md.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/config.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/devfs_fs_kernel.h>
  34. #include <linux/buffer_head.h> /* for invalidate_bdev */
  35. #include <linux/suspend.h>
  36. #include <linux/init.h>
  37. #include <linux/file.h>
  38. #ifdef CONFIG_KMOD
  39. #include <linux/kmod.h>
  40. #endif
  41. #include <asm/unaligned.h>
  42. #define MAJOR_NR MD_MAJOR
  43. #define MD_DRIVER
  44. /* 63 partitions with the alternate major number (mdp) */
  45. #define MdpMinorShift 6
  46. #define DEBUG 0
  47. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  48. #ifndef MODULE
  49. static void autostart_arrays (int part);
  50. #endif
  51. static mdk_personality_t *pers[MAX_PERSONALITY];
  52. static DEFINE_SPINLOCK(pers_lock);
  53. /*
  54. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  55. * is 1000 KB/sec, so the extra system load does not show up that much.
  56. * Increase it if you want to have more _guaranteed_ speed. Note that
  57. * the RAID driver will use the maximum available bandwidth if the IO
  58. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  59. * speed limit - in case reconstruction slows down your system despite
  60. * idle IO detection.
  61. *
  62. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  63. */
  64. static int sysctl_speed_limit_min = 1000;
  65. static int sysctl_speed_limit_max = 200000;
  66. static struct ctl_table_header *raid_table_header;
  67. static ctl_table raid_table[] = {
  68. {
  69. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  70. .procname = "speed_limit_min",
  71. .data = &sysctl_speed_limit_min,
  72. .maxlen = sizeof(int),
  73. .mode = 0644,
  74. .proc_handler = &proc_dointvec,
  75. },
  76. {
  77. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  78. .procname = "speed_limit_max",
  79. .data = &sysctl_speed_limit_max,
  80. .maxlen = sizeof(int),
  81. .mode = 0644,
  82. .proc_handler = &proc_dointvec,
  83. },
  84. { .ctl_name = 0 }
  85. };
  86. static ctl_table raid_dir_table[] = {
  87. {
  88. .ctl_name = DEV_RAID,
  89. .procname = "raid",
  90. .maxlen = 0,
  91. .mode = 0555,
  92. .child = raid_table,
  93. },
  94. { .ctl_name = 0 }
  95. };
  96. static ctl_table raid_root_table[] = {
  97. {
  98. .ctl_name = CTL_DEV,
  99. .procname = "dev",
  100. .maxlen = 0,
  101. .mode = 0555,
  102. .child = raid_dir_table,
  103. },
  104. { .ctl_name = 0 }
  105. };
  106. static struct block_device_operations md_fops;
  107. /*
  108. * Enables to iterate over all existing md arrays
  109. * all_mddevs_lock protects this list.
  110. */
  111. static LIST_HEAD(all_mddevs);
  112. static DEFINE_SPINLOCK(all_mddevs_lock);
  113. /*
  114. * iterates through all used mddevs in the system.
  115. * We take care to grab the all_mddevs_lock whenever navigating
  116. * the list, and to always hold a refcount when unlocked.
  117. * Any code which breaks out of this loop while own
  118. * a reference to the current mddev and must mddev_put it.
  119. */
  120. #define ITERATE_MDDEV(mddev,tmp) \
  121. \
  122. for (({ spin_lock(&all_mddevs_lock); \
  123. tmp = all_mddevs.next; \
  124. mddev = NULL;}); \
  125. ({ if (tmp != &all_mddevs) \
  126. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  127. spin_unlock(&all_mddevs_lock); \
  128. if (mddev) mddev_put(mddev); \
  129. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  130. tmp != &all_mddevs;}); \
  131. ({ spin_lock(&all_mddevs_lock); \
  132. tmp = tmp->next;}) \
  133. )
  134. static int md_fail_request (request_queue_t *q, struct bio *bio)
  135. {
  136. bio_io_error(bio, bio->bi_size);
  137. return 0;
  138. }
  139. static inline mddev_t *mddev_get(mddev_t *mddev)
  140. {
  141. atomic_inc(&mddev->active);
  142. return mddev;
  143. }
  144. static void mddev_put(mddev_t *mddev)
  145. {
  146. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  147. return;
  148. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  149. list_del(&mddev->all_mddevs);
  150. blk_put_queue(mddev->queue);
  151. kobject_unregister(&mddev->kobj);
  152. }
  153. spin_unlock(&all_mddevs_lock);
  154. }
  155. static mddev_t * mddev_find(dev_t unit)
  156. {
  157. mddev_t *mddev, *new = NULL;
  158. retry:
  159. spin_lock(&all_mddevs_lock);
  160. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  161. if (mddev->unit == unit) {
  162. mddev_get(mddev);
  163. spin_unlock(&all_mddevs_lock);
  164. kfree(new);
  165. return mddev;
  166. }
  167. if (new) {
  168. list_add(&new->all_mddevs, &all_mddevs);
  169. spin_unlock(&all_mddevs_lock);
  170. return new;
  171. }
  172. spin_unlock(&all_mddevs_lock);
  173. new = (mddev_t *) kmalloc(sizeof(*new), GFP_KERNEL);
  174. if (!new)
  175. return NULL;
  176. memset(new, 0, sizeof(*new));
  177. new->unit = unit;
  178. if (MAJOR(unit) == MD_MAJOR)
  179. new->md_minor = MINOR(unit);
  180. else
  181. new->md_minor = MINOR(unit) >> MdpMinorShift;
  182. init_MUTEX(&new->reconfig_sem);
  183. INIT_LIST_HEAD(&new->disks);
  184. INIT_LIST_HEAD(&new->all_mddevs);
  185. init_timer(&new->safemode_timer);
  186. atomic_set(&new->active, 1);
  187. spin_lock_init(&new->write_lock);
  188. init_waitqueue_head(&new->sb_wait);
  189. new->queue = blk_alloc_queue(GFP_KERNEL);
  190. if (!new->queue) {
  191. kfree(new);
  192. return NULL;
  193. }
  194. blk_queue_make_request(new->queue, md_fail_request);
  195. goto retry;
  196. }
  197. static inline int mddev_lock(mddev_t * mddev)
  198. {
  199. return down_interruptible(&mddev->reconfig_sem);
  200. }
  201. static inline void mddev_lock_uninterruptible(mddev_t * mddev)
  202. {
  203. down(&mddev->reconfig_sem);
  204. }
  205. static inline int mddev_trylock(mddev_t * mddev)
  206. {
  207. return down_trylock(&mddev->reconfig_sem);
  208. }
  209. static inline void mddev_unlock(mddev_t * mddev)
  210. {
  211. up(&mddev->reconfig_sem);
  212. md_wakeup_thread(mddev->thread);
  213. }
  214. mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  215. {
  216. mdk_rdev_t * rdev;
  217. struct list_head *tmp;
  218. ITERATE_RDEV(mddev,rdev,tmp) {
  219. if (rdev->desc_nr == nr)
  220. return rdev;
  221. }
  222. return NULL;
  223. }
  224. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  225. {
  226. struct list_head *tmp;
  227. mdk_rdev_t *rdev;
  228. ITERATE_RDEV(mddev,rdev,tmp) {
  229. if (rdev->bdev->bd_dev == dev)
  230. return rdev;
  231. }
  232. return NULL;
  233. }
  234. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  235. {
  236. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  237. return MD_NEW_SIZE_BLOCKS(size);
  238. }
  239. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  240. {
  241. sector_t size;
  242. size = rdev->sb_offset;
  243. if (chunk_size)
  244. size &= ~((sector_t)chunk_size/1024 - 1);
  245. return size;
  246. }
  247. static int alloc_disk_sb(mdk_rdev_t * rdev)
  248. {
  249. if (rdev->sb_page)
  250. MD_BUG();
  251. rdev->sb_page = alloc_page(GFP_KERNEL);
  252. if (!rdev->sb_page) {
  253. printk(KERN_ALERT "md: out of memory.\n");
  254. return -EINVAL;
  255. }
  256. return 0;
  257. }
  258. static void free_disk_sb(mdk_rdev_t * rdev)
  259. {
  260. if (rdev->sb_page) {
  261. page_cache_release(rdev->sb_page);
  262. rdev->sb_loaded = 0;
  263. rdev->sb_page = NULL;
  264. rdev->sb_offset = 0;
  265. rdev->size = 0;
  266. }
  267. }
  268. static int super_written(struct bio *bio, unsigned int bytes_done, int error)
  269. {
  270. mdk_rdev_t *rdev = bio->bi_private;
  271. if (bio->bi_size)
  272. return 1;
  273. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
  274. md_error(rdev->mddev, rdev);
  275. if (atomic_dec_and_test(&rdev->mddev->pending_writes))
  276. wake_up(&rdev->mddev->sb_wait);
  277. bio_put(bio);
  278. return 0;
  279. }
  280. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  281. sector_t sector, int size, struct page *page)
  282. {
  283. /* write first size bytes of page to sector of rdev
  284. * Increment mddev->pending_writes before returning
  285. * and decrement it on completion, waking up sb_wait
  286. * if zero is reached.
  287. * If an error occurred, call md_error
  288. */
  289. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  290. bio->bi_bdev = rdev->bdev;
  291. bio->bi_sector = sector;
  292. bio_add_page(bio, page, size, 0);
  293. bio->bi_private = rdev;
  294. bio->bi_end_io = super_written;
  295. atomic_inc(&mddev->pending_writes);
  296. submit_bio((1<<BIO_RW)|(1<<BIO_RW_SYNC), bio);
  297. }
  298. static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
  299. {
  300. if (bio->bi_size)
  301. return 1;
  302. complete((struct completion*)bio->bi_private);
  303. return 0;
  304. }
  305. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  306. struct page *page, int rw)
  307. {
  308. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  309. struct completion event;
  310. int ret;
  311. rw |= (1 << BIO_RW_SYNC);
  312. bio->bi_bdev = bdev;
  313. bio->bi_sector = sector;
  314. bio_add_page(bio, page, size, 0);
  315. init_completion(&event);
  316. bio->bi_private = &event;
  317. bio->bi_end_io = bi_complete;
  318. submit_bio(rw, bio);
  319. wait_for_completion(&event);
  320. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  321. bio_put(bio);
  322. return ret;
  323. }
  324. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  325. {
  326. char b[BDEVNAME_SIZE];
  327. if (!rdev->sb_page) {
  328. MD_BUG();
  329. return -EINVAL;
  330. }
  331. if (rdev->sb_loaded)
  332. return 0;
  333. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  334. goto fail;
  335. rdev->sb_loaded = 1;
  336. return 0;
  337. fail:
  338. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  339. bdevname(rdev->bdev,b));
  340. return -EINVAL;
  341. }
  342. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  343. {
  344. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  345. (sb1->set_uuid1 == sb2->set_uuid1) &&
  346. (sb1->set_uuid2 == sb2->set_uuid2) &&
  347. (sb1->set_uuid3 == sb2->set_uuid3))
  348. return 1;
  349. return 0;
  350. }
  351. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  352. {
  353. int ret;
  354. mdp_super_t *tmp1, *tmp2;
  355. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  356. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  357. if (!tmp1 || !tmp2) {
  358. ret = 0;
  359. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  360. goto abort;
  361. }
  362. *tmp1 = *sb1;
  363. *tmp2 = *sb2;
  364. /*
  365. * nr_disks is not constant
  366. */
  367. tmp1->nr_disks = 0;
  368. tmp2->nr_disks = 0;
  369. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  370. ret = 0;
  371. else
  372. ret = 1;
  373. abort:
  374. kfree(tmp1);
  375. kfree(tmp2);
  376. return ret;
  377. }
  378. static unsigned int calc_sb_csum(mdp_super_t * sb)
  379. {
  380. unsigned int disk_csum, csum;
  381. disk_csum = sb->sb_csum;
  382. sb->sb_csum = 0;
  383. csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
  384. sb->sb_csum = disk_csum;
  385. return csum;
  386. }
  387. /*
  388. * Handle superblock details.
  389. * We want to be able to handle multiple superblock formats
  390. * so we have a common interface to them all, and an array of
  391. * different handlers.
  392. * We rely on user-space to write the initial superblock, and support
  393. * reading and updating of superblocks.
  394. * Interface methods are:
  395. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  396. * loads and validates a superblock on dev.
  397. * if refdev != NULL, compare superblocks on both devices
  398. * Return:
  399. * 0 - dev has a superblock that is compatible with refdev
  400. * 1 - dev has a superblock that is compatible and newer than refdev
  401. * so dev should be used as the refdev in future
  402. * -EINVAL superblock incompatible or invalid
  403. * -othererror e.g. -EIO
  404. *
  405. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  406. * Verify that dev is acceptable into mddev.
  407. * The first time, mddev->raid_disks will be 0, and data from
  408. * dev should be merged in. Subsequent calls check that dev
  409. * is new enough. Return 0 or -EINVAL
  410. *
  411. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  412. * Update the superblock for rdev with data in mddev
  413. * This does not write to disc.
  414. *
  415. */
  416. struct super_type {
  417. char *name;
  418. struct module *owner;
  419. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  420. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  421. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  422. };
  423. /*
  424. * load_super for 0.90.0
  425. */
  426. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  427. {
  428. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  429. mdp_super_t *sb;
  430. int ret;
  431. sector_t sb_offset;
  432. /*
  433. * Calculate the position of the superblock,
  434. * it's at the end of the disk.
  435. *
  436. * It also happens to be a multiple of 4Kb.
  437. */
  438. sb_offset = calc_dev_sboffset(rdev->bdev);
  439. rdev->sb_offset = sb_offset;
  440. ret = read_disk_sb(rdev, MD_SB_BYTES);
  441. if (ret) return ret;
  442. ret = -EINVAL;
  443. bdevname(rdev->bdev, b);
  444. sb = (mdp_super_t*)page_address(rdev->sb_page);
  445. if (sb->md_magic != MD_SB_MAGIC) {
  446. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  447. b);
  448. goto abort;
  449. }
  450. if (sb->major_version != 0 ||
  451. sb->minor_version != 90) {
  452. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  453. sb->major_version, sb->minor_version,
  454. b);
  455. goto abort;
  456. }
  457. if (sb->raid_disks <= 0)
  458. goto abort;
  459. if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
  460. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  461. b);
  462. goto abort;
  463. }
  464. rdev->preferred_minor = sb->md_minor;
  465. rdev->data_offset = 0;
  466. rdev->sb_size = MD_SB_BYTES;
  467. if (sb->level == LEVEL_MULTIPATH)
  468. rdev->desc_nr = -1;
  469. else
  470. rdev->desc_nr = sb->this_disk.number;
  471. if (refdev == 0)
  472. ret = 1;
  473. else {
  474. __u64 ev1, ev2;
  475. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  476. if (!uuid_equal(refsb, sb)) {
  477. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  478. b, bdevname(refdev->bdev,b2));
  479. goto abort;
  480. }
  481. if (!sb_equal(refsb, sb)) {
  482. printk(KERN_WARNING "md: %s has same UUID"
  483. " but different superblock to %s\n",
  484. b, bdevname(refdev->bdev, b2));
  485. goto abort;
  486. }
  487. ev1 = md_event(sb);
  488. ev2 = md_event(refsb);
  489. if (ev1 > ev2)
  490. ret = 1;
  491. else
  492. ret = 0;
  493. }
  494. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  495. abort:
  496. return ret;
  497. }
  498. /*
  499. * validate_super for 0.90.0
  500. */
  501. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  502. {
  503. mdp_disk_t *desc;
  504. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  505. rdev->raid_disk = -1;
  506. rdev->in_sync = 0;
  507. if (mddev->raid_disks == 0) {
  508. mddev->major_version = 0;
  509. mddev->minor_version = sb->minor_version;
  510. mddev->patch_version = sb->patch_version;
  511. mddev->persistent = ! sb->not_persistent;
  512. mddev->chunk_size = sb->chunk_size;
  513. mddev->ctime = sb->ctime;
  514. mddev->utime = sb->utime;
  515. mddev->level = sb->level;
  516. mddev->layout = sb->layout;
  517. mddev->raid_disks = sb->raid_disks;
  518. mddev->size = sb->size;
  519. mddev->events = md_event(sb);
  520. mddev->bitmap_offset = 0;
  521. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  522. if (sb->state & (1<<MD_SB_CLEAN))
  523. mddev->recovery_cp = MaxSector;
  524. else {
  525. if (sb->events_hi == sb->cp_events_hi &&
  526. sb->events_lo == sb->cp_events_lo) {
  527. mddev->recovery_cp = sb->recovery_cp;
  528. } else
  529. mddev->recovery_cp = 0;
  530. }
  531. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  532. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  533. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  534. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  535. mddev->max_disks = MD_SB_DISKS;
  536. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  537. mddev->bitmap_file == NULL) {
  538. if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6) {
  539. /* FIXME use a better test */
  540. printk(KERN_WARNING "md: bitmaps only support for raid1\n");
  541. return -EINVAL;
  542. }
  543. mddev->bitmap_offset = mddev->default_bitmap_offset;
  544. }
  545. } else if (mddev->pers == NULL) {
  546. /* Insist on good event counter while assembling */
  547. __u64 ev1 = md_event(sb);
  548. ++ev1;
  549. if (ev1 < mddev->events)
  550. return -EINVAL;
  551. } else if (mddev->bitmap) {
  552. /* if adding to array with a bitmap, then we can accept an
  553. * older device ... but not too old.
