wmi.c 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244
  1. /*
  2. * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
  3. * Copyright (c) 2018, The Linux Foundation. All rights reserved.
  4. *
  5. * Permission to use, copy, modify, and/or distribute this software for any
  6. * purpose with or without fee is hereby granted, provided that the above
  7. * copyright notice and this permission notice appear in all copies.
  8. *
  9. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  10. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  11. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  12. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  13. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  14. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  15. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  16. */
  17. #include <linux/moduleparam.h>
  18. #include <linux/etherdevice.h>
  19. #include <linux/if_arp.h>
  20. #include "wil6210.h"
  21. #include "txrx.h"
  22. #include "wmi.h"
  23. #include "trace.h"
  24. static uint max_assoc_sta = WIL6210_MAX_CID;
  25. module_param(max_assoc_sta, uint, 0644);
  26. MODULE_PARM_DESC(max_assoc_sta, " Max number of stations associated to the AP");
  27. int agg_wsize; /* = 0; */
  28. module_param(agg_wsize, int, 0644);
  29. MODULE_PARM_DESC(agg_wsize, " Window size for Tx Block Ack after connect;"
  30. " 0 - use default; < 0 - don't auto-establish");
  31. u8 led_id = WIL_LED_INVALID_ID;
  32. module_param(led_id, byte, 0444);
  33. MODULE_PARM_DESC(led_id,
  34. " 60G device led enablement. Set the led ID (0-2) to enable");
  35. #define WIL_WAIT_FOR_SUSPEND_RESUME_COMP 200
  36. #define WIL_WMI_CALL_GENERAL_TO_MS 100
  37. /**
  38. * WMI event receiving - theory of operations
  39. *
  40. * When firmware about to report WMI event, it fills memory area
  41. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  42. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  43. *
  44. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  45. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  46. * and handles events within the @wmi_event_worker. Every event get detached
  47. * from list, processed and deleted.
  48. *
  49. * Purpose for this mechanism is to release IRQ thread; otherwise,
  50. * if WMI event handling involves another WMI command flow, this 2-nd flow
  51. * won't be completed because of blocked IRQ thread.
  52. */
  53. /**
  54. * Addressing - theory of operations
  55. *
  56. * There are several buses present on the WIL6210 card.
  57. * Same memory areas are visible at different address on
  58. * the different busses. There are 3 main bus masters:
  59. * - MAC CPU (ucode)
  60. * - User CPU (firmware)
  61. * - AHB (host)
  62. *
  63. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  64. * AHB addresses starting from 0x880000
  65. *
  66. * Internally, firmware uses addresses that allow faster access but
  67. * are invisible from the host. To read from these addresses, alternative
  68. * AHB address must be used.
  69. */
  70. /**
  71. * @sparrow_fw_mapping provides memory remapping table for sparrow
  72. *
  73. * array size should be in sync with the declaration in the wil6210.h
  74. *
  75. * Sparrow memory mapping:
  76. * Linker address PCI/Host address
  77. * 0x880000 .. 0xa80000 2Mb BAR0
  78. * 0x800000 .. 0x808000 0x900000 .. 0x908000 32k DCCM
  79. * 0x840000 .. 0x860000 0x908000 .. 0x928000 128k PERIPH
  80. */
  81. const struct fw_map sparrow_fw_mapping[] = {
  82. /* FW code RAM 256k */
  83. {0x000000, 0x040000, 0x8c0000, "fw_code", true, true},
  84. /* FW data RAM 32k */
  85. {0x800000, 0x808000, 0x900000, "fw_data", true, true},
  86. /* periph data 128k */
  87. {0x840000, 0x860000, 0x908000, "fw_peri", true, true},
  88. /* various RGF 40k */
  89. {0x880000, 0x88a000, 0x880000, "rgf", true, true},
  90. /* AGC table 4k */
  91. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
  92. /* Pcie_ext_rgf 4k */
  93. {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
  94. /* mac_ext_rgf 512b */
  95. {0x88c000, 0x88c200, 0x88c000, "mac_rgf_ext", true, true},
  96. /* upper area 548k */
  97. {0x8c0000, 0x949000, 0x8c0000, "upper", true, true},
  98. /* UCODE areas - accessible by debugfs blobs but not by
  99. * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
  100. */
  101. /* ucode code RAM 128k */
  102. {0x000000, 0x020000, 0x920000, "uc_code", false, false},
  103. /* ucode data RAM 16k */
  104. {0x800000, 0x804000, 0x940000, "uc_data", false, false},
  105. };
  106. /**
  107. * @sparrow_d0_mac_rgf_ext - mac_rgf_ext section for Sparrow D0
  108. * it is a bit larger to support extra features
  109. */
  110. const struct fw_map sparrow_d0_mac_rgf_ext = {
  111. 0x88c000, 0x88c500, 0x88c000, "mac_rgf_ext", true, true
  112. };
  113. /**
  114. * @talyn_fw_mapping provides memory remapping table for Talyn
  115. *
  116. * array size should be in sync with the declaration in the wil6210.h
  117. *
  118. * Talyn memory mapping:
  119. * Linker address PCI/Host address
  120. * 0x880000 .. 0xc80000 4Mb BAR0
  121. * 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM
  122. * 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH
  123. */
  124. const struct fw_map talyn_fw_mapping[] = {
  125. /* FW code RAM 1M */
  126. {0x000000, 0x100000, 0x900000, "fw_code", true, true},
  127. /* FW data RAM 128k */
  128. {0x800000, 0x820000, 0xa00000, "fw_data", true, true},
  129. /* periph. data RAM 96k */
  130. {0x840000, 0x858000, 0xa20000, "fw_peri", true, true},
  131. /* various RGF 40k */
  132. {0x880000, 0x88a000, 0x880000, "rgf", true, true},
  133. /* AGC table 4k */
  134. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
  135. /* Pcie_ext_rgf 4k */
  136. {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
  137. /* mac_ext_rgf 1344b */
  138. {0x88c000, 0x88c540, 0x88c000, "mac_rgf_ext", true, true},
  139. /* ext USER RGF 4k */
  140. {0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true},
  141. /* OTP 4k */
  142. {0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false},
  143. /* DMA EXT RGF 64k */
  144. {0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true},
  145. /* upper area 1536k */
  146. {0x900000, 0xa80000, 0x900000, "upper", true, true},
  147. /* UCODE areas - accessible by debugfs blobs but not by
  148. * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
  149. */
  150. /* ucode code RAM 256k */
  151. {0x000000, 0x040000, 0xa38000, "uc_code", false, false},
  152. /* ucode data RAM 32k */
  153. {0x800000, 0x808000, 0xa78000, "uc_data", false, false},
  154. };
  155. /**
  156. * @talyn_mb_fw_mapping provides memory remapping table for Talyn-MB
  157. *
  158. * array size should be in sync with the declaration in the wil6210.h
  159. *
  160. * Talyn MB memory mapping:
  161. * Linker address PCI/Host address
  162. * 0x880000 .. 0xc80000 4Mb BAR0
  163. * 0x800000 .. 0x820000 0xa00000 .. 0xa20000 128k DCCM
  164. * 0x840000 .. 0x858000 0xa20000 .. 0xa38000 96k PERIPH
  165. */
  166. const struct fw_map talyn_mb_fw_mapping[] = {
  167. /* FW code RAM 768k */
  168. {0x000000, 0x0c0000, 0x900000, "fw_code", true, true},
  169. /* FW data RAM 128k */
  170. {0x800000, 0x820000, 0xa00000, "fw_data", true, true},
  171. /* periph. data RAM 96k */
  172. {0x840000, 0x858000, 0xa20000, "fw_peri", true, true},
  173. /* various RGF 40k */
  174. {0x880000, 0x88a000, 0x880000, "rgf", true, true},
  175. /* AGC table 4k */
  176. {0x88a000, 0x88b000, 0x88a000, "AGC_tbl", true, true},
  177. /* Pcie_ext_rgf 4k */
  178. {0x88b000, 0x88c000, 0x88b000, "rgf_ext", true, true},
  179. /* mac_ext_rgf 2256b */
  180. {0x88c000, 0x88c8d0, 0x88c000, "mac_rgf_ext", true, true},
  181. /* ext USER RGF 4k */
  182. {0x88d000, 0x88e000, 0x88d000, "ext_user_rgf", true, true},
  183. /* SEC PKA 16k */
  184. {0x890000, 0x894000, 0x890000, "sec_pka", true, true},
  185. /* SEC KDF RGF 3096b */
  186. {0x898000, 0x898c18, 0x898000, "sec_kdf_rgf", true, true},
  187. /* SEC MAIN 2124b */
  188. {0x89a000, 0x89a84c, 0x89a000, "sec_main", true, true},
  189. /* OTP 4k */
  190. {0x8a0000, 0x8a1000, 0x8a0000, "otp", true, false},
  191. /* DMA EXT RGF 64k */
  192. {0x8b0000, 0x8c0000, 0x8b0000, "dma_ext_rgf", true, true},
  193. /* DUM USER RGF 528b */
  194. {0x8c0000, 0x8c0210, 0x8c0000, "dum_user_rgf", true, true},
  195. /* DMA OFU 296b */
  196. {0x8c2000, 0x8c2128, 0x8c2000, "dma_ofu", true, true},
  197. /* ucode debug 4k */
  198. {0x8c3000, 0x8c4000, 0x8c3000, "ucode_debug", true, true},
  199. /* upper area 1536k */
  200. {0x900000, 0xa80000, 0x900000, "upper", true, true},
  201. /* UCODE areas - accessible by debugfs blobs but not by
  202. * wmi_addr_remap. UCODE areas MUST be added AFTER FW areas!
  203. */
  204. /* ucode code RAM 256k */
  205. {0x000000, 0x040000, 0xa38000, "uc_code", false, false},
  206. /* ucode data RAM 32k */
  207. {0x800000, 0x808000, 0xa78000, "uc_data", false, false},
  208. };
  209. struct fw_map fw_mapping[MAX_FW_MAPPING_TABLE_SIZE];
  210. struct blink_on_off_time led_blink_time[] = {
  211. {WIL_LED_BLINK_ON_SLOW_MS, WIL_LED_BLINK_OFF_SLOW_MS},
  212. {WIL_LED_BLINK_ON_MED_MS, WIL_LED_BLINK_OFF_MED_MS},
  213. {WIL_LED_BLINK_ON_FAST_MS, WIL_LED_BLINK_OFF_FAST_MS},
  214. };
  215. u8 led_polarity = LED_POLARITY_LOW_ACTIVE;
  216. /**
  217. * return AHB address for given firmware internal (linker) address
  218. * @x - internal address
  219. * If address have no valid AHB mapping, return 0
  220. */
  221. static u32 wmi_addr_remap(u32 x)
  222. {
  223. uint i;
  224. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  225. if (fw_mapping[i].fw &&
  226. ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to)))
  227. return x + fw_mapping[i].host - fw_mapping[i].from;
  228. }
  229. return 0;
  230. }
  231. /**
  232. * find fw_mapping entry by section name
  233. * @section - section name
  234. *
  235. * Return pointer to section or NULL if not found
  236. */
  237. struct fw_map *wil_find_fw_mapping(const char *section)
  238. {
  239. int i;
  240. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++)
  241. if (fw_mapping[i].name &&
  242. !strcmp(section, fw_mapping[i].name))
  243. return &fw_mapping[i];
  244. return NULL;
  245. }
  246. /**
  247. * Check address validity for WMI buffer; remap if needed
  248. * @ptr - internal (linker) fw/ucode address
  249. * @size - if non zero, validate the block does not
  250. * exceed the device memory (bar)
  251. *
  252. * Valid buffer should be DWORD aligned
  253. *
  254. * return address for accessing buffer from the host;
  255. * if buffer is not valid, return NULL.
