interrupt.c 62 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356
  1. /*
  2. * handling kvm guest interrupts
  3. *
  4. * Copyright IBM Corp. 2008, 2015
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License (version 2 only)
  8. * as published by the Free Software Foundation.
  9. *
  10. * Author(s): Carsten Otte <cotte@de.ibm.com>
  11. */
  12. #include <linux/interrupt.h>
  13. #include <linux/kvm_host.h>
  14. #include <linux/hrtimer.h>
  15. #include <linux/mmu_context.h>
  16. #include <linux/signal.h>
  17. #include <linux/slab.h>
  18. #include <linux/bitmap.h>
  19. #include <linux/vmalloc.h>
  20. #include <asm/asm-offsets.h>
  21. #include <asm/dis.h>
  22. #include <asm/uaccess.h>
  23. #include <asm/sclp.h>
  24. #include <asm/isc.h>
  25. #include "kvm-s390.h"
  26. #include "gaccess.h"
  27. #include "trace-s390.h"
  28. #define IOINT_SCHID_MASK 0x0000ffff
  29. #define IOINT_SSID_MASK 0x00030000
  30. #define IOINT_CSSID_MASK 0x03fc0000
  31. #define PFAULT_INIT 0x0600
  32. #define PFAULT_DONE 0x0680
  33. #define VIRTIO_PARAM 0x0d00
  34. /* handle external calls via sigp interpretation facility */
  35. static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
  36. {
  37. int c, scn;
  38. if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
  39. return 0;
  40. read_lock(&vcpu->kvm->arch.sca_lock);
  41. if (vcpu->kvm->arch.use_esca) {
  42. struct esca_block *sca = vcpu->kvm->arch.sca;
  43. union esca_sigp_ctrl sigp_ctrl =
  44. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  45. c = sigp_ctrl.c;
  46. scn = sigp_ctrl.scn;
  47. } else {
  48. struct bsca_block *sca = vcpu->kvm->arch.sca;
  49. union bsca_sigp_ctrl sigp_ctrl =
  50. sca->cpu[vcpu->vcpu_id].sigp_ctrl;
  51. c = sigp_ctrl.c;
  52. scn = sigp_ctrl.scn;
  53. }
  54. read_unlock(&vcpu->kvm->arch.sca_lock);
  55. if (src_id)
  56. *src_id = scn;
  57. return c;
  58. }
  59. static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
  60. {
  61. int expect, rc;
  62. read_lock(&vcpu->kvm->arch.sca_lock);
  63. if (vcpu->kvm->arch.use_esca) {
  64. struct esca_block *sca = vcpu->kvm->arch.sca;
  65. union esca_sigp_ctrl *sigp_ctrl =
  66. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  67. union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  68. new_val.scn = src_id;
  69. new_val.c = 1;
  70. old_val.c = 0;
  71. expect = old_val.value;
  72. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  73. } else {
  74. struct bsca_block *sca = vcpu->kvm->arch.sca;
  75. union bsca_sigp_ctrl *sigp_ctrl =
  76. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  77. union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
  78. new_val.scn = src_id;
  79. new_val.c = 1;
  80. old_val.c = 0;
  81. expect = old_val.value;
  82. rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
  83. }
  84. read_unlock(&vcpu->kvm->arch.sca_lock);
  85. if (rc != expect) {
  86. /* another external call is pending */
  87. return -EBUSY;
  88. }
  89. atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
  90. return 0;
  91. }
  92. static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
  93. {
  94. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  95. int rc, expect;
  96. atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
  97. read_lock(&vcpu->kvm->arch.sca_lock);
  98. if (vcpu->kvm->arch.use_esca) {
  99. struct esca_block *sca = vcpu->kvm->arch.sca;
  100. union esca_sigp_ctrl *sigp_ctrl =
  101. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  102. union esca_sigp_ctrl old = *sigp_ctrl;
  103. expect = old.value;
  104. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  105. } else {
  106. struct bsca_block *sca = vcpu->kvm->arch.sca;
  107. union bsca_sigp_ctrl *sigp_ctrl =
  108. &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
  109. union bsca_sigp_ctrl old = *sigp_ctrl;
  110. expect = old.value;
  111. rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
  112. }
  113. read_unlock(&vcpu->kvm->arch.sca_lock);
  114. WARN_ON(rc != expect); /* cannot clear? */
  115. }
  116. int psw_extint_disabled(struct kvm_vcpu *vcpu)
  117. {
  118. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
  119. }
  120. static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
  121. {
  122. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
  123. }
  124. static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
  125. {
  126. return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
  127. }
  128. static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
  129. {
  130. return psw_extint_disabled(vcpu) &&
  131. psw_ioint_disabled(vcpu) &&
  132. psw_mchk_disabled(vcpu);
  133. }
  134. static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
  135. {
  136. if (psw_extint_disabled(vcpu) ||
  137. !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  138. return 0;
  139. if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
  140. /* No timer interrupts when single stepping */
  141. return 0;
  142. return 1;
  143. }
  144. static int ckc_irq_pending(struct kvm_vcpu *vcpu)
  145. {
  146. if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
  147. return 0;
  148. return ckc_interrupts_enabled(vcpu);
  149. }
  150. static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
  151. {
  152. return !psw_extint_disabled(vcpu) &&
  153. (vcpu->arch.sie_block->gcr[0] & 0x400ul);
  154. }
  155. static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
  156. {
  157. if (!cpu_timer_interrupts_enabled(vcpu))
  158. return 0;
  159. return kvm_s390_get_cpu_timer(vcpu) >> 63;
  160. }
  161. static inline int is_ioirq(unsigned long irq_type)
  162. {
  163. return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
  164. (irq_type <= IRQ_PEND_IO_ISC_7));
  165. }
  166. static uint64_t isc_to_isc_bits(int isc)
  167. {
  168. return (0x80 >> isc) << 24;
  169. }
  170. static inline u8 int_word_to_isc(u32 int_word)
  171. {
  172. return (int_word & 0x38000000) >> 27;
  173. }
  174. static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
  175. {
  176. return vcpu->kvm->arch.float_int.pending_irqs |
  177. vcpu->arch.local_int.pending_irqs;
  178. }
  179. static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
  180. unsigned long active_mask)
  181. {
  182. int i;
  183. for (i = 0; i <= MAX_ISC; i++)
  184. if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
  185. active_mask &= ~(1UL << (IRQ_PEND_IO_ISC_0 + i));
  186. return active_mask;
  187. }
  188. static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
  189. {
  190. unsigned long active_mask;
  191. active_mask = pending_irqs(vcpu);
  192. if (!active_mask)
  193. return 0;
  194. if (psw_extint_disabled(vcpu))
  195. active_mask &= ~IRQ_PEND_EXT_MASK;
  196. if (psw_ioint_disabled(vcpu))
  197. active_mask &= ~IRQ_PEND_IO_MASK;
  198. else
  199. active_mask = disable_iscs(vcpu, active_mask);
  200. if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  201. __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
  202. if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
  203. __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
  204. if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
  205. __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
  206. if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
  207. __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
  208. if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
  209. __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
  210. if (psw_mchk_disabled(vcpu))
  211. active_mask &= ~IRQ_PEND_MCHK_MASK;
  212. if (!(vcpu->arch.sie_block->gcr[14] &
  213. vcpu->kvm->arch.float_int.mchk.cr14))
  214. __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
  215. /*
  216. * STOP irqs will never be actively delivered. They are triggered via
  217. * intercept requests and cleared when the stop intercept is performed.
