tree_plugin.h 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  3. * Internal non-public definitions that provide either classic
  4. * or preemptible semantics.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, you can access it online at
  18. * http://www.gnu.org/licenses/gpl-2.0.html.
  19. *
  20. * Copyright Red Hat, 2009
  21. * Copyright IBM Corporation, 2009
  22. *
  23. * Author: Ingo Molnar <mingo@elte.hu>
  24. * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/gfp.h>
  28. #include <linux/oom.h>
  29. #include <linux/smpboot.h>
  30. #include "../time/tick-internal.h"
  31. #ifdef CONFIG_RCU_BOOST
  32. #include "../locking/rtmutex_common.h"
  33. /* rcuc/rcub kthread realtime priority */
  34. static int kthread_prio = CONFIG_RCU_KTHREAD_PRIO;
  35. module_param(kthread_prio, int, 0644);
  36. /*
  37. * Control variables for per-CPU and per-rcu_node kthreads. These
  38. * handle all flavors of RCU.
  39. */
  40. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  41. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  42. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  43. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  44. #endif /* #ifdef CONFIG_RCU_BOOST */
  45. #ifdef CONFIG_RCU_NOCB_CPU
  46. static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  47. static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
  48. static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
  49. static char __initdata nocb_buf[NR_CPUS * 5];
  50. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  51. /*
  52. * Check the RCU kernel configuration parameters and print informative
  53. * messages about anything out of the ordinary. If you like #ifdef, you
  54. * will love this function.
  55. */
  56. static void __init rcu_bootup_announce_oddness(void)
  57. {
  58. #ifdef CONFIG_RCU_TRACE
  59. pr_info("\tRCU debugfs-based tracing is enabled.\n");
  60. #endif
  61. #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
  62. pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  63. CONFIG_RCU_FANOUT);
  64. #endif
  65. #ifdef CONFIG_RCU_FANOUT_EXACT
  66. pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  67. #endif
  68. #ifdef CONFIG_RCU_FAST_NO_HZ
  69. pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  70. #endif
  71. #ifdef CONFIG_PROVE_RCU
  72. pr_info("\tRCU lockdep checking is enabled.\n");
  73. #endif
  74. #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
  75. pr_info("\tRCU torture testing starts during boot.\n");
  76. #endif
  77. #if defined(CONFIG_RCU_CPU_STALL_INFO)
  78. pr_info("\tAdditional per-CPU info printed with stalls.\n");
  79. #endif
  80. #if NUM_RCU_LVL_4 != 0
  81. pr_info("\tFour-level hierarchy is enabled.\n");
  82. #endif
  83. if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
  84. pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  85. if (nr_cpu_ids != NR_CPUS)
  86. pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  87. #ifdef CONFIG_RCU_BOOST
  88. pr_info("\tRCU kthread priority: %d.\n", kthread_prio);
  89. #endif
  90. }
  91. #ifdef CONFIG_PREEMPT_RCU
  92. RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  93. static struct rcu_state *rcu_state_p = &rcu_preempt_state;
  94. static int rcu_preempted_readers_exp(struct rcu_node *rnp);
  95. /*
  96. * Tell them what RCU they are running.
  97. */
  98. static void __init rcu_bootup_announce(void)
  99. {
  100. pr_info("Preemptible hierarchical RCU implementation.\n");
  101. rcu_bootup_announce_oddness();
  102. }
  103. /*
  104. * Return the number of RCU-preempt batches processed thus far
  105. * for debug and statistics.
  106. */
  107. static long rcu_batches_completed_preempt(void)
  108. {
  109. return rcu_preempt_state.completed;
  110. }
  111. EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
  112. /*
  113. * Return the number of RCU batches processed thus far for debug & stats.
  114. */
  115. long rcu_batches_completed(void)
  116. {
  117. return rcu_batches_completed_preempt();
  118. }
  119. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  120. /*
  121. * Record a preemptible-RCU quiescent state for the specified CPU. Note
  122. * that this just means that the task currently running on the CPU is
  123. * not in a quiescent state. There might be any number of tasks blocked
  124. * while in an RCU read-side critical section.
  125. *
  126. * As with the other rcu_*_qs() functions, callers to this function
  127. * must disable preemption.
  128. */
  129. static void rcu_preempt_qs(void)
  130. {
  131. if (!__this_cpu_read(rcu_preempt_data.passed_quiesce)) {
  132. trace_rcu_grace_period(TPS("rcu_preempt"),
  133. __this_cpu_read(rcu_preempt_data.gpnum),
  134. TPS("cpuqs"));
  135. __this_cpu_write(rcu_preempt_data.passed_quiesce, 1);
  136. barrier(); /* Coordinate with rcu_preempt_check_callbacks(). */
  137. current->rcu_read_unlock_special.b.need_qs = false;
  138. }
  139. }
  140. /*
  141. * We have entered the scheduler, and the current task might soon be
  142. * context-switched away from. If this task is in an RCU read-side
  143. * critical section, we will no longer be able to rely on the CPU to
  144. * record that fact, so we enqueue the task on the blkd_tasks list.
  145. * The task will dequeue itself when it exits the outermost enclosing
  146. * RCU read-side critical section. Therefore, the current grace period
  147. * cannot be permitted to complete until the blkd_tasks list entries
  148. * predating the current grace period drain, in other words, until
  149. * rnp->gp_tasks becomes NULL.
  150. *
  151. * Caller must disable preemption.
  152. */
  153. static void rcu_preempt_note_context_switch(void)
  154. {
  155. struct task_struct *t = current;
  156. unsigned long flags;
  157. struct rcu_data *rdp;
  158. struct rcu_node *rnp;
  159. if (t->rcu_read_lock_nesting > 0 &&
  160. !t->rcu_read_unlock_special.b.blocked) {
  161. /* Possibly blocking in an RCU read-side critical section. */
  162. rdp = this_cpu_ptr(rcu_preempt_state.rda);
  163. rnp = rdp->mynode;
  164. raw_spin_lock_irqsave(&rnp->lock, flags);
  165. smp_mb__after_unlock_lock();
  166. t->rcu_read_unlock_special.b.blocked = true;
  167. t->rcu_blocked_node = rnp;
  168. /*
  169. * If this CPU has already checked in, then this task
  170. * will hold up the next grace period rather than the
  171. * current grace period. Queue the task accordingly.
  172. * If the task is queued for the current grace period
  173. * (i.e., this CPU has not yet passed through a quiescent
  174. * state for the current grace period), then as long
  175. * as that task remains queued, the current grace period
  176. * cannot end. Note that there is some uncertainty as
  177. * to exactly when the current grace period started.
  178. * We take a conservative approach, which can result
  179. * in unnecessarily waiting on tasks that started very
  180. * slightly after the current grace period began. C'est
  181. * la vie!!!
  182. *
  183. * But first, note that the current CPU must still be
  184. * on line!
  185. */
  186. WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
  187. WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
  188. if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
  189. list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
  190. rnp->gp_tasks = &t->rcu_node_entry;
  191. #ifdef CONFIG_RCU_BOOST
  192. if (rnp->boost_tasks != NULL)
  193. rnp->boost_tasks = rnp->gp_tasks;
  194. #endif /* #ifdef CONFIG_RCU_BOOST */
  195. } else {
  196. list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
  197. if (rnp->qsmask & rdp->grpmask)
  198. rnp->gp_tasks = &t->rcu_node_entry;
  199. }
  200. trace_rcu_preempt_task(rdp->rsp->name,
  201. t->pid,
  202. (rnp->qsmask & rdp->grpmask)
  203. ? rnp->gpnum
  204. : rnp->gpnum + 1);
  205. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  206. } else if (t->rcu_read_lock_nesting < 0 &&
  207. t->rcu_read_unlock_special.s) {
  208. /*
  209. * Complete exit from RCU read-side critical section on
  210. * behalf of preempted instance of __rcu_read_unlock().
  211. */
  212. rcu_read_unlock_special(t);
  213. }
  214. /*
  215. * Either we were not in an RCU read-side critical section to
  216. * begin with, or we have now recorded that critical section
  217. * globally. Either way, we can now note a quiescent state
  218. * for this CPU. Again, if we were in an RCU read-side critical
  219. * section, and if that critical section was blocking the current
  220. * grace period, then the fact that the task has been enqueued
  221. * means that we continue to block the current grace period.
  222. */
  223. rcu_preempt_qs();
  224. }
  225. /*
  226. * Check for preempted RCU readers blocking the current grace period
  227. * for the specified rcu_node structure. If the caller needs a reliable
  228. * answer, it must hold the rcu_node's ->lock.
  229. */
  230. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  231. {
  232. return rnp->gp_tasks != NULL;
  233. }
  234. /*
  235. * Record a quiescent state for all tasks that were previously queued
  236. * on the specified rcu_node structure and that were blocking the current
  237. * RCU grace period. The caller must hold the specified rnp->lock with
  238. * irqs disabled, and this lock is released upon return, but irqs remain
  239. * disabled.
  240. */
  241. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  242. __releases(rnp->lock)
  243. {
  244. unsigned long mask;
  245. struct rcu_node *rnp_p;
  246. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  247. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  248. return; /* Still need more quiescent states! */
  249. }
  250. rnp_p = rnp->parent;
  251. if (rnp_p == NULL) {
  252. /*
  253. * Either there is only one rcu_node in the tree,
  254. * or tasks were kicked up to root rcu_node due to
  255. * CPUs going offline.
  256. */
  257. rcu_report_qs_rsp(&rcu_preempt_state, flags);
  258. return;
  259. }
  260. /* Report up the rest of the hierarchy. */
  261. mask = rnp->grpmask;
  262. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  263. raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
  264. smp_mb__after_unlock_lock();
  265. rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
  266. }
  267. /*
  268. * Advance a ->blkd_tasks-list pointer to the next entry, instead
  269. * returning NULL if at the end of the list.
  270. */
  271. static struct list_head *rcu_next_node_entry(struct task_struct *t,
  272. struct rcu_node *rnp)
  273. {
  274. struct list_head *np;
  275. np = t->rcu_node_entry.next;
  276. if (np == &rnp->blkd_tasks)
  277. np = NULL;
  278. return np;
  279. }
  280. /*
  281. * Return true if the specified rcu_node structure has tasks that were
  282. * preempted within an RCU read-side critical section.
  283. */
  284. static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
  285. {
  286. return !list_empty(&rnp->blkd_tasks);
  287. }
  288. /*
  289. * Handle special cases during rcu_read_unlock(), such as needing to
  290. * notify RCU core processing or task having blocked during the RCU
  291. * read-side critical section.
  292. */
  293. void rcu_read_unlock_special(struct task_struct *t)
  294. {
  295. bool empty;
  296. bool empty_exp;
  297. bool empty_norm;
  298. bool empty_exp_now;
  299. unsigned long flags;
  300. struct list_head *np;
  301. #ifdef CONFIG_RCU_BOOST
  302. bool drop_boost_mutex = false;
  303. #endif /* #ifdef CONFIG_RCU_BOOST */
  304. struct rcu_node *rnp;
  305. union rcu_special special;
  306. /* NMI handlers cannot block and cannot safely manipulate state. */
  307. if (in_nmi())
  308. return;
  309. local_irq_save(flags);
  310. /*
  311. * If RCU core is waiting for this CPU to exit critical section,
  312. * let it know that we have done so. Because irqs are disabled,
  313. * t->rcu_read_unlock_special cannot change.
  314. */
  315. special = t->rcu_read_unlock_special;
  316. if (special.b.need_qs) {
  317. rcu_preempt_qs();
  318. if (!t->rcu_read_unlock_special.s) {
  319. local_irq_restore(flags);
  320. return;
  321. }
  322. }
  323. /* Hardware IRQ handlers cannot block, complain if they get here. */
  324. if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
  325. local_irq_restore(flags);
  326. return;
  327. }
  328. /* Clean up if blocked during RCU read-side critical section. */
  329. if (special.b.blocked) {
  330. t->rcu_read_unlock_special.b.blocked = false;
  331. /*
  332. * Remove this task from the list it blocked on. The
  333. * task can migrate while we acquire the lock, but at
  334. * most one time. So at most two passes through loop.
  335. */
  336. for (;;) {
  337. rnp = t->rcu_blocked_node;
  338. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  339. smp_mb__after_unlock_lock();
  340. if (rnp == t->rcu_blocked_node)
  341. break;
  342. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  343. }
  344. empty = !rcu_preempt_has_tasks(rnp);
  345. empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
  346. empty_exp = !rcu_preempted_readers_exp(rnp);
  347. smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
  348. np = rcu_next_node_entry(t, rnp);
  349. list_del_init(&t->rcu_node_entry);
  350. t->rcu_blocked_node = NULL;
  351. trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
  352. rnp->gpnum, t->pid);
  353. if (&t->rcu_node_entry == rnp->gp_tasks)
  354. rnp->gp_tasks = np;
  355. if (&t->rcu_node_entry == rnp->exp_tasks)
  356. rnp->exp_tasks = np;
  357. #ifdef CONFIG_RCU_BOOST
  358. if (&t->rcu_node_entry == rnp->boost_tasks)
  359. rnp->boost_tasks = np;
  360. /* Snapshot ->boost_mtx ownership with rcu_node lock held. */
  361. drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
  362. #endif /* #ifdef CONFIG_RCU_BOOST */
  363. /*
  364. * If this was the last task on the list, go see if we
  365. * need to propagate ->qsmaskinit bit clearing up the
  366. * rcu_node tree.