  256. */
  257. void __iomem *wmi_buffer_block(struct wil6210_priv *wil, __le32 ptr_, u32 size)
  258. {
  259. u32 off;
  260. u32 ptr = le32_to_cpu(ptr_);
  261. if (ptr % 4)
  262. return NULL;
  263. ptr = wmi_addr_remap(ptr);
  264. if (ptr < WIL6210_FW_HOST_OFF)
  265. return NULL;
  266. off = HOSTADDR(ptr);
  267. if (off > wil->bar_size - 4)
  268. return NULL;
  269. if (size && ((off + size > wil->bar_size) || (off + size < off)))
  270. return NULL;
  271. return wil->csr + off;
  272. }
  273. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  274. {
  275. return wmi_buffer_block(wil, ptr_, 0);
  276. }
  277. /**
  278. * Check address validity
  279. */
  280. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  281. {
  282. u32 off;
  283. if (ptr % 4)
  284. return NULL;
  285. if (ptr < WIL6210_FW_HOST_OFF)
  286. return NULL;
  287. off = HOSTADDR(ptr);
  288. if (off > wil->bar_size - 4)
  289. return NULL;
  290. return wil->csr + off;
  291. }
  292. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  293. struct wil6210_mbox_hdr *hdr)
  294. {
  295. void __iomem *src = wmi_buffer(wil, ptr);
  296. if (!src)
  297. return -EINVAL;
  298. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  299. return 0;
  300. }
  301. static const char *cmdid2name(u16 cmdid)
  302. {
  303. switch (cmdid) {
  304. case WMI_NOTIFY_REQ_CMDID:
  305. return "WMI_NOTIFY_REQ_CMD";
  306. case WMI_START_SCAN_CMDID:
  307. return "WMI_START_SCAN_CMD";
  308. case WMI_CONNECT_CMDID:
  309. return "WMI_CONNECT_CMD";
  310. case WMI_DISCONNECT_CMDID:
  311. return "WMI_DISCONNECT_CMD";
  312. case WMI_SW_TX_REQ_CMDID:
  313. return "WMI_SW_TX_REQ_CMD";
  314. case WMI_GET_RF_SECTOR_PARAMS_CMDID:
  315. return "WMI_GET_RF_SECTOR_PARAMS_CMD";
  316. case WMI_SET_RF_SECTOR_PARAMS_CMDID:
  317. return "WMI_SET_RF_SECTOR_PARAMS_CMD";
  318. case WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID:
  319. return "WMI_GET_SELECTED_RF_SECTOR_INDEX_CMD";
  320. case WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID:
  321. return "WMI_SET_SELECTED_RF_SECTOR_INDEX_CMD";
  322. case WMI_BRP_SET_ANT_LIMIT_CMDID:
  323. return "WMI_BRP_SET_ANT_LIMIT_CMD";
  324. case WMI_TOF_SESSION_START_CMDID:
  325. return "WMI_TOF_SESSION_START_CMD";
  326. case WMI_AOA_MEAS_CMDID:
  327. return "WMI_AOA_MEAS_CMD";
  328. case WMI_PMC_CMDID:
  329. return "WMI_PMC_CMD";
  330. case WMI_TOF_GET_TX_RX_OFFSET_CMDID:
  331. return "WMI_TOF_GET_TX_RX_OFFSET_CMD";
  332. case WMI_TOF_SET_TX_RX_OFFSET_CMDID:
  333. return "WMI_TOF_SET_TX_RX_OFFSET_CMD";
  334. case WMI_VRING_CFG_CMDID:
  335. return "WMI_VRING_CFG_CMD";
  336. case WMI_BCAST_VRING_CFG_CMDID:
  337. return "WMI_BCAST_VRING_CFG_CMD";
  338. case WMI_TRAFFIC_SUSPEND_CMDID:
  339. return "WMI_TRAFFIC_SUSPEND_CMD";
  340. case WMI_TRAFFIC_RESUME_CMDID:
  341. return "WMI_TRAFFIC_RESUME_CMD";
  342. case WMI_ECHO_CMDID:
  343. return "WMI_ECHO_CMD";
  344. case WMI_SET_MAC_ADDRESS_CMDID:
  345. return "WMI_SET_MAC_ADDRESS_CMD";
  346. case WMI_LED_CFG_CMDID:
  347. return "WMI_LED_CFG_CMD";
  348. case WMI_PCP_START_CMDID:
  349. return "WMI_PCP_START_CMD";
  350. case WMI_PCP_STOP_CMDID:
  351. return "WMI_PCP_STOP_CMD";
  352. case WMI_SET_SSID_CMDID:
  353. return "WMI_SET_SSID_CMD";
  354. case WMI_GET_SSID_CMDID:
  355. return "WMI_GET_SSID_CMD";
  356. case WMI_SET_PCP_CHANNEL_CMDID:
  357. return "WMI_SET_PCP_CHANNEL_CMD";
  358. case WMI_GET_PCP_CHANNEL_CMDID:
  359. return "WMI_GET_PCP_CHANNEL_CMD";
  360. case WMI_P2P_CFG_CMDID:
  361. return "WMI_P2P_CFG_CMD";
  362. case WMI_PORT_ALLOCATE_CMDID:
  363. return "WMI_PORT_ALLOCATE_CMD";
  364. case WMI_PORT_DELETE_CMDID:
  365. return "WMI_PORT_DELETE_CMD";
  366. case WMI_START_LISTEN_CMDID:
  367. return "WMI_START_LISTEN_CMD";
  368. case WMI_START_SEARCH_CMDID:
  369. return "WMI_START_SEARCH_CMD";
  370. case WMI_DISCOVERY_STOP_CMDID:
  371. return "WMI_DISCOVERY_STOP_CMD";
  372. case WMI_DELETE_CIPHER_KEY_CMDID:
  373. return "WMI_DELETE_CIPHER_KEY_CMD";
  374. case WMI_ADD_CIPHER_KEY_CMDID:
  375. return "WMI_ADD_CIPHER_KEY_CMD";
  376. case WMI_SET_APPIE_CMDID:
  377. return "WMI_SET_APPIE_CMD";
  378. case WMI_CFG_RX_CHAIN_CMDID:
  379. return "WMI_CFG_RX_CHAIN_CMD";
  380. case WMI_TEMP_SENSE_CMDID:
  381. return "WMI_TEMP_SENSE_CMD";
  382. case WMI_DEL_STA_CMDID:
  383. return "WMI_DEL_STA_CMD";
  384. case WMI_DISCONNECT_STA_CMDID:
  385. return "WMI_DISCONNECT_STA_CMD";
  386. case WMI_RING_BA_EN_CMDID:
  387. return "WMI_RING_BA_EN_CMD";
  388. case WMI_RING_BA_DIS_CMDID:
  389. return "WMI_RING_BA_DIS_CMD";
  390. case WMI_RCP_DELBA_CMDID:
  391. return "WMI_RCP_DELBA_CMD";
  392. case WMI_RCP_ADDBA_RESP_CMDID:
  393. return "WMI_RCP_ADDBA_RESP_CMD";
  394. case WMI_RCP_ADDBA_RESP_EDMA_CMDID:
  395. return "WMI_RCP_ADDBA_RESP_EDMA_CMD";
  396. case WMI_PS_DEV_PROFILE_CFG_CMDID:
  397. return "WMI_PS_DEV_PROFILE_CFG_CMD";
  398. case WMI_SET_MGMT_RETRY_LIMIT_CMDID:
  399. return "WMI_SET_MGMT_RETRY_LIMIT_CMD";
  400. case WMI_GET_MGMT_RETRY_LIMIT_CMDID:
  401. return "WMI_GET_MGMT_RETRY_LIMIT_CMD";
  402. case WMI_ABORT_SCAN_CMDID:
  403. return "WMI_ABORT_SCAN_CMD";
  404. case WMI_NEW_STA_CMDID:
  405. return "WMI_NEW_STA_CMD";
  406. case WMI_SET_THERMAL_THROTTLING_CFG_CMDID:
  407. return "WMI_SET_THERMAL_THROTTLING_CFG_CMD";
  408. case WMI_GET_THERMAL_THROTTLING_CFG_CMDID:
  409. return "WMI_GET_THERMAL_THROTTLING_CFG_CMD";
  410. case WMI_LINK_MAINTAIN_CFG_WRITE_CMDID:
  411. return "WMI_LINK_MAINTAIN_CFG_WRITE_CMD";
  412. case WMI_LO_POWER_CALIB_FROM_OTP_CMDID:
  413. return "WMI_LO_POWER_CALIB_FROM_OTP_CMD";
  414. case WMI_START_SCHED_SCAN_CMDID:
  415. return "WMI_START_SCHED_SCAN_CMD";
  416. case WMI_STOP_SCHED_SCAN_CMDID:
  417. return "WMI_STOP_SCHED_SCAN_CMD";
  418. case WMI_TX_STATUS_RING_ADD_CMDID:
  419. return "WMI_TX_STATUS_RING_ADD_CMD";
  420. case WMI_RX_STATUS_RING_ADD_CMDID:
  421. return "WMI_RX_STATUS_RING_ADD_CMD";
  422. case WMI_TX_DESC_RING_ADD_CMDID:
  423. return "WMI_TX_DESC_RING_ADD_CMD";
  424. case WMI_RX_DESC_RING_ADD_CMDID:
  425. return "WMI_RX_DESC_RING_ADD_CMD";
  426. case WMI_BCAST_DESC_RING_ADD_CMDID:
  427. return "WMI_BCAST_DESC_RING_ADD_CMD";
  428. case WMI_CFG_DEF_RX_OFFLOAD_CMDID:
  429. return "WMI_CFG_DEF_RX_OFFLOAD_CMD";
  430. default:
  431. return "Untracked CMD";
  432. }
  433. }
  434. static const char *eventid2name(u16 eventid)
  435. {
  436. switch (eventid) {
  437. case WMI_NOTIFY_REQ_DONE_EVENTID:
  438. return "WMI_NOTIFY_REQ_DONE_EVENT";
  439. case WMI_DISCONNECT_EVENTID:
  440. return "WMI_DISCONNECT_EVENT";
  441. case WMI_SW_TX_COMPLETE_EVENTID:
  442. return "WMI_SW_TX_COMPLETE_EVENT";
  443. case WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID:
  444. return "WMI_GET_RF_SECTOR_PARAMS_DONE_EVENT";
  445. case WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID:
  446. return "WMI_SET_RF_SECTOR_PARAMS_DONE_EVENT";
  447. case WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
  448. return "WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
  449. case WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID:
  450. return "WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENT";
  451. case WMI_BRP_SET_ANT_LIMIT_EVENTID:
  452. return "WMI_BRP_SET_ANT_LIMIT_EVENT";
  453. case WMI_FW_READY_EVENTID:
  454. return "WMI_FW_READY_EVENT";
  455. case WMI_TRAFFIC_RESUME_EVENTID:
  456. return "WMI_TRAFFIC_RESUME_EVENT";
  457. case WMI_TOF_GET_TX_RX_OFFSET_EVENTID:
  458. return "WMI_TOF_GET_TX_RX_OFFSET_EVENT";
  459. case WMI_TOF_SET_TX_RX_OFFSET_EVENTID:
  460. return "WMI_TOF_SET_TX_RX_OFFSET_EVENT";
  461. case WMI_VRING_CFG_DONE_EVENTID:
  462. return "WMI_VRING_CFG_DONE_EVENT";
  463. case WMI_READY_EVENTID:
  464. return "WMI_READY_EVENT";
  465. case WMI_RX_MGMT_PACKET_EVENTID:
  466. return "WMI_RX_MGMT_PACKET_EVENT";
  467. case WMI_TX_MGMT_PACKET_EVENTID:
  468. return "WMI_TX_MGMT_PACKET_EVENT";
  469. case WMI_SCAN_COMPLETE_EVENTID:
  470. return "WMI_SCAN_COMPLETE_EVENT";
  471. case WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENTID:
  472. return "WMI_ACS_PASSIVE_SCAN_COMPLETE_EVENT";
  473. case WMI_CONNECT_EVENTID:
  474. return "WMI_CONNECT_EVENT";
  475. case WMI_EAPOL_RX_EVENTID:
  476. return "WMI_EAPOL_RX_EVENT";
  477. case WMI_BA_STATUS_EVENTID:
  478. return "WMI_BA_STATUS_EVENT";
  479. case WMI_RCP_ADDBA_REQ_EVENTID:
  480. return "WMI_RCP_ADDBA_REQ_EVENT";
  481. case WMI_DELBA_EVENTID:
  482. return "WMI_DELBA_EVENT";
  483. case WMI_RING_EN_EVENTID:
  484. return "WMI_RING_EN_EVENT";
  485. case WMI_DATA_PORT_OPEN_EVENTID:
  486. return "WMI_DATA_PORT_OPEN_EVENT";
  487. case WMI_AOA_MEAS_EVENTID:
  488. return "WMI_AOA_MEAS_EVENT";
  489. case WMI_TOF_SESSION_END_EVENTID:
  490. return "WMI_TOF_SESSION_END_EVENT";
  491. case WMI_TOF_GET_CAPABILITIES_EVENTID:
  492. return "WMI_TOF_GET_CAPABILITIES_EVENT";
  493. case WMI_TOF_SET_LCR_EVENTID:
  494. return "WMI_TOF_SET_LCR_EVENT";
  495. case WMI_TOF_SET_LCI_EVENTID:
  496. return "WMI_TOF_SET_LCI_EVENT";
  497. case WMI_TOF_FTM_PER_DEST_RES_EVENTID:
  498. return "WMI_TOF_FTM_PER_DEST_RES_EVENT";
  499. case WMI_TOF_CHANNEL_INFO_EVENTID:
  500. return "WMI_TOF_CHANNEL_INFO_EVENT";
  501. case WMI_TRAFFIC_SUSPEND_EVENTID:
  502. return "WMI_TRAFFIC_SUSPEND_EVENT";
  503. case WMI_ECHO_RSP_EVENTID:
  504. return "WMI_ECHO_RSP_EVENT";
  505. case WMI_LED_CFG_DONE_EVENTID:
  506. return "WMI_LED_CFG_DONE_EVENT";
  507. case WMI_PCP_STARTED_EVENTID:
  508. return "WMI_PCP_STARTED_EVENT";
  509. case WMI_PCP_STOPPED_EVENTID:
  510. return "WMI_PCP_STOPPED_EVENT";
  511. case WMI_GET_SSID_EVENTID:
  512. return "WMI_GET_SSID_EVENT";
  513. case WMI_GET_PCP_CHANNEL_EVENTID:
  514. return "WMI_GET_PCP_CHANNEL_EVENT";
  515. case WMI_P2P_CFG_DONE_EVENTID:
  516. return "WMI_P2P_CFG_DONE_EVENT";
  517. case WMI_PORT_ALLOCATED_EVENTID:
  518. return "WMI_PORT_ALLOCATED_EVENT";
  519. case WMI_PORT_DELETED_EVENTID:
  520. return "WMI_PORT_DELETED_EVENT";
  521. case WMI_LISTEN_STARTED_EVENTID:
  522. return "WMI_LISTEN_STARTED_EVENT";
  523. case WMI_SEARCH_STARTED_EVENTID:
  524. return "WMI_SEARCH_STARTED_EVENT";
  525. case WMI_DISCOVERY_STOPPED_EVENTID:
  526. return "WMI_DISCOVERY_STOPPED_EVENT";
  527. case WMI_CFG_RX_CHAIN_DONE_EVENTID:
  528. return "WMI_CFG_RX_CHAIN_DONE_EVENT";
  529. case WMI_TEMP_SENSE_DONE_EVENTID:
  530. return "WMI_TEMP_SENSE_DONE_EVENT";
  531. case WMI_RCP_ADDBA_RESP_SENT_EVENTID:
  532. return "WMI_RCP_ADDBA_RESP_SENT_EVENT";
  533. case WMI_PS_DEV_PROFILE_CFG_EVENTID:
  534. return "WMI_PS_DEV_PROFILE_CFG_EVENT";
  535. case WMI_SET_MGMT_RETRY_LIMIT_EVENTID:
  536. return "WMI_SET_MGMT_RETRY_LIMIT_EVENT";
  537. case WMI_GET_MGMT_RETRY_LIMIT_EVENTID:
  538. return "WMI_GET_MGMT_RETRY_LIMIT_EVENT";
  539. case WMI_SET_THERMAL_THROTTLING_CFG_EVENTID:
  540. return "WMI_SET_THERMAL_THROTTLING_CFG_EVENT";
  541. case WMI_GET_THERMAL_THROTTLING_CFG_EVENTID:
  542. return "WMI_GET_THERMAL_THROTTLING_CFG_EVENT";
  543. case WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENTID:
  544. return "WMI_LINK_MAINTAIN_CFG_WRITE_DONE_EVENT";
  545. case WMI_LO_POWER_CALIB_FROM_OTP_EVENTID:
  546. return "WMI_LO_POWER_CALIB_FROM_OTP_EVENT";
  547. case WMI_START_SCHED_SCAN_EVENTID:
  548. return "WMI_START_SCHED_SCAN_EVENT";
  549. case WMI_STOP_SCHED_SCAN_EVENTID:
  550. return "WMI_STOP_SCHED_SCAN_EVENT";
  551. case WMI_SCHED_SCAN_RESULT_EVENTID:
  552. return "WMI_SCHED_SCAN_RESULT_EVENT";
  553. case WMI_TX_STATUS_RING_CFG_DONE_EVENTID:
  554. return "WMI_TX_STATUS_RING_CFG_DONE_EVENT";
  555. case WMI_RX_STATUS_RING_CFG_DONE_EVENTID:
  556. return "WMI_RX_STATUS_RING_CFG_DONE_EVENT";
  557. case WMI_TX_DESC_RING_CFG_DONE_EVENTID:
  558. return "WMI_TX_DESC_RING_CFG_DONE_EVENT";
  559. case WMI_RX_DESC_RING_CFG_DONE_EVENTID:
  560. return "WMI_RX_DESC_RING_CFG_DONE_EVENT";
  561. case WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID:
  562. return "WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENT";
  563. default:
  564. return "Untracked EVENT";
  565. }
  566. }
  567. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid,
  568. void *buf, u16 len)
  569. {
  570. struct {
  571. struct wil6210_mbox_hdr hdr;
  572. struct wmi_cmd_hdr wmi;
  573. } __packed cmd = {
  574. .hdr = {
  575. .type = WIL_MBOX_HDR_TYPE_WMI,
  576. .flags = 0,
  577. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  578. },
  579. .wmi = {
  580. .mid = mid,
  581. .command_id = cpu_to_le16(cmdid),
  582. },
  583. };
  584. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  585. struct wil6210_mbox_ring_desc d_head;
  586. u32 next_head;
  587. void __iomem *dst;
  588. void __iomem *head = wmi_addr(wil, r->head);
  589. uint retry;
  590. int rc = 0;
  591. if (len > r->entry_size - sizeof(cmd)) {
  592. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  593. (int)(sizeof(cmd) + len), r->entry_size);
  594. return -ERANGE;
  595. }
  596. might_sleep();
  597. if (!test_bit(wil_status_fwready, wil->status)) {
  598. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  599. return -EAGAIN;
  600. }
  601. /* Allow sending only suspend / resume commands during susepnd flow */
  602. if ((test_bit(wil_status_suspending, wil->status) ||
  603. test_bit(wil_status_suspended, wil->status) ||
  604. test_bit(wil_status_resuming, wil->status)) &&
  605. ((cmdid != WMI_TRAFFIC_SUSPEND_CMDID) &&
  606. (cmdid != WMI_TRAFFIC_RESUME_CMDID))) {
  607. wil_err(wil, "WMI: reject send_command during suspend\n");
  608. return -EINVAL;
  609. }
  610. if (!head) {
  611. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  612. return -EINVAL;
  613. }
  614. wil_halp_vote(wil);
  615. /* read Tx head till it is not busy */
  616. for (retry = 5; retry > 0; retry--) {
  617. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  618. if (d_head.sync == 0)
  619. break;
  620. msleep(20);
  621. }
  622. if (d_head.sync != 0) {
  623. wil_err(wil, "WMI head busy\n");
  624. rc = -EBUSY;
  625. goto out;
  626. }
  627. /* next head */
  628. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  629. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  630. /* wait till FW finish with previous command */
  631. for (retry = 5; retry > 0; retry--) {