  218. */
  219. __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
  220. return active_mask;
  221. }
  222. static void __set_cpu_idle(struct kvm_vcpu *vcpu)
  223. {
  224. atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  225. set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  226. }
  227. static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
  228. {
  229. atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
  230. clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
  231. }
  232. static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
  233. {
  234. atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
  235. &vcpu->arch.sie_block->cpuflags);
  236. vcpu->arch.sie_block->lctl = 0x0000;
  237. vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
  238. if (guestdbg_enabled(vcpu)) {
  239. vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
  240. LCTL_CR10 | LCTL_CR11);
  241. vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
  242. }
  243. }
  244. static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
  245. {
  246. atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
  247. }
  248. static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
  249. {
  250. if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
  251. return;
  252. else if (psw_ioint_disabled(vcpu))
  253. __set_cpuflag(vcpu, CPUSTAT_IO_INT);
  254. else
  255. vcpu->arch.sie_block->lctl |= LCTL_CR6;
  256. }
  257. static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
  258. {
  259. if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
  260. return;
  261. if (psw_extint_disabled(vcpu))
  262. __set_cpuflag(vcpu, CPUSTAT_EXT_INT);
  263. else
  264. vcpu->arch.sie_block->lctl |= LCTL_CR0;
  265. }
  266. static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
  267. {
  268. if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
  269. return;
  270. if (psw_mchk_disabled(vcpu))
  271. vcpu->arch.sie_block->ictl |= ICTL_LPSW;
  272. else
  273. vcpu->arch.sie_block->lctl |= LCTL_CR14;
  274. }
  275. static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
  276. {
  277. if (kvm_s390_is_stop_irq_pending(vcpu))
  278. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  279. }
  280. /* Set interception request for non-deliverable interrupts */
  281. static void set_intercept_indicators(struct kvm_vcpu *vcpu)
  282. {
  283. set_intercept_indicators_io(vcpu);
  284. set_intercept_indicators_ext(vcpu);
  285. set_intercept_indicators_mchk(vcpu);
  286. set_intercept_indicators_stop(vcpu);
  287. }
  288. static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
  289. {
  290. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  291. int rc;
  292. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  293. 0, 0);
  294. rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
  295. (u16 *)__LC_EXT_INT_CODE);
  296. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  297. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  298. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  299. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  300. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  301. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  302. return rc ? -EFAULT : 0;
  303. }
  304. static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
  305. {
  306. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  307. int rc;
  308. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  309. 0, 0);
  310. rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
  311. (u16 __user *)__LC_EXT_INT_CODE);
  312. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  313. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  314. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  315. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  316. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  317. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  318. return rc ? -EFAULT : 0;
  319. }
  320. static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
  321. {
  322. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  323. struct kvm_s390_ext_info ext;
  324. int rc;
  325. spin_lock(&li->lock);
  326. ext = li->irq.ext;
  327. clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  328. li->irq.ext.ext_params2 = 0;
  329. spin_unlock(&li->lock);
  330. VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
  331. ext.ext_params2);
  332. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  333. KVM_S390_INT_PFAULT_INIT,
  334. 0, ext.ext_params2);
  335. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
  336. rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
  337. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  338. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  339. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  340. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  341. rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
  342. return rc ? -EFAULT : 0;
  343. }
  344. static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
  345. {
  346. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  347. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  348. struct kvm_s390_mchk_info mchk = {};
  349. unsigned long adtl_status_addr;
  350. int deliver = 0;
  351. int rc = 0;
  352. spin_lock(&fi->lock);
  353. spin_lock(&li->lock);
  354. if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
  355. test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
  356. /*
  357. * If there was an exigent machine check pending, then any
  358. * repressible machine checks that might have been pending
  359. * are indicated along with it, so always clear bits for
  360. * repressible and exigent interrupts
  361. */
  362. mchk = li->irq.mchk;
  363. clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  364. clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  365. memset(&li->irq.mchk, 0, sizeof(mchk));
  366. deliver = 1;
  367. }
  368. /*
  369. * We indicate floating repressible conditions along with
  370. * other pending conditions. Channel Report Pending and Channel
  371. * Subsystem damage are the only two and and are indicated by
  372. * bits in mcic and masked in cr14.
  373. */
  374. if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  375. mchk.mcic |= fi->mchk.mcic;
  376. mchk.cr14 |= fi->mchk.cr14;
  377. memset(&fi->mchk, 0, sizeof(mchk));
  378. deliver = 1;
  379. }
  380. spin_unlock(&li->lock);
  381. spin_unlock(&fi->lock);
  382. if (deliver) {
  383. VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
  384. mchk.mcic);
  385. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  386. KVM_S390_MCHK,
  387. mchk.cr14, mchk.mcic);
  388. rc = kvm_s390_vcpu_store_status(vcpu,
  389. KVM_S390_STORE_STATUS_PREFIXED);
  390. rc |= read_guest_lc(vcpu, __LC_VX_SAVE_AREA_ADDR,
  391. &adtl_status_addr,
  392. sizeof(unsigned long));
  393. rc |= kvm_s390_vcpu_store_adtl_status(vcpu,
  394. adtl_status_addr);
  395. rc |= put_guest_lc(vcpu, mchk.mcic,
  396. (u64 __user *) __LC_MCCK_CODE);
  397. rc |= put_guest_lc(vcpu, mchk.failing_storage_address,
  398. (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
  399. rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA,
  400. &mchk.fixed_logout,
  401. sizeof(mchk.fixed_logout));
  402. rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
  403. &vcpu->arch.sie_block->gpsw,
  404. sizeof(psw_t));
  405. rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
  406. &vcpu->arch.sie_block->gpsw,
  407. sizeof(psw_t));
  408. }
  409. return rc ? -EFAULT : 0;
  410. }
  411. static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
  412. {
  413. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  414. int rc;
  415. VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
  416. vcpu->stat.deliver_restart_signal++;
  417. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  418. rc = write_guest_lc(vcpu,
  419. offsetof(struct lowcore, restart_old_psw),
  420. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  421. rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
  422. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  423. clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  424. return rc ? -EFAULT : 0;
  425. }
  426. static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
  427. {
  428. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  429. struct kvm_s390_prefix_info prefix;
  430. spin_lock(&li->lock);
  431. prefix = li->irq.prefix;
  432. li->irq.prefix.address = 0;
  433. clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  434. spin_unlock(&li->lock);
  435. vcpu->stat.deliver_prefix_signal++;
  436. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  437. KVM_S390_SIGP_SET_PREFIX,
  438. prefix.address, 0);
  439. kvm_s390_set_prefix(vcpu, prefix.address);
  440. return 0;
  441. }
  442. static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
  443. {
  444. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  445. int rc;
  446. int cpu_addr;
  447. spin_lock(&li->lock);
  448. cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  449. clear_bit(cpu_addr, li->sigp_emerg_pending);
  450. if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
  451. clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  452. spin_unlock(&li->lock);
  453. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
  454. vcpu->stat.deliver_emergency_signal++;
  455. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  456. cpu_addr, 0);
  457. rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
  458. (u16 *)__LC_EXT_INT_CODE);
  459. rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
  460. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  461. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  462. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  463. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  464. return rc ? -EFAULT : 0;
  465. }
  466. static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
  467. {
  468. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  469. struct kvm_s390_extcall_info extcall;
  470. int rc;
  471. spin_lock(&li->lock);
  472. extcall = li->irq.extcall;
  473. li->irq.extcall.code = 0;
  474. clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  475. spin_unlock(&li->lock);
  476. VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
  477. vcpu->stat.deliver_external_call++;
  478. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  479. KVM_S390_INT_EXTERNAL_CALL,
  480. extcall.code, 0);
  481. rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
  482. (u16 *)__LC_EXT_INT_CODE);
  483. rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
  484. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  485. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  486. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
  487. sizeof(psw_t));
  488. return rc ? -EFAULT : 0;
  489. }
  490. static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
  491. {
  492. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  493. struct kvm_s390_pgm_info pgm_info;
  494. int rc = 0, nullifying = false;
  495. u16 ilen;
  496. spin_lock(&li->lock);
  497. pgm_info = li->irq.pgm;
  498. clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
  499. memset(&li->irq.pgm, 0, sizeof(pgm_info));
  500. spin_unlock(&li->lock);
  501. ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
  502. VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
  503. pgm_info.code, ilen);
  504. vcpu->stat.deliver_program_int++;
  505. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  506. pgm_info.code, 0);
  507. switch (pgm_info.code & ~PGM_PER) {
  508. case PGM_AFX_TRANSLATION:
  509. case PGM_ASX_TRANSLATION:
  510. case PGM_EX_TRANSLATION:
  511. case PGM_LFX_TRANSLATION:
  512. case PGM_LSTE_SEQUENCE:
  513. case PGM_LSX_TRANSLATION:
  514. case PGM_LX_TRANSLATION:
  515. case PGM_PRIMARY_AUTHORITY:
  516. case PGM_SECONDARY_AUTHORITY:
  517. nullifying = true;
  518. /* fall through */
  519. case PGM_SPACE_SWITCH:
  520. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  521. (u64 *)__LC_TRANS_EXC_CODE);
  522. break;
  523. case PGM_ALEN_TRANSLATION:
  524. case PGM_ALE_SEQUENCE:
  525. case PGM_ASTE_INSTANCE:
  526. case PGM_ASTE_SEQUENCE:
  527. case PGM_ASTE_VALIDITY:
  528. case PGM_EXTENDED_AUTHORITY:
  529. rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
