inode.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204
  1. /*
  2. * hugetlbpage-backed filesystem. Based on ramfs.
  3. *
  4. * Nadia Yvette Chambers, 2002
  5. *
  6. * Copyright (C) 2002 Linus Torvalds.
  7. */
  8. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9. #include <linux/module.h>
  10. #include <linux/thread_info.h>
  11. #include <asm/current.h>
  12. #include <linux/sched.h> /* remove ASAP */
  13. #include <linux/fs.h>
  14. #include <linux/mount.h>
  15. #include <linux/file.h>
  16. #include <linux/kernel.h>
  17. #include <linux/writeback.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/highmem.h>
  20. #include <linux/init.h>
  21. #include <linux/string.h>
  22. #include <linux/capability.h>
  23. #include <linux/ctype.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/hugetlb.h>
  26. #include <linux/pagevec.h>
  27. #include <linux/parser.h>
  28. #include <linux/mman.h>
  29. #include <linux/slab.h>
  30. #include <linux/dnotify.h>
  31. #include <linux/statfs.h>
  32. #include <linux/security.h>
  33. #include <linux/magic.h>
  34. #include <linux/migrate.h>
  35. #include <linux/uio.h>
  36. #include <asm/uaccess.h>
  37. static const struct super_operations hugetlbfs_ops;
  38. static const struct address_space_operations hugetlbfs_aops;
  39. const struct file_operations hugetlbfs_file_operations;
  40. static const struct inode_operations hugetlbfs_dir_inode_operations;
  41. static const struct inode_operations hugetlbfs_inode_operations;
  42. struct hugetlbfs_config {
  43. kuid_t uid;
  44. kgid_t gid;
  45. umode_t mode;
  46. long max_hpages;
  47. long nr_inodes;
  48. struct hstate *hstate;
  49. long min_hpages;
  50. };
  51. struct hugetlbfs_inode_info {
  52. struct shared_policy policy;
  53. struct inode vfs_inode;
  54. };
  55. static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
  56. {
  57. return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
  58. }
  59. int sysctl_hugetlb_shm_group;
  60. enum {
  61. Opt_size, Opt_nr_inodes,
  62. Opt_mode, Opt_uid, Opt_gid,
  63. Opt_pagesize, Opt_min_size,
  64. Opt_err,
  65. };
  66. static const match_table_t tokens = {
  67. {Opt_size, "size=%s"},
  68. {Opt_nr_inodes, "nr_inodes=%s"},
  69. {Opt_mode, "mode=%o"},
  70. {Opt_uid, "uid=%u"},
  71. {Opt_gid, "gid=%u"},
  72. {Opt_pagesize, "pagesize=%s"},
  73. {Opt_min_size, "min_size=%s"},
  74. {Opt_err, NULL},
  75. };
  76. static void huge_pagevec_release(struct pagevec *pvec)
  77. {
  78. int i;
  79. for (i = 0; i < pagevec_count(pvec); ++i)
  80. put_page(pvec->pages[i]);
  81. pagevec_reinit(pvec);
  82. }
  83. static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
  84. {
  85. struct inode *inode = file_inode(file);
  86. loff_t len, vma_len;
  87. int ret;
  88. struct hstate *h = hstate_file(file);
  89. /*
  90. * vma address alignment (but not the pgoff alignment) has
  91. * already been checked by prepare_hugepage_range. If you add
  92. * any error returns here, do so after setting VM_HUGETLB, so
  93. * is_vm_hugetlb_page tests below unmap_region go the right
  94. * way when do_mmap_pgoff unwinds (may be important on powerpc
  95. * and ia64).
  96. */
  97. vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
  98. vma->vm_ops = &hugetlb_vm_ops;
  99. if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
  100. return -EINVAL;
  101. vma_len = (loff_t)(vma->vm_end - vma->vm_start);
  102. mutex_lock(&inode->i_mutex);
  103. file_accessed(file);
  104. ret = -ENOMEM;
  105. len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
  106. if (hugetlb_reserve_pages(inode,
  107. vma->vm_pgoff >> huge_page_order(h),
  108. len >> huge_page_shift(h), vma,
  109. vma->vm_flags))
  110. goto out;
  111. ret = 0;
  112. if (vma->vm_flags & VM_WRITE && inode->i_size < len)
  113. inode->i_size = len;
  114. out:
  115. mutex_unlock(&inode->i_mutex);
  116. return ret;
  117. }
  118. /*
  119. * Called under down_write(mmap_sem).