  367. */
  368. if (!empty && !rcu_preempt_has_tasks(rnp))
  369. rcu_cleanup_dead_rnp(rnp);
  370. /*
  371. * If this was the last task on the current list, and if
  372. * we aren't waiting on any CPUs, report the quiescent state.
  373. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
  374. * so we must take a snapshot of the expedited state.
  375. */
  376. empty_exp_now = !rcu_preempted_readers_exp(rnp);
  377. if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
  378. trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
  379. rnp->gpnum,
  380. 0, rnp->qsmask,
  381. rnp->level,
  382. rnp->grplo,
  383. rnp->grphi,
  384. !!rnp->gp_tasks);
  385. rcu_report_unblock_qs_rnp(rnp, flags);
  386. } else {
  387. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  388. }
  389. #ifdef CONFIG_RCU_BOOST
  390. /* Unboost if we were boosted. */
  391. if (drop_boost_mutex) {
  392. rt_mutex_unlock(&rnp->boost_mtx);
  393. complete(&rnp->boost_completion);
  394. }
  395. #endif /* #ifdef CONFIG_RCU_BOOST */
  396. /*
  397. * If this was the last task on the expedited lists,
  398. * then we need to report up the rcu_node hierarchy.
  399. */
  400. if (!empty_exp && empty_exp_now)
  401. rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
  402. } else {
  403. local_irq_restore(flags);
  404. }
  405. }
  406. /*
  407. * Dump detailed information for all tasks blocking the current RCU
  408. * grace period on the specified rcu_node structure.
  409. */
  410. static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
  411. {
  412. unsigned long flags;
  413. struct task_struct *t;
  414. raw_spin_lock_irqsave(&rnp->lock, flags);
  415. if (!rcu_preempt_blocked_readers_cgp(rnp)) {
  416. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  417. return;
  418. }
  419. t = list_entry(rnp->gp_tasks,
  420. struct task_struct, rcu_node_entry);
  421. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
  422. sched_show_task(t);
  423. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  424. }
  425. /*
  426. * Dump detailed information for all tasks blocking the current RCU
  427. * grace period.
  428. */
  429. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  430. {
  431. struct rcu_node *rnp = rcu_get_root(rsp);
  432. rcu_print_detail_task_stall_rnp(rnp);
  433. rcu_for_each_leaf_node(rsp, rnp)
  434. rcu_print_detail_task_stall_rnp(rnp);
  435. }
  436. #ifdef CONFIG_RCU_CPU_STALL_INFO
  437. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  438. {
  439. pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
  440. rnp->level, rnp->grplo, rnp->grphi);
  441. }
  442. static void rcu_print_task_stall_end(void)
  443. {
  444. pr_cont("\n");
  445. }
  446. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  447. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  448. {
  449. }
  450. static void rcu_print_task_stall_end(void)
  451. {
  452. }
  453. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  454. /*
  455. * Scan the current list of tasks blocked within RCU read-side critical
  456. * sections, printing out the tid of each.
  457. */
  458. static int rcu_print_task_stall(struct rcu_node *rnp)
  459. {
  460. struct task_struct *t;
  461. int ndetected = 0;
  462. if (!rcu_preempt_blocked_readers_cgp(rnp))
  463. return 0;
  464. rcu_print_task_stall_begin(rnp);
  465. t = list_entry(rnp->gp_tasks,
  466. struct task_struct, rcu_node_entry);
  467. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  468. pr_cont(" P%d", t->pid);
  469. ndetected++;
  470. }
  471. rcu_print_task_stall_end();
  472. return ndetected;
  473. }
  474. /*
  475. * Check that the list of blocked tasks for the newly completed grace
  476. * period is in fact empty. It is a serious bug to complete a grace
  477. * period that still has RCU readers blocked! This function must be
  478. * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
  479. * must be held by the caller.
  480. *
  481. * Also, if there are blocked tasks on the list, they automatically
  482. * block the newly created grace period, so set up ->gp_tasks accordingly.
  483. */
  484. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  485. {
  486. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  487. if (!list_empty(&rnp->blkd_tasks))
  488. rnp->gp_tasks = rnp->blkd_tasks.next;
  489. WARN_ON_ONCE(rnp->qsmask);
  490. }
  491. #ifdef CONFIG_HOTPLUG_CPU
  492. /*
  493. * Handle tasklist migration for case in which all CPUs covered by the
  494. * specified rcu_node have gone offline. Move them up to the root
  495. * rcu_node. The reason for not just moving them to the immediate
  496. * parent is to remove the need for rcu_read_unlock_special() to
  497. * make more than two attempts to acquire the target rcu_node's lock.
  498. * Returns true if there were tasks blocking the current RCU grace
  499. * period.
  500. *
  501. * Returns 1 if there was previously a task blocking the current grace
  502. * period on the specified rcu_node structure.
  503. *
  504. * The caller must hold rnp->lock with irqs disabled.
  505. */
  506. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  507. struct rcu_node *rnp,
  508. struct rcu_data *rdp)
  509. {
  510. struct list_head *lp;
  511. struct list_head *lp_root;
  512. int retval = 0;
  513. struct rcu_node *rnp_root = rcu_get_root(rsp);
  514. struct task_struct *t;
  515. if (rnp == rnp_root) {
  516. WARN_ONCE(1, "Last CPU thought to be offlined?");
  517. return 0; /* Shouldn't happen: at least one CPU online. */
  518. }
  519. /* If we are on an internal node, complain bitterly. */
  520. WARN_ON_ONCE(rnp != rdp->mynode);
  521. /*
  522. * Move tasks up to root rcu_node. Don't try to get fancy for
  523. * this corner-case operation -- just put this node's tasks
  524. * at the head of the root node's list, and update the root node's
  525. * ->gp_tasks and ->exp_tasks pointers to those of this node's,
  526. * if non-NULL. This might result in waiting for more tasks than
  527. * absolutely necessary, but this is a good performance/complexity
  528. * tradeoff.
  529. */
  530. if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
  531. retval |= RCU_OFL_TASKS_NORM_GP;
  532. if (rcu_preempted_readers_exp(rnp))
  533. retval |= RCU_OFL_TASKS_EXP_GP;
  534. lp = &rnp->blkd_tasks;
  535. lp_root = &rnp_root->blkd_tasks;
  536. while (!list_empty(lp)) {
  537. t = list_entry(lp->next, typeof(*t), rcu_node_entry);
  538. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  539. smp_mb__after_unlock_lock();
  540. list_del(&t->rcu_node_entry);
  541. t->rcu_blocked_node = rnp_root;
  542. list_add(&t->rcu_node_entry, lp_root);
  543. if (&t->rcu_node_entry == rnp->gp_tasks)
  544. rnp_root->gp_tasks = rnp->gp_tasks;
  545. if (&t->rcu_node_entry == rnp->exp_tasks)
  546. rnp_root->exp_tasks = rnp->exp_tasks;
  547. #ifdef CONFIG_RCU_BOOST
  548. if (&t->rcu_node_entry == rnp->boost_tasks)
  549. rnp_root->boost_tasks = rnp->boost_tasks;
  550. #endif /* #ifdef CONFIG_RCU_BOOST */
  551. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  552. }
  553. rnp->gp_tasks = NULL;
  554. rnp->exp_tasks = NULL;
  555. #ifdef CONFIG_RCU_BOOST
  556. rnp->boost_tasks = NULL;
  557. /*
  558. * In case root is being boosted and leaf was not. Make sure
  559. * that we boost the tasks blocking the current grace period
  560. * in this case.
  561. */
  562. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  563. smp_mb__after_unlock_lock();
  564. if (rnp_root->boost_tasks != NULL &&
  565. rnp_root->boost_tasks != rnp_root->gp_tasks &&
  566. rnp_root->boost_tasks != rnp_root->exp_tasks)
  567. rnp_root->boost_tasks = rnp_root->gp_tasks;
  568. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  569. #endif /* #ifdef CONFIG_RCU_BOOST */
  570. return retval;
  571. }
  572. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  573. /*
  574. * Check for a quiescent state from the current CPU. When a task blocks,
  575. * the task is recorded in the corresponding CPU's rcu_node structure,
  576. * which is checked elsewhere.
  577. *
  578. * Caller must disable hard irqs.
  579. */
  580. static void rcu_preempt_check_callbacks(void)
  581. {
  582. struct task_struct *t = current;
  583. if (t->rcu_read_lock_nesting == 0) {
  584. rcu_preempt_qs();
  585. return;
  586. }
  587. if (t->rcu_read_lock_nesting > 0 &&
  588. __this_cpu_read(rcu_preempt_data.qs_pending) &&
  589. !__this_cpu_read(rcu_preempt_data.passed_quiesce))
  590. t->rcu_read_unlock_special.b.need_qs = true;
  591. }
  592. #ifdef CONFIG_RCU_BOOST
  593. static void rcu_preempt_do_callbacks(void)
  594. {
  595. rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
  596. }
  597. #endif /* #ifdef CONFIG_RCU_BOOST */
  598. /*
  599. * Queue a preemptible-RCU callback for invocation after a grace period.
  600. */
  601. void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  602. {
  603. __call_rcu(head, func, &rcu_preempt_state, -1, 0);
  604. }
  605. EXPORT_SYMBOL_GPL(call_rcu);
  606. /**
  607. * synchronize_rcu - wait until a grace period has elapsed.
  608. *
  609. * Control will return to the caller some time after a full grace
  610. * period has elapsed, in other words after all currently executing RCU
  611. * read-side critical sections have completed. Note, however, that
  612. * upon return from synchronize_rcu(), the caller might well be executing
  613. * concurrently with new RCU read-side critical sections that began while
  614. * synchronize_rcu() was waiting. RCU read-side critical sections are
  615. * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
  616. *
  617. * See the description of synchronize_sched() for more detailed information
  618. * on memory ordering guarantees.
  619. */
  620. void synchronize_rcu(void)
  621. {
  622. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  623. !lock_is_held(&rcu_lock_map) &&
  624. !lock_is_held(&rcu_sched_lock_map),
  625. "Illegal synchronize_rcu() in RCU read-side critical section");
  626. if (!rcu_scheduler_active)
  627. return;
  628. if (rcu_expedited)
  629. synchronize_rcu_expedited();
  630. else
  631. wait_rcu_gp(call_rcu);
  632. }
  633. EXPORT_SYMBOL_GPL(synchronize_rcu);
  634. static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
  635. static unsigned long sync_rcu_preempt_exp_count;
  636. static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
  637. /*
  638. * Return non-zero if there are any tasks in RCU read-side critical
  639. * sections blocking the current preemptible-RCU expedited grace period.
  640. * If there is no preemptible-RCU expedited grace period currently in
  641. * progress, returns zero unconditionally.
  642. */
  643. static int rcu_preempted_readers_exp(struct rcu_node *rnp)
  644. {
  645. return rnp->exp_tasks != NULL;
  646. }
  647. /*
  648. * return non-zero if there is no RCU expedited grace period in progress
  649. * for the specified rcu_node structure, in other words, if all CPUs and
  650. * tasks covered by the specified rcu_node structure have done their bit
  651. * for the current expedited grace period. Works only for preemptible
  652. * RCU -- other RCU implementation use other means.
  653. *
  654. * Caller must hold sync_rcu_preempt_exp_mutex.
  655. */
  656. static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  657. {
  658. return !rcu_preempted_readers_exp(rnp) &&
  659. ACCESS_ONCE(rnp->expmask) == 0;
  660. }
  661. /*
  662. * Report the exit from RCU read-side critical section for the last task
  663. * that queued itself during or before the current expedited preemptible-RCU
  664. * grace period. This event is reported either to the rcu_node structure on
  665. * which the task was queued or to one of that rcu_node structure's ancestors,
  666. * recursively up the tree. (Calm down, calm down, we do the recursion
  667. * iteratively!)
  668. *
  669. * Most callers will set the "wake" flag, but the task initiating the
  670. * expedited grace period need not wake itself.
  671. *
  672. * Caller must hold sync_rcu_preempt_exp_mutex.
  673. */
  674. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  675. bool wake)
  676. {
  677. unsigned long flags;
  678. unsigned long mask;
  679. raw_spin_lock_irqsave(&rnp->lock, flags);
  680. smp_mb__after_unlock_lock();
  681. for (;;) {
  682. if (!sync_rcu_preempt_exp_done(rnp)) {
  683. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  684. break;
  685. }
  686. if (rnp->parent == NULL) {
  687. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  688. if (wake) {
  689. smp_mb(); /* EGP done before wake_up(). */
  690. wake_up(&sync_rcu_preempt_exp_wq);
  691. }
  692. break;
  693. }
  694. mask = rnp->grpmask;
  695. raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
  696. rnp = rnp->parent;
  697. raw_spin_lock(&rnp->lock); /* irqs already disabled */
  698. smp_mb__after_unlock_lock();
  699. rnp->expmask &= ~mask;
  700. }
  701. }
  702. /*
  703. * Snapshot the tasks blocking the newly started preemptible-RCU expedited
  704. * grace period for the specified rcu_node structure. If there are no such
  705. * tasks, report it up the rcu_node hierarchy.
  706. *
  707. * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
  708. * CPU hotplug operations.
