atmel-sha.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646
  1. /*
  2. * Cryptographic API.
  3. *
  4. * Support for ATMEL SHA1/SHA256 HW acceleration.
  5. *
  6. * Copyright (c) 2012 Eukréa Electromatique - ATMEL
  7. * Author: Nicolas Royer <nicolas@eukrea.com>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as published
  11. * by the Free Software Foundation.
  12. *
  13. * Some ideas are from omap-sham.c drivers.
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/module.h>
  17. #include <linux/slab.h>
  18. #include <linux/err.h>
  19. #include <linux/clk.h>
  20. #include <linux/io.h>
  21. #include <linux/hw_random.h>
  22. #include <linux/platform_device.h>
  23. #include <linux/device.h>
  24. #include <linux/init.h>
  25. #include <linux/errno.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/irq.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/dma-mapping.h>
  30. #include <linux/of_device.h>
  31. #include <linux/delay.h>
  32. #include <linux/crypto.h>
  33. #include <linux/cryptohash.h>
  34. #include <crypto/scatterwalk.h>
  35. #include <crypto/algapi.h>
  36. #include <crypto/sha.h>
  37. #include <crypto/hash.h>
  38. #include <crypto/internal/hash.h>
  39. #include <linux/platform_data/crypto-atmel.h>
  40. #include "atmel-sha-regs.h"
  41. /* SHA flags */
  42. #define SHA_FLAGS_BUSY BIT(0)
  43. #define SHA_FLAGS_FINAL BIT(1)
  44. #define SHA_FLAGS_DMA_ACTIVE BIT(2)
  45. #define SHA_FLAGS_OUTPUT_READY BIT(3)
  46. #define SHA_FLAGS_INIT BIT(4)
  47. #define SHA_FLAGS_CPU BIT(5)
  48. #define SHA_FLAGS_DMA_READY BIT(6)
  49. #define SHA_FLAGS_FINUP BIT(16)
  50. #define SHA_FLAGS_SG BIT(17)
  51. #define SHA_FLAGS_ALGO_MASK GENMASK(22, 18)
  52. #define SHA_FLAGS_SHA1 BIT(18)
  53. #define SHA_FLAGS_SHA224 BIT(19)
  54. #define SHA_FLAGS_SHA256 BIT(20)
  55. #define SHA_FLAGS_SHA384 BIT(21)
  56. #define SHA_FLAGS_SHA512 BIT(22)
  57. #define SHA_FLAGS_ERROR BIT(23)
  58. #define SHA_FLAGS_PAD BIT(24)
  59. #define SHA_FLAGS_RESTORE BIT(25)
  60. #define SHA_OP_UPDATE 1
  61. #define SHA_OP_FINAL 2
  62. #define SHA_BUFFER_LEN (PAGE_SIZE / 16)
  63. #define ATMEL_SHA_DMA_THRESHOLD 56
  64. struct atmel_sha_caps {
  65. bool has_dma;
  66. bool has_dualbuff;
  67. bool has_sha224;
  68. bool has_sha_384_512;
  69. bool has_uihv;
  70. };
  71. struct atmel_sha_dev;
  72. /*
  73. * .statesize = sizeof(struct atmel_sha_reqctx) must be <= PAGE_SIZE / 8 as
  74. * tested by the ahash_prepare_alg() function.
  75. */
  76. struct atmel_sha_reqctx {
  77. struct atmel_sha_dev *dd;
  78. unsigned long flags;
  79. unsigned long op;
  80. u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  81. u64 digcnt[2];
  82. size_t bufcnt;
  83. size_t buflen;
  84. dma_addr_t dma_addr;
  85. /* walk state */
  86. struct scatterlist *sg;
  87. unsigned int offset; /* offset in current sg */
  88. unsigned int total; /* total request */
  89. size_t block_size;
  90. u8 buffer[SHA_BUFFER_LEN + SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
  91. };
  92. typedef int (*atmel_sha_fn_t)(struct atmel_sha_dev *);
  93. struct atmel_sha_ctx {
  94. struct atmel_sha_dev *dd;
  95. atmel_sha_fn_t start;
  96. unsigned long flags;
  97. };
  98. #define ATMEL_SHA_QUEUE_LENGTH 50
  99. struct atmel_sha_dma {
  100. struct dma_chan *chan;
  101. struct dma_slave_config dma_conf;
  102. };
  103. struct atmel_sha_dev {
  104. struct list_head list;
  105. unsigned long phys_base;
  106. struct device *dev;
  107. struct clk *iclk;
  108. int irq;
  109. void __iomem *io_base;
  110. spinlock_t lock;
  111. int err;
  112. struct tasklet_struct done_task;
  113. struct tasklet_struct queue_task;
  114. unsigned long flags;
  115. struct crypto_queue queue;
  116. struct ahash_request *req;
  117. bool is_async;
  118. atmel_sha_fn_t resume;
  119. struct atmel_sha_dma dma_lch_in;
  120. struct atmel_sha_caps caps;
  121. u32 hw_version;
  122. };
  123. struct atmel_sha_drv {
  124. struct list_head dev_list;
  125. spinlock_t lock;
  126. };
  127. static struct atmel_sha_drv atmel_sha = {
  128. .dev_list = LIST_HEAD_INIT(atmel_sha.dev_list),
  129. .lock = __SPIN_LOCK_UNLOCKED(atmel_sha.lock),
  130. };
  131. static inline u32 atmel_sha_read(struct atmel_sha_dev *dd, u32 offset)
  132. {
  133. return readl_relaxed(dd->io_base + offset);
  134. }
  135. static inline void atmel_sha_write(struct atmel_sha_dev *dd,
  136. u32 offset, u32 value)
  137. {
  138. writel_relaxed(value, dd->io_base + offset);
  139. }
  140. static inline int atmel_sha_complete(struct atmel_sha_dev *dd, int err)
  141. {
  142. struct ahash_request *req = dd->req;
  143. dd->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL | SHA_FLAGS_CPU |
  144. SHA_FLAGS_DMA_READY | SHA_FLAGS_OUTPUT_READY);
  145. clk_disable(dd->iclk);
  146. if (dd->is_async && req->base.complete)
  147. req->base.complete(&req->base, err);
  148. /* handle new request */
  149. tasklet_schedule(&dd->queue_task);
  150. return err;
  151. }
  152. static size_t atmel_sha_append_sg(struct atmel_sha_reqctx *ctx)
  153. {
  154. size_t count;
  155. while ((ctx->bufcnt < ctx->buflen) && ctx->total) {
  156. count = min(ctx->sg->length - ctx->offset, ctx->total);
  157. count = min(count, ctx->buflen - ctx->bufcnt);
  158. if (count <= 0) {
  159. /*
  160. * Check if count <= 0 because the buffer is full or
  161. * because the sg length is 0. In the latest case,
  162. * check if there is another sg in the list, a 0 length
  163. * sg doesn't necessarily mean the end of the sg list.
  164. */
  165. if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
  166. ctx->sg = sg_next(ctx->sg);
  167. continue;
  168. } else {
  169. break;
  170. }
  171. }
  172. scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
  173. ctx->offset, count, 0);
  174. ctx->bufcnt += count;
  175. ctx->offset += count;
  176. ctx->total -= count;
  177. if (ctx->offset == ctx->sg->length) {
  178. ctx->sg = sg_next(ctx->sg);
  179. if (ctx->sg)
  180. ctx->offset = 0;
  181. else
  182. ctx->total = 0;
  183. }
  184. }
  185. return 0;
  186. }
  187. /*
  188. * The purpose of this padding is to ensure that the padded message is a
  189. * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
  190. * The bit "1" is appended at the end of the message followed by
  191. * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
  192. * 128 bits block (SHA384/SHA512) equals to the message length in bits
  193. * is appended.