  530. (u8 *)__LC_EXC_ACCESS_ID);
  531. nullifying = true;
  532. break;
  533. case PGM_ASCE_TYPE:
  534. case PGM_PAGE_TRANSLATION:
  535. case PGM_REGION_FIRST_TRANS:
  536. case PGM_REGION_SECOND_TRANS:
  537. case PGM_REGION_THIRD_TRANS:
  538. case PGM_SEGMENT_TRANSLATION:
  539. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  540. (u64 *)__LC_TRANS_EXC_CODE);
  541. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  542. (u8 *)__LC_EXC_ACCESS_ID);
  543. rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
  544. (u8 *)__LC_OP_ACCESS_ID);
  545. nullifying = true;
  546. break;
  547. case PGM_MONITOR:
  548. rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
  549. (u16 *)__LC_MON_CLASS_NR);
  550. rc |= put_guest_lc(vcpu, pgm_info.mon_code,
  551. (u64 *)__LC_MON_CODE);
  552. break;
  553. case PGM_VECTOR_PROCESSING:
  554. case PGM_DATA:
  555. rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
  556. (u32 *)__LC_DATA_EXC_CODE);
  557. break;
  558. case PGM_PROTECTION:
  559. rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
  560. (u64 *)__LC_TRANS_EXC_CODE);
  561. rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
  562. (u8 *)__LC_EXC_ACCESS_ID);
  563. break;
  564. case PGM_STACK_FULL:
  565. case PGM_STACK_EMPTY:
  566. case PGM_STACK_SPECIFICATION:
  567. case PGM_STACK_TYPE:
  568. case PGM_STACK_OPERATION:
  569. case PGM_TRACE_TABEL:
  570. case PGM_CRYPTO_OPERATION:
  571. nullifying = true;
  572. break;
  573. }
  574. if (pgm_info.code & PGM_PER) {
  575. rc |= put_guest_lc(vcpu, pgm_info.per_code,
  576. (u8 *) __LC_PER_CODE);
  577. rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
  578. (u8 *)__LC_PER_ATMID);
  579. rc |= put_guest_lc(vcpu, pgm_info.per_address,
  580. (u64 *) __LC_PER_ADDRESS);
  581. rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
  582. (u8 *) __LC_PER_ACCESS_ID);
  583. }
  584. if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
  585. kvm_s390_rewind_psw(vcpu, ilen);
  586. /* bit 1+2 of the target are the ilc, so we can directly use ilen */
  587. rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
  588. rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
  589. (u64 *) __LC_LAST_BREAK);
  590. rc |= put_guest_lc(vcpu, pgm_info.code,
  591. (u16 *)__LC_PGM_INT_CODE);
  592. rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
  593. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  594. rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
  595. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  596. return rc ? -EFAULT : 0;
  597. }
  598. static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
  599. {
  600. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  601. struct kvm_s390_ext_info ext;
  602. int rc = 0;
  603. spin_lock(&fi->lock);
  604. if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
  605. spin_unlock(&fi->lock);
  606. return 0;
  607. }
  608. ext = fi->srv_signal;
  609. memset(&fi->srv_signal, 0, sizeof(ext));
  610. clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  611. spin_unlock(&fi->lock);
  612. VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
  613. ext.ext_params);
  614. vcpu->stat.deliver_service_signal++;
  615. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
  616. ext.ext_params, 0);
  617. rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
  618. rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
  619. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  620. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  621. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  622. &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
  623. rc |= put_guest_lc(vcpu, ext.ext_params,
  624. (u32 *)__LC_EXT_PARAMS);
  625. return rc ? -EFAULT : 0;
  626. }
  627. static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
  628. {
  629. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  630. struct kvm_s390_interrupt_info *inti;
  631. int rc = 0;
  632. spin_lock(&fi->lock);
  633. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
  634. struct kvm_s390_interrupt_info,
  635. list);
  636. if (inti) {
  637. list_del(&inti->list);
  638. fi->counters[FIRQ_CNTR_PFAULT] -= 1;
  639. }
  640. if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
  641. clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  642. spin_unlock(&fi->lock);
  643. if (inti) {
  644. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  645. KVM_S390_INT_PFAULT_DONE, 0,
  646. inti->ext.ext_params2);
  647. VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
  648. inti->ext.ext_params2);
  649. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  650. (u16 *)__LC_EXT_INT_CODE);
  651. rc |= put_guest_lc(vcpu, PFAULT_DONE,
  652. (u16 *)__LC_EXT_CPU_ADDR);
  653. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  654. &vcpu->arch.sie_block->gpsw,
  655. sizeof(psw_t));
  656. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  657. &vcpu->arch.sie_block->gpsw,
  658. sizeof(psw_t));
  659. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  660. (u64 *)__LC_EXT_PARAMS2);
  661. kfree(inti);
  662. }
  663. return rc ? -EFAULT : 0;
  664. }
  665. static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
  666. {
  667. struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
  668. struct kvm_s390_interrupt_info *inti;
  669. int rc = 0;
  670. spin_lock(&fi->lock);
  671. inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
  672. struct kvm_s390_interrupt_info,
  673. list);
  674. if (inti) {
  675. VCPU_EVENT(vcpu, 4,
  676. "deliver: virtio parm: 0x%x,parm64: 0x%llx",
  677. inti->ext.ext_params, inti->ext.ext_params2);
  678. vcpu->stat.deliver_virtio_interrupt++;
  679. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  680. inti->type,
  681. inti->ext.ext_params,
  682. inti->ext.ext_params2);
  683. list_del(&inti->list);
  684. fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
  685. }
  686. if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
  687. clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  688. spin_unlock(&fi->lock);
  689. if (inti) {
  690. rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
  691. (u16 *)__LC_EXT_INT_CODE);
  692. rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
  693. (u16 *)__LC_EXT_CPU_ADDR);
  694. rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
  695. &vcpu->arch.sie_block->gpsw,
  696. sizeof(psw_t));
  697. rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
  698. &vcpu->arch.sie_block->gpsw,
  699. sizeof(psw_t));
  700. rc |= put_guest_lc(vcpu, inti->ext.ext_params,
  701. (u32 *)__LC_EXT_PARAMS);
  702. rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
  703. (u64 *)__LC_EXT_PARAMS2);
  704. kfree(inti);
  705. }
  706. return rc ? -EFAULT : 0;
  707. }
  708. static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
  709. unsigned long irq_type)
  710. {
  711. struct list_head *isc_list;
  712. struct kvm_s390_float_interrupt *fi;
  713. struct kvm_s390_interrupt_info *inti = NULL;
  714. int rc = 0;
  715. fi = &vcpu->kvm->arch.float_int;
  716. spin_lock(&fi->lock);
  717. isc_list = &fi->lists[irq_type - IRQ_PEND_IO_ISC_0];
  718. inti = list_first_entry_or_null(isc_list,
  719. struct kvm_s390_interrupt_info,
  720. list);
  721. if (inti) {
  722. VCPU_EVENT(vcpu, 4, "deliver: I/O 0x%llx", inti->type);
  723. vcpu->stat.deliver_io_int++;
  724. trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
  725. inti->type,
  726. ((__u32)inti->io.subchannel_id << 16) |
  727. inti->io.subchannel_nr,
  728. ((__u64)inti->io.io_int_parm << 32) |
  729. inti->io.io_int_word);
  730. list_del(&inti->list);
  731. fi->counters[FIRQ_CNTR_IO] -= 1;
  732. }
  733. if (list_empty(isc_list))
  734. clear_bit(irq_type, &fi->pending_irqs);
  735. spin_unlock(&fi->lock);
  736. if (inti) {
  737. rc = put_guest_lc(vcpu, inti->io.subchannel_id,
  738. (u16 *)__LC_SUBCHANNEL_ID);
  739. rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
  740. (u16 *)__LC_SUBCHANNEL_NR);
  741. rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
  742. (u32 *)__LC_IO_INT_PARM);
  743. rc |= put_guest_lc(vcpu, inti->io.io_int_word,
  744. (u32 *)__LC_IO_INT_WORD);
  745. rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
  746. &vcpu->arch.sie_block->gpsw,
  747. sizeof(psw_t));
  748. rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
  749. &vcpu->arch.sie_block->gpsw,
  750. sizeof(psw_t));
  751. kfree(inti);
  752. }
  753. return rc ? -EFAULT : 0;
  754. }
  755. typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
  756. static const deliver_irq_t deliver_irq_funcs[] = {
  757. [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
  758. [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
  759. [IRQ_PEND_PROG] = __deliver_prog,
  760. [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
  761. [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
  762. [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
  763. [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
  764. [IRQ_PEND_RESTART] = __deliver_restart,
  765. [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
  766. [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
  767. [IRQ_PEND_EXT_SERVICE] = __deliver_service,
  768. [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
  769. [IRQ_PEND_VIRTIO] = __deliver_virtio,
  770. };
  771. /* Check whether an external call is pending (deliverable or not) */
  772. int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
  773. {
  774. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  775. if (!sclp.has_sigpif)
  776. return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
  777. return sca_ext_call_pending(vcpu, NULL);
  778. }
  779. int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
  780. {
  781. if (deliverable_irqs(vcpu))
  782. return 1;
  783. if (kvm_cpu_has_pending_timer(vcpu))
  784. return 1;
  785. /* external call pending and deliverable */
  786. if (kvm_s390_ext_call_pending(vcpu) &&
  787. !psw_extint_disabled(vcpu) &&
  788. (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
  789. return 1;
  790. if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
  791. return 1;
  792. return 0;
  793. }
  794. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  795. {
  796. return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
  797. }
  798. static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
  799. {
  800. u64 now, cputm, sltime = 0;
  801. if (ckc_interrupts_enabled(vcpu)) {
  802. now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
  803. sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
  804. /* already expired or overflow? */
  805. if (!sltime || vcpu->arch.sie_block->ckc <= now)
  806. return 0;
  807. if (cpu_timer_interrupts_enabled(vcpu)) {
  808. cputm = kvm_s390_get_cpu_timer(vcpu);
  809. /* already expired? */
  810. if (cputm >> 63)
  811. return 0;
  812. return min(sltime, tod_to_ns(cputm));
  813. }
  814. } else if (cpu_timer_interrupts_enabled(vcpu)) {
  815. sltime = kvm_s390_get_cpu_timer(vcpu);
  816. /* already expired? */
  817. if (sltime >> 63)
  818. return 0;
  819. }
  820. return sltime;
  821. }
  822. int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
  823. {
  824. u64 sltime;
  825. vcpu->stat.exit_wait_state++;
  826. /* fast path */
  827. if (kvm_arch_vcpu_runnable(vcpu))
  828. return 0;
  829. if (psw_interrupts_disabled(vcpu)) {
  830. VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
  831. return -EOPNOTSUPP; /* disabled wait */
  832. }
  833. if (!ckc_interrupts_enabled(vcpu) &&
  834. !cpu_timer_interrupts_enabled(vcpu)) {
  835. VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
  836. __set_cpu_idle(vcpu);
  837. goto no_timer;
  838. }
  839. sltime = __calculate_sltime(vcpu);
  840. if (!sltime)
  841. return 0;
  842. __set_cpu_idle(vcpu);
  843. hrtimer_start(&vcpu->arch.ckc_timer, ktime_set (0, sltime) , HRTIMER_MODE_REL);
  844. VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
  845. no_timer:
  846. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  847. kvm_vcpu_block(vcpu);
  848. __unset_cpu_idle(vcpu);
  849. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  850. hrtimer_cancel(&vcpu->arch.ckc_timer);
  851. return 0;
  852. }
  853. void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
  854. {
  855. if (waitqueue_active(&vcpu->wq)) {
  856. /*
  857. * The vcpu gave up the cpu voluntarily, mark it as a good
  858. * yield-candidate.
