dmaengine.h 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc., 59
  16. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called COPYING.
  20. */
  21. #ifndef LINUX_DMAENGINE_H
  22. #define LINUX_DMAENGINE_H
  23. #include <linux/device.h>
  24. #include <linux/err.h>
  25. #include <linux/uio.h>
  26. #include <linux/bug.h>
  27. #include <linux/scatterlist.h>
  28. #include <linux/bitmap.h>
  29. #include <linux/types.h>
  30. #include <asm/page.h>
  31. /**
  32. * typedef dma_cookie_t - an opaque DMA cookie
  33. *
  34. * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  35. */
  36. typedef s32 dma_cookie_t;
  37. #define DMA_MIN_COOKIE 1
  38. static inline int dma_submit_error(dma_cookie_t cookie)
  39. {
  40. return cookie < 0 ? cookie : 0;
  41. }
  42. /**
  43. * enum dma_status - DMA transaction status
  44. * @DMA_COMPLETE: transaction completed
  45. * @DMA_IN_PROGRESS: transaction not yet processed
  46. * @DMA_PAUSED: transaction is paused
  47. * @DMA_ERROR: transaction failed
  48. */
  49. enum dma_status {
  50. DMA_COMPLETE,
  51. DMA_IN_PROGRESS,
  52. DMA_PAUSED,
  53. DMA_ERROR,
  54. };
  55. /**
  56. * enum dma_transaction_type - DMA transaction types/indexes
  57. *
  58. * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
  59. * automatically set as dma devices are registered.
  60. */
  61. enum dma_transaction_type {
  62. DMA_MEMCPY,
  63. DMA_XOR,
  64. DMA_PQ,
  65. DMA_XOR_VAL,
  66. DMA_PQ_VAL,
  67. DMA_INTERRUPT,
  68. DMA_SG,
  69. DMA_PRIVATE,
  70. DMA_ASYNC_TX,
  71. DMA_SLAVE,
  72. DMA_CYCLIC,
  73. DMA_INTERLEAVE,
  74. /* last transaction type for creation of the capabilities mask */
  75. DMA_TX_TYPE_END,
  76. };
  77. /**
  78. * enum dma_transfer_direction - dma transfer mode and direction indicator
  79. * @DMA_MEM_TO_MEM: Async/Memcpy mode
  80. * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  81. * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  82. * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  83. */
  84. enum dma_transfer_direction {
  85. DMA_MEM_TO_MEM,
  86. DMA_MEM_TO_DEV,
  87. DMA_DEV_TO_MEM,
  88. DMA_DEV_TO_DEV,
  89. DMA_TRANS_NONE,
  90. };
  91. /**
  92. * Interleaved Transfer Request
  93. * ----------------------------
  94. * A chunk is collection of contiguous bytes to be transfered.
  95. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  96. * ICGs may or maynot change between chunks.
  97. * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  98. * that when repeated an integral number of times, specifies the transfer.
  99. * A transfer template is specification of a Frame, the number of times
  100. * it is to be repeated and other per-transfer attributes.
  101. *
  102. * Practically, a client driver would have ready a template for each
  103. * type of transfer it is going to need during its lifetime and
  104. * set only 'src_start' and 'dst_start' before submitting the requests.
  105. *
  106. *
  107. * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
  108. * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
  109. *
  110. * == Chunk size
  111. * ... ICG
  112. */
  113. /**
  114. * struct data_chunk - Element of scatter-gather list that makes a frame.
  115. * @size: Number of bytes to read from source.
  116. * size_dst := fn(op, size_src), so doesn't mean much for destination.
  117. * @icg: Number of bytes to jump after last src/dst address of this
  118. * chunk and before first src/dst address for next chunk.
  119. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
  120. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
  121. */
  122. struct data_chunk {
  123. size_t size;
  124. size_t icg;
  125. };
  126. /**
  127. * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
  128. * and attributes.
  129. * @src_start: Bus address of source for the first chunk.
  130. * @dst_start: Bus address of destination for the first chunk.
  131. * @dir: Specifies the type of Source and Destination.
  132. * @src_inc: If the source address increments after reading from it.
  133. * @dst_inc: If the destination address increments after writing to it.
  134. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
  135. * Otherwise, source is read contiguously (icg ignored).
  136. * Ignored if src_inc is false.
  137. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
  138. * Otherwise, destination is filled contiguously (icg ignored).
  139. * Ignored if dst_inc is false.
  140. * @numf: Number of frames in this template.
  141. * @frame_size: Number of chunks in a frame i.e, size of sgl[].