  194. *
  195. * For SHA1/SHA224/SHA256, padlen is calculated as followed:
  196. * - if message length < 56 bytes then padlen = 56 - message length
  197. * - else padlen = 64 + 56 - message length
  198. *
  199. * For SHA384/SHA512, padlen is calculated as followed:
  200. * - if message length < 112 bytes then padlen = 112 - message length
  201. * - else padlen = 128 + 112 - message length
  202. */
  203. static void atmel_sha_fill_padding(struct atmel_sha_reqctx *ctx, int length)
  204. {
  205. unsigned int index, padlen;
  206. u64 bits[2];
  207. u64 size[2];
  208. size[0] = ctx->digcnt[0];
  209. size[1] = ctx->digcnt[1];
  210. size[0] += ctx->bufcnt;
  211. if (size[0] < ctx->bufcnt)
  212. size[1]++;
  213. size[0] += length;
  214. if (size[0] < length)
  215. size[1]++;
  216. bits[1] = cpu_to_be64(size[0] << 3);
  217. bits[0] = cpu_to_be64(size[1] << 3 | size[0] >> 61);
  218. if (ctx->flags & (SHA_FLAGS_SHA384 | SHA_FLAGS_SHA512)) {
  219. index = ctx->bufcnt & 0x7f;
  220. padlen = (index < 112) ? (112 - index) : ((128+112) - index);
  221. *(ctx->buffer + ctx->bufcnt) = 0x80;
  222. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  223. memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
  224. ctx->bufcnt += padlen + 16;
  225. ctx->flags |= SHA_FLAGS_PAD;
  226. } else {
  227. index = ctx->bufcnt & 0x3f;
  228. padlen = (index < 56) ? (56 - index) : ((64+56) - index);
  229. *(ctx->buffer + ctx->bufcnt) = 0x80;
  230. memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen-1);
  231. memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
  232. ctx->bufcnt += padlen + 8;
  233. ctx->flags |= SHA_FLAGS_PAD;
  234. }
  235. }
  236. static struct atmel_sha_dev *atmel_sha_find_dev(struct atmel_sha_ctx *tctx)
  237. {
  238. struct atmel_sha_dev *dd = NULL;
  239. struct atmel_sha_dev *tmp;
  240. spin_lock_bh(&atmel_sha.lock);
  241. if (!tctx->dd) {
  242. list_for_each_entry(tmp, &atmel_sha.dev_list, list) {
  243. dd = tmp;
  244. break;
  245. }
  246. tctx->dd = dd;
  247. } else {
  248. dd = tctx->dd;
  249. }
  250. spin_unlock_bh(&atmel_sha.lock);
  251. return dd;
  252. }
  253. static int atmel_sha_init(struct ahash_request *req)
  254. {
  255. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  256. struct atmel_sha_ctx *tctx = crypto_ahash_ctx(tfm);
  257. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  258. struct atmel_sha_dev *dd = atmel_sha_find_dev(tctx);
  259. ctx->dd = dd;
  260. ctx->flags = 0;
  261. dev_dbg(dd->dev, "init: digest size: %d\n",
  262. crypto_ahash_digestsize(tfm));
  263. switch (crypto_ahash_digestsize(tfm)) {
  264. case SHA1_DIGEST_SIZE:
  265. ctx->flags |= SHA_FLAGS_SHA1;
  266. ctx->block_size = SHA1_BLOCK_SIZE;
  267. break;
  268. case SHA224_DIGEST_SIZE:
  269. ctx->flags |= SHA_FLAGS_SHA224;
  270. ctx->block_size = SHA224_BLOCK_SIZE;
  271. break;
  272. case SHA256_DIGEST_SIZE:
  273. ctx->flags |= SHA_FLAGS_SHA256;
  274. ctx->block_size = SHA256_BLOCK_SIZE;
  275. break;
  276. case SHA384_DIGEST_SIZE:
  277. ctx->flags |= SHA_FLAGS_SHA384;
  278. ctx->block_size = SHA384_BLOCK_SIZE;
  279. break;
  280. case SHA512_DIGEST_SIZE:
  281. ctx->flags |= SHA_FLAGS_SHA512;
  282. ctx->block_size = SHA512_BLOCK_SIZE;
  283. break;
  284. default:
  285. return -EINVAL;
  286. break;
  287. }
  288. ctx->bufcnt = 0;
  289. ctx->digcnt[0] = 0;
  290. ctx->digcnt[1] = 0;
  291. ctx->buflen = SHA_BUFFER_LEN;
  292. return 0;
  293. }
  294. static void atmel_sha_write_ctrl(struct atmel_sha_dev *dd, int dma)
  295. {
  296. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  297. u32 valmr = SHA_MR_MODE_AUTO;
  298. unsigned int i, hashsize = 0;
  299. if (likely(dma)) {
  300. if (!dd->caps.has_dma)
  301. atmel_sha_write(dd, SHA_IER, SHA_INT_TXBUFE);
  302. valmr = SHA_MR_MODE_PDC;
  303. if (dd->caps.has_dualbuff)
  304. valmr |= SHA_MR_DUALBUFF;
  305. } else {
  306. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  307. }
  308. switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
  309. case SHA_FLAGS_SHA1:
  310. valmr |= SHA_MR_ALGO_SHA1;
  311. hashsize = SHA1_DIGEST_SIZE;
  312. break;
  313. case SHA_FLAGS_SHA224:
  314. valmr |= SHA_MR_ALGO_SHA224;
  315. hashsize = SHA256_DIGEST_SIZE;
  316. break;
  317. case SHA_FLAGS_SHA256:
  318. valmr |= SHA_MR_ALGO_SHA256;
  319. hashsize = SHA256_DIGEST_SIZE;
  320. break;
  321. case SHA_FLAGS_SHA384:
  322. valmr |= SHA_MR_ALGO_SHA384;
  323. hashsize = SHA512_DIGEST_SIZE;
  324. break;
  325. case SHA_FLAGS_SHA512:
  326. valmr |= SHA_MR_ALGO_SHA512;
  327. hashsize = SHA512_DIGEST_SIZE;
  328. break;
  329. default:
  330. break;
  331. }
  332. /* Setting CR_FIRST only for the first iteration */
  333. if (!(ctx->digcnt[0] || ctx->digcnt[1])) {
  334. atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
  335. } else if (dd->caps.has_uihv && (ctx->flags & SHA_FLAGS_RESTORE)) {
  336. const u32 *hash = (const u32 *)ctx->digest;
  337. /*
  338. * Restore the hardware context: update the User Initialize
  339. * Hash Value (UIHV) with the value saved when the latest
  340. * 'update' operation completed on this very same crypto
  341. * request.
  342. */
  343. ctx->flags &= ~SHA_FLAGS_RESTORE;
  344. atmel_sha_write(dd, SHA_CR, SHA_CR_WUIHV);
  345. for (i = 0; i < hashsize / sizeof(u32); ++i)
  346. atmel_sha_write(dd, SHA_REG_DIN(i), hash[i]);
  347. atmel_sha_write(dd, SHA_CR, SHA_CR_FIRST);
  348. valmr |= SHA_MR_UIHV;
  349. }
  350. /*
  351. * WARNING: If the UIHV feature is not available, the hardware CANNOT
  352. * process concurrent requests: the internal registers used to store
  353. * the hash/digest are still set to the partial digest output values
  354. * computed during the latest round.
