8;
  506. txbuf[2] = msg->address & 0xff;
  507. txbuf[3] = msg->size - 1;
  508. switch (msg->request & ~DP_AUX_I2C_MOT) {
  509. case DP_AUX_NATIVE_WRITE:
  510. case DP_AUX_I2C_WRITE:
  511. txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
  512. rxsize = 1;
  513. if (WARN_ON(txsize > 20))
  514. return -E2BIG;
  515. memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
  516. ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
  517. if (ret > 0) {
  518. msg->reply = rxbuf[0] >> 4;
  519. /* Return payload size. */
  520. ret = msg->size;
  521. }
  522. break;
  523. case DP_AUX_NATIVE_READ:
  524. case DP_AUX_I2C_READ:
  525. txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
  526. rxsize = msg->size + 1;
  527. if (WARN_ON(rxsize > 20))
  528. return -E2BIG;
  529. ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
  530. if (ret > 0) {
  531. msg->reply = rxbuf[0] >> 4;
  532. /*
  533. * Assume happy day, and copy the data. The caller is
  534. * expected to check msg->reply before touching it.
  535. *
  536. * Return payload size.
  537. */
  538. ret--;
  539. memcpy(msg->buffer, rxbuf + 1, ret);
  540. }
  541. break;
  542. default:
  543. ret = -EINVAL;
  544. break;
  545. }
  546. return ret;
  547. }
  548. static void
  549. intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
  550. {
  551. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  552. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  553. enum port port = intel_dig_port->port;
  554. const char *name = NULL;
  555. int ret;
  556. switch (port) {
  557. case PORT_A:
  558. intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
  559. name = "DPDDC-A";
  560. break;
  561. case PORT_B:
  562. intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
  563. name = "DPDDC-B";
  564. break;
  565. case PORT_C:
  566. intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
  567. name = "DPDDC-C";
  568. break;
  569. case PORT_D:
  570. intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
  571. name = "DPDDC-D";
  572. break;
  573. default:
  574. BUG();
  575. }
  576. if (!HAS_DDI(dev))
  577. intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
  578. intel_dp->aux.name = name;
  579. intel_dp->aux.dev = dev->dev;
  580. intel_dp->aux.transfer = intel_dp_aux_transfer;
  581. DRM_DEBUG_KMS("registering %s bus for %s\n", name,
  582. connector->base.kdev->kobj.name);
  583. ret = drm_dp_aux_register_i2c_bus(&intel_dp->aux);
  584. if (ret < 0) {
  585. DRM_ERROR("drm_dp_aux_register_i2c_bus() for %s failed (%d)\n",
  586. name, ret);
  587. return;
  588. }
  589. ret = sysfs_create_link(&connector->base.kdev->kobj,
  590. &intel_dp->aux.ddc.dev.kobj,
  591. intel_dp->aux.ddc.dev.kobj.name);
  592. if (ret < 0) {
  593. DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
  594. drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
  595. }
  596. }
  597. static void
  598. intel_dp_connector_unregister(struct intel_connector *intel_connector)
  599. {
  600. struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);
  601. sysfs_remove_link(&intel_connector->base.kdev->kobj,
  602. intel_dp->aux.ddc.dev.kobj.name);
  603. intel_connector_unregister(intel_connector);
  604. }
  605. static void
  606. intel_dp_set_clock(struct intel_encoder *encoder,
  607. struct intel_crtc_config *pipe_config, int link_bw)
  608. {
  609. struct drm_device *dev = encoder->base.dev;
  610. const struct dp_link_dpll *divisor = NULL;
  611. int i, count = 0;
  612. if (IS_G4X(dev)) {
  613. divisor = gen4_dpll;
  614. count = ARRAY_SIZE(gen4_dpll);
  615. } else if (IS_HASWELL(dev)) {
  616. /* Haswell has special-purpose DP DDI clocks. */
  617. } else if (HAS_PCH_SPLIT(dev)) {
  618. divisor = pch_dpll;
  619. count = ARRAY_SIZE(pch_dpll);
  620. } else if (IS_VALLEYVIEW(dev)) {
  621. divisor = vlv_dpll;
  622. count = ARRAY_SIZE(vlv_dpll);
  623. }
  624. if (divisor && count) {
  625. for (i = 0; i < count; i++) {
  626. if (link_bw == divisor[i].link_bw) {
  627. pipe_config->dpll = divisor[i].dpll;
  628. pipe_config->clock_set = true;
  629. break;
  630. }
  631. }
  632. }
  633. }
  634. static void
  635. intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
  636. {
  637. struct drm_device *dev = crtc->base.dev;
  638. struct drm_i915_private *dev_priv = dev->dev_private;
  639. enum transcoder transcoder = crtc->config.cpu_transcoder;
  640. I915_WRITE(PIPE_DATA_M2(transcoder),
  641. TU_SIZE(m_n->tu) | m_n->gmch_m);
  642. I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
  643. I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
  644. I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
  645. }
  646. bool
  647. intel_dp_compute_config(struct intel_encoder *encoder,
  648. struct intel_crtc_config *pipe_config)
  649. {
  650. struct drm_device *dev = encoder->base.dev;
  651. struct drm_i915_private *dev_priv = dev->dev_private;
  652. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  653. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  654. enum port port = dp_to_dig_port(intel_dp)->port;
  655. struct intel_crtc *intel_crtc = encoder->new_crtc;
  656. struct intel_connector *intel_connector = intel_dp->attached_connector;
  657. int lane_count, clock;
  658. int max_lane_count = drm_dp_max_lane_count(intel_dp->dpcd);
  659. /* Conveniently, the link BW constants become indices with a shift...*/
  660. int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
  661. int bpp, mode_rate;
  662. static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
  663. int link_avail, link_clock;
  664. if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
  665. pipe_config->has_pch_encoder = true;
  666. pipe_config->has_dp_encoder = true;
  667. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  668. intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
  669. adjusted_mode);
  670. if (!HAS_PCH_SPLIT(dev))
  671. intel_gmch_panel_fitting(intel_crtc, pipe_config,
  672. intel_connector->panel.fitting_mode);
  673. else
  674. intel_pch_panel_fitting(intel_crtc, pipe_config,
  675. intel_connector->panel.fitting_mode);
  676. }
  677. if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
  678. return false;
  679. DRM_DEBUG_KMS("DP link computation with max lane count %i "
  680. "max bw %02x pixel clock %iKHz\n",
  681. max_lane_count, bws[max_clock],
  682. adjusted_mode->crtc_clock);
  683. /* Walk through all bpp values. Luckily they're all nicely spaced with 2
  684. * bpc in between. */
  685. bpp = pipe_config->pipe_bpp;
  686. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
  687. dev_priv->vbt.edp_bpp < bpp) {
  688. DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
  689. dev_priv->vbt.edp_bpp);
  690. bpp = dev_priv->vbt.edp_bpp;
  691. }
  692. for (; bpp >= 6*3; bpp -= 2*3) {
  693. mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
  694. bpp);
  695. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  696. for (clock = 0; clock <= max_clock; clock++) {
  697. link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
  698. link_avail = intel_dp_max_data_rate(link_clock,
  699. lane_count);
  700. if (mode_rate <= link_avail) {
  701. goto found;
  702. }
  703. }
  704. }
  705. }
  706. return false;
  707. found:
  708. if (intel_dp->color_range_auto) {
  709. /*
  710. * See:
  711. * CEA-861-E - 5.1 Default Encoding Parameters
  712. * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
  713. */
  714. if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
  715. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  716. else
  717. intel_dp->color_range = 0;
  718. }
  719. if (intel_dp->color_range)
  720. pipe_config->limited_color_range = true;
  721. intel_dp->link_bw = bws[clock];
  722. intel_dp->lane_count = lane_count;
  723. pipe_config->pipe_bpp = bpp;
  724. pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
  725. DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
  726. intel_dp->link_bw, intel_dp->lane_count,
  727. pipe_config->port_clock, bpp);
  728. DRM_DEBUG_KMS("DP link bw required %i available %i\n",
  729. mode_rate, link_avail);
  730. intel_link_compute_m_n(bpp, lane_count,
  731. adjusted_mode->crtc_clock,
  732. pipe_config->port_clock,
  733. &pipe_config->dp_m_n);
  734. if (intel_connector->panel.downclock_mode != NULL &&
  735. intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
  736. intel_link_compute_m_n(bpp, lane_count,
  737. intel_connector->panel.downclock_mode->clock,
  738. pipe_config->port_clock,
  739. &pipe_config->dp_m2_n2);
  740. }
  741. intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
  742. return true;
  743. }
  744. static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
  745. {
  746. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  747. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  748. struct drm_device *dev = crtc->base.dev;
  749. struct drm_i915_private *dev_priv = dev->dev_private;
  750. u32 dpa_ctl;
  751. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
  752. dpa_ctl = I915_READ(DP_A);
  753. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  754. if (crtc->config.port_clock == 162000) {
  755. /* For a long time we've carried around a ILK-DevA w/a for the
  756. * 160MHz clock. If we're really unlucky, it's still required.
  757. */
  758. DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
  759. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  760. intel_dp->DP |= DP_PLL_FREQ_160MHZ;
  761. } else {
  762. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  763. intel_dp->DP |= DP_PLL_FREQ_270MHZ;
  764. }
  765. I915_WRITE(DP_A, dpa_ctl);
  766. POSTING_READ(DP_A);
  767. udelay(500);
  768. }
  769. static void intel_dp_mode_set(struct intel_encoder *encoder)
  770. {
  771. struct drm_device *dev = encoder->base.dev;
  772. struct drm_i915_private *dev_priv = dev->dev_private;
  773. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  774. enum port port = dp_to_dig_port(intel_dp)->port;
  775. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  776. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  777. /*
  778. * There are four kinds of DP registers:
  779. *
  780. * IBX PCH
  781. * SNB CPU
  782. * IVB CPU
  783. * CPT PCH
  784. *
  785. * IBX PCH and CPU are the same for almost everything,
  786. * except that the CPU DP PLL is configured in this
  787. * register
  788. *
  789. * CPT PCH is quite different, having many bits moved
  790. * to the TRANS_DP_CTL register instead. That
  791. * configuration happens (oddly) in ironlake_pch_enable
  792. */
  793. /* Preserve the BIOS-computed detected bit. This is
  794. * supposed to be read-only.
