task_mmu.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552
  1. #include <linux/mm.h>
  2. #include <linux/vmacache.h>
  3. #include <linux/hugetlb.h>
  4. #include <linux/huge_mm.h>
  5. #include <linux/mount.h>
  6. #include <linux/seq_file.h>
  7. #include <linux/highmem.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/mempolicy.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/swapops.h>
  15. #include <linux/mmu_notifier.h>
  16. #include <asm/elf.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/tlbflush.h>
  19. #include "internal.h"
  20. void task_mem(struct seq_file *m, struct mm_struct *mm)
  21. {
  22. unsigned long data, text, lib, swap;
  23. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  24. /*
  25. * Note: to minimize their overhead, mm maintains hiwater_vm and
  26. * hiwater_rss only when about to *lower* total_vm or rss. Any
  27. * collector of these hiwater stats must therefore get total_vm
  28. * and rss too, which will usually be the higher. Barriers? not
  29. * worth the effort, such snapshots can always be inconsistent.
  30. */
  31. hiwater_vm = total_vm = mm->total_vm;
  32. if (hiwater_vm < mm->hiwater_vm)
  33. hiwater_vm = mm->hiwater_vm;
  34. hiwater_rss = total_rss = get_mm_rss(mm);
  35. if (hiwater_rss < mm->hiwater_rss)
  36. hiwater_rss = mm->hiwater_rss;
  37. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  38. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  39. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  40. swap = get_mm_counter(mm, MM_SWAPENTS);
  41. seq_printf(m,
  42. "VmPeak:\t%8lu kB\n"
  43. "VmSize:\t%8lu kB\n"
  44. "VmLck:\t%8lu kB\n"
  45. "VmPin:\t%8lu kB\n"
  46. "VmHWM:\t%8lu kB\n"
  47. "VmRSS:\t%8lu kB\n"
  48. "VmData:\t%8lu kB\n"
  49. "VmStk:\t%8lu kB\n"
  50. "VmExe:\t%8lu kB\n"
  51. "VmLib:\t%8lu kB\n"
  52. "VmPTE:\t%8lu kB\n"
  53. "VmSwap:\t%8lu kB\n",
  54. hiwater_vm << (PAGE_SHIFT-10),
  55. total_vm << (PAGE_SHIFT-10),
  56. mm->locked_vm << (PAGE_SHIFT-10),
  57. mm->pinned_vm << (PAGE_SHIFT-10),
  58. hiwater_rss << (PAGE_SHIFT-10),
  59. total_rss << (PAGE_SHIFT-10),
  60. data << (PAGE_SHIFT-10),
  61. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  62. (PTRS_PER_PTE * sizeof(pte_t) *
  63. atomic_long_read(&mm->nr_ptes)) >> 10,
  64. swap << (PAGE_SHIFT-10));
  65. }
  66. unsigned long task_vsize(struct mm_struct *mm)
  67. {
  68. return PAGE_SIZE * mm->total_vm;
  69. }
  70. unsigned long task_statm(struct mm_struct *mm,
  71. unsigned long *shared, unsigned long *text,
  72. unsigned long *data, unsigned long *resident)
  73. {
  74. *shared = get_mm_counter(mm, MM_FILEPAGES);
  75. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  76. >> PAGE_SHIFT;
  77. *data = mm->total_vm - mm->shared_vm;
  78. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  79. return mm->total_vm;
  80. }
  81. #ifdef CONFIG_NUMA
  82. /*
  83. * These functions are for numa_maps but called in generic **maps seq_file
  84. * ->start(), ->stop() ops.
  85. *
  86. * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  87. * Each mempolicy object is controlled by reference counting. The problem here
  88. * is how to avoid accessing dead mempolicy object.
  89. *
  90. * Because we're holding mmap_sem while reading seq_file, it's safe to access
  91. * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  92. *
  93. * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
  94. * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
  95. * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
  96. * gurantee the task never exits under us. But taking task_lock() around
  97. * get_vma_plicy() causes lock order problem.
  98. *
  99. * To access task->mempolicy without lock, we hold a reference count of an
  100. * object pointed by task->mempolicy and remember it. This will guarantee
  101. * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
  102. */
  103. static void hold_task_mempolicy(struct proc_maps_private *priv)
  104. {
  105. struct task_struct *task = priv->task;
  106. task_lock(task);
  107. priv->task_mempolicy = task->mempolicy;
  108. mpol_get(priv->task_mempolicy);
  109. task_unlock(task);
  110. }
  111. static void release_task_mempolicy(struct proc_maps_private *priv)
  112. {
  113. mpol_put(priv->task_mempolicy);
  114. }
  115. #else
  116. static void hold_task_mempolicy(struct proc_maps_private *priv)
  117. {
  118. }
  119. static void release_task_mempolicy(struct proc_maps_private *priv)
  120. {
  121. }
  122. #endif
  123. static void vma_stop(struct proc_maps_private *priv)
  124. {
  125. struct mm_struct *mm = priv->mm;
  126. release_task_mempolicy(priv);
  127. up_read(&mm->mmap_sem);
  128. mmput(mm);
  129. }
  130. static struct vm_area_struct *
  131. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  132. {
  133. if (vma == priv->tail_vma)
  134. return NULL;
  135. return vma->vm_next ?: priv->tail_vma;
  136. }
  137. static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
  138. {
  139. if (m->count < m->size) /* vma is copied successfully */
  140. m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
  141. }
  142. static void *m_start(struct seq_file *m, loff_t *ppos)
  143. {
  144. struct proc_maps_private *priv = m->private;
  145. unsigned long last_addr = m->version;
  146. struct mm_struct *mm;
  147. struct vm_area_struct *vma;
  148. unsigned int pos = *ppos;
  149. /* See m_cache_vma(). Zero at the start or after lseek. */
  150. if (last_addr == -1UL)
  151. return NULL;
  152. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  153. if (!priv->task)
  154. return ERR_PTR(-ESRCH);
  155. mm = priv->mm;
  156. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  157. return NULL;
  158. down_read(&mm->mmap_sem);
  159. hold_task_mempolicy(priv);
  160. priv->tail_vma = get_gate_vma(mm);
  161. if (last_addr) {