  142. * @sgl: Array of {chunk,icg} pairs that make up a frame.
  143. */
  144. struct dma_interleaved_template {
  145. dma_addr_t src_start;
  146. dma_addr_t dst_start;
  147. enum dma_transfer_direction dir;
  148. bool src_inc;
  149. bool dst_inc;
  150. bool src_sgl;
  151. bool dst_sgl;
  152. size_t numf;
  153. size_t frame_size;
  154. struct data_chunk sgl[0];
  155. };
  156. /**
  157. * enum dma_ctrl_flags - DMA flags to augment operation preparation,
  158. * control completion, and communicate status.
  159. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
  160. * this transaction
  161. * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
  162. * acknowledges receipt, i.e. has has a chance to establish any dependency
  163. * chains
  164. * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
  165. * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
  166. * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
  167. * sources that were the result of a previous operation, in the case of a PQ
  168. * operation it continues the calculation with new sources
  169. * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
  170. * on the result of this operation
  171. */
  172. enum dma_ctrl_flags {
  173. DMA_PREP_INTERRUPT = (1 << 0),
  174. DMA_CTRL_ACK = (1 << 1),
  175. DMA_PREP_PQ_DISABLE_P = (1 << 2),
  176. DMA_PREP_PQ_DISABLE_Q = (1 << 3),
  177. DMA_PREP_CONTINUE = (1 << 4),
  178. DMA_PREP_FENCE = (1 << 5),
  179. };
  180. /**
  181. * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
  182. * on a running channel.
  183. * @DMA_TERMINATE_ALL: terminate all ongoing transfers
  184. * @DMA_PAUSE: pause ongoing transfers
  185. * @DMA_RESUME: resume paused transfer
  186. * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
  187. * that need to runtime reconfigure the slave channels (as opposed to passing
  188. * configuration data in statically from the platform). An additional
  189. * argument of struct dma_slave_config must be passed in with this
  190. * command.
  191. */
  192. enum dma_ctrl_cmd {
  193. DMA_TERMINATE_ALL,
  194. DMA_PAUSE,
  195. DMA_RESUME,
  196. DMA_SLAVE_CONFIG,
  197. };
  198. /**
  199. * enum sum_check_bits - bit position of pq_check_flags
  200. */
  201. enum sum_check_bits {
  202. SUM_CHECK_P = 0,
  203. SUM_CHECK_Q = 1,
  204. };
  205. /**
  206. * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
  207. * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
  208. * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
  209. */
  210. enum sum_check_flags {
  211. SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
  212. SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
  213. };
  214. /**
  215. * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
  216. * See linux/cpumask.h
  217. */
  218. typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
  219. /**
  220. * struct dma_chan_percpu - the per-CPU part of struct dma_chan
  221. * @memcpy_count: transaction counter
  222. * @bytes_transferred: byte counter
  223. */
  224. struct dma_chan_percpu {
  225. /* stats */
  226. unsigned long memcpy_count;
  227. unsigned long bytes_transferred;
  228. };
  229. /**
  230. * struct dma_chan - devices supply DMA channels, clients use them
  231. * @device: ptr to the dma device who supplies this channel, always !%NULL
  232. * @cookie: last cookie value returned to client
  233. * @completed_cookie: last completed cookie for this channel
  234. * @chan_id: channel ID for sysfs
  235. * @dev: class device for sysfs
  236. * @device_node: used to add this to the device chan list
  237. * @local: per-cpu pointer to a struct dma_chan_percpu
  238. * @client_count: how many clients are using this channel
  239. * @table_count: number of appearances in the mem-to-mem allocation table
  240. * @private: private data for certain client-channel associations
  241. */
  242. struct dma_chan {
  243. struct dma_device *device;
  244. dma_cookie_t cookie;
  245. dma_cookie_t completed_cookie;
  246. /* sysfs */
  247. int chan_id;
  248. struct dma_chan_dev *dev;
  249. struct list_head device_node;
  250. struct dma_chan_percpu __percpu *local;
  251. int client_count;
  252. int table_count;
  253. void *private;
  254. };
  255. /**
  256. * struct dma_chan_dev - relate sysfs device node to backing channel device
  257. * @chan: driver channel device
  258. * @device: sysfs device
  259. * @dev_id: parent dma_device dev_id
  260. * @idr_ref: reference count to gate release of dma_device dev_id
  261. */
  262. struct dma_chan_dev {
  263. struct dma_chan *chan;
  264. struct device device;
  265. int dev_id;
  266. atomic_t *idr_ref;
  267. };
  268. /**
  269. * enum dma_slave_buswidth - defines bus width of the DMA slave
  270. * device, source or target buses
  271. */
  272. enum dma_slave_buswidth {
  273. DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
  274. DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
  275. DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
  276. DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
  277. DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
  278. DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
  279. };
  280. /**
  281. * struct dma_slave_config - dma slave channel runtime config
  282. * @direction: whether the data shall go in or out on this slave
  283. * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
  284. * legal values.
