spi-rspi.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346
  1. /*
  2. * SH RSPI driver
  3. *
  4. * Copyright (C) 2012, 2013 Renesas Solutions Corp.
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * Based on spi-sh.c:
  8. * Copyright (C) 2011 Renesas Solutions Corp.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  22. *
  23. */
  24. #include <linux/module.h>
  25. #include <linux/kernel.h>
  26. #include <linux/sched.h>
  27. #include <linux/errno.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/io.h>
  31. #include <linux/clk.h>
  32. #include <linux/dmaengine.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/of_device.h>
  35. #include <linux/sh_dma.h>
  36. #include <linux/spi/spi.h>
  37. #include <linux/spi/rspi.h>
  38. #define RSPI_SPCR 0x00 /* Control Register */
  39. #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
  40. #define RSPI_SPPCR 0x02 /* Pin Control Register */
  41. #define RSPI_SPSR 0x03 /* Status Register */
  42. #define RSPI_SPDR 0x04 /* Data Register */
  43. #define RSPI_SPSCR 0x08 /* Sequence Control Register */
  44. #define RSPI_SPSSR 0x09 /* Sequence Status Register */
  45. #define RSPI_SPBR 0x0a /* Bit Rate Register */
  46. #define RSPI_SPDCR 0x0b /* Data Control Register */
  47. #define RSPI_SPCKD 0x0c /* Clock Delay Register */
  48. #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
  49. #define RSPI_SPND 0x0e /* Next-Access Delay Register */
  50. #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
  51. #define RSPI_SPCMD0 0x10 /* Command Register 0 */
  52. #define RSPI_SPCMD1 0x12 /* Command Register 1 */
  53. #define RSPI_SPCMD2 0x14 /* Command Register 2 */
  54. #define RSPI_SPCMD3 0x16 /* Command Register 3 */
  55. #define RSPI_SPCMD4 0x18 /* Command Register 4 */
  56. #define RSPI_SPCMD5 0x1a /* Command Register 5 */
  57. #define RSPI_SPCMD6 0x1c /* Command Register 6 */
  58. #define RSPI_SPCMD7 0x1e /* Command Register 7 */
  59. #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
  60. #define RSPI_NUM_SPCMD 8
  61. #define RSPI_RZ_NUM_SPCMD 4
  62. #define QSPI_NUM_SPCMD 4
  63. /* RSPI on RZ only */
  64. #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
  65. #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
  66. /* QSPI only */
  67. #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
  68. #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
  69. #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
  70. #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
  71. #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
  72. #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
  73. #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
  74. /* SPCR - Control Register */
  75. #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
  76. #define SPCR_SPE 0x40 /* Function Enable */
  77. #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
  78. #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
  79. #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
  80. #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
  81. /* RSPI on SH only */
  82. #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
  83. #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
  84. /* QSPI on R-Car M2 only */
  85. #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
  86. #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
  87. /* SSLP - Slave Select Polarity Register */
  88. #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
  89. #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
  90. /* SPPCR - Pin Control Register */
  91. #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
  92. #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
  93. #define SPPCR_SPOM 0x04
  94. #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
  95. #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
  96. #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  97. #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  98. /* SPSR - Status Register */
  99. #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
  100. #define SPSR_TEND 0x40 /* Transmit End */
  101. #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
  102. #define SPSR_PERF 0x08 /* Parity Error Flag */
  103. #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
  104. #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
  105. #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
  106. /* SPSCR - Sequence Control Register */
  107. #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
  108. /* SPSSR - Sequence Status Register */
  109. #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
  110. #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
  111. /* SPDCR - Data Control Register */
  112. #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
  113. #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
  114. #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
  115. #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
  116. #define SPDCR_SPLWORD SPDCR_SPLW1
  117. #define SPDCR_SPLBYTE SPDCR_SPLW0
  118. #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
  119. #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
  120. #define SPDCR_SLSEL1 0x08
  121. #define SPDCR_SLSEL0 0x04
  122. #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
  123. #define SPDCR_SPFC1 0x02
  124. #define SPDCR_SPFC0 0x01
  125. #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
  126. /* SPCKD - Clock Delay Register */
  127. #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
  128. /* SSLND - Slave Select Negation Delay Register */
  129. #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
  130. /* SPND - Next-Access Delay Register */