  162. vma = find_vma(mm, last_addr);
  163. if (vma && (vma = m_next_vma(priv, vma)))
  164. return vma;
  165. }
  166. m->version = 0;
  167. if (pos < mm->map_count) {
  168. for (vma = mm->mmap; pos; pos--)
  169. vma = vma->vm_next;
  170. return vma;
  171. }
  172. if (pos == mm->map_count && priv->tail_vma)
  173. return priv->tail_vma;
  174. vma_stop(priv);
  175. return NULL;
  176. }
  177. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  178. {
  179. struct proc_maps_private *priv = m->private;
  180. struct vm_area_struct *next;
  181. (*pos)++;
  182. next = m_next_vma(priv, v);
  183. if (!next)
  184. vma_stop(priv);
  185. return next;
  186. }
  187. static void m_stop(struct seq_file *m, void *v)
  188. {
  189. struct proc_maps_private *priv = m->private;
  190. if (!IS_ERR_OR_NULL(v))
  191. vma_stop(priv);
  192. if (priv->task) {
  193. put_task_struct(priv->task);
  194. priv->task = NULL;
  195. }
  196. }
  197. static int proc_maps_open(struct inode *inode, struct file *file,
  198. const struct seq_operations *ops, int psize)
  199. {
  200. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  201. if (!priv)
  202. return -ENOMEM;
  203. priv->pid = proc_pid(inode);
  204. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  205. if (IS_ERR(priv->mm)) {
  206. int err = PTR_ERR(priv->mm);
  207. seq_release_private(inode, file);
  208. return err;
  209. }
  210. return 0;
  211. }
  212. static int proc_map_release(struct inode *inode, struct file *file)
  213. {
  214. struct seq_file *seq = file->private_data;
  215. struct proc_maps_private *priv = seq->private;
  216. if (priv->mm)
  217. mmdrop(priv->mm);
  218. return seq_release_private(inode, file);
  219. }
  220. static int do_maps_open(struct inode *inode, struct file *file,
  221. const struct seq_operations *ops)
  222. {
  223. return proc_maps_open(inode, file, ops,
  224. sizeof(struct proc_maps_private));
  225. }
  226. static void
  227. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  228. {
  229. struct mm_struct *mm = vma->vm_mm;
  230. struct file *file = vma->vm_file;
  231. struct proc_maps_private *priv = m->private;
  232. struct task_struct *task = priv->task;
  233. vm_flags_t flags = vma->vm_flags;
  234. unsigned long ino = 0;
  235. unsigned long long pgoff = 0;
  236. unsigned long start, end;
  237. dev_t dev = 0;
  238. const char *name = NULL;
  239. if (file) {
  240. struct inode *inode = file_inode(vma->vm_file);
  241. dev = inode->i_sb->s_dev;
  242. ino = inode->i_ino;
  243. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  244. }
  245. /* We don't show the stack guard page in /proc/maps */
  246. start = vma->vm_start;
  247. if (stack_guard_page_start(vma, start))
  248. start += PAGE_SIZE;
  249. end = vma->vm_end;
  250. if (stack_guard_page_end(vma, end))
  251. end -= PAGE_SIZE;
  252. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  253. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  254. start,
  255. end,
  256. flags & VM_READ ? 'r' : '-',
  257. flags & VM_WRITE ? 'w' : '-',
  258. flags & VM_EXEC ? 'x' : '-',
  259. flags & VM_MAYSHARE ? 's' : 'p',
  260. pgoff,
  261. MAJOR(dev), MINOR(dev), ino);
  262. /*
  263. * Print the dentry name for named mappings, and a
  264. * special [heap] marker for the heap:
  265. */
  266. if (file) {
  267. seq_pad(m, ' ');
  268. seq_path(m, &file->f_path, "\n");
  269. goto done;
  270. }
  271. if (vma->vm_ops && vma->vm_ops->name) {
  272. name = vma->vm_ops->name(vma);
  273. if (name)
  274. goto done;
  275. }
  276. name = arch_vma_name(vma);
  277. if (!name) {
  278. pid_t tid;
  279. if (!mm) {
  280. name = "[vdso]";
  281. goto done;
  282. }
  283. if (vma->vm_start <= mm->brk &&
  284. vma->vm_end >= mm->start_brk) {
  285. name = "[heap]";
  286. goto done;
  287. }
  288. tid = vm_is_stack(task, vma, is_pid);
  289. if (tid != 0) {
  290. /*
  291. * Thread stack in /proc/PID/task/TID/maps or
  292. * the main process stack.
  293. */
  294. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  295. vma->vm_end >= mm->start_stack)) {
  296. name = "[stack]";
  297. } else {
  298. /* Thread stack in /proc/PID/maps */
  299. seq_pad(m, ' ');
  300. seq_printf(m, "[stack:%d]", tid);
  301. }
  302. }
  303. }
  304. done:
  305. if (name) {
  306. seq_pad(m, ' ');
  307. seq_puts(m, name);
  308. }
  309. seq_putc(m, '\n');
  310. }
  311. static int show_map(struct seq_file *m, void *v, int is_pid)
  312. {
  313. show_map_vma(m, v, is_pid);
  314. m_cache_vma(m, v);
  315. return 0;
  316. }
  317. static int show_pid_map(struct seq_file *m, void *v)
  318. {
  319. return show_map(m, v, 1);
  320. }
  321. static int show_tid_map(struct seq_file *m, void *v)
  322. {
  323. return show_map(m, v, 0);
  324. }
  325. static const struct seq_operations proc_pid_maps_op = {
  326. .start = m_start,
  327. .next = m_next,
  328. .stop = m_stop,
  329. .show = show_pid_map
  330. };
  331. static const struct seq_operations proc_tid_maps_op = {
  332. .start = m_start,
  333. .next = m_next,
  334. .stop = m_stop,
  335. .show = show_tid_map
  336. };
  337. static int pid_maps_open(struct inode *inode, struct file *file)
  338. {
  339. return do_maps_open(inode, file, &proc_pid_maps_op);
  340. }
  341. static int tid_maps_open(struct inode *inode, struct file *file)
  342. {
  343. return do_maps_open(inode, file, &proc_tid_maps_op);
  344. }
  345. const struct file_operations proc_pid_maps_operations = {
  346. .open = pid_maps_open,
  347. .read = seq_read,
  348. .llseek = seq_lseek,
  349. .release = proc_map_release,
  350. };
  351. const struct file_operations proc_tid_maps_operations = {
  352. .open = tid_maps_open,
  353. .read = seq_read,
  354. .llseek = seq_lseek,
  355. .release = proc_map_release,
  356. };
  357. /*
  358. * Proportional Set Size(PSS): my share of RSS.