  120. */
  121. #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  122. static unsigned long
  123. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  124. unsigned long len, unsigned long pgoff, unsigned long flags)
  125. {
  126. struct mm_struct *mm = current->mm;
  127. struct vm_area_struct *vma;
  128. struct hstate *h = hstate_file(file);
  129. struct vm_unmapped_area_info info;
  130. if (len & ~huge_page_mask(h))
  131. return -EINVAL;
  132. if (len > TASK_SIZE)
  133. return -ENOMEM;
  134. if (flags & MAP_FIXED) {
  135. if (prepare_hugepage_range(file, addr, len))
  136. return -EINVAL;
  137. return addr;
  138. }
  139. if (addr) {
  140. addr = ALIGN(addr, huge_page_size(h));
  141. vma = find_vma(mm, addr);
  142. if (TASK_SIZE - len >= addr &&
  143. (!vma || addr + len <= vma->vm_start))
  144. return addr;
  145. }
  146. info.flags = 0;
  147. info.length = len;
  148. info.low_limit = TASK_UNMAPPED_BASE;
  149. info.high_limit = TASK_SIZE;
  150. info.align_mask = PAGE_MASK & ~huge_page_mask(h);
  151. info.align_offset = 0;
  152. return vm_unmapped_area(&info);
  153. }
  154. #endif
  155. static size_t
  156. hugetlbfs_read_actor(struct page *page, unsigned long offset,
  157. struct iov_iter *to, unsigned long size)
  158. {
  159. size_t copied = 0;
  160. int i, chunksize;
  161. /* Find which 4k chunk and offset with in that chunk */
  162. i = offset >> PAGE_CACHE_SHIFT;
  163. offset = offset & ~PAGE_CACHE_MASK;
  164. while (size) {
  165. size_t n;
  166. chunksize = PAGE_CACHE_SIZE;
  167. if (offset)
  168. chunksize -= offset;
  169. if (chunksize > size)
  170. chunksize = size;
  171. n = copy_page_to_iter(&page[i], offset, chunksize, to);
  172. copied += n;
  173. if (n != chunksize)
  174. return copied;
  175. offset = 0;
  176. size -= chunksize;
  177. i++;
  178. }
  179. return copied;
  180. }
  181. /*
  182. * Support for read() - Find the page attached to f_mapping and copy out the
  183. * data. Its *very* similar to do_generic_mapping_read(), we can't use that
  184. * since it has PAGE_CACHE_SIZE assumptions.
  185. */
  186. static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
  187. {
  188. struct file *file = iocb->ki_filp;
  189. struct hstate *h = hstate_file(file);
  190. struct address_space *mapping = file->f_mapping;
  191. struct inode *inode = mapping->host;
  192. unsigned long index = iocb->ki_pos >> huge_page_shift(h);
  193. unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
  194. unsigned long end_index;
  195. loff_t isize;
  196. ssize_t retval = 0;
  197. while (iov_iter_count(to)) {
  198. struct page *page;
  199. size_t nr, copied;
  200. /* nr is the maximum number of bytes to copy from this page */
  201. nr = huge_page_size(h);
  202. isize = i_size_read(inode);
  203. if (!isize)
  204. break;
  205. end_index = (isize - 1) >> huge_page_shift(h);
  206. if (index > end_index)
  207. break;
  208. if (index == end_index) {
  209. nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
  210. if (nr <= offset)
  211. break;
  212. }
  213. nr = nr - offset;
  214. /* Find the page */
  215. page = find_lock_page(mapping, index);
  216. if (unlikely(page == NULL)) {
  217. /*
  218. * We have a HOLE, zero out the user-buffer for the
  219. * length of the hole or request.
  220. */
  221. copied = iov_iter_zero(nr, to);
  222. } else {
  223. unlock_page(page);
  224. /*
  225. * We have the page, copy it to user space buffer.
  226. */
  227. copied = hugetlbfs_read_actor(page, offset, to, nr);
  228. page_cache_release(page);
  229. }
  230. offset += copied;
  231. retval += copied;
  232. if (copied != nr && iov_iter_count(to)) {
  233. if (!retval)
  234. retval = -EFAULT;
  235. break;
  236. }
  237. index += offset >> huge_page_shift(h);
  238. offset &= ~huge_page_mask(h);
  239. }
  240. iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
  241. return retval;
  242. }
  243. static int hugetlbfs_write_begin(struct file *file,
  244. struct address_space *mapping,
  245. loff_t pos, unsigned len, unsigned flags,
  246. struct page **pagep, void **fsdata)
  247. {
  248. return -EINVAL;
  249. }
  250. static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
  251. loff_t pos, unsigned len, unsigned copied,
  252. struct page *page, void *fsdata)
  253. {
  254. BUG();
  255. return -EINVAL;
  256. }
  257. static void remove_huge_page(struct page *page)
  258. {
  259. ClearPageDirty(page);
  260. ClearPageUptodate(page);
  261. delete_from_page_cache(page);
  262. }
  263. /*
  264. * remove_inode_hugepages handles two distinct cases: truncation and hole
  265. * punch. There are subtle differences in operation for each case.
