segment.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318
  1. /*
  2. * fs/f2fs/segment.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/bio.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/prefetch.h>
  16. #include <linux/kthread.h>
  17. #include <linux/swap.h>
  18. #include <linux/timer.h>
  19. #include "f2fs.h"
  20. #include "segment.h"
  21. #include "node.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. #define __reverse_ffz(x) __reverse_ffs(~(x))
  25. static struct kmem_cache *discard_entry_slab;
  26. static struct kmem_cache *discard_cmd_slab;
  27. static struct kmem_cache *sit_entry_set_slab;
  28. static struct kmem_cache *inmem_entry_slab;
  29. static unsigned long __reverse_ulong(unsigned char *str)
  30. {
  31. unsigned long tmp = 0;
  32. int shift = 24, idx = 0;
  33. #if BITS_PER_LONG == 64
  34. shift = 56;
  35. #endif
  36. while (shift >= 0) {
  37. tmp |= (unsigned long)str[idx++] << shift;
  38. shift -= BITS_PER_BYTE;
  39. }
  40. return tmp;
  41. }
  42. /*
  43. * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  44. * MSB and LSB are reversed in a byte by f2fs_set_bit.
  45. */
  46. static inline unsigned long __reverse_ffs(unsigned long word)
  47. {
  48. int num = 0;
  49. #if BITS_PER_LONG == 64
  50. if ((word & 0xffffffff00000000UL) == 0)
  51. num += 32;
  52. else
  53. word >>= 32;
  54. #endif
  55. if ((word & 0xffff0000) == 0)
  56. num += 16;
  57. else
  58. word >>= 16;
  59. if ((word & 0xff00) == 0)
  60. num += 8;
  61. else
  62. word >>= 8;
  63. if ((word & 0xf0) == 0)
  64. num += 4;
  65. else
  66. word >>= 4;
  67. if ((word & 0xc) == 0)
  68. num += 2;
  69. else
  70. word >>= 2;
  71. if ((word & 0x2) == 0)
  72. num += 1;
  73. return num;
  74. }
  75. /*
  76. * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  77. * f2fs_set_bit makes MSB and LSB reversed in a byte.
  78. * @size must be integral times of unsigned long.
  79. * Example:
  80. * MSB <--> LSB
  81. * f2fs_set_bit(0, bitmap) => 1000 0000
  82. * f2fs_set_bit(7, bitmap) => 0000 0001
  83. */
  84. static unsigned long __find_rev_next_bit(const unsigned long *addr,
  85. unsigned long size, unsigned long offset)
  86. {
  87. const unsigned long *p = addr + BIT_WORD(offset);
  88. unsigned long result = size;
  89. unsigned long tmp;
  90. if (offset >= size)
  91. return size;
  92. size -= (offset & ~(BITS_PER_LONG - 1));
  93. offset %= BITS_PER_LONG;
  94. while (1) {
  95. if (*p == 0)
  96. goto pass;
  97. tmp = __reverse_ulong((unsigned char *)p);
  98. tmp &= ~0UL >> offset;
  99. if (size < BITS_PER_LONG)
  100. tmp &= (~0UL << (BITS_PER_LONG - size));
  101. if (tmp)
  102. goto found;
  103. pass:
  104. if (size <= BITS_PER_LONG)
  105. break;
  106. size -= BITS_PER_LONG;
  107. offset = 0;
  108. p++;
  109. }
  110. return result;
  111. found:
  112. return result - size + __reverse_ffs(tmp);
  113. }
  114. static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
  115. unsigned long size, unsigned long offset)
  116. {
  117. const unsigned long *p = addr + BIT_WORD(offset);
  118. unsigned long result = size;
  119. unsigned long tmp;
  120. if (offset >= size)
  121. return size;
  122. size -= (offset & ~(BITS_PER_LONG - 1));
  123. offset %= BITS_PER_LONG;
  124. while (1) {
  125. if (*p == ~0UL)
  126. goto pass;
  127. tmp = __reverse_ulong((unsigned char *)p);
  128. if (offset)
  129. tmp |= ~0UL << (BITS_PER_LONG - offset);
  130. if (size < BITS_PER_LONG)
  131. tmp |= ~0UL >> size;
  132. if (tmp != ~0UL)
  133. goto found;
  134. pass:
  135. if (size <= BITS_PER_LONG)
  136. break;
  137. size -= BITS_PER_LONG;
  138. offset = 0;
  139. p++;
  140. }
  141. return result;
  142. found:
  143. return result - size + __reverse_ffz(tmp);
  144. }
  145. void register_inmem_page(struct inode *inode, struct page *page)
  146. {
  147. struct f2fs_inode_info *fi = F2FS_I(inode);
  148. struct inmem_pages *new;
  149. f2fs_trace_pid(page);
  150. set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
  151. SetPagePrivate(page);
  152. new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
  153. /* add atomic page indices to the list */
  154. new->page = page;
  155. INIT_LIST_HEAD(&new->list);
  156. /* increase reference count with clean state */
  157. mutex_lock(&fi->inmem_lock);
  158. get_page(page);
  159. list_add_tail(&new->list, &fi->inmem_pages);
  160. inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  161. mutex_unlock(&fi->inmem_lock);
  162. trace_f2fs_register_inmem_page(page, INMEM);
  163. }
  164. static int __revoke_inmem_pages(struct inode *inode,
  165. struct list_head *head, bool drop, bool recover)
  166. {
  167. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  168. struct inmem_pages *cur, *tmp;
  169. int err = 0;
  170. list_for_each_entry_safe(cur, tmp, head, list) {
  171. struct page *page = cur->page;
  172. if (drop)
  173. trace_f2fs_commit_inmem_page(page, INMEM_DROP);
  174. lock_page(page);
  175. if (recover) {
  176. struct dnode_of_data dn;
  177. struct node_info ni;
  178. trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
  179. set_new_dnode(&dn, inode, NULL, NULL, 0);
  180. if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
  181. err = -EAGAIN;
  182. goto next;
  183. }
  184. get_node_info(sbi, dn.nid, &ni);
  185. f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
  186. cur->old_addr, ni.version, true, true);
  187. f2fs_put_dnode(&dn);
  188. }
  189. next:
  190. /* we don't need to invalidate this in the sccessful status */
  191. if (drop || recover)
  192. ClearPageUptodate(page);
  193. set_page_private(page, 0);
  194. ClearPagePrivate(page);
  195. f2fs_put_page(page, 1);
  196. list_del(&cur->list);
  197. kmem_cache_free(inmem_entry_slab, cur);
  198. dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
  199. }
  200. return err;
  201. }
  202. void drop_inmem_pages(struct inode *inode)
  203. {
  204. struct f2fs_inode_info *fi = F2FS_I(inode);
  205. mutex_lock(&fi->inmem_lock);
  206. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  207. mutex_unlock(&fi->inmem_lock);
  208. clear_inode_flag(inode, FI_ATOMIC_FILE);
  209. stat_dec_atomic_write(inode);
  210. }
  211. void drop_inmem_page(struct inode *inode, struct page *page)
  212. {
  213. struct f2fs_inode_info *fi = F2FS_I(inode);
  214. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  215. struct list_head *head = &fi->inmem_pages;
  216. struct inmem_pages *cur = NULL;
  217. f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
  218. mutex_lock(&fi->inmem_lock);
  219. list_for_each_entry(cur, head, list) {
  220. if (cur->page == page)
  221. break;
  222. }
  223. f2fs_bug_on(sbi, !cur || cur->page != page);
  224. list_del(&cur->list);
  225. mutex_unlock(&fi->inmem_lock);
  226. dec_page_count(sbi, F2FS_INMEM_PAGES);
  227. kmem_cache_free(inmem_entry_slab, cur);
  228. ClearPageUptodate(page);
  229. set_page_private(page, 0);
  230. ClearPagePrivate(page);
  231. f2fs_put_page(page, 0);
  232. trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
  233. }
  234. static int __commit_inmem_pages(struct inode *inode,
  235. struct list_head *revoke_list)
  236. {
  237. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  238. struct f2fs_inode_info *fi = F2FS_I(inode);
  239. struct inmem_pages *cur, *tmp;
  240. struct f2fs_io_info fio = {
  241. .sbi = sbi,
  242. .type = DATA,
  243. .op = REQ_OP_WRITE,
  244. .op_flags = REQ_SYNC | REQ_PRIO,
  245. .encrypted_page = NULL,
  246. };
  247. pgoff_t last_idx = ULONG_MAX;
  248. int err = 0;
  249. list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
  250. struct page *page = cur->page;
  251. lock_page(page);
  252. if (page->mapping == inode->i_mapping) {
  253. trace_f2fs_commit_inmem_page(page, INMEM);
  254. set_page_dirty(page);
  255. f2fs_wait_on_page_writeback(page, DATA, true);
  256. if (clear_page_dirty_for_io(page)) {
  257. inode_dec_dirty_pages(inode);
  258. remove_dirty_inode(inode);
  259. }
  260. fio.page = page;
  261. err = do_write_data_page(&fio);
  262. if (err) {
  263. unlock_page(page);
  264. break;
  265. }
  266. /* record old blkaddr for revoking */
  267. cur->old_addr = fio.old_blkaddr;
  268. last_idx = page->index;
  269. }
  270. unlock_page(page);
  271. list_move_tail(&cur->list, revoke_list);
  272. }
  273. if (last_idx != ULONG_MAX)
  274. f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
  275. DATA, WRITE);
  276. if (!err)
  277. __revoke_inmem_pages(inode, revoke_list, false, false);
  278. return err;
  279. }
  280. int commit_inmem_pages(struct inode *inode)
  281. {
  282. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  283. struct f2fs_inode_info *fi = F2FS_I(inode);
  284. struct list_head revoke_list;
  285. int err;
  286. INIT_LIST_HEAD(&revoke_list);
  287. f2fs_balance_fs(sbi, true);
  288. f2fs_lock_op(sbi);
  289. set_inode_flag(inode, FI_ATOMIC_COMMIT);
  290. mutex_lock(&fi->inmem_lock);
  291. err = __commit_inmem_pages(inode, &revoke_list);
  292. if (err) {
  293. int ret;
  294. /*
  295. * try to revoke all committed pages, but still we could fail
  296. * due to no memory or other reason, if that happened, EAGAIN
  297. * will be returned, which means in such case, transaction is
  298. * already not integrity, caller should use journal to do the
  299. * recovery or rewrite & commit last transaction. For other
  300. * error number, revoking was done by filesystem itself.
  301. */
  302. ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
  303. if (ret)
  304. err = ret;
  305. /* drop all uncommitted pages */
  306. __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
  307. }
  308. mutex_unlock(&fi->inmem_lock);
  309. clear_inode_flag(inode, FI_ATOMIC_COMMIT);
  310. f2fs_unlock_op(sbi);
  311. return err;
  312. }
  313. /*
  314. * This function balances dirty node and dentry pages.
  315. * In addition, it controls garbage collection.
  316. */
  317. void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
  318. {
  319. #ifdef CONFIG_F2FS_FAULT_INJECTION
  320. if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
  321. f2fs_show_injection_info(FAULT_CHECKPOINT);
  322. f2fs_stop_checkpoint(sbi, false);
  323. }
  324. #endif
  325. if (!need)
  326. return;
  327. /* balance_fs_bg is able to be pending */
  328. if (excess_cached_nats(sbi))
  329. f2fs_balance_fs_bg(sbi);
  330. /*
  331. * We should do GC or end up with checkpoint, if there are so many dirty
  332. * dir/node pages without enough free segments.