  632. if (!test_bit(wil_status_fwready, wil->status)) {
  633. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  634. rc = -EAGAIN;
  635. goto out;
  636. }
  637. r->tail = wil_r(wil, RGF_MBOX +
  638. offsetof(struct wil6210_mbox_ctl, tx.tail));
  639. if (next_head != r->tail)
  640. break;
  641. msleep(20);
  642. }
  643. if (next_head == r->tail) {
  644. wil_err(wil, "WMI ring full\n");
  645. rc = -EBUSY;
  646. goto out;
  647. }
  648. dst = wmi_buffer(wil, d_head.addr);
  649. if (!dst) {
  650. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  651. le32_to_cpu(d_head.addr));
  652. rc = -EAGAIN;
  653. goto out;
  654. }
  655. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  656. /* set command */
  657. wil_dbg_wmi(wil, "sending %s (0x%04x) [%d] mid %d\n",
  658. cmdid2name(cmdid), cmdid, len, mid);
  659. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  660. sizeof(cmd), true);
  661. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  662. len, true);
  663. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  664. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  665. /* mark entry as full */
  666. wil_w(wil, r->head + offsetof(struct wil6210_mbox_ring_desc, sync), 1);
  667. /* advance next ptr */
  668. wil_w(wil, RGF_MBOX + offsetof(struct wil6210_mbox_ctl, tx.head),
  669. r->head = next_head);
  670. trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
  671. /* interrupt to FW */
  672. wil_w(wil, RGF_USER_USER_ICR + offsetof(struct RGF_ICR, ICS),
  673. SW_INT_MBOX);
  674. out:
  675. wil_halp_unvote(wil);
  676. return rc;
  677. }
  678. int wmi_send(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len)
  679. {
  680. int rc;
  681. mutex_lock(&wil->wmi_mutex);
  682. rc = __wmi_send(wil, cmdid, mid, buf, len);
  683. mutex_unlock(&wil->wmi_mutex);
  684. return rc;
  685. }
  686. /*=== Event handlers ===*/
  687. static void wmi_evt_ready(struct wil6210_vif *vif, int id, void *d, int len)
  688. {
  689. struct wil6210_priv *wil = vif_to_wil(vif);
  690. struct wiphy *wiphy = wil_to_wiphy(wil);
  691. struct wmi_ready_event *evt = d;
  692. wil_info(wil, "FW ver. %s(SW %d); MAC %pM; %d MID's\n",
  693. wil->fw_version, le32_to_cpu(evt->sw_version),
  694. evt->mac, evt->numof_additional_mids);
  695. if (evt->numof_additional_mids + 1 < wil->max_vifs) {
  696. wil_err(wil, "FW does not support enough MIDs (need %d)",
  697. wil->max_vifs - 1);
  698. return; /* FW load will fail after timeout */
  699. }
  700. /* ignore MAC address, we already have it from the boot loader */
  701. strlcpy(wiphy->fw_version, wil->fw_version, sizeof(wiphy->fw_version));
  702. if (len > offsetof(struct wmi_ready_event, rfc_read_calib_result)) {
  703. wil_dbg_wmi(wil, "rfc calibration result %d\n",
  704. evt->rfc_read_calib_result);
  705. wil->fw_calib_result = evt->rfc_read_calib_result;
  706. }
  707. wil_set_recovery_state(wil, fw_recovery_idle);
  708. set_bit(wil_status_fwready, wil->status);
  709. /* let the reset sequence continue */
  710. complete(&wil->wmi_ready);
  711. }
  712. static void wmi_evt_rx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
  713. {
  714. struct wil6210_priv *wil = vif_to_wil(vif);
  715. struct wmi_rx_mgmt_packet_event *data = d;
  716. struct wiphy *wiphy = wil_to_wiphy(wil);
  717. struct ieee80211_mgmt *rx_mgmt_frame =
  718. (struct ieee80211_mgmt *)data->payload;
  719. int flen = len - offsetof(struct wmi_rx_mgmt_packet_event, payload);
  720. int ch_no;
  721. u32 freq;
  722. struct ieee80211_channel *channel;
  723. s32 signal;
  724. __le16 fc;
  725. u32 d_len;
  726. u16 d_status;
  727. if (flen < 0) {
  728. wil_err(wil, "MGMT Rx: short event, len %d\n", len);
  729. return;
  730. }
  731. d_len = le32_to_cpu(data->info.len);
  732. if (d_len != flen) {
  733. wil_err(wil,
  734. "MGMT Rx: length mismatch, d_len %d should be %d\n",
  735. d_len, flen);
  736. return;
  737. }
  738. ch_no = data->info.channel + 1;
  739. freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
  740. channel = ieee80211_get_channel(wiphy, freq);
  741. if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
  742. signal = 100 * data->info.rssi;
  743. else
  744. signal = data->info.sqi;
  745. d_status = le16_to_cpu(data->info.status);
  746. fc = rx_mgmt_frame->frame_control;
  747. wil_dbg_wmi(wil, "MGMT Rx: channel %d MCS %d RSSI %d SQI %d%%\n",
  748. data->info.channel, data->info.mcs, data->info.rssi,
  749. data->info.sqi);
  750. wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
  751. le16_to_cpu(fc));
  752. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  753. data->info.qid, data->info.mid, data->info.cid);
  754. wil_hex_dump_wmi("MGMT Rx ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
  755. d_len, true);
  756. if (!channel) {
  757. wil_err(wil, "Frame on unsupported channel\n");
  758. return;
  759. }
  760. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  761. struct cfg80211_bss *bss;
  762. u64 tsf = le64_to_cpu(rx_mgmt_frame->u.beacon.timestamp);
  763. u16 cap = le16_to_cpu(rx_mgmt_frame->u.beacon.capab_info);
  764. u16 bi = le16_to_cpu(rx_mgmt_frame->u.beacon.beacon_int);
  765. const u8 *ie_buf = rx_mgmt_frame->u.beacon.variable;
  766. size_t ie_len = d_len - offsetof(struct ieee80211_mgmt,
  767. u.beacon.variable);
  768. wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
  769. wil_dbg_wmi(wil, "TSF : 0x%016llx\n", tsf);
  770. wil_dbg_wmi(wil, "Beacon interval : %d\n", bi);
  771. wil_hex_dump_wmi("IE ", DUMP_PREFIX_OFFSET, 16, 1, ie_buf,
  772. ie_len, true);
  773. wil_dbg_wmi(wil, "Capability info : 0x%04x\n", cap);
  774. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  775. d_len, signal, GFP_KERNEL);
  776. if (bss) {
  777. wil_dbg_wmi(wil, "Added BSS %pM\n",
  778. rx_mgmt_frame->bssid);
  779. cfg80211_put_bss(wiphy, bss);
  780. } else {
  781. wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
  782. }
  783. } else {
  784. mutex_lock(&wil->vif_mutex);
  785. cfg80211_rx_mgmt(vif_to_radio_wdev(wil, vif), freq, signal,
  786. (void *)rx_mgmt_frame, d_len, 0);
  787. mutex_unlock(&wil->vif_mutex);
  788. }
  789. }
  790. static void wmi_evt_tx_mgmt(struct wil6210_vif *vif, int id, void *d, int len)
  791. {
  792. struct wmi_tx_mgmt_packet_event *data = d;
  793. struct ieee80211_mgmt *mgmt_frame =
  794. (struct ieee80211_mgmt *)data->payload;
  795. int flen = len - offsetof(struct wmi_tx_mgmt_packet_event, payload);
  796. wil_hex_dump_wmi("MGMT Tx ", DUMP_PREFIX_OFFSET, 16, 1, mgmt_frame,
  797. flen, true);
  798. }
  799. static void wmi_evt_scan_complete(struct wil6210_vif *vif, int id,
  800. void *d, int len)
  801. {
  802. struct wil6210_priv *wil = vif_to_wil(vif);
  803. mutex_lock(&wil->vif_mutex);
  804. if (vif->scan_request) {
  805. struct wmi_scan_complete_event *data = d;
  806. int status = le32_to_cpu(data->status);
  807. struct cfg80211_scan_info info = {
  808. .aborted = ((status != WMI_SCAN_SUCCESS) &&
  809. (status != WMI_SCAN_ABORT_REJECTED)),
  810. };
  811. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", status);
  812. wil_dbg_misc(wil, "Complete scan_request 0x%p aborted %d\n",
  813. vif->scan_request, info.aborted);
  814. del_timer_sync(&vif->scan_timer);
  815. cfg80211_scan_done(vif->scan_request, &info);
  816. if (vif->mid == 0)
  817. wil->radio_wdev = wil->main_ndev->ieee80211_ptr;
  818. vif->scan_request = NULL;
  819. wake_up_interruptible(&wil->wq);
  820. if (vif->p2p.pending_listen_wdev) {
  821. wil_dbg_misc(wil, "Scheduling delayed listen\n");
  822. schedule_work(&vif->p2p.delayed_listen_work);
  823. }
  824. } else {
  825. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  826. }
  827. mutex_unlock(&wil->vif_mutex);
  828. }
  829. static void wmi_evt_connect(struct wil6210_vif *vif, int id, void *d, int len)
  830. {
  831. struct wil6210_priv *wil = vif_to_wil(vif);
  832. struct net_device *ndev = vif_to_ndev(vif);
  833. struct wireless_dev *wdev = vif_to_wdev(vif);
  834. struct wmi_connect_event *evt = d;
  835. int ch; /* channel number */
  836. struct station_info *sinfo;
  837. u8 *assoc_req_ie, *assoc_resp_ie;
  838. size_t assoc_req_ielen, assoc_resp_ielen;
  839. /* capinfo(u16) + listen_interval(u16) + IEs */
  840. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  841. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  842. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  843. int rc;
  844. if (len < sizeof(*evt)) {
  845. wil_err(wil, "Connect event too short : %d bytes\n", len);
  846. return;
  847. }
  848. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  849. evt->assoc_resp_len) {
  850. wil_err(wil,
  851. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  852. len, (int)sizeof(*evt), evt->beacon_ie_len,
  853. evt->assoc_req_len, evt->assoc_resp_len);
  854. return;
  855. }
  856. if (evt->cid >= WIL6210_MAX_CID) {
  857. wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
  858. return;
  859. }
  860. ch = evt->channel + 1;
  861. wil_info(wil, "Connect %pM channel [%d] cid %d aid %d\n",
  862. evt->bssid, ch, evt->cid, evt->aid);
  863. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  864. evt->assoc_info, len - sizeof(*evt), true);
  865. /* figure out IE's */
  866. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  867. assoc_req_ie_offset];
  868. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  869. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  870. assoc_req_ie = NULL;
  871. assoc_req_ielen = 0;
  872. }
  873. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  874. evt->assoc_req_len +
  875. assoc_resp_ie_offset];
  876. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  877. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  878. assoc_resp_ie = NULL;
  879. assoc_resp_ielen = 0;
  880. }
  881. if (test_bit(wil_status_resetting, wil->status) ||
  882. !test_bit(wil_status_fwready, wil->status)) {
  883. wil_err(wil, "status_resetting, cancel connect event, CID %d\n",
  884. evt->cid);
  885. /* no need for cleanup, wil_reset will do that */
  886. return;
  887. }
  888. mutex_lock(&wil->mutex);
  889. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  890. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  891. if (!test_bit(wil_vif_fwconnecting, vif->status)) {
  892. wil_err(wil, "Not in connecting state\n");
  893. mutex_unlock(&wil->mutex);
  894. return;
  895. }
  896. del_timer_sync(&vif->connect_timer);
  897. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  898. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  899. if (wil->sta[evt->cid].status != wil_sta_unused) {
  900. wil_err(wil, "AP: Invalid status %d for CID %d\n",
  901. wil->sta[evt->cid].status, evt->cid);
  902. mutex_unlock(&wil->mutex);
  903. return;
  904. }
  905. }
  906. ether_addr_copy(wil->sta[evt->cid].addr, evt->bssid);
  907. wil->sta[evt->cid].mid = vif->mid;
  908. wil->sta[evt->cid].status = wil_sta_conn_pending;
  909. rc = wil_ring_init_tx(vif, evt->cid);
  910. if (rc) {
  911. wil_err(wil, "config tx vring failed for CID %d, rc (%d)\n",
  912. evt->cid, rc);
  913. wmi_disconnect_sta(vif, wil->sta[evt->cid].addr,
  914. WLAN_REASON_UNSPECIFIED, false, false);
  915. } else {
  916. wil_info(wil, "successful connection to CID %d\n", evt->cid);
  917. }
  918. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  919. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  920. if (rc) {
  921. netif_carrier_off(ndev);
  922. wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS);
  923. wil_err(wil, "cfg80211_connect_result with failure\n");
  924. cfg80211_connect_result(ndev, evt->bssid, NULL, 0,
  925. NULL, 0,
  926. WLAN_STATUS_UNSPECIFIED_FAILURE,
  927. GFP_KERNEL);
  928. goto out;
  929. } else {
  930. struct wiphy *wiphy = wil_to_wiphy(wil);
  931. cfg80211_ref_bss(wiphy, vif->bss);
  932. cfg80211_connect_bss(ndev, evt->bssid, vif->bss,
  933. assoc_req_ie, assoc_req_ielen,
  934. assoc_resp_ie, assoc_resp_ielen,
  935. WLAN_STATUS_SUCCESS, GFP_KERNEL,
  936. NL80211_TIMEOUT_UNSPECIFIED);
  937. }
  938. vif->bss = NULL;
  939. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  940. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  941. if (rc) {
  942. if (disable_ap_sme)
  943. /* notify new_sta has failed */
  944. cfg80211_del_sta(ndev, evt->bssid, GFP_KERNEL);
  945. goto out;
  946. }
  947. sinfo = kzalloc(sizeof(*sinfo), GFP_KERNEL);
  948. if (!sinfo) {
  949. rc = -ENOMEM;
  950. goto out;
  951. }
  952. sinfo->generation = wil->sinfo_gen++;
  953. if (assoc_req_ie) {
  954. sinfo->assoc_req_ies = assoc_req_ie;
  955. sinfo->assoc_req_ies_len = assoc_req_ielen;
  956. }
  957. cfg80211_new_sta(ndev, evt->bssid, sinfo, GFP_KERNEL);
  958. kfree(sinfo);
  959. } else {
  960. wil_err(wil, "unhandled iftype %d for CID %d\n", wdev->iftype,
  961. evt->cid);
  962. goto out;
  963. }
  964. wil->sta[evt->cid].status = wil_sta_connected;
  965. wil->sta[evt->cid].aid = evt->aid;
  966. if (!test_and_set_bit(wil_vif_fwconnected, vif->status))
  967. atomic_inc(&wil->connected_vifs);
  968. wil_update_net_queues_bh(wil, vif, NULL, false);
  969. out:
  970. if (rc) {
  971. wil->sta[evt->cid].status = wil_sta_unused;
  972. wil->sta[evt->cid].mid = U8_MAX;
  973. }
  974. clear_bit(wil_vif_fwconnecting, vif->status);
  975. mutex_unlock(&wil->mutex);
  976. }
  977. static void wmi_evt_disconnect(struct wil6210_vif *vif, int id,
  978. void *d, int len)
  979. {
  980. struct wil6210_priv *wil = vif_to_wil(vif);
  981. struct wmi_disconnect_event *evt = d;
  982. u16 reason_code = le16_to_cpu(evt->protocol_reason_status);
  983. wil_info(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
  984. evt->bssid, reason_code, evt->disconnect_reason);
  985. wil->sinfo_gen++;
  986. if (test_bit(wil_status_resetting, wil->status) ||
  987. !test_bit(wil_status_fwready, wil->status)) {
  988. wil_err(wil, "status_resetting, cancel disconnect event\n");
  989. /* no need for cleanup, wil_reset will do that */
  990. return;
  991. }
  992. mutex_lock(&wil->mutex);
  993. wil6210_disconnect(vif, evt->bssid, reason_code, true);
  994. mutex_unlock(&wil->mutex);
  995. }
  996. /*
  997. * Firmware reports EAPOL frame using WME event.