  266. * truncation is indicated by end of range being LLONG_MAX
  267. * In this case, we first scan the range and release found pages.
  268. * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
  269. * maps and global counts.
  270. * hole punch is indicated if end is not LLONG_MAX
  271. * In the hole punch case we scan the range and release found pages.
  272. * Only when releasing a page is the associated region/reserv map
  273. * deleted. The region/reserv map for ranges without associated
  274. * pages are not modified.
  275. * Note: If the passed end of range value is beyond the end of file, but
  276. * not LLONG_MAX this routine still performs a hole punch operation.
  277. */
  278. static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
  279. loff_t lend)
  280. {
  281. struct hstate *h = hstate_inode(inode);
  282. struct address_space *mapping = &inode->i_data;
  283. const pgoff_t start = lstart >> huge_page_shift(h);
  284. const pgoff_t end = lend >> huge_page_shift(h);
  285. struct vm_area_struct pseudo_vma;
  286. struct pagevec pvec;
  287. pgoff_t next;
  288. int i, freed = 0;
  289. long lookup_nr = PAGEVEC_SIZE;
  290. bool truncate_op = (lend == LLONG_MAX);
  291. memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
  292. pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
  293. pagevec_init(&pvec, 0);
  294. next = start;
  295. while (next < end) {
  296. /*
  297. * Make sure to never grab more pages that we
  298. * might possibly need.
  299. */
  300. if (end - next < lookup_nr)
  301. lookup_nr = end - next;
  302. /*
  303. * This pagevec_lookup() may return pages past 'end',
  304. * so we must check for page->index > end.
  305. */
  306. if (!pagevec_lookup(&pvec, mapping, next, lookup_nr)) {
  307. if (next == start)
  308. break;
  309. next = start;
  310. continue;
  311. }
  312. for (i = 0; i < pagevec_count(&pvec); ++i) {
  313. struct page *page = pvec.pages[i];
  314. u32 hash;
  315. hash = hugetlb_fault_mutex_hash(h, current->mm,
  316. &pseudo_vma,
  317. mapping, next, 0);
  318. mutex_lock(&hugetlb_fault_mutex_table[hash]);
  319. lock_page(page);
  320. if (page->index >= end) {
  321. unlock_page(page);
  322. mutex_unlock(&hugetlb_fault_mutex_table[hash]);
  323. next = end; /* we are done */
  324. break;
  325. }
  326. /*
  327. * If page is mapped, it was faulted in after being
  328. * unmapped. Do nothing in this race case. In the
  329. * normal case page is not mapped.
  330. */
  331. if (!page_mapped(page)) {
  332. bool rsv_on_error = !PagePrivate(page);
  333. /*
  334. * We must free the huge page and remove
  335. * from page cache (remove_huge_page) BEFORE
  336. * removing the region/reserve map
  337. * (hugetlb_unreserve_pages). In rare out
  338. * of memory conditions, removal of the
  339. * region/reserve map could fail. Before
  340. * free'ing the page, note PagePrivate which
  341. * is used in case of error.
  342. */
  343. remove_huge_page(page);
  344. freed++;
  345. if (!truncate_op) {
  346. if (unlikely(hugetlb_unreserve_pages(
  347. inode, next,
  348. next + 1, 1)))
  349. hugetlb_fix_reserve_counts(
  350. inode, rsv_on_error);
  351. }
  352. }
  353. if (page->index > next)
  354. next = page->index;
  355. ++next;
  356. unlock_page(page);
  357. mutex_unlock(&hugetlb_fault_mutex_table[hash]);
  358. }
  359. huge_pagevec_release(&pvec);
  360. }
  361. if (truncate_op)
  362. (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
  363. }
  364. static void hugetlbfs_evict_inode(struct inode *inode)
  365. {
  366. struct resv_map *resv_map;
  367. remove_inode_hugepages(inode, 0, LLONG_MAX);
  368. resv_map = (struct resv_map *)inode->i_mapping->private_data;
  369. /* root inode doesn't have the resv_map, so we should check it */
  370. if (resv_map)
  371. resv_map_release(&resv_map->refs);
  372. clear_inode(inode);
  373. }
  374. static inline void
  375. hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
  376. {
  377. struct vm_area_struct *vma;
  378. /*
  379. * end == 0 indicates that the entire range after
  380. * start should be unmapped.
  381. */
  382. vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
  383. unsigned long v_offset;
  384. /*
  385. * Can the expression below overflow on 32-bit arches?
  386. * No, because the interval tree returns us only those vmas
  387. * which overlap the truncated area starting at pgoff,
  388. * and no vma on a 32-bit arch can span beyond the 4GB.
