vgic-mmio-v3.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986
  1. /*
  2. * VGICv3 MMIO handling functions
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. */
  13. #include <linux/irqchip/arm-gic-v3.h>
  14. #include <linux/kvm.h>
  15. #include <linux/kvm_host.h>
  16. #include <kvm/iodev.h>
  17. #include <kvm/arm_vgic.h>
  18. #include <asm/kvm_emulate.h>
  19. #include <asm/kvm_arm.h>
  20. #include <asm/kvm_mmu.h>
  21. #include "vgic.h"
  22. #include "vgic-mmio.h"
  23. /* extract @num bytes at @offset bytes offset in data */
  24. unsigned long extract_bytes(u64 data, unsigned int offset,
  25. unsigned int num)
  26. {
  27. return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
  28. }
  29. /* allows updates of any half of a 64-bit register (or the whole thing) */
  30. u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
  31. unsigned long val)
  32. {
  33. int lower = (offset & 4) * 8;
  34. int upper = lower + 8 * len - 1;
  35. reg &= ~GENMASK_ULL(upper, lower);
  36. val &= GENMASK_ULL(len * 8 - 1, 0);
  37. return reg | ((u64)val << lower);
  38. }
  39. bool vgic_has_its(struct kvm *kvm)
  40. {
  41. struct vgic_dist *dist = &kvm->arch.vgic;
  42. if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
  43. return false;
  44. return dist->has_its;
  45. }
  46. bool vgic_supports_direct_msis(struct kvm *kvm)
  47. {
  48. return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
  49. }
  50. static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
  51. gpa_t addr, unsigned int len)
  52. {
  53. u32 value = 0;
  54. switch (addr & 0x0c) {
  55. case GICD_CTLR:
  56. if (vcpu->kvm->arch.vgic.enabled)
  57. value |= GICD_CTLR_ENABLE_SS_G1;
  58. value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
  59. break;
  60. case GICD_TYPER:
  61. value = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
  62. value = (value >> 5) - 1;
  63. if (vgic_has_its(vcpu->kvm)) {
  64. value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
  65. value |= GICD_TYPER_LPIS;
  66. } else {
  67. value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
  68. }
  69. break;
  70. case GICD_IIDR:
  71. value = (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
  72. break;
  73. default:
  74. return 0;
  75. }
  76. return value;
  77. }
  78. static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
  79. gpa_t addr, unsigned int len,
  80. unsigned long val)
  81. {
  82. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  83. bool was_enabled = dist->enabled;
  84. switch (addr & 0x0c) {
  85. case GICD_CTLR:
  86. dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
  87. if (!was_enabled && dist->enabled)
  88. vgic_kick_vcpus(vcpu->kvm);
  89. break;
  90. case GICD_TYPER:
  91. case GICD_IIDR:
  92. return;
  93. }
  94. }
  95. static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
  96. gpa_t addr, unsigned int len)
  97. {
  98. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  99. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  100. unsigned long ret = 0;
  101. if (!irq)
  102. return 0;
  103. /* The upper word is RAZ for us. */
  104. if (!(addr & 4))
  105. ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
  106. vgic_put_irq(vcpu->kvm, irq);
  107. return ret;
  108. }
  109. static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
  110. gpa_t addr, unsigned int len,
  111. unsigned long val)
  112. {
  113. int intid = VGIC_ADDR_TO_INTID(addr, 64);
  114. struct vgic_irq *irq;
  115. unsigned long flags;
  116. /* The upper word is WI for us since we don't implement Aff3. */
  117. if (addr & 4)
  118. return;