  795. */
  796. intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
  797. /* Handle DP bits in common between all three register formats */
  798. intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
  799. intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
  800. if (intel_dp->has_audio) {
  801. DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
  802. pipe_name(crtc->pipe));
  803. intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
  804. intel_write_eld(&encoder->base, adjusted_mode);
  805. }
  806. /* Split out the IBX/CPU vs CPT settings */
  807. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  808. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  809. intel_dp->DP |= DP_SYNC_HS_HIGH;
  810. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  811. intel_dp->DP |= DP_SYNC_VS_HIGH;
  812. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  813. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  814. intel_dp->DP |= DP_ENHANCED_FRAMING;
  815. intel_dp->DP |= crtc->pipe << 29;
  816. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  817. if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
  818. intel_dp->DP |= intel_dp->color_range;
  819. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  820. intel_dp->DP |= DP_SYNC_HS_HIGH;
  821. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  822. intel_dp->DP |= DP_SYNC_VS_HIGH;
  823. intel_dp->DP |= DP_LINK_TRAIN_OFF;
  824. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  825. intel_dp->DP |= DP_ENHANCED_FRAMING;
  826. if (crtc->pipe == 1)
  827. intel_dp->DP |= DP_PIPEB_SELECT;
  828. } else {
  829. intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
  830. }
  831. if (port == PORT_A && !IS_VALLEYVIEW(dev))
  832. ironlake_set_pll_cpu_edp(intel_dp);
  833. }
  834. #define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
  835. #define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
  836. #define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
  837. #define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
  838. #define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
  839. #define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
  840. static void wait_panel_status(struct intel_dp *intel_dp,
  841. u32 mask,
  842. u32 value)
  843. {
  844. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  845. struct drm_i915_private *dev_priv = dev->dev_private;
  846. u32 pp_stat_reg, pp_ctrl_reg;
  847. pp_stat_reg = _pp_stat_reg(intel_dp);
  848. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  849. DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
  850. mask, value,
  851. I915_READ(pp_stat_reg),
  852. I915_READ(pp_ctrl_reg));
  853. if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
  854. DRM_ERROR("Panel status timeout: status %08x control %08x\n",
  855. I915_READ(pp_stat_reg),
  856. I915_READ(pp_ctrl_reg));
  857. }
  858. DRM_DEBUG_KMS("Wait complete\n");
  859. }
  860. static void wait_panel_on(struct intel_dp *intel_dp)
  861. {
  862. DRM_DEBUG_KMS("Wait for panel power on\n");
  863. wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
  864. }
  865. static void wait_panel_off(struct intel_dp *intel_dp)
  866. {
  867. DRM_DEBUG_KMS("Wait for panel power off time\n");
  868. wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
  869. }
  870. static void wait_panel_power_cycle(struct intel_dp *intel_dp)
  871. {
  872. DRM_DEBUG_KMS("Wait for panel power cycle\n");
  873. /* When we disable the VDD override bit last we have to do the manual
  874. * wait. */
  875. wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
  876. intel_dp->panel_power_cycle_delay);
  877. wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
  878. }
  879. static void wait_backlight_on(struct intel_dp *intel_dp)
  880. {
  881. wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
  882. intel_dp->backlight_on_delay);
  883. }
  884. static void edp_wait_backlight_off(struct intel_dp *intel_dp)
  885. {
  886. wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
  887. intel_dp->backlight_off_delay);
  888. }
  889. /* Read the current pp_control value, unlocking the register if it
  890. * is locked
  891. */
  892. static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
  893. {
  894. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  895. struct drm_i915_private *dev_priv = dev->dev_private;
  896. u32 control;
  897. control = I915_READ(_pp_ctrl_reg(intel_dp));
  898. control &= ~PANEL_UNLOCK_MASK;
  899. control |= PANEL_UNLOCK_REGS;
  900. return control;
  901. }
  902. static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
  903. {
  904. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  905. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  906. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  907. struct drm_i915_private *dev_priv = dev->dev_private;
  908. enum intel_display_power_domain power_domain;
  909. u32 pp;
  910. u32 pp_stat_reg, pp_ctrl_reg;
  911. bool need_to_disable = !intel_dp->want_panel_vdd;
  912. if (!is_edp(intel_dp))
  913. return false;
  914. intel_dp->want_panel_vdd = true;
  915. if (edp_have_panel_vdd(intel_dp))
  916. return need_to_disable;
  917. power_domain = intel_display_port_power_domain(intel_encoder);
  918. intel_display_power_get(dev_priv, power_domain);
  919. DRM_DEBUG_KMS("Turning eDP VDD on\n");
  920. if (!edp_have_panel_power(intel_dp))
  921. wait_panel_power_cycle(intel_dp);
  922. pp = ironlake_get_pp_control(intel_dp);
  923. pp |= EDP_FORCE_VDD;
  924. pp_stat_reg = _pp_stat_reg(intel_dp);
  925. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  926. I915_WRITE(pp_ctrl_reg, pp);
  927. POSTING_READ(pp_ctrl_reg);
  928. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  929. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  930. /*
  931. * If the panel wasn't on, delay before accessing aux channel
  932. */
  933. if (!edp_have_panel_power(intel_dp)) {
  934. DRM_DEBUG_KMS("eDP was not running\n");
  935. msleep(intel_dp->panel_power_up_delay);
  936. }
  937. return need_to_disable;
  938. }
  939. void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
  940. {
  941. if (is_edp(intel_dp)) {
  942. bool vdd = _edp_panel_vdd_on(intel_dp);
  943. WARN(!vdd, "eDP VDD already requested on\n");
  944. }
  945. }
  946. static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
  947. {
  948. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  949. struct drm_i915_private *dev_priv = dev->dev_private;
  950. u32 pp;
  951. u32 pp_stat_reg, pp_ctrl_reg;
  952. WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
  953. if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
  954. struct intel_digital_port *intel_dig_port =
  955. dp_to_dig_port(intel_dp);
  956. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  957. enum intel_display_power_domain power_domain;
  958. DRM_DEBUG_KMS("Turning eDP VDD off\n");
  959. pp = ironlake_get_pp_control(intel_dp);
  960. pp &= ~EDP_FORCE_VDD;
  961. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  962. pp_stat_reg = _pp_stat_reg(intel_dp);
  963. I915_WRITE(pp_ctrl_reg, pp);
  964. POSTING_READ(pp_ctrl_reg);
  965. /* Make sure sequencer is idle before allowing subsequent activity */
  966. DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
  967. I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
  968. if ((pp & POWER_TARGET_ON) == 0)
  969. intel_dp->last_power_cycle = jiffies;
  970. power_domain = intel_display_port_power_domain(intel_encoder);
  971. intel_display_power_put(dev_priv, power_domain);
  972. }
  973. }
  974. static void edp_panel_vdd_work(struct work_struct *__work)
  975. {
  976. struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
  977. struct intel_dp, panel_vdd_work);
  978. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  979. mutex_lock(&dev->mode_config.mutex);
  980. edp_panel_vdd_off_sync(intel_dp);
  981. mutex_unlock(&dev->mode_config.mutex);
  982. }
  983. static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
  984. {
  985. if (!is_edp(intel_dp))
  986. return;
  987. WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
  988. intel_dp->want_panel_vdd = false;
  989. if (sync) {
  990. edp_panel_vdd_off_sync(intel_dp);
  991. } else {
  992. /*
  993. * Queue the timer to fire a long
  994. * time from now (relative to the power down delay)
  995. * to keep the panel power up across a sequence of operations
  996. */
  997. schedule_delayed_work(&intel_dp->panel_vdd_work,
  998. msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
  999. }
  1000. }
  1001. void intel_edp_panel_on(struct intel_dp *intel_dp)
  1002. {
  1003. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1004. struct drm_i915_private *dev_priv = dev->dev_private;
  1005. u32 pp;
  1006. u32 pp_ctrl_reg;
  1007. if (!is_edp(intel_dp))
  1008. return;
  1009. DRM_DEBUG_KMS("Turn eDP power on\n");
  1010. if (edp_have_panel_power(intel_dp)) {
  1011. DRM_DEBUG_KMS("eDP power already on\n");
  1012. return;
  1013. }
  1014. wait_panel_power_cycle(intel_dp);
  1015. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1016. pp = ironlake_get_pp_control(intel_dp);
  1017. if (IS_GEN5(dev)) {
  1018. /* ILK workaround: disable reset around power sequence */
  1019. pp &= ~PANEL_POWER_RESET;
  1020. I915_WRITE(pp_ctrl_reg, pp);
  1021. POSTING_READ(pp_ctrl_reg);
  1022. }
  1023. pp |= POWER_TARGET_ON;
  1024. if (!IS_GEN5(dev))
  1025. pp |= PANEL_POWER_RESET;
  1026. I915_WRITE(pp_ctrl_reg, pp);
  1027. POSTING_READ(pp_ctrl_reg);
  1028. wait_panel_on(intel_dp);
  1029. intel_dp->last_power_on = jiffies;
  1030. if (IS_GEN5(dev)) {
  1031. pp |= PANEL_POWER_RESET; /* restore panel reset bit */
  1032. I915_WRITE(pp_ctrl_reg, pp);
  1033. POSTING_READ(pp_ctrl_reg);
  1034. }
  1035. }
  1036. void intel_edp_panel_off(struct intel_dp *intel_dp)
  1037. {
  1038. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1039. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  1040. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1041. struct drm_i915_private *dev_priv = dev->dev_private;
  1042. enum intel_display_power_domain power_domain;
  1043. u32 pp;
  1044. u32 pp_ctrl_reg;
  1045. if (!is_edp(intel_dp))
  1046. return;
  1047. DRM_DEBUG_KMS("Turn eDP power off\n");
  1048. edp_wait_backlight_off(intel_dp);
  1049. WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");
  1050. pp = ironlake_get_pp_control(intel_dp);
  1051. /* We need to switch off panel power _and_ force vdd, for otherwise some
  1052. * panels get very unhappy and cease to work. */
  1053. pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
  1054. EDP_BLC_ENABLE);
  1055. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1056. intel_dp->want_panel_vdd = false;
  1057. I915_WRITE(pp_ctrl_reg, pp);
  1058. POSTING_READ(pp_ctrl_reg);
  1059. intel_dp->last_power_cycle = jiffies;
  1060. wait_panel_off(intel_dp);
  1061. /* We got a reference when we enabled the VDD. */
  1062. power_domain = intel_display_port_power_domain(intel_encoder);
  1063. intel_display_power_put(dev_priv, power_domain);
  1064. }
  1065. void intel_edp_backlight_on(struct intel_dp *intel_dp)
  1066. {
  1067. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1068. struct drm_device *dev = intel_dig_port->base.base.dev;
  1069. struct drm_i915_private *dev_priv = dev->dev_private;
  1070. u32 pp;
  1071. u32 pp_ctrl_reg;
  1072. if (!is_edp(intel_dp))
  1073. return;
  1074. DRM_DEBUG_KMS("\n");
  1075. /*
  1076. * If we enable the backlight right away following a panel power
  1077. * on, we may see slight flicker as the panel syncs with the eDP
  1078. * link. So delay a bit to make sure the image is solid before
  1079. * allowing it to appear.
  1080. */
  1081. wait_backlight_on(intel_dp);
  1082. pp = ironlake_get_pp_control(intel_dp);
  1083. pp |= EDP_BLC_ENABLE;
  1084. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1085. I915_WRITE(pp_ctrl_reg, pp);
  1086. POSTING_READ(pp_ctrl_reg);
  1087. intel_panel_enable_backlight(intel_dp->attached_connector);
  1088. }
  1089. void intel_edp_backlight_off(struct intel_dp *intel_dp)
  1090. {
  1091. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1092. struct drm_i915_private *dev_priv = dev->dev_private;
  1093. u32 pp;
  1094. u32 pp_ctrl_reg;
  1095. if (!is_edp(intel_dp))
  1096. return;
  1097. intel_panel_disable_backlight(intel_dp->attached_connector);
  1098. DRM_DEBUG_KMS("\n");
  1099. pp = ironlake_get_pp_control(intel_dp);
  1100. pp &= ~EDP_BLC_ENABLE;
  1101. pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
  1102. I915_WRITE(pp_ctrl_reg, pp);
  1103. POSTING_READ(pp_ctrl_reg);
  1104. intel_dp->last_backlight_off = jiffies;
  1105. }
  1106. static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
  1107. {
  1108. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1109. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1110. struct drm_device *dev = crtc->dev;
  1111. struct drm_i915_private *dev_priv = dev->dev_private;
  1112. u32 dpa_ctl;
  1113. assert_pipe_disabled(dev_priv,
  1114. to_intel_crtc(crtc)->pipe);
  1115. DRM_DEBUG_KMS("\n");
  1116. dpa_ctl = I915_READ(DP_A);
  1117. WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
  1118. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1119. /* We don't adjust intel_dp->DP while tearing down the link, to
  1120. * facilitate link retraining (e.g. after hotplug). Hence clear all
  1121. * enable bits here to ensure that we don't enable too much. */
  1122. intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
  1123. intel_dp->DP |= DP_PLL_ENABLE;
  1124. I915_WRITE(DP_A, intel_dp->DP);
  1125. POSTING_READ(DP_A);
  1126. udelay(200);
  1127. }
  1128. static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
  1129. {
  1130. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  1131. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  1132. struct drm_device *dev = crtc->dev;
  1133. struct drm_i915_private *dev_priv = dev->dev_private;
  1134. u32 dpa_ctl;
  1135. assert_pipe_disabled(dev_priv,
  1136. to_intel_crtc(crtc)->pipe);
  1137. dpa_ctl = I915_READ(DP_A);
  1138. WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
  1139. "dp pll off, should be on\n");
  1140. WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");
  1141. /* We can't rely on the value tracked for the DP register in
  1142. * intel_dp->DP because link_down must not change that (otherwise link
  1143. * re-training will fail. */
  1144. dpa_ctl &= ~DP_PLL_ENABLE;
  1145. I915_WRITE(DP_A, dpa_ctl);
  1146. POSTING_READ(DP_A);
  1147. udelay(200);
  1148. }
  1149. /* If the sink supports it, try to set the power state appropriately */
  1150. void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
  1151. {
  1152. int ret, i;
  1153. /* Should have a valid DPCD by this point */
  1154. if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
  1155. return;
  1156. if (mode != DRM_MODE_DPMS_ON) {
  1157. ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
  1158. DP_SET_POWER_D3);
  1159. if (ret != 1)
  1160. DRM_DEBUG_DRIVER("failed to write sink power state\n");
  1161. } else {
  1162. /*
  1163. * When turning on, we need to retry for 1ms to give the sink
  1164. * time to wake up.
  1165. */
  1166. for (i = 0; i < 3; i++) {
  1167. ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
  1168. DP_SET_POWER_D0);
  1169. if (ret == 1)
  1170. break;
  1171. msleep(1);
  1172. }
  1173. }
  1174. }
  1175. static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
  1176. enum pipe *pipe)
  1177. {
  1178. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1179. enum port port = dp_to_dig_port(intel_dp)->port;
  1180. struct drm_device *dev = encoder->base.dev;
  1181. struct drm_i915_private *dev_priv = dev->dev_private;
  1182. enum intel_display_power_domain power_domain;
  1183. u32 tmp;
  1184. power_domain = intel_display_port_power_domain(encoder);
  1185. if (!intel_display_power_enabled(dev_priv, power_domain))
  1186. return false;
  1187. tmp = I915_READ(intel_dp->output_reg);
  1188. if (!(tmp & DP_PORT_EN))
  1189. return false;
  1190. if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
  1191. *pipe = PORT_TO_PIPE_CPT(tmp);
  1192. } else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
  1193. *pipe = PORT_TO_PIPE(tmp);
  1194. } else {
  1195. u32 trans_sel;
  1196. u32 trans_dp;
  1197. int i;
  1198. switch (intel_dp->output_reg) {
  1199. case PCH_DP_B:
  1200. trans_sel = TRANS_DP_PORT_SEL_B;
  1201. break;
  1202. case PCH_DP_C:
  1203. trans_sel = TRANS_DP_PORT_SEL_C;
  1204. break;
  1205. case PCH_DP_D:
  1206. trans_sel = TRANS_DP_PORT_SEL_D;
  1207. break;
  1208. default:
  1209. return true;
  1210. }
  1211. for_each_pipe(i) {
  1212. trans_dp = I915_READ(TRANS_DP_CTL(i));
  1213. if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
  1214. *pipe = i;
  1215. return true;
  1216. }
  1217. }
  1218. DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
  1219. intel_dp->output_reg);
  1220. }
  1221. return true;
  1222. }
  1223. static void intel_dp_get_config(struct intel_encoder *encoder,
  1224. struct intel_crtc_config *pipe_config)
  1225. {
  1226. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1227. u32 tmp, flags = 0;
  1228. struct drm_device *dev = encoder->base.dev;
  1229. struct drm_i915_private *dev_priv = dev->dev_private;
  1230. enum port port = dp_to_dig_port(intel_dp)->port;
  1231. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  1232. int dotclock;
  1233. if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
  1234. tmp = I915_READ(intel_dp->output_reg);
  1235. if (tmp & DP_SYNC_HS_HIGH)
  1236. flags |= DRM_MODE_FLAG_PHSYNC;
  1237. else
  1238. flags |= DRM_MODE_FLAG_NHSYNC;
  1239. if (tmp & DP_SYNC_VS_HIGH)
  1240. flags |= DRM_MODE_FLAG_PVSYNC;
  1241. else
  1242. flags |= DRM_MODE_FLAG_NVSYNC;
  1243. } else {
  1244. tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
  1245. if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
  1246. flags |= DRM_MODE_FLAG_PHSYNC;
  1247. else
  1248. flags |= DRM_MODE_FLAG_NHSYNC;
  1249. if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
  1250. flags |= DRM_MODE_FLAG_PVSYNC;
  1251. else
  1252. flags |= DRM_MODE_FLAG_NVSYNC;
  1253. }
  1254. pipe_config->adjusted_mode.flags |= flags;
  1255. pipe_config->has_dp_encoder = true;
  1256. intel_dp_get_m_n(crtc, pipe_config);
  1257. if (port == PORT_A) {
  1258. if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
  1259. pipe_config->port_clock = 162000;
  1260. else
  1261. pipe_config->port_clock = 270000;
  1262. }
  1263. dotclock = intel_dotclock_calculate(pipe_config->port_clock,
  1264. &pipe_config->dp_m_n);
  1265. if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
  1266. ironlake_check_encoder_dotclock(pipe_config, dotclock);
  1267. pipe_config->adjusted_mode.crtc_clock = dotclock;
  1268. if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
  1269. pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
  1270. /*
  1271. * This is a big fat ugly hack.