  359. *
  360. * PSS of a process is the count of pages it has in memory, where each
  361. * page is divided by the number of processes sharing it. So if a
  362. * process has 1000 pages all to itself, and 1000 shared with one other
  363. * process, its PSS will be 1500.
  364. *
  365. * To keep (accumulated) division errors low, we adopt a 64bit
  366. * fixed-point pss counter to minimize division errors. So (pss >>
  367. * PSS_SHIFT) would be the real byte count.
  368. *
  369. * A shift of 12 before division means (assuming 4K page size):
  370. * - 1M 3-user-pages add up to 8KB errors;
  371. * - supports mapcount up to 2^24, or 16M;
  372. * - supports PSS up to 2^52 bytes, or 4PB.
  373. */
  374. #define PSS_SHIFT 12
  375. #ifdef CONFIG_PROC_PAGE_MONITOR
  376. struct mem_size_stats {
  377. struct vm_area_struct *vma;
  378. unsigned long resident;
  379. unsigned long shared_clean;
  380. unsigned long shared_dirty;
  381. unsigned long private_clean;
  382. unsigned long private_dirty;
  383. unsigned long referenced;
  384. unsigned long anonymous;
  385. unsigned long anonymous_thp;
  386. unsigned long swap;
  387. unsigned long nonlinear;
  388. u64 pss;
  389. };
  390. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  391. unsigned long ptent_size, struct mm_walk *walk)
  392. {
  393. struct mem_size_stats *mss = walk->private;
  394. struct vm_area_struct *vma = mss->vma;
  395. pgoff_t pgoff = linear_page_index(vma, addr);
  396. struct page *page = NULL;
  397. int mapcount;
  398. if (pte_present(ptent)) {
  399. page = vm_normal_page(vma, addr, ptent);
  400. } else if (is_swap_pte(ptent)) {
  401. swp_entry_t swpent = pte_to_swp_entry(ptent);
  402. if (!non_swap_entry(swpent))
  403. mss->swap += ptent_size;
  404. else if (is_migration_entry(swpent))
  405. page = migration_entry_to_page(swpent);
  406. } else if (pte_file(ptent)) {
  407. if (pte_to_pgoff(ptent) != pgoff)
  408. mss->nonlinear += ptent_size;
  409. }
  410. if (!page)
  411. return;
  412. if (PageAnon(page))
  413. mss->anonymous += ptent_size;
  414. if (page->index != pgoff)
  415. mss->nonlinear += ptent_size;
  416. mss->resident += ptent_size;
  417. /* Accumulate the size in pages that have been accessed. */
  418. if (pte_young(ptent) || PageReferenced(page))
  419. mss->referenced += ptent_size;
  420. mapcount = page_mapcount(page);
  421. if (mapcount >= 2) {
  422. if (pte_dirty(ptent) || PageDirty(page))
  423. mss->shared_dirty += ptent_size;
  424. else
  425. mss->shared_clean += ptent_size;
  426. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  427. } else {
  428. if (pte_dirty(ptent) || PageDirty(page))
  429. mss->private_dirty += ptent_size;
  430. else
  431. mss->private_clean += ptent_size;
  432. mss->pss += (ptent_size << PSS_SHIFT);
  433. }
  434. }
  435. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  436. struct mm_walk *walk)
  437. {
  438. struct mem_size_stats *mss = walk->private;
  439. struct vm_area_struct *vma = mss->vma;
  440. pte_t *pte;
  441. spinlock_t *ptl;
  442. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  443. smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
  444. spin_unlock(ptl);
  445. mss->anonymous_thp += HPAGE_PMD_SIZE;
  446. return 0;
  447. }
  448. if (pmd_trans_unstable(pmd))
  449. return 0;
  450. /*
  451. * The mmap_sem held all the way back in m_start() is what
  452. * keeps khugepaged out of here and from collapsing things
  453. * in here.
  454. */
  455. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  456. for (; addr != end; pte++, addr += PAGE_SIZE)
  457. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  458. pte_unmap_unlock(pte - 1, ptl);
  459. cond_resched();
  460. return 0;
  461. }
  462. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  463. {
  464. /*
  465. * Don't forget to update Documentation/ on changes.
  466. */
  467. static const char mnemonics[BITS_PER_LONG][2] = {
  468. /*
  469. * In case if we meet a flag we don't know about.