  131. #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
  132. /* SPCR2 - Control Register 2 */
  133. #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
  134. #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
  135. #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
  136. #define SPCR2_SPPE 0x01 /* Parity Enable */
  137. /* SPCMDn - Command Registers */
  138. #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
  139. #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
  140. #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
  141. #define SPCMD_LSBF 0x1000 /* LSB First */
  142. #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
  143. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  144. #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
  145. #define SPCMD_SPB_16BIT 0x0100
  146. #define SPCMD_SPB_20BIT 0x0000
  147. #define SPCMD_SPB_24BIT 0x0100
  148. #define SPCMD_SPB_32BIT 0x0200
  149. #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
  150. #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
  151. #define SPCMD_SPIMOD1 0x0040
  152. #define SPCMD_SPIMOD0 0x0020
  153. #define SPCMD_SPIMOD_SINGLE 0
  154. #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
  155. #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
  156. #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
  157. #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
  158. #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
  159. #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
  160. #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
  161. /* SPBFCR - Buffer Control Register */
  162. #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
  163. #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
  164. #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
  165. #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
  166. #define DUMMY_DATA 0x00
  167. struct rspi_data {
  168. void __iomem *addr;
  169. u32 max_speed_hz;
  170. struct spi_master *master;
  171. wait_queue_head_t wait;
  172. struct clk *clk;
  173. u16 spcmd;
  174. u8 spsr;
  175. u8 sppcr;
  176. int rx_irq, tx_irq;
  177. const struct spi_ops *ops;
  178. /* for dmaengine */
  179. struct dma_chan *chan_tx;
  180. struct dma_chan *chan_rx;
  181. unsigned dma_width_16bit:1;
  182. unsigned dma_callbacked:1;
  183. unsigned byte_access:1;
  184. };
  185. static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
  186. {
  187. iowrite8(data, rspi->addr + offset);
  188. }
  189. static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
  190. {
  191. iowrite16(data, rspi->addr + offset);
  192. }
  193. static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
  194. {
  195. iowrite32(data, rspi->addr + offset);
  196. }
  197. static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
  198. {
  199. return ioread8(rspi->addr + offset);
  200. }
  201. static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
  202. {
  203. return ioread16(rspi->addr + offset);
  204. }
  205. static void rspi_write_data(const struct rspi_data *rspi, u16 data)
  206. {
  207. if (rspi->byte_access)
  208. rspi_write8(rspi, data, RSPI_SPDR);
  209. else /* 16 bit */
  210. rspi_write16(rspi, data, RSPI_SPDR);
  211. }
  212. static u16 rspi_read_data(const struct rspi_data *rspi)
  213. {
  214. if (rspi->byte_access)
  215. return rspi_read8(rspi, RSPI_SPDR);
  216. else /* 16 bit */
  217. return rspi_read16(rspi, RSPI_SPDR);
  218. }
  219. /* optional functions */
  220. struct spi_ops {
  221. int (*set_config_register)(struct rspi_data *rspi, int access_size);
  222. int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
  223. struct spi_transfer *xfer);
  224. u16 mode_bits;
  225. };
  226. /*
  227. * functions for RSPI on legacy SH
  228. */
  229. static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
  230. {
  231. int spbr;
  232. /* Sets output mode, MOSI signal, and (optionally) loopback */
  233. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  234. /* Sets transfer bit rate */
  235. spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
  236. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  237. /* Disable dummy transmission, set 16-bit word access, 1 frame */
  238. rspi_write8(rspi, 0, RSPI_SPDCR);
  239. rspi->byte_access = 0;
  240. /* Sets RSPCK, SSL, next-access delay value */
  241. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  242. rspi_write8(rspi, 0x00, RSPI_SSLND);
  243. rspi_write8(rspi, 0x00, RSPI_SPND);
  244. /* Sets parity, interrupt mask */
  245. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  246. /* Sets SPCMD */
  247. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  248. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  249. /* Sets RSPI mode */
  250. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  251. return 0;
  252. }
  253. /*
  254. * functions for RSPI on RZ
  255. */
  256. static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
  257. {
  258. int spbr;
  259. /* Sets output mode, MOSI signal, and (optionally) loopback */
  260. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  261. /* Sets transfer bit rate */
  262. spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
  263. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  264. /* Disable dummy transmission, set byte access */
  265. rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
  266. rspi->byte_access = 1;
  267. /* Sets RSPCK, SSL, next-access delay value */
  268. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  269. rspi_write8(rspi, 0x00, RSPI_SSLND);
  270. rspi_write8(rspi, 0x00, RSPI_SPND);
  271. /* Sets SPCMD */