  1272. *
  1273. * Some machines in UEFI boot mode provide us a VBT that has 18
  1274. * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
  1275. * unknown we fail to light up. Yet the same BIOS boots up with
  1276. * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
  1277. * max, not what it tells us to use.
  1278. *
  1279. * Note: This will still be broken if the eDP panel is not lit
  1280. * up by the BIOS, and thus we can't get the mode at module
  1281. * load.
  1282. */
  1283. DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
  1284. pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
  1285. dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
  1286. }
  1287. }
  1288. static bool is_edp_psr(struct drm_device *dev)
  1289. {
  1290. struct drm_i915_private *dev_priv = dev->dev_private;
  1291. return dev_priv->psr.sink_support;
  1292. }
  1293. static bool intel_edp_is_psr_enabled(struct drm_device *dev)
  1294. {
  1295. struct drm_i915_private *dev_priv = dev->dev_private;
  1296. if (!HAS_PSR(dev))
  1297. return false;
  1298. return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
  1299. }
  1300. static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
  1301. struct edp_vsc_psr *vsc_psr)
  1302. {
  1303. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1304. struct drm_device *dev = dig_port->base.base.dev;
  1305. struct drm_i915_private *dev_priv = dev->dev_private;
  1306. struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
  1307. u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
  1308. u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
  1309. uint32_t *data = (uint32_t *) vsc_psr;
  1310. unsigned int i;
  1311. /* As per BSPec (Pipe Video Data Island Packet), we need to disable
  1312. the video DIP being updated before program video DIP data buffer
  1313. registers for DIP being updated. */
  1314. I915_WRITE(ctl_reg, 0);
  1315. POSTING_READ(ctl_reg);
  1316. for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
  1317. if (i < sizeof(struct edp_vsc_psr))
  1318. I915_WRITE(data_reg + i, *data++);
  1319. else
  1320. I915_WRITE(data_reg + i, 0);
  1321. }
  1322. I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
  1323. POSTING_READ(ctl_reg);
  1324. }
  1325. static void intel_edp_psr_setup(struct intel_dp *intel_dp)
  1326. {
  1327. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1328. struct drm_i915_private *dev_priv = dev->dev_private;
  1329. struct edp_vsc_psr psr_vsc;
  1330. if (intel_dp->psr_setup_done)
  1331. return;
  1332. /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
  1333. memset(&psr_vsc, 0, sizeof(psr_vsc));
  1334. psr_vsc.sdp_header.HB0 = 0;
  1335. psr_vsc.sdp_header.HB1 = 0x7;
  1336. psr_vsc.sdp_header.HB2 = 0x2;
  1337. psr_vsc.sdp_header.HB3 = 0x8;
  1338. intel_edp_psr_write_vsc(intel_dp, &psr_vsc);
  1339. /* Avoid continuous PSR exit by masking memup and hpd */
  1340. I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
  1341. EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
  1342. intel_dp->psr_setup_done = true;
  1343. }
  1344. static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
  1345. {
  1346. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1347. struct drm_i915_private *dev_priv = dev->dev_private;
  1348. uint32_t aux_clock_divider;
  1349. int precharge = 0x3;
  1350. int msg_size = 5; /* Header(4) + Message(1) */
  1351. aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
  1352. /* Enable PSR in sink */
  1353. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT)
  1354. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
  1355. DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
  1356. else
  1357. drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
  1358. DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
  1359. /* Setup AUX registers */
  1360. I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
  1361. I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
  1362. I915_WRITE(EDP_PSR_AUX_CTL(dev),
  1363. DP_AUX_CH_CTL_TIME_OUT_400us |
  1364. (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  1365. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  1366. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
  1367. }
  1368. static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
  1369. {
  1370. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1371. struct drm_i915_private *dev_priv = dev->dev_private;
  1372. uint32_t max_sleep_time = 0x1f;
  1373. uint32_t idle_frames = 1;
  1374. uint32_t val = 0x0;
  1375. const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
  1376. if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT) {
  1377. val |= EDP_PSR_LINK_STANDBY;
  1378. val |= EDP_PSR_TP2_TP3_TIME_0us;
  1379. val |= EDP_PSR_TP1_TIME_0us;
  1380. val |= EDP_PSR_SKIP_AUX_EXIT;
  1381. } else
  1382. val |= EDP_PSR_LINK_DISABLE;
  1383. I915_WRITE(EDP_PSR_CTL(dev), val |
  1384. (IS_BROADWELL(dev) ? 0 : link_entry_time) |
  1385. max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
  1386. idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
  1387. EDP_PSR_ENABLE);
  1388. }
  1389. static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
  1390. {
  1391. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  1392. struct drm_device *dev = dig_port->base.base.dev;
  1393. struct drm_i915_private *dev_priv = dev->dev_private;
  1394. struct drm_crtc *crtc = dig_port->base.base.crtc;
  1395. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1396. struct drm_i915_gem_object *obj = to_intel_framebuffer(crtc->primary->fb)->obj;
  1397. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  1398. dev_priv->psr.source_ok = false;
  1399. if (!HAS_PSR(dev)) {
  1400. DRM_DEBUG_KMS("PSR not supported on this platform\n");
  1401. return false;
  1402. }
  1403. if ((intel_encoder->type != INTEL_OUTPUT_EDP) ||
  1404. (dig_port->port != PORT_A)) {
  1405. DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
  1406. return false;
  1407. }
  1408. if (!i915.enable_psr) {
  1409. DRM_DEBUG_KMS("PSR disable by flag\n");
  1410. return false;
  1411. }
  1412. crtc = dig_port->base.base.crtc;
  1413. if (crtc == NULL) {
  1414. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1415. return false;
  1416. }
  1417. intel_crtc = to_intel_crtc(crtc);
  1418. if (!intel_crtc_active(crtc)) {
  1419. DRM_DEBUG_KMS("crtc not active for PSR\n");
  1420. return false;
  1421. }
  1422. obj = to_intel_framebuffer(crtc->primary->fb)->obj;
  1423. if (obj->tiling_mode != I915_TILING_X ||
  1424. obj->fence_reg == I915_FENCE_REG_NONE) {
  1425. DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
  1426. return false;
  1427. }
  1428. if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
  1429. DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
  1430. return false;
  1431. }
  1432. if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
  1433. S3D_ENABLE) {
  1434. DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
  1435. return false;
  1436. }
  1437. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
  1438. DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
  1439. return false;
  1440. }
  1441. dev_priv->psr.source_ok = true;
  1442. return true;
  1443. }
  1444. static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
  1445. {
  1446. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1447. if (!intel_edp_psr_match_conditions(intel_dp) ||
  1448. intel_edp_is_psr_enabled(dev))
  1449. return;
  1450. /* Setup PSR once */
  1451. intel_edp_psr_setup(intel_dp);
  1452. /* Enable PSR on the panel */
  1453. intel_edp_psr_enable_sink(intel_dp);
  1454. /* Enable PSR on the host */
  1455. intel_edp_psr_enable_source(intel_dp);
  1456. }
  1457. void intel_edp_psr_enable(struct intel_dp *intel_dp)
  1458. {
  1459. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1460. if (intel_edp_psr_match_conditions(intel_dp) &&
  1461. !intel_edp_is_psr_enabled(dev))
  1462. intel_edp_psr_do_enable(intel_dp);
  1463. }
  1464. void intel_edp_psr_disable(struct intel_dp *intel_dp)
  1465. {
  1466. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1467. struct drm_i915_private *dev_priv = dev->dev_private;
  1468. if (!intel_edp_is_psr_enabled(dev))
  1469. return;
  1470. I915_WRITE(EDP_PSR_CTL(dev),
  1471. I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
  1472. /* Wait till PSR is idle */
  1473. if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
  1474. EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
  1475. DRM_ERROR("Timed out waiting for PSR Idle State\n");
  1476. }
  1477. void intel_edp_psr_update(struct drm_device *dev)
  1478. {
  1479. struct intel_encoder *encoder;
  1480. struct intel_dp *intel_dp = NULL;
  1481. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
  1482. if (encoder->type == INTEL_OUTPUT_EDP) {
  1483. intel_dp = enc_to_intel_dp(&encoder->base);
  1484. if (!is_edp_psr(dev))
  1485. return;
  1486. if (!intel_edp_psr_match_conditions(intel_dp))
  1487. intel_edp_psr_disable(intel_dp);
  1488. else
  1489. if (!intel_edp_is_psr_enabled(dev))
  1490. intel_edp_psr_do_enable(intel_dp);
  1491. }
  1492. }
  1493. static void intel_disable_dp(struct intel_encoder *encoder)
  1494. {
  1495. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1496. enum port port = dp_to_dig_port(intel_dp)->port;
  1497. struct drm_device *dev = encoder->base.dev;
  1498. /* Make sure the panel is off before trying to change the mode. But also
  1499. * ensure that we have vdd while we switch off the panel. */
  1500. intel_edp_panel_vdd_on(intel_dp);
  1501. intel_edp_backlight_off(intel_dp);
  1502. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
  1503. intel_edp_panel_off(intel_dp);
  1504. /* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
  1505. if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
  1506. intel_dp_link_down(intel_dp);
  1507. }
  1508. static void g4x_post_disable_dp(struct intel_encoder *encoder)
  1509. {
  1510. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1511. enum port port = dp_to_dig_port(intel_dp)->port;
  1512. if (port != PORT_A)
  1513. return;
  1514. intel_dp_link_down(intel_dp);
  1515. ironlake_edp_pll_off(intel_dp);
  1516. }
  1517. static void vlv_post_disable_dp(struct intel_encoder *encoder)
  1518. {
  1519. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1520. intel_dp_link_down(intel_dp);
  1521. }
  1522. static void intel_enable_dp(struct intel_encoder *encoder)
  1523. {
  1524. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1525. struct drm_device *dev = encoder->base.dev;
  1526. struct drm_i915_private *dev_priv = dev->dev_private;
  1527. uint32_t dp_reg = I915_READ(intel_dp->output_reg);
  1528. if (WARN_ON(dp_reg & DP_PORT_EN))
  1529. return;
  1530. intel_edp_panel_vdd_on(intel_dp);
  1531. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  1532. intel_dp_start_link_train(intel_dp);
  1533. intel_edp_panel_on(intel_dp);
  1534. edp_panel_vdd_off(intel_dp, true);
  1535. intel_dp_complete_link_train(intel_dp);
  1536. intel_dp_stop_link_train(intel_dp);
  1537. }
  1538. static void g4x_enable_dp(struct intel_encoder *encoder)
  1539. {
  1540. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1541. intel_enable_dp(encoder);
  1542. intel_edp_backlight_on(intel_dp);
  1543. }
  1544. static void vlv_enable_dp(struct intel_encoder *encoder)
  1545. {
  1546. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1547. intel_edp_backlight_on(intel_dp);
  1548. }
  1549. static void g4x_pre_enable_dp(struct intel_encoder *encoder)
  1550. {
  1551. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1552. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1553. if (dport->port == PORT_A)
  1554. ironlake_edp_pll_on(intel_dp);
  1555. }
  1556. static void vlv_pre_enable_dp(struct intel_encoder *encoder)
  1557. {
  1558. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  1559. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1560. struct drm_device *dev = encoder->base.dev;
  1561. struct drm_i915_private *dev_priv = dev->dev_private;
  1562. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1563. enum dpio_channel port = vlv_dport_to_channel(dport);
  1564. int pipe = intel_crtc->pipe;
  1565. struct edp_power_seq power_seq;
  1566. u32 val;
  1567. mutex_lock(&dev_priv->dpio_lock);
  1568. val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
  1569. val = 0;
  1570. if (pipe)
  1571. val |= (1<<21);
  1572. else
  1573. val &= ~(1<<21);
  1574. val |= 0x001000c4;
  1575. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
  1576. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
  1577. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
  1578. mutex_unlock(&dev_priv->dpio_lock);
  1579. if (is_edp(intel_dp)) {
  1580. /* init power sequencer on this pipe and port */
  1581. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  1582. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
  1583. &power_seq);
  1584. }
  1585. intel_enable_dp(encoder);
  1586. vlv_wait_port_ready(dev_priv, dport);
  1587. }
  1588. static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
  1589. {
  1590. struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
  1591. struct drm_device *dev = encoder->base.dev;
  1592. struct drm_i915_private *dev_priv = dev->dev_private;
  1593. struct intel_crtc *intel_crtc =
  1594. to_intel_crtc(encoder->base.crtc);
  1595. enum dpio_channel port = vlv_dport_to_channel(dport);
  1596. int pipe = intel_crtc->pipe;
  1597. /* Program Tx lane resets to default */
  1598. mutex_lock(&dev_priv->dpio_lock);
  1599. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
  1600. DPIO_PCS_TX_LANE2_RESET |
  1601. DPIO_PCS_TX_LANE1_RESET);
  1602. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
  1603. DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
  1604. DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
  1605. (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
  1606. DPIO_PCS_CLK_SOFT_RESET);
  1607. /* Fix up inter-pair skew failure */
  1608. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
  1609. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
  1610. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
  1611. mutex_unlock(&dev_priv->dpio_lock);
  1612. }
  1613. /*
  1614. * Native read with retry for link status and receiver capability reads for
  1615. * cases where the sink may still be asleep.