  285. * @src_addr: this is the physical address where DMA slave data
  286. * should be read (RX), if the source is memory this argument is
  287. * ignored.
  288. * @dst_addr: this is the physical address where DMA slave data
  289. * should be written (TX), if the source is memory this argument
  290. * is ignored.
  291. * @src_addr_width: this is the width in bytes of the source (RX)
  292. * register where DMA data shall be read. If the source
  293. * is memory this may be ignored depending on architecture.
  294. * Legal values: 1, 2, 4, 8.
  295. * @dst_addr_width: same as src_addr_width but for destination
  296. * target (TX) mutatis mutandis.
  297. * @src_maxburst: the maximum number of words (note: words, as in
  298. * units of the src_addr_width member, not bytes) that can be sent
  299. * in one burst to the device. Typically something like half the
  300. * FIFO depth on I/O peripherals so you don't overflow it. This
  301. * may or may not be applicable on memory sources.
  302. * @dst_maxburst: same as src_maxburst but for destination target
  303. * mutatis mutandis.
  304. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
  305. * with 'true' if peripheral should be flow controller. Direction will be
  306. * selected at Runtime.
  307. * @slave_id: Slave requester id. Only valid for slave channels. The dma
  308. * slave peripheral will have unique id as dma requester which need to be
  309. * pass as slave config.
  310. *
  311. * This struct is passed in as configuration data to a DMA engine
  312. * in order to set up a certain channel for DMA transport at runtime.
  313. * The DMA device/engine has to provide support for an additional
  314. * command in the channel config interface, DMA_SLAVE_CONFIG
  315. * and this struct will then be passed in as an argument to the
  316. * DMA engine device_control() function.
  317. *
  318. * The rationale for adding configuration information to this struct is as
  319. * follows: if it is likely that more than one DMA slave controllers in
  320. * the world will support the configuration option, then make it generic.
  321. * If not: if it is fixed so that it be sent in static from the platform
  322. * data, then prefer to do that.
  323. */
  324. struct dma_slave_config {
  325. enum dma_transfer_direction direction;
  326. dma_addr_t src_addr;
  327. dma_addr_t dst_addr;
  328. enum dma_slave_buswidth src_addr_width;
  329. enum dma_slave_buswidth dst_addr_width;
  330. u32 src_maxburst;
  331. u32 dst_maxburst;
  332. bool device_fc;
  333. unsigned int slave_id;
  334. };
  335. /**
  336. * enum dma_residue_granularity - Granularity of the reported transfer residue
  337. * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
  338. * DMA channel is only able to tell whether a descriptor has been completed or
  339. * not, which means residue reporting is not supported by this channel. The
  340. * residue field of the dma_tx_state field will always be 0.
  341. * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
  342. * completed segment of the transfer (For cyclic transfers this is after each
  343. * period). This is typically implemented by having the hardware generate an
  344. * interrupt after each transferred segment and then the drivers updates the
  345. * outstanding residue by the size of the segment. Another possibility is if
  346. * the hardware supports scatter-gather and the segment descriptor has a field
  347. * which gets set after the segment has been completed. The driver then counts
  348. * the number of segments without the flag set to compute the residue.
  349. * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
  350. * burst. This is typically only supported if the hardware has a progress
  351. * register of some sort (E.g. a register with the current read/write address
  352. * or a register with the amount of bursts/beats/bytes that have been
  353. * transferred or still need to be transferred).