  272. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  273. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  274. /* Sets RSPI mode */
  275. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  276. return 0;
  277. }
  278. /*
  279. * functions for QSPI
  280. */
  281. static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
  282. {
  283. int spbr;
  284. /* Sets output mode, MOSI signal, and (optionally) loopback */
  285. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  286. /* Sets transfer bit rate */
  287. spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
  288. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  289. /* Disable dummy transmission, set byte access */
  290. rspi_write8(rspi, 0, RSPI_SPDCR);
  291. rspi->byte_access = 1;
  292. /* Sets RSPCK, SSL, next-access delay value */
  293. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  294. rspi_write8(rspi, 0x00, RSPI_SSLND);
  295. rspi_write8(rspi, 0x00, RSPI_SPND);
  296. /* Data Length Setting */
  297. if (access_size == 8)
  298. rspi->spcmd |= SPCMD_SPB_8BIT;
  299. else if (access_size == 16)
  300. rspi->spcmd |= SPCMD_SPB_16BIT;
  301. else
  302. rspi->spcmd |= SPCMD_SPB_32BIT;
  303. rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
  304. /* Resets transfer data length */
  305. rspi_write32(rspi, 0, QSPI_SPBMUL0);
  306. /* Resets transmit and receive buffer */
  307. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  308. /* Sets buffer to allow normal operation */
  309. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  310. /* Sets SPCMD */
  311. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  312. /* Enables SPI function in master mode */
  313. rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
  314. return 0;
  315. }
  316. #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
  317. static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
  318. {
  319. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  320. }
  321. static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
  322. {
  323. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  324. }
  325. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  326. u8 enable_bit)
  327. {
  328. int ret;
  329. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  330. if (rspi->spsr & wait_mask)
  331. return 0;
  332. rspi_enable_irq(rspi, enable_bit);
  333. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  334. if (ret == 0 && !(rspi->spsr & wait_mask))
  335. return -ETIMEDOUT;
  336. return 0;
  337. }
  338. static int rspi_data_out(struct rspi_data *rspi, u8 data)
  339. {
  340. if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
  341. dev_err(&rspi->master->dev, "transmit timeout\n");
  342. return -ETIMEDOUT;
  343. }
  344. rspi_write_data(rspi, data);
  345. return 0;
  346. }
  347. static int rspi_data_in(struct rspi_data *rspi)
  348. {
  349. u8 data;
  350. if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
  351. dev_err(&rspi->master->dev, "receive timeout\n");
  352. return -ETIMEDOUT;
  353. }
  354. data = rspi_read_data(rspi);
  355. return data;
  356. }
  357. static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
  358. {
  359. int ret;
  360. ret = rspi_data_out(rspi, data);
  361. if (ret < 0)
  362. return ret;
  363. return rspi_data_in(rspi);
  364. }
  365. static void rspi_dma_complete(void *arg)
  366. {
  367. struct rspi_data *rspi = arg;
  368. rspi->dma_callbacked = 1;
  369. wake_up_interruptible(&rspi->wait);
  370. }
  371. static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
  372. unsigned len, struct dma_chan *chan,
  373. enum dma_transfer_direction dir)
  374. {
  375. sg_init_table(sg, 1);
  376. sg_set_buf(sg, buf, len);
  377. sg_dma_len(sg) = len;
  378. return dma_map_sg(chan->device->dev, sg, 1, dir);
  379. }
  380. static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
  381. enum dma_transfer_direction dir)
  382. {
  383. dma_unmap_sg(chan->device->dev, sg, 1, dir);
  384. }
  385. static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
  386. {
  387. u16 *dst = buf;
  388. const u8 *src = data;
  389. while (len) {
  390. *dst++ = (u16)(*src++);
  391. len--;
  392. }
  393. }
  394. static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
  395. {
  396. u8 *dst = buf;
  397. const u16 *src = data;
  398. while (len) {
  399. *dst++ = (u8)*src++;
  400. len--;
  401. }
  402. }
  403. static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
  404. {
  405. struct scatterlist sg;
  406. const void *buf = NULL;
  407. struct dma_async_tx_descriptor *desc;
  408. unsigned int len;
  409. int ret = 0;
  410. if (rspi->dma_width_16bit) {
  411. void *tmp;
  412. /*
  413. * If DMAC bus width is 16-bit, the driver allocates a dummy
  414. * buffer. And, the driver converts original data into the
  415. * DMAC data as the following format:
  416. * original data: 1st byte, 2nd byte ...
  417. * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
  418. */
  419. len = t->len * 2;
  420. tmp = kmalloc(len, GFP_KERNEL);
  421. if (!tmp)
  422. return -ENOMEM;
  423. rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
  424. buf = tmp;
  425. } else {
  426. len = t->len;
  427. buf = t->tx_buf;
  428. }
  429. if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
  430. ret = -EFAULT;
  431. goto end_nomap;
  432. }
  433. desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
  434. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  435. if (!desc) {
  436. ret = -EIO;
  437. goto end;
  438. }
  439. /*
  440. * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
  441. * called. So, this driver disables the IRQ while DMA transfer.