  1616. *
  1617. * Sinks are *supposed* to come up within 1ms from an off state, but we're also
  1618. * supposed to retry 3 times per the spec.
  1619. */
  1620. static ssize_t
  1621. intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
  1622. void *buffer, size_t size)
  1623. {
  1624. ssize_t ret;
  1625. int i;
  1626. for (i = 0; i < 3; i++) {
  1627. ret = drm_dp_dpcd_read(aux, offset, buffer, size);
  1628. if (ret == size)
  1629. return ret;
  1630. msleep(1);
  1631. }
  1632. return ret;
  1633. }
  1634. /*
  1635. * Fetch AUX CH registers 0x202 - 0x207 which contain
  1636. * link status information
  1637. */
  1638. static bool
  1639. intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
  1640. {
  1641. return intel_dp_dpcd_read_wake(&intel_dp->aux,
  1642. DP_LANE0_1_STATUS,
  1643. link_status,
  1644. DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
  1645. }
  1646. /*
  1647. * These are source-specific values; current Intel hardware supports
  1648. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  1649. */
  1650. static uint8_t
  1651. intel_dp_voltage_max(struct intel_dp *intel_dp)
  1652. {
  1653. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1654. enum port port = dp_to_dig_port(intel_dp)->port;
  1655. if (IS_VALLEYVIEW(dev) || IS_BROADWELL(dev))
  1656. return DP_TRAIN_VOLTAGE_SWING_1200;
  1657. else if (IS_GEN7(dev) && port == PORT_A)
  1658. return DP_TRAIN_VOLTAGE_SWING_800;
  1659. else if (HAS_PCH_CPT(dev) && port != PORT_A)
  1660. return DP_TRAIN_VOLTAGE_SWING_1200;
  1661. else
  1662. return DP_TRAIN_VOLTAGE_SWING_800;
  1663. }
  1664. static uint8_t
  1665. intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
  1666. {
  1667. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1668. enum port port = dp_to_dig_port(intel_dp)->port;
  1669. if (IS_BROADWELL(dev)) {
  1670. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1671. case DP_TRAIN_VOLTAGE_SWING_400:
  1672. case DP_TRAIN_VOLTAGE_SWING_600:
  1673. return DP_TRAIN_PRE_EMPHASIS_6;
  1674. case DP_TRAIN_VOLTAGE_SWING_800:
  1675. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1676. case DP_TRAIN_VOLTAGE_SWING_1200:
  1677. default:
  1678. return DP_TRAIN_PRE_EMPHASIS_0;
  1679. }
  1680. } else if (IS_HASWELL(dev)) {
  1681. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1682. case DP_TRAIN_VOLTAGE_SWING_400:
  1683. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1684. case DP_TRAIN_VOLTAGE_SWING_600:
  1685. return DP_TRAIN_PRE_EMPHASIS_6;
  1686. case DP_TRAIN_VOLTAGE_SWING_800:
  1687. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1688. case DP_TRAIN_VOLTAGE_SWING_1200:
  1689. default:
  1690. return DP_TRAIN_PRE_EMPHASIS_0;
  1691. }
  1692. } else if (IS_VALLEYVIEW(dev)) {
  1693. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1694. case DP_TRAIN_VOLTAGE_SWING_400:
  1695. return DP_TRAIN_PRE_EMPHASIS_9_5;
  1696. case DP_TRAIN_VOLTAGE_SWING_600:
  1697. return DP_TRAIN_PRE_EMPHASIS_6;
  1698. case DP_TRAIN_VOLTAGE_SWING_800:
  1699. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1700. case DP_TRAIN_VOLTAGE_SWING_1200:
  1701. default:
  1702. return DP_TRAIN_PRE_EMPHASIS_0;
  1703. }
  1704. } else if (IS_GEN7(dev) && port == PORT_A) {
  1705. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1706. case DP_TRAIN_VOLTAGE_SWING_400:
  1707. return DP_TRAIN_PRE_EMPHASIS_6;
  1708. case DP_TRAIN_VOLTAGE_SWING_600:
  1709. case DP_TRAIN_VOLTAGE_SWING_800:
  1710. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1711. default:
  1712. return DP_TRAIN_PRE_EMPHASIS_0;
  1713. }
  1714. } else {
  1715. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1716. case DP_TRAIN_VOLTAGE_SWING_400:
  1717. return DP_TRAIN_PRE_EMPHASIS_6;
  1718. case DP_TRAIN_VOLTAGE_SWING_600:
  1719. return DP_TRAIN_PRE_EMPHASIS_6;
  1720. case DP_TRAIN_VOLTAGE_SWING_800:
  1721. return DP_TRAIN_PRE_EMPHASIS_3_5;
  1722. case DP_TRAIN_VOLTAGE_SWING_1200:
  1723. default:
  1724. return DP_TRAIN_PRE_EMPHASIS_0;
  1725. }
  1726. }
  1727. }
  1728. static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
  1729. {
  1730. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  1731. struct drm_i915_private *dev_priv = dev->dev_private;
  1732. struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
  1733. struct intel_crtc *intel_crtc =
  1734. to_intel_crtc(dport->base.base.crtc);
  1735. unsigned long demph_reg_value, preemph_reg_value,
  1736. uniqtranscale_reg_value;
  1737. uint8_t train_set = intel_dp->train_set[0];
  1738. enum dpio_channel port = vlv_dport_to_channel(dport);
  1739. int pipe = intel_crtc->pipe;
  1740. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1741. case DP_TRAIN_PRE_EMPHASIS_0:
  1742. preemph_reg_value = 0x0004000;
  1743. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1744. case DP_TRAIN_VOLTAGE_SWING_400:
  1745. demph_reg_value = 0x2B405555;
  1746. uniqtranscale_reg_value = 0x552AB83A;
  1747. break;
  1748. case DP_TRAIN_VOLTAGE_SWING_600:
  1749. demph_reg_value = 0x2B404040;
  1750. uniqtranscale_reg_value = 0x5548B83A;
  1751. break;
  1752. case DP_TRAIN_VOLTAGE_SWING_800:
  1753. demph_reg_value = 0x2B245555;
  1754. uniqtranscale_reg_value = 0x5560B83A;
  1755. break;
  1756. case DP_TRAIN_VOLTAGE_SWING_1200:
  1757. demph_reg_value = 0x2B405555;
  1758. uniqtranscale_reg_value = 0x5598DA3A;
  1759. break;
  1760. default:
  1761. return 0;
  1762. }
  1763. break;
  1764. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1765. preemph_reg_value = 0x0002000;
  1766. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1767. case DP_TRAIN_VOLTAGE_SWING_400:
  1768. demph_reg_value = 0x2B404040;
  1769. uniqtranscale_reg_value = 0x5552B83A;
  1770. break;
  1771. case DP_TRAIN_VOLTAGE_SWING_600:
  1772. demph_reg_value = 0x2B404848;
  1773. uniqtranscale_reg_value = 0x5580B83A;
  1774. break;
  1775. case DP_TRAIN_VOLTAGE_SWING_800:
  1776. demph_reg_value = 0x2B404040;
  1777. uniqtranscale_reg_value = 0x55ADDA3A;
  1778. break;
  1779. default:
  1780. return 0;
  1781. }
  1782. break;
  1783. case DP_TRAIN_PRE_EMPHASIS_6:
  1784. preemph_reg_value = 0x0000000;
  1785. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1786. case DP_TRAIN_VOLTAGE_SWING_400:
  1787. demph_reg_value = 0x2B305555;
  1788. uniqtranscale_reg_value = 0x5570B83A;
  1789. break;
  1790. case DP_TRAIN_VOLTAGE_SWING_600:
  1791. demph_reg_value = 0x2B2B4040;
  1792. uniqtranscale_reg_value = 0x55ADDA3A;
  1793. break;
  1794. default:
  1795. return 0;
  1796. }
  1797. break;
  1798. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1799. preemph_reg_value = 0x0006000;
  1800. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1801. case DP_TRAIN_VOLTAGE_SWING_400:
  1802. demph_reg_value = 0x1B405555;
  1803. uniqtranscale_reg_value = 0x55ADDA3A;
  1804. break;
  1805. default:
  1806. return 0;
  1807. }
  1808. break;
  1809. default:
  1810. return 0;
  1811. }
  1812. mutex_lock(&dev_priv->dpio_lock);
  1813. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
  1814. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
  1815. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
  1816. uniqtranscale_reg_value);
  1817. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
  1818. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
  1819. vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
  1820. vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
  1821. mutex_unlock(&dev_priv->dpio_lock);
  1822. return 0;
  1823. }
  1824. static void
  1825. intel_get_adjust_train(struct intel_dp *intel_dp,
  1826. const uint8_t link_status[DP_LINK_STATUS_SIZE])
  1827. {
  1828. uint8_t v = 0;
  1829. uint8_t p = 0;
  1830. int lane;
  1831. uint8_t voltage_max;
  1832. uint8_t preemph_max;
  1833. for (lane = 0; lane < intel_dp->lane_count; lane++) {
  1834. uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
  1835. uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
  1836. if (this_v > v)
  1837. v = this_v;
  1838. if (this_p > p)
  1839. p = this_p;
  1840. }
  1841. voltage_max = intel_dp_voltage_max(intel_dp);
  1842. if (v >= voltage_max)
  1843. v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
  1844. preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
  1845. if (p >= preemph_max)
  1846. p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  1847. for (lane = 0; lane < 4; lane++)
  1848. intel_dp->train_set[lane] = v | p;
  1849. }
  1850. static uint32_t
  1851. intel_gen4_signal_levels(uint8_t train_set)
  1852. {
  1853. uint32_t signal_levels = 0;
  1854. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  1855. case DP_TRAIN_VOLTAGE_SWING_400:
  1856. default:
  1857. signal_levels |= DP_VOLTAGE_0_4;
  1858. break;
  1859. case DP_TRAIN_VOLTAGE_SWING_600:
  1860. signal_levels |= DP_VOLTAGE_0_6;
  1861. break;
  1862. case DP_TRAIN_VOLTAGE_SWING_800:
  1863. signal_levels |= DP_VOLTAGE_0_8;
  1864. break;
  1865. case DP_TRAIN_VOLTAGE_SWING_1200:
  1866. signal_levels |= DP_VOLTAGE_1_2;
  1867. break;
  1868. }
  1869. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  1870. case DP_TRAIN_PRE_EMPHASIS_0:
  1871. default:
  1872. signal_levels |= DP_PRE_EMPHASIS_0;
  1873. break;
  1874. case DP_TRAIN_PRE_EMPHASIS_3_5:
  1875. signal_levels |= DP_PRE_EMPHASIS_3_5;
  1876. break;
  1877. case DP_TRAIN_PRE_EMPHASIS_6:
  1878. signal_levels |= DP_PRE_EMPHASIS_6;
  1879. break;
  1880. case DP_TRAIN_PRE_EMPHASIS_9_5:
  1881. signal_levels |= DP_PRE_EMPHASIS_9_5;
  1882. break;
  1883. }
  1884. return signal_levels;
  1885. }
  1886. /* Gen6's DP voltage swing and pre-emphasis control */
  1887. static uint32_t
  1888. intel_gen6_edp_signal_levels(uint8_t train_set)
  1889. {
  1890. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1891. DP_TRAIN_PRE_EMPHASIS_MASK);
  1892. switch (signal_levels) {
  1893. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1894. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1895. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1896. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1897. return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
  1898. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1899. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1900. return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
  1901. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1902. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1903. return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
  1904. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1905. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1906. return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
  1907. default:
  1908. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1909. "0x%x\n", signal_levels);
  1910. return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
  1911. }
  1912. }
  1913. /* Gen7's DP voltage swing and pre-emphasis control */
  1914. static uint32_t
  1915. intel_gen7_edp_signal_levels(uint8_t train_set)
  1916. {
  1917. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1918. DP_TRAIN_PRE_EMPHASIS_MASK);
  1919. switch (signal_levels) {
  1920. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1921. return EDP_LINK_TRAIN_400MV_0DB_IVB;
  1922. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1923. return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
  1924. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1925. return EDP_LINK_TRAIN_400MV_6DB_IVB;
  1926. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1927. return EDP_LINK_TRAIN_600MV_0DB_IVB;
  1928. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1929. return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
  1930. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1931. return EDP_LINK_TRAIN_800MV_0DB_IVB;
  1932. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1933. return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
  1934. default:
  1935. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1936. "0x%x\n", signal_levels);
  1937. return EDP_LINK_TRAIN_500MV_0DB_IVB;
  1938. }
  1939. }
  1940. /* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
  1941. static uint32_t
  1942. intel_hsw_signal_levels(uint8_t train_set)
  1943. {
  1944. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1945. DP_TRAIN_PRE_EMPHASIS_MASK);
  1946. switch (signal_levels) {
  1947. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1948. return DDI_BUF_EMP_400MV_0DB_HSW;
  1949. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1950. return DDI_BUF_EMP_400MV_3_5DB_HSW;
  1951. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1952. return DDI_BUF_EMP_400MV_6DB_HSW;
  1953. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
  1954. return DDI_BUF_EMP_400MV_9_5DB_HSW;
  1955. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1956. return DDI_BUF_EMP_600MV_0DB_HSW;
  1957. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1958. return DDI_BUF_EMP_600MV_3_5DB_HSW;
  1959. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1960. return DDI_BUF_EMP_600MV_6DB_HSW;
  1961. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1962. return DDI_BUF_EMP_800MV_0DB_HSW;
  1963. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1964. return DDI_BUF_EMP_800MV_3_5DB_HSW;
  1965. default:
  1966. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1967. "0x%x\n", signal_levels);
  1968. return DDI_BUF_EMP_400MV_0DB_HSW;
  1969. }
  1970. }
  1971. static uint32_t
  1972. intel_bdw_signal_levels(uint8_t train_set)
  1973. {
  1974. int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
  1975. DP_TRAIN_PRE_EMPHASIS_MASK);
  1976. switch (signal_levels) {
  1977. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  1978. return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
  1979. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1980. return DDI_BUF_EMP_400MV_3_5DB_BDW; /* Sel1 */