  470. */
  471. [0 ... (BITS_PER_LONG-1)] = "??",
  472. [ilog2(VM_READ)] = "rd",
  473. [ilog2(VM_WRITE)] = "wr",
  474. [ilog2(VM_EXEC)] = "ex",
  475. [ilog2(VM_SHARED)] = "sh",
  476. [ilog2(VM_MAYREAD)] = "mr",
  477. [ilog2(VM_MAYWRITE)] = "mw",
  478. [ilog2(VM_MAYEXEC)] = "me",
  479. [ilog2(VM_MAYSHARE)] = "ms",
  480. [ilog2(VM_GROWSDOWN)] = "gd",
  481. [ilog2(VM_PFNMAP)] = "pf",
  482. [ilog2(VM_DENYWRITE)] = "dw",
  483. [ilog2(VM_LOCKED)] = "lo",
  484. [ilog2(VM_IO)] = "io",
  485. [ilog2(VM_SEQ_READ)] = "sr",
  486. [ilog2(VM_RAND_READ)] = "rr",
  487. [ilog2(VM_DONTCOPY)] = "dc",
  488. [ilog2(VM_DONTEXPAND)] = "de",
  489. [ilog2(VM_ACCOUNT)] = "ac",
  490. [ilog2(VM_NORESERVE)] = "nr",
  491. [ilog2(VM_HUGETLB)] = "ht",
  492. [ilog2(VM_NONLINEAR)] = "nl",
  493. [ilog2(VM_ARCH_1)] = "ar",
  494. [ilog2(VM_DONTDUMP)] = "dd",
  495. #ifdef CONFIG_MEM_SOFT_DIRTY
  496. [ilog2(VM_SOFTDIRTY)] = "sd",
  497. #endif
  498. [ilog2(VM_MIXEDMAP)] = "mm",
  499. [ilog2(VM_HUGEPAGE)] = "hg",
  500. [ilog2(VM_NOHUGEPAGE)] = "nh",
  501. [ilog2(VM_MERGEABLE)] = "mg",
  502. };
  503. size_t i;
  504. seq_puts(m, "VmFlags: ");
  505. for (i = 0; i < BITS_PER_LONG; i++) {
  506. if (vma->vm_flags & (1UL << i)) {
  507. seq_printf(m, "%c%c ",
  508. mnemonics[i][0], mnemonics[i][1]);
  509. }
  510. }
  511. seq_putc(m, '\n');
  512. }
  513. static int show_smap(struct seq_file *m, void *v, int is_pid)
  514. {
  515. struct vm_area_struct *vma = v;
  516. struct mem_size_stats mss;
  517. struct mm_walk smaps_walk = {
  518. .pmd_entry = smaps_pte_range,
  519. .mm = vma->vm_mm,
  520. .private = &mss,
  521. };
  522. memset(&mss, 0, sizeof mss);
  523. mss.vma = vma;
  524. /* mmap_sem is held in m_start */
  525. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  526. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  527. show_map_vma(m, vma, is_pid);
  528. seq_printf(m,
  529. "Size: %8lu kB\n"
  530. "Rss: %8lu kB\n"
  531. "Pss: %8lu kB\n"
  532. "Shared_Clean: %8lu kB\n"
  533. "Shared_Dirty: %8lu kB\n"
  534. "Private_Clean: %8lu kB\n"
  535. "Private_Dirty: %8lu kB\n"
  536. "Referenced: %8lu kB\n"
  537. "Anonymous: %8lu kB\n"
  538. "AnonHugePages: %8lu kB\n"
  539. "Swap: %8lu kB\n"
  540. "KernelPageSize: %8lu kB\n"
  541. "MMUPageSize: %8lu kB\n"
  542. "Locked: %8lu kB\n",
  543. (vma->vm_end - vma->vm_start) >> 10,
  544. mss.resident >> 10,
  545. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  546. mss.shared_clean >> 10,
  547. mss.shared_dirty >> 10,
  548. mss.private_clean >> 10,
  549. mss.private_dirty >> 10,
  550. mss.referenced >> 10,
  551. mss.anonymous >> 10,
  552. mss.anonymous_thp >> 10,
  553. mss.swap >> 10,
  554. vma_kernel_pagesize(vma) >> 10,
  555. vma_mmu_pagesize(vma) >> 10,
  556. (vma->vm_flags & VM_LOCKED) ?
  557. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  558. if (vma->vm_flags & VM_NONLINEAR)
  559. seq_printf(m, "Nonlinear: %8lu kB\n",
  560. mss.nonlinear >> 10);
  561. show_smap_vma_flags(m, vma);
  562. m_cache_vma(m, vma);
  563. return 0;
  564. }
  565. static int show_pid_smap(struct seq_file *m, void *v)
  566. {
  567. return show_smap(m, v, 1);
  568. }
  569. static int show_tid_smap(struct seq_file *m, void *v)
  570. {
  571. return show_smap(m, v, 0);
  572. }
  573. static const struct seq_operations proc_pid_smaps_op = {
  574. .start = m_start,
  575. .next = m_next,
  576. .stop = m_stop,
  577. .show = show_pid_smap
  578. };
  579. static const struct seq_operations proc_tid_smaps_op = {
  580. .start = m_start,
  581. .next = m_next,
  582. .stop = m_stop,
  583. .show = show_tid_smap
  584. };
  585. static int pid_smaps_open(struct inode *inode, struct file *file)
  586. {
  587. return do_maps_open(inode, file, &proc_pid_smaps_op);
  588. }
  589. static int tid_smaps_open(struct inode *inode, struct file *file)
  590. {
  591. return do_maps_open(inode, file, &proc_tid_smaps_op);
  592. }
  593. const struct file_operations proc_pid_smaps_operations = {
  594. .open = pid_smaps_open,
  595. .read = seq_read,
  596. .llseek = seq_lseek,
  597. .release = proc_map_release,
  598. };
  599. const struct file_operations proc_tid_smaps_operations = {
  600. .open = tid_smaps_open,
  601. .read = seq_read,
  602. .llseek = seq_lseek,
  603. .release = proc_map_release,
  604. };
  605. /*
  606. * We do not want to have constant page-shift bits sitting in
  607. * pagemap entries and are about to reuse them some time soon.
  608. *
  609. * Here's the "migration strategy":
  610. * 1. when the system boots these bits remain what they are,
  611. * but a warning about future change is printed in log;
  612. * 2. once anyone clears soft-dirty bits via clear_refs file,
  613. * these flag is set to denote, that user is aware of the
  614. * new API and those page-shift bits change their meaning.
  615. * The respective warning is printed in dmesg;
  616. * 3. In a couple of releases we will remove all the mentions
  617. * of page-shift in pagemap entries.
  618. */
  619. static bool soft_dirty_cleared __read_mostly;
  620. enum clear_refs_types {
  621. CLEAR_REFS_ALL = 1,
  622. CLEAR_REFS_ANON,
  623. CLEAR_REFS_MAPPED,
  624. CLEAR_REFS_SOFT_DIRTY,
  625. CLEAR_REFS_LAST,
  626. };
  627. struct clear_refs_private {
  628. struct vm_area_struct *vma;
  629. enum clear_refs_types type;
  630. };
  631. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  632. unsigned long addr, pte_t *pte)
  633. {
  634. #ifdef CONFIG_MEM_SOFT_DIRTY
  635. /*
  636. * The soft-dirty tracker uses #PF-s to catch writes
  637. * to pages, so write-protect the pte as well. See the
  638. * Documentation/vm/soft-dirty.txt for full description
  639. * of how soft-dirty works.