  554. */
  555. __u64 ev1 = md_event(sb);
  556. if (ev1 < mddev->bitmap->events_cleared)
  557. return 0;
  558. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  559. return 0;
  560. if (mddev->level != LEVEL_MULTIPATH) {
  561. rdev->faulty = 0;
  562. rdev->flags = 0;
  563. desc = sb->disks + rdev->desc_nr;
  564. if (desc->state & (1<<MD_DISK_FAULTY))
  565. rdev->faulty = 1;
  566. else if (desc->state & (1<<MD_DISK_SYNC) &&
  567. desc->raid_disk < mddev->raid_disks) {
  568. rdev->in_sync = 1;
  569. rdev->raid_disk = desc->raid_disk;
  570. }
  571. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  572. set_bit(WriteMostly, &rdev->flags);
  573. } else /* MULTIPATH are always insync */
  574. rdev->in_sync = 1;
  575. return 0;
  576. }
  577. /*
  578. * sync_super for 0.90.0
  579. */
  580. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  581. {
  582. mdp_super_t *sb;
  583. struct list_head *tmp;
  584. mdk_rdev_t *rdev2;
  585. int next_spare = mddev->raid_disks;
  586. char nm[20];
  587. /* make rdev->sb match mddev data..
  588. *
  589. * 1/ zero out disks
  590. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  591. * 3/ any empty disks < next_spare become removed
  592. *
  593. * disks[0] gets initialised to REMOVED because
  594. * we cannot be sure from other fields if it has
  595. * been initialised or not.
  596. */
  597. int i;
  598. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  599. unsigned int fixdesc=0;
  600. rdev->sb_size = MD_SB_BYTES;
  601. sb = (mdp_super_t*)page_address(rdev->sb_page);
  602. memset(sb, 0, sizeof(*sb));
  603. sb->md_magic = MD_SB_MAGIC;
  604. sb->major_version = mddev->major_version;
  605. sb->minor_version = mddev->minor_version;
  606. sb->patch_version = mddev->patch_version;
  607. sb->gvalid_words = 0; /* ignored */
  608. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  609. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  610. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  611. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  612. sb->ctime = mddev->ctime;
  613. sb->level = mddev->level;
  614. sb->size = mddev->size;
  615. sb->raid_disks = mddev->raid_disks;
  616. sb->md_minor = mddev->md_minor;
  617. sb->not_persistent = !mddev->persistent;
  618. sb->utime = mddev->utime;
  619. sb->state = 0;
  620. sb->events_hi = (mddev->events>>32);
  621. sb->events_lo = (u32)mddev->events;
  622. if (mddev->in_sync)
  623. {
  624. sb->recovery_cp = mddev->recovery_cp;
  625. sb->cp_events_hi = (mddev->events>>32);
  626. sb->cp_events_lo = (u32)mddev->events;
  627. if (mddev->recovery_cp == MaxSector)
  628. sb->state = (1<< MD_SB_CLEAN);
  629. } else
  630. sb->recovery_cp = 0;
  631. sb->layout = mddev->layout;
  632. sb->chunk_size = mddev->chunk_size;
  633. if (mddev->bitmap && mddev->bitmap_file == NULL)
  634. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  635. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  636. ITERATE_RDEV(mddev,rdev2,tmp) {
  637. mdp_disk_t *d;
  638. int desc_nr;
  639. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  640. desc_nr = rdev2->raid_disk;
  641. else
  642. desc_nr = next_spare++;
  643. if (desc_nr != rdev2->desc_nr) {
  644. fixdesc |= (1 << desc_nr);
  645. rdev2->desc_nr = desc_nr;
  646. if (rdev2->raid_disk >= 0) {
  647. sprintf(nm, "rd%d", rdev2->raid_disk);
  648. sysfs_remove_link(&mddev->kobj, nm);
  649. }
  650. sysfs_remove_link(&rdev2->kobj, "block");
  651. kobject_del(&rdev2->kobj);
  652. }
  653. d = &sb->disks[rdev2->desc_nr];
  654. nr_disks++;
  655. d->number = rdev2->desc_nr;
  656. d->major = MAJOR(rdev2->bdev->bd_dev);
  657. d->minor = MINOR(rdev2->bdev->bd_dev);
  658. if (rdev2->raid_disk >= 0 && rdev2->in_sync && !rdev2->faulty)
  659. d->raid_disk = rdev2->raid_disk;
  660. else
  661. d->raid_disk = rdev2->desc_nr; /* compatibility */
  662. if (rdev2->faulty) {
  663. d->state = (1<<MD_DISK_FAULTY);
  664. failed++;
  665. } else if (rdev2->in_sync) {
  666. d->state = (1<<MD_DISK_ACTIVE);
  667. d->state |= (1<<MD_DISK_SYNC);
  668. active++;
  669. working++;
  670. } else {
  671. d->state = 0;
  672. spare++;
  673. working++;
  674. }
  675. if (test_bit(WriteMostly, &rdev2->flags))
  676. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  677. }
  678. if (fixdesc)
  679. ITERATE_RDEV(mddev,rdev2,tmp)
  680. if (fixdesc & (1<<rdev2->desc_nr)) {
  681. snprintf(rdev2->kobj.name, KOBJ_NAME_LEN, "dev%d",
  682. rdev2->desc_nr);
  683. /* kobject_add gets a ref on the parent, so
  684. * we have to drop the one we already have
  685. */
  686. kobject_add(&rdev2->kobj);
  687. kobject_put(rdev->kobj.parent);
  688. sysfs_create_link(&rdev2->kobj,
  689. &rdev2->bdev->bd_disk->kobj,
  690. "block");
  691. if (rdev2->raid_disk >= 0) {
  692. sprintf(nm, "rd%d", rdev2->raid_disk);
  693. sysfs_create_link(&mddev->kobj,
  694. &rdev2->kobj, nm);
  695. }
  696. }
  697. /* now set the "removed" and "faulty" bits on any missing devices */
  698. for (i=0 ; i < mddev->raid_disks ; i++) {
  699. mdp_disk_t *d = &sb->disks[i];
  700. if (d->state == 0 && d->number == 0) {
  701. d->number = i;
  702. d->raid_disk = i;
  703. d->state = (1<<MD_DISK_REMOVED);
  704. d->state |= (1<<MD_DISK_FAULTY);
  705. failed++;
  706. }
  707. }
  708. sb->nr_disks = nr_disks;
  709. sb->active_disks = active;
  710. sb->working_disks = working;
  711. sb->failed_disks = failed;
  712. sb->spare_disks = spare;
  713. sb->this_disk = sb->disks[rdev->desc_nr];
  714. sb->sb_csum = calc_sb_csum(sb);
  715. }
  716. /*
  717. * version 1 superblock
  718. */
  719. static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
  720. {
  721. unsigned int disk_csum, csum;
  722. unsigned long long newcsum;
  723. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  724. unsigned int *isuper = (unsigned int*)sb;
  725. int i;
  726. disk_csum = sb->sb_csum;
  727. sb->sb_csum = 0;
  728. newcsum = 0;
  729. for (i=0; size>=4; size -= 4 )
  730. newcsum += le32_to_cpu(*isuper++);
  731. if (size == 2)
  732. newcsum += le16_to_cpu(*(unsigned short*) isuper);
  733. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  734. sb->sb_csum = disk_csum;
  735. return cpu_to_le32(csum);
  736. }
  737. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  738. {
  739. struct mdp_superblock_1 *sb;
  740. int ret;
  741. sector_t sb_offset;
  742. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  743. int bmask;
  744. /*
  745. * Calculate the position of the superblock.
  746. * It is always aligned to a 4K boundary and
  747. * depeding on minor_version, it can be:
  748. * 0: At least 8K, but less than 12K, from end of device
  749. * 1: At start of device
  750. * 2: 4K from start of device.
  751. */
  752. switch(minor_version) {
  753. case 0:
  754. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  755. sb_offset -= 8*2;
  756. sb_offset &= ~(sector_t)(4*2-1);
  757. /* convert from sectors to K */
  758. sb_offset /= 2;
  759. break;
  760. case 1:
  761. sb_offset = 0;
  762. break;
  763. case 2:
  764. sb_offset = 4;
  765. break;
  766. default:
  767. return -EINVAL;
  768. }
  769. rdev->sb_offset = sb_offset;
  770. /* superblock is rarely larger than 1K, but it can be larger,
  771. * and it is safe to read 4k, so we do that
  772. */
  773. ret = read_disk_sb(rdev, 4096);
  774. if (ret) return ret;
  775. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  776. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  777. sb->major_version != cpu_to_le32(1) ||
  778. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  779. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  780. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  781. return -EINVAL;
  782. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  783. printk("md: invalid superblock checksum on %s\n",
  784. bdevname(rdev->bdev,b));
  785. return -EINVAL;
  786. }
  787. if (le64_to_cpu(sb->data_size) < 10) {
  788. printk("md: data_size too small on %s\n",
  789. bdevname(rdev->bdev,b));
  790. return -EINVAL;
  791. }
  792. rdev->preferred_minor = 0xffff;
  793. rdev->data_offset = le64_to_cpu(sb->data_offset);
  794. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  795. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  796. if (rdev->sb_size & bmask)
  797. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  798. if (refdev == 0)
  799. return 1;
  800. else {
  801. __u64 ev1, ev2;
  802. struct mdp_superblock_1 *refsb =
  803. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  804. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  805. sb->level != refsb->level ||
  806. sb->layout != refsb->layout ||
  807. sb->chunksize != refsb->chunksize) {
  808. printk(KERN_WARNING "md: %s has strangely different"
  809. " superblock to %s\n",
  810. bdevname(rdev->bdev,b),
  811. bdevname(refdev->bdev,b2));
  812. return -EINVAL;
  813. }
  814. ev1 = le64_to_cpu(sb->events);
  815. ev2 = le64_to_cpu(refsb->events);
  816. if (ev1 > ev2)
  817. return 1;
  818. }
  819. if (minor_version)
  820. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  821. else
  822. rdev->size = rdev->sb_offset;
  823. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  824. return -EINVAL;
  825. rdev->size = le64_to_cpu(sb->data_size)/2;
  826. if (le32_to_cpu(sb->chunksize))
  827. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  828. return 0;
  829. }
  830. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  831. {
  832. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  833. rdev->raid_disk = -1;
  834. rdev->in_sync = 0;
  835. if (mddev->raid_disks == 0) {
  836. mddev->major_version = 1;
  837. mddev->patch_version = 0;
  838. mddev->persistent = 1;
  839. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  840. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  841. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  842. mddev->level = le32_to_cpu(sb->level);
  843. mddev->layout = le32_to_cpu(sb->layout);
  844. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  845. mddev->size = le64_to_cpu(sb->size)/2;
  846. mddev->events = le64_to_cpu(sb->events);
  847. mddev->bitmap_offset = 0;
  848. mddev->default_bitmap_offset = 0;
  849. mddev->default_bitmap_offset = 1024;
  850. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  851. memcpy(mddev->uuid, sb->set_uuid, 16);
  852. mddev->max_disks = (4096-256)/2;
  853. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  854. mddev->bitmap_file == NULL ) {
  855. if (mddev->level != 1) {
  856. printk(KERN_WARNING "md: bitmaps only supported for raid1\n");
  857. return -EINVAL;
  858. }
  859. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  860. }
  861. } else if (mddev->pers == NULL) {
  862. /* Insist of good event counter while assembling */
  863. __u64 ev1 = le64_to_cpu(sb->events);
  864. ++ev1;
  865. if (ev1 < mddev->events)
  866. return -EINVAL;
  867. } else if (mddev->bitmap) {
  868. /* If adding to array with a bitmap, then we can accept an
  869. * older device, but not too old.
  870. */
  871. __u64 ev1 = le64_to_cpu(sb->events);
  872. if (ev1 < mddev->bitmap->events_cleared)
  873. return 0;
  874. } else /* just a hot-add of a new device, leave raid_disk at -1 */
  875. return 0;
  876. if (mddev->level != LEVEL_MULTIPATH) {
  877. int role;
  878. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  879. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  880. switch(role) {
  881. case 0xffff: /* spare */
  882. rdev->faulty = 0;
  883. break;
  884. case 0xfffe: /* faulty */
  885. rdev->faulty = 1;
  886. break;
  887. default:
  888. rdev->in_sync = 1;
  889. rdev->faulty = 0;
  890. rdev->raid_disk = role;
  891. break;
  892. }
  893. rdev->flags = 0;
  894. if (sb->devflags & WriteMostly1)
  895. set_bit(WriteMostly, &rdev->flags);
  896. } else /* MULTIPATH are always insync */
  897. rdev->in_sync = 1;
  898. return 0;
  899. }
  900. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  901. {
  902. struct mdp_superblock_1 *sb;
  903. struct list_head *tmp;
  904. mdk_rdev_t *rdev2;
  905. int max_dev, i;
  906. /* make rdev->sb match mddev and rdev data. */
  907. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  908. sb->feature_map = 0;
  909. sb->pad0 = 0;
  910. memset(sb->pad1, 0, sizeof(sb->pad1));
  911. memset(sb->pad2, 0, sizeof(sb->pad2));
  912. memset(sb->pad3, 0, sizeof(sb->pad3));
  913. sb->utime = cpu_to_le64((__u64)mddev->utime);
  914. sb->events = cpu_to_le64(mddev->events);
  915. if (mddev->in_sync)
  916. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  917. else
  918. sb->resync_offset = cpu_to_le64(0);
  919. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  920. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  921. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  922. }
  923. max_dev = 0;
  924. ITERATE_RDEV(mddev,rdev2,tmp)
  925. if (rdev2->desc_nr+1 > max_dev)
  926. max_dev = rdev2->desc_nr+1;
  927. sb->max_dev = cpu_to_le32(max_dev);
  928. for (i=0; i<max_dev;i++)
  929. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  930. ITERATE_RDEV(mddev,rdev2,tmp) {
  931. i = rdev2->desc_nr;
  932. if (rdev2->faulty)
  933. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  934. else if (rdev2->in_sync)
  935. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  936. else
  937. sb->dev_roles[i] = cpu_to_le16(0xffff);
  938. }
  939. sb->recovery_offset = cpu_to_le64(0); /* not supported yet */
  940. sb->sb_csum = calc_sb_1_csum(sb);
  941. }
  942. static struct super_type super_types[] = {
  943. [0] = {
  944. .name = "0.90.0",
  945. .owner = THIS_MODULE,
  946. .load_super = super_90_load,
  947. .validate_super = super_90_validate,
  948. .sync_super = super_90_sync,
  949. },
  950. [1] = {
  951. .name = "md-1",
  952. .owner = THIS_MODULE,
  953. .load_super = super_1_load,
  954. .validate_super = super_1_validate,
  955. .sync_super = super_1_sync,
  956. },
  957. };
  958. static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
  959. {
  960. struct list_head *tmp;
  961. mdk_rdev_t *rdev;
  962. ITERATE_RDEV(mddev,rdev,tmp)
  963. if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
  964. return rdev;
  965. return NULL;
  966. }
  967. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  968. {
  969. struct list_head *tmp;
  970. mdk_rdev_t *rdev;
  971. ITERATE_RDEV(mddev1,rdev,tmp)
  972. if (match_dev_unit(mddev2, rdev))
  973. return 1;
  974. return 0;
  975. }
  976. static LIST_HEAD(pending_raid_disks);
  977. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  978. {
  979. mdk_rdev_t *same_pdev;
  980. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  981. if (rdev->mddev) {
  982. MD_BUG();
  983. return -EINVAL;
  984. }
  985. same_pdev = match_dev_unit(mddev, rdev);
  986. if (same_pdev)
  987. printk(KERN_WARNING
  988. "%s: WARNING: %s appears to be on the same physical"
  989. " disk as %s. True\n protection against single-disk"
  990. " failure might be compromised.\n",
  991. mdname(mddev), bdevname(rdev->bdev,b),
  992. bdevname(same_pdev->bdev,b2));
  993. /* Verify rdev->desc_nr is unique.
  994. * If it is -1, assign a free number, else
  995. * check number is not in use
  996. */
  997. if (rdev->desc_nr < 0) {
  998. int choice = 0;
  999. if (mddev->pers) choice = mddev->raid_disks;
  1000. while (find_rdev_nr(mddev, choice))
  1001. choice++;
  1002. rdev->desc_nr = choice;
  1003. } else {
  1004. if (find_rdev_nr(mddev, rdev->desc_nr))
  1005. return -EBUSY;
  1006. }
  1007. list_add(&rdev->same_set, &mddev->disks);
  1008. rdev->mddev = mddev;
  1009. printk(KERN_INFO "md: bind<%s>\n", bdevname(rdev->bdev,b));
  1010. rdev->kobj.k_name = NULL;
  1011. snprintf(rdev->kobj.name, KOBJ_NAME_LEN, "dev%d", rdev->desc_nr);
  1012. rdev->kobj.parent = &mddev->kobj;
  1013. kobject_add(&rdev->kobj);
  1014. sysfs_create_link(&rdev->kobj, &rdev->bdev->bd_disk->kobj, "block");
  1015. return 0;
  1016. }
  1017. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1018. {
  1019. char b[BDEVNAME_SIZE];
  1020. if (!rdev->mddev) {
  1021. MD_BUG();
  1022. return;
  1023. }
  1024. list_del_init(&rdev->same_set);
  1025. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1026. rdev->mddev = NULL;
  1027. sysfs_remove_link(&rdev->kobj, "block");
  1028. kobject_del(&rdev->kobj);
  1029. }
  1030. /*
  1031. * prevent the device from being mounted, repartitioned or
  1032. * otherwise reused by a RAID array (or any other kernel
  1033. * subsystem), by bd_claiming the device.