  859. */
  860. vcpu->preempted = true;
  861. wake_up_interruptible(&vcpu->wq);
  862. vcpu->stat.halt_wakeup++;
  863. }
  864. }
  865. enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
  866. {
  867. struct kvm_vcpu *vcpu;
  868. u64 sltime;
  869. vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
  870. sltime = __calculate_sltime(vcpu);
  871. /*
  872. * If the monotonic clock runs faster than the tod clock we might be
  873. * woken up too early and have to go back to sleep to avoid deadlocks.
  874. */
  875. if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
  876. return HRTIMER_RESTART;
  877. kvm_s390_vcpu_wakeup(vcpu);
  878. return HRTIMER_NORESTART;
  879. }
  880. void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
  881. {
  882. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  883. spin_lock(&li->lock);
  884. li->pending_irqs = 0;
  885. bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
  886. memset(&li->irq, 0, sizeof(li->irq));
  887. spin_unlock(&li->lock);
  888. sca_clear_ext_call(vcpu);
  889. }
  890. int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
  891. {
  892. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  893. deliver_irq_t func;
  894. int rc = 0;
  895. unsigned long irq_type;
  896. unsigned long irqs;
  897. __reset_intercept_indicators(vcpu);
  898. /* pending ckc conditions might have been invalidated */
  899. clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  900. if (ckc_irq_pending(vcpu))
  901. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  902. /* pending cpu timer conditions might have been invalidated */
  903. clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  904. if (cpu_timer_irq_pending(vcpu))
  905. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  906. while ((irqs = deliverable_irqs(vcpu)) && !rc) {
  907. /* bits are in the order of interrupt priority */
  908. irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
  909. if (is_ioirq(irq_type)) {
  910. rc = __deliver_io(vcpu, irq_type);
  911. } else {
  912. func = deliver_irq_funcs[irq_type];
  913. if (!func) {
  914. WARN_ON_ONCE(func == NULL);
  915. clear_bit(irq_type, &li->pending_irqs);
  916. continue;
  917. }
  918. rc = func(vcpu);
  919. }
  920. }
  921. set_intercept_indicators(vcpu);
  922. return rc;
  923. }
  924. static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  925. {
  926. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  927. VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
  928. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
  929. irq->u.pgm.code, 0);
  930. if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
  931. /* auto detection if no valid ILC was given */
  932. irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
  933. irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
  934. irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
  935. }
  936. if (irq->u.pgm.code == PGM_PER) {
  937. li->irq.pgm.code |= PGM_PER;
  938. li->irq.pgm.flags = irq->u.pgm.flags;
  939. /* only modify PER related information */
  940. li->irq.pgm.per_address = irq->u.pgm.per_address;
  941. li->irq.pgm.per_code = irq->u.pgm.per_code;
  942. li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
  943. li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
  944. } else if (!(irq->u.pgm.code & PGM_PER)) {
  945. li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
  946. irq->u.pgm.code;
  947. li->irq.pgm.flags = irq->u.pgm.flags;
  948. /* only modify non-PER information */
  949. li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
  950. li->irq.pgm.mon_code = irq->u.pgm.mon_code;
  951. li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
  952. li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
  953. li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
  954. li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
  955. } else {
  956. li->irq.pgm = irq->u.pgm;
  957. }
  958. set_bit(IRQ_PEND_PROG, &li->pending_irqs);
  959. return 0;
  960. }
  961. static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  962. {
  963. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  964. VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
  965. irq->u.ext.ext_params2);
  966. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
  967. irq->u.ext.ext_params,
  968. irq->u.ext.ext_params2);
  969. li->irq.ext = irq->u.ext;
  970. set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
  971. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  972. return 0;
  973. }
  974. static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  975. {
  976. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  977. struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
  978. uint16_t src_id = irq->u.extcall.code;
  979. VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
  980. src_id);
  981. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
  982. src_id, 0);
  983. /* sending vcpu invalid */
  984. if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
  985. return -EINVAL;
  986. if (sclp.has_sigpif)
  987. return sca_inject_ext_call(vcpu, src_id);
  988. if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
  989. return -EBUSY;
  990. *extcall = irq->u.extcall;
  991. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  992. return 0;
  993. }
  994. static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  995. {
  996. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  997. struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
  998. VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
  999. irq->u.prefix.address);
  1000. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
  1001. irq->u.prefix.address, 0);
  1002. if (!is_vcpu_stopped(vcpu))
  1003. return -EBUSY;
  1004. *prefix = irq->u.prefix;
  1005. set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
  1006. return 0;
  1007. }
  1008. #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
  1009. static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1010. {
  1011. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1012. struct kvm_s390_stop_info *stop = &li->irq.stop;
  1013. int rc = 0;
  1014. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
  1015. if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
  1016. return -EINVAL;
  1017. if (is_vcpu_stopped(vcpu)) {
  1018. if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
  1019. rc = kvm_s390_store_status_unloaded(vcpu,
  1020. KVM_S390_STORE_STATUS_NOADDR);
  1021. return rc;
  1022. }
  1023. if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
  1024. return -EBUSY;
  1025. stop->flags = irq->u.stop.flags;
  1026. __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
  1027. return 0;
  1028. }
  1029. static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
  1030. struct kvm_s390_irq *irq)
  1031. {
  1032. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1033. VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
  1034. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
  1035. set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
  1036. return 0;
  1037. }
  1038. static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
  1039. struct kvm_s390_irq *irq)
  1040. {
  1041. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1042. VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
  1043. irq->u.emerg.code);
  1044. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
  1045. irq->u.emerg.code, 0);
  1046. /* sending vcpu invalid */
  1047. if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
  1048. return -EINVAL;
  1049. set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
  1050. set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
  1051. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1052. return 0;
  1053. }
  1054. static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1055. {
  1056. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1057. struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
  1058. VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
  1059. irq->u.mchk.mcic);
  1060. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
  1061. irq->u.mchk.mcic);
  1062. /*
  1063. * Because repressible machine checks can be indicated along with
  1064. * exigent machine checks (PoP, Chapter 11, Interruption action)
  1065. * we need to combine cr14, mcic and external damage code.