  119. irq = vgic_get_irq(vcpu->kvm, NULL, intid);
  120. if (!irq)
  121. return;
  122. spin_lock_irqsave(&irq->irq_lock, flags);
  123. /* We only care about and preserve Aff0, Aff1 and Aff2. */
  124. irq->mpidr = val & GENMASK(23, 0);
  125. irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
  126. spin_unlock_irqrestore(&irq->irq_lock, flags);
  127. vgic_put_irq(vcpu->kvm, irq);
  128. }
  129. static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
  130. gpa_t addr, unsigned int len)
  131. {
  132. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  133. return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
  134. }
  135. static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
  136. gpa_t addr, unsigned int len,
  137. unsigned long val)
  138. {
  139. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  140. bool was_enabled = vgic_cpu->lpis_enabled;
  141. if (!vgic_has_its(vcpu->kvm))
  142. return;
  143. vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
  144. if (!was_enabled && vgic_cpu->lpis_enabled)
  145. vgic_enable_lpis(vcpu);
  146. }
  147. static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
  148. gpa_t addr, unsigned int len)
  149. {
  150. unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
  151. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  152. struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
  153. int target_vcpu_id = vcpu->vcpu_id;
  154. gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
  155. (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
  156. u64 value;
  157. value = (u64)(mpidr & GENMASK(23, 0)) << 32;
  158. value |= ((target_vcpu_id & 0xffff) << 8);
  159. if (addr == last_rdist_typer)
  160. value |= GICR_TYPER_LAST;
  161. if (vgic_has_its(vcpu->kvm))
  162. value |= GICR_TYPER_PLPIS;
  163. return extract_bytes(value, addr & 7, len);
  164. }
  165. static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
  166. gpa_t addr, unsigned int len)
  167. {
  168. return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
  169. }
  170. static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
  171. gpa_t addr, unsigned int len)
  172. {
  173. switch (addr & 0xffff) {
  174. case GICD_PIDR2:
  175. /* report a GICv3 compliant implementation */
  176. return 0x3b;
  177. }
  178. return 0;
  179. }
  180. static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
  181. gpa_t addr, unsigned int len)
  182. {
  183. u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
  184. u32 value = 0;
  185. int i;
  186. /*
  187. * pending state of interrupt is latched in pending_latch variable.
  188. * Userspace will save and restore pending state and line_level
  189. * separately.
  190. * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
  191. * for handling of ISPENDR and ICPENDR.
  192. */
  193. for (i = 0; i < len * 8; i++) {
  194. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  195. if (irq->pending_latch)
  196. value |= (1U << i);
  197. vgic_put_irq(vcpu->kvm, irq);
  198. }
  199. return value;
  200. }
  201. static void vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
  202. gpa_t addr, unsigned int len,
  203. unsigned long val)
  204. {
  205. u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
  206. int i;
  207. unsigned long flags;
  208. for (i = 0; i < len * 8; i++) {
  209. struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
  210. spin_lock_irqsave(&irq->irq_lock, flags);
  211. if (test_bit(i, &val)) {
  212. /*
  213. * pending_latch is set irrespective of irq type
  214. * (level or edge) to avoid dependency that VM should
  215. * restore irq config before pending info.