  1981. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  1982. return DDI_BUF_EMP_400MV_6DB_BDW; /* Sel2 */
  1983. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
  1984. return DDI_BUF_EMP_600MV_0DB_BDW; /* Sel3 */
  1985. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1986. return DDI_BUF_EMP_600MV_3_5DB_BDW; /* Sel4 */
  1987. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
  1988. return DDI_BUF_EMP_600MV_6DB_BDW; /* Sel5 */
  1989. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  1990. return DDI_BUF_EMP_800MV_0DB_BDW; /* Sel6 */
  1991. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
  1992. return DDI_BUF_EMP_800MV_3_5DB_BDW; /* Sel7 */
  1993. case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
  1994. return DDI_BUF_EMP_1200MV_0DB_BDW; /* Sel8 */
  1995. default:
  1996. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
  1997. "0x%x\n", signal_levels);
  1998. return DDI_BUF_EMP_400MV_0DB_BDW; /* Sel0 */
  1999. }
  2000. }
  2001. /* Properly updates "DP" with the correct signal levels. */
  2002. static void
  2003. intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
  2004. {
  2005. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2006. enum port port = intel_dig_port->port;
  2007. struct drm_device *dev = intel_dig_port->base.base.dev;
  2008. uint32_t signal_levels, mask;
  2009. uint8_t train_set = intel_dp->train_set[0];
  2010. if (IS_BROADWELL(dev)) {
  2011. signal_levels = intel_bdw_signal_levels(train_set);
  2012. mask = DDI_BUF_EMP_MASK;
  2013. } else if (IS_HASWELL(dev)) {
  2014. signal_levels = intel_hsw_signal_levels(train_set);
  2015. mask = DDI_BUF_EMP_MASK;
  2016. } else if (IS_VALLEYVIEW(dev)) {
  2017. signal_levels = intel_vlv_signal_levels(intel_dp);
  2018. mask = 0;
  2019. } else if (IS_GEN7(dev) && port == PORT_A) {
  2020. signal_levels = intel_gen7_edp_signal_levels(train_set);
  2021. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
  2022. } else if (IS_GEN6(dev) && port == PORT_A) {
  2023. signal_levels = intel_gen6_edp_signal_levels(train_set);
  2024. mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
  2025. } else {
  2026. signal_levels = intel_gen4_signal_levels(train_set);
  2027. mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
  2028. }
  2029. DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
  2030. *DP = (*DP & ~mask) | signal_levels;
  2031. }
  2032. static bool
  2033. intel_dp_set_link_train(struct intel_dp *intel_dp,
  2034. uint32_t *DP,
  2035. uint8_t dp_train_pat)
  2036. {
  2037. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2038. struct drm_device *dev = intel_dig_port->base.base.dev;
  2039. struct drm_i915_private *dev_priv = dev->dev_private;
  2040. enum port port = intel_dig_port->port;
  2041. uint8_t buf[sizeof(intel_dp->train_set) + 1];
  2042. int ret, len;
  2043. if (HAS_DDI(dev)) {
  2044. uint32_t temp = I915_READ(DP_TP_CTL(port));
  2045. if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
  2046. temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
  2047. else
  2048. temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
  2049. temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  2050. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2051. case DP_TRAINING_PATTERN_DISABLE:
  2052. temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
  2053. break;
  2054. case DP_TRAINING_PATTERN_1:
  2055. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  2056. break;
  2057. case DP_TRAINING_PATTERN_2:
  2058. temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
  2059. break;
  2060. case DP_TRAINING_PATTERN_3:
  2061. temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
  2062. break;
  2063. }
  2064. I915_WRITE(DP_TP_CTL(port), temp);
  2065. } else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2066. *DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2067. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2068. case DP_TRAINING_PATTERN_DISABLE:
  2069. *DP |= DP_LINK_TRAIN_OFF_CPT;
  2070. break;
  2071. case DP_TRAINING_PATTERN_1:
  2072. *DP |= DP_LINK_TRAIN_PAT_1_CPT;
  2073. break;
  2074. case DP_TRAINING_PATTERN_2:
  2075. *DP |= DP_LINK_TRAIN_PAT_2_CPT;
  2076. break;
  2077. case DP_TRAINING_PATTERN_3:
  2078. DRM_ERROR("DP training pattern 3 not supported\n");
  2079. *DP |= DP_LINK_TRAIN_PAT_2_CPT;
  2080. break;
  2081. }
  2082. } else {
  2083. *DP &= ~DP_LINK_TRAIN_MASK;
  2084. switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
  2085. case DP_TRAINING_PATTERN_DISABLE:
  2086. *DP |= DP_LINK_TRAIN_OFF;
  2087. break;
  2088. case DP_TRAINING_PATTERN_1:
  2089. *DP |= DP_LINK_TRAIN_PAT_1;
  2090. break;
  2091. case DP_TRAINING_PATTERN_2:
  2092. *DP |= DP_LINK_TRAIN_PAT_2;
  2093. break;
  2094. case DP_TRAINING_PATTERN_3:
  2095. DRM_ERROR("DP training pattern 3 not supported\n");
  2096. *DP |= DP_LINK_TRAIN_PAT_2;
  2097. break;
  2098. }
  2099. }
  2100. I915_WRITE(intel_dp->output_reg, *DP);
  2101. POSTING_READ(intel_dp->output_reg);
  2102. buf[0] = dp_train_pat;
  2103. if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
  2104. DP_TRAINING_PATTERN_DISABLE) {
  2105. /* don't write DP_TRAINING_LANEx_SET on disable */
  2106. len = 1;
  2107. } else {
  2108. /* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
  2109. memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
  2110. len = intel_dp->lane_count + 1;
  2111. }
  2112. ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
  2113. buf, len);
  2114. return ret == len;
  2115. }
  2116. static bool
  2117. intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
  2118. uint8_t dp_train_pat)
  2119. {
  2120. memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
  2121. intel_dp_set_signal_levels(intel_dp, DP);
  2122. return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
  2123. }
  2124. static bool
  2125. intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
  2126. const uint8_t link_status[DP_LINK_STATUS_SIZE])
  2127. {
  2128. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2129. struct drm_device *dev = intel_dig_port->base.base.dev;
  2130. struct drm_i915_private *dev_priv = dev->dev_private;
  2131. int ret;
  2132. intel_get_adjust_train(intel_dp, link_status);
  2133. intel_dp_set_signal_levels(intel_dp, DP);
  2134. I915_WRITE(intel_dp->output_reg, *DP);
  2135. POSTING_READ(intel_dp->output_reg);
  2136. ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
  2137. intel_dp->train_set, intel_dp->lane_count);
  2138. return ret == intel_dp->lane_count;
  2139. }
  2140. static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
  2141. {
  2142. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2143. struct drm_device *dev = intel_dig_port->base.base.dev;
  2144. struct drm_i915_private *dev_priv = dev->dev_private;
  2145. enum port port = intel_dig_port->port;
  2146. uint32_t val;
  2147. if (!HAS_DDI(dev))
  2148. return;
  2149. val = I915_READ(DP_TP_CTL(port));
  2150. val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
  2151. val |= DP_TP_CTL_LINK_TRAIN_IDLE;
  2152. I915_WRITE(DP_TP_CTL(port), val);
  2153. /*
  2154. * On PORT_A we can have only eDP in SST mode. There the only reason
  2155. * we need to set idle transmission mode is to work around a HW issue
  2156. * where we enable the pipe while not in idle link-training mode.
  2157. * In this case there is requirement to wait for a minimum number of
  2158. * idle patterns to be sent.
  2159. */
  2160. if (port == PORT_A)
  2161. return;
  2162. if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
  2163. 1))
  2164. DRM_ERROR("Timed out waiting for DP idle patterns\n");
  2165. }
  2166. /* Enable corresponding port and start training pattern 1 */
  2167. void
  2168. intel_dp_start_link_train(struct intel_dp *intel_dp)
  2169. {
  2170. struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
  2171. struct drm_device *dev = encoder->dev;
  2172. int i;
  2173. uint8_t voltage;
  2174. int voltage_tries, loop_tries;
  2175. uint32_t DP = intel_dp->DP;
  2176. uint8_t link_config[2];
  2177. if (HAS_DDI(dev))
  2178. intel_ddi_prepare_link_retrain(encoder);
  2179. /* Write the link configuration data */
  2180. link_config[0] = intel_dp->link_bw;
  2181. link_config[1] = intel_dp->lane_count;
  2182. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  2183. link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  2184. drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
  2185. link_config[0] = 0;
  2186. link_config[1] = DP_SET_ANSI_8B10B;
  2187. drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
  2188. DP |= DP_PORT_EN;
  2189. /* clock recovery */
  2190. if (!intel_dp_reset_link_train(intel_dp, &DP,
  2191. DP_TRAINING_PATTERN_1 |
  2192. DP_LINK_SCRAMBLING_DISABLE)) {
  2193. DRM_ERROR("failed to enable link training\n");
  2194. return;
  2195. }
  2196. voltage = 0xff;
  2197. voltage_tries = 0;
  2198. loop_tries = 0;
  2199. for (;;) {
  2200. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2201. drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
  2202. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2203. DRM_ERROR("failed to get link status\n");
  2204. break;
  2205. }
  2206. if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2207. DRM_DEBUG_KMS("clock recovery OK\n");
  2208. break;
  2209. }
  2210. /* Check to see if we've tried the max voltage */
  2211. for (i = 0; i < intel_dp->lane_count; i++)
  2212. if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  2213. break;
  2214. if (i == intel_dp->lane_count) {
  2215. ++loop_tries;
  2216. if (loop_tries == 5) {
  2217. DRM_ERROR("too many full retries, give up\n");
  2218. break;
  2219. }
  2220. intel_dp_reset_link_train(intel_dp, &DP,
  2221. DP_TRAINING_PATTERN_1 |
  2222. DP_LINK_SCRAMBLING_DISABLE);
  2223. voltage_tries = 0;
  2224. continue;
  2225. }
  2226. /* Check to see if we've tried the same voltage 5 times */
  2227. if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  2228. ++voltage_tries;
  2229. if (voltage_tries == 5) {
  2230. DRM_ERROR("too many voltage retries, give up\n");
  2231. break;
  2232. }
  2233. } else
  2234. voltage_tries = 0;
  2235. voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  2236. /* Update training set as requested by target */
  2237. if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
  2238. DRM_ERROR("failed to update link training\n");
  2239. break;
  2240. }
  2241. }
  2242. intel_dp->DP = DP;
  2243. }
  2244. void
  2245. intel_dp_complete_link_train(struct intel_dp *intel_dp)
  2246. {
  2247. bool channel_eq = false;
  2248. int tries, cr_tries;
  2249. uint32_t DP = intel_dp->DP;
  2250. uint32_t training_pattern = DP_TRAINING_PATTERN_2;
  2251. /* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
  2252. if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
  2253. training_pattern = DP_TRAINING_PATTERN_3;
  2254. /* channel equalization */
  2255. if (!intel_dp_set_link_train(intel_dp, &DP,
  2256. training_pattern |
  2257. DP_LINK_SCRAMBLING_DISABLE)) {
  2258. DRM_ERROR("failed to start channel equalization\n");
  2259. return;
  2260. }
  2261. tries = 0;
  2262. cr_tries = 0;
  2263. channel_eq = false;
  2264. for (;;) {
  2265. uint8_t link_status[DP_LINK_STATUS_SIZE];
  2266. if (cr_tries > 5) {
  2267. DRM_ERROR("failed to train DP, aborting\n");
  2268. break;
  2269. }
  2270. drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
  2271. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2272. DRM_ERROR("failed to get link status\n");
  2273. break;
  2274. }
  2275. /* Make sure clock is still ok */
  2276. if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
  2277. intel_dp_start_link_train(intel_dp);
  2278. intel_dp_set_link_train(intel_dp, &DP,
  2279. training_pattern |
  2280. DP_LINK_SCRAMBLING_DISABLE);
  2281. cr_tries++;
  2282. continue;
  2283. }
  2284. if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2285. channel_eq = true;
  2286. break;
  2287. }
  2288. /* Try 5 times, then try clock recovery if that fails */
  2289. if (tries > 5) {
  2290. intel_dp_link_down(intel_dp);
  2291. intel_dp_start_link_train(intel_dp);
  2292. intel_dp_set_link_train(intel_dp, &DP,
  2293. training_pattern |
  2294. DP_LINK_SCRAMBLING_DISABLE);
  2295. tries = 0;
  2296. cr_tries++;
  2297. continue;
  2298. }
  2299. /* Update training set as requested by target */
  2300. if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
  2301. DRM_ERROR("failed to update link training\n");
  2302. break;
  2303. }
  2304. ++tries;
  2305. }
  2306. intel_dp_set_idle_link_train(intel_dp);
  2307. intel_dp->DP = DP;
  2308. if (channel_eq)
  2309. DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
  2310. }
  2311. void intel_dp_stop_link_train(struct intel_dp *intel_dp)
  2312. {
  2313. intel_dp_set_link_train(intel_dp, &intel_dp->DP,
  2314. DP_TRAINING_PATTERN_DISABLE);
  2315. }
  2316. static void
  2317. intel_dp_link_down(struct intel_dp *intel_dp)
  2318. {
  2319. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2320. enum port port = intel_dig_port->port;
  2321. struct drm_device *dev = intel_dig_port->base.base.dev;
  2322. struct drm_i915_private *dev_priv = dev->dev_private;
  2323. struct intel_crtc *intel_crtc =
  2324. to_intel_crtc(intel_dig_port->base.base.crtc);
  2325. uint32_t DP = intel_dp->DP;
  2326. /*
  2327. * DDI code has a strict mode set sequence and we should try to respect
  2328. * it, otherwise we might hang the machine in many different ways. So we
  2329. * really should be disabling the port only on a complete crtc_disable
  2330. * sequence. This function is just called under two conditions on DDI
  2331. * code:
  2332. * - Link train failed while doing crtc_enable, and on this case we
  2333. * really should respect the mode set sequence and wait for a
  2334. * crtc_disable.