  1034. */
  1035. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1036. {
  1037. int err = 0;
  1038. struct block_device *bdev;
  1039. char b[BDEVNAME_SIZE];
  1040. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1041. if (IS_ERR(bdev)) {
  1042. printk(KERN_ERR "md: could not open %s.\n",
  1043. __bdevname(dev, b));
  1044. return PTR_ERR(bdev);
  1045. }
  1046. err = bd_claim(bdev, rdev);
  1047. if (err) {
  1048. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1049. bdevname(bdev, b));
  1050. blkdev_put(bdev);
  1051. return err;
  1052. }
  1053. rdev->bdev = bdev;
  1054. return err;
  1055. }
  1056. static void unlock_rdev(mdk_rdev_t *rdev)
  1057. {
  1058. struct block_device *bdev = rdev->bdev;
  1059. rdev->bdev = NULL;
  1060. if (!bdev)
  1061. MD_BUG();
  1062. bd_release(bdev);
  1063. blkdev_put(bdev);
  1064. }
  1065. void md_autodetect_dev(dev_t dev);
  1066. static void export_rdev(mdk_rdev_t * rdev)
  1067. {
  1068. char b[BDEVNAME_SIZE];
  1069. printk(KERN_INFO "md: export_rdev(%s)\n",
  1070. bdevname(rdev->bdev,b));
  1071. if (rdev->mddev)
  1072. MD_BUG();
  1073. free_disk_sb(rdev);
  1074. list_del_init(&rdev->same_set);
  1075. #ifndef MODULE
  1076. md_autodetect_dev(rdev->bdev->bd_dev);
  1077. #endif
  1078. unlock_rdev(rdev);
  1079. kobject_put(&rdev->kobj);
  1080. }
  1081. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1082. {
  1083. unbind_rdev_from_array(rdev);
  1084. export_rdev(rdev);
  1085. }
  1086. static void export_array(mddev_t *mddev)
  1087. {
  1088. struct list_head *tmp;
  1089. mdk_rdev_t *rdev;
  1090. ITERATE_RDEV(mddev,rdev,tmp) {
  1091. if (!rdev->mddev) {
  1092. MD_BUG();
  1093. continue;
  1094. }
  1095. kick_rdev_from_array(rdev);
  1096. }
  1097. if (!list_empty(&mddev->disks))
  1098. MD_BUG();
  1099. mddev->raid_disks = 0;
  1100. mddev->major_version = 0;
  1101. }
  1102. static void print_desc(mdp_disk_t *desc)
  1103. {
  1104. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1105. desc->major,desc->minor,desc->raid_disk,desc->state);
  1106. }
  1107. static void print_sb(mdp_super_t *sb)
  1108. {
  1109. int i;
  1110. printk(KERN_INFO
  1111. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1112. sb->major_version, sb->minor_version, sb->patch_version,
  1113. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1114. sb->ctime);
  1115. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1116. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1117. sb->md_minor, sb->layout, sb->chunk_size);
  1118. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1119. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1120. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1121. sb->failed_disks, sb->spare_disks,
  1122. sb->sb_csum, (unsigned long)sb->events_lo);
  1123. printk(KERN_INFO);
  1124. for (i = 0; i < MD_SB_DISKS; i++) {
  1125. mdp_disk_t *desc;
  1126. desc = sb->disks + i;
  1127. if (desc->number || desc->major || desc->minor ||
  1128. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1129. printk(" D %2d: ", i);
  1130. print_desc(desc);
  1131. }
  1132. }
  1133. printk(KERN_INFO "md: THIS: ");
  1134. print_desc(&sb->this_disk);
  1135. }
  1136. static void print_rdev(mdk_rdev_t *rdev)
  1137. {
  1138. char b[BDEVNAME_SIZE];
  1139. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1140. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1141. rdev->faulty, rdev->in_sync, rdev->desc_nr);
  1142. if (rdev->sb_loaded) {
  1143. printk(KERN_INFO "md: rdev superblock:\n");
  1144. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1145. } else
  1146. printk(KERN_INFO "md: no rdev superblock!\n");
  1147. }
  1148. void md_print_devices(void)
  1149. {
  1150. struct list_head *tmp, *tmp2;
  1151. mdk_rdev_t *rdev;
  1152. mddev_t *mddev;
  1153. char b[BDEVNAME_SIZE];
  1154. printk("\n");
  1155. printk("md: **********************************\n");
  1156. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1157. printk("md: **********************************\n");
  1158. ITERATE_MDDEV(mddev,tmp) {
  1159. if (mddev->bitmap)
  1160. bitmap_print_sb(mddev->bitmap);
  1161. else
  1162. printk("%s: ", mdname(mddev));
  1163. ITERATE_RDEV(mddev,rdev,tmp2)
  1164. printk("<%s>", bdevname(rdev->bdev,b));
  1165. printk("\n");
  1166. ITERATE_RDEV(mddev,rdev,tmp2)
  1167. print_rdev(rdev);
  1168. }
  1169. printk("md: **********************************\n");
  1170. printk("\n");
  1171. }
  1172. static void sync_sbs(mddev_t * mddev)
  1173. {
  1174. mdk_rdev_t *rdev;
  1175. struct list_head *tmp;
  1176. ITERATE_RDEV(mddev,rdev,tmp) {
  1177. super_types[mddev->major_version].
  1178. sync_super(mddev, rdev);
  1179. rdev->sb_loaded = 1;
  1180. }
  1181. }
  1182. static void md_update_sb(mddev_t * mddev)
  1183. {
  1184. int err;
  1185. struct list_head *tmp;
  1186. mdk_rdev_t *rdev;
  1187. int sync_req;
  1188. repeat:
  1189. spin_lock(&mddev->write_lock);
  1190. sync_req = mddev->in_sync;
  1191. mddev->utime = get_seconds();
  1192. mddev->events ++;
  1193. if (!mddev->events) {
  1194. /*
  1195. * oops, this 64-bit counter should never wrap.
  1196. * Either we are in around ~1 trillion A.C., assuming
  1197. * 1 reboot per second, or we have a bug:
  1198. */
  1199. MD_BUG();
  1200. mddev->events --;
  1201. }
  1202. mddev->sb_dirty = 2;
  1203. sync_sbs(mddev);
  1204. /*
  1205. * do not write anything to disk if using
  1206. * nonpersistent superblocks
  1207. */
  1208. if (!mddev->persistent) {
  1209. mddev->sb_dirty = 0;
  1210. spin_unlock(&mddev->write_lock);
  1211. wake_up(&mddev->sb_wait);
  1212. return;
  1213. }
  1214. spin_unlock(&mddev->write_lock);
  1215. dprintk(KERN_INFO
  1216. "md: updating %s RAID superblock on device (in sync %d)\n",
  1217. mdname(mddev),mddev->in_sync);
  1218. err = bitmap_update_sb(mddev->bitmap);
  1219. ITERATE_RDEV(mddev,rdev,tmp) {
  1220. char b[BDEVNAME_SIZE];
  1221. dprintk(KERN_INFO "md: ");
  1222. if (rdev->faulty)
  1223. dprintk("(skipping faulty ");
  1224. dprintk("%s ", bdevname(rdev->bdev,b));
  1225. if (!rdev->faulty) {
  1226. md_super_write(mddev,rdev,
  1227. rdev->sb_offset<<1, rdev->sb_size,
  1228. rdev->sb_page);
  1229. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1230. bdevname(rdev->bdev,b),
  1231. (unsigned long long)rdev->sb_offset);
  1232. } else
  1233. dprintk(")\n");
  1234. if (mddev->level == LEVEL_MULTIPATH)
  1235. /* only need to write one superblock... */
  1236. break;
  1237. }
  1238. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1239. /* if there was a failure, sb_dirty was set to 1, and we re-write super */
  1240. spin_lock(&mddev->write_lock);
  1241. if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
  1242. /* have to write it out again */
  1243. spin_unlock(&mddev->write_lock);
  1244. goto repeat;
  1245. }
  1246. mddev->sb_dirty = 0;
  1247. spin_unlock(&mddev->write_lock);
  1248. wake_up(&mddev->sb_wait);
  1249. }
  1250. struct rdev_sysfs_entry {
  1251. struct attribute attr;
  1252. ssize_t (*show)(mdk_rdev_t *, char *);
  1253. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1254. };
  1255. static ssize_t
  1256. rdev_show_state(mdk_rdev_t *rdev, char *page)
  1257. {
  1258. char *sep = "";
  1259. int len=0;
  1260. if (rdev->faulty) {
  1261. len+= sprintf(page+len, "%sfaulty",sep);
  1262. sep = ",";
  1263. }
  1264. if (rdev->in_sync) {
  1265. len += sprintf(page+len, "%sin_sync",sep);
  1266. sep = ",";
  1267. }
  1268. if (!rdev->faulty && !rdev->in_sync) {
  1269. len += sprintf(page+len, "%sspare", sep);
  1270. sep = ",";
  1271. }
  1272. return len+sprintf(page+len, "\n");
  1273. }
  1274. static struct rdev_sysfs_entry rdev_state = {
  1275. .attr = {.name = "state", .mode = S_IRUGO },
  1276. .show = rdev_show_state,
  1277. };
  1278. static ssize_t
  1279. rdev_show_super(mdk_rdev_t *rdev, char *page)
  1280. {
  1281. if (rdev->sb_loaded && rdev->sb_size) {
  1282. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1283. return rdev->sb_size;
  1284. } else
  1285. return 0;
  1286. }
  1287. static struct rdev_sysfs_entry rdev_super = {
  1288. .attr = {.name = "super", .mode = S_IRUGO },
  1289. .show = rdev_show_super,
  1290. };
  1291. static struct attribute *rdev_default_attrs[] = {
  1292. &rdev_state.attr,
  1293. &rdev_super.attr,
  1294. NULL,
  1295. };
  1296. static ssize_t
  1297. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1298. {
  1299. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1300. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1301. if (!entry->show)
  1302. return -EIO;
  1303. return entry->show(rdev, page);
  1304. }
  1305. static ssize_t
  1306. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1307. const char *page, size_t length)
  1308. {
  1309. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1310. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1311. if (!entry->store)
  1312. return -EIO;
  1313. return entry->store(rdev, page, length);
  1314. }
  1315. static void rdev_free(struct kobject *ko)
  1316. {
  1317. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1318. kfree(rdev);
  1319. }
  1320. static struct sysfs_ops rdev_sysfs_ops = {
  1321. .show = rdev_attr_show,
  1322. .store = rdev_attr_store,
  1323. };
  1324. static struct kobj_type rdev_ktype = {
  1325. .release = rdev_free,
  1326. .sysfs_ops = &rdev_sysfs_ops,
  1327. .default_attrs = rdev_default_attrs,
  1328. };
  1329. /*
  1330. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1331. *
  1332. * mark the device faulty if:
  1333. *
  1334. * - the device is nonexistent (zero size)
  1335. * - the device has no valid superblock
  1336. *
  1337. * a faulty rdev _never_ has rdev->sb set.
  1338. */
  1339. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1340. {
  1341. char b[BDEVNAME_SIZE];
  1342. int err;
  1343. mdk_rdev_t *rdev;
  1344. sector_t size;
  1345. rdev = (mdk_rdev_t *) kmalloc(sizeof(*rdev), GFP_KERNEL);
  1346. if (!rdev) {
  1347. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1348. return ERR_PTR(-ENOMEM);
  1349. }
  1350. memset(rdev, 0, sizeof(*rdev));
  1351. if ((err = alloc_disk_sb(rdev)))
  1352. goto abort_free;
  1353. err = lock_rdev(rdev, newdev);
  1354. if (err)
  1355. goto abort_free;
  1356. rdev->kobj.parent = NULL;
  1357. rdev->kobj.ktype = &rdev_ktype;
  1358. kobject_init(&rdev->kobj);
  1359. rdev->desc_nr = -1;
  1360. rdev->faulty = 0;
  1361. rdev->in_sync = 0;
  1362. rdev->data_offset = 0;
  1363. atomic_set(&rdev->nr_pending, 0);
  1364. atomic_set(&rdev->read_errors, 0);
  1365. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1366. if (!size) {
  1367. printk(KERN_WARNING
  1368. "md: %s has zero or unknown size, marking faulty!\n",
  1369. bdevname(rdev->bdev,b));
  1370. err = -EINVAL;
  1371. goto abort_free;
  1372. }
  1373. if (super_format >= 0) {
  1374. err = super_types[super_format].
  1375. load_super(rdev, NULL, super_minor);
  1376. if (err == -EINVAL) {
  1377. printk(KERN_WARNING
  1378. "md: %s has invalid sb, not importing!\n",
  1379. bdevname(rdev->bdev,b));
  1380. goto abort_free;
  1381. }
  1382. if (err < 0) {
  1383. printk(KERN_WARNING
  1384. "md: could not read %s's sb, not importing!\n",
  1385. bdevname(rdev->bdev,b));
  1386. goto abort_free;
  1387. }
  1388. }
  1389. INIT_LIST_HEAD(&rdev->same_set);
  1390. return rdev;
  1391. abort_free:
  1392. if (rdev->sb_page) {
  1393. if (rdev->bdev)
  1394. unlock_rdev(rdev);
  1395. free_disk_sb(rdev);
  1396. }
  1397. kfree(rdev);
  1398. return ERR_PTR(err);
  1399. }
  1400. /*
  1401. * Check a full RAID array for plausibility
  1402. */
  1403. static void analyze_sbs(mddev_t * mddev)
  1404. {
  1405. int i;
  1406. struct list_head *tmp;
  1407. mdk_rdev_t *rdev, *freshest;
  1408. char b[BDEVNAME_SIZE];
  1409. freshest = NULL;
  1410. ITERATE_RDEV(mddev,rdev,tmp)
  1411. switch (super_types[mddev->major_version].
  1412. load_super(rdev, freshest, mddev->minor_version)) {
  1413. case 1:
  1414. freshest = rdev;
  1415. break;
  1416. case 0:
  1417. break;
  1418. default:
  1419. printk( KERN_ERR \
  1420. "md: fatal superblock inconsistency in %s"
  1421. " -- removing from array\n",
  1422. bdevname(rdev->bdev,b));
  1423. kick_rdev_from_array(rdev);
  1424. }
  1425. super_types[mddev->major_version].
  1426. validate_super(mddev, freshest);
  1427. i = 0;
  1428. ITERATE_RDEV(mddev,rdev,tmp) {
  1429. if (rdev != freshest)
  1430. if (super_types[mddev->major_version].