  216. */
  217. irq->pending_latch = true;
  218. vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
  219. } else {
  220. irq->pending_latch = false;
  221. spin_unlock_irqrestore(&irq->irq_lock, flags);
  222. }
  223. vgic_put_irq(vcpu->kvm, irq);
  224. }
  225. }
  226. /* We want to avoid outer shareable. */
  227. u64 vgic_sanitise_shareability(u64 field)
  228. {
  229. switch (field) {
  230. case GIC_BASER_OuterShareable:
  231. return GIC_BASER_InnerShareable;
  232. default:
  233. return field;
  234. }
  235. }
  236. /* Avoid any inner non-cacheable mapping. */
  237. u64 vgic_sanitise_inner_cacheability(u64 field)
  238. {
  239. switch (field) {
  240. case GIC_BASER_CACHE_nCnB:
  241. case GIC_BASER_CACHE_nC:
  242. return GIC_BASER_CACHE_RaWb;
  243. default:
  244. return field;
  245. }
  246. }
  247. /* Non-cacheable or same-as-inner are OK. */
  248. u64 vgic_sanitise_outer_cacheability(u64 field)
  249. {
  250. switch (field) {
  251. case GIC_BASER_CACHE_SameAsInner:
  252. case GIC_BASER_CACHE_nC:
  253. return field;
  254. default:
  255. return GIC_BASER_CACHE_nC;
  256. }
  257. }
  258. u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
  259. u64 (*sanitise_fn)(u64))
  260. {
  261. u64 field = (reg & field_mask) >> field_shift;
  262. field = sanitise_fn(field) << field_shift;
  263. return (reg & ~field_mask) | field;
  264. }
  265. #define PROPBASER_RES0_MASK \
  266. (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
  267. #define PENDBASER_RES0_MASK \
  268. (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
  269. GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
  270. static u64 vgic_sanitise_pendbaser(u64 reg)
  271. {
  272. reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
  273. GICR_PENDBASER_SHAREABILITY_SHIFT,
  274. vgic_sanitise_shareability);
  275. reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
  276. GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
  277. vgic_sanitise_inner_cacheability);
  278. reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
  279. GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
  280. vgic_sanitise_outer_cacheability);
  281. reg &= ~PENDBASER_RES0_MASK;
  282. reg &= ~GENMASK_ULL(51, 48);
  283. return reg;
  284. }
  285. static u64 vgic_sanitise_propbaser(u64 reg)
  286. {
  287. reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
  288. GICR_PROPBASER_SHAREABILITY_SHIFT,
  289. vgic_sanitise_shareability);
  290. reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
  291. GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
  292. vgic_sanitise_inner_cacheability);
  293. reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
  294. GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
  295. vgic_sanitise_outer_cacheability);
  296. reg &= ~PROPBASER_RES0_MASK;
  297. reg &= ~GENMASK_ULL(51, 48);
  298. return reg;
  299. }
  300. static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
  301. gpa_t addr, unsigned int len)
  302. {
  303. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  304. return extract_bytes(dist->propbaser, addr & 7, len);
  305. }
  306. static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
  307. gpa_t addr, unsigned int len,
  308. unsigned long val)
  309. {
  310. struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
  311. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  312. u64 old_propbaser, propbaser;
  313. /* Storing a value with LPIs already enabled is undefined */
  314. if (vgic_cpu->lpis_enabled)
  315. return;
  316. do {
  317. old_propbaser = READ_ONCE(dist->propbaser);
  318. propbaser = old_propbaser;
  319. propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
  320. propbaser = vgic_sanitise_propbaser(propbaser);
  321. } while (cmpxchg64(&dist->propbaser, old_propbaser,
  322. propbaser) != old_propbaser);
  323. }
  324. static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
  325. gpa_t addr, unsigned int len)
  326. {
  327. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  328. return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
  329. }
  330. static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
  331. gpa_t addr, unsigned int len,
  332. unsigned long val)
  333. {
  334. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  335. u64 old_pendbaser, pendbaser;
  336. /* Storing a value with LPIs already enabled is undefined */
  337. if (vgic_cpu->lpis_enabled)
  338. return;
  339. do {
  340. old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
  341. pendbaser = old_pendbaser;
  342. pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
  343. pendbaser = vgic_sanitise_pendbaser(pendbaser);
  344. } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
  345. pendbaser) != old_pendbaser);
  346. }
  347. /*
  348. * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
  349. * redistributors, while SPIs are covered by registers in the distributor
  350. * block. Trying to set private IRQs in this block gets ignored.
  351. * We take some special care here to fix the calculation of the register
  352. * offset.