  355. */
  356. atmel_sha_write(dd, SHA_MR, valmr);
  357. }
  358. static int atmel_sha_xmit_cpu(struct atmel_sha_dev *dd, const u8 *buf,
  359. size_t length, int final)
  360. {
  361. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  362. int count, len32;
  363. const u32 *buffer = (const u32 *)buf;
  364. dev_dbg(dd->dev, "xmit_cpu: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  365. ctx->digcnt[1], ctx->digcnt[0], length, final);
  366. atmel_sha_write_ctrl(dd, 0);
  367. /* should be non-zero before next lines to disable clocks later */
  368. ctx->digcnt[0] += length;
  369. if (ctx->digcnt[0] < length)
  370. ctx->digcnt[1]++;
  371. if (final)
  372. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  373. len32 = DIV_ROUND_UP(length, sizeof(u32));
  374. dd->flags |= SHA_FLAGS_CPU;
  375. for (count = 0; count < len32; count++)
  376. atmel_sha_write(dd, SHA_REG_DIN(count), buffer[count]);
  377. return -EINPROGRESS;
  378. }
  379. static int atmel_sha_xmit_pdc(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  380. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  381. {
  382. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  383. int len32;
  384. dev_dbg(dd->dev, "xmit_pdc: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  385. ctx->digcnt[1], ctx->digcnt[0], length1, final);
  386. len32 = DIV_ROUND_UP(length1, sizeof(u32));
  387. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTDIS);
  388. atmel_sha_write(dd, SHA_TPR, dma_addr1);
  389. atmel_sha_write(dd, SHA_TCR, len32);
  390. len32 = DIV_ROUND_UP(length2, sizeof(u32));
  391. atmel_sha_write(dd, SHA_TNPR, dma_addr2);
  392. atmel_sha_write(dd, SHA_TNCR, len32);
  393. atmel_sha_write_ctrl(dd, 1);
  394. /* should be non-zero before next lines to disable clocks later */
  395. ctx->digcnt[0] += length1;
  396. if (ctx->digcnt[0] < length1)
  397. ctx->digcnt[1]++;
  398. if (final)
  399. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  400. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  401. /* Start DMA transfer */
  402. atmel_sha_write(dd, SHA_PTCR, SHA_PTCR_TXTEN);
  403. return -EINPROGRESS;
  404. }
  405. static void atmel_sha_dma_callback(void *data)
  406. {
  407. struct atmel_sha_dev *dd = data;
  408. dd->is_async = true;
  409. /* dma_lch_in - completed - wait DATRDY */
  410. atmel_sha_write(dd, SHA_IER, SHA_INT_DATARDY);
  411. }
  412. static int atmel_sha_xmit_dma(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  413. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  414. {
  415. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  416. struct dma_async_tx_descriptor *in_desc;
  417. struct scatterlist sg[2];
  418. dev_dbg(dd->dev, "xmit_dma: digcnt: 0x%llx 0x%llx, length: %d, final: %d\n",
  419. ctx->digcnt[1], ctx->digcnt[0], length1, final);
  420. dd->dma_lch_in.dma_conf.src_maxburst = 16;
  421. dd->dma_lch_in.dma_conf.dst_maxburst = 16;
  422. dmaengine_slave_config(dd->dma_lch_in.chan, &dd->dma_lch_in.dma_conf);
  423. if (length2) {
  424. sg_init_table(sg, 2);
  425. sg_dma_address(&sg[0]) = dma_addr1;
  426. sg_dma_len(&sg[0]) = length1;
  427. sg_dma_address(&sg[1]) = dma_addr2;
  428. sg_dma_len(&sg[1]) = length2;
  429. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 2,
  430. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  431. } else {
  432. sg_init_table(sg, 1);
  433. sg_dma_address(&sg[0]) = dma_addr1;
  434. sg_dma_len(&sg[0]) = length1;
  435. in_desc = dmaengine_prep_slave_sg(dd->dma_lch_in.chan, sg, 1,
  436. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  437. }
  438. if (!in_desc)
  439. atmel_sha_complete(dd, -EINVAL);
  440. in_desc->callback = atmel_sha_dma_callback;
  441. in_desc->callback_param = dd;
  442. atmel_sha_write_ctrl(dd, 1);
  443. /* should be non-zero before next lines to disable clocks later */
  444. ctx->digcnt[0] += length1;
  445. if (ctx->digcnt[0] < length1)
  446. ctx->digcnt[1]++;
  447. if (final)
  448. dd->flags |= SHA_FLAGS_FINAL; /* catch last interrupt */
  449. dd->flags |= SHA_FLAGS_DMA_ACTIVE;
  450. /* Start DMA transfer */
  451. dmaengine_submit(in_desc);
  452. dma_async_issue_pending(dd->dma_lch_in.chan);
  453. return -EINPROGRESS;
  454. }
  455. static int atmel_sha_xmit_start(struct atmel_sha_dev *dd, dma_addr_t dma_addr1,
  456. size_t length1, dma_addr_t dma_addr2, size_t length2, int final)
  457. {
  458. if (dd->caps.has_dma)
  459. return atmel_sha_xmit_dma(dd, dma_addr1, length1,
  460. dma_addr2, length2, final);
  461. else
  462. return atmel_sha_xmit_pdc(dd, dma_addr1, length1,
  463. dma_addr2, length2, final);
  464. }
  465. static int atmel_sha_update_cpu(struct atmel_sha_dev *dd)
  466. {
  467. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  468. int bufcnt;
  469. atmel_sha_append_sg(ctx);
  470. atmel_sha_fill_padding(ctx, 0);
  471. bufcnt = ctx->bufcnt;
  472. ctx->bufcnt = 0;
  473. return atmel_sha_xmit_cpu(dd, ctx->buffer, bufcnt, 1);
  474. }
  475. static int atmel_sha_xmit_dma_map(struct atmel_sha_dev *dd,
  476. struct atmel_sha_reqctx *ctx,
  477. size_t length, int final)
  478. {
  479. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  480. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  481. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  482. dev_err(dd->dev, "dma %u bytes error\n", ctx->buflen +
  483. ctx->block_size);
  484. atmel_sha_complete(dd, -EINVAL);
  485. }
  486. ctx->flags &= ~SHA_FLAGS_SG;
  487. /* next call does not fail... so no unmap in the case of error */
  488. return atmel_sha_xmit_start(dd, ctx->dma_addr, length, 0, 0, final);
  489. }
  490. static int atmel_sha_update_dma_slow(struct atmel_sha_dev *dd)
  491. {
  492. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  493. unsigned int final;
  494. size_t count;
  495. atmel_sha_append_sg(ctx);