  709. */
  710. static void
  711. sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
  712. {
  713. unsigned long flags;
  714. int must_wait = 0;
  715. raw_spin_lock_irqsave(&rnp->lock, flags);
  716. smp_mb__after_unlock_lock();
  717. if (list_empty(&rnp->blkd_tasks)) {
  718. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  719. } else {
  720. rnp->exp_tasks = rnp->blkd_tasks.next;
  721. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  722. must_wait = 1;
  723. }
  724. if (!must_wait)
  725. rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
  726. }
  727. /**
  728. * synchronize_rcu_expedited - Brute-force RCU grace period
  729. *
  730. * Wait for an RCU-preempt grace period, but expedite it. The basic
  731. * idea is to invoke synchronize_sched_expedited() to push all the tasks to
  732. * the ->blkd_tasks lists and wait for this list to drain. This consumes
  733. * significant time on all CPUs and is unfriendly to real-time workloads,
  734. * so is thus not recommended for any sort of common-case code.
  735. * In fact, if you are using synchronize_rcu_expedited() in a loop,
  736. * please restructure your code to batch your updates, and then Use a
  737. * single synchronize_rcu() instead.
  738. */
  739. void synchronize_rcu_expedited(void)
  740. {
  741. unsigned long flags;
  742. struct rcu_node *rnp;
  743. struct rcu_state *rsp = &rcu_preempt_state;
  744. unsigned long snap;
  745. int trycount = 0;
  746. smp_mb(); /* Caller's modifications seen first by other CPUs. */
  747. snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
  748. smp_mb(); /* Above access cannot bleed into critical section. */
  749. /*
  750. * Block CPU-hotplug operations. This means that any CPU-hotplug
  751. * operation that finds an rcu_node structure with tasks in the
  752. * process of being boosted will know that all tasks blocking
  753. * this expedited grace period will already be in the process of
  754. * being boosted. This simplifies the process of moving tasks
  755. * from leaf to root rcu_node structures.
  756. */
  757. if (!try_get_online_cpus()) {
  758. /* CPU-hotplug operation in flight, fall back to normal GP. */
  759. wait_rcu_gp(call_rcu);
  760. return;
  761. }
  762. /*
  763. * Acquire lock, falling back to synchronize_rcu() if too many
  764. * lock-acquisition failures. Of course, if someone does the
  765. * expedited grace period for us, just leave.
  766. */
  767. while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
  768. if (ULONG_CMP_LT(snap,
  769. ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  770. put_online_cpus();
  771. goto mb_ret; /* Others did our work for us. */
  772. }
  773. if (trycount++ < 10) {
  774. udelay(trycount * num_online_cpus());
  775. } else {
  776. put_online_cpus();
  777. wait_rcu_gp(call_rcu);
  778. return;
  779. }
  780. }
  781. if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  782. put_online_cpus();
  783. goto unlock_mb_ret; /* Others did our work for us. */
  784. }
  785. /* force all RCU readers onto ->blkd_tasks lists. */
  786. synchronize_sched_expedited();
  787. /* Initialize ->expmask for all non-leaf rcu_node structures. */
  788. rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
  789. raw_spin_lock_irqsave(&rnp->lock, flags);
  790. smp_mb__after_unlock_lock();
  791. rnp->expmask = rnp->qsmaskinit;
  792. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  793. }
  794. /* Snapshot current state of ->blkd_tasks lists. */
  795. rcu_for_each_leaf_node(rsp, rnp)
  796. sync_rcu_preempt_exp_init(rsp, rnp);
  797. if (NUM_RCU_NODES > 1)
  798. sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
  799. put_online_cpus();
  800. /* Wait for snapshotted ->blkd_tasks lists to drain. */
  801. rnp = rcu_get_root(rsp);
  802. wait_event(sync_rcu_preempt_exp_wq,
  803. sync_rcu_preempt_exp_done(rnp));
  804. /* Clean up and exit. */
  805. smp_mb(); /* ensure expedited GP seen before counter increment. */
  806. ACCESS_ONCE(sync_rcu_preempt_exp_count) =
  807. sync_rcu_preempt_exp_count + 1;
  808. unlock_mb_ret:
  809. mutex_unlock(&sync_rcu_preempt_exp_mutex);
  810. mb_ret:
  811. smp_mb(); /* ensure subsequent action seen after grace period. */
  812. }
  813. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  814. /**
  815. * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
  816. *
  817. * Note that this primitive does not necessarily wait for an RCU grace period
  818. * to complete. For example, if there are no RCU callbacks queued anywhere
  819. * in the system, then rcu_barrier() is within its rights to return
  820. * immediately, without waiting for anything, much less an RCU grace period.
  821. */
  822. void rcu_barrier(void)
  823. {
  824. _rcu_barrier(&rcu_preempt_state);
  825. }
  826. EXPORT_SYMBOL_GPL(rcu_barrier);
  827. /*
  828. * Initialize preemptible RCU's state structures.
  829. */
  830. static void __init __rcu_init_preempt(void)
  831. {
  832. rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
  833. }
  834. /*
  835. * Check for a task exiting while in a preemptible-RCU read-side
  836. * critical section, clean up if so. No need to issue warnings,
  837. * as debug_check_no_locks_held() already does this if lockdep
  838. * is enabled.
  839. */
  840. void exit_rcu(void)
  841. {
  842. struct task_struct *t = current;
  843. if (likely(list_empty(&current->rcu_node_entry)))
  844. return;
  845. t->rcu_read_lock_nesting = 1;
  846. barrier();
  847. t->rcu_read_unlock_special.b.blocked = true;
  848. __rcu_read_unlock();
  849. }
  850. #else /* #ifdef CONFIG_PREEMPT_RCU */
  851. static struct rcu_state *rcu_state_p = &rcu_sched_state;
  852. /*
  853. * Tell them what RCU they are running.
  854. */
  855. static void __init rcu_bootup_announce(void)
  856. {
  857. pr_info("Hierarchical RCU implementation.\n");
  858. rcu_bootup_announce_oddness();
  859. }
  860. /*
  861. * Return the number of RCU batches processed thus far for debug & stats.
  862. */
  863. long rcu_batches_completed(void)
  864. {
  865. return rcu_batches_completed_sched();
  866. }
  867. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  868. /*
  869. * Because preemptible RCU does not exist, we never have to check for
  870. * CPUs being in quiescent states.
  871. */
  872. static void rcu_preempt_note_context_switch(void)
  873. {
  874. }
  875. /*
  876. * Because preemptible RCU does not exist, there are never any preempted
  877. * RCU readers.
  878. */
  879. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  880. {
  881. return 0;
  882. }
  883. #ifdef CONFIG_HOTPLUG_CPU
  884. /* Because preemptible RCU does not exist, no quieting of tasks. */
  885. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  886. __releases(rnp->lock)
  887. {
  888. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  889. }
  890. /*
  891. * Because there is no preemptible RCU, there can be no readers blocked.
  892. */
  893. static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
  894. {
  895. return false;
  896. }
  897. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  898. /*
  899. * Because preemptible RCU does not exist, we never have to check for
  900. * tasks blocked within RCU read-side critical sections.
  901. */
  902. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  903. {
  904. }
  905. /*
  906. * Because preemptible RCU does not exist, we never have to check for
  907. * tasks blocked within RCU read-side critical sections.
  908. */
  909. static int rcu_print_task_stall(struct rcu_node *rnp)
  910. {
  911. return 0;
  912. }
  913. /*
  914. * Because there is no preemptible RCU, there can be no readers blocked,
  915. * so there is no need to check for blocked tasks. So check only for
  916. * bogus qsmask values.
  917. */
  918. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  919. {
  920. WARN_ON_ONCE(rnp->qsmask);
  921. }
  922. #ifdef CONFIG_HOTPLUG_CPU
  923. /*
  924. * Because preemptible RCU does not exist, it never needs to migrate
  925. * tasks that were blocked within RCU read-side critical sections, and
  926. * such non-existent tasks cannot possibly have been blocking the current
  927. * grace period.
  928. */
  929. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  930. struct rcu_node *rnp,
  931. struct rcu_data *rdp)
  932. {
  933. return 0;
  934. }
  935. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  936. /*
  937. * Because preemptible RCU does not exist, it never has any callbacks
  938. * to check.
  939. */
  940. static void rcu_preempt_check_callbacks(void)
  941. {
  942. }
  943. /*
  944. * Wait for an rcu-preempt grace period, but make it happen quickly.
  945. * But because preemptible RCU does not exist, map to rcu-sched.
  946. */
  947. void synchronize_rcu_expedited(void)
  948. {
  949. synchronize_sched_expedited();
  950. }
  951. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  952. #ifdef CONFIG_HOTPLUG_CPU
  953. /*
  954. * Because preemptible RCU does not exist, there is never any need to
  955. * report on tasks preempted in RCU read-side critical sections during
  956. * expedited RCU grace periods.
  957. */
  958. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  959. bool wake)
  960. {
  961. }
  962. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  963. /*
  964. * Because preemptible RCU does not exist, rcu_barrier() is just
  965. * another name for rcu_barrier_sched().
  966. */
  967. void rcu_barrier(void)
  968. {
  969. rcu_barrier_sched();
  970. }
  971. EXPORT_SYMBOL_GPL(rcu_barrier);
  972. /*
  973. * Because preemptible RCU does not exist, it need not be initialized.
  974. */
  975. static void __init __rcu_init_preempt(void)
  976. {
  977. }
  978. /*
  979. * Because preemptible RCU does not exist, tasks cannot possibly exit
  980. * while in preemptible RCU read-side critical sections.
  981. */
  982. void exit_rcu(void)
  983. {
  984. }
  985. #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  986. #ifdef CONFIG_RCU_BOOST
  987. #include "../locking/rtmutex_common.h"
  988. #ifdef CONFIG_RCU_TRACE
  989. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  990. {
  991. if (list_empty(&rnp->blkd_tasks))
  992. rnp->n_balk_blkd_tasks++;
  993. else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
  994. rnp->n_balk_exp_gp_tasks++;
  995. else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
  996. rnp->n_balk_boost_tasks++;
  997. else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
  998. rnp->n_balk_notblocked++;
  999. else if (rnp->gp_tasks != NULL &&
  1000. ULONG_CMP_LT(jiffies, rnp->boost_time))
  1001. rnp->n_balk_notyet++;
  1002. else
  1003. rnp->n_balk_nos++;
  1004. }
  1005. #else /* #ifdef CONFIG_RCU_TRACE */
  1006. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  1007. {
  1008. }
  1009. #endif /* #else #ifdef CONFIG_RCU_TRACE */
  1010. static void rcu_wake_cond(struct task_struct *t, int status)
  1011. {
  1012. /*
  1013. * If the thread is yielding, only wake it when this
  1014. * is invoked from idle
  1015. */
  1016. if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
  1017. wake_up_process(t);
  1018. }
  1019. /*
  1020. * Carry out RCU priority boosting on the task indicated by ->exp_tasks
  1021. * or ->boost_tasks, advancing the pointer to the next task in the
  1022. * ->blkd_tasks list.
  1023. *
  1024. * Note that irqs must be enabled: boosting the task can block.
  1025. * Returns 1 if there are more tasks needing to be boosted.
  1026. */
  1027. static int rcu_boost(struct rcu_node *rnp)
  1028. {
  1029. unsigned long flags;
  1030. struct task_struct *t;
  1031. struct list_head *tb;
  1032. if (ACCESS_ONCE(rnp->exp_tasks) == NULL &&
  1033. ACCESS_ONCE(rnp->boost_tasks) == NULL)
  1034. return 0; /* Nothing left to boost. */
  1035. raw_spin_lock_irqsave(&rnp->lock, flags);
  1036. smp_mb__after_unlock_lock();
  1037. /*
  1038. * Recheck under the lock: all tasks in need of boosting
  1039. * might exit their RCU read-side critical sections on their own.
  1040. */
  1041. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
  1042. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1043. return 0;
  1044. }
  1045. /*
  1046. * Preferentially boost tasks blocking expedited grace periods.
  1047. * This cannot starve the normal grace periods because a second
  1048. * expedited grace period must boost all blocked tasks, including
  1049. * those blocking the pre-existing normal grace period.
  1050. */
  1051. if (rnp->exp_tasks != NULL) {
  1052. tb = rnp->exp_tasks;
  1053. rnp->n_exp_boosts++;
  1054. } else {
  1055. tb = rnp->boost_tasks;
  1056. rnp->n_normal_boosts++;
  1057. }
  1058. rnp->n_tasks_boosted++;
  1059. /*
  1060. * We boost task t by manufacturing an rt_mutex that appears to
  1061. * be held by task t. We leave a pointer to that rt_mutex where
  1062. * task t can find it, and task t will release the mutex when it
  1063. * exits its outermost RCU read-side critical section. Then
  1064. * simply acquiring this artificial rt_mutex will boost task
  1065. * t's priority. (Thanks to tglx for suggesting this approach!)
  1066. *
  1067. * Note that task t must acquire rnp->lock to remove itself from
  1068. * the ->blkd_tasks list, which it will do from exit() if from
  1069. * nowhere else. We therefore are guaranteed that task t will
  1070. * stay around at least until we drop rnp->lock. Note that
  1071. * rnp->lock also resolves races between our priority boosting
  1072. * and task t's exiting its outermost RCU read-side critical
  1073. * section.
  1074. */
  1075. t = container_of(tb, struct task_struct, rcu_node_entry);
  1076. rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
  1077. init_completion(&rnp->boost_completion);
  1078. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1079. /* Lock only for side effect: boosts task t's priority. */
  1080. rt_mutex_lock(&rnp->boost_mtx);
  1081. rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
  1082. /* Wait for boostee to be done w/boost_mtx before reinitializing. */
  1083. wait_for_completion(&rnp->boost_completion);
  1084. return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
  1085. ACCESS_ONCE(rnp->boost_tasks) != NULL;
  1086. }
  1087. /*
  1088. * Priority-boosting kthread. One per leaf rcu_node and one for the
  1089. * root rcu_node.