  333. */
  334. if (has_not_enough_free_secs(sbi, 0, 0)) {
  335. mutex_lock(&sbi->gc_mutex);
  336. f2fs_gc(sbi, false, false);
  337. }
  338. }
  339. void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
  340. {
  341. /* try to shrink extent cache when there is no enough memory */
  342. if (!available_free_memory(sbi, EXTENT_CACHE))
  343. f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
  344. /* check the # of cached NAT entries */
  345. if (!available_free_memory(sbi, NAT_ENTRIES))
  346. try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
  347. if (!available_free_memory(sbi, FREE_NIDS))
  348. try_to_free_nids(sbi, MAX_FREE_NIDS);
  349. else
  350. build_free_nids(sbi, false, false);
  351. if (!is_idle(sbi))
  352. return;
  353. /* checkpoint is the only way to shrink partial cached entries */
  354. if (!available_free_memory(sbi, NAT_ENTRIES) ||
  355. !available_free_memory(sbi, INO_ENTRIES) ||
  356. excess_prefree_segs(sbi) ||
  357. excess_dirty_nats(sbi) ||
  358. f2fs_time_over(sbi, CP_TIME)) {
  359. if (test_opt(sbi, DATA_FLUSH)) {
  360. struct blk_plug plug;
  361. blk_start_plug(&plug);
  362. sync_dirty_inodes(sbi, FILE_INODE);
  363. blk_finish_plug(&plug);
  364. }
  365. f2fs_sync_fs(sbi->sb, true);
  366. stat_inc_bg_cp_count(sbi->stat_info);
  367. }
  368. }
  369. static int __submit_flush_wait(struct f2fs_sb_info *sbi,
  370. struct block_device *bdev)
  371. {
  372. struct bio *bio = f2fs_bio_alloc(0);
  373. int ret;
  374. bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
  375. bio->bi_bdev = bdev;
  376. ret = submit_bio_wait(bio);
  377. bio_put(bio);
  378. trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
  379. test_opt(sbi, FLUSH_MERGE), ret);
  380. return ret;
  381. }
  382. static int submit_flush_wait(struct f2fs_sb_info *sbi)
  383. {
  384. int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
  385. int i;
  386. if (!sbi->s_ndevs || ret)
  387. return ret;
  388. for (i = 1; i < sbi->s_ndevs; i++) {
  389. ret = __submit_flush_wait(sbi, FDEV(i).bdev);
  390. if (ret)
  391. break;
  392. }
  393. return ret;
  394. }
  395. static int issue_flush_thread(void *data)
  396. {
  397. struct f2fs_sb_info *sbi = data;
  398. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  399. wait_queue_head_t *q = &fcc->flush_wait_queue;
  400. repeat:
  401. if (kthread_should_stop())
  402. return 0;
  403. if (!llist_empty(&fcc->issue_list)) {
  404. struct flush_cmd *cmd, *next;
  405. int ret;
  406. fcc->dispatch_list = llist_del_all(&fcc->issue_list);
  407. fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
  408. ret = submit_flush_wait(sbi);
  409. atomic_inc(&fcc->issued_flush);
  410. llist_for_each_entry_safe(cmd, next,
  411. fcc->dispatch_list, llnode) {
  412. cmd->ret = ret;
  413. complete(&cmd->wait);
  414. }
  415. fcc->dispatch_list = NULL;
  416. }
  417. wait_event_interruptible(*q,
  418. kthread_should_stop() || !llist_empty(&fcc->issue_list));
  419. goto repeat;
  420. }
  421. int f2fs_issue_flush(struct f2fs_sb_info *sbi)
  422. {
  423. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  424. struct flush_cmd cmd;
  425. int ret;
  426. if (test_opt(sbi, NOBARRIER))
  427. return 0;
  428. if (!test_opt(sbi, FLUSH_MERGE)) {
  429. ret = submit_flush_wait(sbi);
  430. atomic_inc(&fcc->issued_flush);
  431. return ret;
  432. }
  433. if (!atomic_read(&fcc->issing_flush)) {
  434. atomic_inc(&fcc->issing_flush);
  435. ret = submit_flush_wait(sbi);
  436. atomic_dec(&fcc->issing_flush);
  437. atomic_inc(&fcc->issued_flush);
  438. return ret;
  439. }
  440. init_completion(&cmd.wait);
  441. atomic_inc(&fcc->issing_flush);
  442. llist_add(&cmd.llnode, &fcc->issue_list);
  443. if (!fcc->dispatch_list)
  444. wake_up(&fcc->flush_wait_queue);
  445. if (fcc->f2fs_issue_flush) {
  446. wait_for_completion(&cmd.wait);
  447. atomic_dec(&fcc->issing_flush);
  448. } else {
  449. llist_del_all(&fcc->issue_list);
  450. atomic_set(&fcc->issing_flush, 0);
  451. }
  452. return cmd.ret;
  453. }
  454. int create_flush_cmd_control(struct f2fs_sb_info *sbi)
  455. {
  456. dev_t dev = sbi->sb->s_bdev->bd_dev;
  457. struct flush_cmd_control *fcc;
  458. int err = 0;
  459. if (SM_I(sbi)->fcc_info) {
  460. fcc = SM_I(sbi)->fcc_info;
  461. goto init_thread;
  462. }
  463. fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
  464. if (!fcc)
  465. return -ENOMEM;
  466. atomic_set(&fcc->issued_flush, 0);
  467. atomic_set(&fcc->issing_flush, 0);
  468. init_waitqueue_head(&fcc->flush_wait_queue);
  469. init_llist_head(&fcc->issue_list);
  470. SM_I(sbi)->fcc_info = fcc;
  471. init_thread:
  472. fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
  473. "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
  474. if (IS_ERR(fcc->f2fs_issue_flush)) {
  475. err = PTR_ERR(fcc->f2fs_issue_flush);
  476. kfree(fcc);
  477. SM_I(sbi)->fcc_info = NULL;
  478. return err;
  479. }
  480. return err;
  481. }
  482. void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
  483. {
  484. struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
  485. if (fcc && fcc->f2fs_issue_flush) {
  486. struct task_struct *flush_thread = fcc->f2fs_issue_flush;
  487. fcc->f2fs_issue_flush = NULL;
  488. kthread_stop(flush_thread);
  489. }
  490. if (free) {
  491. kfree(fcc);
  492. SM_I(sbi)->fcc_info = NULL;
  493. }
  494. }
  495. static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  496. enum dirty_type dirty_type)
  497. {
  498. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  499. /* need not be added */
  500. if (IS_CURSEG(sbi, segno))
  501. return;
  502. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  503. dirty_i->nr_dirty[dirty_type]++;
  504. if (dirty_type == DIRTY) {
  505. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  506. enum dirty_type t = sentry->type;
  507. if (unlikely(t >= DIRTY)) {
  508. f2fs_bug_on(sbi, 1);
  509. return;
  510. }
  511. if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
  512. dirty_i->nr_dirty[t]++;
  513. }
  514. }
  515. static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
  516. enum dirty_type dirty_type)
  517. {
  518. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  519. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
  520. dirty_i->nr_dirty[dirty_type]--;
  521. if (dirty_type == DIRTY) {
  522. struct seg_entry *sentry = get_seg_entry(sbi, segno);
  523. enum dirty_type t = sentry->type;
  524. if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
  525. dirty_i->nr_dirty[t]--;
  526. if (get_valid_blocks(sbi, segno, true) == 0)
  527. clear_bit(GET_SEC_FROM_SEG(sbi, segno),
  528. dirty_i->victim_secmap);
  529. }
  530. }
  531. /*
  532. * Should not occur error such as -ENOMEM.
  533. * Adding dirty entry into seglist is not critical operation.
  534. * If a given segment is one of current working segments, it won't be added.
  535. */
  536. static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
  537. {
  538. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  539. unsigned short valid_blocks;
  540. if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
  541. return;
  542. mutex_lock(&dirty_i->seglist_lock);
  543. valid_blocks = get_valid_blocks(sbi, segno, false);
  544. if (valid_blocks == 0) {
  545. __locate_dirty_segment(sbi, segno, PRE);
  546. __remove_dirty_segment(sbi, segno, DIRTY);
  547. } else if (valid_blocks < sbi->blocks_per_seg) {
  548. __locate_dirty_segment(sbi, segno, DIRTY);
  549. } else {
  550. /* Recovery routine with SSR needs this */
  551. __remove_dirty_segment(sbi, segno, DIRTY);
  552. }
  553. mutex_unlock(&dirty_i->seglist_lock);
  554. }
  555. static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
  556. struct block_device *bdev, block_t lstart,
  557. block_t start, block_t len)
  558. {
  559. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  560. struct list_head *pend_list;
  561. struct discard_cmd *dc;
  562. f2fs_bug_on(sbi, !len);
  563. pend_list = &dcc->pend_list[plist_idx(len)];
  564. dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
  565. INIT_LIST_HEAD(&dc->list);
  566. dc->bdev = bdev;
  567. dc->lstart = lstart;
  568. dc->start = start;
  569. dc->len = len;
  570. dc->state = D_PREP;
  571. dc->error = 0;
  572. init_completion(&dc->wait);
  573. list_add_tail(&dc->list, pend_list);
  574. atomic_inc(&dcc->discard_cmd_cnt);
  575. return dc;
  576. }
  577. static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
  578. struct block_device *bdev, block_t lstart,
  579. block_t start, block_t len,
  580. struct rb_node *parent, struct rb_node **p)
  581. {
  582. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  583. struct discard_cmd *dc;
  584. dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
  585. rb_link_node(&dc->rb_node, parent, p);
  586. rb_insert_color(&dc->rb_node, &dcc->root);
  587. return dc;
  588. }
  589. static void __detach_discard_cmd(struct discard_cmd_control *dcc,
  590. struct discard_cmd *dc)
  591. {
  592. if (dc->state == D_DONE)
  593. atomic_dec(&dcc->issing_discard);
  594. list_del(&dc->list);
  595. rb_erase(&dc->rb_node, &dcc->root);
  596. kmem_cache_free(discard_cmd_slab, dc);
  597. atomic_dec(&dcc->discard_cmd_cnt);
  598. }
  599. static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
  600. struct discard_cmd *dc)
  601. {
  602. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  603. if (dc->error == -EOPNOTSUPP)
  604. dc->error = 0;
  605. if (dc->error)
  606. f2fs_msg(sbi->sb, KERN_INFO,
  607. "Issue discard failed, ret: %d", dc->error);
  608. __detach_discard_cmd(dcc, dc);
  609. }
  610. static void f2fs_submit_discard_endio(struct bio *bio)
  611. {
  612. struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
  613. dc->error = bio->bi_error;
  614. dc->state = D_DONE;
  615. complete(&dc->wait);
  616. bio_put(bio);
  617. }
  618. /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
  619. static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
  620. struct discard_cmd *dc)
  621. {
  622. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  623. struct bio *bio = NULL;
  624. if (dc->state != D_PREP)
  625. return;
  626. dc->error = __blkdev_issue_discard(dc->bdev,
  627. SECTOR_FROM_BLOCK(dc->start),
  628. SECTOR_FROM_BLOCK(dc->len),
  629. GFP_NOFS, 0, &bio);
  630. if (!dc->error) {
  631. /* should keep before submission to avoid D_DONE right away */
  632. dc->state = D_SUBMIT;
  633. atomic_inc(&dcc->issued_discard);
  634. atomic_inc(&dcc->issing_discard);
  635. if (bio) {
  636. bio->bi_private = dc;
  637. bio->bi_end_io = f2fs_submit_discard_endio;
  638. bio->bi_opf |= REQ_SYNC;
  639. submit_bio(bio);
  640. list_move_tail(&dc->list, &dcc->wait_list);
  641. }
  642. } else {
  643. __remove_discard_cmd(sbi, dc);
  644. }
  645. }
  646. static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
  647. struct block_device *bdev, block_t lstart,
  648. block_t start, block_t len,
  649. struct rb_node **insert_p,
  650. struct rb_node *insert_parent)
  651. {
  652. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  653. struct rb_node **p = &dcc->root.rb_node;
  654. struct rb_node *parent = NULL;
  655. struct discard_cmd *dc = NULL;
  656. if (insert_p && insert_parent) {
  657. parent = insert_parent;
  658. p = insert_p;
  659. goto do_insert;
  660. }
  661. p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
  662. do_insert:
  663. dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
  664. if (!dc)
  665. return NULL;
  666. return dc;
  667. }
  668. static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
  669. struct discard_cmd *dc)
  670. {
  671. list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
  672. }
  673. static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
  674. struct discard_cmd *dc, block_t blkaddr)