  389. */
  390. if (vma->vm_pgoff < start)
  391. v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
  392. else
  393. v_offset = 0;
  394. if (end) {
  395. end = ((end - start) << PAGE_SHIFT) +
  396. vma->vm_start + v_offset;
  397. if (end > vma->vm_end)
  398. end = vma->vm_end;
  399. } else
  400. end = vma->vm_end;
  401. unmap_hugepage_range(vma, vma->vm_start + v_offset, end, NULL);
  402. }
  403. }
  404. static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
  405. {
  406. pgoff_t pgoff;
  407. struct address_space *mapping = inode->i_mapping;
  408. struct hstate *h = hstate_inode(inode);
  409. BUG_ON(offset & ~huge_page_mask(h));
  410. pgoff = offset >> PAGE_SHIFT;
  411. i_size_write(inode, offset);
  412. i_mmap_lock_write(mapping);
  413. if (!RB_EMPTY_ROOT(&mapping->i_mmap))
  414. hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
  415. i_mmap_unlock_write(mapping);
  416. remove_inode_hugepages(inode, offset, LLONG_MAX);
  417. return 0;
  418. }
  419. static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
  420. {
  421. struct inode *inode = d_inode(dentry);
  422. struct hstate *h = hstate_inode(inode);
  423. int error;
  424. unsigned int ia_valid = attr->ia_valid;
  425. BUG_ON(!inode);
  426. error = inode_change_ok(inode, attr);
  427. if (error)
  428. return error;
  429. if (ia_valid & ATTR_SIZE) {
  430. error = -EINVAL;
  431. if (attr->ia_size & ~huge_page_mask(h))
  432. return -EINVAL;
  433. error = hugetlb_vmtruncate(inode, attr->ia_size);
  434. if (error)
  435. return error;
  436. }
  437. setattr_copy(inode, attr);
  438. mark_inode_dirty(inode);
  439. return 0;
  440. }
  441. static struct inode *hugetlbfs_get_root(struct super_block *sb,
  442. struct hugetlbfs_config *config)
  443. {
  444. struct inode *inode;
  445. inode = new_inode(sb);
  446. if (inode) {
  447. struct hugetlbfs_inode_info *info;
  448. inode->i_ino = get_next_ino();
  449. inode->i_mode = S_IFDIR | config->mode;
  450. inode->i_uid = config->uid;
  451. inode->i_gid = config->gid;
  452. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  453. info = HUGETLBFS_I(inode);
  454. mpol_shared_policy_init(&info->policy, NULL);
  455. inode->i_op = &hugetlbfs_dir_inode_operations;
  456. inode->i_fop = &simple_dir_operations;
  457. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  458. inc_nlink(inode);
  459. lockdep_annotate_inode_mutex_key(inode);
  460. }
  461. return inode;
  462. }
  463. /*
  464. * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
  465. * be taken from reclaim -- unlike regular filesystems. This needs an
  466. * annotation because huge_pmd_share() does an allocation under
  467. * i_mmap_rwsem.
  468. */
  469. static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
  470. static struct inode *hugetlbfs_get_inode(struct super_block *sb,
  471. struct inode *dir,
  472. umode_t mode, dev_t dev)
  473. {
  474. struct inode *inode;
  475. struct resv_map *resv_map;
  476. resv_map = resv_map_alloc();
  477. if (!resv_map)
  478. return NULL;
  479. inode = new_inode(sb);
  480. if (inode) {
  481. struct hugetlbfs_inode_info *info;
  482. inode->i_ino = get_next_ino();
  483. inode_init_owner(inode, dir, mode);
  484. lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
  485. &hugetlbfs_i_mmap_rwsem_key);
  486. inode->i_mapping->a_ops = &hugetlbfs_aops;
  487. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  488. inode->i_mapping->private_data = resv_map;
  489. info = HUGETLBFS_I(inode);
  490. /*
  491. * The policy is initialized here even if we are creating a
  492. * private inode because initialization simply creates an
  493. * an empty rb tree and calls spin_lock_init(), later when we
  494. * call mpol_free_shared_policy() it will just return because
  495. * the rb tree will still be empty.
  496. */
  497. mpol_shared_policy_init(&info->policy, NULL);
  498. switch (mode & S_IFMT) {
  499. default:
  500. init_special_inode(inode, mode, dev);
  501. break;
  502. case S_IFREG:
  503. inode->i_op = &hugetlbfs_inode_operations;
  504. inode->i_fop = &hugetlbfs_file_operations;
  505. break;
  506. case S_IFDIR:
  507. inode->i_op = &hugetlbfs_dir_inode_operations;
  508. inode->i_fop = &simple_dir_operations;
  509. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  510. inc_nlink(inode);
  511. break;
  512. case S_IFLNK:
  513. inode->i_op = &page_symlink_inode_operations;
  514. break;
  515. }
  516. lockdep_annotate_inode_mutex_key(inode);
  517. } else
  518. kref_put(&resv_map->refs, resv_map_release);
  519. return inode;
  520. }
  521. /*
  522. * File creation. Allocate an inode, and we're done..