  354. */
  355. enum dma_residue_granularity {
  356. DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
  357. DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
  358. DMA_RESIDUE_GRANULARITY_BURST = 2,
  359. };
  360. /* struct dma_slave_caps - expose capabilities of a slave channel only
  361. *
  362. * @src_addr_widths: bit mask of src addr widths the channel supports
  363. * @dstn_addr_widths: bit mask of dstn addr widths the channel supports
  364. * @directions: bit mask of slave direction the channel supported
  365. * since the enum dma_transfer_direction is not defined as bits for each
  366. * type of direction, the dma controller should fill (1 << <TYPE>) and same
  367. * should be checked by controller as well
  368. * @cmd_pause: true, if pause and thereby resume is supported
  369. * @cmd_terminate: true, if terminate cmd is supported
  370. * @residue_granularity: granularity of the reported transfer residue
  371. */
  372. struct dma_slave_caps {
  373. u32 src_addr_widths;
  374. u32 dstn_addr_widths;
  375. u32 directions;
  376. bool cmd_pause;
  377. bool cmd_terminate;
  378. enum dma_residue_granularity residue_granularity;
  379. };
  380. static inline const char *dma_chan_name(struct dma_chan *chan)
  381. {
  382. return dev_name(&chan->dev->device);
  383. }
  384. void dma_chan_cleanup(struct kref *kref);
  385. /**
  386. * typedef dma_filter_fn - callback filter for dma_request_channel
  387. * @chan: channel to be reviewed
  388. * @filter_param: opaque parameter passed through dma_request_channel
  389. *
  390. * When this optional parameter is specified in a call to dma_request_channel a
  391. * suitable channel is passed to this routine for further dispositioning before
  392. * being returned. Where 'suitable' indicates a non-busy channel that
  393. * satisfies the given capability mask. It returns 'true' to indicate that the
  394. * channel is suitable.
  395. */
  396. typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
  397. typedef void (*dma_async_tx_callback)(void *dma_async_param);
  398. struct dmaengine_unmap_data {
  399. u8 map_cnt;
  400. u8 to_cnt;
  401. u8 from_cnt;
  402. u8 bidi_cnt;
  403. struct device *dev;
  404. struct kref kref;
  405. size_t len;
  406. dma_addr_t addr[0];
  407. };
  408. /**
  409. * struct dma_async_tx_descriptor - async transaction descriptor
  410. * ---dma generic offload fields---
  411. * @cookie: tracking cookie for this transaction, set to -EBUSY if
  412. * this tx is sitting on a dependency list
  413. * @flags: flags to augment operation preparation, control completion, and
  414. * communicate status
  415. * @phys: physical address of the descriptor
  416. * @chan: target channel for this operation
  417. * @tx_submit: set the prepared descriptor(s) to be executed by the engine
  418. * @callback: routine to call after this operation is complete
  419. * @callback_param: general parameter to pass to the callback routine
  420. * ---async_tx api specific fields---
  421. * @next: at completion submit this descriptor
  422. * @parent: pointer to the next level up in the dependency chain
  423. * @lock: protect the parent and next pointers
  424. */
  425. struct dma_async_tx_descriptor {
  426. dma_cookie_t cookie;
  427. enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
  428. dma_addr_t phys;
  429. struct dma_chan *chan;
  430. dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
  431. dma_async_tx_callback callback;
  432. void *callback_param;
  433. struct dmaengine_unmap_data *unmap;
  434. #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  435. struct dma_async_tx_descriptor *next;
  436. struct dma_async_tx_descriptor *parent;
  437. spinlock_t lock;
  438. #endif
  439. };
  440. #ifdef CONFIG_DMA_ENGINE
  441. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  442. struct dmaengine_unmap_data *unmap)
  443. {
  444. kref_get(&unmap->kref);
  445. tx->unmap = unmap;
  446. }
  447. struct dmaengine_unmap_data *
  448. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
  449. void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
  450. #else
  451. static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
  452. struct dmaengine_unmap_data *unmap)
  453. {
  454. }
  455. static inline struct dmaengine_unmap_data *
  456. dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
  457. {
  458. return NULL;
  459. }
  460. static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
  461. {
  462. }
  463. #endif
  464. static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
  465. {
  466. if (tx->unmap) {
  467. dmaengine_unmap_put(tx->unmap);
  468. tx->unmap = NULL;
  469. }
  470. }
  471. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  472. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  473. {
  474. }
  475. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  476. {
  477. }
  478. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  479. {
  480. BUG();
  481. }
  482. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  483. {
  484. }
  485. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  486. {
  487. }
  488. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  489. {
  490. return NULL;
  491. }
  492. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  493. {
  494. return NULL;
  495. }
  496. #else
  497. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  498. {
  499. spin_lock_bh(&txd->lock);
  500. }
  501. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  502. {
  503. spin_unlock_bh(&txd->lock);
  504. }
  505. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  506. {
  507. txd->next = next;
  508. next->parent = txd;
  509. }
  510. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  511. {
  512. txd->parent = NULL;
  513. }
  514. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  515. {
  516. txd->next = NULL;
  517. }
  518. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  519. {
  520. return txd->parent;
  521. }
  522. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  523. {
  524. return txd->next;
  525. }
  526. #endif
  527. /**
  528. * struct dma_tx_state - filled in to report the status of
  529. * a transfer.