  675. {
  676. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  677. struct discard_info di = dc->di;
  678. bool modified = false;
  679. if (dc->state == D_DONE || dc->len == 1) {
  680. __remove_discard_cmd(sbi, dc);
  681. return;
  682. }
  683. if (blkaddr > di.lstart) {
  684. dc->len = blkaddr - dc->lstart;
  685. __relocate_discard_cmd(dcc, dc);
  686. modified = true;
  687. }
  688. if (blkaddr < di.lstart + di.len - 1) {
  689. if (modified) {
  690. __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
  691. di.start + blkaddr + 1 - di.lstart,
  692. di.lstart + di.len - 1 - blkaddr,
  693. NULL, NULL);
  694. } else {
  695. dc->lstart++;
  696. dc->len--;
  697. dc->start++;
  698. __relocate_discard_cmd(dcc, dc);
  699. }
  700. }
  701. }
  702. static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
  703. struct block_device *bdev, block_t lstart,
  704. block_t start, block_t len)
  705. {
  706. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  707. struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
  708. struct discard_cmd *dc;
  709. struct discard_info di = {0};
  710. struct rb_node **insert_p = NULL, *insert_parent = NULL;
  711. block_t end = lstart + len;
  712. mutex_lock(&dcc->cmd_lock);
  713. dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
  714. NULL, lstart,
  715. (struct rb_entry **)&prev_dc,
  716. (struct rb_entry **)&next_dc,
  717. &insert_p, &insert_parent, true);
  718. if (dc)
  719. prev_dc = dc;
  720. if (!prev_dc) {
  721. di.lstart = lstart;
  722. di.len = next_dc ? next_dc->lstart - lstart : len;
  723. di.len = min(di.len, len);
  724. di.start = start;
  725. }
  726. while (1) {
  727. struct rb_node *node;
  728. bool merged = false;
  729. struct discard_cmd *tdc = NULL;
  730. if (prev_dc) {
  731. di.lstart = prev_dc->lstart + prev_dc->len;
  732. if (di.lstart < lstart)
  733. di.lstart = lstart;
  734. if (di.lstart >= end)
  735. break;
  736. if (!next_dc || next_dc->lstart > end)
  737. di.len = end - di.lstart;
  738. else
  739. di.len = next_dc->lstart - di.lstart;
  740. di.start = start + di.lstart - lstart;
  741. }
  742. if (!di.len)
  743. goto next;
  744. if (prev_dc && prev_dc->state == D_PREP &&
  745. prev_dc->bdev == bdev &&
  746. __is_discard_back_mergeable(&di, &prev_dc->di)) {
  747. prev_dc->di.len += di.len;
  748. __relocate_discard_cmd(dcc, prev_dc);
  749. di = prev_dc->di;
  750. tdc = prev_dc;
  751. merged = true;
  752. }
  753. if (next_dc && next_dc->state == D_PREP &&
  754. next_dc->bdev == bdev &&
  755. __is_discard_front_mergeable(&di, &next_dc->di)) {
  756. next_dc->di.lstart = di.lstart;
  757. next_dc->di.len += di.len;
  758. next_dc->di.start = di.start;
  759. __relocate_discard_cmd(dcc, next_dc);
  760. if (tdc)
  761. __remove_discard_cmd(sbi, tdc);
  762. merged = true;
  763. }
  764. if (!merged)
  765. __insert_discard_tree(sbi, bdev, di.lstart, di.start,
  766. di.len, NULL, NULL);
  767. next:
  768. prev_dc = next_dc;
  769. if (!prev_dc)
  770. break;
  771. node = rb_next(&prev_dc->rb_node);
  772. next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
  773. }
  774. mutex_unlock(&dcc->cmd_lock);
  775. }
  776. static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
  777. struct block_device *bdev, block_t blkstart, block_t blklen)
  778. {
  779. block_t lblkstart = blkstart;
  780. trace_f2fs_issue_discard(bdev, blkstart, blklen);
  781. if (sbi->s_ndevs) {
  782. int devi = f2fs_target_device_index(sbi, blkstart);
  783. blkstart -= FDEV(devi).start_blk;
  784. }
  785. __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
  786. wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
  787. return 0;
  788. }
  789. /* This should be covered by global mutex, &sit_i->sentry_lock */
  790. void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
  791. {
  792. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  793. struct discard_cmd *dc;
  794. mutex_lock(&dcc->cmd_lock);
  795. dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
  796. if (dc) {
  797. if (dc->state != D_PREP)
  798. wait_for_completion_io(&dc->wait);
  799. __punch_discard_cmd(sbi, dc, blkaddr);
  800. }
  801. mutex_unlock(&dcc->cmd_lock);
  802. }
  803. /* This comes from f2fs_put_super */
  804. void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
  805. {
  806. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  807. struct list_head *pend_list;
  808. struct list_head *wait_list = &(dcc->wait_list);
  809. struct discard_cmd *dc, *tmp;
  810. struct blk_plug plug;
  811. int i;
  812. mutex_lock(&dcc->cmd_lock);
  813. blk_start_plug(&plug);
  814. for (i = 0; i < MAX_PLIST_NUM; i++) {
  815. pend_list = &dcc->pend_list[i];
  816. list_for_each_entry_safe(dc, tmp, pend_list, list)
  817. __submit_discard_cmd(sbi, dc);
  818. }
  819. blk_finish_plug(&plug);
  820. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  821. wait_for_completion_io(&dc->wait);
  822. __remove_discard_cmd(sbi, dc);
  823. }
  824. mutex_unlock(&dcc->cmd_lock);
  825. }
  826. static int issue_discard_thread(void *data)
  827. {
  828. struct f2fs_sb_info *sbi = data;
  829. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  830. wait_queue_head_t *q = &dcc->discard_wait_queue;
  831. struct list_head *pend_list;
  832. struct list_head *wait_list = &dcc->wait_list;
  833. struct discard_cmd *dc, *tmp;
  834. struct blk_plug plug;
  835. int iter = 0, i;
  836. repeat:
  837. if (kthread_should_stop())
  838. return 0;
  839. mutex_lock(&dcc->cmd_lock);
  840. blk_start_plug(&plug);
  841. for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
  842. pend_list = &dcc->pend_list[i];
  843. list_for_each_entry_safe(dc, tmp, pend_list, list) {
  844. f2fs_bug_on(sbi, dc->state != D_PREP);
  845. if (is_idle(sbi))
  846. __submit_discard_cmd(sbi, dc);
  847. if (iter++ > DISCARD_ISSUE_RATE)
  848. goto next_step;
  849. }
  850. }
  851. next_step:
  852. blk_finish_plug(&plug);
  853. list_for_each_entry_safe(dc, tmp, wait_list, list) {
  854. if (dc->state == D_DONE) {
  855. wait_for_completion_io(&dc->wait);
  856. __remove_discard_cmd(sbi, dc);
  857. }
  858. }
  859. mutex_unlock(&dcc->cmd_lock);
  860. iter = 0;
  861. congestion_wait(BLK_RW_SYNC, HZ/50);
  862. wait_event_interruptible(*q, kthread_should_stop() ||
  863. atomic_read(&dcc->discard_cmd_cnt));
  864. goto repeat;
  865. }
  866. #ifdef CONFIG_BLK_DEV_ZONED
  867. static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
  868. struct block_device *bdev, block_t blkstart, block_t blklen)
  869. {
  870. sector_t sector, nr_sects;
  871. block_t lblkstart = blkstart;
  872. int devi = 0;
  873. if (sbi->s_ndevs) {
  874. devi = f2fs_target_device_index(sbi, blkstart);
  875. blkstart -= FDEV(devi).start_blk;
  876. }
  877. /*
  878. * We need to know the type of the zone: for conventional zones,
  879. * use regular discard if the drive supports it. For sequential
  880. * zones, reset the zone write pointer.
  881. */
  882. switch (get_blkz_type(sbi, bdev, blkstart)) {
  883. case BLK_ZONE_TYPE_CONVENTIONAL:
  884. if (!blk_queue_discard(bdev_get_queue(bdev)))
  885. return 0;
  886. return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
  887. case BLK_ZONE_TYPE_SEQWRITE_REQ:
  888. case BLK_ZONE_TYPE_SEQWRITE_PREF:
  889. sector = SECTOR_FROM_BLOCK(blkstart);
  890. nr_sects = SECTOR_FROM_BLOCK(blklen);
  891. if (sector & (bdev_zone_sectors(bdev) - 1) ||
  892. nr_sects != bdev_zone_sectors(bdev)) {
  893. f2fs_msg(sbi->sb, KERN_INFO,
  894. "(%d) %s: Unaligned discard attempted (block %x + %x)",
  895. devi, sbi->s_ndevs ? FDEV(devi).path: "",
  896. blkstart, blklen);
  897. return -EIO;
  898. }
  899. trace_f2fs_issue_reset_zone(bdev, blkstart);
  900. return blkdev_reset_zones(bdev, sector,
  901. nr_sects, GFP_NOFS);
  902. default:
  903. /* Unknown zone type: broken device ? */
  904. return -EIO;
  905. }
  906. }
  907. #endif
  908. static int __issue_discard_async(struct f2fs_sb_info *sbi,
  909. struct block_device *bdev, block_t blkstart, block_t blklen)
  910. {
  911. #ifdef CONFIG_BLK_DEV_ZONED
  912. if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
  913. bdev_zoned_model(bdev) != BLK_ZONED_NONE)
  914. return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
  915. #endif
  916. return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
  917. }
  918. static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
  919. block_t blkstart, block_t blklen)
  920. {
  921. sector_t start = blkstart, len = 0;
  922. struct block_device *bdev;
  923. struct seg_entry *se;
  924. unsigned int offset;
  925. block_t i;
  926. int err = 0;
  927. bdev = f2fs_target_device(sbi, blkstart, NULL);
  928. for (i = blkstart; i < blkstart + blklen; i++, len++) {
  929. if (i != start) {
  930. struct block_device *bdev2 =
  931. f2fs_target_device(sbi, i, NULL);
  932. if (bdev2 != bdev) {
  933. err = __issue_discard_async(sbi, bdev,
  934. start, len);
  935. if (err)
  936. return err;
  937. bdev = bdev2;
  938. start = i;
  939. len = 0;
  940. }
  941. }
  942. se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
  943. offset = GET_BLKOFF_FROM_SEG0(sbi, i);
  944. if (!f2fs_test_and_set_bit(offset, se->discard_map))
  945. sbi->discard_blks--;
  946. }
  947. if (len)
  948. err = __issue_discard_async(sbi, bdev, start, len);
  949. return err;
  950. }
  951. static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
  952. bool check_only)
  953. {
  954. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  955. int max_blocks = sbi->blocks_per_seg;
  956. struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
  957. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  958. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  959. unsigned long *discard_map = (unsigned long *)se->discard_map;
  960. unsigned long *dmap = SIT_I(sbi)->tmp_map;
  961. unsigned int start = 0, end = -1;
  962. bool force = (cpc->reason == CP_DISCARD);
  963. struct discard_entry *de = NULL;
  964. struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
  965. int i;
  966. if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
  967. return false;
  968. if (!force) {
  969. if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
  970. SM_I(sbi)->dcc_info->nr_discards >=
  971. SM_I(sbi)->dcc_info->max_discards)
  972. return false;
  973. }
  974. /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
  975. for (i = 0; i < entries; i++)
  976. dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
  977. (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
  978. while (force || SM_I(sbi)->dcc_info->nr_discards <=
  979. SM_I(sbi)->dcc_info->max_discards) {
  980. start = __find_rev_next_bit(dmap, max_blocks, end + 1);
  981. if (start >= max_blocks)
  982. break;
  983. end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
  984. if (force && start && end != max_blocks
  985. && (end - start) < cpc->trim_minlen)
  986. continue;
  987. if (check_only)
  988. return true;
  989. if (!de) {
  990. de = f2fs_kmem_cache_alloc(discard_entry_slab,
  991. GFP_F2FS_ZERO);
  992. de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
  993. list_add_tail(&de->list, head);
  994. }
  995. for (i = start; i < end; i++)
  996. __set_bit_le(i, (void *)de->discard_map);
  997. SM_I(sbi)->dcc_info->nr_discards += end - start;
  998. }
  999. return false;
  1000. }
  1001. void release_discard_addrs(struct f2fs_sb_info *sbi)
  1002. {
  1003. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1004. struct discard_entry *entry, *this;
  1005. /* drop caches */
  1006. list_for_each_entry_safe(entry, this, head, list) {
  1007. list_del(&entry->list);
  1008. kmem_cache_free(discard_entry_slab, entry);
  1009. }
  1010. }
  1011. /*
  1012. * Should call clear_prefree_segments after checkpoint is done.