  998. * Reconstruct Ethernet frame and deliver it via normal Rx
  999. */
  1000. static void wmi_evt_eapol_rx(struct wil6210_vif *vif, int id, void *d, int len)
  1001. {
  1002. struct wil6210_priv *wil = vif_to_wil(vif);
  1003. struct net_device *ndev = vif_to_ndev(vif);
  1004. struct wmi_eapol_rx_event *evt = d;
  1005. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  1006. int sz = eapol_len + ETH_HLEN;
  1007. struct sk_buff *skb;
  1008. struct ethhdr *eth;
  1009. int cid;
  1010. struct wil_net_stats *stats = NULL;
  1011. wil_dbg_wmi(wil, "EAPOL len %d from %pM MID %d\n", eapol_len,
  1012. evt->src_mac, vif->mid);
  1013. cid = wil_find_cid(wil, vif->mid, evt->src_mac);
  1014. if (cid >= 0)
  1015. stats = &wil->sta[cid].stats;
  1016. if (eapol_len > 196) { /* TODO: revisit size limit */
  1017. wil_err(wil, "EAPOL too large\n");
  1018. return;
  1019. }
  1020. skb = alloc_skb(sz, GFP_KERNEL);
  1021. if (!skb) {
  1022. wil_err(wil, "Failed to allocate skb\n");
  1023. return;
  1024. }
  1025. eth = skb_put(skb, ETH_HLEN);
  1026. ether_addr_copy(eth->h_dest, ndev->dev_addr);
  1027. ether_addr_copy(eth->h_source, evt->src_mac);
  1028. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  1029. skb_put_data(skb, evt->eapol, eapol_len);
  1030. skb->protocol = eth_type_trans(skb, ndev);
  1031. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  1032. ndev->stats.rx_packets++;
  1033. ndev->stats.rx_bytes += sz;
  1034. if (stats) {
  1035. stats->rx_packets++;
  1036. stats->rx_bytes += sz;
  1037. }
  1038. } else {
  1039. ndev->stats.rx_dropped++;
  1040. if (stats)
  1041. stats->rx_dropped++;
  1042. }
  1043. }
  1044. static void wmi_evt_ring_en(struct wil6210_vif *vif, int id, void *d, int len)
  1045. {
  1046. struct wil6210_priv *wil = vif_to_wil(vif);
  1047. struct wmi_ring_en_event *evt = d;
  1048. u8 vri = evt->ring_index;
  1049. struct wireless_dev *wdev = vif_to_wdev(vif);
  1050. wil_dbg_wmi(wil, "Enable vring %d MID %d\n", vri, vif->mid);
  1051. if (vri >= ARRAY_SIZE(wil->ring_tx)) {
  1052. wil_err(wil, "Enable for invalid vring %d\n", vri);
  1053. return;
  1054. }
  1055. if (wdev->iftype != NL80211_IFTYPE_AP || !disable_ap_sme)
  1056. /* in AP mode with disable_ap_sme, this is done by
  1057. * wil_cfg80211_change_station()
  1058. */
  1059. wil->ring_tx_data[vri].dot1x_open = true;
  1060. if (vri == vif->bcast_ring) /* no BA for bcast */
  1061. return;
  1062. if (agg_wsize >= 0)
  1063. wil_addba_tx_request(wil, vri, agg_wsize);
  1064. }
  1065. static void wmi_evt_ba_status(struct wil6210_vif *vif, int id,
  1066. void *d, int len)
  1067. {
  1068. struct wil6210_priv *wil = vif_to_wil(vif);
  1069. struct wmi_ba_status_event *evt = d;
  1070. struct wil_ring_tx_data *txdata;
  1071. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d AMSDU%s\n",
  1072. evt->ringid,
  1073. evt->status == WMI_BA_AGREED ? "OK" : "N/A",
  1074. evt->agg_wsize, __le16_to_cpu(evt->ba_timeout),
  1075. evt->amsdu ? "+" : "-");
  1076. if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
  1077. wil_err(wil, "invalid ring id %d\n", evt->ringid);
  1078. return;
  1079. }
  1080. if (evt->status != WMI_BA_AGREED) {
  1081. evt->ba_timeout = 0;
  1082. evt->agg_wsize = 0;
  1083. evt->amsdu = 0;
  1084. }
  1085. txdata = &wil->ring_tx_data[evt->ringid];
  1086. txdata->agg_timeout = le16_to_cpu(evt->ba_timeout);
  1087. txdata->agg_wsize = evt->agg_wsize;
  1088. txdata->agg_amsdu = evt->amsdu;
  1089. txdata->addba_in_progress = false;
  1090. }
  1091. static void wmi_evt_addba_rx_req(struct wil6210_vif *vif, int id,
  1092. void *d, int len)
  1093. {
  1094. struct wil6210_priv *wil = vif_to_wil(vif);
  1095. struct wmi_rcp_addba_req_event *evt = d;
  1096. wil_addba_rx_request(wil, vif->mid, evt->cidxtid, evt->dialog_token,
  1097. evt->ba_param_set, evt->ba_timeout,
  1098. evt->ba_seq_ctrl);
  1099. }
  1100. static void wmi_evt_delba(struct wil6210_vif *vif, int id, void *d, int len)
  1101. __acquires(&sta->tid_rx_lock) __releases(&sta->tid_rx_lock)
  1102. {
  1103. struct wil6210_priv *wil = vif_to_wil(vif);
  1104. struct wmi_delba_event *evt = d;
  1105. u8 cid, tid;
  1106. u16 reason = __le16_to_cpu(evt->reason);
  1107. struct wil_sta_info *sta;
  1108. struct wil_tid_ampdu_rx *r;
  1109. might_sleep();
  1110. parse_cidxtid(evt->cidxtid, &cid, &tid);
  1111. wil_dbg_wmi(wil, "DELBA MID %d CID %d TID %d from %s reason %d\n",
  1112. vif->mid, cid, tid,
  1113. evt->from_initiator ? "originator" : "recipient",
  1114. reason);
  1115. if (!evt->from_initiator) {
  1116. int i;
  1117. /* find Tx vring it belongs to */
  1118. for (i = 0; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
  1119. if (wil->ring2cid_tid[i][0] == cid &&
  1120. wil->ring2cid_tid[i][1] == tid) {
  1121. struct wil_ring_tx_data *txdata =
  1122. &wil->ring_tx_data[i];
  1123. wil_dbg_wmi(wil, "DELBA Tx vring %d\n", i);
  1124. txdata->agg_timeout = 0;
  1125. txdata->agg_wsize = 0;
  1126. txdata->addba_in_progress = false;
  1127. break; /* max. 1 matching ring */
  1128. }
  1129. }
  1130. if (i >= ARRAY_SIZE(wil->ring2cid_tid))
  1131. wil_err(wil, "DELBA: unable to find Tx vring\n");
  1132. return;
  1133. }
  1134. sta = &wil->sta[cid];
  1135. spin_lock_bh(&sta->tid_rx_lock);
  1136. r = sta->tid_rx[tid];
  1137. sta->tid_rx[tid] = NULL;
  1138. wil_tid_ampdu_rx_free(wil, r);
  1139. spin_unlock_bh(&sta->tid_rx_lock);
  1140. }
  1141. static void
  1142. wmi_evt_sched_scan_result(struct wil6210_vif *vif, int id, void *d, int len)
  1143. {
  1144. struct wil6210_priv *wil = vif_to_wil(vif);
  1145. struct wmi_sched_scan_result_event *data = d;
  1146. struct wiphy *wiphy = wil_to_wiphy(wil);
  1147. struct ieee80211_mgmt *rx_mgmt_frame =
  1148. (struct ieee80211_mgmt *)data->payload;
  1149. int flen = len - offsetof(struct wmi_sched_scan_result_event, payload);
  1150. int ch_no;
  1151. u32 freq;
  1152. struct ieee80211_channel *channel;
  1153. s32 signal;
  1154. __le16 fc;
  1155. u32 d_len;
  1156. struct cfg80211_bss *bss;
  1157. if (flen < 0) {
  1158. wil_err(wil, "sched scan result event too short, len %d\n",
  1159. len);
  1160. return;
  1161. }
  1162. d_len = le32_to_cpu(data->info.len);
  1163. if (d_len != flen) {
  1164. wil_err(wil,
  1165. "sched scan result length mismatch, d_len %d should be %d\n",
  1166. d_len, flen);
  1167. return;
  1168. }
  1169. fc = rx_mgmt_frame->frame_control;
  1170. if (!ieee80211_is_probe_resp(fc)) {
  1171. wil_err(wil, "sched scan result invalid frame, fc 0x%04x\n",
  1172. fc);
  1173. return;
  1174. }
  1175. ch_no = data->info.channel + 1;
  1176. freq = ieee80211_channel_to_frequency(ch_no, NL80211_BAND_60GHZ);
  1177. channel = ieee80211_get_channel(wiphy, freq);
  1178. if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities))
  1179. signal = 100 * data->info.rssi;
  1180. else
  1181. signal = data->info.sqi;
  1182. wil_dbg_wmi(wil, "sched scan result: channel %d MCS %d RSSI %d\n",
  1183. data->info.channel, data->info.mcs, data->info.rssi);
  1184. wil_dbg_wmi(wil, "len %d qid %d mid %d cid %d\n",
  1185. d_len, data->info.qid, data->info.mid, data->info.cid);
  1186. wil_hex_dump_wmi("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, rx_mgmt_frame,
  1187. d_len, true);
  1188. if (!channel) {
  1189. wil_err(wil, "Frame on unsupported channel\n");
  1190. return;
  1191. }
  1192. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  1193. d_len, signal, GFP_KERNEL);
  1194. if (bss) {
  1195. wil_dbg_wmi(wil, "Added BSS %pM\n", rx_mgmt_frame->bssid);
  1196. cfg80211_put_bss(wiphy, bss);
  1197. } else {
  1198. wil_err(wil, "cfg80211_inform_bss_frame() failed\n");
  1199. }
  1200. cfg80211_sched_scan_results(wiphy, 0);
  1201. }
  1202. /**
  1203. * Some events are ignored for purpose; and need not be interpreted as
  1204. * "unhandled events"
  1205. */
  1206. static void wmi_evt_ignore(struct wil6210_vif *vif, int id, void *d, int len)
  1207. {
  1208. struct wil6210_priv *wil = vif_to_wil(vif);
  1209. wil_dbg_wmi(wil, "Ignore event 0x%04x len %d\n", id, len);
  1210. }
  1211. static const struct {
  1212. int eventid;
  1213. void (*handler)(struct wil6210_vif *vif,
  1214. int eventid, void *data, int data_len);
  1215. } wmi_evt_handlers[] = {
  1216. {WMI_READY_EVENTID, wmi_evt_ready},
  1217. {WMI_FW_READY_EVENTID, wmi_evt_ignore},
  1218. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  1219. {WMI_TX_MGMT_PACKET_EVENTID, wmi_evt_tx_mgmt},
  1220. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  1221. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  1222. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  1223. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  1224. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  1225. {WMI_RCP_ADDBA_REQ_EVENTID, wmi_evt_addba_rx_req},
  1226. {WMI_DELBA_EVENTID, wmi_evt_delba},
  1227. {WMI_RING_EN_EVENTID, wmi_evt_ring_en},
  1228. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_ignore},
  1229. {WMI_SCHED_SCAN_RESULT_EVENTID, wmi_evt_sched_scan_result},
  1230. };
  1231. /*
  1232. * Run in IRQ context
  1233. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  1234. * that will be eventually handled by the @wmi_event_worker in the thread
  1235. * context of thread "wil6210_wmi"
  1236. */
  1237. void wmi_recv_cmd(struct wil6210_priv *wil)
  1238. {
  1239. struct wil6210_mbox_ring_desc d_tail;
  1240. struct wil6210_mbox_hdr hdr;
  1241. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  1242. struct pending_wmi_event *evt;
  1243. u8 *cmd;
  1244. void __iomem *src;
  1245. ulong flags;
  1246. unsigned n;
  1247. unsigned int num_immed_reply = 0;
  1248. if (!test_bit(wil_status_mbox_ready, wil->status)) {
  1249. wil_err(wil, "Reset in progress. Cannot handle WMI event\n");
  1250. return;
  1251. }
  1252. if (test_bit(wil_status_suspended, wil->status)) {
  1253. wil_err(wil, "suspended. cannot handle WMI event\n");
  1254. return;
  1255. }
  1256. for (n = 0;; n++) {
  1257. u16 len;
  1258. bool q;
  1259. bool immed_reply = false;
  1260. r->head = wil_r(wil, RGF_MBOX +
  1261. offsetof(struct wil6210_mbox_ctl, rx.head));
  1262. if (r->tail == r->head)
  1263. break;
  1264. wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
  1265. r->head, r->tail);
  1266. /* read cmd descriptor from tail */
  1267. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  1268. sizeof(struct wil6210_mbox_ring_desc));
  1269. if (d_tail.sync == 0) {
  1270. wil_err(wil, "Mbox evt not owned by FW?\n");
  1271. break;
  1272. }
  1273. /* read cmd header from descriptor */
  1274. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  1275. wil_err(wil, "Mbox evt at 0x%08x?\n",
  1276. le32_to_cpu(d_tail.addr));
  1277. break;
  1278. }
  1279. len = le16_to_cpu(hdr.len);
  1280. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  1281. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  1282. hdr.flags);
  1283. /* read cmd buffer from descriptor */
  1284. src = wmi_buffer(wil, d_tail.addr) +
  1285. sizeof(struct wil6210_mbox_hdr);
  1286. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  1287. event.wmi) + len, 4),
  1288. GFP_KERNEL);
  1289. if (!evt)
  1290. break;
  1291. evt->event.hdr = hdr;
  1292. cmd = (void *)&evt->event.wmi;
  1293. wil_memcpy_fromio_32(cmd, src, len);
  1294. /* mark entry as empty */
  1295. wil_w(wil, r->tail +
  1296. offsetof(struct wil6210_mbox_ring_desc, sync), 0);
  1297. /* indicate */
  1298. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  1299. (len >= sizeof(struct wmi_cmd_hdr))) {
  1300. struct wmi_cmd_hdr *wmi = &evt->event.wmi;
  1301. u16 id = le16_to_cpu(wmi->command_id);
  1302. u8 mid = wmi->mid;
  1303. u32 tstamp = le32_to_cpu(wmi->fw_timestamp);
  1304. if (test_bit(wil_status_resuming, wil->status)) {
  1305. if (id == WMI_TRAFFIC_RESUME_EVENTID)
  1306. clear_bit(wil_status_resuming,
  1307. wil->status);
  1308. else
  1309. wil_err(wil,
  1310. "WMI evt %d while resuming\n",
  1311. id);
  1312. }
  1313. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1314. if (wil->reply_id && wil->reply_id == id &&
  1315. wil->reply_mid == mid) {
  1316. if (wil->reply_buf) {
  1317. memcpy(wil->reply_buf, wmi,
  1318. min(len, wil->reply_size));
  1319. immed_reply = true;
  1320. }
  1321. if (id == WMI_TRAFFIC_SUSPEND_EVENTID) {
  1322. wil_dbg_wmi(wil,
  1323. "set suspend_resp_rcvd\n");
  1324. wil->suspend_resp_rcvd = true;
  1325. }
  1326. }
  1327. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1328. wil_dbg_wmi(wil, "recv %s (0x%04x) MID %d @%d msec\n",
  1329. eventid2name(id), id, wmi->mid, tstamp);
  1330. trace_wil6210_wmi_event(wmi, &wmi[1],
  1331. len - sizeof(*wmi));
  1332. }
  1333. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  1334. &evt->event.hdr, sizeof(hdr) + len, true);
  1335. /* advance tail */
  1336. r->tail = r->base + ((r->tail - r->base +
  1337. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  1338. wil_w(wil, RGF_MBOX +
  1339. offsetof(struct wil6210_mbox_ctl, rx.tail), r->tail);
  1340. if (immed_reply) {
  1341. wil_dbg_wmi(wil, "recv_cmd: Complete WMI 0x%04x\n",
  1342. wil->reply_id);
  1343. kfree(evt);
  1344. num_immed_reply++;
  1345. complete(&wil->wmi_call);
  1346. } else {
  1347. /* add to the pending list */
  1348. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1349. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  1350. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1351. q = queue_work(wil->wmi_wq, &wil->wmi_event_worker);
  1352. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  1353. }
  1354. }
  1355. /* normally, 1 event per IRQ should be processed */
  1356. wil_dbg_wmi(wil, "recv_cmd: -> %d events queued, %d completed\n",
  1357. n - num_immed_reply, num_immed_reply);
  1358. }
  1359. int wmi_call(struct wil6210_priv *wil, u16 cmdid, u8 mid, void *buf, u16 len,
  1360. u16 reply_id, void *reply, u16 reply_size, int to_msec)
  1361. {
  1362. int rc;
  1363. unsigned long remain;
  1364. mutex_lock(&wil->wmi_mutex);
  1365. spin_lock(&wil->wmi_ev_lock);
  1366. wil->reply_id = reply_id;
  1367. wil->reply_mid = mid;
  1368. wil->reply_buf = reply;
  1369. wil->reply_size = reply_size;
  1370. reinit_completion(&wil->wmi_call);
  1371. spin_unlock(&wil->wmi_ev_lock);
  1372. rc = __wmi_send(wil, cmdid, mid, buf, len);
  1373. if (rc)
  1374. goto out;
  1375. remain = wait_for_completion_timeout(&wil->wmi_call,
  1376. msecs_to_jiffies(to_msec));
  1377. if (0 == remain) {
  1378. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  1379. cmdid, reply_id, to_msec);
  1380. rc = -ETIME;
  1381. } else {
  1382. wil_dbg_wmi(wil,
  1383. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  1384. cmdid, reply_id,
  1385. to_msec - jiffies_to_msecs(remain));
  1386. }
  1387. out:
  1388. spin_lock(&wil->wmi_ev_lock);
  1389. wil->reply_id = 0;
  1390. wil->reply_mid = U8_MAX;
  1391. wil->reply_buf = NULL;
  1392. wil->reply_size = 0;
  1393. spin_unlock(&wil->wmi_ev_lock);
  1394. mutex_unlock(&wil->wmi_mutex);
  1395. return rc;
  1396. }
  1397. int wmi_echo(struct wil6210_priv *wil)
  1398. {
  1399. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1400. struct wmi_echo_cmd cmd = {
  1401. .value = cpu_to_le32(0x12345678),
  1402. };
  1403. return wmi_call(wil, WMI_ECHO_CMDID, vif->mid, &cmd, sizeof(cmd),
  1404. WMI_ECHO_RSP_EVENTID, NULL, 0, 50);
  1405. }
  1406. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  1407. {
  1408. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1409. struct wmi_set_mac_address_cmd cmd;
  1410. ether_addr_copy(cmd.mac, addr);
  1411. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  1412. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, vif->mid,
  1413. &cmd, sizeof(cmd));
  1414. }
  1415. int wmi_led_cfg(struct wil6210_priv *wil, bool enable)
  1416. {
  1417. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1418. int rc = 0;
  1419. struct wmi_led_cfg_cmd cmd = {
  1420. .led_mode = enable,
  1421. .id = led_id,
  1422. .slow_blink_cfg.blink_on =
  1423. cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].on_ms),
  1424. .slow_blink_cfg.blink_off =
  1425. cpu_to_le32(led_blink_time[WIL_LED_TIME_SLOW].off_ms),
  1426. .medium_blink_cfg.blink_on =
  1427. cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].on_ms),
  1428. .medium_blink_cfg.blink_off =
  1429. cpu_to_le32(led_blink_time[WIL_LED_TIME_MED].off_ms),
  1430. .fast_blink_cfg.blink_on =
  1431. cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].on_ms),
  1432. .fast_blink_cfg.blink_off =
  1433. cpu_to_le32(led_blink_time[WIL_LED_TIME_FAST].off_ms),
  1434. .led_polarity = led_polarity,
  1435. };
  1436. struct {
  1437. struct wmi_cmd_hdr wmi;
  1438. struct wmi_led_cfg_done_event evt;
  1439. } __packed reply = {
  1440. .evt = {.status = cpu_to_le32(WMI_FW_STATUS_FAILURE)},
  1441. };
  1442. if (led_id == WIL_LED_INVALID_ID)
  1443. goto out;
  1444. if (led_id > WIL_LED_MAX_ID) {
  1445. wil_err(wil, "Invalid led id %d\n", led_id);
  1446. rc = -EINVAL;
  1447. goto out;
  1448. }
  1449. wil_dbg_wmi(wil,
  1450. "%s led %d\n",
  1451. enable ? "enabling" : "disabling", led_id);
  1452. rc = wmi_call(wil, WMI_LED_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
  1453. WMI_LED_CFG_DONE_EVENTID, &reply, sizeof(reply),
  1454. 100);
  1455. if (rc)
  1456. goto out;
  1457. if (reply.evt.status) {
  1458. wil_err(wil, "led %d cfg failed with status %d\n",
  1459. led_id, le32_to_cpu(reply.evt.status));
  1460. rc = -EINVAL;
  1461. }
  1462. out:
  1463. return rc;
  1464. }
  1465. int wmi_pcp_start(struct wil6210_vif *vif,
  1466. int bi, u8 wmi_nettype, u8 chan, u8 hidden_ssid, u8 is_go)
  1467. {
  1468. struct wil6210_priv *wil = vif_to_wil(vif);
  1469. int rc;
  1470. struct wmi_pcp_start_cmd cmd = {
  1471. .bcon_interval = cpu_to_le16(bi),
  1472. .network_type = wmi_nettype,
  1473. .disable_sec_offload = 1,
  1474. .channel = chan - 1,
  1475. .pcp_max_assoc_sta = max_assoc_sta,
  1476. .hidden_ssid = hidden_ssid,
  1477. .is_go = is_go,
  1478. .ap_sme_offload_mode = disable_ap_sme ?