  530. * @last: last completed DMA cookie
  531. * @used: last issued DMA cookie (i.e. the one in progress)
  532. * @residue: the remaining number of bytes left to transmit
  533. * on the selected transfer for states DMA_IN_PROGRESS and
  534. * DMA_PAUSED if this is implemented in the driver, else 0
  535. */
  536. struct dma_tx_state {
  537. dma_cookie_t last;
  538. dma_cookie_t used;
  539. u32 residue;
  540. };
  541. /**
  542. * struct dma_device - info on the entity supplying DMA services
  543. * @chancnt: how many DMA channels are supported
  544. * @privatecnt: how many DMA channels are requested by dma_request_channel
  545. * @channels: the list of struct dma_chan
  546. * @global_node: list_head for global dma_device_list
  547. * @cap_mask: one or more dma_capability flags
  548. * @max_xor: maximum number of xor sources, 0 if no capability
  549. * @max_pq: maximum number of PQ sources and PQ-continue capability
  550. * @copy_align: alignment shift for memcpy operations
  551. * @xor_align: alignment shift for xor operations
  552. * @pq_align: alignment shift for pq operations
  553. * @fill_align: alignment shift for memset operations
  554. * @dev_id: unique device ID
  555. * @dev: struct device reference for dma mapping api
  556. * @device_alloc_chan_resources: allocate resources and return the
  557. * number of allocated descriptors
  558. * @device_free_chan_resources: release DMA channel's resources
  559. * @device_prep_dma_memcpy: prepares a memcpy operation
  560. * @device_prep_dma_xor: prepares a xor operation
  561. * @device_prep_dma_xor_val: prepares a xor validation operation
  562. * @device_prep_dma_pq: prepares a pq operation
  563. * @device_prep_dma_pq_val: prepares a pqzero_sum operation
  564. * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
  565. * @device_prep_slave_sg: prepares a slave dma operation
  566. * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
  567. * The function takes a buffer of size buf_len. The callback function will
  568. * be called after period_len bytes have been transferred.
  569. * @device_prep_interleaved_dma: Transfer expression in a generic way.
  570. * @device_control: manipulate all pending operations on a channel, returns
  571. * zero or error code
  572. * @device_tx_status: poll for transaction completion, the optional
  573. * txstate parameter can be supplied with a pointer to get a
  574. * struct with auxiliary transfer status information, otherwise the call
  575. * will just return a simple status code
  576. * @device_issue_pending: push pending transactions to hardware
  577. * @device_slave_caps: return the slave channel capabilities
  578. */
  579. struct dma_device {
  580. unsigned int chancnt;
  581. unsigned int privatecnt;
  582. struct list_head channels;
  583. struct list_head global_node;
  584. dma_cap_mask_t cap_mask;
  585. unsigned short max_xor;
  586. unsigned short max_pq;
  587. u8 copy_align;
  588. u8 xor_align;
  589. u8 pq_align;
  590. u8 fill_align;
  591. #define DMA_HAS_PQ_CONTINUE (1 << 15)
  592. int dev_id;
  593. struct device *dev;
  594. int (*device_alloc_chan_resources)(struct dma_chan *chan);
  595. void (*device_free_chan_resources)(struct dma_chan *chan);
  596. struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
  597. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  598. size_t len, unsigned long flags);
  599. struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
  600. struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  601. unsigned int src_cnt, size_t len, unsigned long flags);
  602. struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
  603. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  604. size_t len, enum sum_check_flags *result, unsigned long flags);
  605. struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
  606. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  607. unsigned int src_cnt, const unsigned char *scf,
  608. size_t len, unsigned long flags);
  609. struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
  610. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  611. unsigned int src_cnt, const unsigned char *scf, size_t len,
  612. enum sum_check_flags *pqres, unsigned long flags);
  613. struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
  614. struct dma_chan *chan, unsigned long flags);
  615. struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
  616. struct dma_chan *chan,
  617. struct scatterlist *dst_sg, unsigned int dst_nents,
  618. struct scatterlist *src_sg, unsigned int src_nents,
  619. unsigned long flags);
  620. struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
  621. struct dma_chan *chan, struct scatterlist *sgl,
  622. unsigned int sg_len, enum dma_transfer_direction direction,
  623. unsigned long flags, void *context);
  624. struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
  625. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  626. size_t period_len, enum dma_transfer_direction direction,
  627. unsigned long flags);
  628. struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
  629. struct dma_chan *chan, struct dma_interleaved_template *xt,
  630. unsigned long flags);