  1066. * Failing storage address and the logout area should not be or'ed
  1067. * together, we just indicate the last occurrence of the corresponding
  1068. * machine check
  1069. */
  1070. mchk->cr14 |= irq->u.mchk.cr14;
  1071. mchk->mcic |= irq->u.mchk.mcic;
  1072. mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
  1073. mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
  1074. memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
  1075. sizeof(mchk->fixed_logout));
  1076. if (mchk->mcic & MCHK_EX_MASK)
  1077. set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
  1078. else if (mchk->mcic & MCHK_REP_MASK)
  1079. set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
  1080. return 0;
  1081. }
  1082. static int __inject_ckc(struct kvm_vcpu *vcpu)
  1083. {
  1084. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1085. VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
  1086. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
  1087. 0, 0);
  1088. set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
  1089. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1090. return 0;
  1091. }
  1092. static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
  1093. {
  1094. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1095. VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
  1096. trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
  1097. 0, 0);
  1098. set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
  1099. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1100. return 0;
  1101. }
  1102. static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
  1103. int isc, u32 schid)
  1104. {
  1105. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1106. struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1107. struct kvm_s390_interrupt_info *iter;
  1108. u16 id = (schid & 0xffff0000U) >> 16;
  1109. u16 nr = schid & 0x0000ffffU;
  1110. spin_lock(&fi->lock);
  1111. list_for_each_entry(iter, isc_list, list) {
  1112. if (schid && (id != iter->io.subchannel_id ||
  1113. nr != iter->io.subchannel_nr))
  1114. continue;
  1115. /* found an appropriate entry */
  1116. list_del_init(&iter->list);
  1117. fi->counters[FIRQ_CNTR_IO] -= 1;
  1118. if (list_empty(isc_list))
  1119. clear_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1120. spin_unlock(&fi->lock);
  1121. return iter;
  1122. }
  1123. spin_unlock(&fi->lock);
  1124. return NULL;
  1125. }
  1126. /*
  1127. * Dequeue and return an I/O interrupt matching any of the interruption
  1128. * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
  1129. */
  1130. struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
  1131. u64 isc_mask, u32 schid)
  1132. {
  1133. struct kvm_s390_interrupt_info *inti = NULL;
  1134. int isc;
  1135. for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
  1136. if (isc_mask & isc_to_isc_bits(isc))
  1137. inti = get_io_int(kvm, isc, schid);
  1138. }
  1139. return inti;
  1140. }
  1141. #define SCCB_MASK 0xFFFFFFF8
  1142. #define SCCB_EVENT_PENDING 0x3
  1143. static int __inject_service(struct kvm *kvm,
  1144. struct kvm_s390_interrupt_info *inti)
  1145. {
  1146. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1147. spin_lock(&fi->lock);
  1148. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
  1149. /*
  1150. * Early versions of the QEMU s390 bios will inject several
  1151. * service interrupts after another without handling a
  1152. * condition code indicating busy.
  1153. * We will silently ignore those superfluous sccb values.
  1154. * A future version of QEMU will take care of serialization
  1155. * of servc requests
  1156. */
  1157. if (fi->srv_signal.ext_params & SCCB_MASK)
  1158. goto out;
  1159. fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
  1160. set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
  1161. out:
  1162. spin_unlock(&fi->lock);
  1163. kfree(inti);
  1164. return 0;
  1165. }
  1166. static int __inject_virtio(struct kvm *kvm,
  1167. struct kvm_s390_interrupt_info *inti)
  1168. {
  1169. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1170. spin_lock(&fi->lock);
  1171. if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
  1172. spin_unlock(&fi->lock);
  1173. return -EBUSY;
  1174. }
  1175. fi->counters[FIRQ_CNTR_VIRTIO] += 1;
  1176. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
  1177. set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
  1178. spin_unlock(&fi->lock);
  1179. return 0;
  1180. }
  1181. static int __inject_pfault_done(struct kvm *kvm,
  1182. struct kvm_s390_interrupt_info *inti)
  1183. {
  1184. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1185. spin_lock(&fi->lock);
  1186. if (fi->counters[FIRQ_CNTR_PFAULT] >=
  1187. (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
  1188. spin_unlock(&fi->lock);
  1189. return -EBUSY;
  1190. }
  1191. fi->counters[FIRQ_CNTR_PFAULT] += 1;
  1192. list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
  1193. set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
  1194. spin_unlock(&fi->lock);
  1195. return 0;
  1196. }
  1197. #define CR_PENDING_SUBCLASS 28
  1198. static int __inject_float_mchk(struct kvm *kvm,
  1199. struct kvm_s390_interrupt_info *inti)
  1200. {
  1201. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1202. spin_lock(&fi->lock);
  1203. fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
  1204. fi->mchk.mcic |= inti->mchk.mcic;
  1205. set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
  1206. spin_unlock(&fi->lock);
  1207. kfree(inti);
  1208. return 0;
  1209. }
  1210. static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1211. {
  1212. struct kvm_s390_float_interrupt *fi;
  1213. struct list_head *list;
  1214. int isc;
  1215. fi = &kvm->arch.float_int;
  1216. spin_lock(&fi->lock);
  1217. if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
  1218. spin_unlock(&fi->lock);
  1219. return -EBUSY;
  1220. }
  1221. fi->counters[FIRQ_CNTR_IO] += 1;
  1222. isc = int_word_to_isc(inti->io.io_int_word);
  1223. list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
  1224. list_add_tail(&inti->list, list);
  1225. set_bit(IRQ_PEND_IO_ISC_0 + isc, &fi->pending_irqs);
  1226. spin_unlock(&fi->lock);
  1227. return 0;
  1228. }
  1229. /*
  1230. * Find a destination VCPU for a floating irq and kick it.
  1231. */
  1232. static void __floating_irq_kick(struct kvm *kvm, u64 type)
  1233. {
  1234. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1235. struct kvm_s390_local_interrupt *li;
  1236. struct kvm_vcpu *dst_vcpu;
  1237. int sigcpu, online_vcpus, nr_tries = 0;
  1238. online_vcpus = atomic_read(&kvm->online_vcpus);
  1239. if (!online_vcpus)
  1240. return;
  1241. /* find idle VCPUs first, then round robin */
  1242. sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
  1243. if (sigcpu == online_vcpus) {
  1244. do {
  1245. sigcpu = fi->next_rr_cpu;
  1246. fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
  1247. /* avoid endless loops if all vcpus are stopped */
  1248. if (nr_tries++ >= online_vcpus)
  1249. return;
  1250. } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
  1251. }
  1252. dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
  1253. /* make the VCPU drop out of the SIE, or wake it up if sleeping */
  1254. li = &dst_vcpu->arch.local_int;
  1255. spin_lock(&li->lock);
  1256. switch (type) {
  1257. case KVM_S390_MCHK:
  1258. atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
  1259. break;
  1260. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1261. atomic_or(CPUSTAT_IO_INT, li->cpuflags);
  1262. break;
  1263. default:
  1264. atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
  1265. break;
  1266. }
  1267. spin_unlock(&li->lock);
  1268. kvm_s390_vcpu_wakeup(dst_vcpu);
  1269. }
  1270. static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
  1271. {
  1272. u64 type = READ_ONCE(inti->type);
  1273. int rc;
  1274. switch (type) {
  1275. case KVM_S390_MCHK:
  1276. rc = __inject_float_mchk(kvm, inti);
  1277. break;
  1278. case KVM_S390_INT_VIRTIO:
  1279. rc = __inject_virtio(kvm, inti);
  1280. break;