  1090. */
  1091. static int rcu_boost_kthread(void *arg)
  1092. {
  1093. struct rcu_node *rnp = (struct rcu_node *)arg;
  1094. int spincnt = 0;
  1095. int more2boost;
  1096. trace_rcu_utilization(TPS("Start boost kthread@init"));
  1097. for (;;) {
  1098. rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
  1099. trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
  1100. rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
  1101. trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
  1102. rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
  1103. more2boost = rcu_boost(rnp);
  1104. if (more2boost)
  1105. spincnt++;
  1106. else
  1107. spincnt = 0;
  1108. if (spincnt > 10) {
  1109. rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
  1110. trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
  1111. schedule_timeout_interruptible(2);
  1112. trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
  1113. spincnt = 0;
  1114. }
  1115. }
  1116. /* NOTREACHED */
  1117. trace_rcu_utilization(TPS("End boost kthread@notreached"));
  1118. return 0;
  1119. }
  1120. /*
  1121. * Check to see if it is time to start boosting RCU readers that are
  1122. * blocking the current grace period, and, if so, tell the per-rcu_node
  1123. * kthread to start boosting them. If there is an expedited grace
  1124. * period in progress, it is always time to boost.
  1125. *
  1126. * The caller must hold rnp->lock, which this function releases.
  1127. * The ->boost_kthread_task is immortal, so we don't need to worry
  1128. * about it going away.
  1129. */
  1130. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1131. __releases(rnp->lock)
  1132. {
  1133. struct task_struct *t;
  1134. if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
  1135. rnp->n_balk_exp_gp_tasks++;
  1136. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1137. return;
  1138. }
  1139. if (rnp->exp_tasks != NULL ||
  1140. (rnp->gp_tasks != NULL &&
  1141. rnp->boost_tasks == NULL &&
  1142. rnp->qsmask == 0 &&
  1143. ULONG_CMP_GE(jiffies, rnp->boost_time))) {
  1144. if (rnp->exp_tasks == NULL)
  1145. rnp->boost_tasks = rnp->gp_tasks;
  1146. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1147. t = rnp->boost_kthread_task;
  1148. if (t)
  1149. rcu_wake_cond(t, rnp->boost_kthread_status);
  1150. } else {
  1151. rcu_initiate_boost_trace(rnp);
  1152. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1153. }
  1154. }
  1155. /*
  1156. * Wake up the per-CPU kthread to invoke RCU callbacks.
  1157. */
  1158. static void invoke_rcu_callbacks_kthread(void)
  1159. {
  1160. unsigned long flags;
  1161. local_irq_save(flags);
  1162. __this_cpu_write(rcu_cpu_has_work, 1);
  1163. if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
  1164. current != __this_cpu_read(rcu_cpu_kthread_task)) {
  1165. rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
  1166. __this_cpu_read(rcu_cpu_kthread_status));
  1167. }
  1168. local_irq_restore(flags);
  1169. }
  1170. /*
  1171. * Is the current CPU running the RCU-callbacks kthread?
  1172. * Caller must have preemption disabled.
  1173. */
  1174. static bool rcu_is_callbacks_kthread(void)
  1175. {
  1176. return __this_cpu_read(rcu_cpu_kthread_task) == current;
  1177. }
  1178. #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
  1179. /*
  1180. * Do priority-boost accounting for the start of a new grace period.
  1181. */
  1182. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1183. {
  1184. rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
  1185. }
  1186. /*
  1187. * Create an RCU-boost kthread for the specified node if one does not
  1188. * already exist. We only create this kthread for preemptible RCU.
  1189. * Returns zero if all is well, a negated errno otherwise.
  1190. */
  1191. static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
  1192. struct rcu_node *rnp)
  1193. {
  1194. int rnp_index = rnp - &rsp->node[0];
  1195. unsigned long flags;
  1196. struct sched_param sp;
  1197. struct task_struct *t;
  1198. if (&rcu_preempt_state != rsp)
  1199. return 0;
  1200. if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
  1201. return 0;
  1202. rsp->boost = 1;
  1203. if (rnp->boost_kthread_task != NULL)
  1204. return 0;
  1205. t = kthread_create(rcu_boost_kthread, (void *)rnp,
  1206. "rcub/%d", rnp_index);
  1207. if (IS_ERR(t))
  1208. return PTR_ERR(t);
  1209. raw_spin_lock_irqsave(&rnp->lock, flags);
  1210. smp_mb__after_unlock_lock();
  1211. rnp->boost_kthread_task = t;
  1212. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1213. sp.sched_priority = kthread_prio;
  1214. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  1215. wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
  1216. return 0;
  1217. }
  1218. static void rcu_kthread_do_work(void)
  1219. {
  1220. rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
  1221. rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
  1222. rcu_preempt_do_callbacks();
  1223. }
  1224. static void rcu_cpu_kthread_setup(unsigned int cpu)
  1225. {
  1226. struct sched_param sp;
  1227. sp.sched_priority = kthread_prio;
  1228. sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
  1229. }
  1230. static void rcu_cpu_kthread_park(unsigned int cpu)
  1231. {
  1232. per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
  1233. }
  1234. static int rcu_cpu_kthread_should_run(unsigned int cpu)
  1235. {
  1236. return __this_cpu_read(rcu_cpu_has_work);
  1237. }
  1238. /*
  1239. * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
  1240. * RCU softirq used in flavors and configurations of RCU that do not
  1241. * support RCU priority boosting.
  1242. */
  1243. static void rcu_cpu_kthread(unsigned int cpu)
  1244. {
  1245. unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
  1246. char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
  1247. int spincnt;
  1248. for (spincnt = 0; spincnt < 10; spincnt++) {
  1249. trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
  1250. local_bh_disable();
  1251. *statusp = RCU_KTHREAD_RUNNING;
  1252. this_cpu_inc(rcu_cpu_kthread_loops);
  1253. local_irq_disable();
  1254. work = *workp;
  1255. *workp = 0;
  1256. local_irq_enable();
  1257. if (work)
  1258. rcu_kthread_do_work();
  1259. local_bh_enable();
  1260. if (*workp == 0) {
  1261. trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
  1262. *statusp = RCU_KTHREAD_WAITING;
  1263. return;
  1264. }
  1265. }
  1266. *statusp = RCU_KTHREAD_YIELDING;
  1267. trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
  1268. schedule_timeout_interruptible(2);
  1269. trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
  1270. *statusp = RCU_KTHREAD_WAITING;
  1271. }
  1272. /*
  1273. * Set the per-rcu_node kthread's affinity to cover all CPUs that are
  1274. * served by the rcu_node in question. The CPU hotplug lock is still
  1275. * held, so the value of rnp->qsmaskinit will be stable.
  1276. *
  1277. * We don't include outgoingcpu in the affinity set, use -1 if there is
  1278. * no outgoing CPU. If there are no CPUs left in the affinity set,
  1279. * this function allows the kthread to execute on any CPU.
  1280. */
  1281. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1282. {
  1283. struct task_struct *t = rnp->boost_kthread_task;
  1284. unsigned long mask = rnp->qsmaskinit;
  1285. cpumask_var_t cm;
  1286. int cpu;
  1287. if (!t)
  1288. return;
  1289. if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
  1290. return;
  1291. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
  1292. if ((mask & 0x1) && cpu != outgoingcpu)
  1293. cpumask_set_cpu(cpu, cm);
  1294. if (cpumask_weight(cm) == 0) {
  1295. cpumask_setall(cm);
  1296. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
  1297. cpumask_clear_cpu(cpu, cm);
  1298. WARN_ON_ONCE(cpumask_weight(cm) == 0);
  1299. }
  1300. set_cpus_allowed_ptr(t, cm);
  1301. free_cpumask_var(cm);
  1302. }
  1303. static struct smp_hotplug_thread rcu_cpu_thread_spec = {
  1304. .store = &rcu_cpu_kthread_task,
  1305. .thread_should_run = rcu_cpu_kthread_should_run,
  1306. .thread_fn = rcu_cpu_kthread,
  1307. .thread_comm = "rcuc/%u",
  1308. .setup = rcu_cpu_kthread_setup,
  1309. .park = rcu_cpu_kthread_park,
  1310. };
  1311. /*
  1312. * Spawn boost kthreads -- called as soon as the scheduler is running.
  1313. */
  1314. static void __init rcu_spawn_boost_kthreads(void)
  1315. {
  1316. struct rcu_node *rnp;
  1317. int cpu;
  1318. for_each_possible_cpu(cpu)
  1319. per_cpu(rcu_cpu_has_work, cpu) = 0;
  1320. BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
  1321. rnp = rcu_get_root(rcu_state_p);
  1322. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1323. if (NUM_RCU_NODES > 1) {
  1324. rcu_for_each_leaf_node(rcu_state_p, rnp)
  1325. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1326. }
  1327. }
  1328. static void rcu_prepare_kthreads(int cpu)
  1329. {
  1330. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  1331. struct rcu_node *rnp = rdp->mynode;
  1332. /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
  1333. if (rcu_scheduler_fully_active)
  1334. (void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
  1335. }
  1336. #else /* #ifdef CONFIG_RCU_BOOST */
  1337. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1338. __releases(rnp->lock)
  1339. {
  1340. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1341. }
  1342. static void invoke_rcu_callbacks_kthread(void)
  1343. {
  1344. WARN_ON_ONCE(1);
  1345. }
  1346. static bool rcu_is_callbacks_kthread(void)
  1347. {
  1348. return false;
  1349. }
  1350. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1351. {
  1352. }
  1353. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1354. {
  1355. }
  1356. static void __init rcu_spawn_boost_kthreads(void)
  1357. {
  1358. }
  1359. static void rcu_prepare_kthreads(int cpu)
  1360. {
  1361. }
  1362. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  1363. #if !defined(CONFIG_RCU_FAST_NO_HZ)
  1364. /*
  1365. * Check to see if any future RCU-related work will need to be done
  1366. * by the current CPU, even if none need be done immediately, returning
  1367. * 1 if so. This function is part of the RCU implementation; it is -not-
  1368. * an exported member of the RCU API.
  1369. *
  1370. * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
  1371. * any flavor of RCU.
  1372. */
  1373. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1374. int rcu_needs_cpu(unsigned long *delta_jiffies)
  1375. {
  1376. *delta_jiffies = ULONG_MAX;
  1377. return rcu_cpu_has_callbacks(NULL);
  1378. }
  1379. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1380. /*
  1381. * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
  1382. * after it.
  1383. */
  1384. static void rcu_cleanup_after_idle(void)
  1385. {
  1386. }
  1387. /*
  1388. * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
  1389. * is nothing.
  1390. */
  1391. static void rcu_prepare_for_idle(void)
  1392. {
  1393. }
  1394. /*
  1395. * Don't bother keeping a running count of the number of RCU callbacks
  1396. * posted because CONFIG_RCU_FAST_NO_HZ=n.
  1397. */
  1398. static void rcu_idle_count_callbacks_posted(void)
  1399. {
  1400. }
  1401. #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1402. /*
  1403. * This code is invoked when a CPU goes idle, at which point we want
  1404. * to have the CPU do everything required for RCU so that it can enter
  1405. * the energy-efficient dyntick-idle mode. This is handled by a
  1406. * state machine implemented by rcu_prepare_for_idle() below.
  1407. *
  1408. * The following three proprocessor symbols control this state machine:
  1409. *
  1410. * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
  1411. * to sleep in dyntick-idle mode with RCU callbacks pending. This
  1412. * is sized to be roughly one RCU grace period. Those energy-efficiency
  1413. * benchmarkers who might otherwise be tempted to set this to a large
  1414. * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
  1415. * system. And if you are -that- concerned about energy efficiency,
  1416. * just power the system down and be done with it!
  1417. * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
  1418. * permitted to sleep in dyntick-idle mode with only lazy RCU
  1419. * callbacks pending. Setting this too high can OOM your system.
  1420. *
  1421. * The values below work well in practice. If future workloads require
  1422. * adjustment, they can be converted into kernel config parameters, though
  1423. * making the state machine smarter might be a better option.
  1424. */
  1425. #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
  1426. #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
  1427. static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
  1428. module_param(rcu_idle_gp_delay, int, 0644);
  1429. static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
  1430. module_param(rcu_idle_lazy_gp_delay, int, 0644);
  1431. extern int tick_nohz_active;
  1432. /*
  1433. * Try to advance callbacks for all flavors of RCU on the current CPU, but
  1434. * only if it has been awhile since the last time we did so. Afterwards,
  1435. * if there are any callbacks ready for immediate invocation, return true.
  1436. */
  1437. static bool __maybe_unused rcu_try_advance_all_cbs(void)
  1438. {
  1439. bool cbs_ready = false;
  1440. struct rcu_data *rdp;
  1441. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1442. struct rcu_node *rnp;
  1443. struct rcu_state *rsp;
  1444. /* Exit early if we advanced recently. */
  1445. if (jiffies == rdtp->last_advance_all)
  1446. return false;
  1447. rdtp->last_advance_all = jiffies;
  1448. for_each_rcu_flavor(rsp) {
  1449. rdp = this_cpu_ptr(rsp->rda);
  1450. rnp = rdp->mynode;
  1451. /*
  1452. * Don't bother checking unless a grace period has
  1453. * completed since we last checked and there are
  1454. * callbacks not yet ready to invoke.