  631. int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  632. unsigned long arg);
  633. enum dma_status (*device_tx_status)(struct dma_chan *chan,
  634. dma_cookie_t cookie,
  635. struct dma_tx_state *txstate);
  636. void (*device_issue_pending)(struct dma_chan *chan);
  637. int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
  638. };
  639. static inline int dmaengine_device_control(struct dma_chan *chan,
  640. enum dma_ctrl_cmd cmd,
  641. unsigned long arg)
  642. {
  643. if (chan->device->device_control)
  644. return chan->device->device_control(chan, cmd, arg);
  645. return -ENOSYS;
  646. }
  647. static inline int dmaengine_slave_config(struct dma_chan *chan,
  648. struct dma_slave_config *config)
  649. {
  650. return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
  651. (unsigned long)config);
  652. }
  653. static inline bool is_slave_direction(enum dma_transfer_direction direction)
  654. {
  655. return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
  656. }
  657. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
  658. struct dma_chan *chan, dma_addr_t buf, size_t len,
  659. enum dma_transfer_direction dir, unsigned long flags)
  660. {
  661. struct scatterlist sg;
  662. sg_init_table(&sg, 1);
  663. sg_dma_address(&sg) = buf;
  664. sg_dma_len(&sg) = len;
  665. return chan->device->device_prep_slave_sg(chan, &sg, 1,
  666. dir, flags, NULL);
  667. }
  668. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
  669. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  670. enum dma_transfer_direction dir, unsigned long flags)
  671. {
  672. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  673. dir, flags, NULL);
  674. }
  675. #ifdef CONFIG_RAPIDIO_DMA_ENGINE
  676. struct rio_dma_ext;
  677. static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
  678. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  679. enum dma_transfer_direction dir, unsigned long flags,
  680. struct rio_dma_ext *rio_ext)
  681. {
  682. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  683. dir, flags, rio_ext);
  684. }
  685. #endif
  686. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
  687. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  688. size_t period_len, enum dma_transfer_direction dir,
  689. unsigned long flags)
  690. {
  691. return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
  692. period_len, dir, flags);
  693. }
  694. static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
  695. struct dma_chan *chan, struct dma_interleaved_template *xt,
  696. unsigned long flags)
  697. {
  698. return chan->device->device_prep_interleaved_dma(chan, xt, flags);
  699. }
  700. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
  701. struct dma_chan *chan,
  702. struct scatterlist *dst_sg, unsigned int dst_nents,
  703. struct scatterlist *src_sg, unsigned int src_nents,
  704. unsigned long flags)
  705. {
  706. return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
  707. src_sg, src_nents, flags);
  708. }
  709. static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
  710. {
  711. if (!chan || !caps)
  712. return -EINVAL;
  713. /* check if the channel supports slave transactions */
  714. if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits))
  715. return -ENXIO;
  716. if (chan->device->device_slave_caps)
  717. return chan->device->device_slave_caps(chan, caps);
  718. return -ENXIO;
  719. }
  720. static inline int dmaengine_terminate_all(struct dma_chan *chan)
  721. {
  722. return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
  723. }
  724. static inline int dmaengine_pause(struct dma_chan *chan)
  725. {
  726. return dmaengine_device_control(chan, DMA_PAUSE, 0);
  727. }
  728. static inline int dmaengine_resume(struct dma_chan *chan)
  729. {
  730. return dmaengine_device_control(chan, DMA_RESUME, 0);
  731. }
  732. static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
  733. dma_cookie_t cookie, struct dma_tx_state *state)
  734. {
  735. return chan->device->device_tx_status(chan, cookie, state);
  736. }
  737. static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
  738. {
  739. return desc->tx_submit(desc);
  740. }
  741. static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
  742. {
  743. size_t mask;
  744. if (!align)
  745. return true;
  746. mask = (1 << align) - 1;
  747. if (mask & (off1 | off2 | len))
  748. return false;
  749. return true;
  750. }
  751. static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
  752. size_t off2, size_t len)
  753. {
  754. return dmaengine_check_align(dev->copy_align, off1, off2, len);
  755. }
  756. static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
  757. size_t off2, size_t len)
  758. {
  759. return dmaengine_check_align(dev->xor_align, off1, off2, len);
  760. }
  761. static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
  762. size_t off2, size_t len)
  763. {
  764. return dmaengine_check_align(dev->pq_align, off1, off2, len);
  765. }
  766. static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
  767. size_t off2, size_t len)
  768. {
  769. return dmaengine_check_align(dev->fill_align, off1, off2, len);
  770. }
  771. static inline void