  2335. * - Someone turned the monitor off and intel_dp_check_link_status
  2336. * called us. We don't need to disable the whole port on this case, so
  2337. * when someone turns the monitor on again,
  2338. * intel_ddi_prepare_link_retrain will take care of redoing the link
  2339. * train.
  2340. */
  2341. if (HAS_DDI(dev))
  2342. return;
  2343. if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
  2344. return;
  2345. DRM_DEBUG_KMS("\n");
  2346. if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
  2347. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  2348. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  2349. } else {
  2350. DP &= ~DP_LINK_TRAIN_MASK;
  2351. I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  2352. }
  2353. POSTING_READ(intel_dp->output_reg);
  2354. if (HAS_PCH_IBX(dev) &&
  2355. I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
  2356. struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
  2357. /* Hardware workaround: leaving our transcoder select
  2358. * set to transcoder B while it's off will prevent the
  2359. * corresponding HDMI output on transcoder A.
  2360. *
  2361. * Combine this with another hardware workaround:
  2362. * transcoder select bit can only be cleared while the
  2363. * port is enabled.
  2364. */
  2365. DP &= ~DP_PIPEB_SELECT;
  2366. I915_WRITE(intel_dp->output_reg, DP);
  2367. /* Changes to enable or select take place the vblank
  2368. * after being written.
  2369. */
  2370. if (WARN_ON(crtc == NULL)) {
  2371. /* We should never try to disable a port without a crtc
  2372. * attached. For paranoia keep the code around for a
  2373. * bit. */
  2374. POSTING_READ(intel_dp->output_reg);
  2375. msleep(50);
  2376. } else
  2377. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2378. }
  2379. DP &= ~DP_AUDIO_OUTPUT_ENABLE;
  2380. I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
  2381. POSTING_READ(intel_dp->output_reg);
  2382. msleep(intel_dp->panel_power_down_delay);
  2383. }
  2384. static bool
  2385. intel_dp_get_dpcd(struct intel_dp *intel_dp)
  2386. {
  2387. struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
  2388. struct drm_device *dev = dig_port->base.base.dev;
  2389. struct drm_i915_private *dev_priv = dev->dev_private;
  2390. char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];
  2391. if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
  2392. sizeof(intel_dp->dpcd)) < 0)
  2393. return false; /* aux transfer failed */
  2394. hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
  2395. 32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
  2396. DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);
  2397. if (intel_dp->dpcd[DP_DPCD_REV] == 0)
  2398. return false; /* DPCD not present */
  2399. /* Check if the panel supports PSR */
  2400. memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
  2401. if (is_edp(intel_dp)) {
  2402. intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
  2403. intel_dp->psr_dpcd,
  2404. sizeof(intel_dp->psr_dpcd));
  2405. if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
  2406. dev_priv->psr.sink_support = true;
  2407. DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
  2408. }
  2409. }
  2410. /* Training Pattern 3 support */
  2411. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
  2412. intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
  2413. intel_dp->use_tps3 = true;
  2414. DRM_DEBUG_KMS("Displayport TPS3 supported");
  2415. } else
  2416. intel_dp->use_tps3 = false;
  2417. if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2418. DP_DWN_STRM_PORT_PRESENT))
  2419. return true; /* native DP sink */
  2420. if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
  2421. return true; /* no per-port downstream info */
  2422. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
  2423. intel_dp->downstream_ports,
  2424. DP_MAX_DOWNSTREAM_PORTS) < 0)
  2425. return false; /* downstream port status fetch failed */
  2426. return true;
  2427. }
  2428. static void
  2429. intel_dp_probe_oui(struct intel_dp *intel_dp)
  2430. {
  2431. u8 buf[3];
  2432. if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
  2433. return;
  2434. intel_edp_panel_vdd_on(intel_dp);
  2435. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
  2436. DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
  2437. buf[0], buf[1], buf[2]);
  2438. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
  2439. DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
  2440. buf[0], buf[1], buf[2]);
  2441. edp_panel_vdd_off(intel_dp, false);
  2442. }
  2443. int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
  2444. {
  2445. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2446. struct drm_device *dev = intel_dig_port->base.base.dev;
  2447. struct intel_crtc *intel_crtc =
  2448. to_intel_crtc(intel_dig_port->base.base.crtc);
  2449. u8 buf[1];
  2450. if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
  2451. return -EAGAIN;
  2452. if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
  2453. return -ENOTTY;
  2454. if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
  2455. DP_TEST_SINK_START) < 0)
  2456. return -EAGAIN;
  2457. /* Wait 2 vblanks to be sure we will have the correct CRC value */
  2458. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2459. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2460. if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
  2461. return -EAGAIN;
  2462. drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
  2463. return 0;
  2464. }
  2465. static bool
  2466. intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
  2467. {
  2468. return intel_dp_dpcd_read_wake(&intel_dp->aux,
  2469. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2470. sink_irq_vector, 1) == 1;
  2471. }
  2472. static void
  2473. intel_dp_handle_test_request(struct intel_dp *intel_dp)
  2474. {
  2475. /* NAK by default */
  2476. drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
  2477. }
  2478. /*
  2479. * According to DP spec
  2480. * 5.1.2:
  2481. * 1. Read DPCD
  2482. * 2. Configure link according to Receiver Capabilities
  2483. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  2484. * 4. Check link status on receipt of hot-plug interrupt
  2485. */
  2486. void
  2487. intel_dp_check_link_status(struct intel_dp *intel_dp)
  2488. {
  2489. struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
  2490. u8 sink_irq_vector;
  2491. u8 link_status[DP_LINK_STATUS_SIZE];
  2492. if (!intel_encoder->connectors_active)
  2493. return;
  2494. if (WARN_ON(!intel_encoder->base.crtc))
  2495. return;
  2496. /* Try to read receiver status if the link appears to be up */
  2497. if (!intel_dp_get_link_status(intel_dp, link_status)) {
  2498. return;
  2499. }
  2500. /* Now read the DPCD to see if it's actually running */
  2501. if (!intel_dp_get_dpcd(intel_dp)) {
  2502. return;
  2503. }
  2504. /* Try to read the source of the interrupt */
  2505. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2506. intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
  2507. /* Clear interrupt source */
  2508. drm_dp_dpcd_writeb(&intel_dp->aux,
  2509. DP_DEVICE_SERVICE_IRQ_VECTOR,
  2510. sink_irq_vector);
  2511. if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
  2512. intel_dp_handle_test_request(intel_dp);
  2513. if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
  2514. DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
  2515. }
  2516. if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
  2517. DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
  2518. drm_get_encoder_name(&intel_encoder->base));
  2519. intel_dp_start_link_train(intel_dp);
  2520. intel_dp_complete_link_train(intel_dp);
  2521. intel_dp_stop_link_train(intel_dp);
  2522. }
  2523. }
  2524. /* XXX this is probably wrong for multiple downstream ports */
  2525. static enum drm_connector_status
  2526. intel_dp_detect_dpcd(struct intel_dp *intel_dp)
  2527. {
  2528. uint8_t *dpcd = intel_dp->dpcd;
  2529. uint8_t type;
  2530. if (!intel_dp_get_dpcd(intel_dp))
  2531. return connector_status_disconnected;
  2532. /* if there's no downstream port, we're done */
  2533. if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
  2534. return connector_status_connected;
  2535. /* If we're HPD-aware, SINK_COUNT changes dynamically */
  2536. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
  2537. intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
  2538. uint8_t reg;
  2539. if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
  2540. &reg, 1) < 0)
  2541. return connector_status_unknown;
  2542. return DP_GET_SINK_COUNT(reg) ? connector_status_connected
  2543. : connector_status_disconnected;
  2544. }
  2545. /* If no HPD, poke DDC gently */
  2546. if (drm_probe_ddc(&intel_dp->aux.ddc))
  2547. return connector_status_connected;
  2548. /* Well we tried, say unknown for unreliable port types */
  2549. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
  2550. type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
  2551. if (type == DP_DS_PORT_TYPE_VGA ||
  2552. type == DP_DS_PORT_TYPE_NON_EDID)
  2553. return connector_status_unknown;
  2554. } else {
  2555. type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
  2556. DP_DWN_STRM_PORT_TYPE_MASK;
  2557. if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
  2558. type == DP_DWN_STRM_PORT_TYPE_OTHER)
  2559. return connector_status_unknown;
  2560. }
  2561. /* Anything else is out of spec, warn and ignore */
  2562. DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
  2563. return connector_status_disconnected;
  2564. }
  2565. static enum drm_connector_status
  2566. ironlake_dp_detect(struct intel_dp *intel_dp)
  2567. {
  2568. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2569. struct drm_i915_private *dev_priv = dev->dev_private;
  2570. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2571. enum drm_connector_status status;
  2572. /* Can't disconnect eDP, but you can close the lid... */
  2573. if (is_edp(intel_dp)) {
  2574. status = intel_panel_detect(dev);
  2575. if (status == connector_status_unknown)
  2576. status = connector_status_connected;
  2577. return status;
  2578. }
  2579. if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
  2580. return connector_status_disconnected;
  2581. return intel_dp_detect_dpcd(intel_dp);
  2582. }
  2583. static enum drm_connector_status
  2584. g4x_dp_detect(struct intel_dp *intel_dp)
  2585. {
  2586. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2587. struct drm_i915_private *dev_priv = dev->dev_private;
  2588. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2589. uint32_t bit;
  2590. /* Can't disconnect eDP, but you can close the lid... */
  2591. if (is_edp(intel_dp)) {
  2592. enum drm_connector_status status;
  2593. status = intel_panel_detect(dev);
  2594. if (status == connector_status_unknown)
  2595. status = connector_status_connected;
  2596. return status;
  2597. }
  2598. if (IS_VALLEYVIEW(dev)) {
  2599. switch (intel_dig_port->port) {
  2600. case PORT_B:
  2601. bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
  2602. break;
  2603. case PORT_C:
  2604. bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
  2605. break;
  2606. case PORT_D:
  2607. bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
  2608. break;
  2609. default:
  2610. return connector_status_unknown;
  2611. }
  2612. } else {
  2613. switch (intel_dig_port->port) {
  2614. case PORT_B:
  2615. bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
  2616. break;
  2617. case PORT_C:
  2618. bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
  2619. break;
  2620. case PORT_D:
  2621. bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
  2622. break;
  2623. default:
  2624. return connector_status_unknown;
  2625. }
  2626. }
  2627. if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
  2628. return connector_status_disconnected;
  2629. return intel_dp_detect_dpcd(intel_dp);
  2630. }
  2631. static struct edid *
  2632. intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
  2633. {
  2634. struct intel_connector *intel_connector = to_intel_connector(connector);
  2635. /* use cached edid if we have one */
  2636. if (intel_connector->edid) {
  2637. /* invalid edid */
  2638. if (IS_ERR(intel_connector->edid))
  2639. return NULL;
  2640. return drm_edid_duplicate(intel_connector->edid);
  2641. }
  2642. return drm_get_edid(connector, adapter);
  2643. }
  2644. static int
  2645. intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
  2646. {
  2647. struct intel_connector *intel_connector = to_intel_connector(connector);
  2648. /* use cached edid if we have one */
  2649. if (intel_connector->edid) {
  2650. /* invalid edid */
  2651. if (IS_ERR(intel_connector->edid))
  2652. return 0;
  2653. return intel_connector_update_modes(connector,
  2654. intel_connector->edid);
  2655. }
  2656. return intel_ddc_get_modes(connector, adapter);
  2657. }
  2658. static enum drm_connector_status
  2659. intel_dp_detect(struct drm_connector *connector, bool force)
  2660. {
  2661. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2662. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2663. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2664. struct drm_device *dev = connector->dev;
  2665. struct drm_i915_private *dev_priv = dev->dev_private;
  2666. enum drm_connector_status status;
  2667. enum intel_display_power_domain power_domain;
  2668. struct edid *edid = NULL;
  2669. intel_runtime_pm_get(dev_priv);
  2670. power_domain = intel_display_port_power_domain(intel_encoder);
  2671. intel_display_power_get(dev_priv, power_domain);
  2672. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  2673. connector->base.id, drm_get_connector_name(connector));
  2674. intel_dp->has_audio = false;
  2675. if (HAS_PCH_SPLIT(dev))
  2676. status = ironlake_dp_detect(intel_dp);
  2677. else
  2678. status = g4x_dp_detect(intel_dp);
  2679. if (status != connector_status_connected)
  2680. goto out;
  2681. intel_dp_probe_oui(intel_dp);
  2682. if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
  2683. intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
  2684. } else {
  2685. edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