  523. */
  524. static int hugetlbfs_mknod(struct inode *dir,
  525. struct dentry *dentry, umode_t mode, dev_t dev)
  526. {
  527. struct inode *inode;
  528. int error = -ENOSPC;
  529. inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
  530. if (inode) {
  531. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  532. d_instantiate(dentry, inode);
  533. dget(dentry); /* Extra count - pin the dentry in core */
  534. error = 0;
  535. }
  536. return error;
  537. }
  538. static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
  539. {
  540. int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
  541. if (!retval)
  542. inc_nlink(dir);
  543. return retval;
  544. }
  545. static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
  546. {
  547. return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
  548. }
  549. static int hugetlbfs_symlink(struct inode *dir,
  550. struct dentry *dentry, const char *symname)
  551. {
  552. struct inode *inode;
  553. int error = -ENOSPC;
  554. inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
  555. if (inode) {
  556. int l = strlen(symname)+1;
  557. error = page_symlink(inode, symname, l);
  558. if (!error) {
  559. d_instantiate(dentry, inode);
  560. dget(dentry);
  561. } else
  562. iput(inode);
  563. }
  564. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  565. return error;
  566. }
  567. /*
  568. * mark the head page dirty
  569. */
  570. static int hugetlbfs_set_page_dirty(struct page *page)
  571. {
  572. struct page *head = compound_head(page);
  573. SetPageDirty(head);
  574. return 0;
  575. }
  576. static int hugetlbfs_migrate_page(struct address_space *mapping,
  577. struct page *newpage, struct page *page,
  578. enum migrate_mode mode)
  579. {
  580. int rc;
  581. rc = migrate_huge_page_move_mapping(mapping, newpage, page);
  582. if (rc != MIGRATEPAGE_SUCCESS)
  583. return rc;
  584. migrate_page_copy(newpage, page);
  585. return MIGRATEPAGE_SUCCESS;
  586. }
  587. static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  588. {
  589. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
  590. struct hstate *h = hstate_inode(d_inode(dentry));
  591. buf->f_type = HUGETLBFS_MAGIC;
  592. buf->f_bsize = huge_page_size(h);
  593. if (sbinfo) {
  594. spin_lock(&sbinfo->stat_lock);
  595. /* If no limits set, just report 0 for max/free/used
  596. * blocks, like simple_statfs() */
  597. if (sbinfo->spool) {
  598. long free_pages;
  599. spin_lock(&sbinfo->spool->lock);
  600. buf->f_blocks = sbinfo->spool->max_hpages;
  601. free_pages = sbinfo->spool->max_hpages
  602. - sbinfo->spool->used_hpages;
  603. buf->f_bavail = buf->f_bfree = free_pages;
  604. spin_unlock(&sbinfo->spool->lock);
  605. buf->f_files = sbinfo->max_inodes;
  606. buf->f_ffree = sbinfo->free_inodes;
  607. }
  608. spin_unlock(&sbinfo->stat_lock);
  609. }
  610. buf->f_namelen = NAME_MAX;
  611. return 0;
  612. }
  613. static void hugetlbfs_put_super(struct super_block *sb)
  614. {
  615. struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
  616. if (sbi) {
  617. sb->s_fs_info = NULL;
  618. if (sbi->spool)
  619. hugepage_put_subpool(sbi->spool);
  620. kfree(sbi);
  621. }
  622. }
  623. static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  624. {
  625. if (sbinfo->free_inodes >= 0) {
  626. spin_lock(&sbinfo->stat_lock);
  627. if (unlikely(!sbinfo->free_inodes)) {
  628. spin_unlock(&sbinfo->stat_lock);
  629. return 0;
  630. }
  631. sbinfo->free_inodes--;
  632. spin_unlock(&sbinfo->stat_lock);
  633. }
  634. return 1;
  635. }
  636. static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  637. {
  638. if (sbinfo->free_inodes >= 0) {
  639. spin_lock(&sbinfo->stat_lock);
  640. sbinfo->free_inodes++;
  641. spin_unlock(&sbinfo->stat_lock);
  642. }
  643. }
  644. static struct kmem_cache *hugetlbfs_inode_cachep;
  645. static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
  646. {
  647. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
  648. struct hugetlbfs_inode_info *p;
  649. if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
  650. return NULL;
  651. p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
  652. if (unlikely(!p)) {
  653. hugetlbfs_inc_free_inodes(sbinfo);
  654. return NULL;
  655. }
  656. return &p->vfs_inode;
  657. }
  658. static void hugetlbfs_i_callback(struct rcu_head *head)
  659. {
  660. struct inode *inode = container_of(head, struct inode, i_rcu);
  661. kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
  662. }
  663. static void hugetlbfs_destroy_inode(struct inode *inode)
  664. {
  665. hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
  666. mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