  1455. */
  1456. if (rdp->completed != rnp->completed &&
  1457. rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
  1458. note_gp_changes(rsp, rdp);
  1459. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1460. cbs_ready = true;
  1461. }
  1462. return cbs_ready;
  1463. }
  1464. /*
  1465. * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
  1466. * to invoke. If the CPU has callbacks, try to advance them. Tell the
  1467. * caller to set the timeout based on whether or not there are non-lazy
  1468. * callbacks.
  1469. *
  1470. * The caller must have disabled interrupts.
  1471. */
  1472. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1473. int rcu_needs_cpu(unsigned long *dj)
  1474. {
  1475. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1476. /* Snapshot to detect later posting of non-lazy callback. */
  1477. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1478. /* If no callbacks, RCU doesn't need the CPU. */
  1479. if (!rcu_cpu_has_callbacks(&rdtp->all_lazy)) {
  1480. *dj = ULONG_MAX;
  1481. return 0;
  1482. }
  1483. /* Attempt to advance callbacks. */
  1484. if (rcu_try_advance_all_cbs()) {
  1485. /* Some ready to invoke, so initiate later invocation. */
  1486. invoke_rcu_core();
  1487. return 1;
  1488. }
  1489. rdtp->last_accelerate = jiffies;
  1490. /* Request timer delay depending on laziness, and round. */
  1491. if (!rdtp->all_lazy) {
  1492. *dj = round_up(rcu_idle_gp_delay + jiffies,
  1493. rcu_idle_gp_delay) - jiffies;
  1494. } else {
  1495. *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
  1496. }
  1497. return 0;
  1498. }
  1499. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1500. /*
  1501. * Prepare a CPU for idle from an RCU perspective. The first major task
  1502. * is to sense whether nohz mode has been enabled or disabled via sysfs.
  1503. * The second major task is to check to see if a non-lazy callback has
  1504. * arrived at a CPU that previously had only lazy callbacks. The third
  1505. * major task is to accelerate (that is, assign grace-period numbers to)
  1506. * any recently arrived callbacks.
  1507. *
  1508. * The caller must have disabled interrupts.
  1509. */
  1510. static void rcu_prepare_for_idle(void)
  1511. {
  1512. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1513. bool needwake;
  1514. struct rcu_data *rdp;
  1515. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1516. struct rcu_node *rnp;
  1517. struct rcu_state *rsp;
  1518. int tne;
  1519. /* Handle nohz enablement switches conservatively. */
  1520. tne = ACCESS_ONCE(tick_nohz_active);
  1521. if (tne != rdtp->tick_nohz_enabled_snap) {
  1522. if (rcu_cpu_has_callbacks(NULL))
  1523. invoke_rcu_core(); /* force nohz to see update. */
  1524. rdtp->tick_nohz_enabled_snap = tne;
  1525. return;
  1526. }
  1527. if (!tne)
  1528. return;
  1529. /* If this is a no-CBs CPU, no callbacks, just return. */
  1530. if (rcu_is_nocb_cpu(smp_processor_id()))
  1531. return;
  1532. /*
  1533. * If a non-lazy callback arrived at a CPU having only lazy
  1534. * callbacks, invoke RCU core for the side-effect of recalculating
  1535. * idle duration on re-entry to idle.
  1536. */
  1537. if (rdtp->all_lazy &&
  1538. rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
  1539. rdtp->all_lazy = false;
  1540. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1541. invoke_rcu_core();
  1542. return;
  1543. }
  1544. /*
  1545. * If we have not yet accelerated this jiffy, accelerate all
  1546. * callbacks on this CPU.
  1547. */
  1548. if (rdtp->last_accelerate == jiffies)
  1549. return;
  1550. rdtp->last_accelerate = jiffies;
  1551. for_each_rcu_flavor(rsp) {
  1552. rdp = this_cpu_ptr(rsp->rda);
  1553. if (!*rdp->nxttail[RCU_DONE_TAIL])
  1554. continue;
  1555. rnp = rdp->mynode;
  1556. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1557. smp_mb__after_unlock_lock();
  1558. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1559. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1560. if (needwake)
  1561. rcu_gp_kthread_wake(rsp);
  1562. }
  1563. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1564. }
  1565. /*
  1566. * Clean up for exit from idle. Attempt to advance callbacks based on
  1567. * any grace periods that elapsed while the CPU was idle, and if any
  1568. * callbacks are now ready to invoke, initiate invocation.
  1569. */
  1570. static void rcu_cleanup_after_idle(void)
  1571. {
  1572. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1573. if (rcu_is_nocb_cpu(smp_processor_id()))
  1574. return;
  1575. if (rcu_try_advance_all_cbs())
  1576. invoke_rcu_core();
  1577. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1578. }
  1579. /*
  1580. * Keep a running count of the number of non-lazy callbacks posted
  1581. * on this CPU. This running counter (which is never decremented) allows
  1582. * rcu_prepare_for_idle() to detect when something out of the idle loop
  1583. * posts a callback, even if an equal number of callbacks are invoked.
  1584. * Of course, callbacks should only be posted from within a trace event
  1585. * designed to be called from idle or from within RCU_NONIDLE().
  1586. */
  1587. static void rcu_idle_count_callbacks_posted(void)
  1588. {
  1589. __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
  1590. }
  1591. /*
  1592. * Data for flushing lazy RCU callbacks at OOM time.
  1593. */
  1594. static atomic_t oom_callback_count;
  1595. static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
  1596. /*
  1597. * RCU OOM callback -- decrement the outstanding count and deliver the
  1598. * wake-up if we are the last one.
  1599. */
  1600. static void rcu_oom_callback(struct rcu_head *rhp)
  1601. {
  1602. if (atomic_dec_and_test(&oom_callback_count))
  1603. wake_up(&oom_callback_wq);
  1604. }
  1605. /*
  1606. * Post an rcu_oom_notify callback on the current CPU if it has at
  1607. * least one lazy callback. This will unnecessarily post callbacks
  1608. * to CPUs that already have a non-lazy callback at the end of their
  1609. * callback list, but this is an infrequent operation, so accept some
  1610. * extra overhead to keep things simple.
  1611. */
  1612. static void rcu_oom_notify_cpu(void *unused)
  1613. {
  1614. struct rcu_state *rsp;
  1615. struct rcu_data *rdp;
  1616. for_each_rcu_flavor(rsp) {
  1617. rdp = raw_cpu_ptr(rsp->rda);
  1618. if (rdp->qlen_lazy != 0) {
  1619. atomic_inc(&oom_callback_count);
  1620. rsp->call(&rdp->oom_head, rcu_oom_callback);
  1621. }
  1622. }
  1623. }
  1624. /*
  1625. * If low on memory, ensure that each CPU has a non-lazy callback.
  1626. * This will wake up CPUs that have only lazy callbacks, in turn
  1627. * ensuring that they free up the corresponding memory in a timely manner.
  1628. * Because an uncertain amount of memory will be freed in some uncertain
  1629. * timeframe, we do not claim to have freed anything.
  1630. */
  1631. static int rcu_oom_notify(struct notifier_block *self,
  1632. unsigned long notused, void *nfreed)
  1633. {
  1634. int cpu;
  1635. /* Wait for callbacks from earlier instance to complete. */
  1636. wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
  1637. smp_mb(); /* Ensure callback reuse happens after callback invocation. */
  1638. /*
  1639. * Prevent premature wakeup: ensure that all increments happen
  1640. * before there is a chance of the counter reaching zero.
  1641. */
  1642. atomic_set(&oom_callback_count, 1);
  1643. get_online_cpus();
  1644. for_each_online_cpu(cpu) {
  1645. smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
  1646. cond_resched_rcu_qs();
  1647. }
  1648. put_online_cpus();
  1649. /* Unconditionally decrement: no need to wake ourselves up. */
  1650. atomic_dec(&oom_callback_count);
  1651. return NOTIFY_OK;
  1652. }
  1653. static struct notifier_block rcu_oom_nb = {
  1654. .notifier_call = rcu_oom_notify
  1655. };
  1656. static int __init rcu_register_oom_notifier(void)
  1657. {
  1658. register_oom_notifier(&rcu_oom_nb);
  1659. return 0;
  1660. }
  1661. early_initcall(rcu_register_oom_notifier);
  1662. #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1663. #ifdef CONFIG_RCU_CPU_STALL_INFO
  1664. #ifdef CONFIG_RCU_FAST_NO_HZ
  1665. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1666. {
  1667. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1668. unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
  1669. sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
  1670. rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
  1671. ulong2long(nlpd),
  1672. rdtp->all_lazy ? 'L' : '.',
  1673. rdtp->tick_nohz_enabled_snap ? '.' : 'D');
  1674. }
  1675. #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
  1676. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1677. {
  1678. *cp = '\0';
  1679. }
  1680. #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
  1681. /* Initiate the stall-info list. */
  1682. static void print_cpu_stall_info_begin(void)
  1683. {
  1684. pr_cont("\n");
  1685. }
  1686. /*
  1687. * Print out diagnostic information for the specified stalled CPU.
  1688. *
  1689. * If the specified CPU is aware of the current RCU grace period
  1690. * (flavor specified by rsp), then print the number of scheduling
  1691. * clock interrupts the CPU has taken during the time that it has
  1692. * been aware. Otherwise, print the number of RCU grace periods
  1693. * that this CPU is ignorant of, for example, "1" if the CPU was
  1694. * aware of the previous grace period.
  1695. *
  1696. * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
  1697. */
  1698. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1699. {
  1700. char fast_no_hz[72];
  1701. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1702. struct rcu_dynticks *rdtp = rdp->dynticks;
  1703. char *ticks_title;
  1704. unsigned long ticks_value;
  1705. if (rsp->gpnum == rdp->gpnum) {
  1706. ticks_title = "ticks this GP";
  1707. ticks_value = rdp->ticks_this_gp;
  1708. } else {
  1709. ticks_title = "GPs behind";
  1710. ticks_value = rsp->gpnum - rdp->gpnum;
  1711. }
  1712. print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
  1713. pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
  1714. cpu, ticks_value, ticks_title,
  1715. atomic_read(&rdtp->dynticks) & 0xfff,
  1716. rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
  1717. rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
  1718. fast_no_hz);
  1719. }
  1720. /* Terminate the stall-info list. */
  1721. static void print_cpu_stall_info_end(void)
  1722. {
  1723. pr_err("\t");
  1724. }
  1725. /* Zero ->ticks_this_gp for all flavors of RCU. */
  1726. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1727. {
  1728. rdp->ticks_this_gp = 0;
  1729. rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
  1730. }
  1731. /* Increment ->ticks_this_gp for all flavors of RCU. */
  1732. static void increment_cpu_stall_ticks(void)
  1733. {
  1734. struct rcu_state *rsp;
  1735. for_each_rcu_flavor(rsp)
  1736. raw_cpu_inc(rsp->rda->ticks_this_gp);
  1737. }
  1738. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1739. static void print_cpu_stall_info_begin(void)
  1740. {
  1741. pr_cont(" {");
  1742. }
  1743. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1744. {
  1745. pr_cont(" %d", cpu);
  1746. }
  1747. static void print_cpu_stall_info_end(void)
  1748. {
  1749. pr_cont("} ");
  1750. }
  1751. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1752. {
  1753. }
  1754. static void increment_cpu_stall_ticks(void)
  1755. {
  1756. }
  1757. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1758. #ifdef CONFIG_RCU_NOCB_CPU
  1759. /*
  1760. * Offload callback processing from the boot-time-specified set of CPUs
  1761. * specified by rcu_nocb_mask. For each CPU in the set, there is a
  1762. * kthread created that pulls the callbacks from the corresponding CPU,
  1763. * waits for a grace period to elapse, and invokes the callbacks.
  1764. * The no-CBs CPUs do a wake_up() on their kthread when they insert
  1765. * a callback into any empty list, unless the rcu_nocb_poll boot parameter
  1766. * has been specified, in which case each kthread actively polls its
  1767. * CPU. (Which isn't so great for energy efficiency, but which does
  1768. * reduce RCU's overhead on that CPU.)
  1769. *
  1770. * This is intended to be used in conjunction with Frederic Weisbecker's
  1771. * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  1772. * running CPU-bound user-mode computations.
  1773. *
  1774. * Offloading of callback processing could also in theory be used as
  1775. * an energy-efficiency measure because CPUs with no RCU callbacks
  1776. * queued are more aggressive about entering dyntick-idle mode.
  1777. */
  1778. /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
  1779. static int __init rcu_nocb_setup(char *str)
  1780. {
  1781. alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  1782. have_rcu_nocb_mask = true;
  1783. cpulist_parse(str, rcu_nocb_mask);
  1784. return 1;
  1785. }
  1786. __setup("rcu_nocbs=", rcu_nocb_setup);
  1787. static int __init parse_rcu_nocb_poll(char *arg)
  1788. {
  1789. rcu_nocb_poll = 1;
  1790. return 0;
  1791. }
  1792. early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  1793. /*
  1794. * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
  1795. * grace period.
  1796. */
  1797. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1798. {
  1799. wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
  1800. }
  1801. /*
  1802. * Set the root rcu_node structure's ->need_future_gp field
  1803. * based on the sum of those of all rcu_node structures. This does
  1804. * double-count the root rcu_node structure's requests, but this
  1805. * is necessary to handle the possibility of a rcu_nocb_kthread()
  1806. * having awakened during the time that the rcu_node structures
  1807. * were being updated for the end of the previous grace period.