  496. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  497. dev_dbg(dd->dev, "slow: bufcnt: %u, digcnt: 0x%llx 0x%llx, final: %d\n",
  498. ctx->bufcnt, ctx->digcnt[1], ctx->digcnt[0], final);
  499. if (final)
  500. atmel_sha_fill_padding(ctx, 0);
  501. if (final || (ctx->bufcnt == ctx->buflen)) {
  502. count = ctx->bufcnt;
  503. ctx->bufcnt = 0;
  504. return atmel_sha_xmit_dma_map(dd, ctx, count, final);
  505. }
  506. return 0;
  507. }
  508. static int atmel_sha_update_dma_start(struct atmel_sha_dev *dd)
  509. {
  510. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  511. unsigned int length, final, tail;
  512. struct scatterlist *sg;
  513. unsigned int count;
  514. if (!ctx->total)
  515. return 0;
  516. if (ctx->bufcnt || ctx->offset)
  517. return atmel_sha_update_dma_slow(dd);
  518. dev_dbg(dd->dev, "fast: digcnt: 0x%llx 0x%llx, bufcnt: %u, total: %u\n",
  519. ctx->digcnt[1], ctx->digcnt[0], ctx->bufcnt, ctx->total);
  520. sg = ctx->sg;
  521. if (!IS_ALIGNED(sg->offset, sizeof(u32)))
  522. return atmel_sha_update_dma_slow(dd);
  523. if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->block_size))
  524. /* size is not ctx->block_size aligned */
  525. return atmel_sha_update_dma_slow(dd);
  526. length = min(ctx->total, sg->length);
  527. if (sg_is_last(sg)) {
  528. if (!(ctx->flags & SHA_FLAGS_FINUP)) {
  529. /* not last sg must be ctx->block_size aligned */
  530. tail = length & (ctx->block_size - 1);
  531. length -= tail;
  532. }
  533. }
  534. ctx->total -= length;
  535. ctx->offset = length; /* offset where to start slow */
  536. final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
  537. /* Add padding */
  538. if (final) {
  539. tail = length & (ctx->block_size - 1);
  540. length -= tail;
  541. ctx->total += tail;
  542. ctx->offset = length; /* offset where to start slow */
  543. sg = ctx->sg;
  544. atmel_sha_append_sg(ctx);
  545. atmel_sha_fill_padding(ctx, length);
  546. ctx->dma_addr = dma_map_single(dd->dev, ctx->buffer,
  547. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  548. if (dma_mapping_error(dd->dev, ctx->dma_addr)) {
  549. dev_err(dd->dev, "dma %u bytes error\n",
  550. ctx->buflen + ctx->block_size);
  551. atmel_sha_complete(dd, -EINVAL);
  552. }
  553. if (length == 0) {
  554. ctx->flags &= ~SHA_FLAGS_SG;
  555. count = ctx->bufcnt;
  556. ctx->bufcnt = 0;
  557. return atmel_sha_xmit_start(dd, ctx->dma_addr, count, 0,
  558. 0, final);
  559. } else {
  560. ctx->sg = sg;
  561. if (!dma_map_sg(dd->dev, ctx->sg, 1,
  562. DMA_TO_DEVICE)) {
  563. dev_err(dd->dev, "dma_map_sg error\n");
  564. atmel_sha_complete(dd, -EINVAL);
  565. }
  566. ctx->flags |= SHA_FLAGS_SG;
  567. count = ctx->bufcnt;
  568. ctx->bufcnt = 0;
  569. return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg),
  570. length, ctx->dma_addr, count, final);
  571. }
  572. }
  573. if (!dma_map_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
  574. dev_err(dd->dev, "dma_map_sg error\n");
  575. atmel_sha_complete(dd, -EINVAL);
  576. }
  577. ctx->flags |= SHA_FLAGS_SG;
  578. /* next call does not fail... so no unmap in the case of error */
  579. return atmel_sha_xmit_start(dd, sg_dma_address(ctx->sg), length, 0,
  580. 0, final);
  581. }
  582. static int atmel_sha_update_dma_stop(struct atmel_sha_dev *dd)
  583. {
  584. struct atmel_sha_reqctx *ctx = ahash_request_ctx(dd->req);
  585. if (ctx->flags & SHA_FLAGS_SG) {
  586. dma_unmap_sg(dd->dev, ctx->sg, 1, DMA_TO_DEVICE);
  587. if (ctx->sg->length == ctx->offset) {
  588. ctx->sg = sg_next(ctx->sg);
  589. if (ctx->sg)
  590. ctx->offset = 0;
  591. }
  592. if (ctx->flags & SHA_FLAGS_PAD) {
  593. dma_unmap_single(dd->dev, ctx->dma_addr,
  594. ctx->buflen + ctx->block_size, DMA_TO_DEVICE);
  595. }
  596. } else {
  597. dma_unmap_single(dd->dev, ctx->dma_addr, ctx->buflen +
  598. ctx->block_size, DMA_TO_DEVICE);
  599. }
  600. return 0;
  601. }
  602. static int atmel_sha_update_req(struct atmel_sha_dev *dd)
  603. {
  604. struct ahash_request *req = dd->req;
  605. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  606. int err;
  607. dev_dbg(dd->dev, "update_req: total: %u, digcnt: 0x%llx 0x%llx\n",
  608. ctx->total, ctx->digcnt[1], ctx->digcnt[0]);
  609. if (ctx->flags & SHA_FLAGS_CPU)
  610. err = atmel_sha_update_cpu(dd);
  611. else
  612. err = atmel_sha_update_dma_start(dd);
  613. /* wait for dma completion before can take more data */
  614. dev_dbg(dd->dev, "update: err: %d, digcnt: 0x%llx 0%llx\n",
  615. err, ctx->digcnt[1], ctx->digcnt[0]);
  616. return err;
  617. }
  618. static int atmel_sha_final_req(struct atmel_sha_dev *dd)
  619. {
  620. struct ahash_request *req = dd->req;
  621. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  622. int err = 0;
  623. int count;
  624. if (ctx->bufcnt >= ATMEL_SHA_DMA_THRESHOLD) {
  625. atmel_sha_fill_padding(ctx, 0);
  626. count = ctx->bufcnt;
  627. ctx->bufcnt = 0;
  628. err = atmel_sha_xmit_dma_map(dd, ctx, count, 1);
  629. }
  630. /* faster to handle last block with cpu */
  631. else {
  632. atmel_sha_fill_padding(ctx, 0);
  633. count = ctx->bufcnt;
  634. ctx->bufcnt = 0;
  635. err = atmel_sha_xmit_cpu(dd, ctx->buffer, count, 1);
  636. }
  637. dev_dbg(dd->dev, "final_req: err: %d\n", err);
  638. return err;
  639. }
  640. static void atmel_sha_copy_hash(struct ahash_request *req)
  641. {
  642. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  643. u32 *hash = (u32 *)ctx->digest;
  644. unsigned int i, hashsize;
  645. switch (ctx->flags & SHA_FLAGS_ALGO_MASK) {
  646. case SHA_FLAGS_SHA1:
  647. hashsize = SHA1_DIGEST_SIZE;
  648. break;
  649. case SHA_FLAGS_SHA224:
  650. case SHA_FLAGS_SHA256:
  651. hashsize = SHA256_DIGEST_SIZE;
  652. break;
  653. case SHA_FLAGS_SHA384:
  654. case SHA_FLAGS_SHA512:
  655. hashsize = SHA512_DIGEST_SIZE;
  656. break;
  657. default:
  658. /* Should not happen... */
  659. return;
  660. }
  661. for (i = 0; i < hashsize / sizeof(u32); ++i)
  662. hash[i] = atmel_sha_read(ctx->dd, SHA_REG_DIGEST(i));
  663. ctx->flags |= SHA_FLAGS_RESTORE;
  664. }
  665. static void atmel_sha_copy_ready_hash(struct ahash_request *req)
  666. {
  667. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  668. if (!req->result)
  669. return;
  670. if (ctx->flags & SHA_FLAGS_SHA1)
  671. memcpy(req->result, ctx->digest, SHA1_DIGEST_SIZE);
  672. else if (ctx->flags & SHA_FLAGS_SHA224)
  673. memcpy(req->result, ctx->digest, SHA224_DIGEST_SIZE);
  674. else if (ctx->flags & SHA_FLAGS_SHA256)
  675. memcpy(req->result, ctx->digest, SHA256_DIGEST_SIZE);
  676. else if (ctx->flags & SHA_FLAGS_SHA384)
  677. memcpy(req->result, ctx->digest, SHA384_DIGEST_SIZE);
  678. else
  679. memcpy(req->result, ctx->digest, SHA512_DIGEST_SIZE);
  680. }
  681. static int atmel_sha_finish(struct ahash_request *req)
  682. {
  683. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  684. struct atmel_sha_dev *dd = ctx->dd;
  685. if (ctx->digcnt[0] || ctx->digcnt[1])
  686. atmel_sha_copy_ready_hash(req);
  687. dev_dbg(dd->dev, "digcnt: 0x%llx 0x%llx, bufcnt: %d\n", ctx->digcnt[1],
  688. ctx->digcnt[0], ctx->bufcnt);
  689. return 0;
  690. }
  691. static void atmel_sha_finish_req(struct ahash_request *req, int err)
  692. {
  693. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  694. struct atmel_sha_dev *dd = ctx->dd;
  695. if (!err) {
  696. atmel_sha_copy_hash(req);
  697. if (SHA_FLAGS_FINAL & dd->flags)
  698. err = atmel_sha_finish(req);
  699. } else {
  700. ctx->flags |= SHA_FLAGS_ERROR;
  701. }
  702. /* atomic operation is not needed here */
  703. (void)atmel_sha_complete(dd, err);
  704. }
  705. static int atmel_sha_hw_init(struct atmel_sha_dev *dd)
  706. {
  707. int err;
  708. err = clk_enable(dd->iclk);
  709. if (err)
  710. return err;
  711. if (!(SHA_FLAGS_INIT & dd->flags)) {
  712. atmel_sha_write(dd, SHA_CR, SHA_CR_SWRST);
  713. dd->flags |= SHA_FLAGS_INIT;
  714. dd->err = 0;
  715. }
  716. return 0;
  717. }
  718. static inline unsigned int atmel_sha_get_version(struct atmel_sha_dev *dd)
  719. {
  720. return atmel_sha_read(dd, SHA_HW_VERSION) & 0x00000fff;
  721. }
  722. static void atmel_sha_hw_version_init(struct atmel_sha_dev *dd)
  723. {
  724. atmel_sha_hw_init(dd);
  725. dd->hw_version = atmel_sha_get_version(dd);
  726. dev_info(dd->dev,
  727. "version: 0x%x\n", dd->hw_version);
  728. clk_disable(dd->iclk);
  729. }
  730. static int atmel_sha_handle_queue(struct atmel_sha_dev *dd,
  731. struct ahash_request *req)
  732. {
  733. struct crypto_async_request *async_req, *backlog;
  734. struct atmel_sha_ctx *ctx;
  735. unsigned long flags;
  736. bool start_async;
  737. int err = 0, ret = 0;
  738. spin_lock_irqsave(&dd->lock, flags);
  739. if (req)
  740. ret = ahash_enqueue_request(&dd->queue, req);
  741. if (SHA_FLAGS_BUSY & dd->flags) {
  742. spin_unlock_irqrestore(&dd->lock, flags);
  743. return ret;
  744. }
  745. backlog = crypto_get_backlog(&dd->queue);
  746. async_req = crypto_dequeue_request(&dd->queue);
  747. if (async_req)
  748. dd->flags |= SHA_FLAGS_BUSY;
  749. spin_unlock_irqrestore(&dd->lock, flags);
  750. if (!async_req)
  751. return ret;
  752. if (backlog)
  753. backlog->complete(backlog, -EINPROGRESS);
  754. ctx = crypto_tfm_ctx(async_req->tfm);
  755. dd->req = ahash_request_cast(async_req);
  756. start_async = (dd->req != req);
  757. dd->is_async = start_async;
  758. /* WARNING: ctx->start() MAY change dd->is_async. */
  759. err = ctx->start(dd);
  760. return (start_async) ? ret : err;
  761. }
  762. static int atmel_sha_done(struct atmel_sha_dev *dd);
  763. static int atmel_sha_start(struct atmel_sha_dev *dd)
  764. {
  765. struct ahash_request *req = dd->req;
  766. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  767. int err;
  768. dev_dbg(dd->dev, "handling new req, op: %lu, nbytes: %d\n",
  769. ctx->op, req->nbytes);
  770. err = atmel_sha_hw_init(dd);
  771. if (err)
  772. goto err1;
  773. dd->resume = atmel_sha_done;
  774. if (ctx->op == SHA_OP_UPDATE) {
  775. err = atmel_sha_update_req(dd);
  776. if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
  777. /* no final() after finup() */
  778. err = atmel_sha_final_req(dd);
  779. } else if (ctx->op == SHA_OP_FINAL) {
  780. err = atmel_sha_final_req(dd);
  781. }
  782. err1:
  783. if (err != -EINPROGRESS)
  784. /* done_task will not finish it, so do it here */
  785. atmel_sha_finish_req(req, err);
  786. dev_dbg(dd->dev, "exit, err: %d\n", err);
  787. return err;
  788. }
  789. static int atmel_sha_enqueue(struct ahash_request *req, unsigned int op)
  790. {
  791. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  792. struct atmel_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
  793. struct atmel_sha_dev *dd = tctx->dd;
  794. ctx->op = op;
  795. return atmel_sha_handle_queue(dd, req);
  796. }
  797. static int atmel_sha_update(struct ahash_request *req)
  798. {
  799. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  800. if (!req->nbytes)
  801. return 0;
  802. ctx->total = req->nbytes;
  803. ctx->sg = req->src;
  804. ctx->offset = 0;
  805. if (ctx->flags & SHA_FLAGS_FINUP) {
  806. if (ctx->bufcnt + ctx->total < ATMEL_SHA_DMA_THRESHOLD)
  807. /* faster to use CPU for short transfers */
  808. ctx->flags |= SHA_FLAGS_CPU;
  809. } else if (ctx->bufcnt + ctx->total < ctx->buflen) {
  810. atmel_sha_append_sg(ctx);
  811. return 0;
  812. }
  813. return atmel_sha_enqueue(req, SHA_OP_UPDATE);
  814. }
  815. static int atmel_sha_final(struct ahash_request *req)
  816. {
  817. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  818. ctx->flags |= SHA_FLAGS_FINUP;
  819. if (ctx->flags & SHA_FLAGS_ERROR)
  820. return 0; /* uncompleted hash is not needed */