  1281. case KVM_S390_INT_SERVICE:
  1282. rc = __inject_service(kvm, inti);
  1283. break;
  1284. case KVM_S390_INT_PFAULT_DONE:
  1285. rc = __inject_pfault_done(kvm, inti);
  1286. break;
  1287. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1288. rc = __inject_io(kvm, inti);
  1289. break;
  1290. default:
  1291. rc = -EINVAL;
  1292. }
  1293. if (rc)
  1294. return rc;
  1295. __floating_irq_kick(kvm, type);
  1296. return 0;
  1297. }
  1298. int kvm_s390_inject_vm(struct kvm *kvm,
  1299. struct kvm_s390_interrupt *s390int)
  1300. {
  1301. struct kvm_s390_interrupt_info *inti;
  1302. int rc;
  1303. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1304. if (!inti)
  1305. return -ENOMEM;
  1306. inti->type = s390int->type;
  1307. switch (inti->type) {
  1308. case KVM_S390_INT_VIRTIO:
  1309. VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
  1310. s390int->parm, s390int->parm64);
  1311. inti->ext.ext_params = s390int->parm;
  1312. inti->ext.ext_params2 = s390int->parm64;
  1313. break;
  1314. case KVM_S390_INT_SERVICE:
  1315. VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
  1316. inti->ext.ext_params = s390int->parm;
  1317. break;
  1318. case KVM_S390_INT_PFAULT_DONE:
  1319. inti->ext.ext_params2 = s390int->parm64;
  1320. break;
  1321. case KVM_S390_MCHK:
  1322. VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
  1323. s390int->parm64);
  1324. inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
  1325. inti->mchk.mcic = s390int->parm64;
  1326. break;
  1327. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1328. if (inti->type & KVM_S390_INT_IO_AI_MASK)
  1329. VM_EVENT(kvm, 5, "%s", "inject: I/O (AI)");
  1330. else
  1331. VM_EVENT(kvm, 5, "inject: I/O css %x ss %x schid %04x",
  1332. s390int->type & IOINT_CSSID_MASK,
  1333. s390int->type & IOINT_SSID_MASK,
  1334. s390int->type & IOINT_SCHID_MASK);
  1335. inti->io.subchannel_id = s390int->parm >> 16;
  1336. inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
  1337. inti->io.io_int_parm = s390int->parm64 >> 32;
  1338. inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
  1339. break;
  1340. default:
  1341. kfree(inti);
  1342. return -EINVAL;
  1343. }
  1344. trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
  1345. 2);
  1346. rc = __inject_vm(kvm, inti);
  1347. if (rc)
  1348. kfree(inti);
  1349. return rc;
  1350. }
  1351. int kvm_s390_reinject_io_int(struct kvm *kvm,
  1352. struct kvm_s390_interrupt_info *inti)
  1353. {
  1354. return __inject_vm(kvm, inti);
  1355. }
  1356. int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
  1357. struct kvm_s390_irq *irq)
  1358. {
  1359. irq->type = s390int->type;
  1360. switch (irq->type) {
  1361. case KVM_S390_PROGRAM_INT:
  1362. if (s390int->parm & 0xffff0000)
  1363. return -EINVAL;
  1364. irq->u.pgm.code = s390int->parm;
  1365. break;
  1366. case KVM_S390_SIGP_SET_PREFIX:
  1367. irq->u.prefix.address = s390int->parm;
  1368. break;
  1369. case KVM_S390_SIGP_STOP:
  1370. irq->u.stop.flags = s390int->parm;
  1371. break;
  1372. case KVM_S390_INT_EXTERNAL_CALL:
  1373. if (s390int->parm & 0xffff0000)
  1374. return -EINVAL;
  1375. irq->u.extcall.code = s390int->parm;
  1376. break;
  1377. case KVM_S390_INT_EMERGENCY:
  1378. if (s390int->parm & 0xffff0000)
  1379. return -EINVAL;
  1380. irq->u.emerg.code = s390int->parm;
  1381. break;
  1382. case KVM_S390_MCHK:
  1383. irq->u.mchk.mcic = s390int->parm64;
  1384. break;
  1385. }
  1386. return 0;
  1387. }
  1388. int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
  1389. {
  1390. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1391. return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1392. }
  1393. void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
  1394. {
  1395. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1396. spin_lock(&li->lock);
  1397. li->irq.stop.flags = 0;
  1398. clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
  1399. spin_unlock(&li->lock);
  1400. }
  1401. static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1402. {
  1403. int rc;
  1404. switch (irq->type) {
  1405. case KVM_S390_PROGRAM_INT:
  1406. rc = __inject_prog(vcpu, irq);
  1407. break;
  1408. case KVM_S390_SIGP_SET_PREFIX:
  1409. rc = __inject_set_prefix(vcpu, irq);
  1410. break;
  1411. case KVM_S390_SIGP_STOP:
  1412. rc = __inject_sigp_stop(vcpu, irq);
  1413. break;
  1414. case KVM_S390_RESTART:
  1415. rc = __inject_sigp_restart(vcpu, irq);
  1416. break;
  1417. case KVM_S390_INT_CLOCK_COMP:
  1418. rc = __inject_ckc(vcpu);
  1419. break;
  1420. case KVM_S390_INT_CPU_TIMER:
  1421. rc = __inject_cpu_timer(vcpu);
  1422. break;
  1423. case KVM_S390_INT_EXTERNAL_CALL:
  1424. rc = __inject_extcall(vcpu, irq);
  1425. break;
  1426. case KVM_S390_INT_EMERGENCY:
  1427. rc = __inject_sigp_emergency(vcpu, irq);
  1428. break;
  1429. case KVM_S390_MCHK:
  1430. rc = __inject_mchk(vcpu, irq);
  1431. break;
  1432. case KVM_S390_INT_PFAULT_INIT:
  1433. rc = __inject_pfault_init(vcpu, irq);
  1434. break;
  1435. case KVM_S390_INT_VIRTIO:
  1436. case KVM_S390_INT_SERVICE:
  1437. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1438. default:
  1439. rc = -EINVAL;
  1440. }
  1441. return rc;
  1442. }
  1443. int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
  1444. {
  1445. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1446. int rc;
  1447. spin_lock(&li->lock);
  1448. rc = do_inject_vcpu(vcpu, irq);
  1449. spin_unlock(&li->lock);
  1450. if (!rc)
  1451. kvm_s390_vcpu_wakeup(vcpu);
  1452. return rc;
  1453. }
  1454. static inline void clear_irq_list(struct list_head *_list)
  1455. {
  1456. struct kvm_s390_interrupt_info *inti, *n;
  1457. list_for_each_entry_safe(inti, n, _list, list) {
  1458. list_del(&inti->list);
  1459. kfree(inti);
  1460. }
  1461. }
  1462. static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
  1463. struct kvm_s390_irq *irq)
  1464. {
  1465. irq->type = inti->type;
  1466. switch (inti->type) {
  1467. case KVM_S390_INT_PFAULT_INIT:
  1468. case KVM_S390_INT_PFAULT_DONE:
  1469. case KVM_S390_INT_VIRTIO:
  1470. irq->u.ext = inti->ext;
  1471. break;
  1472. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1473. irq->u.io = inti->io;
  1474. break;
  1475. }
  1476. }
  1477. void kvm_s390_clear_float_irqs(struct kvm *kvm)
  1478. {
  1479. struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
  1480. int i;
  1481. spin_lock(&fi->lock);
  1482. fi->pending_irqs = 0;
  1483. memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
  1484. memset(&fi->mchk, 0, sizeof(fi->mchk));
  1485. for (i = 0; i < FIRQ_LIST_COUNT; i++)
  1486. clear_irq_list(&fi->lists[i]);
  1487. for (i = 0; i < FIRQ_MAX_COUNT; i++)
  1488. fi->counters[i] = 0;
  1489. spin_unlock(&fi->lock);
  1490. };
  1491. static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
  1492. {
  1493. struct kvm_s390_interrupt_info *inti;
  1494. struct kvm_s390_float_interrupt *fi;
  1495. struct kvm_s390_irq *buf;
  1496. struct kvm_s390_irq *irq;
  1497. int max_irqs;
  1498. int ret = 0;
  1499. int n = 0;
  1500. int i;
  1501. if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
  1502. return -EINVAL;
  1503. /*
  1504. * We are already using -ENOMEM to signal
  1505. * userspace it may retry with a bigger buffer,
  1506. * so we need to use something else for this case
  1507. */
  1508. buf = vzalloc(len);
  1509. if (!buf)
  1510. return -ENOBUFS;
  1511. max_irqs = len / sizeof(struct kvm_s390_irq);
  1512. fi = &kvm->arch.float_int;
  1513. spin_lock(&fi->lock);
  1514. for (i = 0; i < FIRQ_LIST_COUNT; i++) {
  1515. list_for_each_entry(inti, &fi->lists[i], list) {
  1516. if (n == max_irqs) {
  1517. /* signal userspace to try again */
  1518. ret = -ENOMEM;
  1519. goto out;
  1520. }
  1521. inti_to_irq(inti, &buf[n]);
  1522. n++;
  1523. }
  1524. }
  1525. if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
  1526. if (n == max_irqs) {
  1527. /* signal userspace to try again */
  1528. ret = -ENOMEM;
  1529. goto out;
  1530. }
  1531. irq = (struct kvm_s390_irq *) &buf[n];
  1532. irq->type = KVM_S390_INT_SERVICE;
  1533. irq->u.ext = fi->srv_signal;