  1808. */
  1809. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  1810. {
  1811. rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
  1812. }
  1813. static void rcu_init_one_nocb(struct rcu_node *rnp)
  1814. {
  1815. init_waitqueue_head(&rnp->nocb_gp_wq[0]);
  1816. init_waitqueue_head(&rnp->nocb_gp_wq[1]);
  1817. }
  1818. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1819. /* Is the specified CPU a no-CBs CPU? */
  1820. bool rcu_is_nocb_cpu(int cpu)
  1821. {
  1822. if (have_rcu_nocb_mask)
  1823. return cpumask_test_cpu(cpu, rcu_nocb_mask);
  1824. return false;
  1825. }
  1826. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1827. /*
  1828. * Kick the leader kthread for this NOCB group.
  1829. */
  1830. static void wake_nocb_leader(struct rcu_data *rdp, bool force)
  1831. {
  1832. struct rcu_data *rdp_leader = rdp->nocb_leader;
  1833. if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
  1834. return;
  1835. if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
  1836. /* Prior smp_mb__after_atomic() orders against prior enqueue. */
  1837. ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
  1838. wake_up(&rdp_leader->nocb_wq);
  1839. }
  1840. }
  1841. /*
  1842. * Does the specified CPU need an RCU callback for the specified flavor
  1843. * of rcu_barrier()?
  1844. */
  1845. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  1846. {
  1847. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1848. struct rcu_head *rhp;
  1849. /* No-CBs CPUs might have callbacks on any of three lists. */
  1850. rhp = ACCESS_ONCE(rdp->nocb_head);
  1851. if (!rhp)
  1852. rhp = ACCESS_ONCE(rdp->nocb_gp_head);
  1853. if (!rhp)
  1854. rhp = ACCESS_ONCE(rdp->nocb_follower_head);
  1855. /* Having no rcuo kthread but CBs after scheduler starts is bad! */
  1856. if (!ACCESS_ONCE(rdp->nocb_kthread) && rhp) {
  1857. /* RCU callback enqueued before CPU first came online??? */
  1858. pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
  1859. cpu, rhp->func);
  1860. WARN_ON_ONCE(1);
  1861. }
  1862. return !!rhp;
  1863. }
  1864. /*
  1865. * Enqueue the specified string of rcu_head structures onto the specified
  1866. * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
  1867. * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
  1868. * counts are supplied by rhcount and rhcount_lazy.
  1869. *
  1870. * If warranted, also wake up the kthread servicing this CPUs queues.
  1871. */
  1872. static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
  1873. struct rcu_head *rhp,
  1874. struct rcu_head **rhtp,
  1875. int rhcount, int rhcount_lazy,
  1876. unsigned long flags)
  1877. {
  1878. int len;
  1879. struct rcu_head **old_rhpp;
  1880. struct task_struct *t;
  1881. /* Enqueue the callback on the nocb list and update counts. */
  1882. old_rhpp = xchg(&rdp->nocb_tail, rhtp);
  1883. ACCESS_ONCE(*old_rhpp) = rhp;
  1884. atomic_long_add(rhcount, &rdp->nocb_q_count);
  1885. atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
  1886. smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
  1887. /* If we are not being polled and there is a kthread, awaken it ... */
  1888. t = ACCESS_ONCE(rdp->nocb_kthread);
  1889. if (rcu_nocb_poll || !t) {
  1890. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1891. TPS("WakeNotPoll"));
  1892. return;
  1893. }
  1894. len = atomic_long_read(&rdp->nocb_q_count);
  1895. if (old_rhpp == &rdp->nocb_head) {
  1896. if (!irqs_disabled_flags(flags)) {
  1897. /* ... if queue was empty ... */
  1898. wake_nocb_leader(rdp, false);
  1899. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1900. TPS("WakeEmpty"));
  1901. } else {
  1902. rdp->nocb_defer_wakeup = RCU_NOGP_WAKE;
  1903. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1904. TPS("WakeEmptyIsDeferred"));
  1905. }
  1906. rdp->qlen_last_fqs_check = 0;
  1907. } else if (len > rdp->qlen_last_fqs_check + qhimark) {
  1908. /* ... or if many callbacks queued. */
  1909. if (!irqs_disabled_flags(flags)) {
  1910. wake_nocb_leader(rdp, true);
  1911. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1912. TPS("WakeOvf"));
  1913. } else {
  1914. rdp->nocb_defer_wakeup = RCU_NOGP_WAKE_FORCE;
  1915. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1916. TPS("WakeOvfIsDeferred"));
  1917. }
  1918. rdp->qlen_last_fqs_check = LONG_MAX / 2;
  1919. } else {
  1920. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
  1921. }
  1922. return;
  1923. }
  1924. /*
  1925. * This is a helper for __call_rcu(), which invokes this when the normal
  1926. * callback queue is inoperable. If this is not a no-CBs CPU, this
  1927. * function returns failure back to __call_rcu(), which can complain
  1928. * appropriately.
  1929. *
  1930. * Otherwise, this function queues the callback where the corresponding
  1931. * "rcuo" kthread can find it.
  1932. */
  1933. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  1934. bool lazy, unsigned long flags)
  1935. {
  1936. if (!rcu_is_nocb_cpu(rdp->cpu))
  1937. return false;
  1938. __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
  1939. if (__is_kfree_rcu_offset((unsigned long)rhp->func))
  1940. trace_rcu_kfree_callback(rdp->rsp->name, rhp,
  1941. (unsigned long)rhp->func,
  1942. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1943. -atomic_long_read(&rdp->nocb_q_count));
  1944. else
  1945. trace_rcu_callback(rdp->rsp->name, rhp,
  1946. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1947. -atomic_long_read(&rdp->nocb_q_count));
  1948. /*
  1949. * If called from an extended quiescent state with interrupts
  1950. * disabled, invoke the RCU core in order to allow the idle-entry
  1951. * deferred-wakeup check to function.
  1952. */
  1953. if (irqs_disabled_flags(flags) &&
  1954. !rcu_is_watching() &&
  1955. cpu_online(smp_processor_id()))
  1956. invoke_rcu_core();
  1957. return true;
  1958. }
  1959. /*
  1960. * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
  1961. * not a no-CBs CPU.
  1962. */
  1963. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  1964. struct rcu_data *rdp,
  1965. unsigned long flags)
  1966. {
  1967. long ql = rsp->qlen;
  1968. long qll = rsp->qlen_lazy;
  1969. /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
  1970. if (!rcu_is_nocb_cpu(smp_processor_id()))
  1971. return false;
  1972. rsp->qlen = 0;
  1973. rsp->qlen_lazy = 0;
  1974. /* First, enqueue the donelist, if any. This preserves CB ordering. */
  1975. if (rsp->orphan_donelist != NULL) {
  1976. __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
  1977. rsp->orphan_donetail, ql, qll, flags);
  1978. ql = qll = 0;
  1979. rsp->orphan_donelist = NULL;
  1980. rsp->orphan_donetail = &rsp->orphan_donelist;
  1981. }
  1982. if (rsp->orphan_nxtlist != NULL) {
  1983. __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
  1984. rsp->orphan_nxttail, ql, qll, flags);
  1985. ql = qll = 0;
  1986. rsp->orphan_nxtlist = NULL;
  1987. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1988. }
  1989. return true;
  1990. }
  1991. /*
  1992. * If necessary, kick off a new grace period, and either way wait
  1993. * for a subsequent grace period to complete.
  1994. */
  1995. static void rcu_nocb_wait_gp(struct rcu_data *rdp)
  1996. {
  1997. unsigned long c;
  1998. bool d;
  1999. unsigned long flags;
  2000. bool needwake;
  2001. struct rcu_node *rnp = rdp->mynode;
  2002. raw_spin_lock_irqsave(&rnp->lock, flags);
  2003. smp_mb__after_unlock_lock();
  2004. needwake = rcu_start_future_gp(rnp, rdp, &c);
  2005. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2006. if (needwake)
  2007. rcu_gp_kthread_wake(rdp->rsp);
  2008. /*
  2009. * Wait for the grace period. Do so interruptibly to avoid messing
  2010. * up the load average.
  2011. */
  2012. trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
  2013. for (;;) {
  2014. wait_event_interruptible(
  2015. rnp->nocb_gp_wq[c & 0x1],
  2016. (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
  2017. if (likely(d))
  2018. break;
  2019. WARN_ON(signal_pending(current));
  2020. trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
  2021. }
  2022. trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
  2023. smp_mb(); /* Ensure that CB invocation happens after GP end. */
  2024. }
  2025. /*
  2026. * Leaders come here to wait for additional callbacks to show up.
  2027. * This function does not return until callbacks appear.
  2028. */
  2029. static void nocb_leader_wait(struct rcu_data *my_rdp)
  2030. {
  2031. bool firsttime = true;
  2032. bool gotcbs;
  2033. struct rcu_data *rdp;
  2034. struct rcu_head **tail;
  2035. wait_again:
  2036. /* Wait for callbacks to appear. */
  2037. if (!rcu_nocb_poll) {
  2038. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
  2039. wait_event_interruptible(my_rdp->nocb_wq,
  2040. !ACCESS_ONCE(my_rdp->nocb_leader_sleep));
  2041. /* Memory barrier handled by smp_mb() calls below and repoll. */
  2042. } else if (firsttime) {
  2043. firsttime = false; /* Don't drown trace log with "Poll"! */
  2044. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
  2045. }
  2046. /*
  2047. * Each pass through the following loop checks a follower for CBs.
  2048. * We are our own first follower. Any CBs found are moved to
  2049. * nocb_gp_head, where they await a grace period.
  2050. */
  2051. gotcbs = false;
  2052. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  2053. rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
  2054. if (!rdp->nocb_gp_head)
  2055. continue; /* No CBs here, try next follower. */
  2056. /* Move callbacks to wait-for-GP list, which is empty. */
  2057. ACCESS_ONCE(rdp->nocb_head) = NULL;
  2058. rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
  2059. rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
  2060. rdp->nocb_gp_count_lazy =
  2061. atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
  2062. gotcbs = true;
  2063. }
  2064. /*
  2065. * If there were no callbacks, sleep a bit, rescan after a
  2066. * memory barrier, and go retry.
  2067. */
  2068. if (unlikely(!gotcbs)) {
  2069. if (!rcu_nocb_poll)
  2070. trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
  2071. "WokeEmpty");
  2072. WARN_ON(signal_pending(current));
  2073. schedule_timeout_interruptible(1);
  2074. /* Rescan in case we were a victim of memory ordering. */
  2075. my_rdp->nocb_leader_sleep = true;
  2076. smp_mb(); /* Ensure _sleep true before scan. */
  2077. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
  2078. if (ACCESS_ONCE(rdp->nocb_head)) {
  2079. /* Found CB, so short-circuit next wait. */
  2080. my_rdp->nocb_leader_sleep = false;
  2081. break;
  2082. }
  2083. goto wait_again;
  2084. }
  2085. /* Wait for one grace period. */
  2086. rcu_nocb_wait_gp(my_rdp);
  2087. /*
  2088. * We left ->nocb_leader_sleep unset to reduce cache thrashing.
  2089. * We set it now, but recheck for new callbacks while
  2090. * traversing our follower list.
  2091. */
  2092. my_rdp->nocb_leader_sleep = true;
  2093. smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */
  2094. /* Each pass through the following loop wakes a follower, if needed. */
  2095. for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
  2096. if (ACCESS_ONCE(rdp->nocb_head))
  2097. my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
  2098. if (!rdp->nocb_gp_head)
  2099. continue; /* No CBs, so no need to wake follower. */
  2100. /* Append callbacks to follower's "done" list. */
  2101. tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
  2102. *tail = rdp->nocb_gp_head;
  2103. atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
  2104. atomic_long_add(rdp->nocb_gp_count_lazy,
  2105. &rdp->nocb_follower_count_lazy);
  2106. smp_mb__after_atomic(); /* Store *tail before wakeup. */
  2107. if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
  2108. /*
  2109. * List was empty, wake up the follower.
  2110. * Memory barriers supplied by atomic_long_add().
  2111. */
  2112. wake_up(&rdp->nocb_wq);
  2113. }
  2114. }
  2115. /* If we (the leader) don't have CBs, go wait some more. */
  2116. if (!my_rdp->nocb_follower_head)
  2117. goto wait_again;
  2118. }
  2119. /*
  2120. * Followers come here to wait for additional callbacks to show up.
  2121. * This function does not return until callbacks appear.
  2122. */
  2123. static void nocb_follower_wait(struct rcu_data *rdp)
  2124. {
  2125. bool firsttime = true;
  2126. for (;;) {
  2127. if (!rcu_nocb_poll) {
  2128. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2129. "FollowerSleep");
  2130. wait_event_interruptible(rdp->nocb_wq,
  2131. ACCESS_ONCE(rdp->nocb_follower_head));
  2132. } else if (firsttime) {
  2133. /* Don't drown trace log with "Poll"! */
  2134. firsttime = false;
  2135. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
  2136. }
  2137. if (smp_load_acquire(&rdp->nocb_follower_head)) {
  2138. /* ^^^ Ensure CB invocation follows _head test. */
  2139. return;
  2140. }
  2141. if (!rcu_nocb_poll)
  2142. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2143. "WokeEmpty");
  2144. WARN_ON(signal_pending(current));
  2145. schedule_timeout_interruptible(1);
  2146. }
  2147. }
  2148. /*
  2149. * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
  2150. * callbacks queued by the corresponding no-CBs CPU, however, there is
  2151. * an optional leader-follower relationship so that the grace-period
  2152. * kthreads don't have to do quite so many wakeups.