  640. */
  641. pte_t ptent = *pte;
  642. if (pte_present(ptent)) {
  643. ptent = pte_wrprotect(ptent);
  644. ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
  645. } else if (is_swap_pte(ptent)) {
  646. ptent = pte_swp_clear_soft_dirty(ptent);
  647. } else if (pte_file(ptent)) {
  648. ptent = pte_file_clear_soft_dirty(ptent);
  649. }
  650. set_pte_at(vma->vm_mm, addr, pte, ptent);
  651. #endif
  652. }
  653. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  654. unsigned long end, struct mm_walk *walk)
  655. {
  656. struct clear_refs_private *cp = walk->private;
  657. struct vm_area_struct *vma = cp->vma;
  658. pte_t *pte, ptent;
  659. spinlock_t *ptl;
  660. struct page *page;
  661. split_huge_page_pmd(vma, addr, pmd);
  662. if (pmd_trans_unstable(pmd))
  663. return 0;
  664. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  665. for (; addr != end; pte++, addr += PAGE_SIZE) {
  666. ptent = *pte;
  667. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  668. clear_soft_dirty(vma, addr, pte);
  669. continue;
  670. }
  671. if (!pte_present(ptent))
  672. continue;
  673. page = vm_normal_page(vma, addr, ptent);
  674. if (!page)
  675. continue;
  676. /* Clear accessed and referenced bits. */
  677. ptep_test_and_clear_young(vma, addr, pte);
  678. ClearPageReferenced(page);
  679. }
  680. pte_unmap_unlock(pte - 1, ptl);
  681. cond_resched();
  682. return 0;
  683. }
  684. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  685. size_t count, loff_t *ppos)
  686. {
  687. struct task_struct *task;
  688. char buffer[PROC_NUMBUF];
  689. struct mm_struct *mm;
  690. struct vm_area_struct *vma;
  691. enum clear_refs_types type;
  692. int itype;
  693. int rv;
  694. memset(buffer, 0, sizeof(buffer));
  695. if (count > sizeof(buffer) - 1)
  696. count = sizeof(buffer) - 1;
  697. if (copy_from_user(buffer, buf, count))
  698. return -EFAULT;
  699. rv = kstrtoint(strstrip(buffer), 10, &itype);
  700. if (rv < 0)
  701. return rv;
  702. type = (enum clear_refs_types)itype;
  703. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  704. return -EINVAL;
  705. if (type == CLEAR_REFS_SOFT_DIRTY) {
  706. soft_dirty_cleared = true;
  707. pr_warn_once("The pagemap bits 55-60 has changed their meaning!"
  708. " See the linux/Documentation/vm/pagemap.txt for "
  709. "details.\n");
  710. }
  711. task = get_proc_task(file_inode(file));
  712. if (!task)
  713. return -ESRCH;
  714. mm = get_task_mm(task);
  715. if (mm) {
  716. struct clear_refs_private cp = {
  717. .type = type,
  718. };
  719. struct mm_walk clear_refs_walk = {
  720. .pmd_entry = clear_refs_pte_range,
  721. .mm = mm,
  722. .private = &cp,
  723. };
  724. down_read(&mm->mmap_sem);
  725. if (type == CLEAR_REFS_SOFT_DIRTY)
  726. mmu_notifier_invalidate_range_start(mm, 0, -1);
  727. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  728. cp.vma = vma;
  729. if (is_vm_hugetlb_page(vma))
  730. continue;
  731. /*
  732. * Writing 1 to /proc/pid/clear_refs affects all pages.
  733. *
  734. * Writing 2 to /proc/pid/clear_refs only affects
  735. * Anonymous pages.
  736. *
  737. * Writing 3 to /proc/pid/clear_refs only affects file
  738. * mapped pages.
  739. *
  740. * Writing 4 to /proc/pid/clear_refs affects all pages.
  741. */
  742. if (type == CLEAR_REFS_ANON && vma->vm_file)
  743. continue;
  744. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  745. continue;
  746. if (type == CLEAR_REFS_SOFT_DIRTY) {
  747. if (vma->vm_flags & VM_SOFTDIRTY)
  748. vma->vm_flags &= ~VM_SOFTDIRTY;
  749. }
  750. walk_page_range(vma->vm_start, vma->vm_end,
  751. &clear_refs_walk);
  752. }
  753. if (type == CLEAR_REFS_SOFT_DIRTY)
  754. mmu_notifier_invalidate_range_end(mm, 0, -1);
  755. flush_tlb_mm(mm);
  756. up_read(&mm->mmap_sem);
  757. mmput(mm);
  758. }
  759. put_task_struct(task);
  760. return count;
  761. }
  762. const struct file_operations proc_clear_refs_operations = {
  763. .write = clear_refs_write,
  764. .llseek = noop_llseek,
  765. };
  766. typedef struct {
  767. u64 pme;
  768. } pagemap_entry_t;
  769. struct pagemapread {
  770. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  771. pagemap_entry_t *buffer;
  772. bool v2;
  773. };
  774. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  775. #define PAGEMAP_WALK_MASK (PMD_MASK)
  776. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  777. #define PM_STATUS_BITS 3
  778. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  779. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  780. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  781. #define PM_PSHIFT_BITS 6
  782. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  783. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  784. #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  785. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  786. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  787. /* in "new" pagemap pshift bits are occupied with more status bits */
  788. #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
  789. #define __PM_SOFT_DIRTY (1LL)
  790. #define PM_PRESENT PM_STATUS(4LL)
  791. #define PM_SWAP PM_STATUS(2LL)
  792. #define PM_FILE PM_STATUS(1LL)
  793. #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
  794. #define PM_END_OF_BUFFER 1
  795. static inline pagemap_entry_t make_pme(u64 val)
  796. {
  797. return (pagemap_entry_t) { .pme = val };
  798. }
  799. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  800. struct pagemapread *pm)
  801. {
  802. pm->buffer[pm->pos++] = *pme;
  803. if (pm->pos >= pm->len)
  804. return PM_END_OF_BUFFER;
  805. return 0;
  806. }
  807. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  808. struct mm_walk *walk)
  809. {
  810. struct pagemapread *pm = walk->private;
  811. unsigned long addr = start;
  812. int err = 0;
  813. while (addr < end) {
  814. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  815. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  816. /* End of address space hole, which we mark as non-present. */
  817. unsigned long hole_end;
  818. if (vma)
  819. hole_end = min(end, vma->vm_start);
  820. else
  821. hole_end = end;
  822. for (; addr < hole_end; addr += PAGE_SIZE) {
  823. err = add_to_pagemap(addr, &pme, pm);
  824. if (err)
  825. goto out;
  826. }
  827. if (!vma)