  353. */
  354. #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
  355. { \
  356. .reg_offset = off, \
  357. .bits_per_irq = bpi, \
  358. .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  359. .access_flags = acc, \
  360. .read = vgic_mmio_read_raz, \
  361. .write = vgic_mmio_write_wi, \
  362. }, { \
  363. .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
  364. .bits_per_irq = bpi, \
  365. .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
  366. .access_flags = acc, \
  367. .read = rd, \
  368. .write = wr, \
  369. .uaccess_read = ur, \
  370. .uaccess_write = uw, \
  371. }
  372. static const struct vgic_register_region vgic_v3_dist_registers[] = {
  373. REGISTER_DESC_WITH_LENGTH(GICD_CTLR,
  374. vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc, 16,
  375. VGIC_ACCESS_32bit),
  376. REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
  377. vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
  378. VGIC_ACCESS_32bit),
  379. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
  380. vgic_mmio_read_rao, vgic_mmio_write_wi, NULL, NULL, 1,
  381. VGIC_ACCESS_32bit),
  382. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
  383. vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
  384. VGIC_ACCESS_32bit),
  385. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
  386. vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
  387. VGIC_ACCESS_32bit),
  388. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
  389. vgic_mmio_read_pending, vgic_mmio_write_spending,
  390. vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
  391. VGIC_ACCESS_32bit),
  392. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
  393. vgic_mmio_read_pending, vgic_mmio_write_cpending,
  394. vgic_mmio_read_raz, vgic_mmio_write_wi, 1,
  395. VGIC_ACCESS_32bit),
  396. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
  397. vgic_mmio_read_active, vgic_mmio_write_sactive,
  398. NULL, vgic_mmio_uaccess_write_sactive, 1,
  399. VGIC_ACCESS_32bit),
  400. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
  401. vgic_mmio_read_active, vgic_mmio_write_cactive,
  402. NULL, vgic_mmio_uaccess_write_cactive,
  403. 1, VGIC_ACCESS_32bit),
  404. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
  405. vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
  406. 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  407. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
  408. vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
  409. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  410. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
  411. vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
  412. VGIC_ACCESS_32bit),
  413. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
  414. vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
  415. VGIC_ACCESS_32bit),
  416. REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
  417. vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
  418. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  419. REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
  420. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  421. VGIC_ACCESS_32bit),
  422. };
  423. static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
  424. REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
  425. vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
  426. VGIC_ACCESS_32bit),
  427. REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
  428. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  429. VGIC_ACCESS_32bit),
  430. REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
  431. vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
  432. VGIC_ACCESS_32bit),
  433. REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
  434. vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
  435. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  436. REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
  437. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  438. VGIC_ACCESS_32bit),
  439. REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
  440. vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
  441. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  442. REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
  443. vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
  444. VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
  445. REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
  446. vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
  447. VGIC_ACCESS_32bit),
  448. };
  449. static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
  450. REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
  451. vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
  452. VGIC_ACCESS_32bit),
  453. REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
  454. vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
  455. VGIC_ACCESS_32bit),
  456. REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
  457. vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
  458. VGIC_ACCESS_32bit),
  459. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
  460. vgic_mmio_read_pending, vgic_mmio_write_spending,
  461. vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
  462. VGIC_ACCESS_32bit),
  463. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
  464. vgic_mmio_read_pending, vgic_mmio_write_cpending,
  465. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  466. VGIC_ACCESS_32bit),
  467. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
  468. vgic_mmio_read_active, vgic_mmio_write_sactive,
  469. NULL, vgic_mmio_uaccess_write_sactive,
  470. 4, VGIC_ACCESS_32bit),
  471. REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
  472. vgic_mmio_read_active, vgic_mmio_write_cactive,
  473. NULL, vgic_mmio_uaccess_write_cactive,
  474. 4, VGIC_ACCESS_32bit),
  475. REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
  476. vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
  477. VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
  478. REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
  479. vgic_mmio_read_config, vgic_mmio_write_config, 8,
  480. VGIC_ACCESS_32bit),
  481. REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
  482. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  483. VGIC_ACCESS_32bit),
  484. REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
  485. vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
  486. VGIC_ACCESS_32bit),
  487. };
  488. unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
  489. {
  490. dev->regions = vgic_v3_dist_registers;
  491. dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
  492. kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
  493. return SZ_64K;
  494. }
  495. /**
  496. * vgic_register_redist_iodev - register a single redist iodev
  497. * @vcpu: The VCPU to which the redistributor belongs
  498. *
  499. * Register a KVM iodev for this VCPU's redistributor using the address
  500. * provided.