  2153. */
  2154. static int rcu_nocb_kthread(void *arg)
  2155. {
  2156. int c, cl;
  2157. struct rcu_head *list;
  2158. struct rcu_head *next;
  2159. struct rcu_head **tail;
  2160. struct rcu_data *rdp = arg;
  2161. /* Each pass through this loop invokes one batch of callbacks */
  2162. for (;;) {
  2163. /* Wait for callbacks. */
  2164. if (rdp->nocb_leader == rdp)
  2165. nocb_leader_wait(rdp);
  2166. else
  2167. nocb_follower_wait(rdp);
  2168. /* Pull the ready-to-invoke callbacks onto local list. */
  2169. list = ACCESS_ONCE(rdp->nocb_follower_head);
  2170. BUG_ON(!list);
  2171. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
  2172. ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
  2173. tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
  2174. c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
  2175. cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
  2176. rdp->nocb_p_count += c;
  2177. rdp->nocb_p_count_lazy += cl;
  2178. /* Each pass through the following loop invokes a callback. */
  2179. trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
  2180. c = cl = 0;
  2181. while (list) {
  2182. next = list->next;
  2183. /* Wait for enqueuing to complete, if needed. */
  2184. while (next == NULL && &list->next != tail) {
  2185. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2186. TPS("WaitQueue"));
  2187. schedule_timeout_interruptible(1);
  2188. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2189. TPS("WokeQueue"));
  2190. next = list->next;
  2191. }
  2192. debug_rcu_head_unqueue(list);
  2193. local_bh_disable();
  2194. if (__rcu_reclaim(rdp->rsp->name, list))
  2195. cl++;
  2196. c++;
  2197. local_bh_enable();
  2198. list = next;
  2199. }
  2200. trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
  2201. ACCESS_ONCE(rdp->nocb_p_count) = rdp->nocb_p_count - c;
  2202. ACCESS_ONCE(rdp->nocb_p_count_lazy) =
  2203. rdp->nocb_p_count_lazy - cl;
  2204. rdp->n_nocbs_invoked += c;
  2205. }
  2206. return 0;
  2207. }
  2208. /* Is a deferred wakeup of rcu_nocb_kthread() required? */
  2209. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2210. {
  2211. return ACCESS_ONCE(rdp->nocb_defer_wakeup);
  2212. }
  2213. /* Do a deferred wakeup of rcu_nocb_kthread(). */
  2214. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2215. {
  2216. int ndw;
  2217. if (!rcu_nocb_need_deferred_wakeup(rdp))
  2218. return;
  2219. ndw = ACCESS_ONCE(rdp->nocb_defer_wakeup);
  2220. ACCESS_ONCE(rdp->nocb_defer_wakeup) = RCU_NOGP_WAKE_NOT;
  2221. wake_nocb_leader(rdp, ndw == RCU_NOGP_WAKE_FORCE);
  2222. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWake"));
  2223. }
  2224. void __init rcu_init_nohz(void)
  2225. {
  2226. int cpu;
  2227. bool need_rcu_nocb_mask = true;
  2228. struct rcu_state *rsp;
  2229. #ifdef CONFIG_RCU_NOCB_CPU_NONE
  2230. need_rcu_nocb_mask = false;
  2231. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
  2232. #if defined(CONFIG_NO_HZ_FULL)
  2233. if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
  2234. need_rcu_nocb_mask = true;
  2235. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2236. if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
  2237. if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
  2238. pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
  2239. return;
  2240. }
  2241. have_rcu_nocb_mask = true;
  2242. }
  2243. if (!have_rcu_nocb_mask)
  2244. return;
  2245. #ifdef CONFIG_RCU_NOCB_CPU_ZERO
  2246. pr_info("\tOffload RCU callbacks from CPU 0\n");
  2247. cpumask_set_cpu(0, rcu_nocb_mask);
  2248. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
  2249. #ifdef CONFIG_RCU_NOCB_CPU_ALL
  2250. pr_info("\tOffload RCU callbacks from all CPUs\n");
  2251. cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
  2252. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
  2253. #if defined(CONFIG_NO_HZ_FULL)
  2254. if (tick_nohz_full_running)
  2255. cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
  2256. #endif /* #if defined(CONFIG_NO_HZ_FULL) */
  2257. if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
  2258. pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
  2259. cpumask_and(rcu_nocb_mask, cpu_possible_mask,
  2260. rcu_nocb_mask);
  2261. }
  2262. cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
  2263. pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
  2264. if (rcu_nocb_poll)
  2265. pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
  2266. for_each_rcu_flavor(rsp) {
  2267. for_each_cpu(cpu, rcu_nocb_mask) {
  2268. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2269. /*
  2270. * If there are early callbacks, they will need
  2271. * to be moved to the nocb lists.
  2272. */
  2273. WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
  2274. &rdp->nxtlist &&
  2275. rdp->nxttail[RCU_NEXT_TAIL] != NULL);
  2276. init_nocb_callback_list(rdp);
  2277. }
  2278. rcu_organize_nocb_kthreads(rsp);
  2279. }
  2280. }
  2281. /* Initialize per-rcu_data variables for no-CBs CPUs. */
  2282. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2283. {
  2284. rdp->nocb_tail = &rdp->nocb_head;
  2285. init_waitqueue_head(&rdp->nocb_wq);
  2286. rdp->nocb_follower_tail = &rdp->nocb_follower_head;
  2287. }
  2288. /*
  2289. * If the specified CPU is a no-CBs CPU that does not already have its
  2290. * rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
  2291. * brought online out of order, this can require re-organizing the
  2292. * leader-follower relationships.
  2293. */
  2294. static void rcu_spawn_one_nocb_kthread(struct rcu_state *rsp, int cpu)
  2295. {
  2296. struct rcu_data *rdp;
  2297. struct rcu_data *rdp_last;
  2298. struct rcu_data *rdp_old_leader;
  2299. struct rcu_data *rdp_spawn = per_cpu_ptr(rsp->rda, cpu);
  2300. struct task_struct *t;
  2301. /*
  2302. * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
  2303. * then nothing to do.
  2304. */
  2305. if (!rcu_is_nocb_cpu(cpu) || rdp_spawn->nocb_kthread)
  2306. return;
  2307. /* If we didn't spawn the leader first, reorganize! */
  2308. rdp_old_leader = rdp_spawn->nocb_leader;
  2309. if (rdp_old_leader != rdp_spawn && !rdp_old_leader->nocb_kthread) {
  2310. rdp_last = NULL;
  2311. rdp = rdp_old_leader;
  2312. do {
  2313. rdp->nocb_leader = rdp_spawn;
  2314. if (rdp_last && rdp != rdp_spawn)
  2315. rdp_last->nocb_next_follower = rdp;
  2316. if (rdp == rdp_spawn) {
  2317. rdp = rdp->nocb_next_follower;
  2318. } else {
  2319. rdp_last = rdp;
  2320. rdp = rdp->nocb_next_follower;
  2321. rdp_last->nocb_next_follower = NULL;
  2322. }
  2323. } while (rdp);
  2324. rdp_spawn->nocb_next_follower = rdp_old_leader;
  2325. }
  2326. /* Spawn the kthread for this CPU and RCU flavor. */
  2327. t = kthread_run(rcu_nocb_kthread, rdp_spawn,
  2328. "rcuo%c/%d", rsp->abbr, cpu);
  2329. BUG_ON(IS_ERR(t));
  2330. ACCESS_ONCE(rdp_spawn->nocb_kthread) = t;
  2331. }
  2332. /*
  2333. * If the specified CPU is a no-CBs CPU that does not already have its
  2334. * rcuo kthreads, spawn them.
  2335. */
  2336. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2337. {
  2338. struct rcu_state *rsp;
  2339. if (rcu_scheduler_fully_active)
  2340. for_each_rcu_flavor(rsp)
  2341. rcu_spawn_one_nocb_kthread(rsp, cpu);
  2342. }
  2343. /*
  2344. * Once the scheduler is running, spawn rcuo kthreads for all online
  2345. * no-CBs CPUs. This assumes that the early_initcall()s happen before
  2346. * non-boot CPUs come online -- if this changes, we will need to add
  2347. * some mutual exclusion.
  2348. */
  2349. static void __init rcu_spawn_nocb_kthreads(void)
  2350. {
  2351. int cpu;
  2352. for_each_online_cpu(cpu)
  2353. rcu_spawn_all_nocb_kthreads(cpu);
  2354. }
  2355. /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
  2356. static int rcu_nocb_leader_stride = -1;
  2357. module_param(rcu_nocb_leader_stride, int, 0444);
  2358. /*
  2359. * Initialize leader-follower relationships for all no-CBs CPU.
  2360. */
  2361. static void __init rcu_organize_nocb_kthreads(struct rcu_state *rsp)
  2362. {
  2363. int cpu;
  2364. int ls = rcu_nocb_leader_stride;
  2365. int nl = 0; /* Next leader. */
  2366. struct rcu_data *rdp;
  2367. struct rcu_data *rdp_leader = NULL; /* Suppress misguided gcc warn. */
  2368. struct rcu_data *rdp_prev = NULL;
  2369. if (!have_rcu_nocb_mask)
  2370. return;
  2371. if (ls == -1) {
  2372. ls = int_sqrt(nr_cpu_ids);
  2373. rcu_nocb_leader_stride = ls;
  2374. }
  2375. /*
  2376. * Each pass through this loop sets up one rcu_data structure and
  2377. * spawns one rcu_nocb_kthread().
  2378. */
  2379. for_each_cpu(cpu, rcu_nocb_mask) {
  2380. rdp = per_cpu_ptr(rsp->rda, cpu);
  2381. if (rdp->cpu >= nl) {
  2382. /* New leader, set up for followers & next leader. */
  2383. nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
  2384. rdp->nocb_leader = rdp;
  2385. rdp_leader = rdp;
  2386. } else {
  2387. /* Another follower, link to previous leader. */
  2388. rdp->nocb_leader = rdp_leader;
  2389. rdp_prev->nocb_next_follower = rdp;
  2390. }
  2391. rdp_prev = rdp;
  2392. }
  2393. }
  2394. /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
  2395. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2396. {
  2397. if (!rcu_is_nocb_cpu(rdp->cpu))
  2398. return false;
  2399. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2400. return true;
  2401. }
  2402. #else /* #ifdef CONFIG_RCU_NOCB_CPU */
  2403. static bool rcu_nocb_cpu_needs_barrier(struct rcu_state *rsp, int cpu)
  2404. {
  2405. WARN_ON_ONCE(1); /* Should be dead code. */
  2406. return false;
  2407. }
  2408. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  2409. {
  2410. }
  2411. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  2412. {
  2413. }
  2414. static void rcu_init_one_nocb(struct rcu_node *rnp)
  2415. {
  2416. }
  2417. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  2418. bool lazy, unsigned long flags)
  2419. {
  2420. return false;
  2421. }
  2422. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  2423. struct rcu_data *rdp,
  2424. unsigned long flags)
  2425. {
  2426. return false;
  2427. }
  2428. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2429. {
  2430. }
  2431. static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2432. {
  2433. return false;
  2434. }
  2435. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2436. {
  2437. }
  2438. static void rcu_spawn_all_nocb_kthreads(int cpu)
  2439. {
  2440. }
  2441. static void __init rcu_spawn_nocb_kthreads(void)
  2442. {
  2443. }
  2444. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2445. {
  2446. return false;
  2447. }
  2448. #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
  2449. /*
  2450. * An adaptive-ticks CPU can potentially execute in kernel mode for an
  2451. * arbitrarily long period of time with the scheduling-clock tick turned
  2452. * off. RCU will be paying attention to this CPU because it is in the
  2453. * kernel, but the CPU cannot be guaranteed to be executing the RCU state
  2454. * machine because the scheduling-clock tick has been disabled. Therefore,
  2455. * if an adaptive-ticks CPU is failing to respond to the current grace
  2456. * period and has not be idle from an RCU perspective, kick it.
  2457. */
  2458. static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
  2459. {
  2460. #ifdef CONFIG_NO_HZ_FULL
  2461. if (tick_nohz_full_cpu(cpu))
  2462. smp_send_reschedule(cpu);
  2463. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2464. }
  2465. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2466. static int full_sysidle_state; /* Current system-idle state. */
  2467. #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
  2468. #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
  2469. #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
  2470. #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
  2471. #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
  2472. /*
  2473. * Invoked to note exit from irq or task transition to idle. Note that
  2474. * usermode execution does -not- count as idle here! After all, we want
  2475. * to detect full-system idle states, not RCU quiescent states and grace
  2476. * periods. The caller must have disabled interrupts.
  2477. */
  2478. static void rcu_sysidle_enter(int irq)
  2479. {
  2480. unsigned long j;
  2481. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  2482. /* If there are no nohz_full= CPUs, no need to track this. */
  2483. if (!tick_nohz_full_enabled())
  2484. return;
  2485. /* Adjust nesting, check for fully idle. */
  2486. if (irq) {
  2487. rdtp->dynticks_idle_nesting--;
  2488. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2489. if (rdtp->dynticks_idle_nesting != 0)
  2490. return; /* Still not fully idle. */
  2491. } else {
  2492. if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
  2493. DYNTICK_TASK_NEST_VALUE) {
  2494. rdtp->dynticks_idle_nesting = 0;
  2495. } else {
  2496. rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
  2497. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2498. return; /* Still not fully idle. */
  2499. }
  2500. }
  2501. /* Record start of fully idle period. */
  2502. j = jiffies;
  2503. ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
  2504. smp_mb__before_atomic();
  2505. atomic_inc(&rdtp->dynticks_idle);
  2506. smp_mb__after_atomic();
  2507. WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
  2508. }
  2509. /*
  2510. * Unconditionally force exit from full system-idle state. This is
  2511. * invoked when a normal CPU exits idle, but must be called separately
  2512. * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
  2513. * is that the timekeeping CPU is permitted to take scheduling-clock
  2514. * interrupts while the system is in system-idle state, and of course
  2515. * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
  2516. * interrupt from any other type of interrupt.