  828. break;
  829. /* Addresses in the VMA. */
  830. if (vma->vm_flags & VM_SOFTDIRTY)
  831. pme.pme |= PM_STATUS2(pm->v2, __PM_SOFT_DIRTY);
  832. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  833. err = add_to_pagemap(addr, &pme, pm);
  834. if (err)
  835. goto out;
  836. }
  837. }
  838. out:
  839. return err;
  840. }
  841. static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  842. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  843. {
  844. u64 frame, flags;
  845. struct page *page = NULL;
  846. int flags2 = 0;
  847. if (pte_present(pte)) {
  848. frame = pte_pfn(pte);
  849. flags = PM_PRESENT;
  850. page = vm_normal_page(vma, addr, pte);
  851. if (pte_soft_dirty(pte))
  852. flags2 |= __PM_SOFT_DIRTY;
  853. } else if (is_swap_pte(pte)) {
  854. swp_entry_t entry;
  855. if (pte_swp_soft_dirty(pte))
  856. flags2 |= __PM_SOFT_DIRTY;
  857. entry = pte_to_swp_entry(pte);
  858. frame = swp_type(entry) |
  859. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  860. flags = PM_SWAP;
  861. if (is_migration_entry(entry))
  862. page = migration_entry_to_page(entry);
  863. } else {
  864. if (vma->vm_flags & VM_SOFTDIRTY)
  865. flags2 |= __PM_SOFT_DIRTY;
  866. *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
  867. return;
  868. }
  869. if (page && !PageAnon(page))
  870. flags |= PM_FILE;
  871. if ((vma->vm_flags & VM_SOFTDIRTY))
  872. flags2 |= __PM_SOFT_DIRTY;
  873. *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
  874. }
  875. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  876. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  877. pmd_t pmd, int offset, int pmd_flags2)
  878. {
  879. /*
  880. * Currently pmd for thp is always present because thp can not be
  881. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  882. * This if-check is just to prepare for future implementation.
  883. */
  884. if (pmd_present(pmd))
  885. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  886. | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
  887. else
  888. *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
  889. }
  890. #else
  891. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  892. pmd_t pmd, int offset, int pmd_flags2)
  893. {
  894. }
  895. #endif
  896. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  897. struct mm_walk *walk)
  898. {
  899. struct vm_area_struct *vma;
  900. struct pagemapread *pm = walk->private;
  901. spinlock_t *ptl;
  902. pte_t *pte;
  903. int err = 0;
  904. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  905. /* find the first VMA at or above 'addr' */
  906. vma = find_vma(walk->mm, addr);
  907. if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  908. int pmd_flags2;
  909. if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
  910. pmd_flags2 = __PM_SOFT_DIRTY;
  911. else
  912. pmd_flags2 = 0;
  913. for (; addr != end; addr += PAGE_SIZE) {
  914. unsigned long offset;
  915. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  916. PAGE_SHIFT;
  917. thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
  918. err = add_to_pagemap(addr, &pme, pm);
  919. if (err)
  920. break;
  921. }
  922. spin_unlock(ptl);
  923. return err;
  924. }
  925. if (pmd_trans_unstable(pmd))
  926. return 0;
  927. for (; addr != end; addr += PAGE_SIZE) {
  928. int flags2;
  929. /* check to see if we've left 'vma' behind
  930. * and need a new, higher one */
  931. if (vma && (addr >= vma->vm_end)) {
  932. vma = find_vma(walk->mm, addr);
  933. if (vma && (vma->vm_flags & VM_SOFTDIRTY))
  934. flags2 = __PM_SOFT_DIRTY;
  935. else
  936. flags2 = 0;
  937. pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
  938. }
  939. /* check that 'vma' actually covers this address,
  940. * and that it isn't a huge page vma */
  941. if (vma && (vma->vm_start <= addr) &&
  942. !is_vm_hugetlb_page(vma)) {
  943. pte = pte_offset_map(pmd, addr);
  944. pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
  945. /* unmap before userspace copy */
  946. pte_unmap(pte);
  947. }
  948. err = add_to_pagemap(addr, &pme, pm);
  949. if (err)
  950. return err;
  951. }
  952. cond_resched();
  953. return err;
  954. }
  955. #ifdef CONFIG_HUGETLB_PAGE
  956. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  957. pte_t pte, int offset, int flags2)
  958. {
  959. if (pte_present(pte))
  960. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
  961. PM_STATUS2(pm->v2, flags2) |
  962. PM_PRESENT);
  963. else
  964. *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
  965. PM_STATUS2(pm->v2, flags2));
  966. }
  967. /* This function walks within one hugetlb entry in the single call */
  968. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  969. unsigned long addr, unsigned long end,
  970. struct mm_walk *walk)
  971. {
  972. struct pagemapread *pm = walk->private;
  973. struct vm_area_struct *vma;
  974. int err = 0;
  975. int flags2;
  976. pagemap_entry_t pme;
  977. vma = find_vma(walk->mm, addr);
  978. WARN_ON_ONCE(!vma);
  979. if (vma && (vma->vm_flags & VM_SOFTDIRTY))
  980. flags2 = __PM_SOFT_DIRTY;
  981. else
  982. flags2 = 0;
  983. for (; addr != end; addr += PAGE_SIZE) {
  984. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  985. huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
  986. err = add_to_pagemap(addr, &pme, pm);
  987. if (err)
  988. return err;
  989. }
  990. cond_resched();
  991. return err;
  992. }
  993. #endif /* HUGETLB_PAGE */
  994. /*
  995. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  996. *
  997. * For each page in the address space, this file contains one 64-bit entry
  998. * consisting of the following:
  999. *
  1000. * Bits 0-54 page frame number (PFN) if present
  1001. * Bits 0-4 swap type if swapped
  1002. * Bits 5-54 swap offset if swapped
  1003. * Bits 55-60 page shift (page size = 1<<page shift)
  1004. * Bit 61 page is file-page or shared-anon
  1005. * Bit 62 page swapped
  1006. * Bit 63 page present
  1007. *
  1008. * If the page is not present but in swap, then the PFN contains an
  1009. * encoding of the swap file number and the page's offset into the
  1010. * swap. Unmapped pages return a null PFN. This allows determining
  1011. * precisely which pages are mapped (or in swap) and comparing mapped
  1012. * pages between processes.