  442. */
  443. disable_irq(rspi->tx_irq);
  444. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
  445. rspi_enable_irq(rspi, SPCR_SPTIE);
  446. rspi->dma_callbacked = 0;
  447. desc->callback = rspi_dma_complete;
  448. desc->callback_param = rspi;
  449. dmaengine_submit(desc);
  450. dma_async_issue_pending(rspi->chan_tx);
  451. ret = wait_event_interruptible_timeout(rspi->wait,
  452. rspi->dma_callbacked, HZ);
  453. if (ret > 0 && rspi->dma_callbacked)
  454. ret = 0;
  455. else if (!ret)
  456. ret = -ETIMEDOUT;
  457. rspi_disable_irq(rspi, SPCR_SPTIE);
  458. enable_irq(rspi->tx_irq);
  459. end:
  460. rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
  461. end_nomap:
  462. if (rspi->dma_width_16bit)
  463. kfree(buf);
  464. return ret;
  465. }
  466. static void rspi_receive_init(const struct rspi_data *rspi)
  467. {
  468. u8 spsr;
  469. spsr = rspi_read8(rspi, RSPI_SPSR);
  470. if (spsr & SPSR_SPRF)
  471. rspi_read_data(rspi); /* dummy read */
  472. if (spsr & SPSR_OVRF)
  473. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  474. RSPI_SPSR);
  475. }
  476. static void rspi_rz_receive_init(const struct rspi_data *rspi)
  477. {
  478. rspi_receive_init(rspi);
  479. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
  480. rspi_write8(rspi, 0, RSPI_SPBFCR);
  481. }
  482. static void qspi_receive_init(const struct rspi_data *rspi)
  483. {
  484. u8 spsr;
  485. spsr = rspi_read8(rspi, RSPI_SPSR);
  486. if (spsr & SPSR_SPRF)
  487. rspi_read_data(rspi); /* dummy read */
  488. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  489. rspi_write8(rspi, 0, QSPI_SPBFCR);
  490. }
  491. static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
  492. {
  493. struct scatterlist sg, sg_dummy;
  494. void *dummy = NULL, *rx_buf = NULL;
  495. struct dma_async_tx_descriptor *desc, *desc_dummy;
  496. unsigned int len;
  497. int ret = 0;
  498. if (rspi->dma_width_16bit) {
  499. /*
  500. * If DMAC bus width is 16-bit, the driver allocates a dummy
  501. * buffer. And, finally the driver converts the DMAC data into
  502. * actual data as the following format:
  503. * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
  504. * actual data: 1st byte, 2nd byte ...
  505. */
  506. len = t->len * 2;
  507. rx_buf = kmalloc(len, GFP_KERNEL);
  508. if (!rx_buf)
  509. return -ENOMEM;
  510. } else {
  511. len = t->len;
  512. rx_buf = t->rx_buf;
  513. }
  514. /* prepare dummy transfer to generate SPI clocks */
  515. dummy = kzalloc(len, GFP_KERNEL);
  516. if (!dummy) {
  517. ret = -ENOMEM;
  518. goto end_nomap;
  519. }
  520. if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
  521. DMA_TO_DEVICE)) {
  522. ret = -EFAULT;
  523. goto end_nomap;
  524. }
  525. desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
  526. DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  527. if (!desc_dummy) {
  528. ret = -EIO;
  529. goto end_dummy_mapped;
  530. }
  531. /* prepare receive transfer */
  532. if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
  533. DMA_FROM_DEVICE)) {
  534. ret = -EFAULT;
  535. goto end_dummy_mapped;
  536. }
  537. desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
  538. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  539. if (!desc) {
  540. ret = -EIO;
  541. goto end;
  542. }
  543. rspi_receive_init(rspi);
  544. /*
  545. * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
  546. * called. So, this driver disables the IRQ while DMA transfer.
  547. */
  548. disable_irq(rspi->tx_irq);
  549. if (rspi->rx_irq != rspi->tx_irq)
  550. disable_irq(rspi->rx_irq);
  551. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
  552. rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
  553. rspi->dma_callbacked = 0;
  554. desc->callback = rspi_dma_complete;
  555. desc->callback_param = rspi;
  556. dmaengine_submit(desc);
  557. dma_async_issue_pending(rspi->chan_rx);
  558. desc_dummy->callback = NULL; /* No callback */
  559. dmaengine_submit(desc_dummy);
  560. dma_async_issue_pending(rspi->chan_tx);
  561. ret = wait_event_interruptible_timeout(rspi->wait,
  562. rspi->dma_callbacked, HZ);
  563. if (ret > 0 && rspi->dma_callbacked)
  564. ret = 0;
  565. else if (!ret)
  566. ret = -ETIMEDOUT;
  567. rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
  568. enable_irq(rspi->tx_irq);
  569. if (rspi->rx_irq != rspi->tx_irq)
  570. enable_irq(rspi->rx_irq);
  571. end:
  572. rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
  573. end_dummy_mapped:
  574. rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