  1431. validate_super(mddev, rdev)) {
  1432. printk(KERN_WARNING "md: kicking non-fresh %s"
  1433. " from array!\n",
  1434. bdevname(rdev->bdev,b));
  1435. kick_rdev_from_array(rdev);
  1436. continue;
  1437. }
  1438. if (mddev->level == LEVEL_MULTIPATH) {
  1439. rdev->desc_nr = i++;
  1440. rdev->raid_disk = rdev->desc_nr;
  1441. rdev->in_sync = 1;
  1442. }
  1443. }
  1444. if (mddev->recovery_cp != MaxSector &&
  1445. mddev->level >= 1)
  1446. printk(KERN_ERR "md: %s: raid array is not clean"
  1447. " -- starting background reconstruction\n",
  1448. mdname(mddev));
  1449. }
  1450. static ssize_t
  1451. md_show_level(mddev_t *mddev, char *page)
  1452. {
  1453. mdk_personality_t *p = mddev->pers;
  1454. if (p == NULL)
  1455. return 0;
  1456. if (mddev->level >= 0)
  1457. return sprintf(page, "RAID-%d\n", mddev->level);
  1458. else
  1459. return sprintf(page, "%s\n", p->name);
  1460. }
  1461. static struct md_sysfs_entry md_level = {
  1462. .attr = {.name = "level", .mode = S_IRUGO },
  1463. .show = md_show_level,
  1464. };
  1465. static ssize_t
  1466. md_show_rdisks(mddev_t *mddev, char *page)
  1467. {
  1468. return sprintf(page, "%d\n", mddev->raid_disks);
  1469. }
  1470. static struct md_sysfs_entry md_raid_disks = {
  1471. .attr = {.name = "raid_disks", .mode = S_IRUGO },
  1472. .show = md_show_rdisks,
  1473. };
  1474. static ssize_t
  1475. md_show_scan(mddev_t *mddev, char *page)
  1476. {
  1477. char *type = "none";
  1478. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1479. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  1480. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  1481. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1482. type = "resync";
  1483. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  1484. type = "check";
  1485. else
  1486. type = "repair";
  1487. } else
  1488. type = "recover";
  1489. }
  1490. return sprintf(page, "%s\n", type);
  1491. }
  1492. static ssize_t
  1493. md_store_scan(mddev_t *mddev, const char *page, size_t len)
  1494. {
  1495. int canscan=0;
  1496. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  1497. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  1498. return -EBUSY;
  1499. down(&mddev->reconfig_sem);
  1500. if (mddev->pers && mddev->pers->sync_request)
  1501. canscan=1;
  1502. up(&mddev->reconfig_sem);
  1503. if (!canscan)
  1504. return -EINVAL;
  1505. if (strcmp(page, "check")==0 || strcmp(page, "check\n")==0)
  1506. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  1507. else if (strcmp(page, "repair")!=0 && strcmp(page, "repair\n")!=0)
  1508. return -EINVAL;
  1509. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  1510. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  1511. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1512. md_wakeup_thread(mddev->thread);
  1513. return len;
  1514. }
  1515. static ssize_t
  1516. md_show_mismatch(mddev_t *mddev, char *page)
  1517. {
  1518. return sprintf(page, "%llu\n",
  1519. (unsigned long long) mddev->resync_mismatches);
  1520. }
  1521. static struct md_sysfs_entry md_scan_mode = {
  1522. .attr = {.name = "scan_mode", .mode = S_IRUGO|S_IWUSR },
  1523. .show = md_show_scan,
  1524. .store = md_store_scan,
  1525. };
  1526. static struct md_sysfs_entry md_mismatches = {
  1527. .attr = {.name = "mismatch_cnt", .mode = S_IRUGO },
  1528. .show = md_show_mismatch,
  1529. };
  1530. static struct attribute *md_default_attrs[] = {
  1531. &md_level.attr,
  1532. &md_raid_disks.attr,
  1533. &md_scan_mode.attr,
  1534. &md_mismatches.attr,
  1535. NULL,
  1536. };
  1537. static ssize_t
  1538. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1539. {
  1540. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1541. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1542. if (!entry->show)
  1543. return -EIO;
  1544. return entry->show(mddev, page);
  1545. }
  1546. static ssize_t
  1547. md_attr_store(struct kobject *kobj, struct attribute *attr,
  1548. const char *page, size_t length)
  1549. {
  1550. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  1551. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  1552. if (!entry->store)
  1553. return -EIO;
  1554. return entry->store(mddev, page, length);
  1555. }
  1556. static void md_free(struct kobject *ko)
  1557. {
  1558. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  1559. kfree(mddev);
  1560. }
  1561. static struct sysfs_ops md_sysfs_ops = {
  1562. .show = md_attr_show,
  1563. .store = md_attr_store,
  1564. };
  1565. static struct kobj_type md_ktype = {
  1566. .release = md_free,
  1567. .sysfs_ops = &md_sysfs_ops,
  1568. .default_attrs = md_default_attrs,
  1569. };
  1570. int mdp_major = 0;
  1571. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  1572. {
  1573. static DECLARE_MUTEX(disks_sem);
  1574. mddev_t *mddev = mddev_find(dev);
  1575. struct gendisk *disk;
  1576. int partitioned = (MAJOR(dev) != MD_MAJOR);
  1577. int shift = partitioned ? MdpMinorShift : 0;
  1578. int unit = MINOR(dev) >> shift;
  1579. if (!mddev)
  1580. return NULL;
  1581. down(&disks_sem);
  1582. if (mddev->gendisk) {
  1583. up(&disks_sem);
  1584. mddev_put(mddev);
  1585. return NULL;
  1586. }
  1587. disk = alloc_disk(1 << shift);
  1588. if (!disk) {
  1589. up(&disks_sem);
  1590. mddev_put(mddev);
  1591. return NULL;
  1592. }
  1593. disk->major = MAJOR(dev);
  1594. disk->first_minor = unit << shift;
  1595. if (partitioned) {
  1596. sprintf(disk->disk_name, "md_d%d", unit);
  1597. sprintf(disk->devfs_name, "md/d%d", unit);
  1598. } else {
  1599. sprintf(disk->disk_name, "md%d", unit);
  1600. sprintf(disk->devfs_name, "md/%d", unit);
  1601. }
  1602. disk->fops = &md_fops;
  1603. disk->private_data = mddev;
  1604. disk->queue = mddev->queue;
  1605. add_disk(disk);
  1606. mddev->gendisk = disk;
  1607. up(&disks_sem);
  1608. mddev->kobj.parent = &disk->kobj;
  1609. mddev->kobj.k_name = NULL;
  1610. snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
  1611. mddev->kobj.ktype = &md_ktype;
  1612. kobject_register(&mddev->kobj);
  1613. return NULL;
  1614. }
  1615. void md_wakeup_thread(mdk_thread_t *thread);
  1616. static void md_safemode_timeout(unsigned long data)
  1617. {
  1618. mddev_t *mddev = (mddev_t *) data;
  1619. mddev->safemode = 1;
  1620. md_wakeup_thread(mddev->thread);
  1621. }
  1622. static int do_md_run(mddev_t * mddev)
  1623. {
  1624. int pnum, err;
  1625. int chunk_size;
  1626. struct list_head *tmp;
  1627. mdk_rdev_t *rdev;
  1628. struct gendisk *disk;
  1629. char b[BDEVNAME_SIZE];
  1630. if (list_empty(&mddev->disks))
  1631. /* cannot run an array with no devices.. */
  1632. return -EINVAL;
  1633. if (mddev->pers)
  1634. return -EBUSY;
  1635. /*
  1636. * Analyze all RAID superblock(s)
  1637. */
  1638. if (!mddev->raid_disks)
  1639. analyze_sbs(mddev);
  1640. chunk_size = mddev->chunk_size;
  1641. pnum = level_to_pers(mddev->level);
  1642. if ((pnum != MULTIPATH) && (pnum != RAID1)) {
  1643. if (!chunk_size) {
  1644. /*
  1645. * 'default chunksize' in the old md code used to
  1646. * be PAGE_SIZE, baaad.
  1647. * we abort here to be on the safe side. We don't
  1648. * want to continue the bad practice.
  1649. */
  1650. printk(KERN_ERR
  1651. "no chunksize specified, see 'man raidtab'\n");
  1652. return -EINVAL;
  1653. }
  1654. if (chunk_size > MAX_CHUNK_SIZE) {
  1655. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  1656. chunk_size, MAX_CHUNK_SIZE);
  1657. return -EINVAL;
  1658. }
  1659. /*
  1660. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  1661. */
  1662. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  1663. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  1664. return -EINVAL;
  1665. }
  1666. if (chunk_size < PAGE_SIZE) {
  1667. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  1668. chunk_size, PAGE_SIZE);
  1669. return -EINVAL;
  1670. }
  1671. /* devices must have minimum size of one chunk */
  1672. ITERATE_RDEV(mddev,rdev,tmp) {
  1673. if (rdev->faulty)
  1674. continue;
  1675. if (rdev->size < chunk_size / 1024) {
  1676. printk(KERN_WARNING
  1677. "md: Dev %s smaller than chunk_size:"
  1678. " %lluk < %dk\n",
  1679. bdevname(rdev->bdev,b),
  1680. (unsigned long long)rdev->size,
  1681. chunk_size / 1024);
  1682. return -EINVAL;
  1683. }
  1684. }
  1685. }
  1686. #ifdef CONFIG_KMOD
  1687. if (!pers[pnum])
  1688. {
  1689. request_module("md-personality-%d", pnum);
  1690. }
  1691. #endif
  1692. /*
  1693. * Drop all container device buffers, from now on
  1694. * the only valid external interface is through the md
  1695. * device.
  1696. * Also find largest hardsector size
  1697. */
  1698. ITERATE_RDEV(mddev,rdev,tmp) {
  1699. if (rdev->faulty)
  1700. continue;
  1701. sync_blockdev(rdev->bdev);
  1702. invalidate_bdev(rdev->bdev, 0);
  1703. }
  1704. md_probe(mddev->unit, NULL, NULL);
  1705. disk = mddev->gendisk;
  1706. if (!disk)
  1707. return -ENOMEM;
  1708. spin_lock(&pers_lock);
  1709. if (!pers[pnum] || !try_module_get(pers[pnum]->owner)) {
  1710. spin_unlock(&pers_lock);
  1711. printk(KERN_WARNING "md: personality %d is not loaded!\n",
  1712. pnum);
  1713. return -EINVAL;
  1714. }
  1715. mddev->pers = pers[pnum];
  1716. spin_unlock(&pers_lock);
  1717. mddev->recovery = 0;
  1718. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  1719. /* before we start the array running, initialise the bitmap */
  1720. err = bitmap_create(mddev);
  1721. if (err)
  1722. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  1723. mdname(mddev), err);
  1724. else
  1725. err = mddev->pers->run(mddev);
  1726. if (err) {
  1727. printk(KERN_ERR "md: pers->run() failed ...\n");
  1728. module_put(mddev->pers->owner);
  1729. mddev->pers = NULL;
  1730. bitmap_destroy(mddev);
  1731. return err;
  1732. }
  1733. atomic_set(&mddev->writes_pending,0);
  1734. mddev->safemode = 0;
  1735. mddev->safemode_timer.function = md_safemode_timeout;
  1736. mddev->safemode_timer.data = (unsigned long) mddev;
  1737. mddev->safemode_delay = (20 * HZ)/1000 +1; /* 20 msec delay */
  1738. mddev->in_sync = 1;
  1739. ITERATE_RDEV(mddev,rdev,tmp)
  1740. if (rdev->raid_disk >= 0) {
  1741. char nm[20];
  1742. sprintf(nm, "rd%d", rdev->raid_disk);
  1743. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  1744. }
  1745. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1746. md_wakeup_thread(mddev->thread);
  1747. if (mddev->sb_dirty)
  1748. md_update_sb(mddev);
  1749. set_capacity(disk, mddev->array_size<<1);
  1750. /* If we call blk_queue_make_request here, it will
  1751. * re-initialise max_sectors etc which may have been
  1752. * refined inside -> run. So just set the bits we need to set.
  1753. * Most initialisation happended when we called
  1754. * blk_queue_make_request(..., md_fail_request)
  1755. * earlier.
  1756. */
  1757. mddev->queue->queuedata = mddev;
  1758. mddev->queue->make_request_fn = mddev->pers->make_request;
  1759. mddev->changed = 1;
  1760. return 0;
  1761. }
  1762. static int restart_array(mddev_t *mddev)
  1763. {
  1764. struct gendisk *disk = mddev->gendisk;
  1765. int err;
  1766. /*
  1767. * Complain if it has no devices
  1768. */
  1769. err = -ENXIO;
  1770. if (list_empty(&mddev->disks))
  1771. goto out;
  1772. if (mddev->pers) {
  1773. err = -EBUSY;
  1774. if (!mddev->ro)
  1775. goto out;
  1776. mddev->safemode = 0;
  1777. mddev->ro = 0;
  1778. set_disk_ro(disk, 0);
  1779. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  1780. mdname(mddev));
  1781. /*
  1782. * Kick recovery or resync if necessary
  1783. */
  1784. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1785. md_wakeup_thread(mddev->thread);
  1786. err = 0;
  1787. } else {
  1788. printk(KERN_ERR "md: %s has no personality assigned.\n",
  1789. mdname(mddev));
  1790. err = -EINVAL;
  1791. }
  1792. out:
  1793. return err;
  1794. }
  1795. static int do_md_stop(mddev_t * mddev, int ro)
  1796. {
  1797. int err = 0;
  1798. struct gendisk *disk = mddev->gendisk;
  1799. if (mddev->pers) {
  1800. if (atomic_read(&mddev->active)>2) {
  1801. printk("md: %s still in use.\n",mdname(mddev));
  1802. return -EBUSY;
  1803. }
  1804. if (mddev->sync_thread) {
  1805. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  1806. md_unregister_thread(mddev->sync_thread);
  1807. mddev->sync_thread = NULL;
  1808. }
  1809. del_timer_sync(&mddev->safemode_timer);
  1810. invalidate_partition(disk, 0);
  1811. if (ro) {
  1812. err = -ENXIO;
  1813. if (mddev->ro)
  1814. goto out;
  1815. mddev->ro = 1;
  1816. } else {
  1817. bitmap_flush(mddev);
  1818. wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
  1819. if (mddev->ro)
  1820. set_disk_ro(disk, 0);
  1821. blk_queue_make_request(mddev->queue, md_fail_request);
  1822. mddev->pers->stop(mddev);
  1823. module_put(mddev->pers->owner);
  1824. mddev->pers = NULL;
  1825. if (mddev->ro)
  1826. mddev->ro = 0;
  1827. }
  1828. if (!mddev->in_sync) {
  1829. /* mark array as shutdown cleanly */
  1830. mddev->in_sync = 1;
  1831. md_update_sb(mddev);
  1832. }
  1833. if (ro)
  1834. set_disk_ro(disk, 1);
  1835. }
  1836. bitmap_destroy(mddev);
  1837. if (mddev->bitmap_file) {
  1838. atomic_set(&mddev->bitmap_file->f_dentry->d_inode->i_writecount, 1);
  1839. fput(mddev->bitmap_file);
  1840. mddev->bitmap_file = NULL;
  1841. }
  1842. mddev->bitmap_offset = 0;
  1843. /*
  1844. * Free resources if final stop
  1845. */
  1846. if (!ro) {
  1847. mdk_rdev_t *rdev;
  1848. struct list_head *tmp;
  1849. struct gendisk *disk;
  1850. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  1851. ITERATE_RDEV(mddev,rdev,tmp)
  1852. if (rdev->raid_disk >= 0) {
  1853. char nm[20];
  1854. sprintf(nm, "rd%d", rdev->raid_disk);
  1855. sysfs_remove_link(&mddev->kobj, nm);
  1856. }
  1857. export_array(mddev);
  1858. mddev->array_size = 0;
  1859. disk = mddev->gendisk;
  1860. if (disk)
  1861. set_capacity(disk, 0);
  1862. mddev->changed = 1;
  1863. } else
  1864. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  1865. mdname(mddev));
  1866. err = 0;
  1867. out:
  1868. return err;
  1869. }
  1870. static void autorun_array(mddev_t *mddev)
  1871. {
  1872. mdk_rdev_t *rdev;
  1873. struct list_head *tmp;
  1874. int err;
  1875. if (list_empty(&mddev->disks))
  1876. return;
  1877. printk(KERN_INFO "md: running: ");
  1878. ITERATE_RDEV(mddev,rdev,tmp) {
  1879. char b[BDEVNAME_SIZE];
  1880. printk("<%s>", bdevname(rdev->bdev,b));
  1881. }
  1882. printk("\n");
  1883. err = do_md_run (mddev);
  1884. if (err) {
  1885. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  1886. do_md_stop (mddev, 0);
  1887. }
  1888. }
  1889. /*
  1890. * lets try to run arrays based on all disks that have arrived
  1891. * until now. (those are in pending_raid_disks)
  1892. *
  1893. * the method: pick the first pending disk, collect all disks with
  1894. * the same UUID, remove all from the pending list and put them into
  1895. * the 'same_array' list. Then order this list based on superblock
  1896. * update time (freshest comes first), kick out 'old' disks and
  1897. * compare superblocks. If everything's fine then run it.
  1898. *
  1899. * If "unit" is allocated, then bump its reference count
  1900. */
  1901. static void autorun_devices(int part)
  1902. {
  1903. struct list_head candidates;
  1904. struct list_head *tmp;
  1905. mdk_rdev_t *rdev0, *rdev;
  1906. mddev_t *mddev;
  1907. char b[BDEVNAME_SIZE];
  1908. printk(KERN_INFO "md: autorun ...\n");
  1909. while (!list_empty(&pending_raid_disks)) {
  1910. dev_t dev;
  1911. rdev0 = list_entry(pending_raid_disks.next,
  1912. mdk_rdev_t, same_set);
  1913. printk(KERN_INFO "md: considering %s ...\n",
  1914. bdevname(rdev0->bdev,b));
  1915. INIT_LIST_HEAD(&candidates);
  1916. ITERATE_RDEV_PENDING(rdev,tmp)
  1917. if (super_90_load(rdev, rdev0, 0) >= 0) {
  1918. printk(KERN_INFO "md: adding %s ...\n",
  1919. bdevname(rdev->bdev,b));
  1920. list_move(&rdev->same_set, &candidates);
  1921. }
  1922. /*
  1923. * now we have a set of devices, with all of them having
  1924. * mostly sane superblocks. It's time to allocate the
  1925. * mddev.
  1926. */
  1927. if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
  1928. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  1929. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  1930. break;
  1931. }
  1932. if (part)
  1933. dev = MKDEV(mdp_major,
  1934. rdev0->preferred_minor << MdpMinorShift);
  1935. else
  1936. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  1937. md_probe(dev, NULL, NULL);
  1938. mddev = mddev_find(dev);
  1939. if (!mddev) {
  1940. printk(KERN_ERR
  1941. "md: cannot allocate memory for md drive.\n");
  1942. break;
  1943. }
  1944. if (mddev_lock(mddev))
  1945. printk(KERN_WARNING "md: %s locked, cannot run\n",
  1946. mdname(mddev));
  1947. else if (mddev->raid_disks || mddev->major_version
  1948. || !list_empty(&mddev->disks)) {
  1949. printk(KERN_WARNING
  1950. "md: %s already running, cannot run %s\n",
  1951. mdname(mddev), bdevname(rdev0->bdev,b));
  1952. mddev_unlock(mddev);
  1953. } else {
  1954. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  1955. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  1956. list_del_init(&rdev->same_set);
  1957. if (bind_rdev_to_array(rdev, mddev))
  1958. export_rdev(rdev);
  1959. }
  1960. autorun_array(mddev);
  1961. mddev_unlock(mddev);
  1962. }
  1963. /* on success, candidates will be empty, on error
  1964. * it won't...