  772. dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
  773. {
  774. dma->max_pq = maxpq;
  775. if (has_pq_continue)
  776. dma->max_pq |= DMA_HAS_PQ_CONTINUE;
  777. }
  778. static inline bool dmaf_continue(enum dma_ctrl_flags flags)
  779. {
  780. return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
  781. }
  782. static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
  783. {
  784. enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
  785. return (flags & mask) == mask;
  786. }
  787. static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
  788. {
  789. return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
  790. }
  791. static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
  792. {
  793. return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
  794. }
  795. /* dma_maxpq - reduce maxpq in the face of continued operations
  796. * @dma - dma device with PQ capability
  797. * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
  798. *
  799. * When an engine does not support native continuation we need 3 extra
  800. * source slots to reuse P and Q with the following coefficients:
  801. * 1/ {00} * P : remove P from Q', but use it as a source for P'
  802. * 2/ {01} * Q : use Q to continue Q' calculation
  803. * 3/ {00} * Q : subtract Q from P' to cancel (2)
  804. *
  805. * In the case where P is disabled we only need 1 extra source:
  806. * 1/ {01} * Q : use Q to continue Q' calculation
  807. */
  808. static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
  809. {
  810. if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
  811. return dma_dev_to_maxpq(dma);
  812. else if (dmaf_p_disabled_continue(flags))
  813. return dma_dev_to_maxpq(dma) - 1;
  814. else if (dmaf_continue(flags))
  815. return dma_dev_to_maxpq(dma) - 3;
  816. BUG();
  817. }
  818. /* --- public DMA engine API --- */
  819. #ifdef CONFIG_DMA_ENGINE
  820. void dmaengine_get(void);
  821. void dmaengine_put(void);
  822. #else
  823. static inline void dmaengine_get(void)
  824. {
  825. }
  826. static inline void dmaengine_put(void)
  827. {
  828. }
  829. #endif
  830. #ifdef CONFIG_NET_DMA
  831. #define net_dmaengine_get() dmaengine_get()
  832. #define net_dmaengine_put() dmaengine_put()
  833. #else
  834. static inline void net_dmaengine_get(void)
  835. {
  836. }
  837. static inline void net_dmaengine_put(void)
  838. {
  839. }
  840. #endif
  841. #ifdef CONFIG_ASYNC_TX_DMA
  842. #define async_dmaengine_get() dmaengine_get()
  843. #define async_dmaengine_put() dmaengine_put()
  844. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  845. #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
  846. #else
  847. #define async_dma_find_channel(type) dma_find_channel(type)
  848. #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
  849. #else
  850. static inline void async_dmaengine_get(void)
  851. {
  852. }
  853. static inline void async_dmaengine_put(void)
  854. {
  855. }
  856. static inline struct dma_chan *
  857. async_dma_find_channel(enum dma_transaction_type type)
  858. {
  859. return NULL;
  860. }
  861. #endif /* CONFIG_ASYNC_TX_DMA */
  862. dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
  863. void *dest, void *src, size_t len);
  864. dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
  865. struct page *page, unsigned int offset, void *kdata, size_t len);
  866. dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
  867. struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
  868. unsigned int src_off, size_t len);
  869. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  870. struct dma_chan *chan);
  871. static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
  872. {
  873. tx->flags |= DMA_CTRL_ACK;
  874. }
  875. static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
  876. {
  877. tx->flags &= ~DMA_CTRL_ACK;
  878. }
  879. static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
  880. {
  881. return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
  882. }
  883. #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
  884. static inline void
  885. __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  886. {
  887. set_bit(tx_type, dstp->bits);
  888. }
  889. #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
  890. static inline void
  891. __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  892. {
  893. clear_bit(tx_type, dstp->bits);
  894. }
  895. #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
  896. static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
  897. {
  898. bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
  899. }
  900. #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
  901. static inline int
  902. __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
  903. {
  904. return test_bit(tx_type, srcp->bits);
  905. }
  906. #define for_each_dma_cap_mask(cap, mask) \
  907. for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
  908. /**
  909. * dma_async_issue_pending - flush pending transactions to HW
  910. * @chan: target DMA channel
  911. *
  912. * This allows drivers to push copies to HW in batches,
  913. * reducing MMIO writes where possible.