  1013. */
  1014. static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
  1015. {
  1016. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1017. unsigned int segno;
  1018. mutex_lock(&dirty_i->seglist_lock);
  1019. for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
  1020. __set_test_and_free(sbi, segno);
  1021. mutex_unlock(&dirty_i->seglist_lock);
  1022. }
  1023. void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1024. {
  1025. struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
  1026. struct discard_entry *entry, *this;
  1027. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1028. unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
  1029. unsigned int start = 0, end = -1;
  1030. unsigned int secno, start_segno;
  1031. bool force = (cpc->reason == CP_DISCARD);
  1032. mutex_lock(&dirty_i->seglist_lock);
  1033. while (1) {
  1034. int i;
  1035. start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
  1036. if (start >= MAIN_SEGS(sbi))
  1037. break;
  1038. end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
  1039. start + 1);
  1040. for (i = start; i < end; i++)
  1041. clear_bit(i, prefree_map);
  1042. dirty_i->nr_dirty[PRE] -= end - start;
  1043. if (!test_opt(sbi, DISCARD))
  1044. continue;
  1045. if (force && start >= cpc->trim_start &&
  1046. (end - 1) <= cpc->trim_end)
  1047. continue;
  1048. if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
  1049. f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
  1050. (end - start) << sbi->log_blocks_per_seg);
  1051. continue;
  1052. }
  1053. next:
  1054. secno = GET_SEC_FROM_SEG(sbi, start);
  1055. start_segno = GET_SEG_FROM_SEC(sbi, secno);
  1056. if (!IS_CURSEC(sbi, secno) &&
  1057. !get_valid_blocks(sbi, start, true))
  1058. f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
  1059. sbi->segs_per_sec << sbi->log_blocks_per_seg);
  1060. start = start_segno + sbi->segs_per_sec;
  1061. if (start < end)
  1062. goto next;
  1063. else
  1064. end = start - 1;
  1065. }
  1066. mutex_unlock(&dirty_i->seglist_lock);
  1067. /* send small discards */
  1068. list_for_each_entry_safe(entry, this, head, list) {
  1069. unsigned int cur_pos = 0, next_pos, len, total_len = 0;
  1070. bool is_valid = test_bit_le(0, entry->discard_map);
  1071. find_next:
  1072. if (is_valid) {
  1073. next_pos = find_next_zero_bit_le(entry->discard_map,
  1074. sbi->blocks_per_seg, cur_pos);
  1075. len = next_pos - cur_pos;
  1076. if (force && len < cpc->trim_minlen)
  1077. goto skip;
  1078. f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
  1079. len);
  1080. cpc->trimmed += len;
  1081. total_len += len;
  1082. } else {
  1083. next_pos = find_next_bit_le(entry->discard_map,
  1084. sbi->blocks_per_seg, cur_pos);
  1085. }
  1086. skip:
  1087. cur_pos = next_pos;
  1088. is_valid = !is_valid;
  1089. if (cur_pos < sbi->blocks_per_seg)
  1090. goto find_next;
  1091. list_del(&entry->list);
  1092. SM_I(sbi)->dcc_info->nr_discards -= total_len;
  1093. kmem_cache_free(discard_entry_slab, entry);
  1094. }
  1095. }
  1096. static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
  1097. {
  1098. dev_t dev = sbi->sb->s_bdev->bd_dev;
  1099. struct discard_cmd_control *dcc;
  1100. int err = 0, i;
  1101. if (SM_I(sbi)->dcc_info) {
  1102. dcc = SM_I(sbi)->dcc_info;
  1103. goto init_thread;
  1104. }
  1105. dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
  1106. if (!dcc)
  1107. return -ENOMEM;
  1108. INIT_LIST_HEAD(&dcc->entry_list);
  1109. for (i = 0; i < MAX_PLIST_NUM; i++)
  1110. INIT_LIST_HEAD(&dcc->pend_list[i]);
  1111. INIT_LIST_HEAD(&dcc->wait_list);
  1112. mutex_init(&dcc->cmd_lock);
  1113. atomic_set(&dcc->issued_discard, 0);
  1114. atomic_set(&dcc->issing_discard, 0);
  1115. atomic_set(&dcc->discard_cmd_cnt, 0);
  1116. dcc->nr_discards = 0;
  1117. dcc->max_discards = 0;
  1118. dcc->root = RB_ROOT;
  1119. init_waitqueue_head(&dcc->discard_wait_queue);
  1120. SM_I(sbi)->dcc_info = dcc;
  1121. init_thread:
  1122. dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
  1123. "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
  1124. if (IS_ERR(dcc->f2fs_issue_discard)) {
  1125. err = PTR_ERR(dcc->f2fs_issue_discard);
  1126. kfree(dcc);
  1127. SM_I(sbi)->dcc_info = NULL;
  1128. return err;
  1129. }
  1130. return err;
  1131. }
  1132. static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
  1133. {
  1134. struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  1135. if (!dcc)
  1136. return;
  1137. if (dcc->f2fs_issue_discard) {
  1138. struct task_struct *discard_thread = dcc->f2fs_issue_discard;
  1139. dcc->f2fs_issue_discard = NULL;
  1140. kthread_stop(discard_thread);
  1141. }
  1142. kfree(dcc);
  1143. SM_I(sbi)->dcc_info = NULL;
  1144. }
  1145. static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
  1146. {
  1147. struct sit_info *sit_i = SIT_I(sbi);
  1148. if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
  1149. sit_i->dirty_sentries++;
  1150. return false;
  1151. }
  1152. return true;
  1153. }
  1154. static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
  1155. unsigned int segno, int modified)
  1156. {
  1157. struct seg_entry *se = get_seg_entry(sbi, segno);
  1158. se->type = type;
  1159. if (modified)
  1160. __mark_sit_entry_dirty(sbi, segno);
  1161. }
  1162. static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
  1163. {
  1164. struct seg_entry *se;
  1165. unsigned int segno, offset;
  1166. long int new_vblocks;
  1167. segno = GET_SEGNO(sbi, blkaddr);
  1168. se = get_seg_entry(sbi, segno);
  1169. new_vblocks = se->valid_blocks + del;
  1170. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1171. f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
  1172. (new_vblocks > sbi->blocks_per_seg)));
  1173. se->valid_blocks = new_vblocks;
  1174. se->mtime = get_mtime(sbi);
  1175. SIT_I(sbi)->max_mtime = se->mtime;
  1176. /* Update valid block bitmap */
  1177. if (del > 0) {
  1178. if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
  1179. #ifdef CONFIG_F2FS_CHECK_FS
  1180. if (f2fs_test_and_set_bit(offset,
  1181. se->cur_valid_map_mir))
  1182. f2fs_bug_on(sbi, 1);
  1183. else
  1184. WARN_ON(1);
  1185. #else
  1186. f2fs_bug_on(sbi, 1);
  1187. #endif
  1188. }
  1189. if (f2fs_discard_en(sbi) &&
  1190. !f2fs_test_and_set_bit(offset, se->discard_map))
  1191. sbi->discard_blks--;
  1192. /* don't overwrite by SSR to keep node chain */
  1193. if (se->type == CURSEG_WARM_NODE) {
  1194. if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
  1195. se->ckpt_valid_blocks++;
  1196. }
  1197. } else {
  1198. if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
  1199. #ifdef CONFIG_F2FS_CHECK_FS
  1200. if (!f2fs_test_and_clear_bit(offset,
  1201. se->cur_valid_map_mir))
  1202. f2fs_bug_on(sbi, 1);
  1203. else
  1204. WARN_ON(1);
  1205. #else
  1206. f2fs_bug_on(sbi, 1);
  1207. #endif
  1208. }
  1209. if (f2fs_discard_en(sbi) &&
  1210. f2fs_test_and_clear_bit(offset, se->discard_map))
  1211. sbi->discard_blks++;
  1212. }
  1213. if (!f2fs_test_bit(offset, se->ckpt_valid_map))
  1214. se->ckpt_valid_blocks += del;
  1215. __mark_sit_entry_dirty(sbi, segno);
  1216. /* update total number of valid blocks to be written in ckpt area */
  1217. SIT_I(sbi)->written_valid_blocks += del;
  1218. if (sbi->segs_per_sec > 1)
  1219. get_sec_entry(sbi, segno)->valid_blocks += del;
  1220. }
  1221. void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
  1222. {
  1223. update_sit_entry(sbi, new, 1);
  1224. if (GET_SEGNO(sbi, old) != NULL_SEGNO)
  1225. update_sit_entry(sbi, old, -1);
  1226. locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
  1227. locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
  1228. }
  1229. void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
  1230. {
  1231. unsigned int segno = GET_SEGNO(sbi, addr);
  1232. struct sit_info *sit_i = SIT_I(sbi);
  1233. f2fs_bug_on(sbi, addr == NULL_ADDR);
  1234. if (addr == NEW_ADDR)
  1235. return;
  1236. /* add it into sit main buffer */
  1237. mutex_lock(&sit_i->sentry_lock);
  1238. update_sit_entry(sbi, addr, -1);
  1239. /* add it into dirty seglist */
  1240. locate_dirty_segment(sbi, segno);
  1241. mutex_unlock(&sit_i->sentry_lock);
  1242. }
  1243. bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
  1244. {
  1245. struct sit_info *sit_i = SIT_I(sbi);
  1246. unsigned int segno, offset;
  1247. struct seg_entry *se;
  1248. bool is_cp = false;
  1249. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1250. return true;
  1251. mutex_lock(&sit_i->sentry_lock);
  1252. segno = GET_SEGNO(sbi, blkaddr);
  1253. se = get_seg_entry(sbi, segno);
  1254. offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  1255. if (f2fs_test_bit(offset, se->ckpt_valid_map))
  1256. is_cp = true;
  1257. mutex_unlock(&sit_i->sentry_lock);
  1258. return is_cp;
  1259. }
  1260. /*
  1261. * This function should be resided under the curseg_mutex lock
  1262. */
  1263. static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
  1264. struct f2fs_summary *sum)
  1265. {
  1266. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1267. void *addr = curseg->sum_blk;
  1268. addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
  1269. memcpy(addr, sum, sizeof(struct f2fs_summary));
  1270. }
  1271. /*
  1272. * Calculate the number of current summary pages for writing
  1273. */
  1274. int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
  1275. {
  1276. int valid_sum_count = 0;
  1277. int i, sum_in_page;
  1278. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1279. if (sbi->ckpt->alloc_type[i] == SSR)
  1280. valid_sum_count += sbi->blocks_per_seg;
  1281. else {
  1282. if (for_ra)
  1283. valid_sum_count += le16_to_cpu(
  1284. F2FS_CKPT(sbi)->cur_data_blkoff[i]);
  1285. else
  1286. valid_sum_count += curseg_blkoff(sbi, i);
  1287. }
  1288. }
  1289. sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
  1290. SUM_FOOTER_SIZE) / SUMMARY_SIZE;
  1291. if (valid_sum_count <= sum_in_page)
  1292. return 1;
  1293. else if ((valid_sum_count - sum_in_page) <=
  1294. (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
  1295. return 2;
  1296. return 3;
  1297. }
  1298. /*
  1299. * Caller should put this summary page
  1300. */
  1301. struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
  1302. {
  1303. return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
  1304. }
  1305. void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
  1306. {
  1307. struct page *page = grab_meta_page(sbi, blk_addr);
  1308. void *dst = page_address(page);
  1309. if (src)
  1310. memcpy(dst, src, PAGE_SIZE);
  1311. else
  1312. memset(dst, 0, PAGE_SIZE);
  1313. set_page_dirty(page);
  1314. f2fs_put_page(page, 1);
  1315. }
  1316. static void write_sum_page(struct f2fs_sb_info *sbi,
  1317. struct f2fs_summary_block *sum_blk, block_t blk_addr)
  1318. {
  1319. update_meta_page(sbi, (void *)sum_blk, blk_addr);
  1320. }
  1321. static void write_current_sum_page(struct f2fs_sb_info *sbi,
  1322. int type, block_t blk_addr)
  1323. {
  1324. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1325. struct page *page = grab_meta_page(sbi, blk_addr);
  1326. struct f2fs_summary_block *src = curseg->sum_blk;
  1327. struct f2fs_summary_block *dst;
  1328. dst = (struct f2fs_summary_block *)page_address(page);
  1329. mutex_lock(&curseg->curseg_mutex);
  1330. down_read(&curseg->journal_rwsem);
  1331. memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
  1332. up_read(&curseg->journal_rwsem);
  1333. memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
  1334. memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
  1335. mutex_unlock(&curseg->curseg_mutex);
  1336. set_page_dirty(page);
  1337. f2fs_put_page(page, 1);
  1338. }
  1339. /*
  1340. * Find a new segment from the free segments bitmap to right order
  1341. * This function should be returned with success, otherwise BUG
  1342. */
  1343. static void get_new_segment(struct f2fs_sb_info *sbi,
  1344. unsigned int *newseg, bool new_sec, int dir)
  1345. {
  1346. struct free_segmap_info *free_i = FREE_I(sbi);
  1347. unsigned int segno, secno, zoneno;
  1348. unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
  1349. unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
  1350. unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
  1351. unsigned int left_start = hint;
  1352. bool init = true;
  1353. int go_left = 0;
  1354. int i;
  1355. spin_lock(&free_i->segmap_lock);
  1356. if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
  1357. segno = find_next_zero_bit(free_i->free_segmap,
  1358. GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
  1359. if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
  1360. goto got_it;
  1361. }
  1362. find_other_zone:
  1363. secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
  1364. if (secno >= MAIN_SECS(sbi)) {
  1365. if (dir == ALLOC_RIGHT) {
  1366. secno = find_next_zero_bit(free_i->free_secmap,
  1367. MAIN_SECS(sbi), 0);
  1368. f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
  1369. } else {
  1370. go_left = 1;
  1371. left_start = hint - 1;
  1372. }
  1373. }
  1374. if (go_left == 0)
  1375. goto skip_left;
  1376. while (test_bit(left_start, free_i->free_secmap)) {
  1377. if (left_start > 0) {
  1378. left_start--;
  1379. continue;
  1380. }
  1381. left_start = find_next_zero_bit(free_i->free_secmap,
  1382. MAIN_SECS(sbi), 0);
  1383. f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
  1384. break;
  1385. }
  1386. secno = left_start;
  1387. skip_left:
  1388. hint = secno;
  1389. segno = GET_SEG_FROM_SEC(sbi, secno);
  1390. zoneno = GET_ZONE_FROM_SEC(sbi, secno);
  1391. /* give up on finding another zone */
  1392. if (!init)
  1393. goto got_it;
  1394. if (sbi->secs_per_zone == 1)
  1395. goto got_it;
  1396. if (zoneno == old_zoneno)
  1397. goto got_it;
  1398. if (dir == ALLOC_LEFT) {
  1399. if (!go_left && zoneno + 1 >= total_zones)
  1400. goto got_it;
  1401. if (go_left && zoneno == 0)
  1402. goto got_it;
  1403. }
  1404. for (i = 0; i < NR_CURSEG_TYPE; i++)
  1405. if (CURSEG_I(sbi, i)->zone == zoneno)
  1406. break;
  1407. if (i < NR_CURSEG_TYPE) {
  1408. /* zone is in user, try another */
  1409. if (go_left)
  1410. hint = zoneno * sbi->secs_per_zone - 1;
  1411. else if (zoneno + 1 >= total_zones)
  1412. hint = 0;
  1413. else
  1414. hint = (zoneno + 1) * sbi->secs_per_zone;
  1415. init = false;
  1416. goto find_other_zone;
  1417. }
  1418. got_it:
  1419. /* set it as dirty segment in free segmap */
  1420. f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
  1421. __set_inuse(sbi, segno);
  1422. *newseg = segno;
  1423. spin_unlock(&free_i->segmap_lock);
  1424. }
  1425. static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
  1426. {
  1427. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1428. struct summary_footer *sum_footer;
  1429. curseg->segno = curseg->next_segno;
  1430. curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
  1431. curseg->next_blkoff = 0;
  1432. curseg->next_segno = NULL_SEGNO;
  1433. sum_footer = &(curseg->sum_blk->footer);
  1434. memset(sum_footer, 0, sizeof(struct summary_footer));
  1435. if (IS_DATASEG(type))
  1436. SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
  1437. if (IS_NODESEG(type))
  1438. SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
  1439. __set_sit_entry_type(sbi, type, curseg->segno, modified);
  1440. }
  1441. static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
  1442. {
  1443. if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
  1444. return 0;
  1445. return CURSEG_I(sbi, type)->segno;
  1446. }
  1447. /*
  1448. * Allocate a current working segment.