  2517. */
  2518. void rcu_sysidle_force_exit(void)
  2519. {
  2520. int oldstate = ACCESS_ONCE(full_sysidle_state);
  2521. int newoldstate;
  2522. /*
  2523. * Each pass through the following loop attempts to exit full
  2524. * system-idle state. If contention proves to be a problem,
  2525. * a trylock-based contention tree could be used here.
  2526. */
  2527. while (oldstate > RCU_SYSIDLE_SHORT) {
  2528. newoldstate = cmpxchg(&full_sysidle_state,
  2529. oldstate, RCU_SYSIDLE_NOT);
  2530. if (oldstate == newoldstate &&
  2531. oldstate == RCU_SYSIDLE_FULL_NOTED) {
  2532. rcu_kick_nohz_cpu(tick_do_timer_cpu);
  2533. return; /* We cleared it, done! */
  2534. }
  2535. oldstate = newoldstate;
  2536. }
  2537. smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
  2538. }
  2539. /*
  2540. * Invoked to note entry to irq or task transition from idle. Note that
  2541. * usermode execution does -not- count as idle here! The caller must
  2542. * have disabled interrupts.
  2543. */
  2544. static void rcu_sysidle_exit(int irq)
  2545. {
  2546. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  2547. /* If there are no nohz_full= CPUs, no need to track this. */
  2548. if (!tick_nohz_full_enabled())
  2549. return;
  2550. /* Adjust nesting, check for already non-idle. */
  2551. if (irq) {
  2552. rdtp->dynticks_idle_nesting++;
  2553. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2554. if (rdtp->dynticks_idle_nesting != 1)
  2555. return; /* Already non-idle. */
  2556. } else {
  2557. /*
  2558. * Allow for irq misnesting. Yes, it really is possible
  2559. * to enter an irq handler then never leave it, and maybe
  2560. * also vice versa. Handle both possibilities.
  2561. */
  2562. if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
  2563. rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
  2564. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2565. return; /* Already non-idle. */
  2566. } else {
  2567. rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
  2568. }
  2569. }
  2570. /* Record end of idle period. */
  2571. smp_mb__before_atomic();
  2572. atomic_inc(&rdtp->dynticks_idle);
  2573. smp_mb__after_atomic();
  2574. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
  2575. /*
  2576. * If we are the timekeeping CPU, we are permitted to be non-idle
  2577. * during a system-idle state. This must be the case, because
  2578. * the timekeeping CPU has to take scheduling-clock interrupts
  2579. * during the time that the system is transitioning to full
  2580. * system-idle state. This means that the timekeeping CPU must
  2581. * invoke rcu_sysidle_force_exit() directly if it does anything
  2582. * more than take a scheduling-clock interrupt.
  2583. */
  2584. if (smp_processor_id() == tick_do_timer_cpu)
  2585. return;
  2586. /* Update system-idle state: We are clearly no longer fully idle! */
  2587. rcu_sysidle_force_exit();
  2588. }
  2589. /*
  2590. * Check to see if the current CPU is idle. Note that usermode execution
  2591. * does not count as idle. The caller must have disabled interrupts.
  2592. */
  2593. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2594. unsigned long *maxj)
  2595. {
  2596. int cur;
  2597. unsigned long j;
  2598. struct rcu_dynticks *rdtp = rdp->dynticks;
  2599. /* If there are no nohz_full= CPUs, don't check system-wide idleness. */
  2600. if (!tick_nohz_full_enabled())
  2601. return;
  2602. /*
  2603. * If some other CPU has already reported non-idle, if this is
  2604. * not the flavor of RCU that tracks sysidle state, or if this
  2605. * is an offline or the timekeeping CPU, nothing to do.
  2606. */
  2607. if (!*isidle || rdp->rsp != rcu_state_p ||
  2608. cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
  2609. return;
  2610. if (rcu_gp_in_progress(rdp->rsp))
  2611. WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
  2612. /* Pick up current idle and NMI-nesting counter and check. */
  2613. cur = atomic_read(&rdtp->dynticks_idle);
  2614. if (cur & 0x1) {
  2615. *isidle = false; /* We are not idle! */
  2616. return;
  2617. }
  2618. smp_mb(); /* Read counters before timestamps. */
  2619. /* Pick up timestamps. */
  2620. j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
  2621. /* If this CPU entered idle more recently, update maxj timestamp. */
  2622. if (ULONG_CMP_LT(*maxj, j))
  2623. *maxj = j;
  2624. }
  2625. /*
  2626. * Is this the flavor of RCU that is handling full-system idle?
  2627. */
  2628. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2629. {
  2630. return rsp == rcu_state_p;
  2631. }
  2632. /*
  2633. * Return a delay in jiffies based on the number of CPUs, rcu_node
  2634. * leaf fanout, and jiffies tick rate. The idea is to allow larger
  2635. * systems more time to transition to full-idle state in order to
  2636. * avoid the cache thrashing that otherwise occur on the state variable.
  2637. * Really small systems (less than a couple of tens of CPUs) should
  2638. * instead use a single global atomically incremented counter, and later
  2639. * versions of this will automatically reconfigure themselves accordingly.
  2640. */
  2641. static unsigned long rcu_sysidle_delay(void)
  2642. {
  2643. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2644. return 0;
  2645. return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
  2646. }
  2647. /*
  2648. * Advance the full-system-idle state. This is invoked when all of
  2649. * the non-timekeeping CPUs are idle.
  2650. */
  2651. static void rcu_sysidle(unsigned long j)
  2652. {
  2653. /* Check the current state. */
  2654. switch (ACCESS_ONCE(full_sysidle_state)) {
  2655. case RCU_SYSIDLE_NOT:
  2656. /* First time all are idle, so note a short idle period. */
  2657. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
  2658. break;
  2659. case RCU_SYSIDLE_SHORT:
  2660. /*
  2661. * Idle for a bit, time to advance to next state?
  2662. * cmpxchg failure means race with non-idle, let them win.
  2663. */
  2664. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2665. (void)cmpxchg(&full_sysidle_state,
  2666. RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
  2667. break;
  2668. case RCU_SYSIDLE_LONG:
  2669. /*
  2670. * Do an additional check pass before advancing to full.
  2671. * cmpxchg failure means race with non-idle, let them win.
  2672. */
  2673. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2674. (void)cmpxchg(&full_sysidle_state,
  2675. RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
  2676. break;
  2677. default:
  2678. break;
  2679. }
  2680. }
  2681. /*
  2682. * Found a non-idle non-timekeeping CPU, so kick the system-idle state
  2683. * back to the beginning.
  2684. */
  2685. static void rcu_sysidle_cancel(void)
  2686. {
  2687. smp_mb();
  2688. if (full_sysidle_state > RCU_SYSIDLE_SHORT)
  2689. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
  2690. }
  2691. /*
  2692. * Update the sysidle state based on the results of a force-quiescent-state
  2693. * scan of the CPUs' dyntick-idle state.
  2694. */
  2695. static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
  2696. unsigned long maxj, bool gpkt)
  2697. {
  2698. if (rsp != rcu_state_p)
  2699. return; /* Wrong flavor, ignore. */
  2700. if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2701. return; /* Running state machine from timekeeping CPU. */
  2702. if (isidle)
  2703. rcu_sysidle(maxj); /* More idle! */
  2704. else
  2705. rcu_sysidle_cancel(); /* Idle is over. */
  2706. }
  2707. /*
  2708. * Wrapper for rcu_sysidle_report() when called from the grace-period
  2709. * kthread's context.
  2710. */
  2711. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2712. unsigned long maxj)
  2713. {
  2714. /* If there are no nohz_full= CPUs, no need to track this. */
  2715. if (!tick_nohz_full_enabled())
  2716. return;
  2717. rcu_sysidle_report(rsp, isidle, maxj, true);
  2718. }
  2719. /* Callback and function for forcing an RCU grace period. */
  2720. struct rcu_sysidle_head {
  2721. struct rcu_head rh;
  2722. int inuse;
  2723. };
  2724. static void rcu_sysidle_cb(struct rcu_head *rhp)
  2725. {
  2726. struct rcu_sysidle_head *rshp;
  2727. /*
  2728. * The following memory barrier is needed to replace the
  2729. * memory barriers that would normally be in the memory
  2730. * allocator.
  2731. */
  2732. smp_mb(); /* grace period precedes setting inuse. */
  2733. rshp = container_of(rhp, struct rcu_sysidle_head, rh);
  2734. ACCESS_ONCE(rshp->inuse) = 0;
  2735. }
  2736. /*
  2737. * Check to see if the system is fully idle, other than the timekeeping CPU.
  2738. * The caller must have disabled interrupts. This is not intended to be
  2739. * called unless tick_nohz_full_enabled().
  2740. */
  2741. bool rcu_sys_is_idle(void)
  2742. {
  2743. static struct rcu_sysidle_head rsh;
  2744. int rss = ACCESS_ONCE(full_sysidle_state);
  2745. if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
  2746. return false;
  2747. /* Handle small-system case by doing a full scan of CPUs. */
  2748. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
  2749. int oldrss = rss - 1;
  2750. /*
  2751. * One pass to advance to each state up to _FULL.
  2752. * Give up if any pass fails to advance the state.
  2753. */
  2754. while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
  2755. int cpu;
  2756. bool isidle = true;
  2757. unsigned long maxj = jiffies - ULONG_MAX / 4;
  2758. struct rcu_data *rdp;
  2759. /* Scan all the CPUs looking for nonidle CPUs. */
  2760. for_each_possible_cpu(cpu) {
  2761. rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  2762. rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
  2763. if (!isidle)
  2764. break;
  2765. }
  2766. rcu_sysidle_report(rcu_state_p, isidle, maxj, false);
  2767. oldrss = rss;
  2768. rss = ACCESS_ONCE(full_sysidle_state);
  2769. }
  2770. }
  2771. /* If this is the first observation of an idle period, record it. */
  2772. if (rss == RCU_SYSIDLE_FULL) {
  2773. rss = cmpxchg(&full_sysidle_state,
  2774. RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
  2775. return rss == RCU_SYSIDLE_FULL;
  2776. }
  2777. smp_mb(); /* ensure rss load happens before later caller actions. */
  2778. /* If already fully idle, tell the caller (in case of races). */
  2779. if (rss == RCU_SYSIDLE_FULL_NOTED)
  2780. return true;
  2781. /*
  2782. * If we aren't there yet, and a grace period is not in flight,
  2783. * initiate a grace period. Either way, tell the caller that
  2784. * we are not there yet. We use an xchg() rather than an assignment
  2785. * to make up for the memory barriers that would otherwise be
  2786. * provided by the memory allocator.
  2787. */
  2788. if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
  2789. !rcu_gp_in_progress(rcu_state_p) &&
  2790. !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
  2791. call_rcu(&rsh.rh, rcu_sysidle_cb);
  2792. return false;
  2793. }
  2794. /*
  2795. * Initialize dynticks sysidle state for CPUs coming online.
  2796. */
  2797. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2798. {
  2799. rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
  2800. }
  2801. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2802. static void rcu_sysidle_enter(int irq)
  2803. {
  2804. }
  2805. static void rcu_sysidle_exit(int irq)
  2806. {
  2807. }
  2808. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2809. unsigned long *maxj)
  2810. {
  2811. }
  2812. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2813. {
  2814. return false;
  2815. }
  2816. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2817. unsigned long maxj)
  2818. {
  2819. }
  2820. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2821. {
  2822. }
  2823. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2824. /*
  2825. * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
  2826. * grace-period kthread will do force_quiescent_state() processing?
  2827. * The idea is to avoid waking up RCU core processing on such a
  2828. * CPU unless the grace period has extended for too long.
  2829. *
  2830. * This code relies on the fact that all NO_HZ_FULL CPUs are also
  2831. * CONFIG_RCU_NOCB_CPU CPUs.
  2832. */
  2833. static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
  2834. {
  2835. #ifdef CONFIG_NO_HZ_FULL
  2836. if (tick_nohz_full_cpu(smp_processor_id()) &&
  2837. (!rcu_gp_in_progress(rsp) ||
  2838. ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
  2839. return 1;
  2840. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2841. return 0;
  2842. }
  2843. /*
  2844. * Bind the grace-period kthread for the sysidle flavor of RCU to the
  2845. * timekeeping CPU.
  2846. */
  2847. static void rcu_bind_gp_kthread(void)
  2848. {
  2849. int __maybe_unused cpu;
  2850. if (!tick_nohz_full_enabled())
  2851. return;
  2852. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2853. cpu = tick_do_timer_cpu;
  2854. if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
  2855. set_cpus_allowed_ptr(current, cpumask_of(cpu));
  2856. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2857. if (!is_housekeeping_cpu(raw_smp_processor_id()))
  2858. housekeeping_affine(current);
  2859. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2860. }
  2861. /* Record the current task on dyntick-idle entry. */
  2862. static void rcu_dynticks_task_enter(void)
  2863. {
  2864. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2865. ACCESS_ONCE(current->rcu_tasks_idle_cpu) = smp_processor_id();
  2866. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2867. }
  2868. /* Record no current task on dyntick-idle exit. */
  2869. static void rcu_dynticks_task_exit(void)
  2870. {
  2871. #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
  2872. ACCESS_ONCE(current->rcu_tasks_idle_cpu) = -1;
  2873. #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
  2874. }