  667. call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
  668. }
  669. static const struct address_space_operations hugetlbfs_aops = {
  670. .write_begin = hugetlbfs_write_begin,
  671. .write_end = hugetlbfs_write_end,
  672. .set_page_dirty = hugetlbfs_set_page_dirty,
  673. .migratepage = hugetlbfs_migrate_page,
  674. };
  675. static void init_once(void *foo)
  676. {
  677. struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
  678. inode_init_once(&ei->vfs_inode);
  679. }
  680. const struct file_operations hugetlbfs_file_operations = {
  681. .read_iter = hugetlbfs_read_iter,
  682. .mmap = hugetlbfs_file_mmap,
  683. .fsync = noop_fsync,
  684. .get_unmapped_area = hugetlb_get_unmapped_area,
  685. .llseek = default_llseek,
  686. };
  687. static const struct inode_operations hugetlbfs_dir_inode_operations = {
  688. .create = hugetlbfs_create,
  689. .lookup = simple_lookup,
  690. .link = simple_link,
  691. .unlink = simple_unlink,
  692. .symlink = hugetlbfs_symlink,
  693. .mkdir = hugetlbfs_mkdir,
  694. .rmdir = simple_rmdir,
  695. .mknod = hugetlbfs_mknod,
  696. .rename = simple_rename,
  697. .setattr = hugetlbfs_setattr,
  698. };
  699. static const struct inode_operations hugetlbfs_inode_operations = {
  700. .setattr = hugetlbfs_setattr,
  701. };
  702. static const struct super_operations hugetlbfs_ops = {
  703. .alloc_inode = hugetlbfs_alloc_inode,
  704. .destroy_inode = hugetlbfs_destroy_inode,
  705. .evict_inode = hugetlbfs_evict_inode,
  706. .statfs = hugetlbfs_statfs,
  707. .put_super = hugetlbfs_put_super,
  708. .show_options = generic_show_options,
  709. };
  710. enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
  711. /*
  712. * Convert size option passed from command line to number of huge pages
  713. * in the pool specified by hstate. Size option could be in bytes
  714. * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
  715. */
  716. static long long
  717. hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
  718. int val_type)
  719. {
  720. if (val_type == NO_SIZE)
  721. return -1;
  722. if (val_type == SIZE_PERCENT) {
  723. size_opt <<= huge_page_shift(h);
  724. size_opt *= h->max_huge_pages;
  725. do_div(size_opt, 100);
  726. }
  727. size_opt >>= huge_page_shift(h);
  728. return size_opt;
  729. }
  730. static int
  731. hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
  732. {
  733. char *p, *rest;
  734. substring_t args[MAX_OPT_ARGS];
  735. int option;
  736. unsigned long long max_size_opt = 0, min_size_opt = 0;
  737. int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
  738. if (!options)
  739. return 0;
  740. while ((p = strsep(&options, ",")) != NULL) {
  741. int token;
  742. if (!*p)
  743. continue;
  744. token = match_token(p, tokens, args);
  745. switch (token) {
  746. case Opt_uid:
  747. if (match_int(&args[0], &option))
  748. goto bad_val;
  749. pconfig->uid = make_kuid(current_user_ns(), option);
  750. if (!uid_valid(pconfig->uid))
  751. goto bad_val;
  752. break;
  753. case Opt_gid:
  754. if (match_int(&args[0], &option))
  755. goto bad_val;
  756. pconfig->gid = make_kgid(current_user_ns(), option);
  757. if (!gid_valid(pconfig->gid))
  758. goto bad_val;
  759. break;
  760. case Opt_mode:
  761. if (match_octal(&args[0], &option))
  762. goto bad_val;
  763. pconfig->mode = option & 01777U;
  764. break;
  765. case Opt_size: {
  766. /* memparse() will accept a K/M/G without a digit */
  767. if (!isdigit(*args[0].from))
  768. goto bad_val;
  769. max_size_opt = memparse(args[0].from, &rest);
  770. max_val_type = SIZE_STD;
  771. if (*rest == '%')
  772. max_val_type = SIZE_PERCENT;
  773. break;
  774. }
  775. case Opt_nr_inodes:
  776. /* memparse() will accept a K/M/G without a digit */
  777. if (!isdigit(*args[0].from))
  778. goto bad_val;
  779. pconfig->nr_inodes = memparse(args[0].from, &rest);
  780. break;
  781. case Opt_pagesize: {
  782. unsigned long ps;
  783. ps = memparse(args[0].from, &rest);
  784. pconfig->hstate = size_to_hstate(ps);
  785. if (!pconfig->hstate) {
  786. pr_err("Unsupported page size %lu MB\n",
  787. ps >> 20);
  788. return -EINVAL;
  789. }
  790. break;
  791. }
  792. case Opt_min_size: {
  793. /* memparse() will accept a K/M/G without a digit */
  794. if (!isdigit(*args[0].from))
  795. goto bad_val;
  796. min_size_opt = memparse(args[0].from, &rest);
  797. min_val_type = SIZE_STD;
  798. if (*rest == '%')
  799. min_val_type = SIZE_PERCENT;
  800. break;
  801. }
  802. default:
  803. pr_err("Bad mount option: \"%s\"\n", p);
  804. return -EINVAL;
  805. break;
  806. }
  807. }
  808. /*
  809. * Use huge page pool size (in hstate) to convert the size
  810. * options to number of huge pages. If NO_SIZE, -1 is returned.