  2686. if (edid) {
  2687. intel_dp->has_audio = drm_detect_monitor_audio(edid);
  2688. kfree(edid);
  2689. }
  2690. }
  2691. if (intel_encoder->type != INTEL_OUTPUT_EDP)
  2692. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  2693. status = connector_status_connected;
  2694. out:
  2695. intel_display_power_put(dev_priv, power_domain);
  2696. intel_runtime_pm_put(dev_priv);
  2697. return status;
  2698. }
  2699. static int intel_dp_get_modes(struct drm_connector *connector)
  2700. {
  2701. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2702. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2703. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2704. struct intel_connector *intel_connector = to_intel_connector(connector);
  2705. struct drm_device *dev = connector->dev;
  2706. struct drm_i915_private *dev_priv = dev->dev_private;
  2707. enum intel_display_power_domain power_domain;
  2708. int ret;
  2709. /* We should parse the EDID data and find out if it has an audio sink
  2710. */
  2711. power_domain = intel_display_port_power_domain(intel_encoder);
  2712. intel_display_power_get(dev_priv, power_domain);
  2713. ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
  2714. intel_display_power_put(dev_priv, power_domain);
  2715. if (ret)
  2716. return ret;
  2717. /* if eDP has no EDID, fall back to fixed mode */
  2718. if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
  2719. struct drm_display_mode *mode;
  2720. mode = drm_mode_duplicate(dev,
  2721. intel_connector->panel.fixed_mode);
  2722. if (mode) {
  2723. drm_mode_probed_add(connector, mode);
  2724. return 1;
  2725. }
  2726. }
  2727. return 0;
  2728. }
  2729. static bool
  2730. intel_dp_detect_audio(struct drm_connector *connector)
  2731. {
  2732. struct intel_dp *intel_dp = intel_attached_dp(connector);
  2733. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  2734. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  2735. struct drm_device *dev = connector->dev;
  2736. struct drm_i915_private *dev_priv = dev->dev_private;
  2737. enum intel_display_power_domain power_domain;
  2738. struct edid *edid;
  2739. bool has_audio = false;
  2740. power_domain = intel_display_port_power_domain(intel_encoder);
  2741. intel_display_power_get(dev_priv, power_domain);
  2742. edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
  2743. if (edid) {
  2744. has_audio = drm_detect_monitor_audio(edid);
  2745. kfree(edid);
  2746. }
  2747. intel_display_power_put(dev_priv, power_domain);
  2748. return has_audio;
  2749. }
  2750. static int
  2751. intel_dp_set_property(struct drm_connector *connector,
  2752. struct drm_property *property,
  2753. uint64_t val)
  2754. {
  2755. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  2756. struct intel_connector *intel_connector = to_intel_connector(connector);
  2757. struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
  2758. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2759. int ret;
  2760. ret = drm_object_property_set_value(&connector->base, property, val);
  2761. if (ret)
  2762. return ret;
  2763. if (property == dev_priv->force_audio_property) {
  2764. int i = val;
  2765. bool has_audio;
  2766. if (i == intel_dp->force_audio)
  2767. return 0;
  2768. intel_dp->force_audio = i;
  2769. if (i == HDMI_AUDIO_AUTO)
  2770. has_audio = intel_dp_detect_audio(connector);
  2771. else
  2772. has_audio = (i == HDMI_AUDIO_ON);
  2773. if (has_audio == intel_dp->has_audio)
  2774. return 0;
  2775. intel_dp->has_audio = has_audio;
  2776. goto done;
  2777. }
  2778. if (property == dev_priv->broadcast_rgb_property) {
  2779. bool old_auto = intel_dp->color_range_auto;
  2780. uint32_t old_range = intel_dp->color_range;
  2781. switch (val) {
  2782. case INTEL_BROADCAST_RGB_AUTO:
  2783. intel_dp->color_range_auto = true;
  2784. break;
  2785. case INTEL_BROADCAST_RGB_FULL:
  2786. intel_dp->color_range_auto = false;
  2787. intel_dp->color_range = 0;
  2788. break;
  2789. case INTEL_BROADCAST_RGB_LIMITED:
  2790. intel_dp->color_range_auto = false;
  2791. intel_dp->color_range = DP_COLOR_RANGE_16_235;
  2792. break;
  2793. default:
  2794. return -EINVAL;
  2795. }
  2796. if (old_auto == intel_dp->color_range_auto &&
  2797. old_range == intel_dp->color_range)
  2798. return 0;
  2799. goto done;
  2800. }
  2801. if (is_edp(intel_dp) &&
  2802. property == connector->dev->mode_config.scaling_mode_property) {
  2803. if (val == DRM_MODE_SCALE_NONE) {
  2804. DRM_DEBUG_KMS("no scaling not supported\n");
  2805. return -EINVAL;
  2806. }
  2807. if (intel_connector->panel.fitting_mode == val) {
  2808. /* the eDP scaling property is not changed */
  2809. return 0;
  2810. }
  2811. intel_connector->panel.fitting_mode = val;
  2812. goto done;
  2813. }
  2814. return -EINVAL;
  2815. done:
  2816. if (intel_encoder->base.crtc)
  2817. intel_crtc_restore_mode(intel_encoder->base.crtc);
  2818. return 0;
  2819. }
  2820. static void
  2821. intel_dp_connector_destroy(struct drm_connector *connector)
  2822. {
  2823. struct intel_connector *intel_connector = to_intel_connector(connector);
  2824. if (!IS_ERR_OR_NULL(intel_connector->edid))
  2825. kfree(intel_connector->edid);
  2826. /* Can't call is_edp() since the encoder may have been destroyed
  2827. * already. */
  2828. if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  2829. intel_panel_fini(&intel_connector->panel);
  2830. drm_connector_cleanup(connector);
  2831. kfree(connector);
  2832. }
  2833. void intel_dp_encoder_destroy(struct drm_encoder *encoder)
  2834. {
  2835. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  2836. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2837. struct drm_device *dev = intel_dp_to_dev(intel_dp);
  2838. drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
  2839. drm_encoder_cleanup(encoder);
  2840. if (is_edp(intel_dp)) {
  2841. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  2842. mutex_lock(&dev->mode_config.mutex);
  2843. edp_panel_vdd_off_sync(intel_dp);
  2844. mutex_unlock(&dev->mode_config.mutex);
  2845. }
  2846. kfree(intel_dig_port);
  2847. }
  2848. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  2849. .dpms = intel_connector_dpms,
  2850. .detect = intel_dp_detect,
  2851. .fill_modes = drm_helper_probe_single_connector_modes,
  2852. .set_property = intel_dp_set_property,
  2853. .destroy = intel_dp_connector_destroy,
  2854. };
  2855. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  2856. .get_modes = intel_dp_get_modes,
  2857. .mode_valid = intel_dp_mode_valid,
  2858. .best_encoder = intel_best_encoder,
  2859. };
  2860. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  2861. .destroy = intel_dp_encoder_destroy,
  2862. };
  2863. static void
  2864. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  2865. {
  2866. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2867. intel_dp_check_link_status(intel_dp);
  2868. }
  2869. /* Return which DP Port should be selected for Transcoder DP control */
  2870. int
  2871. intel_trans_dp_port_sel(struct drm_crtc *crtc)
  2872. {
  2873. struct drm_device *dev = crtc->dev;
  2874. struct intel_encoder *intel_encoder;
  2875. struct intel_dp *intel_dp;
  2876. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2877. intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2878. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2879. intel_encoder->type == INTEL_OUTPUT_EDP)
  2880. return intel_dp->output_reg;
  2881. }
  2882. return -1;
  2883. }
  2884. /* check the VBT to see whether the eDP is on DP-D port */
  2885. bool intel_dp_is_edp(struct drm_device *dev, enum port port)
  2886. {
  2887. struct drm_i915_private *dev_priv = dev->dev_private;
  2888. union child_device_config *p_child;
  2889. int i;
  2890. static const short port_mapping[] = {
  2891. [PORT_B] = PORT_IDPB,
  2892. [PORT_C] = PORT_IDPC,
  2893. [PORT_D] = PORT_IDPD,
  2894. };
  2895. if (port == PORT_A)
  2896. return true;
  2897. if (!dev_priv->vbt.child_dev_num)
  2898. return false;
  2899. for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
  2900. p_child = dev_priv->vbt.child_dev + i;
  2901. if (p_child->common.dvo_port == port_mapping[port] &&
  2902. (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
  2903. (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
  2904. return true;
  2905. }
  2906. return false;
  2907. }
  2908. static void
  2909. intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
  2910. {
  2911. struct intel_connector *intel_connector = to_intel_connector(connector);
  2912. intel_attach_force_audio_property(connector);
  2913. intel_attach_broadcast_rgb_property(connector);
  2914. intel_dp->color_range_auto = true;
  2915. if (is_edp(intel_dp)) {
  2916. drm_mode_create_scaling_mode_property(connector->dev);
  2917. drm_object_attach_property(
  2918. &connector->base,
  2919. connector->dev->mode_config.scaling_mode_property,
  2920. DRM_MODE_SCALE_ASPECT);
  2921. intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
  2922. }
  2923. }
  2924. static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
  2925. {
  2926. intel_dp->last_power_cycle = jiffies;
  2927. intel_dp->last_power_on = jiffies;
  2928. intel_dp->last_backlight_off = jiffies;
  2929. }
  2930. static void
  2931. intel_dp_init_panel_power_sequencer(struct drm_device *dev,
  2932. struct intel_dp *intel_dp,
  2933. struct edp_power_seq *out)
  2934. {
  2935. struct drm_i915_private *dev_priv = dev->dev_private;
  2936. struct edp_power_seq cur, vbt, spec, final;
  2937. u32 pp_on, pp_off, pp_div, pp;
  2938. int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
  2939. if (HAS_PCH_SPLIT(dev)) {
  2940. pp_ctrl_reg = PCH_PP_CONTROL;
  2941. pp_on_reg = PCH_PP_ON_DELAYS;
  2942. pp_off_reg = PCH_PP_OFF_DELAYS;
  2943. pp_div_reg = PCH_PP_DIVISOR;
  2944. } else {
  2945. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  2946. pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
  2947. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  2948. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  2949. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  2950. }
  2951. /* Workaround: Need to write PP_CONTROL with the unlock key as
  2952. * the very first thing. */
  2953. pp = ironlake_get_pp_control(intel_dp);
  2954. I915_WRITE(pp_ctrl_reg, pp);
  2955. pp_on = I915_READ(pp_on_reg);
  2956. pp_off = I915_READ(pp_off_reg);
  2957. pp_div = I915_READ(pp_div_reg);
  2958. /* Pull timing values out of registers */
  2959. cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
  2960. PANEL_POWER_UP_DELAY_SHIFT;
  2961. cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
  2962. PANEL_LIGHT_ON_DELAY_SHIFT;
  2963. cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
  2964. PANEL_LIGHT_OFF_DELAY_SHIFT;
  2965. cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
  2966. PANEL_POWER_DOWN_DELAY_SHIFT;
  2967. cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
  2968. PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
  2969. DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2970. cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
  2971. vbt = dev_priv->vbt.edp_pps;
  2972. /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
  2973. * our hw here, which are all in 100usec. */
  2974. spec.t1_t3 = 210 * 10;
  2975. spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
  2976. spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
  2977. spec.t10 = 500 * 10;
  2978. /* This one is special and actually in units of 100ms, but zero
  2979. * based in the hw (so we need to add 100 ms). But the sw vbt
  2980. * table multiplies it with 1000 to make it in units of 100usec,
  2981. * too. */
  2982. spec.t11_t12 = (510 + 100) * 10;
  2983. DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
  2984. vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
  2985. /* Use the max of the register settings and vbt. If both are
  2986. * unset, fall back to the spec limits. */
  2987. #define assign_final(field) final.field = (max(cur.field, vbt.field) == 0 ? \
  2988. spec.field : \
  2989. max(cur.field, vbt.field))
  2990. assign_final(t1_t3);
  2991. assign_final(t8);
  2992. assign_final(t9);
  2993. assign_final(t10);
  2994. assign_final(t11_t12);
  2995. #undef assign_final
  2996. #define get_delay(field) (DIV_ROUND_UP(final.field, 10))
  2997. intel_dp->panel_power_up_delay = get_delay(t1_t3);
  2998. intel_dp->backlight_on_delay = get_delay(t8);
  2999. intel_dp->backlight_off_delay = get_delay(t9);
  3000. intel_dp->panel_power_down_delay = get_delay(t10);
  3001. intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
  3002. #undef get_delay
  3003. DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
  3004. intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
  3005. intel_dp->panel_power_cycle_delay);
  3006. DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
  3007. intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
  3008. if (out)
  3009. *out = final;
  3010. }
  3011. static void
  3012. intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
  3013. struct intel_dp *intel_dp,
  3014. struct edp_power_seq *seq)
  3015. {
  3016. struct drm_i915_private *dev_priv = dev->dev_private;
  3017. u32 pp_on, pp_off, pp_div, port_sel = 0;
  3018. int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
  3019. int pp_on_reg, pp_off_reg, pp_div_reg;
  3020. if (HAS_PCH_SPLIT(dev)) {
  3021. pp_on_reg = PCH_PP_ON_DELAYS;
  3022. pp_off_reg = PCH_PP_OFF_DELAYS;
  3023. pp_div_reg = PCH_PP_DIVISOR;
  3024. } else {
  3025. enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
  3026. pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
  3027. pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
  3028. pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
  3029. }
  3030. /*
  3031. * And finally store the new values in the power sequencer. The
  3032. * backlight delays are set to 1 because we do manual waits on them. For
  3033. * T8, even BSpec recommends doing it. For T9, if we don't do this,
  3034. * we'll end up waiting for the backlight off delay twice: once when we
  3035. * do the manual sleep, and once when we disable the panel and wait for
  3036. * the PP_STATUS bit to become zero.