  1013. *
  1014. * Efficient users of this interface will use /proc/pid/maps to
  1015. * determine which areas of memory are actually mapped and llseek to
  1016. * skip over unmapped regions.
  1017. */
  1018. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1019. size_t count, loff_t *ppos)
  1020. {
  1021. struct task_struct *task = get_proc_task(file_inode(file));
  1022. struct mm_struct *mm;
  1023. struct pagemapread pm;
  1024. int ret = -ESRCH;
  1025. struct mm_walk pagemap_walk = {};
  1026. unsigned long src;
  1027. unsigned long svpfn;
  1028. unsigned long start_vaddr;
  1029. unsigned long end_vaddr;
  1030. int copied = 0;
  1031. if (!task)
  1032. goto out;
  1033. ret = -EINVAL;
  1034. /* file position must be aligned */
  1035. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1036. goto out_task;
  1037. ret = 0;
  1038. if (!count)
  1039. goto out_task;
  1040. pm.v2 = soft_dirty_cleared;
  1041. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1042. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  1043. ret = -ENOMEM;
  1044. if (!pm.buffer)
  1045. goto out_task;
  1046. mm = mm_access(task, PTRACE_MODE_READ);
  1047. ret = PTR_ERR(mm);
  1048. if (!mm || IS_ERR(mm))
  1049. goto out_free;
  1050. pagemap_walk.pmd_entry = pagemap_pte_range;
  1051. pagemap_walk.pte_hole = pagemap_pte_hole;
  1052. #ifdef CONFIG_HUGETLB_PAGE
  1053. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1054. #endif
  1055. pagemap_walk.mm = mm;
  1056. pagemap_walk.private = &pm;
  1057. src = *ppos;
  1058. svpfn = src / PM_ENTRY_BYTES;
  1059. start_vaddr = svpfn << PAGE_SHIFT;
  1060. end_vaddr = TASK_SIZE_OF(task);
  1061. /* watch out for wraparound */
  1062. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  1063. start_vaddr = end_vaddr;
  1064. /*
  1065. * The odds are that this will stop walking way
  1066. * before end_vaddr, because the length of the
  1067. * user buffer is tracked in "pm", and the walk
  1068. * will stop when we hit the end of the buffer.
  1069. */
  1070. ret = 0;
  1071. while (count && (start_vaddr < end_vaddr)) {
  1072. int len;
  1073. unsigned long end;
  1074. pm.pos = 0;
  1075. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1076. /* overflow ? */
  1077. if (end < start_vaddr || end > end_vaddr)
  1078. end = end_vaddr;
  1079. down_read(&mm->mmap_sem);
  1080. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1081. up_read(&mm->mmap_sem);
  1082. start_vaddr = end;
  1083. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1084. if (copy_to_user(buf, pm.buffer, len)) {
  1085. ret = -EFAULT;
  1086. goto out_mm;
  1087. }
  1088. copied += len;
  1089. buf += len;
  1090. count -= len;
  1091. }
  1092. *ppos += copied;
  1093. if (!ret || ret == PM_END_OF_BUFFER)
  1094. ret = copied;
  1095. out_mm:
  1096. mmput(mm);
  1097. out_free:
  1098. kfree(pm.buffer);
  1099. out_task:
  1100. put_task_struct(task);
  1101. out:
  1102. return ret;
  1103. }
  1104. static int pagemap_open(struct inode *inode, struct file *file)
  1105. {
  1106. pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
  1107. "to stop being page-shift some time soon. See the "
  1108. "linux/Documentation/vm/pagemap.txt for details.\n");
  1109. return 0;
  1110. }
  1111. const struct file_operations proc_pagemap_operations = {
  1112. .llseek = mem_lseek, /* borrow this */
  1113. .read = pagemap_read,
  1114. .open = pagemap_open,
  1115. };
  1116. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1117. #ifdef CONFIG_NUMA
  1118. struct numa_maps {
  1119. struct vm_area_struct *vma;
  1120. unsigned long pages;
  1121. unsigned long anon;
  1122. unsigned long active;
  1123. unsigned long writeback;
  1124. unsigned long mapcount_max;
  1125. unsigned long dirty;
  1126. unsigned long swapcache;
  1127. unsigned long node[MAX_NUMNODES];
  1128. };
  1129. struct numa_maps_private {
  1130. struct proc_maps_private proc_maps;
  1131. struct numa_maps md;
  1132. };
  1133. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1134. unsigned long nr_pages)
  1135. {
  1136. int count = page_mapcount(page);
  1137. md->pages += nr_pages;
  1138. if (pte_dirty || PageDirty(page))
  1139. md->dirty += nr_pages;
  1140. if (PageSwapCache(page))
  1141. md->swapcache += nr_pages;
  1142. if (PageActive(page) || PageUnevictable(page))
  1143. md->active += nr_pages;
  1144. if (PageWriteback(page))
  1145. md->writeback += nr_pages;
  1146. if (PageAnon(page))
  1147. md->anon += nr_pages;
  1148. if (count > md->mapcount_max)
  1149. md->mapcount_max = count;
  1150. md->node[page_to_nid(page)] += nr_pages;
  1151. }
  1152. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1153. unsigned long addr)
  1154. {
  1155. struct page *page;
  1156. int nid;
  1157. if (!pte_present(pte))
  1158. return NULL;
  1159. page = vm_normal_page(vma, addr, pte);
  1160. if (!page)
  1161. return NULL;
  1162. if (PageReserved(page))
  1163. return NULL;
  1164. nid = page_to_nid(page);
  1165. if (!node_isset(nid, node_states[N_MEMORY]))
  1166. return NULL;
  1167. return page;
  1168. }
  1169. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1170. unsigned long end, struct mm_walk *walk)
  1171. {
  1172. struct numa_maps *md;
  1173. spinlock_t *ptl;
  1174. pte_t *orig_pte;
  1175. pte_t *pte;
  1176. md = walk->private;
  1177. if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
  1178. pte_t huge_pte = *(pte_t *)pmd;
  1179. struct page *page;
  1180. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  1181. if (page)
  1182. gather_stats(page, md, pte_dirty(huge_pte),
  1183. HPAGE_PMD_SIZE/PAGE_SIZE);
  1184. spin_unlock(ptl);
  1185. return 0;
  1186. }
  1187. if (pmd_trans_unstable(pmd))
  1188. return 0;
  1189. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1190. do {
  1191. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  1192. if (!page)
  1193. continue;
  1194. gather_stats(page, md, pte_dirty(*pte), 1);
  1195. } while (pte++, addr += PAGE_SIZE, addr != end);
  1196. pte_unmap_unlock(orig_pte, ptl);
  1197. return 0;
  1198. }
  1199. #ifdef CONFIG_HUGETLB_PAGE
  1200. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1201. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1202. {
  1203. struct numa_maps *md;
  1204. struct page *page;
  1205. if (!pte_present(*pte))
  1206. return 0;
  1207. page = pte_page(*pte);
  1208. if (!page)
  1209. return 0;
  1210. md = walk->private;
  1211. gather_stats(page, md, pte_dirty(*pte), 1);
  1212. return 0;
  1213. }
  1214. #else
  1215. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1216. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1217. {
  1218. return 0;
  1219. }
  1220. #endif
  1221. /*
  1222. * Display pages allocated per node and memory policy via /proc.