  501. *
  502. * Return 0 on success, -ERRNO otherwise.
  503. */
  504. int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
  505. {
  506. struct kvm *kvm = vcpu->kvm;
  507. struct vgic_dist *vgic = &kvm->arch.vgic;
  508. struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
  509. struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
  510. struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
  511. struct vgic_redist_region *rdreg;
  512. gpa_t rd_base, sgi_base;
  513. int ret;
  514. if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
  515. return 0;
  516. /*
  517. * We may be creating VCPUs before having set the base address for the
  518. * redistributor region, in which case we will come back to this
  519. * function for all VCPUs when the base address is set. Just return
  520. * without doing any work for now.
  521. */
  522. rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
  523. if (!rdreg)
  524. return 0;
  525. if (!vgic_v3_check_base(kvm))
  526. return -EINVAL;
  527. vgic_cpu->rdreg = rdreg;
  528. rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
  529. sgi_base = rd_base + SZ_64K;
  530. kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
  531. rd_dev->base_addr = rd_base;
  532. rd_dev->iodev_type = IODEV_REDIST;
  533. rd_dev->regions = vgic_v3_rdbase_registers;
  534. rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
  535. rd_dev->redist_vcpu = vcpu;
  536. mutex_lock(&kvm->slots_lock);
  537. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
  538. SZ_64K, &rd_dev->dev);
  539. mutex_unlock(&kvm->slots_lock);
  540. if (ret)
  541. return ret;
  542. kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
  543. sgi_dev->base_addr = sgi_base;
  544. sgi_dev->iodev_type = IODEV_REDIST;
  545. sgi_dev->regions = vgic_v3_sgibase_registers;
  546. sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
  547. sgi_dev->redist_vcpu = vcpu;
  548. mutex_lock(&kvm->slots_lock);
  549. ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
  550. SZ_64K, &sgi_dev->dev);
  551. if (ret) {
  552. kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
  553. &rd_dev->dev);
  554. goto out;
  555. }
  556. rdreg->free_index++;
  557. out:
  558. mutex_unlock(&kvm->slots_lock);
  559. return ret;
  560. }
  561. static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
  562. {
  563. struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
  564. struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
  565. kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
  566. kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
  567. }
  568. static int vgic_register_all_redist_iodevs(struct kvm *kvm)
  569. {
  570. struct kvm_vcpu *vcpu;
  571. int c, ret = 0;
  572. kvm_for_each_vcpu(c, vcpu, kvm) {
  573. ret = vgic_register_redist_iodev(vcpu);
  574. if (ret)
  575. break;
  576. }
  577. if (ret) {
  578. /* The current c failed, so we start with the previous one. */
  579. mutex_lock(&kvm->slots_lock);
  580. for (c--; c >= 0; c--) {
  581. vcpu = kvm_get_vcpu(kvm, c);
  582. vgic_unregister_redist_iodev(vcpu);
  583. }
  584. mutex_unlock(&kvm->slots_lock);
  585. }
  586. return ret;
  587. }
  588. /**
  589. * vgic_v3_insert_redist_region - Insert a new redistributor region
  590. *
  591. * Performs various checks before inserting the rdist region in the list.
  592. * Those tests depend on whether the size of the rdist region is known
  593. * (ie. count != 0). The list is sorted by rdist region index.