  1479. WMI_AP_SME_OFFLOAD_PARTIAL :
  1480. WMI_AP_SME_OFFLOAD_FULL,
  1481. .abft_len = wil->abft_len,
  1482. };
  1483. struct {
  1484. struct wmi_cmd_hdr wmi;
  1485. struct wmi_pcp_started_event evt;
  1486. } __packed reply = {
  1487. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1488. };
  1489. if (!vif->privacy)
  1490. cmd.disable_sec = 1;
  1491. if ((cmd.pcp_max_assoc_sta > WIL6210_MAX_CID) ||
  1492. (cmd.pcp_max_assoc_sta <= 0)) {
  1493. wil_info(wil,
  1494. "Requested connection limit %u, valid values are 1 - %d. Setting to %d\n",
  1495. max_assoc_sta, WIL6210_MAX_CID, WIL6210_MAX_CID);
  1496. cmd.pcp_max_assoc_sta = WIL6210_MAX_CID;
  1497. }
  1498. if (disable_ap_sme &&
  1499. !test_bit(WMI_FW_CAPABILITY_AP_SME_OFFLOAD_PARTIAL,
  1500. wil->fw_capabilities)) {
  1501. wil_err(wil, "disable_ap_sme not supported by FW\n");
  1502. return -EOPNOTSUPP;
  1503. }
  1504. /*
  1505. * Processing time may be huge, in case of secure AP it takes about
  1506. * 3500ms for FW to start AP
  1507. */
  1508. rc = wmi_call(wil, WMI_PCP_START_CMDID, vif->mid, &cmd, sizeof(cmd),
  1509. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
  1510. if (rc)
  1511. return rc;
  1512. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  1513. rc = -EINVAL;
  1514. if (wmi_nettype != WMI_NETTYPE_P2P)
  1515. /* Don't fail due to error in the led configuration */
  1516. wmi_led_cfg(wil, true);
  1517. return rc;
  1518. }
  1519. int wmi_pcp_stop(struct wil6210_vif *vif)
  1520. {
  1521. struct wil6210_priv *wil = vif_to_wil(vif);
  1522. int rc;
  1523. rc = wmi_led_cfg(wil, false);
  1524. if (rc)
  1525. return rc;
  1526. return wmi_call(wil, WMI_PCP_STOP_CMDID, vif->mid, NULL, 0,
  1527. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  1528. }
  1529. int wmi_set_ssid(struct wil6210_vif *vif, u8 ssid_len, const void *ssid)
  1530. {
  1531. struct wil6210_priv *wil = vif_to_wil(vif);
  1532. struct wmi_set_ssid_cmd cmd = {
  1533. .ssid_len = cpu_to_le32(ssid_len),
  1534. };
  1535. if (ssid_len > sizeof(cmd.ssid))
  1536. return -EINVAL;
  1537. memcpy(cmd.ssid, ssid, ssid_len);
  1538. return wmi_send(wil, WMI_SET_SSID_CMDID, vif->mid, &cmd, sizeof(cmd));
  1539. }
  1540. int wmi_get_ssid(struct wil6210_vif *vif, u8 *ssid_len, void *ssid)
  1541. {
  1542. struct wil6210_priv *wil = vif_to_wil(vif);
  1543. int rc;
  1544. struct {
  1545. struct wmi_cmd_hdr wmi;
  1546. struct wmi_set_ssid_cmd cmd;
  1547. } __packed reply;
  1548. int len; /* reply.cmd.ssid_len in CPU order */
  1549. memset(&reply, 0, sizeof(reply));
  1550. rc = wmi_call(wil, WMI_GET_SSID_CMDID, vif->mid, NULL, 0,
  1551. WMI_GET_SSID_EVENTID, &reply, sizeof(reply), 20);
  1552. if (rc)
  1553. return rc;
  1554. len = le32_to_cpu(reply.cmd.ssid_len);
  1555. if (len > sizeof(reply.cmd.ssid))
  1556. return -EINVAL;
  1557. *ssid_len = len;
  1558. memcpy(ssid, reply.cmd.ssid, len);
  1559. return 0;
  1560. }
  1561. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  1562. {
  1563. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1564. struct wmi_set_pcp_channel_cmd cmd = {
  1565. .channel = channel - 1,
  1566. };
  1567. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, vif->mid,
  1568. &cmd, sizeof(cmd));
  1569. }
  1570. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  1571. {
  1572. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1573. int rc;
  1574. struct {
  1575. struct wmi_cmd_hdr wmi;
  1576. struct wmi_set_pcp_channel_cmd cmd;
  1577. } __packed reply;
  1578. memset(&reply, 0, sizeof(reply));
  1579. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, vif->mid, NULL, 0,
  1580. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  1581. if (rc)
  1582. return rc;
  1583. if (reply.cmd.channel > 3)
  1584. return -EINVAL;
  1585. *channel = reply.cmd.channel + 1;
  1586. return 0;
  1587. }
  1588. int wmi_p2p_cfg(struct wil6210_vif *vif, int channel, int bi)
  1589. {
  1590. struct wil6210_priv *wil = vif_to_wil(vif);
  1591. int rc;
  1592. struct wmi_p2p_cfg_cmd cmd = {
  1593. .discovery_mode = WMI_DISCOVERY_MODE_PEER2PEER,
  1594. .bcon_interval = cpu_to_le16(bi),
  1595. .channel = channel - 1,
  1596. };
  1597. struct {
  1598. struct wmi_cmd_hdr wmi;
  1599. struct wmi_p2p_cfg_done_event evt;
  1600. } __packed reply = {
  1601. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1602. };
  1603. wil_dbg_wmi(wil, "sending WMI_P2P_CFG_CMDID\n");
  1604. rc = wmi_call(wil, WMI_P2P_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
  1605. WMI_P2P_CFG_DONE_EVENTID, &reply, sizeof(reply), 300);
  1606. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1607. wil_err(wil, "P2P_CFG failed. status %d\n", reply.evt.status);
  1608. rc = -EINVAL;
  1609. }
  1610. return rc;
  1611. }
  1612. int wmi_start_listen(struct wil6210_vif *vif)
  1613. {
  1614. struct wil6210_priv *wil = vif_to_wil(vif);
  1615. int rc;
  1616. struct {
  1617. struct wmi_cmd_hdr wmi;
  1618. struct wmi_listen_started_event evt;
  1619. } __packed reply = {
  1620. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1621. };
  1622. wil_dbg_wmi(wil, "sending WMI_START_LISTEN_CMDID\n");
  1623. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
  1624. WMI_LISTEN_STARTED_EVENTID, &reply, sizeof(reply), 300);
  1625. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1626. wil_err(wil, "device failed to start listen. status %d\n",
  1627. reply.evt.status);
  1628. rc = -EINVAL;
  1629. }
  1630. return rc;
  1631. }
  1632. int wmi_start_search(struct wil6210_vif *vif)
  1633. {
  1634. struct wil6210_priv *wil = vif_to_wil(vif);
  1635. int rc;
  1636. struct {
  1637. struct wmi_cmd_hdr wmi;
  1638. struct wmi_search_started_event evt;
  1639. } __packed reply = {
  1640. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1641. };
  1642. wil_dbg_wmi(wil, "sending WMI_START_SEARCH_CMDID\n");
  1643. rc = wmi_call(wil, WMI_START_SEARCH_CMDID, vif->mid, NULL, 0,
  1644. WMI_SEARCH_STARTED_EVENTID, &reply, sizeof(reply), 300);
  1645. if (!rc && reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  1646. wil_err(wil, "device failed to start search. status %d\n",
  1647. reply.evt.status);
  1648. rc = -EINVAL;
  1649. }
  1650. return rc;
  1651. }
  1652. int wmi_stop_discovery(struct wil6210_vif *vif)
  1653. {
  1654. struct wil6210_priv *wil = vif_to_wil(vif);
  1655. int rc;
  1656. wil_dbg_wmi(wil, "sending WMI_DISCOVERY_STOP_CMDID\n");
  1657. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
  1658. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 100);
  1659. if (rc)
  1660. wil_err(wil, "Failed to stop discovery\n");
  1661. return rc;
  1662. }
  1663. int wmi_del_cipher_key(struct wil6210_vif *vif, u8 key_index,
  1664. const void *mac_addr, int key_usage)
  1665. {
  1666. struct wil6210_priv *wil = vif_to_wil(vif);
  1667. struct wmi_delete_cipher_key_cmd cmd = {
  1668. .key_index = key_index,
  1669. };
  1670. if (mac_addr)
  1671. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  1672. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, vif->mid,
  1673. &cmd, sizeof(cmd));
  1674. }
  1675. int wmi_add_cipher_key(struct wil6210_vif *vif, u8 key_index,
  1676. const void *mac_addr, int key_len, const void *key,
  1677. int key_usage)
  1678. {
  1679. struct wil6210_priv *wil = vif_to_wil(vif);
  1680. struct wmi_add_cipher_key_cmd cmd = {
  1681. .key_index = key_index,
  1682. .key_usage = key_usage,
  1683. .key_len = key_len,
  1684. };
  1685. if (!key || (key_len > sizeof(cmd.key)))
  1686. return -EINVAL;
  1687. memcpy(cmd.key, key, key_len);
  1688. if (mac_addr)
  1689. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  1690. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, vif->mid,
  1691. &cmd, sizeof(cmd));
  1692. }
  1693. int wmi_set_ie(struct wil6210_vif *vif, u8 type, u16 ie_len, const void *ie)
  1694. {
  1695. struct wil6210_priv *wil = vif_to_wil(vif);
  1696. static const char *const names[] = {
  1697. [WMI_FRAME_BEACON] = "BEACON",
  1698. [WMI_FRAME_PROBE_REQ] = "PROBE_REQ",
  1699. [WMI_FRAME_PROBE_RESP] = "WMI_FRAME_PROBE_RESP",
  1700. [WMI_FRAME_ASSOC_REQ] = "WMI_FRAME_ASSOC_REQ",
  1701. [WMI_FRAME_ASSOC_RESP] = "WMI_FRAME_ASSOC_RESP",
  1702. };
  1703. int rc;
  1704. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  1705. struct wmi_set_appie_cmd *cmd;
  1706. if (len < ie_len) {
  1707. rc = -EINVAL;
  1708. goto out;
  1709. }
  1710. cmd = kzalloc(len, GFP_KERNEL);
  1711. if (!cmd) {
  1712. rc = -ENOMEM;
  1713. goto out;
  1714. }
  1715. if (!ie)
  1716. ie_len = 0;
  1717. cmd->mgmt_frm_type = type;
  1718. /* BUG: FW API define ieLen as u8. Will fix FW */
  1719. cmd->ie_len = cpu_to_le16(ie_len);
  1720. memcpy(cmd->ie_info, ie, ie_len);
  1721. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, vif->mid, cmd, len);
  1722. kfree(cmd);
  1723. out:
  1724. if (rc) {
  1725. const char *name = type < ARRAY_SIZE(names) ?
  1726. names[type] : "??";
  1727. wil_err(wil, "set_ie(%d %s) failed : %d\n", type, name, rc);
  1728. }
  1729. return rc;
  1730. }
  1731. /**
  1732. * wmi_rxon - turn radio on/off
  1733. * @on: turn on if true, off otherwise
  1734. *
  1735. * Only switch radio. Channel should be set separately.