  1965. */
  1966. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  1967. export_rdev(rdev);
  1968. mddev_put(mddev);
  1969. }
  1970. printk(KERN_INFO "md: ... autorun DONE.\n");
  1971. }
  1972. /*
  1973. * import RAID devices based on one partition
  1974. * if possible, the array gets run as well.
  1975. */
  1976. static int autostart_array(dev_t startdev)
  1977. {
  1978. char b[BDEVNAME_SIZE];
  1979. int err = -EINVAL, i;
  1980. mdp_super_t *sb = NULL;
  1981. mdk_rdev_t *start_rdev = NULL, *rdev;
  1982. start_rdev = md_import_device(startdev, 0, 0);
  1983. if (IS_ERR(start_rdev))
  1984. return err;
  1985. /* NOTE: this can only work for 0.90.0 superblocks */
  1986. sb = (mdp_super_t*)page_address(start_rdev->sb_page);
  1987. if (sb->major_version != 0 ||
  1988. sb->minor_version != 90 ) {
  1989. printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
  1990. export_rdev(start_rdev);
  1991. return err;
  1992. }
  1993. if (start_rdev->faulty) {
  1994. printk(KERN_WARNING
  1995. "md: can not autostart based on faulty %s!\n",
  1996. bdevname(start_rdev->bdev,b));
  1997. export_rdev(start_rdev);
  1998. return err;
  1999. }
  2000. list_add(&start_rdev->same_set, &pending_raid_disks);
  2001. for (i = 0; i < MD_SB_DISKS; i++) {
  2002. mdp_disk_t *desc = sb->disks + i;
  2003. dev_t dev = MKDEV(desc->major, desc->minor);
  2004. if (!dev)
  2005. continue;
  2006. if (dev == startdev)
  2007. continue;
  2008. if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
  2009. continue;
  2010. rdev = md_import_device(dev, 0, 0);
  2011. if (IS_ERR(rdev))
  2012. continue;
  2013. list_add(&rdev->same_set, &pending_raid_disks);
  2014. }
  2015. /*
  2016. * possibly return codes
  2017. */
  2018. autorun_devices(0);
  2019. return 0;
  2020. }
  2021. static int get_version(void __user * arg)
  2022. {
  2023. mdu_version_t ver;
  2024. ver.major = MD_MAJOR_VERSION;
  2025. ver.minor = MD_MINOR_VERSION;
  2026. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  2027. if (copy_to_user(arg, &ver, sizeof(ver)))
  2028. return -EFAULT;
  2029. return 0;
  2030. }
  2031. static int get_array_info(mddev_t * mddev, void __user * arg)
  2032. {
  2033. mdu_array_info_t info;
  2034. int nr,working,active,failed,spare;
  2035. mdk_rdev_t *rdev;
  2036. struct list_head *tmp;
  2037. nr=working=active=failed=spare=0;
  2038. ITERATE_RDEV(mddev,rdev,tmp) {
  2039. nr++;
  2040. if (rdev->faulty)
  2041. failed++;
  2042. else {
  2043. working++;
  2044. if (rdev->in_sync)
  2045. active++;
  2046. else
  2047. spare++;
  2048. }
  2049. }
  2050. info.major_version = mddev->major_version;
  2051. info.minor_version = mddev->minor_version;
  2052. info.patch_version = MD_PATCHLEVEL_VERSION;
  2053. info.ctime = mddev->ctime;
  2054. info.level = mddev->level;
  2055. info.size = mddev->size;
  2056. info.nr_disks = nr;
  2057. info.raid_disks = mddev->raid_disks;
  2058. info.md_minor = mddev->md_minor;
  2059. info.not_persistent= !mddev->persistent;
  2060. info.utime = mddev->utime;
  2061. info.state = 0;
  2062. if (mddev->in_sync)
  2063. info.state = (1<<MD_SB_CLEAN);
  2064. if (mddev->bitmap && mddev->bitmap_offset)
  2065. info.state = (1<<MD_SB_BITMAP_PRESENT);
  2066. info.active_disks = active;
  2067. info.working_disks = working;
  2068. info.failed_disks = failed;
  2069. info.spare_disks = spare;
  2070. info.layout = mddev->layout;
  2071. info.chunk_size = mddev->chunk_size;
  2072. if (copy_to_user(arg, &info, sizeof(info)))
  2073. return -EFAULT;
  2074. return 0;
  2075. }
  2076. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  2077. {
  2078. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  2079. char *ptr, *buf = NULL;
  2080. int err = -ENOMEM;
  2081. file = kmalloc(sizeof(*file), GFP_KERNEL);
  2082. if (!file)
  2083. goto out;
  2084. /* bitmap disabled, zero the first byte and copy out */
  2085. if (!mddev->bitmap || !mddev->bitmap->file) {
  2086. file->pathname[0] = '\0';
  2087. goto copy_out;
  2088. }
  2089. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  2090. if (!buf)
  2091. goto out;
  2092. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  2093. if (!ptr)
  2094. goto out;
  2095. strcpy(file->pathname, ptr);
  2096. copy_out:
  2097. err = 0;
  2098. if (copy_to_user(arg, file, sizeof(*file)))
  2099. err = -EFAULT;
  2100. out:
  2101. kfree(buf);
  2102. kfree(file);
  2103. return err;
  2104. }
  2105. static int get_disk_info(mddev_t * mddev, void __user * arg)
  2106. {
  2107. mdu_disk_info_t info;
  2108. unsigned int nr;
  2109. mdk_rdev_t *rdev;
  2110. if (copy_from_user(&info, arg, sizeof(info)))
  2111. return -EFAULT;
  2112. nr = info.number;
  2113. rdev = find_rdev_nr(mddev, nr);
  2114. if (rdev) {
  2115. info.major = MAJOR(rdev->bdev->bd_dev);
  2116. info.minor = MINOR(rdev->bdev->bd_dev);
  2117. info.raid_disk = rdev->raid_disk;
  2118. info.state = 0;
  2119. if (rdev->faulty)
  2120. info.state |= (1<<MD_DISK_FAULTY);
  2121. else if (rdev->in_sync) {
  2122. info.state |= (1<<MD_DISK_ACTIVE);
  2123. info.state |= (1<<MD_DISK_SYNC);
  2124. }
  2125. if (test_bit(WriteMostly, &rdev->flags))
  2126. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  2127. } else {
  2128. info.major = info.minor = 0;
  2129. info.raid_disk = -1;
  2130. info.state = (1<<MD_DISK_REMOVED);
  2131. }
  2132. if (copy_to_user(arg, &info, sizeof(info)))
  2133. return -EFAULT;
  2134. return 0;
  2135. }
  2136. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  2137. {
  2138. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2139. mdk_rdev_t *rdev;
  2140. dev_t dev = MKDEV(info->major,info->minor);
  2141. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  2142. return -EOVERFLOW;
  2143. if (!mddev->raid_disks) {
  2144. int err;
  2145. /* expecting a device which has a superblock */
  2146. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  2147. if (IS_ERR(rdev)) {
  2148. printk(KERN_WARNING
  2149. "md: md_import_device returned %ld\n",
  2150. PTR_ERR(rdev));
  2151. return PTR_ERR(rdev);
  2152. }
  2153. if (!list_empty(&mddev->disks)) {
  2154. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2155. mdk_rdev_t, same_set);
  2156. int err = super_types[mddev->major_version]
  2157. .load_super(rdev, rdev0, mddev->minor_version);
  2158. if (err < 0) {
  2159. printk(KERN_WARNING
  2160. "md: %s has different UUID to %s\n",
  2161. bdevname(rdev->bdev,b),
  2162. bdevname(rdev0->bdev,b2));
  2163. export_rdev(rdev);
  2164. return -EINVAL;
  2165. }
  2166. }
  2167. err = bind_rdev_to_array(rdev, mddev);
  2168. if (err)
  2169. export_rdev(rdev);
  2170. return err;
  2171. }
  2172. /*
  2173. * add_new_disk can be used once the array is assembled
  2174. * to add "hot spares". They must already have a superblock
  2175. * written
  2176. */
  2177. if (mddev->pers) {
  2178. int err;
  2179. if (!mddev->pers->hot_add_disk) {
  2180. printk(KERN_WARNING
  2181. "%s: personality does not support diskops!\n",
  2182. mdname(mddev));
  2183. return -EINVAL;
  2184. }
  2185. if (mddev->persistent)
  2186. rdev = md_import_device(dev, mddev->major_version,
  2187. mddev->minor_version);
  2188. else
  2189. rdev = md_import_device(dev, -1, -1);
  2190. if (IS_ERR(rdev)) {
  2191. printk(KERN_WARNING
  2192. "md: md_import_device returned %ld\n",
  2193. PTR_ERR(rdev));
  2194. return PTR_ERR(rdev);
  2195. }
  2196. /* set save_raid_disk if appropriate */
  2197. if (!mddev->persistent) {
  2198. if (info->state & (1<<MD_DISK_SYNC) &&
  2199. info->raid_disk < mddev->raid_disks)
  2200. rdev->raid_disk = info->raid_disk;
  2201. else
  2202. rdev->raid_disk = -1;
  2203. } else
  2204. super_types[mddev->major_version].
  2205. validate_super(mddev, rdev);
  2206. rdev->saved_raid_disk = rdev->raid_disk;
  2207. rdev->in_sync = 0; /* just to be sure */
  2208. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2209. set_bit(WriteMostly, &rdev->flags);
  2210. rdev->raid_disk = -1;
  2211. err = bind_rdev_to_array(rdev, mddev);
  2212. if (err)
  2213. export_rdev(rdev);
  2214. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2215. md_wakeup_thread(mddev->thread);
  2216. return err;
  2217. }
  2218. /* otherwise, add_new_disk is only allowed
  2219. * for major_version==0 superblocks
  2220. */
  2221. if (mddev->major_version != 0) {
  2222. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  2223. mdname(mddev));
  2224. return -EINVAL;
  2225. }
  2226. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  2227. int err;
  2228. rdev = md_import_device (dev, -1, 0);
  2229. if (IS_ERR(rdev)) {
  2230. printk(KERN_WARNING
  2231. "md: error, md_import_device() returned %ld\n",
  2232. PTR_ERR(rdev));
  2233. return PTR_ERR(rdev);
  2234. }
  2235. rdev->desc_nr = info->number;
  2236. if (info->raid_disk < mddev->raid_disks)
  2237. rdev->raid_disk = info->raid_disk;
  2238. else
  2239. rdev->raid_disk = -1;
  2240. rdev->faulty = 0;
  2241. if (rdev->raid_disk < mddev->raid_disks)
  2242. rdev->in_sync = (info->state & (1<<MD_DISK_SYNC));
  2243. else
  2244. rdev->in_sync = 0;
  2245. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  2246. set_bit(WriteMostly, &rdev->flags);
  2247. err = bind_rdev_to_array(rdev, mddev);
  2248. if (err) {
  2249. export_rdev(rdev);
  2250. return err;
  2251. }
  2252. if (!mddev->persistent) {
  2253. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  2254. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2255. } else
  2256. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2257. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  2258. if (!mddev->size || (mddev->size > rdev->size))
  2259. mddev->size = rdev->size;
  2260. }
  2261. return 0;
  2262. }
  2263. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  2264. {
  2265. char b[BDEVNAME_SIZE];
  2266. mdk_rdev_t *rdev;
  2267. if (!mddev->pers)
  2268. return -ENODEV;
  2269. rdev = find_rdev(mddev, dev);
  2270. if (!rdev)
  2271. return -ENXIO;
  2272. if (rdev->raid_disk >= 0)
  2273. goto busy;
  2274. kick_rdev_from_array(rdev);
  2275. md_update_sb(mddev);
  2276. return 0;
  2277. busy:
  2278. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  2279. bdevname(rdev->bdev,b), mdname(mddev));
  2280. return -EBUSY;
  2281. }
  2282. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  2283. {
  2284. char b[BDEVNAME_SIZE];
  2285. int err;
  2286. unsigned int size;
  2287. mdk_rdev_t *rdev;
  2288. if (!mddev->pers)
  2289. return -ENODEV;
  2290. if (mddev->major_version != 0) {
  2291. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  2292. " version-0 superblocks.\n",
  2293. mdname(mddev));
  2294. return -EINVAL;
  2295. }
  2296. if (!mddev->pers->hot_add_disk) {
  2297. printk(KERN_WARNING
  2298. "%s: personality does not support diskops!\n",
  2299. mdname(mddev));
  2300. return -EINVAL;
  2301. }
  2302. rdev = md_import_device (dev, -1, 0);
  2303. if (IS_ERR(rdev)) {
  2304. printk(KERN_WARNING
  2305. "md: error, md_import_device() returned %ld\n",
  2306. PTR_ERR(rdev));
  2307. return -EINVAL;
  2308. }
  2309. if (mddev->persistent)
  2310. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  2311. else
  2312. rdev->sb_offset =
  2313. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2314. size = calc_dev_size(rdev, mddev->chunk_size);
  2315. rdev->size = size;
  2316. if (size < mddev->size) {
  2317. printk(KERN_WARNING
  2318. "%s: disk size %llu blocks < array size %llu\n",
  2319. mdname(mddev), (unsigned long long)size,
  2320. (unsigned long long)mddev->size);
  2321. err = -ENOSPC;
  2322. goto abort_export;
  2323. }
  2324. if (rdev->faulty) {
  2325. printk(KERN_WARNING
  2326. "md: can not hot-add faulty %s disk to %s!\n",
  2327. bdevname(rdev->bdev,b), mdname(mddev));
  2328. err = -EINVAL;
  2329. goto abort_export;
  2330. }
  2331. rdev->in_sync = 0;
  2332. rdev->desc_nr = -1;
  2333. bind_rdev_to_array(rdev, mddev);
  2334. /*
  2335. * The rest should better be atomic, we can have disk failures
  2336. * noticed in interrupt contexts ...
  2337. */
  2338. if (rdev->desc_nr == mddev->max_disks) {
  2339. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  2340. mdname(mddev));
  2341. err = -EBUSY;
  2342. goto abort_unbind_export;
  2343. }
  2344. rdev->raid_disk = -1;
  2345. md_update_sb(mddev);
  2346. /*
  2347. * Kick recovery, maybe this spare has to be added to the
  2348. * array immediately.
  2349. */
  2350. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2351. md_wakeup_thread(mddev->thread);
  2352. return 0;
  2353. abort_unbind_export:
  2354. unbind_rdev_from_array(rdev);
  2355. abort_export:
  2356. export_rdev(rdev);
  2357. return err;
  2358. }
  2359. /* similar to deny_write_access, but accounts for our holding a reference
  2360. * to the file ourselves */
  2361. static int deny_bitmap_write_access(struct file * file)
  2362. {
  2363. struct inode *inode = file->f_mapping->host;
  2364. spin_lock(&inode->i_lock);
  2365. if (atomic_read(&inode->i_writecount) > 1) {
  2366. spin_unlock(&inode->i_lock);
  2367. return -ETXTBSY;
  2368. }
  2369. atomic_set(&inode->i_writecount, -1);
  2370. spin_unlock(&inode->i_lock);
  2371. return 0;
  2372. }
  2373. static int set_bitmap_file(mddev_t *mddev, int fd)
  2374. {
  2375. int err;
  2376. if (mddev->pers) {
  2377. if (!mddev->pers->quiesce)
  2378. return -EBUSY;
  2379. if (mddev->recovery || mddev->sync_thread)
  2380. return -EBUSY;
  2381. /* we should be able to change the bitmap.. */
  2382. }
  2383. if (fd >= 0) {
  2384. if (mddev->bitmap)
  2385. return -EEXIST; /* cannot add when bitmap is present */
  2386. mddev->bitmap_file = fget(fd);
  2387. if (mddev->bitmap_file == NULL) {
  2388. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  2389. mdname(mddev));
  2390. return -EBADF;
  2391. }
  2392. err = deny_bitmap_write_access(mddev->bitmap_file);
  2393. if (err) {
  2394. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  2395. mdname(mddev));
  2396. fput(mddev->bitmap_file);
  2397. mddev->bitmap_file = NULL;
  2398. return err;
  2399. }
  2400. mddev->bitmap_offset = 0; /* file overrides offset */
  2401. } else if (mddev->bitmap == NULL)
  2402. return -ENOENT; /* cannot remove what isn't there */
  2403. err = 0;
  2404. if (mddev->pers) {
  2405. mddev->pers->quiesce(mddev, 1);
  2406. if (fd >= 0)
  2407. err = bitmap_create(mddev);
  2408. if (fd < 0 || err)
  2409. bitmap_destroy(mddev);
  2410. mddev->pers->quiesce(mddev, 0);
  2411. } else if (fd < 0) {
  2412. if (mddev->bitmap_file)
  2413. fput(mddev->bitmap_file);
  2414. mddev->bitmap_file = NULL;
  2415. }
  2416. return err;
  2417. }
  2418. /*
  2419. * set_array_info is used two different ways
  2420. * The original usage is when creating a new array.