  1449. * This function always allocates a free segment in LFS manner.
  1450. */
  1451. static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
  1452. {
  1453. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1454. unsigned int segno = curseg->segno;
  1455. int dir = ALLOC_LEFT;
  1456. write_sum_page(sbi, curseg->sum_blk,
  1457. GET_SUM_BLOCK(sbi, segno));
  1458. if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
  1459. dir = ALLOC_RIGHT;
  1460. if (test_opt(sbi, NOHEAP))
  1461. dir = ALLOC_RIGHT;
  1462. segno = __get_next_segno(sbi, type);
  1463. get_new_segment(sbi, &segno, new_sec, dir);
  1464. curseg->next_segno = segno;
  1465. reset_curseg(sbi, type, 1);
  1466. curseg->alloc_type = LFS;
  1467. }
  1468. static void __next_free_blkoff(struct f2fs_sb_info *sbi,
  1469. struct curseg_info *seg, block_t start)
  1470. {
  1471. struct seg_entry *se = get_seg_entry(sbi, seg->segno);
  1472. int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
  1473. unsigned long *target_map = SIT_I(sbi)->tmp_map;
  1474. unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
  1475. unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
  1476. int i, pos;
  1477. for (i = 0; i < entries; i++)
  1478. target_map[i] = ckpt_map[i] | cur_map[i];
  1479. pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
  1480. seg->next_blkoff = pos;
  1481. }
  1482. /*
  1483. * If a segment is written by LFS manner, next block offset is just obtained
  1484. * by increasing the current block offset. However, if a segment is written by
  1485. * SSR manner, next block offset obtained by calling __next_free_blkoff
  1486. */
  1487. static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
  1488. struct curseg_info *seg)
  1489. {
  1490. if (seg->alloc_type == SSR)
  1491. __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
  1492. else
  1493. seg->next_blkoff++;
  1494. }
  1495. /*
  1496. * This function always allocates a used segment(from dirty seglist) by SSR
  1497. * manner, so it should recover the existing segment information of valid blocks
  1498. */
  1499. static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
  1500. {
  1501. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  1502. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1503. unsigned int new_segno = curseg->next_segno;
  1504. struct f2fs_summary_block *sum_node;
  1505. struct page *sum_page;
  1506. write_sum_page(sbi, curseg->sum_blk,
  1507. GET_SUM_BLOCK(sbi, curseg->segno));
  1508. __set_test_and_inuse(sbi, new_segno);
  1509. mutex_lock(&dirty_i->seglist_lock);
  1510. __remove_dirty_segment(sbi, new_segno, PRE);
  1511. __remove_dirty_segment(sbi, new_segno, DIRTY);
  1512. mutex_unlock(&dirty_i->seglist_lock);
  1513. reset_curseg(sbi, type, 1);
  1514. curseg->alloc_type = SSR;
  1515. __next_free_blkoff(sbi, curseg, 0);
  1516. if (reuse) {
  1517. sum_page = get_sum_page(sbi, new_segno);
  1518. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  1519. memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
  1520. f2fs_put_page(sum_page, 1);
  1521. }
  1522. }
  1523. static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
  1524. {
  1525. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1526. const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
  1527. int i, cnt;
  1528. bool reversed = false;
  1529. /* need_SSR() already forces to do this */
  1530. if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR))
  1531. return 1;
  1532. /* For node segments, let's do SSR more intensively */
  1533. if (IS_NODESEG(type)) {
  1534. if (type >= CURSEG_WARM_NODE) {
  1535. reversed = true;
  1536. i = CURSEG_COLD_NODE;
  1537. } else {
  1538. i = CURSEG_HOT_NODE;
  1539. }
  1540. cnt = NR_CURSEG_NODE_TYPE;
  1541. } else {
  1542. if (type >= CURSEG_WARM_DATA) {
  1543. reversed = true;
  1544. i = CURSEG_COLD_DATA;
  1545. } else {
  1546. i = CURSEG_HOT_DATA;
  1547. }
  1548. cnt = NR_CURSEG_DATA_TYPE;
  1549. }
  1550. for (; cnt-- > 0; reversed ? i-- : i++) {
  1551. if (i == type)
  1552. continue;
  1553. if (v_ops->get_victim(sbi, &(curseg)->next_segno,
  1554. BG_GC, i, SSR))
  1555. return 1;
  1556. }
  1557. return 0;
  1558. }
  1559. /*
  1560. * flush out current segment and replace it with new segment
  1561. * This function should be returned with success, otherwise BUG
  1562. */
  1563. static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
  1564. int type, bool force)
  1565. {
  1566. if (force)
  1567. new_curseg(sbi, type, true);
  1568. else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
  1569. type == CURSEG_WARM_NODE)
  1570. new_curseg(sbi, type, false);
  1571. else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
  1572. change_curseg(sbi, type, true);
  1573. else
  1574. new_curseg(sbi, type, false);
  1575. stat_inc_seg_type(sbi, CURSEG_I(sbi, type));
  1576. }
  1577. void allocate_new_segments(struct f2fs_sb_info *sbi)
  1578. {
  1579. struct curseg_info *curseg;
  1580. unsigned int old_segno;
  1581. int i;
  1582. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1583. curseg = CURSEG_I(sbi, i);
  1584. old_segno = curseg->segno;
  1585. SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
  1586. locate_dirty_segment(sbi, old_segno);
  1587. }
  1588. }
  1589. static const struct segment_allocation default_salloc_ops = {
  1590. .allocate_segment = allocate_segment_by_default,
  1591. };
  1592. bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1593. {
  1594. __u64 trim_start = cpc->trim_start;
  1595. bool has_candidate = false;
  1596. mutex_lock(&SIT_I(sbi)->sentry_lock);
  1597. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
  1598. if (add_discard_addrs(sbi, cpc, true)) {
  1599. has_candidate = true;
  1600. break;
  1601. }
  1602. }
  1603. mutex_unlock(&SIT_I(sbi)->sentry_lock);
  1604. cpc->trim_start = trim_start;
  1605. return has_candidate;
  1606. }
  1607. int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
  1608. {
  1609. __u64 start = F2FS_BYTES_TO_BLK(range->start);
  1610. __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
  1611. unsigned int start_segno, end_segno;
  1612. struct cp_control cpc;
  1613. int err = 0;
  1614. if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
  1615. return -EINVAL;
  1616. cpc.trimmed = 0;
  1617. if (end <= MAIN_BLKADDR(sbi))
  1618. goto out;
  1619. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
  1620. f2fs_msg(sbi->sb, KERN_WARNING,
  1621. "Found FS corruption, run fsck to fix.");
  1622. goto out;
  1623. }
  1624. /* start/end segment number in main_area */
  1625. start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
  1626. end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
  1627. GET_SEGNO(sbi, end);
  1628. cpc.reason = CP_DISCARD;
  1629. cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
  1630. /* do checkpoint to issue discard commands safely */
  1631. for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
  1632. cpc.trim_start = start_segno;
  1633. if (sbi->discard_blks == 0)
  1634. break;
  1635. else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
  1636. cpc.trim_end = end_segno;
  1637. else
  1638. cpc.trim_end = min_t(unsigned int,
  1639. rounddown(start_segno +
  1640. BATCHED_TRIM_SEGMENTS(sbi),
  1641. sbi->segs_per_sec) - 1, end_segno);
  1642. mutex_lock(&sbi->gc_mutex);
  1643. err = write_checkpoint(sbi, &cpc);
  1644. mutex_unlock(&sbi->gc_mutex);
  1645. if (err)
  1646. break;
  1647. schedule();
  1648. }
  1649. out:
  1650. range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
  1651. return err;
  1652. }
  1653. static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
  1654. {
  1655. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1656. if (curseg->next_blkoff < sbi->blocks_per_seg)
  1657. return true;
  1658. return false;
  1659. }
  1660. static int __get_segment_type_2(struct page *page, enum page_type p_type)
  1661. {
  1662. if (p_type == DATA)
  1663. return CURSEG_HOT_DATA;
  1664. else
  1665. return CURSEG_HOT_NODE;
  1666. }
  1667. static int __get_segment_type_4(struct page *page, enum page_type p_type)
  1668. {
  1669. if (p_type == DATA) {
  1670. struct inode *inode = page->mapping->host;
  1671. if (S_ISDIR(inode->i_mode))
  1672. return CURSEG_HOT_DATA;
  1673. else
  1674. return CURSEG_COLD_DATA;
  1675. } else {
  1676. if (IS_DNODE(page) && is_cold_node(page))
  1677. return CURSEG_WARM_NODE;
  1678. else
  1679. return CURSEG_COLD_NODE;
  1680. }
  1681. }
  1682. static int __get_segment_type_6(struct page *page, enum page_type p_type)
  1683. {
  1684. if (p_type == DATA) {
  1685. struct inode *inode = page->mapping->host;
  1686. if (is_cold_data(page) || file_is_cold(inode))
  1687. return CURSEG_COLD_DATA;
  1688. if (is_inode_flag_set(inode, FI_HOT_DATA))
  1689. return CURSEG_HOT_DATA;
  1690. return CURSEG_WARM_DATA;
  1691. } else {
  1692. if (IS_DNODE(page))
  1693. return is_cold_node(page) ? CURSEG_WARM_NODE :
  1694. CURSEG_HOT_NODE;
  1695. return CURSEG_COLD_NODE;
  1696. }
  1697. }
  1698. static int __get_segment_type(struct page *page, enum page_type p_type)
  1699. {
  1700. switch (F2FS_P_SB(page)->active_logs) {
  1701. case 2:
  1702. return __get_segment_type_2(page, p_type);
  1703. case 4:
  1704. return __get_segment_type_4(page, p_type);
  1705. }
  1706. /* NR_CURSEG_TYPE(6) logs by default */
  1707. f2fs_bug_on(F2FS_P_SB(page),
  1708. F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
  1709. return __get_segment_type_6(page, p_type);
  1710. }
  1711. void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
  1712. block_t old_blkaddr, block_t *new_blkaddr,
  1713. struct f2fs_summary *sum, int type)
  1714. {
  1715. struct sit_info *sit_i = SIT_I(sbi);
  1716. struct curseg_info *curseg = CURSEG_I(sbi, type);
  1717. mutex_lock(&curseg->curseg_mutex);
  1718. mutex_lock(&sit_i->sentry_lock);
  1719. *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  1720. f2fs_wait_discard_bio(sbi, *new_blkaddr);
  1721. /*
  1722. * __add_sum_entry should be resided under the curseg_mutex
  1723. * because, this function updates a summary entry in the
  1724. * current summary block.
  1725. */
  1726. __add_sum_entry(sbi, type, sum);
  1727. __refresh_next_blkoff(sbi, curseg);
  1728. stat_inc_block_count(sbi, curseg);
  1729. if (!__has_curseg_space(sbi, type))
  1730. sit_i->s_ops->allocate_segment(sbi, type, false);
  1731. /*
  1732. * SIT information should be updated after segment allocation,
  1733. * since we need to keep dirty segments precisely under SSR.