  1736. * No timeout for rxon - radio turned on forever unless some other call
  1737. * turns it off
  1738. */
  1739. int wmi_rxon(struct wil6210_priv *wil, bool on)
  1740. {
  1741. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1742. int rc;
  1743. struct {
  1744. struct wmi_cmd_hdr wmi;
  1745. struct wmi_listen_started_event evt;
  1746. } __packed reply = {
  1747. .evt = {.status = WMI_FW_STATUS_FAILURE},
  1748. };
  1749. wil_info(wil, "(%s)\n", on ? "on" : "off");
  1750. if (on) {
  1751. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, vif->mid, NULL, 0,
  1752. WMI_LISTEN_STARTED_EVENTID,
  1753. &reply, sizeof(reply), 100);
  1754. if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
  1755. rc = -EINVAL;
  1756. } else {
  1757. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, vif->mid, NULL, 0,
  1758. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20);
  1759. }
  1760. return rc;
  1761. }
  1762. int wmi_rx_chain_add(struct wil6210_priv *wil, struct wil_ring *vring)
  1763. {
  1764. struct net_device *ndev = wil->main_ndev;
  1765. struct wireless_dev *wdev = ndev->ieee80211_ptr;
  1766. struct wil6210_vif *vif = ndev_to_vif(ndev);
  1767. struct wmi_cfg_rx_chain_cmd cmd = {
  1768. .action = WMI_RX_CHAIN_ADD,
  1769. .rx_sw_ring = {
  1770. .max_mpdu_size = cpu_to_le16(
  1771. wil_mtu2macbuf(wil->rx_buf_len)),
  1772. .ring_mem_base = cpu_to_le64(vring->pa),
  1773. .ring_size = cpu_to_le16(vring->size),
  1774. },
  1775. .mid = 0, /* TODO - what is it? */
  1776. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  1777. .reorder_type = WMI_RX_SW_REORDER,
  1778. .host_thrsh = cpu_to_le16(rx_ring_overflow_thrsh),
  1779. };
  1780. struct {
  1781. struct wmi_cmd_hdr wmi;
  1782. struct wmi_cfg_rx_chain_done_event evt;
  1783. } __packed evt;
  1784. int rc;
  1785. memset(&evt, 0, sizeof(evt));
  1786. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  1787. struct ieee80211_channel *ch = wil->monitor_chandef.chan;
  1788. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  1789. if (ch)
  1790. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  1791. cmd.sniffer_cfg.phy_info_mode =
  1792. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  1793. cmd.sniffer_cfg.phy_support =
  1794. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  1795. ? WMI_SNIFFER_CP : WMI_SNIFFER_BOTH_PHYS);
  1796. } else {
  1797. /* Initialize offload (in non-sniffer mode).
  1798. * Linux IP stack always calculates IP checksum
  1799. * HW always calculate TCP/UDP checksum
  1800. */
  1801. cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
  1802. }
  1803. if (rx_align_2)
  1804. cmd.l2_802_3_offload_ctrl |=
  1805. L2_802_3_OFFLOAD_CTRL_SNAP_KEEP_MSK;
  1806. /* typical time for secure PCP is 840ms */
  1807. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, vif->mid, &cmd, sizeof(cmd),
  1808. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  1809. if (rc)
  1810. return rc;
  1811. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  1812. rc = -EINVAL;
  1813. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  1814. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  1815. le32_to_cpu(evt.evt.status), vring->hwtail);
  1816. return rc;
  1817. }
  1818. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_bb, u32 *t_rf)
  1819. {
  1820. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  1821. int rc;
  1822. struct wmi_temp_sense_cmd cmd = {
  1823. .measure_baseband_en = cpu_to_le32(!!t_bb),
  1824. .measure_rf_en = cpu_to_le32(!!t_rf),
  1825. .measure_mode = cpu_to_le32(TEMPERATURE_MEASURE_NOW),
  1826. };
  1827. struct {
  1828. struct wmi_cmd_hdr wmi;
  1829. struct wmi_temp_sense_done_event evt;
  1830. } __packed reply;
  1831. memset(&reply, 0, sizeof(reply));
  1832. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, vif->mid, &cmd, sizeof(cmd),
  1833. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  1834. if (rc)
  1835. return rc;
  1836. if (t_bb)
  1837. *t_bb = le32_to_cpu(reply.evt.baseband_t1000);
  1838. if (t_rf)
  1839. *t_rf = le32_to_cpu(reply.evt.rf_t1000);
  1840. return 0;
  1841. }
  1842. int wmi_disconnect_sta(struct wil6210_vif *vif, const u8 *mac,
  1843. u16 reason, bool full_disconnect, bool del_sta)
  1844. {
  1845. struct wil6210_priv *wil = vif_to_wil(vif);
  1846. int rc;
  1847. u16 reason_code;
  1848. struct wmi_disconnect_sta_cmd disc_sta_cmd = {
  1849. .disconnect_reason = cpu_to_le16(reason),
  1850. };
  1851. struct wmi_del_sta_cmd del_sta_cmd = {
  1852. .disconnect_reason = cpu_to_le16(reason),
  1853. };
  1854. struct {
  1855. struct wmi_cmd_hdr wmi;
  1856. struct wmi_disconnect_event evt;
  1857. } __packed reply;
  1858. wil_dbg_wmi(wil, "disconnect_sta: (%pM, reason %d)\n", mac, reason);
  1859. memset(&reply, 0, sizeof(reply));
  1860. vif->locally_generated_disc = true;
  1861. if (del_sta) {
  1862. ether_addr_copy(del_sta_cmd.dst_mac, mac);
  1863. rc = wmi_call(wil, WMI_DEL_STA_CMDID, vif->mid, &del_sta_cmd,
  1864. sizeof(del_sta_cmd), WMI_DISCONNECT_EVENTID,
  1865. &reply, sizeof(reply), 1000);
  1866. } else {
  1867. ether_addr_copy(disc_sta_cmd.dst_mac, mac);
  1868. rc = wmi_call(wil, WMI_DISCONNECT_STA_CMDID, vif->mid,
  1869. &disc_sta_cmd, sizeof(disc_sta_cmd),
  1870. WMI_DISCONNECT_EVENTID,
  1871. &reply, sizeof(reply), 1000);
  1872. }
  1873. /* failure to disconnect in reasonable time treated as FW error */
  1874. if (rc) {
  1875. wil_fw_error_recovery(wil);
  1876. return rc;
  1877. }
  1878. if (full_disconnect) {
  1879. /* call event handler manually after processing wmi_call,
  1880. * to avoid deadlock - disconnect event handler acquires
  1881. * wil->mutex while it is already held here
  1882. */
  1883. reason_code = le16_to_cpu(reply.evt.protocol_reason_status);
  1884. wil_dbg_wmi(wil, "Disconnect %pM reason [proto %d wmi %d]\n",
  1885. reply.evt.bssid, reason_code,
  1886. reply.evt.disconnect_reason);
  1887. wil->sinfo_gen++;
  1888. wil6210_disconnect(vif, reply.evt.bssid, reason_code, true);
  1889. }
  1890. return 0;
  1891. }
  1892. int wmi_addba(struct wil6210_priv *wil, u8 mid,
  1893. u8 ringid, u8 size, u16 timeout)
  1894. {
  1895. u8 amsdu = wil->use_enhanced_dma_hw && wil->use_rx_hw_reordering &&
  1896. test_bit(WMI_FW_CAPABILITY_AMSDU, wil->fw_capabilities) &&
  1897. wil->amsdu_en;
  1898. struct wmi_ring_ba_en_cmd cmd = {
  1899. .ring_id = ringid,
  1900. .agg_max_wsize = size,
  1901. .ba_timeout = cpu_to_le16(timeout),
  1902. .amsdu = amsdu,
  1903. };
  1904. wil_dbg_wmi(wil, "addba: (ring %d size %d timeout %d amsdu %d)\n",
  1905. ringid, size, timeout, amsdu);
  1906. return wmi_send(wil, WMI_RING_BA_EN_CMDID, mid, &cmd, sizeof(cmd));
  1907. }
  1908. int wmi_delba_tx(struct wil6210_priv *wil, u8 mid, u8 ringid, u16 reason)
  1909. {
  1910. struct wmi_ring_ba_dis_cmd cmd = {
  1911. .ring_id = ringid,
  1912. .reason = cpu_to_le16(reason),
  1913. };
  1914. wil_dbg_wmi(wil, "delba_tx: (ring %d reason %d)\n", ringid, reason);
  1915. return wmi_send(wil, WMI_RING_BA_DIS_CMDID, mid, &cmd, sizeof(cmd));
  1916. }
  1917. int wmi_delba_rx(struct wil6210_priv *wil, u8 mid, u8 cidxtid, u16 reason)
  1918. {
  1919. struct wmi_rcp_delba_cmd cmd = {
  1920. .cidxtid = cidxtid,
  1921. .reason = cpu_to_le16(reason),
  1922. };
  1923. wil_dbg_wmi(wil, "delba_rx: (CID %d TID %d reason %d)\n", cidxtid & 0xf,
  1924. (cidxtid >> 4) & 0xf, reason);
  1925. return wmi_send(wil, WMI_RCP_DELBA_CMDID, mid, &cmd, sizeof(cmd));
  1926. }
  1927. int wmi_addba_rx_resp(struct wil6210_priv *wil,
  1928. u8 mid, u8 cid, u8 tid, u8 token,
  1929. u16 status, bool amsdu, u16 agg_wsize, u16 timeout)
  1930. {
  1931. int rc;
  1932. struct wmi_rcp_addba_resp_cmd cmd = {
  1933. .cidxtid = mk_cidxtid(cid, tid),
  1934. .dialog_token = token,
  1935. .status_code = cpu_to_le16(status),
  1936. /* bit 0: A-MSDU supported
  1937. * bit 1: policy (should be 0 for us)
  1938. * bits 2..5: TID
  1939. * bits 6..15: buffer size
  1940. */
  1941. .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
  1942. (agg_wsize << 6)),
  1943. .ba_timeout = cpu_to_le16(timeout),
  1944. };
  1945. struct {
  1946. struct wmi_cmd_hdr wmi;
  1947. struct wmi_rcp_addba_resp_sent_event evt;
  1948. } __packed reply = {
  1949. .evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)},
  1950. };
  1951. wil_dbg_wmi(wil,
  1952. "ADDBA response for MID %d CID %d TID %d size %d timeout %d status %d AMSDU%s\n",
  1953. mid, cid, tid, agg_wsize,
  1954. timeout, status, amsdu ? "+" : "-");
  1955. rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_CMDID, mid, &cmd, sizeof(cmd),
  1956. WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply, sizeof(reply),
  1957. 100);
  1958. if (rc)
  1959. return rc;
  1960. if (reply.evt.status) {
  1961. wil_err(wil, "ADDBA response failed with status %d\n",
  1962. le16_to_cpu(reply.evt.status));
  1963. rc = -EINVAL;
  1964. }
  1965. return rc;
  1966. }
  1967. int wmi_addba_rx_resp_edma(struct wil6210_priv *wil, u8 mid, u8 cid, u8 tid,
  1968. u8 token, u16 status, bool amsdu, u16 agg_wsize,
  1969. u16 timeout)
  1970. {
  1971. int rc;
  1972. struct wmi_rcp_addba_resp_edma_cmd cmd = {
  1973. .cid = cid,
  1974. .tid = tid,
  1975. .dialog_token = token,
  1976. .status_code = cpu_to_le16(status),
  1977. /* bit 0: A-MSDU supported
  1978. * bit 1: policy (should be 0 for us)
  1979. * bits 2..5: TID
  1980. * bits 6..15: buffer size
  1981. */
  1982. .ba_param_set = cpu_to_le16((amsdu ? 1 : 0) | (tid << 2) |
  1983. (agg_wsize << 6)),
  1984. .ba_timeout = cpu_to_le16(timeout),
  1985. /* route all the connections to status ring 0 */
  1986. .status_ring_id = WIL_DEFAULT_RX_STATUS_RING_ID,
  1987. };
  1988. struct {
  1989. struct wmi_cmd_hdr wmi;
  1990. struct wmi_rcp_addba_resp_sent_event evt;
  1991. } __packed reply = {
  1992. .evt = {.status = cpu_to_le16(WMI_FW_STATUS_FAILURE)},
  1993. };
  1994. wil_dbg_wmi(wil,
  1995. "ADDBA response for CID %d TID %d size %d timeout %d status %d AMSDU%s, sring_id %d\n",
  1996. cid, tid, agg_wsize, timeout, status, amsdu ? "+" : "-",
  1997. WIL_DEFAULT_RX_STATUS_RING_ID);
  1998. rc = wmi_call(wil, WMI_RCP_ADDBA_RESP_EDMA_CMDID, mid, &cmd,
  1999. sizeof(cmd), WMI_RCP_ADDBA_RESP_SENT_EVENTID, &reply,
  2000. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2001. if (rc)
  2002. return rc;
  2003. if (reply.evt.status) {
  2004. wil_err(wil, "ADDBA response failed with status %d\n",
  2005. le16_to_cpu(reply.evt.status));
  2006. rc = -EINVAL;
  2007. }
  2008. return rc;
  2009. }
  2010. int wmi_ps_dev_profile_cfg(struct wil6210_priv *wil,
  2011. enum wmi_ps_profile_type ps_profile)
  2012. {
  2013. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2014. int rc;
  2015. struct wmi_ps_dev_profile_cfg_cmd cmd = {
  2016. .ps_profile = ps_profile,
  2017. };
  2018. struct {
  2019. struct wmi_cmd_hdr wmi;
  2020. struct wmi_ps_dev_profile_cfg_event evt;
  2021. } __packed reply = {
  2022. .evt = {.status = cpu_to_le32(WMI_PS_CFG_CMD_STATUS_ERROR)},
  2023. };
  2024. u32 status;
  2025. wil_dbg_wmi(wil, "Setting ps dev profile %d\n", ps_profile);
  2026. rc = wmi_call(wil, WMI_PS_DEV_PROFILE_CFG_CMDID, vif->mid,
  2027. &cmd, sizeof(cmd),
  2028. WMI_PS_DEV_PROFILE_CFG_EVENTID, &reply, sizeof(reply),
  2029. 100);
  2030. if (rc)
  2031. return rc;
  2032. status = le32_to_cpu(reply.evt.status);
  2033. if (status != WMI_PS_CFG_CMD_STATUS_SUCCESS) {
  2034. wil_err(wil, "ps dev profile cfg failed with status %d\n",
  2035. status);
  2036. rc = -EINVAL;
  2037. }
  2038. return rc;
  2039. }
  2040. int wmi_set_mgmt_retry(struct wil6210_priv *wil, u8 retry_short)
  2041. {
  2042. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2043. int rc;
  2044. struct wmi_set_mgmt_retry_limit_cmd cmd = {
  2045. .mgmt_retry_limit = retry_short,
  2046. };
  2047. struct {
  2048. struct wmi_cmd_hdr wmi;
  2049. struct wmi_set_mgmt_retry_limit_event evt;
  2050. } __packed reply = {
  2051. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2052. };
  2053. wil_dbg_wmi(wil, "Setting mgmt retry short %d\n", retry_short);
  2054. if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
  2055. return -ENOTSUPP;
  2056. rc = wmi_call(wil, WMI_SET_MGMT_RETRY_LIMIT_CMDID, vif->mid,
  2057. &cmd, sizeof(cmd),
  2058. WMI_SET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
  2059. 100);
  2060. if (rc)
  2061. return rc;
  2062. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2063. wil_err(wil, "set mgmt retry limit failed with status %d\n",
  2064. reply.evt.status);
  2065. rc = -EINVAL;
  2066. }
  2067. return rc;
  2068. }
  2069. int wmi_get_mgmt_retry(struct wil6210_priv *wil, u8 *retry_short)
  2070. {
  2071. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2072. int rc;
  2073. struct {
  2074. struct wmi_cmd_hdr wmi;
  2075. struct wmi_get_mgmt_retry_limit_event evt;
  2076. } __packed reply;
  2077. wil_dbg_wmi(wil, "getting mgmt retry short\n");
  2078. if (!test_bit(WMI_FW_CAPABILITY_MGMT_RETRY_LIMIT, wil->fw_capabilities))
  2079. return -ENOTSUPP;
  2080. memset(&reply, 0, sizeof(reply));
  2081. rc = wmi_call(wil, WMI_GET_MGMT_RETRY_LIMIT_CMDID, vif->mid, NULL, 0,
  2082. WMI_GET_MGMT_RETRY_LIMIT_EVENTID, &reply, sizeof(reply),
  2083. 100);
  2084. if (rc)
  2085. return rc;
  2086. if (retry_short)
  2087. *retry_short = reply.evt.mgmt_retry_limit;
  2088. return 0;
  2089. }
  2090. int wmi_abort_scan(struct wil6210_vif *vif)