  1534. n++;
  1535. }
  1536. if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
  1537. if (n == max_irqs) {
  1538. /* signal userspace to try again */
  1539. ret = -ENOMEM;
  1540. goto out;
  1541. }
  1542. irq = (struct kvm_s390_irq *) &buf[n];
  1543. irq->type = KVM_S390_MCHK;
  1544. irq->u.mchk = fi->mchk;
  1545. n++;
  1546. }
  1547. out:
  1548. spin_unlock(&fi->lock);
  1549. if (!ret && n > 0) {
  1550. if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
  1551. ret = -EFAULT;
  1552. }
  1553. vfree(buf);
  1554. return ret < 0 ? ret : n;
  1555. }
  1556. static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1557. {
  1558. int r;
  1559. switch (attr->group) {
  1560. case KVM_DEV_FLIC_GET_ALL_IRQS:
  1561. r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
  1562. attr->attr);
  1563. break;
  1564. default:
  1565. r = -EINVAL;
  1566. }
  1567. return r;
  1568. }
  1569. static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
  1570. u64 addr)
  1571. {
  1572. struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
  1573. void *target = NULL;
  1574. void __user *source;
  1575. u64 size;
  1576. if (get_user(inti->type, (u64 __user *)addr))
  1577. return -EFAULT;
  1578. switch (inti->type) {
  1579. case KVM_S390_INT_PFAULT_INIT:
  1580. case KVM_S390_INT_PFAULT_DONE:
  1581. case KVM_S390_INT_VIRTIO:
  1582. case KVM_S390_INT_SERVICE:
  1583. target = (void *) &inti->ext;
  1584. source = &uptr->u.ext;
  1585. size = sizeof(inti->ext);
  1586. break;
  1587. case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
  1588. target = (void *) &inti->io;
  1589. source = &uptr->u.io;
  1590. size = sizeof(inti->io);
  1591. break;
  1592. case KVM_S390_MCHK:
  1593. target = (void *) &inti->mchk;
  1594. source = &uptr->u.mchk;
  1595. size = sizeof(inti->mchk);
  1596. break;
  1597. default:
  1598. return -EINVAL;
  1599. }
  1600. if (copy_from_user(target, source, size))
  1601. return -EFAULT;
  1602. return 0;
  1603. }
  1604. static int enqueue_floating_irq(struct kvm_device *dev,
  1605. struct kvm_device_attr *attr)
  1606. {
  1607. struct kvm_s390_interrupt_info *inti = NULL;
  1608. int r = 0;
  1609. int len = attr->attr;
  1610. if (len % sizeof(struct kvm_s390_irq) != 0)
  1611. return -EINVAL;
  1612. else if (len > KVM_S390_FLIC_MAX_BUFFER)
  1613. return -EINVAL;
  1614. while (len >= sizeof(struct kvm_s390_irq)) {
  1615. inti = kzalloc(sizeof(*inti), GFP_KERNEL);
  1616. if (!inti)
  1617. return -ENOMEM;
  1618. r = copy_irq_from_user(inti, attr->addr);
  1619. if (r) {
  1620. kfree(inti);
  1621. return r;
  1622. }
  1623. r = __inject_vm(dev->kvm, inti);
  1624. if (r) {
  1625. kfree(inti);
  1626. return r;
  1627. }
  1628. len -= sizeof(struct kvm_s390_irq);
  1629. attr->addr += sizeof(struct kvm_s390_irq);
  1630. }
  1631. return r;
  1632. }
  1633. static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
  1634. {
  1635. if (id >= MAX_S390_IO_ADAPTERS)
  1636. return NULL;
  1637. return kvm->arch.adapters[id];
  1638. }
  1639. static int register_io_adapter(struct kvm_device *dev,
  1640. struct kvm_device_attr *attr)
  1641. {
  1642. struct s390_io_adapter *adapter;
  1643. struct kvm_s390_io_adapter adapter_info;
  1644. if (copy_from_user(&adapter_info,
  1645. (void __user *)attr->addr, sizeof(adapter_info)))
  1646. return -EFAULT;
  1647. if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
  1648. (dev->kvm->arch.adapters[adapter_info.id] != NULL))
  1649. return -EINVAL;
  1650. adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
  1651. if (!adapter)
  1652. return -ENOMEM;
  1653. INIT_LIST_HEAD(&adapter->maps);
  1654. init_rwsem(&adapter->maps_lock);
  1655. atomic_set(&adapter->nr_maps, 0);
  1656. adapter->id = adapter_info.id;
  1657. adapter->isc = adapter_info.isc;
  1658. adapter->maskable = adapter_info.maskable;
  1659. adapter->masked = false;
  1660. adapter->swap = adapter_info.swap;
  1661. dev->kvm->arch.adapters[adapter->id] = adapter;
  1662. return 0;
  1663. }
  1664. int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
  1665. {
  1666. int ret;
  1667. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1668. if (!adapter || !adapter->maskable)
  1669. return -EINVAL;
  1670. ret = adapter->masked;
  1671. adapter->masked = masked;
  1672. return ret;
  1673. }
  1674. static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
  1675. {
  1676. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1677. struct s390_map_info *map;
  1678. int ret;
  1679. if (!adapter || !addr)
  1680. return -EINVAL;
  1681. map = kzalloc(sizeof(*map), GFP_KERNEL);
  1682. if (!map) {
  1683. ret = -ENOMEM;
  1684. goto out;
  1685. }
  1686. INIT_LIST_HEAD(&map->list);
  1687. map->guest_addr = addr;
  1688. map->addr = gmap_translate(kvm->arch.gmap, addr);
  1689. if (map->addr == -EFAULT) {
  1690. ret = -EFAULT;
  1691. goto out;
  1692. }
  1693. ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
  1694. if (ret < 0)
  1695. goto out;
  1696. BUG_ON(ret != 1);
  1697. down_write(&adapter->maps_lock);
  1698. if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
  1699. list_add_tail(&map->list, &adapter->maps);
  1700. ret = 0;
  1701. } else {
  1702. put_page(map->page);
  1703. ret = -EINVAL;
  1704. }
  1705. up_write(&adapter->maps_lock);
  1706. out:
  1707. if (ret)
  1708. kfree(map);
  1709. return ret;
  1710. }
  1711. static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
  1712. {
  1713. struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
  1714. struct s390_map_info *map, *tmp;
  1715. int found = 0;
  1716. if (!adapter || !addr)
  1717. return -EINVAL;
  1718. down_write(&adapter->maps_lock);
  1719. list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
  1720. if (map->guest_addr == addr) {
  1721. found = 1;
  1722. atomic_dec(&adapter->nr_maps);
  1723. list_del(&map->list);
  1724. put_page(map->page);
  1725. kfree(map);
  1726. break;
  1727. }
  1728. }
  1729. up_write(&adapter->maps_lock);
  1730. return found ? 0 : -EINVAL;
  1731. }
  1732. void kvm_s390_destroy_adapters(struct kvm *kvm)
  1733. {
  1734. int i;
  1735. struct s390_map_info *map, *tmp;
  1736. for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
  1737. if (!kvm->arch.adapters[i])
  1738. continue;
  1739. list_for_each_entry_safe(map, tmp,
  1740. &kvm->arch.adapters[i]->maps, list) {
  1741. list_del(&map->list);
  1742. put_page(map->page);
  1743. kfree(map);
  1744. }
  1745. kfree(kvm->arch.adapters[i]);
  1746. }
  1747. }
  1748. static int modify_io_adapter(struct kvm_device *dev,
  1749. struct kvm_device_attr *attr)
  1750. {
  1751. struct kvm_s390_io_adapter_req req;
  1752. struct s390_io_adapter *adapter;
  1753. int ret;
  1754. if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
  1755. return -EFAULT;
  1756. adapter = get_io_adapter(dev->kvm, req.id);
  1757. if (!adapter)
  1758. return -EINVAL;
  1759. switch (req.type) {
  1760. case KVM_S390_IO_ADAPTER_MASK:
  1761. ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
  1762. if (ret > 0)
  1763. ret = 0;
  1764. break;
  1765. case KVM_S390_IO_ADAPTER_MAP:
  1766. ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
  1767. break;
  1768. case KVM_S390_IO_ADAPTER_UNMAP:
  1769. ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
  1770. break;
  1771. default:
  1772. ret = -EINVAL;
  1773. }
  1774. return ret;
  1775. }
  1776. static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
  1777. {
  1778. int r = 0;
  1779. unsigned int i;
  1780. struct kvm_vcpu *vcpu;
  1781. switch (attr->group) {
  1782. case KVM_DEV_FLIC_ENQUEUE:
  1783. r = enqueue_floating_irq(dev, attr);
  1784. break;
  1785. case KVM_DEV_FLIC_CLEAR_IRQS:
  1786. kvm_s390_clear_float_irqs(dev->kvm);
  1787. break;
  1788. case KVM_DEV_FLIC_APF_ENABLE:
  1789. dev->kvm->arch.gmap->pfault_enabled = 1;
  1790. break;
  1791. case KVM_DEV_FLIC_APF_DISABLE_WAIT:
  1792. dev->kvm->arch.gmap->pfault_enabled = 0;
  1793. /*
  1794. * Make sure no async faults are in transition when
  1795. * clearing the queues. So we don't need to worry
  1796. * about late coming workers.