  575. end_nomap:
  576. if (rspi->dma_width_16bit) {
  577. if (!ret)
  578. rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
  579. kfree(rx_buf);
  580. }
  581. kfree(dummy);
  582. return ret;
  583. }
  584. static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
  585. {
  586. if (t->tx_buf && rspi->chan_tx)
  587. return 1;
  588. /* If the module receives data by DMAC, it also needs TX DMAC */
  589. if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
  590. return 1;
  591. return 0;
  592. }
  593. static int rspi_transfer_out_in(struct rspi_data *rspi,
  594. struct spi_transfer *xfer)
  595. {
  596. int remain = xfer->len, ret;
  597. const u8 *tx_buf = xfer->tx_buf;
  598. u8 *rx_buf = xfer->rx_buf;
  599. u8 spcr, data;
  600. rspi_receive_init(rspi);
  601. spcr = rspi_read8(rspi, RSPI_SPCR);
  602. if (rx_buf)
  603. spcr &= ~SPCR_TXMD;
  604. else
  605. spcr |= SPCR_TXMD;
  606. rspi_write8(rspi, spcr, RSPI_SPCR);
  607. while (remain > 0) {
  608. data = tx_buf ? *tx_buf++ : DUMMY_DATA;
  609. ret = rspi_data_out(rspi, data);
  610. if (ret < 0)
  611. return ret;
  612. if (rx_buf) {
  613. ret = rspi_data_in(rspi);
  614. if (ret < 0)
  615. return ret;
  616. *rx_buf++ = ret;
  617. }
  618. remain--;
  619. }
  620. /* Wait for the last transmission */
  621. rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  622. return 0;
  623. }
  624. static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  625. struct spi_transfer *xfer)
  626. {
  627. struct rspi_data *rspi = spi_master_get_devdata(master);
  628. int ret;
  629. if (!rspi_is_dma(rspi, xfer))
  630. return rspi_transfer_out_in(rspi, xfer);
  631. if (xfer->tx_buf) {
  632. ret = rspi_send_dma(rspi, xfer);
  633. if (ret < 0)
  634. return ret;
  635. }
  636. if (xfer->rx_buf)
  637. return rspi_receive_dma(rspi, xfer);
  638. return 0;
  639. }
  640. static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
  641. struct spi_transfer *xfer)
  642. {
  643. int remain = xfer->len, ret;
  644. const u8 *tx_buf = xfer->tx_buf;
  645. u8 *rx_buf = xfer->rx_buf;
  646. u8 data;
  647. rspi_rz_receive_init(rspi);
  648. while (remain > 0) {
  649. data = tx_buf ? *tx_buf++ : DUMMY_DATA;
  650. ret = rspi_data_out_in(rspi, data);
  651. if (ret < 0)
  652. return ret;
  653. if (rx_buf)
  654. *rx_buf++ = ret;
  655. remain--;
  656. }
  657. /* Wait for the last transmission */
  658. rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  659. return 0;
  660. }
  661. static int rspi_rz_transfer_one(struct spi_master *master,
  662. struct spi_device *spi,
  663. struct spi_transfer *xfer)
  664. {
  665. struct rspi_data *rspi = spi_master_get_devdata(master);
  666. return rspi_rz_transfer_out_in(rspi, xfer);
  667. }
  668. static int qspi_transfer_out_in(struct rspi_data *rspi,
  669. struct spi_transfer *xfer)
  670. {
  671. int remain = xfer->len, ret;
  672. const u8 *tx_buf = xfer->tx_buf;
  673. u8 *rx_buf = xfer->rx_buf;
  674. u8 data;
  675. qspi_receive_init(rspi);
  676. while (remain > 0) {
  677. data = tx_buf ? *tx_buf++ : DUMMY_DATA;
  678. ret = rspi_data_out_in(rspi, data);
  679. if (ret < 0)
  680. return ret;
  681. if (rx_buf)
  682. *rx_buf++ = ret;
  683. remain--;
  684. }
  685. /* Wait for the last transmission */
  686. rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  687. return 0;
  688. }
  689. static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
  690. {
  691. const u8 *buf = xfer->tx_buf;
  692. unsigned int i;
  693. int ret;
  694. for (i = 0; i < xfer->len; i++) {
  695. ret = rspi_data_out(rspi, *buf++);
  696. if (ret < 0)
  697. return ret;
  698. }
  699. /* Wait for the last transmission */
  700. rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  701. return 0;
  702. }
  703. static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
  704. {
  705. u8 *buf = xfer->rx_buf;
  706. unsigned int i;
  707. int ret;
  708. for (i = 0; i < xfer->len; i++) {
  709. ret = rspi_data_in(rspi);
  710. if (ret < 0)
  711. return ret;
  712. *buf++ = ret;
  713. }
  714. return 0;
  715. }
  716. static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  717. struct spi_transfer *xfer)
  718. {
  719. struct rspi_data *rspi = spi_master_get_devdata(master);
  720. if (spi->mode & SPI_LOOP) {
  721. return qspi_transfer_out_in(rspi, xfer);
  722. } else if (xfer->tx_buf && xfer->tx_nbits > SPI_NBITS_SINGLE) {
  723. /* Quad or Dual SPI Write */
  724. return qspi_transfer_out(rspi, xfer);
  725. } else if (xfer->rx_buf && xfer->rx_nbits > SPI_NBITS_SINGLE) {
  726. /* Quad or Dual SPI Read */