  2421. * In this usage, raid_disks is > 0 and it together with
  2422. * level, size, not_persistent,layout,chunksize determine the
  2423. * shape of the array.
  2424. * This will always create an array with a type-0.90.0 superblock.
  2425. * The newer usage is when assembling an array.
  2426. * In this case raid_disks will be 0, and the major_version field is
  2427. * use to determine which style super-blocks are to be found on the devices.
  2428. * The minor and patch _version numbers are also kept incase the
  2429. * super_block handler wishes to interpret them.
  2430. */
  2431. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  2432. {
  2433. if (info->raid_disks == 0) {
  2434. /* just setting version number for superblock loading */
  2435. if (info->major_version < 0 ||
  2436. info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
  2437. super_types[info->major_version].name == NULL) {
  2438. /* maybe try to auto-load a module? */
  2439. printk(KERN_INFO
  2440. "md: superblock version %d not known\n",
  2441. info->major_version);
  2442. return -EINVAL;
  2443. }
  2444. mddev->major_version = info->major_version;
  2445. mddev->minor_version = info->minor_version;
  2446. mddev->patch_version = info->patch_version;
  2447. return 0;
  2448. }
  2449. mddev->major_version = MD_MAJOR_VERSION;
  2450. mddev->minor_version = MD_MINOR_VERSION;
  2451. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  2452. mddev->ctime = get_seconds();
  2453. mddev->level = info->level;
  2454. mddev->size = info->size;
  2455. mddev->raid_disks = info->raid_disks;
  2456. /* don't set md_minor, it is determined by which /dev/md* was
  2457. * openned
  2458. */
  2459. if (info->state & (1<<MD_SB_CLEAN))
  2460. mddev->recovery_cp = MaxSector;
  2461. else
  2462. mddev->recovery_cp = 0;
  2463. mddev->persistent = ! info->not_persistent;
  2464. mddev->layout = info->layout;
  2465. mddev->chunk_size = info->chunk_size;
  2466. mddev->max_disks = MD_SB_DISKS;
  2467. mddev->sb_dirty = 1;
  2468. /*
  2469. * Generate a 128 bit UUID
  2470. */
  2471. get_random_bytes(mddev->uuid, 16);
  2472. return 0;
  2473. }
  2474. /*
  2475. * update_array_info is used to change the configuration of an
  2476. * on-line array.
  2477. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  2478. * fields in the info are checked against the array.
  2479. * Any differences that cannot be handled will cause an error.
  2480. * Normally, only one change can be managed at a time.
  2481. */
  2482. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  2483. {
  2484. int rv = 0;
  2485. int cnt = 0;
  2486. int state = 0;
  2487. /* calculate expected state,ignoring low bits */
  2488. if (mddev->bitmap && mddev->bitmap_offset)
  2489. state |= (1 << MD_SB_BITMAP_PRESENT);
  2490. if (mddev->major_version != info->major_version ||
  2491. mddev->minor_version != info->minor_version ||
  2492. /* mddev->patch_version != info->patch_version || */
  2493. mddev->ctime != info->ctime ||
  2494. mddev->level != info->level ||
  2495. /* mddev->layout != info->layout || */
  2496. !mddev->persistent != info->not_persistent||
  2497. mddev->chunk_size != info->chunk_size ||
  2498. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  2499. ((state^info->state) & 0xfffffe00)
  2500. )
  2501. return -EINVAL;
  2502. /* Check there is only one change */
  2503. if (mddev->size != info->size) cnt++;
  2504. if (mddev->raid_disks != info->raid_disks) cnt++;
  2505. if (mddev->layout != info->layout) cnt++;
  2506. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  2507. if (cnt == 0) return 0;
  2508. if (cnt > 1) return -EINVAL;
  2509. if (mddev->layout != info->layout) {
  2510. /* Change layout
  2511. * we don't need to do anything at the md level, the
  2512. * personality will take care of it all.
  2513. */
  2514. if (mddev->pers->reconfig == NULL)
  2515. return -EINVAL;
  2516. else
  2517. return mddev->pers->reconfig(mddev, info->layout, -1);
  2518. }
  2519. if (mddev->size != info->size) {
  2520. mdk_rdev_t * rdev;
  2521. struct list_head *tmp;
  2522. if (mddev->pers->resize == NULL)
  2523. return -EINVAL;
  2524. /* The "size" is the amount of each device that is used.
  2525. * This can only make sense for arrays with redundancy.
  2526. * linear and raid0 always use whatever space is available
  2527. * We can only consider changing the size if no resync
  2528. * or reconstruction is happening, and if the new size
  2529. * is acceptable. It must fit before the sb_offset or,
  2530. * if that is <data_offset, it must fit before the
  2531. * size of each device.
  2532. * If size is zero, we find the largest size that fits.
  2533. */
  2534. if (mddev->sync_thread)
  2535. return -EBUSY;
  2536. ITERATE_RDEV(mddev,rdev,tmp) {
  2537. sector_t avail;
  2538. int fit = (info->size == 0);
  2539. if (rdev->sb_offset > rdev->data_offset)
  2540. avail = (rdev->sb_offset*2) - rdev->data_offset;
  2541. else
  2542. avail = get_capacity(rdev->bdev->bd_disk)
  2543. - rdev->data_offset;
  2544. if (fit && (info->size == 0 || info->size > avail/2))
  2545. info->size = avail/2;
  2546. if (avail < ((sector_t)info->size << 1))
  2547. return -ENOSPC;
  2548. }
  2549. rv = mddev->pers->resize(mddev, (sector_t)info->size *2);
  2550. if (!rv) {
  2551. struct block_device *bdev;
  2552. bdev = bdget_disk(mddev->gendisk, 0);
  2553. if (bdev) {
  2554. down(&bdev->bd_inode->i_sem);
  2555. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2556. up(&bdev->bd_inode->i_sem);
  2557. bdput(bdev);
  2558. }
  2559. }
  2560. }
  2561. if (mddev->raid_disks != info->raid_disks) {
  2562. /* change the number of raid disks */
  2563. if (mddev->pers->reshape == NULL)
  2564. return -EINVAL;
  2565. if (info->raid_disks <= 0 ||
  2566. info->raid_disks >= mddev->max_disks)
  2567. return -EINVAL;
  2568. if (mddev->sync_thread)
  2569. return -EBUSY;
  2570. rv = mddev->pers->reshape(mddev, info->raid_disks);
  2571. if (!rv) {
  2572. struct block_device *bdev;
  2573. bdev = bdget_disk(mddev->gendisk, 0);
  2574. if (bdev) {
  2575. down(&bdev->bd_inode->i_sem);
  2576. i_size_write(bdev->bd_inode, mddev->array_size << 10);
  2577. up(&bdev->bd_inode->i_sem);
  2578. bdput(bdev);
  2579. }
  2580. }
  2581. }
  2582. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  2583. if (mddev->pers->quiesce == NULL)
  2584. return -EINVAL;
  2585. if (mddev->recovery || mddev->sync_thread)
  2586. return -EBUSY;
  2587. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  2588. /* add the bitmap */
  2589. if (mddev->bitmap)
  2590. return -EEXIST;
  2591. if (mddev->default_bitmap_offset == 0)
  2592. return -EINVAL;
  2593. mddev->bitmap_offset = mddev->default_bitmap_offset;
  2594. mddev->pers->quiesce(mddev, 1);
  2595. rv = bitmap_create(mddev);
  2596. if (rv)
  2597. bitmap_destroy(mddev);
  2598. mddev->pers->quiesce(mddev, 0);
  2599. } else {
  2600. /* remove the bitmap */
  2601. if (!mddev->bitmap)
  2602. return -ENOENT;
  2603. if (mddev->bitmap->file)
  2604. return -EINVAL;
  2605. mddev->pers->quiesce(mddev, 1);
  2606. bitmap_destroy(mddev);
  2607. mddev->pers->quiesce(mddev, 0);
  2608. mddev->bitmap_offset = 0;
  2609. }
  2610. }
  2611. md_update_sb(mddev);
  2612. return rv;
  2613. }
  2614. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  2615. {
  2616. mdk_rdev_t *rdev;
  2617. if (mddev->pers == NULL)
  2618. return -ENODEV;
  2619. rdev = find_rdev(mddev, dev);
  2620. if (!rdev)
  2621. return -ENODEV;
  2622. md_error(mddev, rdev);
  2623. return 0;
  2624. }
  2625. static int md_ioctl(struct inode *inode, struct file *file,
  2626. unsigned int cmd, unsigned long arg)
  2627. {
  2628. int err = 0;
  2629. void __user *argp = (void __user *)arg;
  2630. struct hd_geometry __user *loc = argp;
  2631. mddev_t *mddev = NULL;
  2632. if (!capable(CAP_SYS_ADMIN))
  2633. return -EACCES;
  2634. /*
  2635. * Commands dealing with the RAID driver but not any
  2636. * particular array:
  2637. */
  2638. switch (cmd)
  2639. {
  2640. case RAID_VERSION:
  2641. err = get_version(argp);
  2642. goto done;
  2643. case PRINT_RAID_DEBUG:
  2644. err = 0;
  2645. md_print_devices();
  2646. goto done;
  2647. #ifndef MODULE
  2648. case RAID_AUTORUN:
  2649. err = 0;
  2650. autostart_arrays(arg);
  2651. goto done;
  2652. #endif
  2653. default:;
  2654. }
  2655. /*
  2656. * Commands creating/starting a new array:
  2657. */
  2658. mddev = inode->i_bdev->bd_disk->private_data;
  2659. if (!mddev) {
  2660. BUG();
  2661. goto abort;
  2662. }
  2663. if (cmd == START_ARRAY) {
  2664. /* START_ARRAY doesn't need to lock the array as autostart_array
  2665. * does the locking, and it could even be a different array
  2666. */
  2667. static int cnt = 3;
  2668. if (cnt > 0 ) {
  2669. printk(KERN_WARNING
  2670. "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
  2671. "This will not be supported beyond 2.6\n",
  2672. current->comm, current->pid);
  2673. cnt--;
  2674. }
  2675. err = autostart_array(new_decode_dev(arg));
  2676. if (err) {
  2677. printk(KERN_WARNING "md: autostart failed!\n");
  2678. goto abort;
  2679. }
  2680. goto done;
  2681. }
  2682. err = mddev_lock(mddev);
  2683. if (err) {
  2684. printk(KERN_INFO
  2685. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  2686. err, cmd);
  2687. goto abort;
  2688. }
  2689. switch (cmd)
  2690. {
  2691. case SET_ARRAY_INFO:
  2692. {
  2693. mdu_array_info_t info;
  2694. if (!arg)
  2695. memset(&info, 0, sizeof(info));
  2696. else if (copy_from_user(&info, argp, sizeof(info))) {
  2697. err = -EFAULT;
  2698. goto abort_unlock;
  2699. }
  2700. if (mddev->pers) {
  2701. err = update_array_info(mddev, &info);
  2702. if (err) {
  2703. printk(KERN_WARNING "md: couldn't update"
  2704. " array info. %d\n", err);
  2705. goto abort_unlock;
  2706. }
  2707. goto done_unlock;
  2708. }
  2709. if (!list_empty(&mddev->disks)) {
  2710. printk(KERN_WARNING
  2711. "md: array %s already has disks!\n",
  2712. mdname(mddev));
  2713. err = -EBUSY;
  2714. goto abort_unlock;
  2715. }
  2716. if (mddev->raid_disks) {
  2717. printk(KERN_WARNING
  2718. "md: array %s already initialised!\n",
  2719. mdname(mddev));
  2720. err = -EBUSY;
  2721. goto abort_unlock;
  2722. }
  2723. err = set_array_info(mddev, &info);
  2724. if (err) {
  2725. printk(KERN_WARNING "md: couldn't set"
  2726. " array info. %d\n", err);
  2727. goto abort_unlock;
  2728. }
  2729. }
  2730. goto done_unlock;
  2731. default:;
  2732. }
  2733. /*
  2734. * Commands querying/configuring an existing array:
  2735. */
  2736. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  2737. * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
  2738. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  2739. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
  2740. err = -ENODEV;
  2741. goto abort_unlock;
  2742. }
  2743. /*
  2744. * Commands even a read-only array can execute:
  2745. */
  2746. switch (cmd)
  2747. {
  2748. case GET_ARRAY_INFO:
  2749. err = get_array_info(mddev, argp);
  2750. goto done_unlock;
  2751. case GET_BITMAP_FILE:
  2752. err = get_bitmap_file(mddev, argp);
  2753. goto done_unlock;
  2754. case GET_DISK_INFO:
  2755. err = get_disk_info(mddev, argp);
  2756. goto done_unlock;
  2757. case RESTART_ARRAY_RW:
  2758. err = restart_array(mddev);
  2759. goto done_unlock;
  2760. case STOP_ARRAY:
  2761. err = do_md_stop (mddev, 0);
  2762. goto done_unlock;
  2763. case STOP_ARRAY_RO:
  2764. err = do_md_stop (mddev, 1);
  2765. goto done_unlock;
  2766. /*
  2767. * We have a problem here : there is no easy way to give a CHS
  2768. * virtual geometry. We currently pretend that we have a 2 heads
  2769. * 4 sectors (with a BIG number of cylinders...). This drives
  2770. * dosfs just mad... ;-)
  2771. */
  2772. case HDIO_GETGEO:
  2773. if (!loc) {
  2774. err = -EINVAL;
  2775. goto abort_unlock;
  2776. }
  2777. err = put_user (2, (char __user *) &loc->heads);
  2778. if (err)
  2779. goto abort_unlock;
  2780. err = put_user (4, (char __user *) &loc->sectors);
  2781. if (err)
  2782. goto abort_unlock;
  2783. err = put_user(get_capacity(mddev->gendisk)/8,
  2784. (short __user *) &loc->cylinders);
  2785. if (err)
  2786. goto abort_unlock;
  2787. err = put_user (get_start_sect(inode->i_bdev),
  2788. (long __user *) &loc->start);
  2789. goto done_unlock;
  2790. }
  2791. /*
  2792. * The remaining ioctls are changing the state of the
  2793. * superblock, so we do not allow read-only arrays
  2794. * here:
  2795. */
  2796. if (mddev->ro) {
  2797. err = -EROFS;
  2798. goto abort_unlock;
  2799. }
  2800. switch (cmd)
  2801. {
  2802. case ADD_NEW_DISK:
  2803. {
  2804. mdu_disk_info_t info;
  2805. if (copy_from_user(&info, argp, sizeof(info)))
  2806. err = -EFAULT;
  2807. else
  2808. err = add_new_disk(mddev, &info);
  2809. goto done_unlock;
  2810. }
  2811. case HOT_REMOVE_DISK:
  2812. err = hot_remove_disk(mddev, new_decode_dev(arg));
  2813. goto done_unlock;
  2814. case HOT_ADD_DISK:
  2815. err = hot_add_disk(mddev, new_decode_dev(arg));
  2816. goto done_unlock;
  2817. case SET_DISK_FAULTY:
  2818. err = set_disk_faulty(mddev, new_decode_dev(arg));
  2819. goto done_unlock;
  2820. case RUN_ARRAY:
  2821. err = do_md_run (mddev);
  2822. goto done_unlock;
  2823. case SET_BITMAP_FILE:
  2824. err = set_bitmap_file(mddev, (int)arg);
  2825. goto done_unlock;
  2826. default:
  2827. if (_IOC_TYPE(cmd) == MD_MAJOR)
  2828. printk(KERN_WARNING "md: %s(pid %d) used"
  2829. " obsolete MD ioctl, upgrade your"
  2830. " software to use new ictls.\n",
  2831. current->comm, current->pid);
  2832. err = -EINVAL;
  2833. goto abort_unlock;
  2834. }
  2835. done_unlock:
  2836. abort_unlock:
  2837. mddev_unlock(mddev);
  2838. return err;
  2839. done:
  2840. if (err)
  2841. MD_BUG();
  2842. abort:
  2843. return err;
  2844. }
  2845. static int md_open(struct inode *inode, struct file *file)
  2846. {
  2847. /*
  2848. * Succeed if we can lock the mddev, which confirms that
  2849. * it isn't being stopped right now.
  2850. */
  2851. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2852. int err;
  2853. if ((err = mddev_lock(mddev)))
  2854. goto out;
  2855. err = 0;
  2856. mddev_get(mddev);
  2857. mddev_unlock(mddev);
  2858. check_disk_change(inode->i_bdev);
  2859. out:
  2860. return err;
  2861. }
  2862. static int md_release(struct inode *inode, struct file * file)
  2863. {
  2864. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  2865. if (!mddev)
  2866. BUG();
  2867. mddev_put(mddev);
  2868. return 0;
  2869. }
  2870. static int md_media_changed(struct gendisk *disk)
  2871. {
  2872. mddev_t *mddev = disk->private_data;
  2873. return mddev->changed;
  2874. }
  2875. static int md_revalidate(struct gendisk *disk)
  2876. {
  2877. mddev_t *mddev = disk->private_data;
  2878. mddev->changed = 0;
  2879. return 0;
  2880. }
  2881. static struct block_device_operations md_fops =
  2882. {
  2883. .owner = THIS_MODULE,
  2884. .open = md_open,
  2885. .release = md_release,
  2886. .ioctl = md_ioctl,
  2887. .media_changed = md_media_changed,
  2888. .revalidate_disk= md_revalidate,
  2889. };
  2890. static int md_thread(void * arg)
  2891. {
  2892. mdk_thread_t *thread = arg;
  2893. /*
  2894. * md_thread is a 'system-thread', it's priority should be very
  2895. * high. We avoid resource deadlocks individually in each
  2896. * raid personality. (RAID5 does preallocation) We also use RR and
  2897. * the very same RT priority as kswapd, thus we will never get
  2898. * into a priority inversion deadlock.