  1223. */
  1224. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1225. {
  1226. struct numa_maps_private *numa_priv = m->private;
  1227. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1228. struct vm_area_struct *vma = v;
  1229. struct numa_maps *md = &numa_priv->md;
  1230. struct file *file = vma->vm_file;
  1231. struct task_struct *task = proc_priv->task;
  1232. struct mm_struct *mm = vma->vm_mm;
  1233. struct mm_walk walk = {};
  1234. struct mempolicy *pol;
  1235. char buffer[64];
  1236. int nid;
  1237. if (!mm)
  1238. return 0;
  1239. /* Ensure we start with an empty set of numa_maps statistics. */
  1240. memset(md, 0, sizeof(*md));
  1241. md->vma = vma;
  1242. walk.hugetlb_entry = gather_hugetbl_stats;
  1243. walk.pmd_entry = gather_pte_stats;
  1244. walk.private = md;
  1245. walk.mm = mm;
  1246. pol = get_vma_policy(task, vma, vma->vm_start);
  1247. mpol_to_str(buffer, sizeof(buffer), pol);
  1248. mpol_cond_put(pol);
  1249. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1250. if (file) {
  1251. seq_puts(m, " file=");
  1252. seq_path(m, &file->f_path, "\n\t= ");
  1253. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1254. seq_puts(m, " heap");
  1255. } else {
  1256. pid_t tid = vm_is_stack(task, vma, is_pid);
  1257. if (tid != 0) {
  1258. /*
  1259. * Thread stack in /proc/PID/task/TID/maps or
  1260. * the main process stack.
  1261. */
  1262. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1263. vma->vm_end >= mm->start_stack))
  1264. seq_puts(m, " stack");
  1265. else
  1266. seq_printf(m, " stack:%d", tid);
  1267. }
  1268. }
  1269. if (is_vm_hugetlb_page(vma))
  1270. seq_puts(m, " huge");
  1271. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1272. if (!md->pages)
  1273. goto out;
  1274. if (md->anon)
  1275. seq_printf(m, " anon=%lu", md->anon);
  1276. if (md->dirty)
  1277. seq_printf(m, " dirty=%lu", md->dirty);
  1278. if (md->pages != md->anon && md->pages != md->dirty)
  1279. seq_printf(m, " mapped=%lu", md->pages);
  1280. if (md->mapcount_max > 1)
  1281. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1282. if (md->swapcache)
  1283. seq_printf(m, " swapcache=%lu", md->swapcache);
  1284. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1285. seq_printf(m, " active=%lu", md->active);
  1286. if (md->writeback)
  1287. seq_printf(m, " writeback=%lu", md->writeback);
  1288. for_each_node_state(nid, N_MEMORY)
  1289. if (md->node[nid])
  1290. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1291. out:
  1292. seq_putc(m, '\n');
  1293. m_cache_vma(m, vma);
  1294. return 0;
  1295. }
  1296. static int show_pid_numa_map(struct seq_file *m, void *v)
  1297. {
  1298. return show_numa_map(m, v, 1);
  1299. }
  1300. static int show_tid_numa_map(struct seq_file *m, void *v)
  1301. {
  1302. return show_numa_map(m, v, 0);
  1303. }
  1304. static const struct seq_operations proc_pid_numa_maps_op = {
  1305. .start = m_start,
  1306. .next = m_next,
  1307. .stop = m_stop,
  1308. .show = show_pid_numa_map,
  1309. };
  1310. static const struct seq_operations proc_tid_numa_maps_op = {
  1311. .start = m_start,
  1312. .next = m_next,
  1313. .stop = m_stop,
  1314. .show = show_tid_numa_map,
  1315. };
  1316. static int numa_maps_open(struct inode *inode, struct file *file,
  1317. const struct seq_operations *ops)
  1318. {
  1319. return proc_maps_open(inode, file, ops,
  1320. sizeof(struct numa_maps_private));
  1321. }
  1322. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1323. {
  1324. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1325. }
  1326. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1327. {
  1328. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1329. }
  1330. const struct file_operations proc_pid_numa_maps_operations = {
  1331. .open = pid_numa_maps_open,
  1332. .read = seq_read,
  1333. .llseek = seq_lseek,
  1334. .release = proc_map_release,
  1335. };
  1336. const struct file_operations proc_tid_numa_maps_operations = {
  1337. .open = tid_numa_maps_open,
  1338. .read = seq_read,
  1339. .llseek = seq_lseek,
  1340. .release = proc_map_release,
  1341. };
  1342. #endif /* CONFIG_NUMA */