  2091. {
  2092. struct wil6210_priv *wil = vif_to_wil(vif);
  2093. int rc;
  2094. wil_dbg_wmi(wil, "sending WMI_ABORT_SCAN_CMDID\n");
  2095. rc = wmi_send(wil, WMI_ABORT_SCAN_CMDID, vif->mid, NULL, 0);
  2096. if (rc)
  2097. wil_err(wil, "Failed to abort scan (%d)\n", rc);
  2098. return rc;
  2099. }
  2100. int wmi_new_sta(struct wil6210_vif *vif, const u8 *mac, u8 aid)
  2101. {
  2102. struct wil6210_priv *wil = vif_to_wil(vif);
  2103. int rc;
  2104. struct wmi_new_sta_cmd cmd = {
  2105. .aid = aid,
  2106. };
  2107. wil_dbg_wmi(wil, "new sta %pM, aid %d\n", mac, aid);
  2108. ether_addr_copy(cmd.dst_mac, mac);
  2109. rc = wmi_send(wil, WMI_NEW_STA_CMDID, vif->mid, &cmd, sizeof(cmd));
  2110. if (rc)
  2111. wil_err(wil, "Failed to send new sta (%d)\n", rc);
  2112. return rc;
  2113. }
  2114. void wmi_event_flush(struct wil6210_priv *wil)
  2115. {
  2116. ulong flags;
  2117. struct pending_wmi_event *evt, *t;
  2118. wil_dbg_wmi(wil, "event_flush\n");
  2119. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  2120. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  2121. list_del(&evt->list);
  2122. kfree(evt);
  2123. }
  2124. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  2125. }
  2126. static const char *suspend_status2name(u8 status)
  2127. {
  2128. switch (status) {
  2129. case WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE:
  2130. return "LINK_NOT_IDLE";
  2131. default:
  2132. return "Untracked status";
  2133. }
  2134. }
  2135. int wmi_suspend(struct wil6210_priv *wil)
  2136. {
  2137. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2138. int rc;
  2139. struct wmi_traffic_suspend_cmd cmd = {
  2140. .wakeup_trigger = wil->wakeup_trigger,
  2141. };
  2142. struct {
  2143. struct wmi_cmd_hdr wmi;
  2144. struct wmi_traffic_suspend_event evt;
  2145. } __packed reply = {
  2146. .evt = {.status = WMI_TRAFFIC_SUSPEND_REJECTED_LINK_NOT_IDLE},
  2147. };
  2148. u32 suspend_to = WIL_WAIT_FOR_SUSPEND_RESUME_COMP;
  2149. wil->suspend_resp_rcvd = false;
  2150. wil->suspend_resp_comp = false;
  2151. rc = wmi_call(wil, WMI_TRAFFIC_SUSPEND_CMDID, vif->mid,
  2152. &cmd, sizeof(cmd),
  2153. WMI_TRAFFIC_SUSPEND_EVENTID, &reply, sizeof(reply),
  2154. suspend_to);
  2155. if (rc) {
  2156. wil_err(wil, "wmi_call for suspend req failed, rc=%d\n", rc);
  2157. if (rc == -ETIME)
  2158. /* wmi_call TO */
  2159. wil->suspend_stats.rejected_by_device++;
  2160. else
  2161. wil->suspend_stats.rejected_by_host++;
  2162. goto out;
  2163. }
  2164. wil_dbg_wmi(wil, "waiting for suspend_response_completed\n");
  2165. rc = wait_event_interruptible_timeout(wil->wq,
  2166. wil->suspend_resp_comp,
  2167. msecs_to_jiffies(suspend_to));
  2168. if (rc == 0) {
  2169. wil_err(wil, "TO waiting for suspend_response_completed\n");
  2170. if (wil->suspend_resp_rcvd)
  2171. /* Device responded but we TO due to another reason */
  2172. wil->suspend_stats.rejected_by_host++;
  2173. else
  2174. wil->suspend_stats.rejected_by_device++;
  2175. rc = -EBUSY;
  2176. goto out;
  2177. }
  2178. wil_dbg_wmi(wil, "suspend_response_completed rcvd\n");
  2179. if (reply.evt.status != WMI_TRAFFIC_SUSPEND_APPROVED) {
  2180. wil_dbg_pm(wil, "device rejected the suspend, %s\n",
  2181. suspend_status2name(reply.evt.status));
  2182. wil->suspend_stats.rejected_by_device++;
  2183. }
  2184. rc = reply.evt.status;
  2185. out:
  2186. wil->suspend_resp_rcvd = false;
  2187. wil->suspend_resp_comp = false;
  2188. return rc;
  2189. }
  2190. static void resume_triggers2string(u32 triggers, char *string, int str_size)
  2191. {
  2192. string[0] = '\0';
  2193. if (!triggers) {
  2194. strlcat(string, " UNKNOWN", str_size);
  2195. return;
  2196. }
  2197. if (triggers & WMI_RESUME_TRIGGER_HOST)
  2198. strlcat(string, " HOST", str_size);
  2199. if (triggers & WMI_RESUME_TRIGGER_UCAST_RX)
  2200. strlcat(string, " UCAST_RX", str_size);
  2201. if (triggers & WMI_RESUME_TRIGGER_BCAST_RX)
  2202. strlcat(string, " BCAST_RX", str_size);
  2203. if (triggers & WMI_RESUME_TRIGGER_WMI_EVT)
  2204. strlcat(string, " WMI_EVT", str_size);
  2205. }
  2206. int wmi_resume(struct wil6210_priv *wil)
  2207. {
  2208. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2209. int rc;
  2210. char string[100];
  2211. struct {
  2212. struct wmi_cmd_hdr wmi;
  2213. struct wmi_traffic_resume_event evt;
  2214. } __packed reply = {
  2215. .evt = {.status = WMI_TRAFFIC_RESUME_FAILED,
  2216. .resume_triggers =
  2217. cpu_to_le32(WMI_RESUME_TRIGGER_UNKNOWN)},
  2218. };
  2219. rc = wmi_call(wil, WMI_TRAFFIC_RESUME_CMDID, vif->mid, NULL, 0,
  2220. WMI_TRAFFIC_RESUME_EVENTID, &reply, sizeof(reply),
  2221. WIL_WAIT_FOR_SUSPEND_RESUME_COMP);
  2222. if (rc)
  2223. return rc;
  2224. resume_triggers2string(le32_to_cpu(reply.evt.resume_triggers), string,
  2225. sizeof(string));
  2226. wil_dbg_pm(wil, "device resume %s, resume triggers:%s (0x%x)\n",
  2227. reply.evt.status ? "failed" : "passed", string,
  2228. le32_to_cpu(reply.evt.resume_triggers));
  2229. return reply.evt.status;
  2230. }
  2231. int wmi_port_allocate(struct wil6210_priv *wil, u8 mid,
  2232. const u8 *mac, enum nl80211_iftype iftype)
  2233. {
  2234. int rc;
  2235. struct wmi_port_allocate_cmd cmd = {
  2236. .mid = mid,
  2237. };
  2238. struct {
  2239. struct wmi_cmd_hdr wmi;
  2240. struct wmi_port_allocated_event evt;
  2241. } __packed reply = {
  2242. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2243. };
  2244. wil_dbg_misc(wil, "port allocate, mid %d iftype %d, mac %pM\n",
  2245. mid, iftype, mac);
  2246. ether_addr_copy(cmd.mac, mac);
  2247. switch (iftype) {
  2248. case NL80211_IFTYPE_STATION:
  2249. cmd.port_role = WMI_PORT_STA;
  2250. break;
  2251. case NL80211_IFTYPE_AP:
  2252. cmd.port_role = WMI_PORT_AP;
  2253. break;
  2254. case NL80211_IFTYPE_P2P_CLIENT:
  2255. cmd.port_role = WMI_PORT_P2P_CLIENT;
  2256. break;
  2257. case NL80211_IFTYPE_P2P_GO:
  2258. cmd.port_role = WMI_PORT_P2P_GO;
  2259. break;
  2260. /* what about monitor??? */
  2261. default:
  2262. wil_err(wil, "unsupported iftype: %d\n", iftype);
  2263. return -EINVAL;
  2264. }
  2265. rc = wmi_call(wil, WMI_PORT_ALLOCATE_CMDID, mid,
  2266. &cmd, sizeof(cmd),
  2267. WMI_PORT_ALLOCATED_EVENTID, &reply,
  2268. sizeof(reply), 300);
  2269. if (rc) {
  2270. wil_err(wil, "failed to allocate port, status %d\n", rc);
  2271. return rc;
  2272. }
  2273. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2274. wil_err(wil, "WMI_PORT_ALLOCATE returned status %d\n",
  2275. reply.evt.status);
  2276. return -EINVAL;
  2277. }
  2278. return 0;
  2279. }
  2280. int wmi_port_delete(struct wil6210_priv *wil, u8 mid)
  2281. {
  2282. int rc;
  2283. struct wmi_port_delete_cmd cmd = {
  2284. .mid = mid,
  2285. };
  2286. struct {
  2287. struct wmi_cmd_hdr wmi;
  2288. struct wmi_port_deleted_event evt;
  2289. } __packed reply = {
  2290. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2291. };
  2292. wil_dbg_misc(wil, "port delete, mid %d\n", mid);
  2293. rc = wmi_call(wil, WMI_PORT_DELETE_CMDID, mid,
  2294. &cmd, sizeof(cmd),
  2295. WMI_PORT_DELETED_EVENTID, &reply,
  2296. sizeof(reply), 2000);
  2297. if (rc) {
  2298. wil_err(wil, "failed to delete port, status %d\n", rc);
  2299. return rc;
  2300. }
  2301. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2302. wil_err(wil, "WMI_PORT_DELETE returned status %d\n",
  2303. reply.evt.status);
  2304. return -EINVAL;
  2305. }
  2306. return 0;
  2307. }
  2308. static bool wmi_evt_call_handler(struct wil6210_vif *vif, int id,
  2309. void *d, int len)
  2310. {
  2311. uint i;
  2312. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  2313. if (wmi_evt_handlers[i].eventid == id) {
  2314. wmi_evt_handlers[i].handler(vif, id, d, len);
  2315. return true;
  2316. }
  2317. }
  2318. return false;
  2319. }
  2320. static void wmi_event_handle(struct wil6210_priv *wil,
  2321. struct wil6210_mbox_hdr *hdr)
  2322. {
  2323. u16 len = le16_to_cpu(hdr->len);
  2324. struct wil6210_vif *vif;
  2325. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  2326. (len >= sizeof(struct wmi_cmd_hdr))) {
  2327. struct wmi_cmd_hdr *wmi = (void *)(&hdr[1]);
  2328. void *evt_data = (void *)(&wmi[1]);
  2329. u16 id = le16_to_cpu(wmi->command_id);
  2330. u8 mid = wmi->mid;
  2331. wil_dbg_wmi(wil, "Handle %s (0x%04x) (reply_id 0x%04x,%d)\n",
  2332. eventid2name(id), id, wil->reply_id,
  2333. wil->reply_mid);
  2334. if (mid == MID_BROADCAST)
  2335. mid = 0;
  2336. if (mid >= wil->max_vifs) {
  2337. wil_dbg_wmi(wil, "invalid mid %d, event skipped\n",
  2338. mid);
  2339. return;
  2340. }
  2341. vif = wil->vifs[mid];
  2342. if (!vif) {
  2343. wil_dbg_wmi(wil, "event for empty VIF(%d), skipped\n",
  2344. mid);
  2345. return;
  2346. }
  2347. /* check if someone waits for this event */
  2348. if (wil->reply_id && wil->reply_id == id &&
  2349. wil->reply_mid == mid) {
  2350. WARN_ON(wil->reply_buf);
  2351. wmi_evt_call_handler(vif, id, evt_data,
  2352. len - sizeof(*wmi));
  2353. wil_dbg_wmi(wil, "event_handle: Complete WMI 0x%04x\n",
  2354. id);
  2355. complete(&wil->wmi_call);
  2356. return;
  2357. }
  2358. /* unsolicited event */
  2359. /* search for handler */
  2360. if (!wmi_evt_call_handler(vif, id, evt_data,
  2361. len - sizeof(*wmi))) {
  2362. wil_info(wil, "Unhandled event 0x%04x\n", id);
  2363. }
  2364. } else {
  2365. wil_err(wil, "Unknown event type\n");
  2366. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  2367. hdr, sizeof(*hdr) + len, true);
  2368. }
  2369. }
  2370. /*
  2371. * Retrieve next WMI event from the pending list
  2372. */
  2373. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  2374. {
  2375. ulong flags;
  2376. struct list_head *ret = NULL;
  2377. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  2378. if (!list_empty(&wil->pending_wmi_ev)) {
  2379. ret = wil->pending_wmi_ev.next;
  2380. list_del(ret);
  2381. }
  2382. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  2383. return ret;
  2384. }
  2385. /*
  2386. * Handler for the WMI events
  2387. */
  2388. void wmi_event_worker(struct work_struct *work)
  2389. {
  2390. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  2391. wmi_event_worker);
  2392. struct pending_wmi_event *evt;
  2393. struct list_head *lh;
  2394. wil_dbg_wmi(wil, "event_worker: Start\n");
  2395. while ((lh = next_wmi_ev(wil)) != NULL) {
  2396. evt = list_entry(lh, struct pending_wmi_event, list);
  2397. wmi_event_handle(wil, &evt->event.hdr);
  2398. kfree(evt);
  2399. }
  2400. wil_dbg_wmi(wil, "event_worker: Finished\n");
  2401. }
  2402. bool wil_is_wmi_idle(struct wil6210_priv *wil)
  2403. {
  2404. ulong flags;
  2405. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  2406. bool rc = false;
  2407. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  2408. /* Check if there are pending WMI events in the events queue */
  2409. if (!list_empty(&wil->pending_wmi_ev)) {
  2410. wil_dbg_pm(wil, "Pending WMI events in queue\n");
  2411. goto out;
  2412. }
  2413. /* Check if there is a pending WMI call */
  2414. if (wil->reply_id) {
  2415. wil_dbg_pm(wil, "Pending WMI call\n");
  2416. goto out;
  2417. }
  2418. /* Check if there are pending RX events in mbox */
  2419. r->head = wil_r(wil, RGF_MBOX +
  2420. offsetof(struct wil6210_mbox_ctl, rx.head));
  2421. if (r->tail != r->head)
  2422. wil_dbg_pm(wil, "Pending WMI mbox events\n");
  2423. else
  2424. rc = true;
  2425. out:
  2426. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  2427. return rc;
  2428. }
  2429. static void
  2430. wmi_sched_scan_set_ssids(struct wil6210_priv *wil,
  2431. struct wmi_start_sched_scan_cmd *cmd,
  2432. struct cfg80211_ssid *ssids, int n_ssids,
  2433. struct cfg80211_match_set *match_sets,
  2434. int n_match_sets)
  2435. {
  2436. int i;
  2437. if (n_match_sets > WMI_MAX_PNO_SSID_NUM) {
  2438. wil_dbg_wmi(wil, "too many match sets (%d), use first %d\n",
  2439. n_match_sets, WMI_MAX_PNO_SSID_NUM);
  2440. n_match_sets = WMI_MAX_PNO_SSID_NUM;
  2441. }
  2442. cmd->num_of_ssids = n_match_sets;
  2443. for (i = 0; i < n_match_sets; i++) {
  2444. struct wmi_sched_scan_ssid_match *wmi_match =
  2445. &cmd->ssid_for_match[i];
  2446. struct cfg80211_match_set *cfg_match = &match_sets[i];
  2447. int j;
  2448. wmi_match->ssid_len = cfg_match->ssid.ssid_len;
  2449. memcpy(wmi_match->ssid, cfg_match->ssid.ssid,
  2450. min_t(u8, wmi_match->ssid_len, WMI_MAX_SSID_LEN));
  2451. wmi_match->rssi_threshold = S8_MIN;
  2452. if (cfg_match->rssi_thold >= S8_MIN &&
  2453. cfg_match->rssi_thold <= S8_MAX)
  2454. wmi_match->rssi_threshold = cfg_match->rssi_thold;
  2455. for (j = 0; j < n_ssids; j++)
  2456. if (wmi_match->ssid_len == ssids[j].ssid_len &&
  2457. memcmp(wmi_match->ssid, ssids[j].ssid,
  2458. wmi_match->ssid_len) == 0)
  2459. wmi_match->add_ssid_to_probe = true;
  2460. }
  2461. }
  2462. static void
  2463. wmi_sched_scan_set_channels(struct wil6210_priv *wil,
  2464. struct wmi_start_sched_scan_cmd *cmd,
  2465. u32 n_channels,
  2466. struct ieee80211_channel **channels)
  2467. {
  2468. int i;
  2469. if (n_channels > WMI_MAX_CHANNEL_NUM) {
  2470. wil_dbg_wmi(wil, "too many channels (%d), use first %d\n",
  2471. n_channels, WMI_MAX_CHANNEL_NUM);
  2472. n_channels = WMI_MAX_CHANNEL_NUM;
  2473. }
  2474. cmd->num_of_channels = n_channels;
  2475. for (i = 0; i < n_channels; i++) {
  2476. struct ieee80211_channel *cfg_chan = channels[i];