  1797. */
  1798. synchronize_srcu(&dev->kvm->srcu);
  1799. kvm_for_each_vcpu(i, vcpu, dev->kvm)
  1800. kvm_clear_async_pf_completion_queue(vcpu);
  1801. break;
  1802. case KVM_DEV_FLIC_ADAPTER_REGISTER:
  1803. r = register_io_adapter(dev, attr);
  1804. break;
  1805. case KVM_DEV_FLIC_ADAPTER_MODIFY:
  1806. r = modify_io_adapter(dev, attr);
  1807. break;
  1808. default:
  1809. r = -EINVAL;
  1810. }
  1811. return r;
  1812. }
  1813. static int flic_create(struct kvm_device *dev, u32 type)
  1814. {
  1815. if (!dev)
  1816. return -EINVAL;
  1817. if (dev->kvm->arch.flic)
  1818. return -EINVAL;
  1819. dev->kvm->arch.flic = dev;
  1820. return 0;
  1821. }
  1822. static void flic_destroy(struct kvm_device *dev)
  1823. {
  1824. dev->kvm->arch.flic = NULL;
  1825. kfree(dev);
  1826. }
  1827. /* s390 floating irq controller (flic) */
  1828. struct kvm_device_ops kvm_flic_ops = {
  1829. .name = "kvm-flic",
  1830. .get_attr = flic_get_attr,
  1831. .set_attr = flic_set_attr,
  1832. .create = flic_create,
  1833. .destroy = flic_destroy,
  1834. };
  1835. static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
  1836. {
  1837. unsigned long bit;
  1838. bit = bit_nr + (addr % PAGE_SIZE) * 8;
  1839. return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
  1840. }
  1841. static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
  1842. u64 addr)
  1843. {
  1844. struct s390_map_info *map;
  1845. if (!adapter)
  1846. return NULL;
  1847. list_for_each_entry(map, &adapter->maps, list) {
  1848. if (map->guest_addr == addr)
  1849. return map;
  1850. }
  1851. return NULL;
  1852. }
  1853. static int adapter_indicators_set(struct kvm *kvm,
  1854. struct s390_io_adapter *adapter,
  1855. struct kvm_s390_adapter_int *adapter_int)
  1856. {
  1857. unsigned long bit;
  1858. int summary_set, idx;
  1859. struct s390_map_info *info;
  1860. void *map;
  1861. info = get_map_info(adapter, adapter_int->ind_addr);
  1862. if (!info)
  1863. return -1;
  1864. map = page_address(info->page);
  1865. bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
  1866. set_bit(bit, map);
  1867. idx = srcu_read_lock(&kvm->srcu);
  1868. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  1869. set_page_dirty_lock(info->page);
  1870. info = get_map_info(adapter, adapter_int->summary_addr);
  1871. if (!info) {
  1872. srcu_read_unlock(&kvm->srcu, idx);
  1873. return -1;
  1874. }
  1875. map = page_address(info->page);
  1876. bit = get_ind_bit(info->addr, adapter_int->summary_offset,
  1877. adapter->swap);
  1878. summary_set = test_and_set_bit(bit, map);
  1879. mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
  1880. set_page_dirty_lock(info->page);
  1881. srcu_read_unlock(&kvm->srcu, idx);
  1882. return summary_set ? 0 : 1;
  1883. }
  1884. /*
  1885. * < 0 - not injected due to error
  1886. * = 0 - coalesced, summary indicator already active
  1887. * > 0 - injected interrupt
  1888. */
  1889. static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
  1890. struct kvm *kvm, int irq_source_id, int level,
  1891. bool line_status)
  1892. {
  1893. int ret;
  1894. struct s390_io_adapter *adapter;
  1895. /* We're only interested in the 0->1 transition. */
  1896. if (!level)
  1897. return 0;
  1898. adapter = get_io_adapter(kvm, e->adapter.adapter_id);
  1899. if (!adapter)
  1900. return -1;
  1901. down_read(&adapter->maps_lock);
  1902. ret = adapter_indicators_set(kvm, adapter, &e->adapter);
  1903. up_read(&adapter->maps_lock);
  1904. if ((ret > 0) && !adapter->masked) {
  1905. struct kvm_s390_interrupt s390int = {
  1906. .type = KVM_S390_INT_IO(1, 0, 0, 0),
  1907. .parm = 0,
  1908. .parm64 = (adapter->isc << 27) | 0x80000000,
  1909. };
  1910. ret = kvm_s390_inject_vm(kvm, &s390int);
  1911. if (ret == 0)
  1912. ret = 1;
  1913. }
  1914. return ret;
  1915. }
  1916. int kvm_set_routing_entry(struct kvm_kernel_irq_routing_entry *e,
  1917. const struct kvm_irq_routing_entry *ue)
  1918. {
  1919. int ret;
  1920. switch (ue->type) {
  1921. case KVM_IRQ_ROUTING_S390_ADAPTER:
  1922. e->set = set_adapter_int;
  1923. e->adapter.summary_addr = ue->u.adapter.summary_addr;
  1924. e->adapter.ind_addr = ue->u.adapter.ind_addr;
  1925. e->adapter.summary_offset = ue->u.adapter.summary_offset;
  1926. e->adapter.ind_offset = ue->u.adapter.ind_offset;
  1927. e->adapter.adapter_id = ue->u.adapter.adapter_id;
  1928. ret = 0;
  1929. break;
  1930. default:
  1931. ret = -EINVAL;
  1932. }
  1933. return ret;
  1934. }
  1935. int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
  1936. int irq_source_id, int level, bool line_status)
  1937. {
  1938. return -EINVAL;
  1939. }
  1940. int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
  1941. {
  1942. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  1943. struct kvm_s390_irq *buf;
  1944. int r = 0;
  1945. int n;
  1946. buf = vmalloc(len);
  1947. if (!buf)
  1948. return -ENOMEM;
  1949. if (copy_from_user((void *) buf, irqstate, len)) {
  1950. r = -EFAULT;
  1951. goto out_free;
  1952. }
  1953. /*
  1954. * Don't allow setting the interrupt state
  1955. * when there are already interrupts pending
  1956. */
  1957. spin_lock(&li->lock);
  1958. if (li->pending_irqs) {
  1959. r = -EBUSY;
  1960. goto out_unlock;
  1961. }
  1962. for (n = 0; n < len / sizeof(*buf); n++) {
  1963. r = do_inject_vcpu(vcpu, &buf[n]);
  1964. if (r)
  1965. break;
  1966. }
  1967. out_unlock:
  1968. spin_unlock(&li->lock);
  1969. out_free:
  1970. vfree(buf);
  1971. return r;
  1972. }
  1973. static void store_local_irq(struct kvm_s390_local_interrupt *li,
  1974. struct kvm_s390_irq *irq,
  1975. unsigned long irq_type)
  1976. {
  1977. switch (irq_type) {
  1978. case IRQ_PEND_MCHK_EX:
  1979. case IRQ_PEND_MCHK_REP:
  1980. irq->type = KVM_S390_MCHK;
  1981. irq->u.mchk = li->irq.mchk;
  1982. break;
  1983. case IRQ_PEND_PROG:
  1984. irq->type = KVM_S390_PROGRAM_INT;
  1985. irq->u.pgm = li->irq.pgm;
  1986. break;
  1987. case IRQ_PEND_PFAULT_INIT:
  1988. irq->type = KVM_S390_INT_PFAULT_INIT;
  1989. irq->u.ext = li->irq.ext;
  1990. break;
  1991. case IRQ_PEND_EXT_EXTERNAL:
  1992. irq->type = KVM_S390_INT_EXTERNAL_CALL;
  1993. irq->u.extcall = li->irq.extcall;
  1994. break;
  1995. case IRQ_PEND_EXT_CLOCK_COMP:
  1996. irq->type = KVM_S390_INT_CLOCK_COMP;
  1997. break;
  1998. case IRQ_PEND_EXT_CPU_TIMER:
  1999. irq->type = KVM_S390_INT_CPU_TIMER;
  2000. break;
  2001. case IRQ_PEND_SIGP_STOP:
  2002. irq->type = KVM_S390_SIGP_STOP;
  2003. irq->u.stop = li->irq.stop;
  2004. break;
  2005. case IRQ_PEND_RESTART:
  2006. irq->type = KVM_S390_RESTART;
  2007. break;
  2008. case IRQ_PEND_SET_PREFIX:
  2009. irq->type = KVM_S390_SIGP_SET_PREFIX;
  2010. irq->u.prefix = li->irq.prefix;
  2011. break;
  2012. }
  2013. }
  2014. int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
  2015. {
  2016. int scn;
  2017. unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
  2018. struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
  2019. unsigned long pending_irqs;
  2020. struct kvm_s390_irq irq;
  2021. unsigned long irq_type;
  2022. int cpuaddr;
  2023. int n = 0;
  2024. spin_lock(&li->lock);
  2025. pending_irqs = li->pending_irqs;
  2026. memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
  2027. sizeof(sigp_emerg_pending));
  2028. spin_unlock(&li->lock);
  2029. for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
  2030. memset(&irq, 0, sizeof(irq));
  2031. if (irq_type == IRQ_PEND_EXT_EMERGENCY)
  2032. continue;
  2033. if (n + sizeof(irq) > len)
  2034. return -ENOBUFS;
  2035. store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
  2036. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2037. return -EFAULT;
  2038. n += sizeof(irq);
  2039. }
  2040. if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
  2041. for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
  2042. memset(&irq, 0, sizeof(irq));
  2043. if (n + sizeof(irq) > len)
  2044. return -ENOBUFS;
  2045. irq.type = KVM_S390_INT_EMERGENCY;
  2046. irq.u.emerg.code = cpuaddr;
  2047. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2048. return -EFAULT;
  2049. n += sizeof(irq);
  2050. }
  2051. }
  2052. if (sca_ext_call_pending(vcpu, &scn)) {
  2053. if (n + sizeof(irq) > len)
  2054. return -ENOBUFS;
  2055. memset(&irq, 0, sizeof(irq));
  2056. irq.type = KVM_S390_INT_EXTERNAL_CALL;
  2057. irq.u.extcall.code = scn;
  2058. if (copy_to_user(&buf[n], &irq, sizeof(irq)))
  2059. return -EFAULT;
  2060. n += sizeof(irq);
  2061. }
  2062. return n;
  2063. }