  1734. */
  1735. refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
  1736. mutex_unlock(&sit_i->sentry_lock);
  1737. if (page && IS_NODESEG(type))
  1738. fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
  1739. mutex_unlock(&curseg->curseg_mutex);
  1740. }
  1741. static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
  1742. {
  1743. int type = __get_segment_type(fio->page, fio->type);
  1744. int err;
  1745. if (fio->type == NODE || fio->type == DATA)
  1746. mutex_lock(&fio->sbi->wio_mutex[fio->type]);
  1747. reallocate:
  1748. allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
  1749. &fio->new_blkaddr, sum, type);
  1750. /* writeout dirty page into bdev */
  1751. err = f2fs_submit_page_mbio(fio);
  1752. if (err == -EAGAIN) {
  1753. fio->old_blkaddr = fio->new_blkaddr;
  1754. goto reallocate;
  1755. }
  1756. if (fio->type == NODE || fio->type == DATA)
  1757. mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
  1758. }
  1759. void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
  1760. {
  1761. struct f2fs_io_info fio = {
  1762. .sbi = sbi,
  1763. .type = META,
  1764. .op = REQ_OP_WRITE,
  1765. .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
  1766. .old_blkaddr = page->index,
  1767. .new_blkaddr = page->index,
  1768. .page = page,
  1769. .encrypted_page = NULL,
  1770. };
  1771. if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
  1772. fio.op_flags &= ~REQ_META;
  1773. set_page_writeback(page);
  1774. f2fs_submit_page_mbio(&fio);
  1775. }
  1776. void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
  1777. {
  1778. struct f2fs_summary sum;
  1779. set_summary(&sum, nid, 0, 0);
  1780. do_write_page(&sum, fio);
  1781. }
  1782. void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
  1783. {
  1784. struct f2fs_sb_info *sbi = fio->sbi;
  1785. struct f2fs_summary sum;
  1786. struct node_info ni;
  1787. f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
  1788. get_node_info(sbi, dn->nid, &ni);
  1789. set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
  1790. do_write_page(&sum, fio);
  1791. f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
  1792. }
  1793. int rewrite_data_page(struct f2fs_io_info *fio)
  1794. {
  1795. fio->new_blkaddr = fio->old_blkaddr;
  1796. stat_inc_inplace_blocks(fio->sbi);
  1797. return f2fs_submit_page_bio(fio);
  1798. }
  1799. void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
  1800. block_t old_blkaddr, block_t new_blkaddr,
  1801. bool recover_curseg, bool recover_newaddr)
  1802. {
  1803. struct sit_info *sit_i = SIT_I(sbi);
  1804. struct curseg_info *curseg;
  1805. unsigned int segno, old_cursegno;
  1806. struct seg_entry *se;
  1807. int type;
  1808. unsigned short old_blkoff;
  1809. segno = GET_SEGNO(sbi, new_blkaddr);
  1810. se = get_seg_entry(sbi, segno);
  1811. type = se->type;
  1812. if (!recover_curseg) {
  1813. /* for recovery flow */
  1814. if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
  1815. if (old_blkaddr == NULL_ADDR)
  1816. type = CURSEG_COLD_DATA;
  1817. else
  1818. type = CURSEG_WARM_DATA;
  1819. }
  1820. } else {
  1821. if (!IS_CURSEG(sbi, segno))
  1822. type = CURSEG_WARM_DATA;
  1823. }
  1824. curseg = CURSEG_I(sbi, type);
  1825. mutex_lock(&curseg->curseg_mutex);
  1826. mutex_lock(&sit_i->sentry_lock);
  1827. old_cursegno = curseg->segno;
  1828. old_blkoff = curseg->next_blkoff;
  1829. /* change the current segment */
  1830. if (segno != curseg->segno) {
  1831. curseg->next_segno = segno;
  1832. change_curseg(sbi, type, true);
  1833. }
  1834. curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
  1835. __add_sum_entry(sbi, type, sum);
  1836. if (!recover_curseg || recover_newaddr)
  1837. update_sit_entry(sbi, new_blkaddr, 1);
  1838. if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
  1839. update_sit_entry(sbi, old_blkaddr, -1);
  1840. locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
  1841. locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
  1842. locate_dirty_segment(sbi, old_cursegno);
  1843. if (recover_curseg) {
  1844. if (old_cursegno != curseg->segno) {
  1845. curseg->next_segno = old_cursegno;
  1846. change_curseg(sbi, type, true);
  1847. }
  1848. curseg->next_blkoff = old_blkoff;
  1849. }
  1850. mutex_unlock(&sit_i->sentry_lock);
  1851. mutex_unlock(&curseg->curseg_mutex);
  1852. }
  1853. void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
  1854. block_t old_addr, block_t new_addr,
  1855. unsigned char version, bool recover_curseg,
  1856. bool recover_newaddr)
  1857. {
  1858. struct f2fs_summary sum;
  1859. set_summary(&sum, dn->nid, dn->ofs_in_node, version);
  1860. __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
  1861. recover_curseg, recover_newaddr);
  1862. f2fs_update_data_blkaddr(dn, new_addr);
  1863. }
  1864. void f2fs_wait_on_page_writeback(struct page *page,
  1865. enum page_type type, bool ordered)
  1866. {
  1867. if (PageWriteback(page)) {
  1868. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  1869. f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
  1870. 0, page->index, type, WRITE);
  1871. if (ordered)
  1872. wait_on_page_writeback(page);
  1873. else
  1874. wait_for_stable_page(page);
  1875. }
  1876. }
  1877. void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
  1878. block_t blkaddr)
  1879. {
  1880. struct page *cpage;
  1881. if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
  1882. return;
  1883. cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
  1884. if (cpage) {
  1885. f2fs_wait_on_page_writeback(cpage, DATA, true);
  1886. f2fs_put_page(cpage, 1);
  1887. }
  1888. }
  1889. static int read_compacted_summaries(struct f2fs_sb_info *sbi)
  1890. {
  1891. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1892. struct curseg_info *seg_i;
  1893. unsigned char *kaddr;
  1894. struct page *page;
  1895. block_t start;
  1896. int i, j, offset;
  1897. start = start_sum_block(sbi);
  1898. page = get_meta_page(sbi, start++);
  1899. kaddr = (unsigned char *)page_address(page);
  1900. /* Step 1: restore nat cache */
  1901. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1902. memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
  1903. /* Step 2: restore sit cache */
  1904. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  1905. memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
  1906. offset = 2 * SUM_JOURNAL_SIZE;
  1907. /* Step 3: restore summary entries */
  1908. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  1909. unsigned short blk_off;
  1910. unsigned int segno;
  1911. seg_i = CURSEG_I(sbi, i);
  1912. segno = le32_to_cpu(ckpt->cur_data_segno[i]);
  1913. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
  1914. seg_i->next_segno = segno;
  1915. reset_curseg(sbi, i, 0);
  1916. seg_i->alloc_type = ckpt->alloc_type[i];
  1917. seg_i->next_blkoff = blk_off;
  1918. if (seg_i->alloc_type == SSR)
  1919. blk_off = sbi->blocks_per_seg;
  1920. for (j = 0; j < blk_off; j++) {
  1921. struct f2fs_summary *s;
  1922. s = (struct f2fs_summary *)(kaddr + offset);
  1923. seg_i->sum_blk->entries[j] = *s;
  1924. offset += SUMMARY_SIZE;
  1925. if (offset + SUMMARY_SIZE <= PAGE_SIZE -
  1926. SUM_FOOTER_SIZE)
  1927. continue;
  1928. f2fs_put_page(page, 1);
  1929. page = NULL;
  1930. page = get_meta_page(sbi, start++);
  1931. kaddr = (unsigned char *)page_address(page);
  1932. offset = 0;
  1933. }
  1934. }
  1935. f2fs_put_page(page, 1);
  1936. return 0;
  1937. }
  1938. static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
  1939. {
  1940. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1941. struct f2fs_summary_block *sum;
  1942. struct curseg_info *curseg;
  1943. struct page *new;
  1944. unsigned short blk_off;
  1945. unsigned int segno = 0;
  1946. block_t blk_addr = 0;
  1947. /* get segment number and block addr */
  1948. if (IS_DATASEG(type)) {
  1949. segno = le32_to_cpu(ckpt->cur_data_segno[type]);
  1950. blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
  1951. CURSEG_HOT_DATA]);
  1952. if (__exist_node_summaries(sbi))
  1953. blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
  1954. else
  1955. blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
  1956. } else {
  1957. segno = le32_to_cpu(ckpt->cur_node_segno[type -
  1958. CURSEG_HOT_NODE]);
  1959. blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
  1960. CURSEG_HOT_NODE]);
  1961. if (__exist_node_summaries(sbi))
  1962. blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
  1963. type - CURSEG_HOT_NODE);
  1964. else
  1965. blk_addr = GET_SUM_BLOCK(sbi, segno);
  1966. }
  1967. new = get_meta_page(sbi, blk_addr);
  1968. sum = (struct f2fs_summary_block *)page_address(new);
  1969. if (IS_NODESEG(type)) {
  1970. if (__exist_node_summaries(sbi)) {
  1971. struct f2fs_summary *ns = &sum->entries[0];
  1972. int i;
  1973. for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
  1974. ns->version = 0;
  1975. ns->ofs_in_node = 0;
  1976. }
  1977. } else {
  1978. int err;
  1979. err = restore_node_summary(sbi, segno, sum);
  1980. if (err) {
  1981. f2fs_put_page(new, 1);
  1982. return err;
  1983. }
  1984. }
  1985. }
  1986. /* set uncompleted segment to curseg */
  1987. curseg = CURSEG_I(sbi, type);
  1988. mutex_lock(&curseg->curseg_mutex);
  1989. /* update journal info */
  1990. down_write(&curseg->journal_rwsem);
  1991. memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
  1992. up_write(&curseg->journal_rwsem);
  1993. memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
  1994. memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
  1995. curseg->next_segno = segno;
  1996. reset_curseg(sbi, type, 0);
  1997. curseg->alloc_type = ckpt->alloc_type[type];
  1998. curseg->next_blkoff = blk_off;
  1999. mutex_unlock(&curseg->curseg_mutex);
  2000. f2fs_put_page(new, 1);
  2001. return 0;
  2002. }
  2003. static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
  2004. {
  2005. int type = CURSEG_HOT_DATA;
  2006. int err;
  2007. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
  2008. int npages = npages_for_summary_flush(sbi, true);
  2009. if (npages >= 2)
  2010. ra_meta_pages(sbi, start_sum_block(sbi), npages,
  2011. META_CP, true);
  2012. /* restore for compacted data summary */
  2013. if (read_compacted_summaries(sbi))
  2014. return -EINVAL;
  2015. type = CURSEG_HOT_NODE;
  2016. }
  2017. if (__exist_node_summaries(sbi))
  2018. ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
  2019. NR_CURSEG_TYPE - type, META_CP, true);
  2020. for (; type <= CURSEG_COLD_NODE; type++) {
  2021. err = read_normal_summaries(sbi, type);
  2022. if (err)
  2023. return err;
  2024. }
  2025. return 0;
  2026. }
  2027. static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
  2028. {
  2029. struct page *page;
  2030. unsigned char *kaddr;
  2031. struct f2fs_summary *summary;
  2032. struct curseg_info *seg_i;
  2033. int written_size = 0;
  2034. int i, j;
  2035. page = grab_meta_page(sbi, blkaddr++);
  2036. kaddr = (unsigned char *)page_address(page);
  2037. /* Step 1: write nat cache */
  2038. seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
  2039. memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
  2040. written_size += SUM_JOURNAL_SIZE;
  2041. /* Step 2: write sit cache */
  2042. seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2043. memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
  2044. written_size += SUM_JOURNAL_SIZE;
  2045. /* Step 3: write summary entries */
  2046. for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
  2047. unsigned short blkoff;
  2048. seg_i = CURSEG_I(sbi, i);
  2049. if (sbi->ckpt->alloc_type[i] == SSR)
  2050. blkoff = sbi->blocks_per_seg;
  2051. else
  2052. blkoff = curseg_blkoff(sbi, i);
  2053. for (j = 0; j < blkoff; j++) {
  2054. if (!page) {
  2055. page = grab_meta_page(sbi, blkaddr++);
  2056. kaddr = (unsigned char *)page_address(page);
  2057. written_size = 0;
  2058. }
  2059. summary = (struct f2fs_summary *)(kaddr + written_size);
  2060. *summary = seg_i->sum_blk->entries[j];
  2061. written_size += SUMMARY_SIZE;
  2062. if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
  2063. SUM_FOOTER_SIZE)
  2064. continue;
  2065. set_page_dirty(page);
  2066. f2fs_put_page(page, 1);
  2067. page = NULL;
  2068. }
  2069. }
  2070. if (page) {
  2071. set_page_dirty(page);
  2072. f2fs_put_page(page, 1);
  2073. }
  2074. }
  2075. static void write_normal_summaries(struct f2fs_sb_info *sbi,
  2076. block_t blkaddr, int type)
  2077. {
  2078. int i, end;
  2079. if (IS_DATASEG(type))
  2080. end = type + NR_CURSEG_DATA_TYPE;
  2081. else
  2082. end = type + NR_CURSEG_NODE_TYPE;