  2477. cmd->channel_list[i] = cfg_chan->hw_value - 1;
  2478. }
  2479. }
  2480. static void
  2481. wmi_sched_scan_set_plans(struct wil6210_priv *wil,
  2482. struct wmi_start_sched_scan_cmd *cmd,
  2483. struct cfg80211_sched_scan_plan *scan_plans,
  2484. int n_scan_plans)
  2485. {
  2486. int i;
  2487. if (n_scan_plans > WMI_MAX_PLANS_NUM) {
  2488. wil_dbg_wmi(wil, "too many plans (%d), use first %d\n",
  2489. n_scan_plans, WMI_MAX_PLANS_NUM);
  2490. n_scan_plans = WMI_MAX_PLANS_NUM;
  2491. }
  2492. for (i = 0; i < n_scan_plans; i++) {
  2493. struct cfg80211_sched_scan_plan *cfg_plan = &scan_plans[i];
  2494. cmd->scan_plans[i].interval_sec =
  2495. cpu_to_le16(cfg_plan->interval);
  2496. cmd->scan_plans[i].num_of_iterations =
  2497. cpu_to_le16(cfg_plan->iterations);
  2498. }
  2499. }
  2500. int wmi_start_sched_scan(struct wil6210_priv *wil,
  2501. struct cfg80211_sched_scan_request *request)
  2502. {
  2503. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2504. int rc;
  2505. struct wmi_start_sched_scan_cmd cmd = {
  2506. .min_rssi_threshold = S8_MIN,
  2507. .initial_delay_sec = cpu_to_le16(request->delay),
  2508. };
  2509. struct {
  2510. struct wmi_cmd_hdr wmi;
  2511. struct wmi_start_sched_scan_event evt;
  2512. } __packed reply = {
  2513. .evt = {.result = WMI_PNO_REJECT},
  2514. };
  2515. if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
  2516. return -ENOTSUPP;
  2517. if (request->min_rssi_thold >= S8_MIN &&
  2518. request->min_rssi_thold <= S8_MAX)
  2519. cmd.min_rssi_threshold = request->min_rssi_thold;
  2520. wmi_sched_scan_set_ssids(wil, &cmd, request->ssids, request->n_ssids,
  2521. request->match_sets, request->n_match_sets);
  2522. wmi_sched_scan_set_channels(wil, &cmd,
  2523. request->n_channels, request->channels);
  2524. wmi_sched_scan_set_plans(wil, &cmd,
  2525. request->scan_plans, request->n_scan_plans);
  2526. rc = wmi_call(wil, WMI_START_SCHED_SCAN_CMDID, vif->mid,
  2527. &cmd, sizeof(cmd),
  2528. WMI_START_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
  2529. WIL_WMI_CALL_GENERAL_TO_MS);
  2530. if (rc)
  2531. return rc;
  2532. if (reply.evt.result != WMI_PNO_SUCCESS) {
  2533. wil_err(wil, "start sched scan failed, result %d\n",
  2534. reply.evt.result);
  2535. return -EINVAL;
  2536. }
  2537. return 0;
  2538. }
  2539. int wmi_stop_sched_scan(struct wil6210_priv *wil)
  2540. {
  2541. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2542. int rc;
  2543. struct {
  2544. struct wmi_cmd_hdr wmi;
  2545. struct wmi_stop_sched_scan_event evt;
  2546. } __packed reply = {
  2547. .evt = {.result = WMI_PNO_REJECT},
  2548. };
  2549. if (!test_bit(WMI_FW_CAPABILITY_PNO, wil->fw_capabilities))
  2550. return -ENOTSUPP;
  2551. rc = wmi_call(wil, WMI_STOP_SCHED_SCAN_CMDID, vif->mid, NULL, 0,
  2552. WMI_STOP_SCHED_SCAN_EVENTID, &reply, sizeof(reply),
  2553. WIL_WMI_CALL_GENERAL_TO_MS);
  2554. if (rc)
  2555. return rc;
  2556. if (reply.evt.result != WMI_PNO_SUCCESS) {
  2557. wil_err(wil, "stop sched scan failed, result %d\n",
  2558. reply.evt.result);
  2559. return -EINVAL;
  2560. }
  2561. return 0;
  2562. }
  2563. int wmi_mgmt_tx(struct wil6210_vif *vif, const u8 *buf, size_t len)
  2564. {
  2565. size_t total;
  2566. struct wil6210_priv *wil = vif_to_wil(vif);
  2567. struct ieee80211_mgmt *mgmt_frame = (void *)buf;
  2568. struct wmi_sw_tx_req_cmd *cmd;
  2569. struct {
  2570. struct wmi_cmd_hdr wmi;
  2571. struct wmi_sw_tx_complete_event evt;
  2572. } __packed evt = {
  2573. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2574. };
  2575. int rc;
  2576. wil_dbg_misc(wil, "mgmt_tx mid %d\n", vif->mid);
  2577. wil_hex_dump_misc("mgmt tx frame ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  2578. len, true);
  2579. if (len < sizeof(struct ieee80211_hdr_3addr))
  2580. return -EINVAL;
  2581. total = sizeof(*cmd) + len;
  2582. if (total < len) {
  2583. wil_err(wil, "mgmt_tx invalid len %zu\n", len);
  2584. return -EINVAL;
  2585. }
  2586. cmd = kmalloc(total, GFP_KERNEL);
  2587. if (!cmd)
  2588. return -ENOMEM;
  2589. memcpy(cmd->dst_mac, mgmt_frame->da, WMI_MAC_LEN);
  2590. cmd->len = cpu_to_le16(len);
  2591. memcpy(cmd->payload, buf, len);
  2592. rc = wmi_call(wil, WMI_SW_TX_REQ_CMDID, vif->mid, cmd, total,
  2593. WMI_SW_TX_COMPLETE_EVENTID, &evt, sizeof(evt), 2000);
  2594. if (!rc && evt.evt.status != WMI_FW_STATUS_SUCCESS) {
  2595. wil_err(wil, "mgmt_tx failed with status %d\n", evt.evt.status);
  2596. rc = -EINVAL;
  2597. }
  2598. kfree(cmd);
  2599. return rc;
  2600. }
  2601. int wil_wmi_tx_sring_cfg(struct wil6210_priv *wil, int ring_id)
  2602. {
  2603. int rc;
  2604. struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev);
  2605. struct wil_status_ring *sring = &wil->srings[ring_id];
  2606. struct wmi_tx_status_ring_add_cmd cmd = {
  2607. .ring_cfg = {
  2608. .ring_size = cpu_to_le16(sring->size),
  2609. },
  2610. .irq_index = WIL_TX_STATUS_IRQ_IDX
  2611. };
  2612. struct {
  2613. struct wmi_cmd_hdr hdr;
  2614. struct wmi_tx_status_ring_cfg_done_event evt;
  2615. } __packed reply = {
  2616. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2617. };
  2618. cmd.ring_cfg.ring_id = ring_id;
  2619. cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa);
  2620. rc = wmi_call(wil, WMI_TX_STATUS_RING_ADD_CMDID, vif->mid, &cmd,
  2621. sizeof(cmd), WMI_TX_STATUS_RING_CFG_DONE_EVENTID,
  2622. &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2623. if (rc) {
  2624. wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, rc %d\n", rc);
  2625. return rc;
  2626. }
  2627. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2628. wil_err(wil, "TX_STATUS_RING_ADD_CMD failed, status %d\n",
  2629. reply.evt.status);
  2630. return -EINVAL;
  2631. }
  2632. sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2633. return 0;
  2634. }
  2635. int wil_wmi_cfg_def_rx_offload(struct wil6210_priv *wil, u16 max_rx_pl_per_desc)
  2636. {
  2637. struct net_device *ndev = wil->main_ndev;
  2638. struct wil6210_vif *vif = ndev_to_vif(ndev);
  2639. int rc;
  2640. struct wmi_cfg_def_rx_offload_cmd cmd = {
  2641. .max_msdu_size = cpu_to_le16(wil_mtu2macbuf(WIL_MAX_ETH_MTU)),
  2642. .max_rx_pl_per_desc = cpu_to_le16(max_rx_pl_per_desc),
  2643. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  2644. .l2_802_3_offload_ctrl = 0,
  2645. .l3_l4_ctrl = 1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS,
  2646. };
  2647. struct {
  2648. struct wmi_cmd_hdr hdr;
  2649. struct wmi_cfg_def_rx_offload_done_event evt;
  2650. } __packed reply = {
  2651. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2652. };
  2653. rc = wmi_call(wil, WMI_CFG_DEF_RX_OFFLOAD_CMDID, vif->mid, &cmd,
  2654. sizeof(cmd), WMI_CFG_DEF_RX_OFFLOAD_DONE_EVENTID, &reply,
  2655. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2656. if (rc) {
  2657. wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, rc %d\n", rc);
  2658. return rc;
  2659. }
  2660. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2661. wil_err(wil, "WMI_CFG_DEF_RX_OFFLOAD_CMD failed, status %d\n",
  2662. reply.evt.status);
  2663. return -EINVAL;
  2664. }
  2665. return 0;
  2666. }
  2667. int wil_wmi_rx_sring_add(struct wil6210_priv *wil, u16 ring_id)
  2668. {
  2669. struct net_device *ndev = wil->main_ndev;
  2670. struct wil6210_vif *vif = ndev_to_vif(ndev);
  2671. struct wil_status_ring *sring = &wil->srings[ring_id];
  2672. int rc;
  2673. struct wmi_rx_status_ring_add_cmd cmd = {
  2674. .ring_cfg = {
  2675. .ring_size = cpu_to_le16(sring->size),
  2676. .ring_id = ring_id,
  2677. },
  2678. .rx_msg_type = wil->use_compressed_rx_status ?
  2679. WMI_RX_MSG_TYPE_COMPRESSED :
  2680. WMI_RX_MSG_TYPE_EXTENDED,
  2681. .irq_index = WIL_RX_STATUS_IRQ_IDX,
  2682. };
  2683. struct {
  2684. struct wmi_cmd_hdr hdr;
  2685. struct wmi_rx_status_ring_cfg_done_event evt;
  2686. } __packed reply = {
  2687. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2688. };
  2689. cmd.ring_cfg.ring_mem_base = cpu_to_le64(sring->pa);
  2690. rc = wmi_call(wil, WMI_RX_STATUS_RING_ADD_CMDID, vif->mid, &cmd,
  2691. sizeof(cmd), WMI_RX_STATUS_RING_CFG_DONE_EVENTID, &reply,
  2692. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2693. if (rc) {
  2694. wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, rc %d\n", rc);
  2695. return rc;
  2696. }
  2697. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2698. wil_err(wil, "RX_STATUS_RING_ADD_CMD failed, status %d\n",
  2699. reply.evt.status);
  2700. return -EINVAL;
  2701. }
  2702. sring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2703. return 0;
  2704. }
  2705. int wil_wmi_rx_desc_ring_add(struct wil6210_priv *wil, int status_ring_id)
  2706. {
  2707. struct net_device *ndev = wil->main_ndev;
  2708. struct wil6210_vif *vif = ndev_to_vif(ndev);
  2709. struct wil_ring *ring = &wil->ring_rx;
  2710. int rc;
  2711. struct wmi_rx_desc_ring_add_cmd cmd = {
  2712. .ring_cfg = {
  2713. .ring_size = cpu_to_le16(ring->size),
  2714. .ring_id = WIL_RX_DESC_RING_ID,
  2715. },
  2716. .status_ring_id = status_ring_id,
  2717. .irq_index = WIL_RX_STATUS_IRQ_IDX,
  2718. };
  2719. struct {
  2720. struct wmi_cmd_hdr hdr;
  2721. struct wmi_rx_desc_ring_cfg_done_event evt;
  2722. } __packed reply = {
  2723. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2724. };
  2725. cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
  2726. cmd.sw_tail_host_addr = cpu_to_le64(ring->edma_rx_swtail.pa);
  2727. rc = wmi_call(wil, WMI_RX_DESC_RING_ADD_CMDID, vif->mid, &cmd,
  2728. sizeof(cmd), WMI_RX_DESC_RING_CFG_DONE_EVENTID, &reply,
  2729. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2730. if (rc) {
  2731. wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, rc %d\n", rc);
  2732. return rc;
  2733. }
  2734. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2735. wil_err(wil, "WMI_RX_DESC_RING_ADD_CMD failed, status %d\n",
  2736. reply.evt.status);
  2737. return -EINVAL;
  2738. }
  2739. ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2740. return 0;
  2741. }
  2742. int wil_wmi_tx_desc_ring_add(struct wil6210_vif *vif, int ring_id, int cid,
  2743. int tid)
  2744. {
  2745. struct wil6210_priv *wil = vif_to_wil(vif);
  2746. int sring_id = wil->tx_sring_idx; /* there is only one TX sring */
  2747. int rc;
  2748. struct wil_ring *ring = &wil->ring_tx[ring_id];
  2749. struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
  2750. struct wmi_tx_desc_ring_add_cmd cmd = {
  2751. .ring_cfg = {
  2752. .ring_size = cpu_to_le16(ring->size),
  2753. .ring_id = ring_id,
  2754. },
  2755. .status_ring_id = sring_id,
  2756. .cid = cid,
  2757. .tid = tid,
  2758. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  2759. .max_msdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)),
  2760. .schd_params = {
  2761. .priority = cpu_to_le16(0),
  2762. .timeslot_us = cpu_to_le16(0xfff),
  2763. }
  2764. };
  2765. struct {
  2766. struct wmi_cmd_hdr hdr;
  2767. struct wmi_tx_desc_ring_cfg_done_event evt;
  2768. } __packed reply = {
  2769. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2770. };
  2771. cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
  2772. rc = wmi_call(wil, WMI_TX_DESC_RING_ADD_CMDID, vif->mid, &cmd,
  2773. sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply,
  2774. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2775. if (rc) {
  2776. wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, rc %d\n", rc);
  2777. return rc;
  2778. }
  2779. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2780. wil_err(wil, "WMI_TX_DESC_RING_ADD_CMD failed, status %d\n",
  2781. reply.evt.status);
  2782. return -EINVAL;
  2783. }
  2784. spin_lock_bh(&txdata->lock);
  2785. ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2786. txdata->mid = vif->mid;
  2787. txdata->enabled = 1;
  2788. spin_unlock_bh(&txdata->lock);
  2789. return 0;
  2790. }
  2791. int wil_wmi_bcast_desc_ring_add(struct wil6210_vif *vif, int ring_id)
  2792. {
  2793. struct wil6210_priv *wil = vif_to_wil(vif);
  2794. struct wil_ring *ring = &wil->ring_tx[ring_id];
  2795. int rc;
  2796. struct wmi_bcast_desc_ring_add_cmd cmd = {
  2797. .ring_cfg = {
  2798. .ring_size = cpu_to_le16(ring->size),
  2799. .ring_id = ring_id,
  2800. },
  2801. .status_ring_id = wil->tx_sring_idx,
  2802. .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
  2803. };
  2804. struct {
  2805. struct wmi_cmd_hdr hdr;
  2806. struct wmi_rx_desc_ring_cfg_done_event evt;
  2807. } __packed reply = {
  2808. .evt = {.status = WMI_FW_STATUS_FAILURE},
  2809. };
  2810. struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
  2811. cmd.ring_cfg.ring_mem_base = cpu_to_le64(ring->pa);
  2812. rc = wmi_call(wil, WMI_BCAST_DESC_RING_ADD_CMDID, vif->mid, &cmd,
  2813. sizeof(cmd), WMI_TX_DESC_RING_CFG_DONE_EVENTID, &reply,
  2814. sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS);
  2815. if (rc) {
  2816. wil_err(wil, "WMI_BCAST_DESC_RING_ADD_CMD failed, rc %d\n", rc);
  2817. return rc;
  2818. }
  2819. if (reply.evt.status != WMI_FW_STATUS_SUCCESS) {
  2820. wil_err(wil, "Broadcast Tx config failed, status %d\n",
  2821. reply.evt.status);
  2822. return -EINVAL;
  2823. }
  2824. spin_lock_bh(&txdata->lock);
  2825. ring->hwtail = le32_to_cpu(reply.evt.ring_tail_ptr);
  2826. txdata->mid = vif->mid;
  2827. txdata->enabled = 1;
  2828. spin_unlock_bh(&txdata->lock);
  2829. return 0;
  2830. }