  594. *
  595. * @kvm: kvm handle
  596. * @index: redist region index
  597. * @base: base of the new rdist region
  598. * @count: number of redistributors the region is made of (0 in the old style
  599. * single region, whose size is induced from the number of vcpus)
  600. *
  601. * Return 0 on success, < 0 otherwise
  602. */
  603. static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
  604. gpa_t base, uint32_t count)
  605. {
  606. struct vgic_dist *d = &kvm->arch.vgic;
  607. struct vgic_redist_region *rdreg;
  608. struct list_head *rd_regions = &d->rd_regions;
  609. size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
  610. int ret;
  611. /* single rdist region already set ?*/
  612. if (!count && !list_empty(rd_regions))
  613. return -EINVAL;
  614. /* cross the end of memory ? */
  615. if (base + size < base)
  616. return -EINVAL;
  617. if (list_empty(rd_regions)) {
  618. if (index != 0)
  619. return -EINVAL;
  620. } else {
  621. rdreg = list_last_entry(rd_regions,
  622. struct vgic_redist_region, list);
  623. if (index != rdreg->index + 1)
  624. return -EINVAL;
  625. /* Cannot add an explicitly sized regions after legacy region */
  626. if (!rdreg->count)
  627. return -EINVAL;
  628. }
  629. /*
  630. * For legacy single-region redistributor regions (!count),
  631. * check that the redistributor region does not overlap with the
  632. * distributor's address space.
  633. */
  634. if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
  635. vgic_dist_overlap(kvm, base, size))
  636. return -EINVAL;
  637. /* collision with any other rdist region? */
  638. if (vgic_v3_rdist_overlap(kvm, base, size))
  639. return -EINVAL;
  640. rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
  641. if (!rdreg)
  642. return -ENOMEM;
  643. rdreg->base = VGIC_ADDR_UNDEF;
  644. ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
  645. if (ret)
  646. goto free;
  647. rdreg->base = base;
  648. rdreg->count = count;
  649. rdreg->free_index = 0;
  650. rdreg->index = index;
  651. list_add_tail(&rdreg->list, rd_regions);
  652. return 0;
  653. free:
  654. kfree(rdreg);
  655. return ret;
  656. }
  657. int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
  658. {
  659. int ret;
  660. ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
  661. if (ret)
  662. return ret;
  663. /*
  664. * Register iodevs for each existing VCPU. Adding more VCPUs
  665. * afterwards will register the iodevs when needed.
  666. */
  667. ret = vgic_register_all_redist_iodevs(kvm);
  668. if (ret)
  669. return ret;
  670. return 0;
  671. }
  672. int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
  673. {
  674. const struct vgic_register_region *region;
  675. struct vgic_io_device iodev;
  676. struct vgic_reg_attr reg_attr;
  677. struct kvm_vcpu *vcpu;
  678. gpa_t addr;
  679. int ret;
  680. ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
  681. if (ret)
  682. return ret;
  683. vcpu = reg_attr.vcpu;
  684. addr = reg_attr.addr;
  685. switch (attr->group) {
  686. case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
  687. iodev.regions = vgic_v3_dist_registers;
  688. iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
  689. iodev.base_addr = 0;
  690. break;
  691. case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
  692. iodev.regions = vgic_v3_rdbase_registers;
  693. iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
  694. iodev.base_addr = 0;
  695. break;
  696. }
  697. case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
  698. u64 reg, id;
  699. id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
  700. return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
  701. }
  702. default:
  703. return -ENXIO;
  704. }
  705. /* We only support aligned 32-bit accesses. */
  706. if (addr & 3)
  707. return -ENXIO;
  708. region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
  709. if (!region)
  710. return -ENXIO;
  711. return 0;
  712. }
  713. /*
  714. * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
  715. * generation register ICC_SGI1R_EL1) with a given VCPU.
  716. * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
  717. * return -1.
  718. */
  719. static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
  720. {
  721. unsigned long affinity;
  722. int level0;
  723. /*
  724. * Split the current VCPU's MPIDR into affinity level 0 and the
  725. * rest as this is what we have to compare against.