  811. */
  812. pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
  813. max_size_opt, max_val_type);
  814. pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
  815. min_size_opt, min_val_type);
  816. /*
  817. * If max_size was specified, then min_size must be smaller
  818. */
  819. if (max_val_type > NO_SIZE &&
  820. pconfig->min_hpages > pconfig->max_hpages) {
  821. pr_err("minimum size can not be greater than maximum size\n");
  822. return -EINVAL;
  823. }
  824. return 0;
  825. bad_val:
  826. pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
  827. return -EINVAL;
  828. }
  829. static int
  830. hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
  831. {
  832. int ret;
  833. struct hugetlbfs_config config;
  834. struct hugetlbfs_sb_info *sbinfo;
  835. save_mount_options(sb, data);
  836. config.max_hpages = -1; /* No limit on size by default */
  837. config.nr_inodes = -1; /* No limit on number of inodes by default */
  838. config.uid = current_fsuid();
  839. config.gid = current_fsgid();
  840. config.mode = 0755;
  841. config.hstate = &default_hstate;
  842. config.min_hpages = -1; /* No default minimum size */
  843. ret = hugetlbfs_parse_options(data, &config);
  844. if (ret)
  845. return ret;
  846. sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
  847. if (!sbinfo)
  848. return -ENOMEM;
  849. sb->s_fs_info = sbinfo;
  850. sbinfo->hstate = config.hstate;
  851. spin_lock_init(&sbinfo->stat_lock);
  852. sbinfo->max_inodes = config.nr_inodes;
  853. sbinfo->free_inodes = config.nr_inodes;
  854. sbinfo->spool = NULL;
  855. /*
  856. * Allocate and initialize subpool if maximum or minimum size is
  857. * specified. Any needed reservations (for minimim size) are taken
  858. * taken when the subpool is created.
  859. */
  860. if (config.max_hpages != -1 || config.min_hpages != -1) {
  861. sbinfo->spool = hugepage_new_subpool(config.hstate,
  862. config.max_hpages,
  863. config.min_hpages);
  864. if (!sbinfo->spool)
  865. goto out_free;
  866. }
  867. sb->s_maxbytes = MAX_LFS_FILESIZE;
  868. sb->s_blocksize = huge_page_size(config.hstate);
  869. sb->s_blocksize_bits = huge_page_shift(config.hstate);
  870. sb->s_magic = HUGETLBFS_MAGIC;
  871. sb->s_op = &hugetlbfs_ops;
  872. sb->s_time_gran = 1;
  873. sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
  874. if (!sb->s_root)
  875. goto out_free;
  876. return 0;
  877. out_free:
  878. kfree(sbinfo->spool);
  879. kfree(sbinfo);
  880. return -ENOMEM;
  881. }
  882. static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
  883. int flags, const char *dev_name, void *data)
  884. {
  885. return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
  886. }
  887. static struct file_system_type hugetlbfs_fs_type = {
  888. .name = "hugetlbfs",
  889. .mount = hugetlbfs_mount,
  890. .kill_sb = kill_litter_super,
  891. };
  892. MODULE_ALIAS_FS("hugetlbfs");
  893. static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
  894. static int can_do_hugetlb_shm(void)
  895. {
  896. kgid_t shm_group;
  897. shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
  898. return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
  899. }
  900. static int get_hstate_idx(int page_size_log)
  901. {
  902. struct hstate *h = hstate_sizelog(page_size_log);
  903. if (!h)
  904. return -1;
  905. return h - hstates;
  906. }
  907. static const struct dentry_operations anon_ops = {
  908. .d_dname = simple_dname
  909. };
  910. /*
  911. * Note that size should be aligned to proper hugepage size in caller side,
  912. * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
  913. */
  914. struct file *hugetlb_file_setup(const char *name, size_t size,
  915. vm_flags_t acctflag, struct user_struct **user,
  916. int creat_flags, int page_size_log)
  917. {
  918. struct file *file = ERR_PTR(-ENOMEM);