  821. if (ctx->flags & SHA_FLAGS_PAD)
  822. /* copy ready hash (+ finalize hmac) */
  823. return atmel_sha_finish(req);
  824. return atmel_sha_enqueue(req, SHA_OP_FINAL);
  825. }
  826. static int atmel_sha_finup(struct ahash_request *req)
  827. {
  828. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  829. int err1, err2;
  830. ctx->flags |= SHA_FLAGS_FINUP;
  831. err1 = atmel_sha_update(req);
  832. if (err1 == -EINPROGRESS || err1 == -EBUSY)
  833. return err1;
  834. /*
  835. * final() has to be always called to cleanup resources
  836. * even if udpate() failed, except EINPROGRESS
  837. */
  838. err2 = atmel_sha_final(req);
  839. return err1 ?: err2;
  840. }
  841. static int atmel_sha_digest(struct ahash_request *req)
  842. {
  843. return atmel_sha_init(req) ?: atmel_sha_finup(req);
  844. }
  845. static int atmel_sha_export(struct ahash_request *req, void *out)
  846. {
  847. const struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  848. memcpy(out, ctx, sizeof(*ctx));
  849. return 0;
  850. }
  851. static int atmel_sha_import(struct ahash_request *req, const void *in)
  852. {
  853. struct atmel_sha_reqctx *ctx = ahash_request_ctx(req);
  854. memcpy(ctx, in, sizeof(*ctx));
  855. return 0;
  856. }
  857. static int atmel_sha_cra_init(struct crypto_tfm *tfm)
  858. {
  859. struct atmel_sha_ctx *ctx = crypto_tfm_ctx(tfm);
  860. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  861. sizeof(struct atmel_sha_reqctx));
  862. ctx->start = atmel_sha_start;
  863. return 0;
  864. }
  865. static struct ahash_alg sha_1_256_algs[] = {
  866. {
  867. .init = atmel_sha_init,
  868. .update = atmel_sha_update,
  869. .final = atmel_sha_final,
  870. .finup = atmel_sha_finup,
  871. .digest = atmel_sha_digest,
  872. .export = atmel_sha_export,
  873. .import = atmel_sha_import,
  874. .halg = {
  875. .digestsize = SHA1_DIGEST_SIZE,
  876. .statesize = sizeof(struct atmel_sha_reqctx),
  877. .base = {
  878. .cra_name = "sha1",
  879. .cra_driver_name = "atmel-sha1",
  880. .cra_priority = 100,
  881. .cra_flags = CRYPTO_ALG_ASYNC,
  882. .cra_blocksize = SHA1_BLOCK_SIZE,
  883. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  884. .cra_alignmask = 0,
  885. .cra_module = THIS_MODULE,
  886. .cra_init = atmel_sha_cra_init,
  887. }
  888. }
  889. },
  890. {
  891. .init = atmel_sha_init,
  892. .update = atmel_sha_update,
  893. .final = atmel_sha_final,
  894. .finup = atmel_sha_finup,
  895. .digest = atmel_sha_digest,
  896. .export = atmel_sha_export,
  897. .import = atmel_sha_import,
  898. .halg = {
  899. .digestsize = SHA256_DIGEST_SIZE,
  900. .statesize = sizeof(struct atmel_sha_reqctx),
  901. .base = {
  902. .cra_name = "sha256",
  903. .cra_driver_name = "atmel-sha256",
  904. .cra_priority = 100,
  905. .cra_flags = CRYPTO_ALG_ASYNC,
  906. .cra_blocksize = SHA256_BLOCK_SIZE,
  907. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  908. .cra_alignmask = 0,
  909. .cra_module = THIS_MODULE,
  910. .cra_init = atmel_sha_cra_init,
  911. }
  912. }
  913. },
  914. };
  915. static struct ahash_alg sha_224_alg = {
  916. .init = atmel_sha_init,
  917. .update = atmel_sha_update,
  918. .final = atmel_sha_final,
  919. .finup = atmel_sha_finup,
  920. .digest = atmel_sha_digest,
  921. .export = atmel_sha_export,
  922. .import = atmel_sha_import,
  923. .halg = {
  924. .digestsize = SHA224_DIGEST_SIZE,
  925. .statesize = sizeof(struct atmel_sha_reqctx),
  926. .base = {
  927. .cra_name = "sha224",
  928. .cra_driver_name = "atmel-sha224",
  929. .cra_priority = 100,
  930. .cra_flags = CRYPTO_ALG_ASYNC,
  931. .cra_blocksize = SHA224_BLOCK_SIZE,
  932. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  933. .cra_alignmask = 0,
  934. .cra_module = THIS_MODULE,
  935. .cra_init = atmel_sha_cra_init,
  936. }
  937. }
  938. };
  939. static struct ahash_alg sha_384_512_algs[] = {
  940. {
  941. .init = atmel_sha_init,
  942. .update = atmel_sha_update,
  943. .final = atmel_sha_final,
  944. .finup = atmel_sha_finup,
  945. .digest = atmel_sha_digest,
  946. .export = atmel_sha_export,
  947. .import = atmel_sha_import,
  948. .halg = {
  949. .digestsize = SHA384_DIGEST_SIZE,
  950. .statesize = sizeof(struct atmel_sha_reqctx),
  951. .base = {
  952. .cra_name = "sha384",
  953. .cra_driver_name = "atmel-sha384",
  954. .cra_priority = 100,
  955. .cra_flags = CRYPTO_ALG_ASYNC,
  956. .cra_blocksize = SHA384_BLOCK_SIZE,
  957. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  958. .cra_alignmask = 0x3,
  959. .cra_module = THIS_MODULE,
  960. .cra_init = atmel_sha_cra_init,
  961. }
  962. }
  963. },
  964. {
  965. .init = atmel_sha_init,
  966. .update = atmel_sha_update,
  967. .final = atmel_sha_final,
  968. .finup = atmel_sha_finup,
  969. .digest = atmel_sha_digest,
  970. .export = atmel_sha_export,
  971. .import = atmel_sha_import,
  972. .halg = {
  973. .digestsize = SHA512_DIGEST_SIZE,
  974. .statesize = sizeof(struct atmel_sha_reqctx),
  975. .base = {
  976. .cra_name = "sha512",
  977. .cra_driver_name = "atmel-sha512",
  978. .cra_priority = 100,
  979. .cra_flags = CRYPTO_ALG_ASYNC,
  980. .cra_blocksize = SHA512_BLOCK_SIZE,
  981. .cra_ctxsize = sizeof(struct atmel_sha_ctx),
  982. .cra_alignmask = 0x3,
  983. .cra_module = THIS_MODULE,
  984. .cra_init = atmel_sha_cra_init,
  985. }
  986. }
  987. },
  988. };
  989. static void atmel_sha_queue_task(unsigned long data)
  990. {
  991. struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
  992. atmel_sha_handle_queue(dd, NULL);
  993. }
  994. static int atmel_sha_done(struct atmel_sha_dev *dd)
  995. {
  996. int err = 0;
  997. if (SHA_FLAGS_CPU & dd->flags) {
  998. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  999. dd->flags &= ~SHA_FLAGS_OUTPUT_READY;
  1000. goto finish;
  1001. }
  1002. } else if (SHA_FLAGS_DMA_READY & dd->flags) {