  727. return qspi_transfer_in(rspi, xfer);
  728. } else {
  729. /* Single SPI Transfer */
  730. return qspi_transfer_out_in(rspi, xfer);
  731. }
  732. }
  733. static int rspi_setup(struct spi_device *spi)
  734. {
  735. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  736. rspi->max_speed_hz = spi->max_speed_hz;
  737. rspi->spcmd = SPCMD_SSLKP;
  738. if (spi->mode & SPI_CPOL)
  739. rspi->spcmd |= SPCMD_CPOL;
  740. if (spi->mode & SPI_CPHA)
  741. rspi->spcmd |= SPCMD_CPHA;
  742. /* CMOS output mode and MOSI signal from previous transfer */
  743. rspi->sppcr = 0;
  744. if (spi->mode & SPI_LOOP)
  745. rspi->sppcr |= SPPCR_SPLP;
  746. set_config_register(rspi, 8);
  747. return 0;
  748. }
  749. static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
  750. {
  751. if (xfer->tx_buf)
  752. switch (xfer->tx_nbits) {
  753. case SPI_NBITS_QUAD:
  754. return SPCMD_SPIMOD_QUAD;
  755. case SPI_NBITS_DUAL:
  756. return SPCMD_SPIMOD_DUAL;
  757. default:
  758. return 0;
  759. }
  760. if (xfer->rx_buf)
  761. switch (xfer->rx_nbits) {
  762. case SPI_NBITS_QUAD:
  763. return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
  764. case SPI_NBITS_DUAL:
  765. return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
  766. default:
  767. return 0;
  768. }
  769. return 0;
  770. }
  771. static int qspi_setup_sequencer(struct rspi_data *rspi,
  772. const struct spi_message *msg)
  773. {
  774. const struct spi_transfer *xfer;
  775. unsigned int i = 0, len = 0;
  776. u16 current_mode = 0xffff, mode;
  777. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  778. mode = qspi_transfer_mode(xfer);
  779. if (mode == current_mode) {
  780. len += xfer->len;
  781. continue;
  782. }
  783. /* Transfer mode change */
  784. if (i) {
  785. /* Set transfer data length of previous transfer */
  786. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  787. }
  788. if (i >= QSPI_NUM_SPCMD) {
  789. dev_err(&msg->spi->dev,
  790. "Too many different transfer modes");
  791. return -EINVAL;
  792. }
  793. /* Program transfer mode for this transfer */
  794. rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
  795. current_mode = mode;
  796. len = xfer->len;
  797. i++;
  798. }
  799. if (i) {
  800. /* Set final transfer data length and sequence length */
  801. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  802. rspi_write8(rspi, i - 1, RSPI_SPSCR);
  803. }
  804. return 0;
  805. }
  806. static int rspi_prepare_message(struct spi_master *master,
  807. struct spi_message *msg)
  808. {
  809. struct rspi_data *rspi = spi_master_get_devdata(master);
  810. int ret;
  811. if (msg->spi->mode &
  812. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
  813. /* Setup sequencer for messages with multiple transfer modes */
  814. ret = qspi_setup_sequencer(rspi, msg);
  815. if (ret < 0)
  816. return ret;
  817. }
  818. /* Enable SPI function in master mode */
  819. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  820. return 0;
  821. }
  822. static int rspi_unprepare_message(struct spi_master *master,
  823. struct spi_message *msg)
  824. {
  825. struct rspi_data *rspi = spi_master_get_devdata(master);
  826. /* Disable SPI function */
  827. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  828. /* Reset sequencer for Single SPI Transfers */
  829. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  830. rspi_write8(rspi, 0, RSPI_SPSCR);
  831. return 0;
  832. }
  833. static irqreturn_t rspi_irq_mux(int irq, void *_sr)
  834. {
  835. struct rspi_data *rspi = _sr;
  836. u8 spsr;
  837. irqreturn_t ret = IRQ_NONE;
  838. u8 disable_irq = 0;
  839. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  840. if (spsr & SPSR_SPRF)
  841. disable_irq |= SPCR_SPRIE;
  842. if (spsr & SPSR_SPTEF)
  843. disable_irq |= SPCR_SPTIE;
  844. if (disable_irq) {
  845. ret = IRQ_HANDLED;
  846. rspi_disable_irq(rspi, disable_irq);
  847. wake_up(&rspi->wait);
  848. }
  849. return ret;
  850. }
  851. static irqreturn_t rspi_irq_rx(int irq, void *_sr)
  852. {
  853. struct rspi_data *rspi = _sr;
  854. u8 spsr;
  855. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  856. if (spsr & SPSR_SPRF) {
  857. rspi_disable_irq(rspi, SPCR_SPRIE);
  858. wake_up(&rspi->wait);
  859. return IRQ_HANDLED;
  860. }
  861. return 0;
  862. }
  863. static irqreturn_t rspi_irq_tx(int irq, void *_sr)
  864. {
  865. struct rspi_data *rspi = _sr;
  866. u8 spsr;
  867. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  868. if (spsr & SPSR_SPTEF) {
  869. rspi_disable_irq(rspi, SPCR_SPTIE);