  919. struct inode *inode;
  920. struct path path;
  921. struct super_block *sb;
  922. struct qstr quick_string;
  923. int hstate_idx;
  924. hstate_idx = get_hstate_idx(page_size_log);
  925. if (hstate_idx < 0)
  926. return ERR_PTR(-ENODEV);
  927. *user = NULL;
  928. if (!hugetlbfs_vfsmount[hstate_idx])
  929. return ERR_PTR(-ENOENT);
  930. if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
  931. *user = current_user();
  932. if (user_shm_lock(size, *user)) {
  933. task_lock(current);
  934. pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
  935. current->comm, current->pid);
  936. task_unlock(current);
  937. } else {
  938. *user = NULL;
  939. return ERR_PTR(-EPERM);
  940. }
  941. }
  942. sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
  943. quick_string.name = name;
  944. quick_string.len = strlen(quick_string.name);
  945. quick_string.hash = 0;
  946. path.dentry = d_alloc_pseudo(sb, &quick_string);
  947. if (!path.dentry)
  948. goto out_shm_unlock;
  949. d_set_d_op(path.dentry, &anon_ops);
  950. path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
  951. file = ERR_PTR(-ENOSPC);
  952. inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
  953. if (!inode)
  954. goto out_dentry;
  955. if (creat_flags == HUGETLB_SHMFS_INODE)
  956. inode->i_flags |= S_PRIVATE;
  957. file = ERR_PTR(-ENOMEM);
  958. if (hugetlb_reserve_pages(inode, 0,
  959. size >> huge_page_shift(hstate_inode(inode)), NULL,
  960. acctflag))
  961. goto out_inode;
  962. d_instantiate(path.dentry, inode);
  963. inode->i_size = size;
  964. clear_nlink(inode);
  965. file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
  966. &hugetlbfs_file_operations);
  967. if (IS_ERR(file))
  968. goto out_dentry; /* inode is already attached */
  969. return file;
  970. out_inode:
  971. iput(inode);
  972. out_dentry:
  973. path_put(&path);
  974. out_shm_unlock:
  975. if (*user) {
  976. user_shm_unlock(size, *user);
  977. *user = NULL;
  978. }
  979. return file;
  980. }
  981. static int __init init_hugetlbfs_fs(void)
  982. {
  983. struct hstate *h;
  984. int error;
  985. int i;
  986. if (!hugepages_supported()) {
  987. pr_info("disabling because there are no supported hugepage sizes\n");
  988. return -ENOTSUPP;
  989. }
  990. error = -ENOMEM;
  991. hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
  992. sizeof(struct hugetlbfs_inode_info),
  993. 0, 0, init_once);
  994. if (hugetlbfs_inode_cachep == NULL)
  995. goto out2;
  996. error = register_filesystem(&hugetlbfs_fs_type);
  997. if (error)
  998. goto out;
  999. i = 0;
  1000. for_each_hstate(h) {
  1001. char buf[50];
  1002. unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
  1003. snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
  1004. hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
  1005. buf);
  1006. if (IS_ERR(hugetlbfs_vfsmount[i])) {
  1007. pr_err("Cannot mount internal hugetlbfs for "
  1008. "page size %uK", ps_kb);
  1009. error = PTR_ERR(hugetlbfs_vfsmount[i]);
  1010. hugetlbfs_vfsmount[i] = NULL;
  1011. }
  1012. i++;
  1013. }
  1014. /* Non default hstates are optional */
  1015. if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
  1016. return 0;
  1017. out:
  1018. kmem_cache_destroy(hugetlbfs_inode_cachep);
  1019. out2:
  1020. return error;
  1021. }
  1022. static void __exit exit_hugetlbfs_fs(void)
  1023. {
  1024. struct hstate *h;
  1025. int i;
  1026. /*
  1027. * Make sure all delayed rcu free inodes are flushed before we
  1028. * destroy cache.
  1029. */
  1030. rcu_barrier();
  1031. kmem_cache_destroy(hugetlbfs_inode_cachep);
  1032. i = 0;
  1033. for_each_hstate(h)
  1034. kern_unmount(hugetlbfs_vfsmount[i++]);
  1035. unregister_filesystem(&hugetlbfs_fs_type);
  1036. }
  1037. module_init(init_hugetlbfs_fs)
  1038. module_exit(exit_hugetlbfs_fs)
  1039. MODULE_LICENSE("GPL");