  914. */
  915. static inline void dma_async_issue_pending(struct dma_chan *chan)
  916. {
  917. chan->device->device_issue_pending(chan);
  918. }
  919. /**
  920. * dma_async_is_tx_complete - poll for transaction completion
  921. * @chan: DMA channel
  922. * @cookie: transaction identifier to check status of
  923. * @last: returns last completed cookie, can be NULL
  924. * @used: returns last issued cookie, can be NULL
  925. *
  926. * If @last and @used are passed in, upon return they reflect the driver
  927. * internal state and can be used with dma_async_is_complete() to check
  928. * the status of multiple cookies without re-checking hardware state.
  929. */
  930. static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
  931. dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
  932. {
  933. struct dma_tx_state state;
  934. enum dma_status status;
  935. status = chan->device->device_tx_status(chan, cookie, &state);
  936. if (last)
  937. *last = state.last;
  938. if (used)
  939. *used = state.used;
  940. return status;
  941. }
  942. /**
  943. * dma_async_is_complete - test a cookie against chan state
  944. * @cookie: transaction identifier to test status of
  945. * @last_complete: last know completed transaction
  946. * @last_used: last cookie value handed out
  947. *
  948. * dma_async_is_complete() is used in dma_async_is_tx_complete()
  949. * the test logic is separated for lightweight testing of multiple cookies
  950. */
  951. static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
  952. dma_cookie_t last_complete, dma_cookie_t last_used)
  953. {
  954. if (last_complete <= last_used) {
  955. if ((cookie <= last_complete) || (cookie > last_used))
  956. return DMA_COMPLETE;
  957. } else {
  958. if ((cookie <= last_complete) && (cookie > last_used))
  959. return DMA_COMPLETE;
  960. }
  961. return DMA_IN_PROGRESS;
  962. }
  963. static inline void
  964. dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
  965. {
  966. if (st) {
  967. st->last = last;
  968. st->used = used;
  969. st->residue = residue;
  970. }
  971. }
  972. #ifdef CONFIG_DMA_ENGINE
  973. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
  974. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
  975. enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
  976. void dma_issue_pending_all(void);
  977. struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  978. dma_filter_fn fn, void *fn_param);
  979. struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
  980. const char *name);
  981. struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
  982. void dma_release_channel(struct dma_chan *chan);
  983. #else
  984. static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
  985. {
  986. return NULL;
  987. }
  988. static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
  989. {
  990. return DMA_COMPLETE;
  991. }
  992. static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  993. {
  994. return DMA_COMPLETE;
  995. }
  996. static inline void dma_issue_pending_all(void)
  997. {
  998. }
  999. static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
  1000. dma_filter_fn fn, void *fn_param)
  1001. {
  1002. return NULL;
  1003. }
  1004. static inline struct dma_chan *dma_request_slave_channel_reason(
  1005. struct device *dev, const char *name)
  1006. {
  1007. return ERR_PTR(-ENODEV);
  1008. }
  1009. static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
  1010. const char *name)
  1011. {
  1012. return NULL;
  1013. }
  1014. static inline void dma_release_channel(struct dma_chan *chan)
  1015. {
  1016. }
  1017. #endif
  1018. /* --- DMA device --- */
  1019. int dma_async_device_register(struct dma_device *device);
  1020. void dma_async_device_unregister(struct dma_device *device);
  1021. void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
  1022. struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
  1023. struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
  1024. struct dma_chan *net_dma_find_channel(void);
  1025. #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
  1026. #define dma_request_slave_channel_compat(mask, x, y, dev, name) \
  1027. __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
  1028. static inline struct dma_chan
  1029. *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
  1030. dma_filter_fn fn, void *fn_param,
  1031. struct device *dev, char *name)
  1032. {
  1033. struct dma_chan *chan;
  1034. chan = dma_request_slave_channel(dev, name);
  1035. if (chan)
  1036. return chan;
  1037. return __dma_request_channel(mask, fn, fn_param);
  1038. }
  1039. /* --- Helper iov-locking functions --- */
  1040. struct dma_page_list {
  1041. char __user *base_address;
  1042. int nr_pages;
  1043. struct page **pages;
  1044. };
  1045. struct dma_pinned_list {
  1046. int nr_iovecs;
  1047. struct dma_page_list page_list[0];
  1048. };
  1049. struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
  1050. void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
  1051. dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
  1052. struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
  1053. dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
  1054. struct dma_pinned_list *pinned_list, struct page *page,
  1055. unsigned int offset, size_t len);
  1056. #endif /* DMAENGINE_H */