  2083. for (i = type; i < end; i++)
  2084. write_current_sum_page(sbi, i, blkaddr + (i - type));
  2085. }
  2086. void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2087. {
  2088. if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
  2089. write_compacted_summaries(sbi, start_blk);
  2090. else
  2091. write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
  2092. }
  2093. void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
  2094. {
  2095. write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
  2096. }
  2097. int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
  2098. unsigned int val, int alloc)
  2099. {
  2100. int i;
  2101. if (type == NAT_JOURNAL) {
  2102. for (i = 0; i < nats_in_cursum(journal); i++) {
  2103. if (le32_to_cpu(nid_in_journal(journal, i)) == val)
  2104. return i;
  2105. }
  2106. if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
  2107. return update_nats_in_cursum(journal, 1);
  2108. } else if (type == SIT_JOURNAL) {
  2109. for (i = 0; i < sits_in_cursum(journal); i++)
  2110. if (le32_to_cpu(segno_in_journal(journal, i)) == val)
  2111. return i;
  2112. if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
  2113. return update_sits_in_cursum(journal, 1);
  2114. }
  2115. return -1;
  2116. }
  2117. static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
  2118. unsigned int segno)
  2119. {
  2120. return get_meta_page(sbi, current_sit_addr(sbi, segno));
  2121. }
  2122. static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
  2123. unsigned int start)
  2124. {
  2125. struct sit_info *sit_i = SIT_I(sbi);
  2126. struct page *src_page, *dst_page;
  2127. pgoff_t src_off, dst_off;
  2128. void *src_addr, *dst_addr;
  2129. src_off = current_sit_addr(sbi, start);
  2130. dst_off = next_sit_addr(sbi, src_off);
  2131. /* get current sit block page without lock */
  2132. src_page = get_meta_page(sbi, src_off);
  2133. dst_page = grab_meta_page(sbi, dst_off);
  2134. f2fs_bug_on(sbi, PageDirty(src_page));
  2135. src_addr = page_address(src_page);
  2136. dst_addr = page_address(dst_page);
  2137. memcpy(dst_addr, src_addr, PAGE_SIZE);
  2138. set_page_dirty(dst_page);
  2139. f2fs_put_page(src_page, 1);
  2140. set_to_next_sit(sit_i, start);
  2141. return dst_page;
  2142. }
  2143. static struct sit_entry_set *grab_sit_entry_set(void)
  2144. {
  2145. struct sit_entry_set *ses =
  2146. f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
  2147. ses->entry_cnt = 0;
  2148. INIT_LIST_HEAD(&ses->set_list);
  2149. return ses;
  2150. }
  2151. static void release_sit_entry_set(struct sit_entry_set *ses)
  2152. {
  2153. list_del(&ses->set_list);
  2154. kmem_cache_free(sit_entry_set_slab, ses);
  2155. }
  2156. static void adjust_sit_entry_set(struct sit_entry_set *ses,
  2157. struct list_head *head)
  2158. {
  2159. struct sit_entry_set *next = ses;
  2160. if (list_is_last(&ses->set_list, head))
  2161. return;
  2162. list_for_each_entry_continue(next, head, set_list)
  2163. if (ses->entry_cnt <= next->entry_cnt)
  2164. break;
  2165. list_move_tail(&ses->set_list, &next->set_list);
  2166. }
  2167. static void add_sit_entry(unsigned int segno, struct list_head *head)
  2168. {
  2169. struct sit_entry_set *ses;
  2170. unsigned int start_segno = START_SEGNO(segno);
  2171. list_for_each_entry(ses, head, set_list) {
  2172. if (ses->start_segno == start_segno) {
  2173. ses->entry_cnt++;
  2174. adjust_sit_entry_set(ses, head);
  2175. return;
  2176. }
  2177. }
  2178. ses = grab_sit_entry_set();
  2179. ses->start_segno = start_segno;
  2180. ses->entry_cnt++;
  2181. list_add(&ses->set_list, head);
  2182. }
  2183. static void add_sits_in_set(struct f2fs_sb_info *sbi)
  2184. {
  2185. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2186. struct list_head *set_list = &sm_info->sit_entry_set;
  2187. unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
  2188. unsigned int segno;
  2189. for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
  2190. add_sit_entry(segno, set_list);
  2191. }
  2192. static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
  2193. {
  2194. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2195. struct f2fs_journal *journal = curseg->journal;
  2196. int i;
  2197. down_write(&curseg->journal_rwsem);
  2198. for (i = 0; i < sits_in_cursum(journal); i++) {
  2199. unsigned int segno;
  2200. bool dirtied;
  2201. segno = le32_to_cpu(segno_in_journal(journal, i));
  2202. dirtied = __mark_sit_entry_dirty(sbi, segno);
  2203. if (!dirtied)
  2204. add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
  2205. }
  2206. update_sits_in_cursum(journal, -i);
  2207. up_write(&curseg->journal_rwsem);
  2208. }
  2209. /*
  2210. * CP calls this function, which flushes SIT entries including sit_journal,
  2211. * and moves prefree segs to free segs.
  2212. */
  2213. void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  2214. {
  2215. struct sit_info *sit_i = SIT_I(sbi);
  2216. unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
  2217. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2218. struct f2fs_journal *journal = curseg->journal;
  2219. struct sit_entry_set *ses, *tmp;
  2220. struct list_head *head = &SM_I(sbi)->sit_entry_set;
  2221. bool to_journal = true;
  2222. struct seg_entry *se;
  2223. mutex_lock(&sit_i->sentry_lock);
  2224. if (!sit_i->dirty_sentries)
  2225. goto out;
  2226. /*
  2227. * add and account sit entries of dirty bitmap in sit entry
  2228. * set temporarily
  2229. */
  2230. add_sits_in_set(sbi);
  2231. /*
  2232. * if there are no enough space in journal to store dirty sit
  2233. * entries, remove all entries from journal and add and account
  2234. * them in sit entry set.
  2235. */
  2236. if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
  2237. remove_sits_in_journal(sbi);
  2238. /*
  2239. * there are two steps to flush sit entries:
  2240. * #1, flush sit entries to journal in current cold data summary block.
  2241. * #2, flush sit entries to sit page.
  2242. */
  2243. list_for_each_entry_safe(ses, tmp, head, set_list) {
  2244. struct page *page = NULL;
  2245. struct f2fs_sit_block *raw_sit = NULL;
  2246. unsigned int start_segno = ses->start_segno;
  2247. unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
  2248. (unsigned long)MAIN_SEGS(sbi));
  2249. unsigned int segno = start_segno;
  2250. if (to_journal &&
  2251. !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
  2252. to_journal = false;
  2253. if (to_journal) {
  2254. down_write(&curseg->journal_rwsem);
  2255. } else {
  2256. page = get_next_sit_page(sbi, start_segno);
  2257. raw_sit = page_address(page);
  2258. }
  2259. /* flush dirty sit entries in region of current sit set */
  2260. for_each_set_bit_from(segno, bitmap, end) {
  2261. int offset, sit_offset;
  2262. se = get_seg_entry(sbi, segno);
  2263. /* add discard candidates */
  2264. if (cpc->reason != CP_DISCARD) {
  2265. cpc->trim_start = segno;
  2266. add_discard_addrs(sbi, cpc, false);
  2267. }
  2268. if (to_journal) {
  2269. offset = lookup_journal_in_cursum(journal,
  2270. SIT_JOURNAL, segno, 1);
  2271. f2fs_bug_on(sbi, offset < 0);
  2272. segno_in_journal(journal, offset) =
  2273. cpu_to_le32(segno);
  2274. seg_info_to_raw_sit(se,
  2275. &sit_in_journal(journal, offset));
  2276. } else {
  2277. sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
  2278. seg_info_to_raw_sit(se,
  2279. &raw_sit->entries[sit_offset]);
  2280. }
  2281. __clear_bit(segno, bitmap);
  2282. sit_i->dirty_sentries--;
  2283. ses->entry_cnt--;
  2284. }
  2285. if (to_journal)
  2286. up_write(&curseg->journal_rwsem);
  2287. else
  2288. f2fs_put_page(page, 1);
  2289. f2fs_bug_on(sbi, ses->entry_cnt);
  2290. release_sit_entry_set(ses);
  2291. }
  2292. f2fs_bug_on(sbi, !list_empty(head));
  2293. f2fs_bug_on(sbi, sit_i->dirty_sentries);
  2294. out:
  2295. if (cpc->reason == CP_DISCARD) {
  2296. __u64 trim_start = cpc->trim_start;
  2297. for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
  2298. add_discard_addrs(sbi, cpc, false);
  2299. cpc->trim_start = trim_start;
  2300. }
  2301. mutex_unlock(&sit_i->sentry_lock);
  2302. set_prefree_as_free_segments(sbi);
  2303. }
  2304. static int build_sit_info(struct f2fs_sb_info *sbi)
  2305. {
  2306. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2307. struct sit_info *sit_i;
  2308. unsigned int sit_segs, start;
  2309. char *src_bitmap;
  2310. unsigned int bitmap_size;
  2311. /* allocate memory for SIT information */
  2312. sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
  2313. if (!sit_i)
  2314. return -ENOMEM;
  2315. SM_I(sbi)->sit_info = sit_i;
  2316. sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
  2317. sizeof(struct seg_entry), GFP_KERNEL);
  2318. if (!sit_i->sentries)
  2319. return -ENOMEM;
  2320. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2321. sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2322. if (!sit_i->dirty_sentries_bitmap)
  2323. return -ENOMEM;
  2324. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2325. sit_i->sentries[start].cur_valid_map
  2326. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2327. sit_i->sentries[start].ckpt_valid_map
  2328. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2329. if (!sit_i->sentries[start].cur_valid_map ||
  2330. !sit_i->sentries[start].ckpt_valid_map)
  2331. return -ENOMEM;
  2332. #ifdef CONFIG_F2FS_CHECK_FS
  2333. sit_i->sentries[start].cur_valid_map_mir
  2334. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2335. if (!sit_i->sentries[start].cur_valid_map_mir)
  2336. return -ENOMEM;
  2337. #endif
  2338. if (f2fs_discard_en(sbi)) {
  2339. sit_i->sentries[start].discard_map
  2340. = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2341. if (!sit_i->sentries[start].discard_map)
  2342. return -ENOMEM;
  2343. }
  2344. }
  2345. sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
  2346. if (!sit_i->tmp_map)
  2347. return -ENOMEM;
  2348. if (sbi->segs_per_sec > 1) {
  2349. sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
  2350. sizeof(struct sec_entry), GFP_KERNEL);
  2351. if (!sit_i->sec_entries)
  2352. return -ENOMEM;
  2353. }
  2354. /* get information related with SIT */
  2355. sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
  2356. /* setup SIT bitmap from ckeckpoint pack */
  2357. bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
  2358. src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
  2359. sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2360. if (!sit_i->sit_bitmap)
  2361. return -ENOMEM;
  2362. #ifdef CONFIG_F2FS_CHECK_FS
  2363. sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
  2364. if (!sit_i->sit_bitmap_mir)
  2365. return -ENOMEM;
  2366. #endif
  2367. /* init SIT information */
  2368. sit_i->s_ops = &default_salloc_ops;
  2369. sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
  2370. sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
  2371. sit_i->written_valid_blocks = 0;
  2372. sit_i->bitmap_size = bitmap_size;
  2373. sit_i->dirty_sentries = 0;
  2374. sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
  2375. sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
  2376. sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
  2377. mutex_init(&sit_i->sentry_lock);
  2378. return 0;
  2379. }
  2380. static int build_free_segmap(struct f2fs_sb_info *sbi)
  2381. {
  2382. struct free_segmap_info *free_i;
  2383. unsigned int bitmap_size, sec_bitmap_size;
  2384. /* allocate memory for free segmap information */
  2385. free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
  2386. if (!free_i)
  2387. return -ENOMEM;
  2388. SM_I(sbi)->free_info = free_i;
  2389. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2390. free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
  2391. if (!free_i->free_segmap)
  2392. return -ENOMEM;
  2393. sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2394. free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
  2395. if (!free_i->free_secmap)
  2396. return -ENOMEM;
  2397. /* set all segments as dirty temporarily */
  2398. memset(free_i->free_segmap, 0xff, bitmap_size);
  2399. memset(free_i->free_secmap, 0xff, sec_bitmap_size);
  2400. /* init free segmap information */
  2401. free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
  2402. free_i->free_segments = 0;
  2403. free_i->free_sections = 0;
  2404. spin_lock_init(&free_i->segmap_lock);
  2405. return 0;
  2406. }
  2407. static int build_curseg(struct f2fs_sb_info *sbi)
  2408. {
  2409. struct curseg_info *array;
  2410. int i;
  2411. array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
  2412. if (!array)
  2413. return -ENOMEM;