  870. wake_up(&rspi->wait);
  871. return IRQ_HANDLED;
  872. }
  873. return 0;
  874. }
  875. static int rspi_request_dma(struct rspi_data *rspi,
  876. struct platform_device *pdev)
  877. {
  878. const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
  879. struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  880. dma_cap_mask_t mask;
  881. struct dma_slave_config cfg;
  882. int ret;
  883. if (!res || !rspi_pd)
  884. return 0; /* The driver assumes no error. */
  885. rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
  886. /* If the module receives data by DMAC, it also needs TX DMAC */
  887. if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
  888. dma_cap_zero(mask);
  889. dma_cap_set(DMA_SLAVE, mask);
  890. rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
  891. (void *)rspi_pd->dma_rx_id);
  892. if (rspi->chan_rx) {
  893. cfg.slave_id = rspi_pd->dma_rx_id;
  894. cfg.direction = DMA_DEV_TO_MEM;
  895. cfg.dst_addr = 0;
  896. cfg.src_addr = res->start + RSPI_SPDR;
  897. ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
  898. if (!ret)
  899. dev_info(&pdev->dev, "Use DMA when rx.\n");
  900. else
  901. return ret;
  902. }
  903. }
  904. if (rspi_pd->dma_tx_id) {
  905. dma_cap_zero(mask);
  906. dma_cap_set(DMA_SLAVE, mask);
  907. rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
  908. (void *)rspi_pd->dma_tx_id);
  909. if (rspi->chan_tx) {
  910. cfg.slave_id = rspi_pd->dma_tx_id;
  911. cfg.direction = DMA_MEM_TO_DEV;
  912. cfg.dst_addr = res->start + RSPI_SPDR;
  913. cfg.src_addr = 0;
  914. ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
  915. if (!ret)
  916. dev_info(&pdev->dev, "Use DMA when tx\n");
  917. else
  918. return ret;
  919. }
  920. }
  921. return 0;
  922. }
  923. static void rspi_release_dma(struct rspi_data *rspi)
  924. {
  925. if (rspi->chan_tx)
  926. dma_release_channel(rspi->chan_tx);
  927. if (rspi->chan_rx)
  928. dma_release_channel(rspi->chan_rx);
  929. }
  930. static int rspi_remove(struct platform_device *pdev)
  931. {
  932. struct rspi_data *rspi = platform_get_drvdata(pdev);
  933. rspi_release_dma(rspi);
  934. clk_disable_unprepare(rspi->clk);
  935. return 0;
  936. }
  937. static const struct spi_ops rspi_ops = {
  938. .set_config_register = rspi_set_config_register,
  939. .transfer_one = rspi_transfer_one,
  940. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  941. };
  942. static const struct spi_ops rspi_rz_ops = {
  943. .set_config_register = rspi_rz_set_config_register,
  944. .transfer_one = rspi_rz_transfer_one,
  945. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  946. };
  947. static const struct spi_ops qspi_ops = {
  948. .set_config_register = qspi_set_config_register,
  949. .transfer_one = qspi_transfer_one,
  950. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
  951. SPI_TX_DUAL | SPI_TX_QUAD |
  952. SPI_RX_DUAL | SPI_RX_QUAD,
  953. };
  954. #ifdef CONFIG_OF
  955. static const struct of_device_id rspi_of_match[] = {
  956. /* RSPI on legacy SH */
  957. { .compatible = "renesas,rspi", .data = &rspi_ops },
  958. /* RSPI on RZ/A1H */
  959. { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
  960. /* QSPI on R-Car Gen2 */
  961. { .compatible = "renesas,qspi", .data = &qspi_ops },
  962. { /* sentinel */ }
  963. };
  964. MODULE_DEVICE_TABLE(of, rspi_of_match);
  965. static int rspi_parse_dt(struct device *dev, struct spi_master *master)
  966. {
  967. u32 num_cs;
  968. int error;
  969. /* Parse DT properties */
  970. error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
  971. if (error) {
  972. dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
  973. return error;
  974. }
  975. master->num_chipselect = num_cs;
  976. return 0;
  977. }
  978. #else
  979. #define rspi_of_match NULL
  980. static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
  981. {
  982. return -EINVAL;
  983. }
  984. #endif /* CONFIG_OF */
  985. static int rspi_request_irq(struct device *dev, unsigned int irq,
  986. irq_handler_t handler, const char *suffix,
  987. void *dev_id)
  988. {
  989. const char *base = dev_name(dev);
  990. size_t len = strlen(base) + strlen(suffix) + 2;
  991. char *name = devm_kzalloc(dev, len, GFP_KERNEL);
  992. if (!name)
  993. return -ENOMEM;
  994. snprintf(name, len, "%s:%s", base, suffix);
  995. return devm_request_irq(dev, irq, handler, 0, name, dev_id);
  996. }
  997. static int rspi_probe(struct platform_device *pdev)
  998. {
  999. struct resource *res;
  1000. struct spi_master *master;
  1001. struct rspi_data *rspi;