  2899. *
  2900. * we definitely have to have equal or higher priority than
  2901. * bdflush, otherwise bdflush will deadlock if there are too
  2902. * many dirty RAID5 blocks.
  2903. */
  2904. allow_signal(SIGKILL);
  2905. complete(thread->event);
  2906. while (!kthread_should_stop()) {
  2907. void (*run)(mddev_t *);
  2908. wait_event_interruptible_timeout(thread->wqueue,
  2909. test_bit(THREAD_WAKEUP, &thread->flags)
  2910. || kthread_should_stop(),
  2911. thread->timeout);
  2912. try_to_freeze();
  2913. clear_bit(THREAD_WAKEUP, &thread->flags);
  2914. run = thread->run;
  2915. if (run)
  2916. run(thread->mddev);
  2917. }
  2918. return 0;
  2919. }
  2920. void md_wakeup_thread(mdk_thread_t *thread)
  2921. {
  2922. if (thread) {
  2923. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  2924. set_bit(THREAD_WAKEUP, &thread->flags);
  2925. wake_up(&thread->wqueue);
  2926. }
  2927. }
  2928. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  2929. const char *name)
  2930. {
  2931. mdk_thread_t *thread;
  2932. struct completion event;
  2933. thread = kmalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  2934. if (!thread)
  2935. return NULL;
  2936. memset(thread, 0, sizeof(mdk_thread_t));
  2937. init_waitqueue_head(&thread->wqueue);
  2938. init_completion(&event);
  2939. thread->event = &event;
  2940. thread->run = run;
  2941. thread->mddev = mddev;
  2942. thread->name = name;
  2943. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  2944. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  2945. if (IS_ERR(thread->tsk)) {
  2946. kfree(thread);
  2947. return NULL;
  2948. }
  2949. wait_for_completion(&event);
  2950. return thread;
  2951. }
  2952. void md_unregister_thread(mdk_thread_t *thread)
  2953. {
  2954. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  2955. kthread_stop(thread->tsk);
  2956. kfree(thread);
  2957. }
  2958. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  2959. {
  2960. if (!mddev) {
  2961. MD_BUG();
  2962. return;
  2963. }
  2964. if (!rdev || rdev->faulty)
  2965. return;
  2966. /*
  2967. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  2968. mdname(mddev),
  2969. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  2970. __builtin_return_address(0),__builtin_return_address(1),
  2971. __builtin_return_address(2),__builtin_return_address(3));
  2972. */
  2973. if (!mddev->pers->error_handler)
  2974. return;
  2975. mddev->pers->error_handler(mddev,rdev);
  2976. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2977. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2978. md_wakeup_thread(mddev->thread);
  2979. }
  2980. /* seq_file implementation /proc/mdstat */
  2981. static void status_unused(struct seq_file *seq)
  2982. {
  2983. int i = 0;
  2984. mdk_rdev_t *rdev;
  2985. struct list_head *tmp;
  2986. seq_printf(seq, "unused devices: ");
  2987. ITERATE_RDEV_PENDING(rdev,tmp) {
  2988. char b[BDEVNAME_SIZE];
  2989. i++;
  2990. seq_printf(seq, "%s ",
  2991. bdevname(rdev->bdev,b));
  2992. }
  2993. if (!i)
  2994. seq_printf(seq, "<none>");
  2995. seq_printf(seq, "\n");
  2996. }
  2997. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  2998. {
  2999. unsigned long max_blocks, resync, res, dt, db, rt;
  3000. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  3001. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3002. max_blocks = mddev->resync_max_sectors >> 1;
  3003. else
  3004. max_blocks = mddev->size;
  3005. /*
  3006. * Should not happen.
  3007. */
  3008. if (!max_blocks) {
  3009. MD_BUG();
  3010. return;
  3011. }
  3012. res = (resync/1024)*1000/(max_blocks/1024 + 1);
  3013. {
  3014. int i, x = res/50, y = 20-x;
  3015. seq_printf(seq, "[");
  3016. for (i = 0; i < x; i++)
  3017. seq_printf(seq, "=");
  3018. seq_printf(seq, ">");
  3019. for (i = 0; i < y; i++)
  3020. seq_printf(seq, ".");
  3021. seq_printf(seq, "] ");
  3022. }
  3023. seq_printf(seq, " %s =%3lu.%lu%% (%lu/%lu)",
  3024. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  3025. "resync" : "recovery"),
  3026. res/10, res % 10, resync, max_blocks);
  3027. /*
  3028. * We do not want to overflow, so the order of operands and
  3029. * the * 100 / 100 trick are important. We do a +1 to be
  3030. * safe against division by zero. We only estimate anyway.
  3031. *
  3032. * dt: time from mark until now
  3033. * db: blocks written from mark until now
  3034. * rt: remaining time
  3035. */
  3036. dt = ((jiffies - mddev->resync_mark) / HZ);
  3037. if (!dt) dt++;
  3038. db = resync - (mddev->resync_mark_cnt/2);
  3039. rt = (dt * ((max_blocks-resync) / (db/100+1)))/100;
  3040. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  3041. seq_printf(seq, " speed=%ldK/sec", db/dt);
  3042. }
  3043. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  3044. {
  3045. struct list_head *tmp;
  3046. loff_t l = *pos;
  3047. mddev_t *mddev;
  3048. if (l >= 0x10000)
  3049. return NULL;
  3050. if (!l--)
  3051. /* header */
  3052. return (void*)1;
  3053. spin_lock(&all_mddevs_lock);
  3054. list_for_each(tmp,&all_mddevs)
  3055. if (!l--) {
  3056. mddev = list_entry(tmp, mddev_t, all_mddevs);
  3057. mddev_get(mddev);
  3058. spin_unlock(&all_mddevs_lock);
  3059. return mddev;
  3060. }
  3061. spin_unlock(&all_mddevs_lock);
  3062. if (!l--)
  3063. return (void*)2;/* tail */
  3064. return NULL;
  3065. }
  3066. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  3067. {
  3068. struct list_head *tmp;
  3069. mddev_t *next_mddev, *mddev = v;
  3070. ++*pos;
  3071. if (v == (void*)2)
  3072. return NULL;
  3073. spin_lock(&all_mddevs_lock);
  3074. if (v == (void*)1)
  3075. tmp = all_mddevs.next;
  3076. else
  3077. tmp = mddev->all_mddevs.next;
  3078. if (tmp != &all_mddevs)
  3079. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  3080. else {
  3081. next_mddev = (void*)2;
  3082. *pos = 0x10000;
  3083. }
  3084. spin_unlock(&all_mddevs_lock);
  3085. if (v != (void*)1)
  3086. mddev_put(mddev);
  3087. return next_mddev;
  3088. }
  3089. static void md_seq_stop(struct seq_file *seq, void *v)
  3090. {
  3091. mddev_t *mddev = v;
  3092. if (mddev && v != (void*)1 && v != (void*)2)
  3093. mddev_put(mddev);
  3094. }
  3095. static int md_seq_show(struct seq_file *seq, void *v)
  3096. {
  3097. mddev_t *mddev = v;
  3098. sector_t size;
  3099. struct list_head *tmp2;
  3100. mdk_rdev_t *rdev;
  3101. int i;
  3102. struct bitmap *bitmap;
  3103. if (v == (void*)1) {
  3104. seq_printf(seq, "Personalities : ");
  3105. spin_lock(&pers_lock);
  3106. for (i = 0; i < MAX_PERSONALITY; i++)
  3107. if (pers[i])
  3108. seq_printf(seq, "[%s] ", pers[i]->name);
  3109. spin_unlock(&pers_lock);
  3110. seq_printf(seq, "\n");
  3111. return 0;
  3112. }
  3113. if (v == (void*)2) {
  3114. status_unused(seq);
  3115. return 0;
  3116. }
  3117. if (mddev_lock(mddev)!=0)
  3118. return -EINTR;
  3119. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  3120. seq_printf(seq, "%s : %sactive", mdname(mddev),
  3121. mddev->pers ? "" : "in");
  3122. if (mddev->pers) {
  3123. if (mddev->ro)
  3124. seq_printf(seq, " (read-only)");
  3125. seq_printf(seq, " %s", mddev->pers->name);
  3126. }
  3127. size = 0;
  3128. ITERATE_RDEV(mddev,rdev,tmp2) {
  3129. char b[BDEVNAME_SIZE];
  3130. seq_printf(seq, " %s[%d]",
  3131. bdevname(rdev->bdev,b), rdev->desc_nr);
  3132. if (test_bit(WriteMostly, &rdev->flags))
  3133. seq_printf(seq, "(W)");
  3134. if (rdev->faulty) {
  3135. seq_printf(seq, "(F)");
  3136. continue;
  3137. } else if (rdev->raid_disk < 0)
  3138. seq_printf(seq, "(S)"); /* spare */
  3139. size += rdev->size;
  3140. }
  3141. if (!list_empty(&mddev->disks)) {
  3142. if (mddev->pers)
  3143. seq_printf(seq, "\n %llu blocks",
  3144. (unsigned long long)mddev->array_size);
  3145. else
  3146. seq_printf(seq, "\n %llu blocks",
  3147. (unsigned long long)size);
  3148. }
  3149. if (mddev->persistent) {
  3150. if (mddev->major_version != 0 ||
  3151. mddev->minor_version != 90) {
  3152. seq_printf(seq," super %d.%d",
  3153. mddev->major_version,
  3154. mddev->minor_version);
  3155. }
  3156. } else
  3157. seq_printf(seq, " super non-persistent");
  3158. if (mddev->pers) {
  3159. mddev->pers->status (seq, mddev);
  3160. seq_printf(seq, "\n ");
  3161. if (mddev->curr_resync > 2) {
  3162. status_resync (seq, mddev);
  3163. seq_printf(seq, "\n ");
  3164. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  3165. seq_printf(seq, " resync=DELAYED\n ");
  3166. } else
  3167. seq_printf(seq, "\n ");
  3168. if ((bitmap = mddev->bitmap)) {
  3169. unsigned long chunk_kb;
  3170. unsigned long flags;
  3171. spin_lock_irqsave(&bitmap->lock, flags);
  3172. chunk_kb = bitmap->chunksize >> 10;
  3173. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  3174. "%lu%s chunk",
  3175. bitmap->pages - bitmap->missing_pages,
  3176. bitmap->pages,
  3177. (bitmap->pages - bitmap->missing_pages)
  3178. << (PAGE_SHIFT - 10),
  3179. chunk_kb ? chunk_kb : bitmap->chunksize,
  3180. chunk_kb ? "KB" : "B");
  3181. if (bitmap->file) {
  3182. seq_printf(seq, ", file: ");
  3183. seq_path(seq, bitmap->file->f_vfsmnt,
  3184. bitmap->file->f_dentry," \t\n");
  3185. }
  3186. seq_printf(seq, "\n");
  3187. spin_unlock_irqrestore(&bitmap->lock, flags);
  3188. }
  3189. seq_printf(seq, "\n");
  3190. }
  3191. mddev_unlock(mddev);
  3192. return 0;
  3193. }
  3194. static struct seq_operations md_seq_ops = {
  3195. .start = md_seq_start,
  3196. .next = md_seq_next,
  3197. .stop = md_seq_stop,
  3198. .show = md_seq_show,
  3199. };
  3200. static int md_seq_open(struct inode *inode, struct file *file)
  3201. {
  3202. int error;
  3203. error = seq_open(file, &md_seq_ops);
  3204. return error;
  3205. }
  3206. static struct file_operations md_seq_fops = {
  3207. .open = md_seq_open,
  3208. .read = seq_read,
  3209. .llseek = seq_lseek,
  3210. .release = seq_release,
  3211. };
  3212. int register_md_personality(int pnum, mdk_personality_t *p)
  3213. {
  3214. if (pnum >= MAX_PERSONALITY) {
  3215. printk(KERN_ERR
  3216. "md: tried to install personality %s as nr %d, but max is %lu\n",
  3217. p->name, pnum, MAX_PERSONALITY-1);
  3218. return -EINVAL;
  3219. }
  3220. spin_lock(&pers_lock);
  3221. if (pers[pnum]) {
  3222. spin_unlock(&pers_lock);
  3223. return -EBUSY;
  3224. }
  3225. pers[pnum] = p;
  3226. printk(KERN_INFO "md: %s personality registered as nr %d\n", p->name, pnum);
  3227. spin_unlock(&pers_lock);
  3228. return 0;
  3229. }
  3230. int unregister_md_personality(int pnum)
  3231. {
  3232. if (pnum >= MAX_PERSONALITY)
  3233. return -EINVAL;
  3234. printk(KERN_INFO "md: %s personality unregistered\n", pers[pnum]->name);
  3235. spin_lock(&pers_lock);
  3236. pers[pnum] = NULL;
  3237. spin_unlock(&pers_lock);
  3238. return 0;
  3239. }
  3240. static int is_mddev_idle(mddev_t *mddev)
  3241. {
  3242. mdk_rdev_t * rdev;
  3243. struct list_head *tmp;
  3244. int idle;
  3245. unsigned long curr_events;
  3246. idle = 1;
  3247. ITERATE_RDEV(mddev,rdev,tmp) {
  3248. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  3249. curr_events = disk_stat_read(disk, sectors[0]) +
  3250. disk_stat_read(disk, sectors[1]) -
  3251. atomic_read(&disk->sync_io);
  3252. /* Allow some slack between valud of curr_events and last_events,
  3253. * as there are some uninteresting races.
  3254. * Note: the following is an unsigned comparison.
  3255. */
  3256. if ((curr_events - rdev->last_events + 32) > 64) {
  3257. rdev->last_events = curr_events;
  3258. idle = 0;
  3259. }
  3260. }
  3261. return idle;
  3262. }
  3263. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  3264. {
  3265. /* another "blocks" (512byte) blocks have been synced */
  3266. atomic_sub(blocks, &mddev->recovery_active);
  3267. wake_up(&mddev->recovery_wait);
  3268. if (!ok) {
  3269. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3270. md_wakeup_thread(mddev->thread);
  3271. // stop recovery, signal do_sync ....
  3272. }
  3273. }
  3274. /* md_write_start(mddev, bi)
  3275. * If we need to update some array metadata (e.g. 'active' flag
  3276. * in superblock) before writing, schedule a superblock update
  3277. * and wait for it to complete.
  3278. */
  3279. void md_write_start(mddev_t *mddev, struct bio *bi)
  3280. {
  3281. if (bio_data_dir(bi) != WRITE)
  3282. return;
  3283. atomic_inc(&mddev->writes_pending);
  3284. if (mddev->in_sync) {
  3285. spin_lock(&mddev->write_lock);
  3286. if (mddev->in_sync) {
  3287. mddev->in_sync = 0;
  3288. mddev->sb_dirty = 1;
  3289. md_wakeup_thread(mddev->thread);
  3290. }
  3291. spin_unlock(&mddev->write_lock);
  3292. }
  3293. wait_event(mddev->sb_wait, mddev->sb_dirty==0);
  3294. }
  3295. void md_write_end(mddev_t *mddev)
  3296. {
  3297. if (atomic_dec_and_test(&mddev->writes_pending)) {
  3298. if (mddev->safemode == 2)
  3299. md_wakeup_thread(mddev->thread);
  3300. else
  3301. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  3302. }
  3303. }
  3304. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  3305. #define SYNC_MARKS 10
  3306. #define SYNC_MARK_STEP (3*HZ)
  3307. static void md_do_sync(mddev_t *mddev)
  3308. {
  3309. mddev_t *mddev2;
  3310. unsigned int currspeed = 0,
  3311. window;
  3312. sector_t max_sectors,j, io_sectors;
  3313. unsigned long mark[SYNC_MARKS];
  3314. sector_t mark_cnt[SYNC_MARKS];
  3315. int last_mark,m;
  3316. struct list_head *tmp;
  3317. sector_t last_check;
  3318. int skipped = 0;
  3319. /* just incase thread restarts... */
  3320. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  3321. return;
  3322. /* we overload curr_resync somewhat here.
  3323. * 0 == not engaged in resync at all
  3324. * 2 == checking that there is no conflict with another sync
  3325. * 1 == like 2, but have yielded to allow conflicting resync to
  3326. * commense
  3327. * other == active in resync - this many blocks
  3328. *
  3329. * Before starting a resync we must have set curr_resync to
  3330. * 2, and then checked that every "conflicting" array has curr_resync
  3331. * less than ours. When we find one that is the same or higher
  3332. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  3333. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  3334. * This will mean we have to start checking from the beginning again.