  726. */
  727. affinity = kvm_vcpu_get_mpidr_aff(vcpu);
  728. level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
  729. affinity &= ~MPIDR_LEVEL_MASK;
  730. /* bail out if the upper three levels don't match */
  731. if (sgi_aff != affinity)
  732. return -1;
  733. /* Is this VCPU's bit set in the mask ? */
  734. if (!(sgi_cpu_mask & BIT(level0)))
  735. return -1;
  736. return level0;
  737. }
  738. /*
  739. * The ICC_SGI* registers encode the affinity differently from the MPIDR,
  740. * so provide a wrapper to use the existing defines to isolate a certain
  741. * affinity level.
  742. */
  743. #define SGI_AFFINITY_LEVEL(reg, level) \
  744. ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
  745. >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
  746. /**
  747. * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
  748. * @vcpu: The VCPU requesting a SGI
  749. * @reg: The value written into the ICC_SGI1R_EL1 register by that VCPU
  750. *
  751. * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
  752. * This will trap in sys_regs.c and call this function.
  753. * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
  754. * target processors as well as a bitmask of 16 Aff0 CPUs.
  755. * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
  756. * check for matching ones. If this bit is set, we signal all, but not the
  757. * calling VCPU.
  758. */
  759. void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg)
  760. {
  761. struct kvm *kvm = vcpu->kvm;
  762. struct kvm_vcpu *c_vcpu;
  763. u16 target_cpus;
  764. u64 mpidr;
  765. int sgi, c;
  766. int vcpu_id = vcpu->vcpu_id;
  767. bool broadcast;
  768. unsigned long flags;
  769. sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
  770. broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
  771. target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
  772. mpidr = SGI_AFFINITY_LEVEL(reg, 3);
  773. mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
  774. mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
  775. /*
  776. * We iterate over all VCPUs to find the MPIDRs matching the request.
  777. * If we have handled one CPU, we clear its bit to detect early
  778. * if we are already finished. This avoids iterating through all
  779. * VCPUs when most of the times we just signal a single VCPU.
  780. */
  781. kvm_for_each_vcpu(c, c_vcpu, kvm) {
  782. struct vgic_irq *irq;
  783. /* Exit early if we have dealt with all requested CPUs */
  784. if (!broadcast && target_cpus == 0)
  785. break;
  786. /* Don't signal the calling VCPU */
  787. if (broadcast && c == vcpu_id)
  788. continue;
  789. if (!broadcast) {
  790. int level0;
  791. level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
  792. if (level0 == -1)
  793. continue;
  794. /* remove this matching VCPU from the mask */
  795. target_cpus &= ~BIT(level0);
  796. }
  797. irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
  798. spin_lock_irqsave(&irq->irq_lock, flags);
  799. irq->pending_latch = true;
  800. vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
  801. vgic_put_irq(vcpu->kvm, irq);
  802. }
  803. }
  804. int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  805. int offset, u32 *val)
  806. {
  807. struct vgic_io_device dev = {
  808. .regions = vgic_v3_dist_registers,
  809. .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
  810. };
  811. return vgic_uaccess(vcpu, &dev, is_write, offset, val);
  812. }
  813. int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  814. int offset, u32 *val)
  815. {
  816. struct vgic_io_device rd_dev = {
  817. .regions = vgic_v3_rdbase_registers,
  818. .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
  819. };
  820. struct vgic_io_device sgi_dev = {
  821. .regions = vgic_v3_sgibase_registers,
  822. .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
  823. };
  824. /* SGI_base is the next 64K frame after RD_base */
  825. if (offset >= SZ_64K)
  826. return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
  827. val);
  828. else
  829. return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
  830. }
  831. int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
  832. u32 intid, u64 *val)
  833. {
  834. if (intid % 32)
  835. return -EINVAL;
  836. if (is_write)
  837. vgic_write_irq_line_level_info(vcpu, intid, *val);
  838. else
  839. *val = vgic_read_irq_line_level_info(vcpu, intid);
  840. return 0;
  841. }