  1002. int ret;
  1003. const struct of_device_id *of_id;
  1004. const struct rspi_plat_data *rspi_pd;
  1005. const struct spi_ops *ops;
  1006. master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  1007. if (master == NULL) {
  1008. dev_err(&pdev->dev, "spi_alloc_master error.\n");
  1009. return -ENOMEM;
  1010. }
  1011. of_id = of_match_device(rspi_of_match, &pdev->dev);
  1012. if (of_id) {
  1013. ops = of_id->data;
  1014. ret = rspi_parse_dt(&pdev->dev, master);
  1015. if (ret)
  1016. goto error1;
  1017. } else {
  1018. ops = (struct spi_ops *)pdev->id_entry->driver_data;
  1019. rspi_pd = dev_get_platdata(&pdev->dev);
  1020. if (rspi_pd && rspi_pd->num_chipselect)
  1021. master->num_chipselect = rspi_pd->num_chipselect;
  1022. else
  1023. master->num_chipselect = 2; /* default */
  1024. };
  1025. /* ops parameter check */
  1026. if (!ops->set_config_register) {
  1027. dev_err(&pdev->dev, "there is no set_config_register\n");
  1028. ret = -ENODEV;
  1029. goto error1;
  1030. }
  1031. rspi = spi_master_get_devdata(master);
  1032. platform_set_drvdata(pdev, rspi);
  1033. rspi->ops = ops;
  1034. rspi->master = master;
  1035. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1036. rspi->addr = devm_ioremap_resource(&pdev->dev, res);
  1037. if (IS_ERR(rspi->addr)) {
  1038. ret = PTR_ERR(rspi->addr);
  1039. goto error1;
  1040. }
  1041. rspi->clk = devm_clk_get(&pdev->dev, NULL);
  1042. if (IS_ERR(rspi->clk)) {
  1043. dev_err(&pdev->dev, "cannot get clock\n");
  1044. ret = PTR_ERR(rspi->clk);
  1045. goto error1;
  1046. }
  1047. ret = clk_prepare_enable(rspi->clk);
  1048. if (ret < 0) {
  1049. dev_err(&pdev->dev, "unable to prepare/enable clock\n");
  1050. goto error1;
  1051. }
  1052. init_waitqueue_head(&rspi->wait);
  1053. master->bus_num = pdev->id;
  1054. master->setup = rspi_setup;
  1055. master->transfer_one = ops->transfer_one;
  1056. master->prepare_message = rspi_prepare_message;
  1057. master->unprepare_message = rspi_unprepare_message;
  1058. master->mode_bits = ops->mode_bits;
  1059. master->dev.of_node = pdev->dev.of_node;
  1060. ret = platform_get_irq_byname(pdev, "rx");
  1061. if (ret < 0) {
  1062. ret = platform_get_irq_byname(pdev, "mux");
  1063. if (ret < 0)
  1064. ret = platform_get_irq(pdev, 0);
  1065. if (ret >= 0)
  1066. rspi->rx_irq = rspi->tx_irq = ret;
  1067. } else {
  1068. rspi->rx_irq = ret;
  1069. ret = platform_get_irq_byname(pdev, "tx");
  1070. if (ret >= 0)
  1071. rspi->tx_irq = ret;
  1072. }
  1073. if (ret < 0) {
  1074. dev_err(&pdev->dev, "platform_get_irq error\n");
  1075. goto error2;
  1076. }
  1077. if (rspi->rx_irq == rspi->tx_irq) {
  1078. /* Single multiplexed interrupt */
  1079. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
  1080. "mux", rspi);
  1081. } else {
  1082. /* Multi-interrupt mode, only SPRI and SPTI are used */
  1083. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
  1084. "rx", rspi);
  1085. if (!ret)
  1086. ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
  1087. rspi_irq_tx, "tx", rspi);
  1088. }
  1089. if (ret < 0) {
  1090. dev_err(&pdev->dev, "request_irq error\n");
  1091. goto error2;
  1092. }
  1093. ret = rspi_request_dma(rspi, pdev);
  1094. if (ret < 0) {
  1095. dev_err(&pdev->dev, "rspi_request_dma failed.\n");
  1096. goto error3;
  1097. }
  1098. ret = devm_spi_register_master(&pdev->dev, master);
  1099. if (ret < 0) {
  1100. dev_err(&pdev->dev, "spi_register_master error.\n");
  1101. goto error3;
  1102. }
  1103. dev_info(&pdev->dev, "probed\n");
  1104. return 0;
  1105. error3:
  1106. rspi_release_dma(rspi);
  1107. error2:
  1108. clk_disable_unprepare(rspi->clk);
  1109. error1:
  1110. spi_master_put(master);
  1111. return ret;
  1112. }
  1113. static struct platform_device_id spi_driver_ids[] = {
  1114. { "rspi", (kernel_ulong_t)&rspi_ops },
  1115. { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
  1116. { "qspi", (kernel_ulong_t)&qspi_ops },
  1117. {},
  1118. };
  1119. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  1120. static struct platform_driver rspi_driver = {
  1121. .probe = rspi_probe,
  1122. .remove = rspi_remove,
  1123. .id_table = spi_driver_ids,
  1124. .driver = {
  1125. .name = "renesas_spi",
  1126. .owner = THIS_MODULE,
  1127. .of_match_table = of_match_ptr(rspi_of_match),
  1128. },
  1129. };
  1130. module_platform_driver(rspi_driver);
  1131. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  1132. MODULE_LICENSE("GPL v2");
  1133. MODULE_AUTHOR("Yoshihiro Shimoda");
  1134. MODULE_ALIAS("platform:rspi");