  3335. *
  3336. */
  3337. do {
  3338. mddev->curr_resync = 2;
  3339. try_again:
  3340. if (signal_pending(current) ||
  3341. kthread_should_stop()) {
  3342. flush_signals(current);
  3343. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3344. goto skip;
  3345. }
  3346. ITERATE_MDDEV(mddev2,tmp) {
  3347. if (mddev2 == mddev)
  3348. continue;
  3349. if (mddev2->curr_resync &&
  3350. match_mddev_units(mddev,mddev2)) {
  3351. DEFINE_WAIT(wq);
  3352. if (mddev < mddev2 && mddev->curr_resync == 2) {
  3353. /* arbitrarily yield */
  3354. mddev->curr_resync = 1;
  3355. wake_up(&resync_wait);
  3356. }
  3357. if (mddev > mddev2 && mddev->curr_resync == 1)
  3358. /* no need to wait here, we can wait the next
  3359. * time 'round when curr_resync == 2
  3360. */
  3361. continue;
  3362. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  3363. if (!signal_pending(current) &&
  3364. !kthread_should_stop() &&
  3365. mddev2->curr_resync >= mddev->curr_resync) {
  3366. printk(KERN_INFO "md: delaying resync of %s"
  3367. " until %s has finished resync (they"
  3368. " share one or more physical units)\n",
  3369. mdname(mddev), mdname(mddev2));
  3370. mddev_put(mddev2);
  3371. schedule();
  3372. finish_wait(&resync_wait, &wq);
  3373. goto try_again;
  3374. }
  3375. finish_wait(&resync_wait, &wq);
  3376. }
  3377. }
  3378. } while (mddev->curr_resync < 2);
  3379. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3380. /* resync follows the size requested by the personality,
  3381. * which defaults to physical size, but can be virtual size
  3382. */
  3383. max_sectors = mddev->resync_max_sectors;
  3384. mddev->resync_mismatches = 0;
  3385. } else
  3386. /* recovery follows the physical size of devices */
  3387. max_sectors = mddev->size << 1;
  3388. printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
  3389. printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
  3390. " %d KB/sec/disc.\n", sysctl_speed_limit_min);
  3391. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  3392. "(but not more than %d KB/sec) for reconstruction.\n",
  3393. sysctl_speed_limit_max);
  3394. is_mddev_idle(mddev); /* this also initializes IO event counters */
  3395. /* we don't use the checkpoint if there's a bitmap */
  3396. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && !mddev->bitmap
  3397. && ! test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3398. j = mddev->recovery_cp;
  3399. else
  3400. j = 0;
  3401. io_sectors = 0;
  3402. for (m = 0; m < SYNC_MARKS; m++) {
  3403. mark[m] = jiffies;
  3404. mark_cnt[m] = io_sectors;
  3405. }
  3406. last_mark = 0;
  3407. mddev->resync_mark = mark[last_mark];
  3408. mddev->resync_mark_cnt = mark_cnt[last_mark];
  3409. /*
  3410. * Tune reconstruction:
  3411. */
  3412. window = 32*(PAGE_SIZE/512);
  3413. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  3414. window/2,(unsigned long long) max_sectors/2);
  3415. atomic_set(&mddev->recovery_active, 0);
  3416. init_waitqueue_head(&mddev->recovery_wait);
  3417. last_check = 0;
  3418. if (j>2) {
  3419. printk(KERN_INFO
  3420. "md: resuming recovery of %s from checkpoint.\n",
  3421. mdname(mddev));
  3422. mddev->curr_resync = j;
  3423. }
  3424. while (j < max_sectors) {
  3425. sector_t sectors;
  3426. skipped = 0;
  3427. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  3428. currspeed < sysctl_speed_limit_min);
  3429. if (sectors == 0) {
  3430. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3431. goto out;
  3432. }
  3433. if (!skipped) { /* actual IO requested */
  3434. io_sectors += sectors;
  3435. atomic_add(sectors, &mddev->recovery_active);
  3436. }
  3437. j += sectors;
  3438. if (j>1) mddev->curr_resync = j;
  3439. if (last_check + window > io_sectors || j == max_sectors)
  3440. continue;
  3441. last_check = io_sectors;
  3442. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  3443. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  3444. break;
  3445. repeat:
  3446. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  3447. /* step marks */
  3448. int next = (last_mark+1) % SYNC_MARKS;
  3449. mddev->resync_mark = mark[next];
  3450. mddev->resync_mark_cnt = mark_cnt[next];
  3451. mark[next] = jiffies;
  3452. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  3453. last_mark = next;
  3454. }
  3455. if (signal_pending(current) || kthread_should_stop()) {
  3456. /*
  3457. * got a signal, exit.
  3458. */
  3459. printk(KERN_INFO
  3460. "md: md_do_sync() got signal ... exiting\n");
  3461. flush_signals(current);
  3462. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3463. goto out;
  3464. }
  3465. /*
  3466. * this loop exits only if either when we are slower than
  3467. * the 'hard' speed limit, or the system was IO-idle for
  3468. * a jiffy.
  3469. * the system might be non-idle CPU-wise, but we only care
  3470. * about not overloading the IO subsystem. (things like an
  3471. * e2fsck being done on the RAID array should execute fast)
  3472. */
  3473. mddev->queue->unplug_fn(mddev->queue);
  3474. cond_resched();
  3475. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  3476. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  3477. if (currspeed > sysctl_speed_limit_min) {
  3478. if ((currspeed > sysctl_speed_limit_max) ||
  3479. !is_mddev_idle(mddev)) {
  3480. msleep_interruptible(250);
  3481. goto repeat;
  3482. }
  3483. }
  3484. }
  3485. printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
  3486. /*
  3487. * this also signals 'finished resyncing' to md_stop
  3488. */
  3489. out:
  3490. mddev->queue->unplug_fn(mddev->queue);
  3491. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  3492. /* tell personality that we are finished */
  3493. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  3494. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3495. mddev->curr_resync > 2 &&
  3496. mddev->curr_resync >= mddev->recovery_cp) {
  3497. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3498. printk(KERN_INFO
  3499. "md: checkpointing recovery of %s.\n",
  3500. mdname(mddev));
  3501. mddev->recovery_cp = mddev->curr_resync;
  3502. } else
  3503. mddev->recovery_cp = MaxSector;
  3504. }
  3505. skip:
  3506. mddev->curr_resync = 0;
  3507. wake_up(&resync_wait);
  3508. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3509. md_wakeup_thread(mddev->thread);
  3510. }
  3511. /*
  3512. * This routine is regularly called by all per-raid-array threads to
  3513. * deal with generic issues like resync and super-block update.
  3514. * Raid personalities that don't have a thread (linear/raid0) do not
  3515. * need this as they never do any recovery or update the superblock.
  3516. *
  3517. * It does not do any resync itself, but rather "forks" off other threads
  3518. * to do that as needed.
  3519. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  3520. * "->recovery" and create a thread at ->sync_thread.
  3521. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  3522. * and wakeups up this thread which will reap the thread and finish up.
  3523. * This thread also removes any faulty devices (with nr_pending == 0).
  3524. *
  3525. * The overall approach is:
  3526. * 1/ if the superblock needs updating, update it.
  3527. * 2/ If a recovery thread is running, don't do anything else.
  3528. * 3/ If recovery has finished, clean up, possibly marking spares active.
  3529. * 4/ If there are any faulty devices, remove them.
  3530. * 5/ If array is degraded, try to add spares devices
  3531. * 6/ If array has spares or is not in-sync, start a resync thread.
  3532. */
  3533. void md_check_recovery(mddev_t *mddev)
  3534. {
  3535. mdk_rdev_t *rdev;
  3536. struct list_head *rtmp;
  3537. if (mddev->bitmap)
  3538. bitmap_daemon_work(mddev->bitmap);
  3539. if (mddev->ro)
  3540. return;
  3541. if (signal_pending(current)) {
  3542. if (mddev->pers->sync_request) {
  3543. printk(KERN_INFO "md: %s in immediate safe mode\n",
  3544. mdname(mddev));
  3545. mddev->safemode = 2;
  3546. }
  3547. flush_signals(current);
  3548. }
  3549. if ( ! (
  3550. mddev->sb_dirty ||
  3551. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  3552. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  3553. (mddev->safemode == 1) ||
  3554. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  3555. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  3556. ))
  3557. return;
  3558. if (mddev_trylock(mddev)==0) {
  3559. int spares =0;
  3560. spin_lock(&mddev->write_lock);
  3561. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  3562. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  3563. mddev->in_sync = 1;
  3564. mddev->sb_dirty = 1;
  3565. }
  3566. if (mddev->safemode == 1)
  3567. mddev->safemode = 0;
  3568. spin_unlock(&mddev->write_lock);
  3569. if (mddev->sb_dirty)
  3570. md_update_sb(mddev);
  3571. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  3572. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  3573. /* resync/recovery still happening */
  3574. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3575. goto unlock;
  3576. }
  3577. if (mddev->sync_thread) {
  3578. /* resync has finished, collect result */
  3579. md_unregister_thread(mddev->sync_thread);
  3580. mddev->sync_thread = NULL;
  3581. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  3582. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  3583. /* success...*/
  3584. /* activate any spares */
  3585. mddev->pers->spare_active(mddev);
  3586. }
  3587. md_update_sb(mddev);
  3588. /* if array is no-longer degraded, then any saved_raid_disk
  3589. * information must be scrapped
  3590. */
  3591. if (!mddev->degraded)
  3592. ITERATE_RDEV(mddev,rdev,rtmp)
  3593. rdev->saved_raid_disk = -1;
  3594. mddev->recovery = 0;
  3595. /* flag recovery needed just to double check */
  3596. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3597. goto unlock;
  3598. }
  3599. /* Clear some bits that don't mean anything, but
  3600. * might be left set
  3601. */
  3602. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3603. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  3604. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3605. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  3606. /* no recovery is running.
  3607. * remove any failed drives, then
  3608. * add spares if possible.
  3609. * Spare are also removed and re-added, to allow
  3610. * the personality to fail the re-add.
  3611. */
  3612. ITERATE_RDEV(mddev,rdev,rtmp)
  3613. if (rdev->raid_disk >= 0 &&
  3614. (rdev->faulty || ! rdev->in_sync) &&
  3615. atomic_read(&rdev->nr_pending)==0) {
  3616. if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
  3617. char nm[20];
  3618. sprintf(nm,"rd%d", rdev->raid_disk);
  3619. sysfs_remove_link(&mddev->kobj, nm);
  3620. rdev->raid_disk = -1;
  3621. }
  3622. }
  3623. if (mddev->degraded) {
  3624. ITERATE_RDEV(mddev,rdev,rtmp)
  3625. if (rdev->raid_disk < 0
  3626. && !rdev->faulty) {
  3627. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  3628. char nm[20];
  3629. sprintf(nm, "rd%d", rdev->raid_disk);
  3630. sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
  3631. spares++;
  3632. } else
  3633. break;
  3634. }
  3635. }
  3636. if (spares) {
  3637. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3638. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3639. } else if (mddev->recovery_cp < MaxSector) {
  3640. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3641. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3642. /* nothing to be done ... */
  3643. goto unlock;
  3644. if (mddev->pers->sync_request) {
  3645. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3646. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  3647. /* We are adding a device or devices to an array
  3648. * which has the bitmap stored on all devices.
  3649. * So make sure all bitmap pages get written
  3650. */
  3651. bitmap_write_all(mddev->bitmap);
  3652. }
  3653. mddev->sync_thread = md_register_thread(md_do_sync,
  3654. mddev,
  3655. "%s_resync");
  3656. if (!mddev->sync_thread) {
  3657. printk(KERN_ERR "%s: could not start resync"
  3658. " thread...\n",
  3659. mdname(mddev));
  3660. /* leave the spares where they are, it shouldn't hurt */
  3661. mddev->recovery = 0;
  3662. } else {
  3663. md_wakeup_thread(mddev->sync_thread);
  3664. }
  3665. }
  3666. unlock:
  3667. mddev_unlock(mddev);
  3668. }
  3669. }
  3670. static int md_notify_reboot(struct notifier_block *this,
  3671. unsigned long code, void *x)
  3672. {
  3673. struct list_head *tmp;
  3674. mddev_t *mddev;
  3675. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  3676. printk(KERN_INFO "md: stopping all md devices.\n");
  3677. ITERATE_MDDEV(mddev,tmp)
  3678. if (mddev_trylock(mddev)==0)
  3679. do_md_stop (mddev, 1);
  3680. /*
  3681. * certain more exotic SCSI devices are known to be
  3682. * volatile wrt too early system reboots. While the
  3683. * right place to handle this issue is the given
  3684. * driver, we do want to have a safe RAID driver ...
  3685. */
  3686. mdelay(1000*1);
  3687. }
  3688. return NOTIFY_DONE;
  3689. }
  3690. static struct notifier_block md_notifier = {
  3691. .notifier_call = md_notify_reboot,
  3692. .next = NULL,
  3693. .priority = INT_MAX, /* before any real devices */
  3694. };
  3695. static void md_geninit(void)
  3696. {
  3697. struct proc_dir_entry *p;
  3698. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  3699. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  3700. if (p)
  3701. p->proc_fops = &md_seq_fops;
  3702. }
  3703. static int __init md_init(void)
  3704. {
  3705. int minor;
  3706. printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
  3707. " MD_SB_DISKS=%d\n",
  3708. MD_MAJOR_VERSION, MD_MINOR_VERSION,
  3709. MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
  3710. printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR,
  3711. BITMAP_MINOR);
  3712. if (register_blkdev(MAJOR_NR, "md"))
  3713. return -1;
  3714. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  3715. unregister_blkdev(MAJOR_NR, "md");
  3716. return -1;
  3717. }
  3718. devfs_mk_dir("md");
  3719. blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
  3720. md_probe, NULL, NULL);
  3721. blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
  3722. md_probe, NULL, NULL);
  3723. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3724. devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
  3725. S_IFBLK|S_IRUSR|S_IWUSR,
  3726. "md/%d", minor);
  3727. for (minor=0; minor < MAX_MD_DEVS; ++minor)
  3728. devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
  3729. S_IFBLK|S_IRUSR|S_IWUSR,
  3730. "md/mdp%d", minor);
  3731. register_reboot_notifier(&md_notifier);
  3732. raid_table_header = register_sysctl_table(raid_root_table, 1);
  3733. md_geninit();
  3734. return (0);
  3735. }
  3736. #ifndef MODULE
  3737. /*
  3738. * Searches all registered partitions for autorun RAID arrays
  3739. * at boot time.
  3740. */
  3741. static dev_t detected_devices[128];
  3742. static int dev_cnt;
  3743. void md_autodetect_dev(dev_t dev)
  3744. {
  3745. if (dev_cnt >= 0 && dev_cnt < 127)
  3746. detected_devices[dev_cnt++] = dev;
  3747. }
  3748. static void autostart_arrays(int part)
  3749. {
  3750. mdk_rdev_t *rdev;
  3751. int i;
  3752. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  3753. for (i = 0; i < dev_cnt; i++) {
  3754. dev_t dev = detected_devices[i];
  3755. rdev = md_import_device(dev,0, 0);
  3756. if (IS_ERR(rdev))
  3757. continue;
  3758. if (rdev->faulty) {
  3759. MD_BUG();
  3760. continue;
  3761. }
  3762. list_add(&rdev->same_set, &pending_raid_disks);
  3763. }
  3764. dev_cnt = 0;
  3765. autorun_devices(part);
  3766. }
  3767. #endif
  3768. static __exit void md_exit(void)
  3769. {
  3770. mddev_t *mddev;
  3771. struct list_head *tmp;
  3772. int i;
  3773. blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
  3774. blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
  3775. for (i=0; i < MAX_MD_DEVS; i++)
  3776. devfs_remove("md/%d", i);
  3777. for (i=0; i < MAX_MD_DEVS; i++)
  3778. devfs_remove("md/d%d", i);
  3779. devfs_remove("md");
  3780. unregister_blkdev(MAJOR_NR,"md");
  3781. unregister_blkdev(mdp_major, "mdp");
  3782. unregister_reboot_notifier(&md_notifier);
  3783. unregister_sysctl_table(raid_table_header);
  3784. remove_proc_entry("mdstat", NULL);
  3785. ITERATE_MDDEV(mddev,tmp) {
  3786. struct gendisk *disk = mddev->gendisk;
  3787. if (!disk)
  3788. continue;
  3789. export_array(mddev);
  3790. del_gendisk(disk);
  3791. put_disk(disk);
  3792. mddev->gendisk = NULL;
  3793. mddev_put(mddev);
  3794. }
  3795. }
  3796. module_init(md_init)
  3797. module_exit(md_exit)
  3798. EXPORT_SYMBOL(register_md_personality);
  3799. EXPORT_SYMBOL(unregister_md_personality);
  3800. EXPORT_SYMBOL(md_error);
  3801. EXPORT_SYMBOL(md_done_sync);
  3802. EXPORT_SYMBOL(md_write_start);
  3803. EXPORT_SYMBOL(md_write_end);
  3804. EXPORT_SYMBOL(md_register_thread);
  3805. EXPORT_SYMBOL(md_unregister_thread);
  3806. EXPORT_SYMBOL(md_wakeup_thread);
  3807. EXPORT_SYMBOL(md_print_devices);
  3808. EXPORT_SYMBOL(md_check_recovery);
  3809. MODULE_LICENSE("GPL");
  3810. MODULE_ALIAS("md");
  3811. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);