  3037. */
  3038. pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
  3039. (1 << PANEL_LIGHT_ON_DELAY_SHIFT);
  3040. pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
  3041. (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
  3042. /* Compute the divisor for the pp clock, simply match the Bspec
  3043. * formula. */
  3044. pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
  3045. pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
  3046. << PANEL_POWER_CYCLE_DELAY_SHIFT);
  3047. /* Haswell doesn't have any port selection bits for the panel
  3048. * power sequencer any more. */
  3049. if (IS_VALLEYVIEW(dev)) {
  3050. if (dp_to_dig_port(intel_dp)->port == PORT_B)
  3051. port_sel = PANEL_PORT_SELECT_DPB_VLV;
  3052. else
  3053. port_sel = PANEL_PORT_SELECT_DPC_VLV;
  3054. } else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
  3055. if (dp_to_dig_port(intel_dp)->port == PORT_A)
  3056. port_sel = PANEL_PORT_SELECT_DPA;
  3057. else
  3058. port_sel = PANEL_PORT_SELECT_DPD;
  3059. }
  3060. pp_on |= port_sel;
  3061. I915_WRITE(pp_on_reg, pp_on);
  3062. I915_WRITE(pp_off_reg, pp_off);
  3063. I915_WRITE(pp_div_reg, pp_div);
  3064. DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
  3065. I915_READ(pp_on_reg),
  3066. I915_READ(pp_off_reg),
  3067. I915_READ(pp_div_reg));
  3068. }
  3069. void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
  3070. {
  3071. struct drm_i915_private *dev_priv = dev->dev_private;
  3072. struct intel_encoder *encoder;
  3073. struct intel_dp *intel_dp = NULL;
  3074. struct intel_crtc_config *config = NULL;
  3075. struct intel_crtc *intel_crtc = NULL;
  3076. struct intel_connector *intel_connector = dev_priv->drrs.connector;
  3077. u32 reg, val;
  3078. enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;
  3079. if (refresh_rate <= 0) {
  3080. DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
  3081. return;
  3082. }
  3083. if (intel_connector == NULL) {
  3084. DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
  3085. return;
  3086. }
  3087. if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
  3088. DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
  3089. return;
  3090. }
  3091. encoder = intel_attached_encoder(&intel_connector->base);
  3092. intel_dp = enc_to_intel_dp(&encoder->base);
  3093. intel_crtc = encoder->new_crtc;
  3094. if (!intel_crtc) {
  3095. DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
  3096. return;
  3097. }
  3098. config = &intel_crtc->config;
  3099. if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
  3100. DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
  3101. return;
  3102. }
  3103. if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
  3104. index = DRRS_LOW_RR;
  3105. if (index == intel_dp->drrs_state.refresh_rate_type) {
  3106. DRM_DEBUG_KMS(
  3107. "DRRS requested for previously set RR...ignoring\n");
  3108. return;
  3109. }
  3110. if (!intel_crtc->active) {
  3111. DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
  3112. return;
  3113. }
  3114. if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
  3115. reg = PIPECONF(intel_crtc->config.cpu_transcoder);
  3116. val = I915_READ(reg);
  3117. if (index > DRRS_HIGH_RR) {
  3118. val |= PIPECONF_EDP_RR_MODE_SWITCH;
  3119. intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
  3120. } else {
  3121. val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
  3122. }
  3123. I915_WRITE(reg, val);
  3124. }
  3125. /*
  3126. * mutex taken to ensure that there is no race between differnt
  3127. * drrs calls trying to update refresh rate. This scenario may occur
  3128. * in future when idleness detection based DRRS in kernel and
  3129. * possible calls from user space to set differnt RR are made.
  3130. */
  3131. mutex_lock(&intel_dp->drrs_state.mutex);
  3132. intel_dp->drrs_state.refresh_rate_type = index;
  3133. mutex_unlock(&intel_dp->drrs_state.mutex);
  3134. DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
  3135. }
  3136. static struct drm_display_mode *
  3137. intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
  3138. struct intel_connector *intel_connector,
  3139. struct drm_display_mode *fixed_mode)
  3140. {
  3141. struct drm_connector *connector = &intel_connector->base;
  3142. struct intel_dp *intel_dp = &intel_dig_port->dp;
  3143. struct drm_device *dev = intel_dig_port->base.base.dev;
  3144. struct drm_i915_private *dev_priv = dev->dev_private;
  3145. struct drm_display_mode *downclock_mode = NULL;
  3146. if (INTEL_INFO(dev)->gen <= 6) {
  3147. DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
  3148. return NULL;
  3149. }
  3150. if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
  3151. DRM_INFO("VBT doesn't support DRRS\n");
  3152. return NULL;
  3153. }
  3154. downclock_mode = intel_find_panel_downclock
  3155. (dev, fixed_mode, connector);
  3156. if (!downclock_mode) {
  3157. DRM_INFO("DRRS not supported\n");
  3158. return NULL;
  3159. }
  3160. dev_priv->drrs.connector = intel_connector;
  3161. mutex_init(&intel_dp->drrs_state.mutex);
  3162. intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;
  3163. intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
  3164. DRM_INFO("seamless DRRS supported for eDP panel.\n");
  3165. return downclock_mode;
  3166. }
  3167. static bool intel_edp_init_connector(struct intel_dp *intel_dp,
  3168. struct intel_connector *intel_connector,
  3169. struct edp_power_seq *power_seq)
  3170. {
  3171. struct drm_connector *connector = &intel_connector->base;
  3172. struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
  3173. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  3174. struct drm_device *dev = intel_encoder->base.dev;
  3175. struct drm_i915_private *dev_priv = dev->dev_private;
  3176. struct drm_display_mode *fixed_mode = NULL;
  3177. struct drm_display_mode *downclock_mode = NULL;
  3178. bool has_dpcd;
  3179. struct drm_display_mode *scan;
  3180. struct edid *edid;
  3181. intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;
  3182. if (!is_edp(intel_dp))
  3183. return true;
  3184. /* The VDD bit needs a power domain reference, so if the bit is already
  3185. * enabled when we boot, grab this reference. */
  3186. if (edp_have_panel_vdd(intel_dp)) {
  3187. enum intel_display_power_domain power_domain;
  3188. power_domain = intel_display_port_power_domain(intel_encoder);
  3189. intel_display_power_get(dev_priv, power_domain);
  3190. }
  3191. /* Cache DPCD and EDID for edp. */
  3192. intel_edp_panel_vdd_on(intel_dp);
  3193. has_dpcd = intel_dp_get_dpcd(intel_dp);
  3194. edp_panel_vdd_off(intel_dp, false);
  3195. if (has_dpcd) {
  3196. if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
  3197. dev_priv->no_aux_handshake =
  3198. intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
  3199. DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
  3200. } else {
  3201. /* if this fails, presume the device is a ghost */
  3202. DRM_INFO("failed to retrieve link info, disabling eDP\n");
  3203. return false;
  3204. }
  3205. /* We now know it's not a ghost, init power sequence regs. */
  3206. intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
  3207. mutex_lock(&dev->mode_config.mutex);
  3208. edid = drm_get_edid(connector, &intel_dp->aux.ddc);
  3209. if (edid) {
  3210. if (drm_add_edid_modes(connector, edid)) {
  3211. drm_mode_connector_update_edid_property(connector,
  3212. edid);
  3213. drm_edid_to_eld(connector, edid);
  3214. } else {
  3215. kfree(edid);
  3216. edid = ERR_PTR(-EINVAL);
  3217. }
  3218. } else {
  3219. edid = ERR_PTR(-ENOENT);
  3220. }
  3221. intel_connector->edid = edid;
  3222. /* prefer fixed mode from EDID if available */
  3223. list_for_each_entry(scan, &connector->probed_modes, head) {
  3224. if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
  3225. fixed_mode = drm_mode_duplicate(dev, scan);
  3226. downclock_mode = intel_dp_drrs_init(
  3227. intel_dig_port,
  3228. intel_connector, fixed_mode);
  3229. break;
  3230. }
  3231. }
  3232. /* fallback to VBT if available for eDP */
  3233. if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
  3234. fixed_mode = drm_mode_duplicate(dev,
  3235. dev_priv->vbt.lfp_lvds_vbt_mode);
  3236. if (fixed_mode)
  3237. fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
  3238. }
  3239. mutex_unlock(&dev->mode_config.mutex);
  3240. intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
  3241. intel_panel_setup_backlight(connector);
  3242. return true;
  3243. }
  3244. bool
  3245. intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
  3246. struct intel_connector *intel_connector)
  3247. {
  3248. struct drm_connector *connector = &intel_connector->base;
  3249. struct intel_dp *intel_dp = &intel_dig_port->dp;
  3250. struct intel_encoder *intel_encoder = &intel_dig_port->base;
  3251. struct drm_device *dev = intel_encoder->base.dev;
  3252. struct drm_i915_private *dev_priv = dev->dev_private;
  3253. enum port port = intel_dig_port->port;
  3254. struct edp_power_seq power_seq = { 0 };
  3255. int type;
  3256. /* intel_dp vfuncs */
  3257. if (IS_VALLEYVIEW(dev))
  3258. intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
  3259. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3260. intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
  3261. else if (HAS_PCH_SPLIT(dev))
  3262. intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
  3263. else
  3264. intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;
  3265. intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;
  3266. /* Preserve the current hw state. */
  3267. intel_dp->DP = I915_READ(intel_dp->output_reg);
  3268. intel_dp->attached_connector = intel_connector;
  3269. if (intel_dp_is_edp(dev, port))
  3270. type = DRM_MODE_CONNECTOR_eDP;
  3271. else
  3272. type = DRM_MODE_CONNECTOR_DisplayPort;
  3273. /*
  3274. * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
  3275. * for DP the encoder type can be set by the caller to
  3276. * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
  3277. */
  3278. if (type == DRM_MODE_CONNECTOR_eDP)
  3279. intel_encoder->type = INTEL_OUTPUT_EDP;
  3280. DRM_DEBUG_KMS("Adding %s connector on port %c\n",
  3281. type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
  3282. port_name(port));
  3283. drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
  3284. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  3285. connector->interlace_allowed = true;
  3286. connector->doublescan_allowed = 0;
  3287. INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
  3288. edp_panel_vdd_work);
  3289. intel_connector_attach_encoder(intel_connector, intel_encoder);
  3290. drm_sysfs_connector_add(connector);
  3291. if (HAS_DDI(dev))
  3292. intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
  3293. else
  3294. intel_connector->get_hw_state = intel_connector_get_hw_state;
  3295. intel_connector->unregister = intel_dp_connector_unregister;
  3296. /* Set up the hotplug pin. */
  3297. switch (port) {
  3298. case PORT_A:
  3299. intel_encoder->hpd_pin = HPD_PORT_A;
  3300. break;
  3301. case PORT_B:
  3302. intel_encoder->hpd_pin = HPD_PORT_B;
  3303. break;
  3304. case PORT_C:
  3305. intel_encoder->hpd_pin = HPD_PORT_C;
  3306. break;
  3307. case PORT_D:
  3308. intel_encoder->hpd_pin = HPD_PORT_D;
  3309. break;
  3310. default:
  3311. BUG();
  3312. }
  3313. if (is_edp(intel_dp)) {
  3314. intel_dp_init_panel_power_timestamps(intel_dp);
  3315. intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
  3316. }
  3317. intel_dp_aux_init(intel_dp, intel_connector);
  3318. intel_dp->psr_setup_done = false;
  3319. if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
  3320. drm_dp_aux_unregister_i2c_bus(&intel_dp->aux);
  3321. if (is_edp(intel_dp)) {
  3322. cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
  3323. mutex_lock(&dev->mode_config.mutex);
  3324. edp_panel_vdd_off_sync(intel_dp);
  3325. mutex_unlock(&dev->mode_config.mutex);
  3326. }
  3327. drm_sysfs_connector_remove(connector);
  3328. drm_connector_cleanup(connector);
  3329. return false;
  3330. }
  3331. intel_dp_add_properties(intel_dp, connector);
  3332. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  3333. * 0xd. Failure to do so will result in spurious interrupts being
  3334. * generated on the port when a cable is not attached.
  3335. */
  3336. if (IS_G4X(dev) && !IS_GM45(dev)) {
  3337. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  3338. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  3339. }
  3340. return true;
  3341. }
  3342. void
  3343. intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
  3344. {
  3345. struct intel_digital_port *intel_dig_port;
  3346. struct intel_encoder *intel_encoder;
  3347. struct drm_encoder *encoder;
  3348. struct intel_connector *intel_connector;
  3349. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  3350. if (!intel_dig_port)
  3351. return;
  3352. intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
  3353. if (!intel_connector) {
  3354. kfree(intel_dig_port);
  3355. return;
  3356. }
  3357. intel_encoder = &intel_dig_port->base;
  3358. encoder = &intel_encoder->base;
  3359. drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
  3360. DRM_MODE_ENCODER_TMDS);
  3361. intel_encoder->compute_config = intel_dp_compute_config;
  3362. intel_encoder->mode_set = intel_dp_mode_set;
  3363. intel_encoder->disable = intel_disable_dp;
  3364. intel_encoder->get_hw_state = intel_dp_get_hw_state;
  3365. intel_encoder->get_config = intel_dp_get_config;
  3366. if (IS_VALLEYVIEW(dev)) {
  3367. intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
  3368. intel_encoder->pre_enable = vlv_pre_enable_dp;
  3369. intel_encoder->enable = vlv_enable_dp;
  3370. intel_encoder->post_disable = vlv_post_disable_dp;
  3371. } else {
  3372. intel_encoder->pre_enable = g4x_pre_enable_dp;
  3373. intel_encoder->enable = g4x_enable_dp;
  3374. intel_encoder->post_disable = g4x_post_disable_dp;
  3375. }
  3376. intel_dig_port->port = port;
  3377. intel_dig_port->dp.output_reg = output_reg;
  3378. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  3379. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  3380. intel_encoder->cloneable = 0;
  3381. intel_encoder->hot_plug = intel_dp_hot_plug;
  3382. if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
  3383. drm_encoder_cleanup(encoder);
  3384. kfree(intel_dig_port);
  3385. kfree(intel_connector);
  3386. }
  3387. }