  2414. SM_I(sbi)->curseg_array = array;
  2415. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2416. mutex_init(&array[i].curseg_mutex);
  2417. array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
  2418. if (!array[i].sum_blk)
  2419. return -ENOMEM;
  2420. init_rwsem(&array[i].journal_rwsem);
  2421. array[i].journal = kzalloc(sizeof(struct f2fs_journal),
  2422. GFP_KERNEL);
  2423. if (!array[i].journal)
  2424. return -ENOMEM;
  2425. array[i].segno = NULL_SEGNO;
  2426. array[i].next_blkoff = 0;
  2427. }
  2428. return restore_curseg_summaries(sbi);
  2429. }
  2430. static void build_sit_entries(struct f2fs_sb_info *sbi)
  2431. {
  2432. struct sit_info *sit_i = SIT_I(sbi);
  2433. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
  2434. struct f2fs_journal *journal = curseg->journal;
  2435. struct seg_entry *se;
  2436. struct f2fs_sit_entry sit;
  2437. int sit_blk_cnt = SIT_BLK_CNT(sbi);
  2438. unsigned int i, start, end;
  2439. unsigned int readed, start_blk = 0;
  2440. do {
  2441. readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
  2442. META_SIT, true);
  2443. start = start_blk * sit_i->sents_per_block;
  2444. end = (start_blk + readed) * sit_i->sents_per_block;
  2445. for (; start < end && start < MAIN_SEGS(sbi); start++) {
  2446. struct f2fs_sit_block *sit_blk;
  2447. struct page *page;
  2448. se = &sit_i->sentries[start];
  2449. page = get_current_sit_page(sbi, start);
  2450. sit_blk = (struct f2fs_sit_block *)page_address(page);
  2451. sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
  2452. f2fs_put_page(page, 1);
  2453. check_block_count(sbi, start, &sit);
  2454. seg_info_from_raw_sit(se, &sit);
  2455. /* build discard map only one time */
  2456. if (f2fs_discard_en(sbi)) {
  2457. memcpy(se->discard_map, se->cur_valid_map,
  2458. SIT_VBLOCK_MAP_SIZE);
  2459. sbi->discard_blks += sbi->blocks_per_seg -
  2460. se->valid_blocks;
  2461. }
  2462. if (sbi->segs_per_sec > 1)
  2463. get_sec_entry(sbi, start)->valid_blocks +=
  2464. se->valid_blocks;
  2465. }
  2466. start_blk += readed;
  2467. } while (start_blk < sit_blk_cnt);
  2468. down_read(&curseg->journal_rwsem);
  2469. for (i = 0; i < sits_in_cursum(journal); i++) {
  2470. unsigned int old_valid_blocks;
  2471. start = le32_to_cpu(segno_in_journal(journal, i));
  2472. se = &sit_i->sentries[start];
  2473. sit = sit_in_journal(journal, i);
  2474. old_valid_blocks = se->valid_blocks;
  2475. check_block_count(sbi, start, &sit);
  2476. seg_info_from_raw_sit(se, &sit);
  2477. if (f2fs_discard_en(sbi)) {
  2478. memcpy(se->discard_map, se->cur_valid_map,
  2479. SIT_VBLOCK_MAP_SIZE);
  2480. sbi->discard_blks += old_valid_blocks -
  2481. se->valid_blocks;
  2482. }
  2483. if (sbi->segs_per_sec > 1)
  2484. get_sec_entry(sbi, start)->valid_blocks +=
  2485. se->valid_blocks - old_valid_blocks;
  2486. }
  2487. up_read(&curseg->journal_rwsem);
  2488. }
  2489. static void init_free_segmap(struct f2fs_sb_info *sbi)
  2490. {
  2491. unsigned int start;
  2492. int type;
  2493. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2494. struct seg_entry *sentry = get_seg_entry(sbi, start);
  2495. if (!sentry->valid_blocks)
  2496. __set_free(sbi, start);
  2497. else
  2498. SIT_I(sbi)->written_valid_blocks +=
  2499. sentry->valid_blocks;
  2500. }
  2501. /* set use the current segments */
  2502. for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
  2503. struct curseg_info *curseg_t = CURSEG_I(sbi, type);
  2504. __set_test_and_inuse(sbi, curseg_t->segno);
  2505. }
  2506. }
  2507. static void init_dirty_segmap(struct f2fs_sb_info *sbi)
  2508. {
  2509. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2510. struct free_segmap_info *free_i = FREE_I(sbi);
  2511. unsigned int segno = 0, offset = 0;
  2512. unsigned short valid_blocks;
  2513. while (1) {
  2514. /* find dirty segment based on free segmap */
  2515. segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
  2516. if (segno >= MAIN_SEGS(sbi))
  2517. break;
  2518. offset = segno + 1;
  2519. valid_blocks = get_valid_blocks(sbi, segno, false);
  2520. if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
  2521. continue;
  2522. if (valid_blocks > sbi->blocks_per_seg) {
  2523. f2fs_bug_on(sbi, 1);
  2524. continue;
  2525. }
  2526. mutex_lock(&dirty_i->seglist_lock);
  2527. __locate_dirty_segment(sbi, segno, DIRTY);
  2528. mutex_unlock(&dirty_i->seglist_lock);
  2529. }
  2530. }
  2531. static int init_victim_secmap(struct f2fs_sb_info *sbi)
  2532. {
  2533. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2534. unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
  2535. dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2536. if (!dirty_i->victim_secmap)
  2537. return -ENOMEM;
  2538. return 0;
  2539. }
  2540. static int build_dirty_segmap(struct f2fs_sb_info *sbi)
  2541. {
  2542. struct dirty_seglist_info *dirty_i;
  2543. unsigned int bitmap_size, i;
  2544. /* allocate memory for dirty segments list information */
  2545. dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
  2546. if (!dirty_i)
  2547. return -ENOMEM;
  2548. SM_I(sbi)->dirty_info = dirty_i;
  2549. mutex_init(&dirty_i->seglist_lock);
  2550. bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
  2551. for (i = 0; i < NR_DIRTY_TYPE; i++) {
  2552. dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
  2553. if (!dirty_i->dirty_segmap[i])
  2554. return -ENOMEM;
  2555. }
  2556. init_dirty_segmap(sbi);
  2557. return init_victim_secmap(sbi);
  2558. }
  2559. /*
  2560. * Update min, max modified time for cost-benefit GC algorithm
  2561. */
  2562. static void init_min_max_mtime(struct f2fs_sb_info *sbi)
  2563. {
  2564. struct sit_info *sit_i = SIT_I(sbi);
  2565. unsigned int segno;
  2566. mutex_lock(&sit_i->sentry_lock);
  2567. sit_i->min_mtime = LLONG_MAX;
  2568. for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
  2569. unsigned int i;
  2570. unsigned long long mtime = 0;
  2571. for (i = 0; i < sbi->segs_per_sec; i++)
  2572. mtime += get_seg_entry(sbi, segno + i)->mtime;
  2573. mtime = div_u64(mtime, sbi->segs_per_sec);
  2574. if (sit_i->min_mtime > mtime)
  2575. sit_i->min_mtime = mtime;
  2576. }
  2577. sit_i->max_mtime = get_mtime(sbi);
  2578. mutex_unlock(&sit_i->sentry_lock);
  2579. }
  2580. int build_segment_manager(struct f2fs_sb_info *sbi)
  2581. {
  2582. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  2583. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  2584. struct f2fs_sm_info *sm_info;
  2585. int err;
  2586. sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
  2587. if (!sm_info)
  2588. return -ENOMEM;
  2589. /* init sm info */
  2590. sbi->sm_info = sm_info;
  2591. sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
  2592. sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
  2593. sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
  2594. sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
  2595. sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
  2596. sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
  2597. sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
  2598. sm_info->rec_prefree_segments = sm_info->main_segments *
  2599. DEF_RECLAIM_PREFREE_SEGMENTS / 100;
  2600. if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
  2601. sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
  2602. if (!test_opt(sbi, LFS))
  2603. sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
  2604. sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
  2605. sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
  2606. sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
  2607. sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
  2608. INIT_LIST_HEAD(&sm_info->sit_entry_set);
  2609. if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
  2610. err = create_flush_cmd_control(sbi);
  2611. if (err)
  2612. return err;
  2613. }
  2614. err = create_discard_cmd_control(sbi);
  2615. if (err)
  2616. return err;
  2617. err = build_sit_info(sbi);
  2618. if (err)
  2619. return err;
  2620. err = build_free_segmap(sbi);
  2621. if (err)
  2622. return err;
  2623. err = build_curseg(sbi);
  2624. if (err)
  2625. return err;
  2626. /* reinit free segmap based on SIT */
  2627. build_sit_entries(sbi);
  2628. init_free_segmap(sbi);
  2629. err = build_dirty_segmap(sbi);
  2630. if (err)
  2631. return err;
  2632. init_min_max_mtime(sbi);
  2633. return 0;
  2634. }
  2635. static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
  2636. enum dirty_type dirty_type)
  2637. {
  2638. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2639. mutex_lock(&dirty_i->seglist_lock);
  2640. kvfree(dirty_i->dirty_segmap[dirty_type]);
  2641. dirty_i->nr_dirty[dirty_type] = 0;
  2642. mutex_unlock(&dirty_i->seglist_lock);
  2643. }
  2644. static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
  2645. {
  2646. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2647. kvfree(dirty_i->victim_secmap);
  2648. }
  2649. static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
  2650. {
  2651. struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
  2652. int i;
  2653. if (!dirty_i)
  2654. return;
  2655. /* discard pre-free/dirty segments list */
  2656. for (i = 0; i < NR_DIRTY_TYPE; i++)
  2657. discard_dirty_segmap(sbi, i);
  2658. destroy_victim_secmap(sbi);
  2659. SM_I(sbi)->dirty_info = NULL;
  2660. kfree(dirty_i);
  2661. }
  2662. static void destroy_curseg(struct f2fs_sb_info *sbi)
  2663. {
  2664. struct curseg_info *array = SM_I(sbi)->curseg_array;
  2665. int i;
  2666. if (!array)
  2667. return;
  2668. SM_I(sbi)->curseg_array = NULL;
  2669. for (i = 0; i < NR_CURSEG_TYPE; i++) {
  2670. kfree(array[i].sum_blk);
  2671. kfree(array[i].journal);
  2672. }
  2673. kfree(array);
  2674. }
  2675. static void destroy_free_segmap(struct f2fs_sb_info *sbi)
  2676. {
  2677. struct free_segmap_info *free_i = SM_I(sbi)->free_info;
  2678. if (!free_i)
  2679. return;
  2680. SM_I(sbi)->free_info = NULL;
  2681. kvfree(free_i->free_segmap);
  2682. kvfree(free_i->free_secmap);
  2683. kfree(free_i);
  2684. }
  2685. static void destroy_sit_info(struct f2fs_sb_info *sbi)
  2686. {
  2687. struct sit_info *sit_i = SIT_I(sbi);
  2688. unsigned int start;
  2689. if (!sit_i)
  2690. return;
  2691. if (sit_i->sentries) {
  2692. for (start = 0; start < MAIN_SEGS(sbi); start++) {
  2693. kfree(sit_i->sentries[start].cur_valid_map);
  2694. #ifdef CONFIG_F2FS_CHECK_FS
  2695. kfree(sit_i->sentries[start].cur_valid_map_mir);
  2696. #endif
  2697. kfree(sit_i->sentries[start].ckpt_valid_map);
  2698. kfree(sit_i->sentries[start].discard_map);
  2699. }
  2700. }
  2701. kfree(sit_i->tmp_map);
  2702. kvfree(sit_i->sentries);
  2703. kvfree(sit_i->sec_entries);
  2704. kvfree(sit_i->dirty_sentries_bitmap);
  2705. SM_I(sbi)->sit_info = NULL;
  2706. kfree(sit_i->sit_bitmap);
  2707. #ifdef CONFIG_F2FS_CHECK_FS
  2708. kfree(sit_i->sit_bitmap_mir);
  2709. #endif
  2710. kfree(sit_i);
  2711. }
  2712. void destroy_segment_manager(struct f2fs_sb_info *sbi)
  2713. {
  2714. struct f2fs_sm_info *sm_info = SM_I(sbi);
  2715. if (!sm_info)
  2716. return;
  2717. destroy_flush_cmd_control(sbi, true);
  2718. destroy_discard_cmd_control(sbi);
  2719. destroy_dirty_segmap(sbi);
  2720. destroy_curseg(sbi);
  2721. destroy_free_segmap(sbi);
  2722. destroy_sit_info(sbi);
  2723. sbi->sm_info = NULL;
  2724. kfree(sm_info);
  2725. }
  2726. int __init create_segment_manager_caches(void)
  2727. {
  2728. discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
  2729. sizeof(struct discard_entry));
  2730. if (!discard_entry_slab)
  2731. goto fail;
  2732. discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
  2733. sizeof(struct discard_cmd));
  2734. if (!discard_cmd_slab)
  2735. goto destroy_discard_entry;
  2736. sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
  2737. sizeof(struct sit_entry_set));
  2738. if (!sit_entry_set_slab)
  2739. goto destroy_discard_cmd;
  2740. inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
  2741. sizeof(struct inmem_pages));
  2742. if (!inmem_entry_slab)
  2743. goto destroy_sit_entry_set;
  2744. return 0;
  2745. destroy_sit_entry_set:
  2746. kmem_cache_destroy(sit_entry_set_slab);
  2747. destroy_discard_cmd:
  2748. kmem_cache_destroy(discard_cmd_slab);
  2749. destroy_discard_entry:
  2750. kmem_cache_destroy(discard_entry_slab);
  2751. fail:
  2752. return -ENOMEM;
  2753. }
  2754. void destroy_segment_manager_caches(void)
  2755. {
  2756. kmem_cache_destroy(sit_entry_set_slab);
  2757. kmem_cache_destroy(discard_cmd_slab);
  2758. kmem_cache_destroy(discard_entry_slab);
  2759. kmem_cache_destroy(inmem_entry_slab);
  2760. }