  1003. if (SHA_FLAGS_DMA_ACTIVE & dd->flags) {
  1004. dd->flags &= ~SHA_FLAGS_DMA_ACTIVE;
  1005. atmel_sha_update_dma_stop(dd);
  1006. if (dd->err) {
  1007. err = dd->err;
  1008. goto finish;
  1009. }
  1010. }
  1011. if (SHA_FLAGS_OUTPUT_READY & dd->flags) {
  1012. /* hash or semi-hash ready */
  1013. dd->flags &= ~(SHA_FLAGS_DMA_READY |
  1014. SHA_FLAGS_OUTPUT_READY);
  1015. err = atmel_sha_update_dma_start(dd);
  1016. if (err != -EINPROGRESS)
  1017. goto finish;
  1018. }
  1019. }
  1020. return err;
  1021. finish:
  1022. /* finish curent request */
  1023. atmel_sha_finish_req(dd->req, err);
  1024. return err;
  1025. }
  1026. static void atmel_sha_done_task(unsigned long data)
  1027. {
  1028. struct atmel_sha_dev *dd = (struct atmel_sha_dev *)data;
  1029. dd->is_async = true;
  1030. (void)dd->resume(dd);
  1031. }
  1032. static irqreturn_t atmel_sha_irq(int irq, void *dev_id)
  1033. {
  1034. struct atmel_sha_dev *sha_dd = dev_id;
  1035. u32 reg;
  1036. reg = atmel_sha_read(sha_dd, SHA_ISR);
  1037. if (reg & atmel_sha_read(sha_dd, SHA_IMR)) {
  1038. atmel_sha_write(sha_dd, SHA_IDR, reg);
  1039. if (SHA_FLAGS_BUSY & sha_dd->flags) {
  1040. sha_dd->flags |= SHA_FLAGS_OUTPUT_READY;
  1041. if (!(SHA_FLAGS_CPU & sha_dd->flags))
  1042. sha_dd->flags |= SHA_FLAGS_DMA_READY;
  1043. tasklet_schedule(&sha_dd->done_task);
  1044. } else {
  1045. dev_warn(sha_dd->dev, "SHA interrupt when no active requests.\n");
  1046. }
  1047. return IRQ_HANDLED;
  1048. }
  1049. return IRQ_NONE;
  1050. }
  1051. static void atmel_sha_unregister_algs(struct atmel_sha_dev *dd)
  1052. {
  1053. int i;
  1054. for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++)
  1055. crypto_unregister_ahash(&sha_1_256_algs[i]);
  1056. if (dd->caps.has_sha224)
  1057. crypto_unregister_ahash(&sha_224_alg);
  1058. if (dd->caps.has_sha_384_512) {
  1059. for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++)
  1060. crypto_unregister_ahash(&sha_384_512_algs[i]);
  1061. }
  1062. }
  1063. static int atmel_sha_register_algs(struct atmel_sha_dev *dd)
  1064. {
  1065. int err, i, j;
  1066. for (i = 0; i < ARRAY_SIZE(sha_1_256_algs); i++) {
  1067. err = crypto_register_ahash(&sha_1_256_algs[i]);
  1068. if (err)
  1069. goto err_sha_1_256_algs;
  1070. }
  1071. if (dd->caps.has_sha224) {
  1072. err = crypto_register_ahash(&sha_224_alg);
  1073. if (err)
  1074. goto err_sha_224_algs;
  1075. }
  1076. if (dd->caps.has_sha_384_512) {
  1077. for (i = 0; i < ARRAY_SIZE(sha_384_512_algs); i++) {
  1078. err = crypto_register_ahash(&sha_384_512_algs[i]);
  1079. if (err)
  1080. goto err_sha_384_512_algs;
  1081. }
  1082. }
  1083. return 0;
  1084. err_sha_384_512_algs:
  1085. for (j = 0; j < i; j++)
  1086. crypto_unregister_ahash(&sha_384_512_algs[j]);
  1087. crypto_unregister_ahash(&sha_224_alg);
  1088. err_sha_224_algs:
  1089. i = ARRAY_SIZE(sha_1_256_algs);
  1090. err_sha_1_256_algs:
  1091. for (j = 0; j < i; j++)
  1092. crypto_unregister_ahash(&sha_1_256_algs[j]);
  1093. return err;
  1094. }
  1095. static bool atmel_sha_filter(struct dma_chan *chan, void *slave)
  1096. {
  1097. struct at_dma_slave *sl = slave;
  1098. if (sl && sl->dma_dev == chan->device->dev) {
  1099. chan->private = sl;
  1100. return true;
  1101. } else {
  1102. return false;
  1103. }
  1104. }
  1105. static int atmel_sha_dma_init(struct atmel_sha_dev *dd,
  1106. struct crypto_platform_data *pdata)
  1107. {
  1108. int err = -ENOMEM;
  1109. dma_cap_mask_t mask_in;
  1110. /* Try to grab DMA channel */
  1111. dma_cap_zero(mask_in);
  1112. dma_cap_set(DMA_SLAVE, mask_in);
  1113. dd->dma_lch_in.chan = dma_request_slave_channel_compat(mask_in,
  1114. atmel_sha_filter, &pdata->dma_slave->rxdata, dd->dev, "tx");
  1115. if (!dd->dma_lch_in.chan) {
  1116. dev_warn(dd->dev, "no DMA channel available\n");
  1117. return err;
  1118. }
  1119. dd->dma_lch_in.dma_conf.direction = DMA_MEM_TO_DEV;
  1120. dd->dma_lch_in.dma_conf.dst_addr = dd->phys_base +
  1121. SHA_REG_DIN(0);
  1122. dd->dma_lch_in.dma_conf.src_maxburst = 1;
  1123. dd->dma_lch_in.dma_conf.src_addr_width =
  1124. DMA_SLAVE_BUSWIDTH_4_BYTES;
  1125. dd->dma_lch_in.dma_conf.dst_maxburst = 1;
  1126. dd->dma_lch_in.dma_conf.dst_addr_width =
  1127. DMA_SLAVE_BUSWIDTH_4_BYTES;
  1128. dd->dma_lch_in.dma_conf.device_fc = false;
  1129. return 0;
  1130. }
  1131. static void atmel_sha_dma_cleanup(struct atmel_sha_dev *dd)
  1132. {
  1133. dma_release_channel(dd->dma_lch_in.chan);
  1134. }
  1135. static void atmel_sha_get_cap(struct atmel_sha_dev *dd)
  1136. {
  1137. dd->caps.has_dma = 0;
  1138. dd->caps.has_dualbuff = 0;
  1139. dd->caps.has_sha224 = 0;
  1140. dd->caps.has_sha_384_512 = 0;
  1141. dd->caps.has_uihv = 0;
  1142. /* keep only major version number */
  1143. switch (dd->hw_version & 0xff0) {
  1144. case 0x510:
  1145. dd->caps.has_dma = 1;
  1146. dd->caps.has_dualbuff = 1;
  1147. dd->caps.has_sha224 = 1;
  1148. dd->caps.has_sha_384_512 = 1;
  1149. dd->caps.has_uihv = 1;
  1150. break;
  1151. case 0x420:
  1152. dd->caps.has_dma = 1;
  1153. dd->caps.has_dualbuff = 1;
  1154. dd->caps.has_sha224 = 1;
  1155. dd->caps.has_sha_384_512 = 1;
  1156. dd->caps.has_uihv = 1;
  1157. break;
  1158. case 0x410:
  1159. dd->caps.has_dma = 1;
  1160. dd->caps.has_dualbuff = 1;
  1161. dd->caps.has_sha224 = 1;
  1162. dd->caps.has_sha_384_512 = 1;
  1163. break;
  1164. case 0x400:
  1165. dd->caps.has_dma = 1;
  1166. dd->caps.has_dualbuff = 1;
  1167. dd->caps.has_sha224 = 1;
  1168. break;
  1169. case 0x320:
  1170. break;
  1171. default:
  1172. dev_warn(dd->dev,
  1173. "Unmanaged sha version, set minimum capabilities\n");
  1174. break;
  1175. }
  1176. }
  1177. #if defined(CONFIG_OF)
  1178. static const struct of_device_id atmel_sha_dt_ids[] = {
  1179. { .compatible = "atmel,at91sam9g46-sha" },
  1180. { /* sentinel */ }
  1181. };
  1182. MODULE_DEVICE_TABLE(of, atmel_sha_dt_ids);
  1183. static struct crypto_platform_data *atmel_sha_of_init(struct platform_device *pdev)
  1184. {
  1185. struct device_node *np = pdev->dev.of_node;
  1186. struct crypto_platform_data *pdata;
  1187. if (!np) {
  1188. dev_err(&pdev->dev, "device node not found\n");
  1189. return ERR_PTR(-EINVAL);
  1190. }
  1191. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  1192. if (!pdata) {
  1193. dev_err(&pdev->dev, "could not allocate memory for pdata\n");
  1194. return ERR_PTR(-ENOMEM);
  1195. }
  1196. pdata->dma_slave = devm_kzalloc(&pdev->dev,
  1197. sizeof(*(pdata->dma_slave)),
  1198. GFP_KERNEL);
  1199. if (!pdata->dma_slave) {
  1200. dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
  1201. return ERR_PTR(-ENOMEM);
  1202. }
  1203. return pdata;
  1204. }
  1205. #else /* CONFIG_OF */
  1206. static inline struct crypto_platform_data *atmel_sha_of_init(struct platform_device *dev)
  1207. {
  1208. return ERR_PTR(-EINVAL);
  1209. }
  1210. #endif
  1211. static int atmel_sha_probe(struct platform_device *pdev)
  1212. {
  1213. struct atmel_sha_dev *sha_dd;
  1214. struct crypto_platform_data *pdata;
  1215. struct device *dev = &pdev->dev;
  1216. struct resource *sha_res;
  1217. int err;
  1218. sha_dd = devm_kzalloc(&pdev->dev, sizeof(*sha_dd), GFP_KERNEL);
  1219. if (sha_dd == NULL) {
  1220. dev_err(dev, "unable to alloc data struct.\n");
  1221. err = -ENOMEM;
  1222. goto sha_dd_err;
  1223. }
  1224. sha_dd->dev = dev;
  1225. platform_set_drvdata(pdev, sha_dd);
  1226. INIT_LIST_HEAD(&sha_dd->list);
  1227. spin_lock_init(&sha_dd->lock);
  1228. tasklet_init(&sha_dd->done_task, atmel_sha_done_task,
  1229. (unsigned long)sha_dd);
  1230. tasklet_init(&sha_dd->queue_task, atmel_sha_queue_task,
  1231. (unsigned long)sha_dd);
  1232. crypto_init_queue(&sha_dd->queue, ATMEL_SHA_QUEUE_LENGTH);
  1233. sha_dd->irq = -1;
  1234. /* Get the base address */
  1235. sha_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1236. if (!sha_res) {
  1237. dev_err(dev, "no MEM resource info\n");
  1238. err = -ENODEV;
  1239. goto res_err;
  1240. }
  1241. sha_dd->phys_base = sha_res->start;
  1242. /* Get the IRQ */
  1243. sha_dd->irq = platform_get_irq(pdev, 0);
  1244. if (sha_dd->irq < 0) {
  1245. dev_err(dev, "no IRQ resource info\n");
  1246. err = sha_dd->irq;
  1247. goto res_err;
  1248. }
  1249. err = devm_request_irq(&pdev->dev, sha_dd->irq, atmel_sha_irq,
  1250. IRQF_SHARED, "atmel-sha", sha_dd);
  1251. if (err) {
  1252. dev_err(dev, "unable to request sha irq.\n");
  1253. goto res_err;
  1254. }
  1255. /* Initializing the clock */
  1256. sha_dd->iclk = devm_clk_get(&pdev->dev, "sha_clk");
  1257. if (IS_ERR(sha_dd->iclk)) {
  1258. dev_err(dev, "clock initialization failed.\n");
  1259. err = PTR_ERR(sha_dd->iclk);
  1260. goto res_err;
  1261. }
  1262. sha_dd->io_base = devm_ioremap_resource(&pdev->dev, sha_res);
  1263. if (IS_ERR(sha_dd->io_base)) {
  1264. dev_err(dev, "can't ioremap\n");
  1265. err = PTR_ERR(sha_dd->io_base);
  1266. goto res_err;
  1267. }
  1268. err = clk_prepare(sha_dd->iclk);
  1269. if (err)
  1270. goto res_err;
  1271. atmel_sha_hw_version_init(sha_dd);
  1272. atmel_sha_get_cap(sha_dd);
  1273. if (sha_dd->caps.has_dma) {
  1274. pdata = pdev->dev.platform_data;
  1275. if (!pdata) {
  1276. pdata = atmel_sha_of_init(pdev);
  1277. if (IS_ERR(pdata)) {
  1278. dev_err(&pdev->dev, "platform data not available\n");
  1279. err = PTR_ERR(pdata);
  1280. goto iclk_unprepare;
  1281. }
  1282. }
  1283. if (!pdata->dma_slave) {
  1284. err = -ENXIO;
  1285. goto iclk_unprepare;
  1286. }
  1287. err = atmel_sha_dma_init(sha_dd, pdata);
  1288. if (err)
  1289. goto err_sha_dma;
  1290. dev_info(dev, "using %s for DMA transfers\n",
  1291. dma_chan_name(sha_dd->dma_lch_in.chan));
  1292. }
  1293. spin_lock(&atmel_sha.lock);
  1294. list_add_tail(&sha_dd->list, &atmel_sha.dev_list);
  1295. spin_unlock(&atmel_sha.lock);
  1296. err = atmel_sha_register_algs(sha_dd);
  1297. if (err)
  1298. goto err_algs;
  1299. dev_info(dev, "Atmel SHA1/SHA256%s%s\n",
  1300. sha_dd->caps.has_sha224 ? "/SHA224" : "",
  1301. sha_dd->caps.has_sha_384_512 ? "/SHA384/SHA512" : "");
  1302. return 0;
  1303. err_algs:
  1304. spin_lock(&atmel_sha.lock);
  1305. list_del(&sha_dd->list);
  1306. spin_unlock(&atmel_sha.lock);
  1307. if (sha_dd->caps.has_dma)
  1308. atmel_sha_dma_cleanup(sha_dd);
  1309. err_sha_dma:
  1310. iclk_unprepare:
  1311. clk_unprepare(sha_dd->iclk);
  1312. res_err:
  1313. tasklet_kill(&sha_dd->queue_task);
  1314. tasklet_kill(&sha_dd->done_task);
  1315. sha_dd_err:
  1316. dev_err(dev, "initialization failed.\n");
  1317. return err;
  1318. }
  1319. static int atmel_sha_remove(struct platform_device *pdev)
  1320. {
  1321. static struct atmel_sha_dev *sha_dd;
  1322. sha_dd = platform_get_drvdata(pdev);
  1323. if (!sha_dd)
  1324. return -ENODEV;
  1325. spin_lock(&atmel_sha.lock);
  1326. list_del(&sha_dd->list);
  1327. spin_unlock(&atmel_sha.lock);
  1328. atmel_sha_unregister_algs(sha_dd);
  1329. tasklet_kill(&sha_dd->queue_task);
  1330. tasklet_kill(&sha_dd->done_task);
  1331. if (sha_dd->caps.has_dma)
  1332. atmel_sha_dma_cleanup(sha_dd);
  1333. clk_unprepare(sha_dd->iclk);
  1334. return 0;
  1335. }
  1336. static struct platform_driver atmel_sha_driver = {
  1337. .probe = atmel_sha_probe,
  1338. .remove = atmel_sha_remove,
  1339. .driver = {
  1340. .name = "atmel_sha",
  1341. .of_match_table = of_match_ptr(atmel_sha_dt_ids),
  1342. },
  1343. };
  1344. module_platform_driver(atmel_sha_driver);
  1345. MODULE_DESCRIPTION("Atmel SHA (1/256/224/384/512) hw acceleration support.");
  1346. MODULE_LICENSE("GPL v2");
  1347. MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");