emulate.c 133 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183
  1. /******************************************************************************
  2. * emulate.c
  3. *
  4. * Generic x86 (32-bit and 64-bit) instruction decoder and emulator.
  5. *
  6. * Copyright (c) 2005 Keir Fraser
  7. *
  8. * Linux coding style, mod r/m decoder, segment base fixes, real-mode
  9. * privileged instructions:
  10. *
  11. * Copyright (C) 2006 Qumranet
  12. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  13. *
  14. * Avi Kivity <avi@qumranet.com>
  15. * Yaniv Kamay <yaniv@qumranet.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. * From: xen-unstable 10676:af9809f51f81a3c43f276f00c81a52ef558afda4
  21. */
  22. #include <linux/kvm_host.h>
  23. #include "kvm_cache_regs.h"
  24. #include <linux/module.h>
  25. #include <asm/kvm_emulate.h>
  26. #include <linux/stringify.h>
  27. #include "x86.h"
  28. #include "tss.h"
  29. /*
  30. * Operand types
  31. */
  32. #define OpNone 0ull
  33. #define OpImplicit 1ull /* No generic decode */
  34. #define OpReg 2ull /* Register */
  35. #define OpMem 3ull /* Memory */
  36. #define OpAcc 4ull /* Accumulator: AL/AX/EAX/RAX */
  37. #define OpDI 5ull /* ES:DI/EDI/RDI */
  38. #define OpMem64 6ull /* Memory, 64-bit */
  39. #define OpImmUByte 7ull /* Zero-extended 8-bit immediate */
  40. #define OpDX 8ull /* DX register */
  41. #define OpCL 9ull /* CL register (for shifts) */
  42. #define OpImmByte 10ull /* 8-bit sign extended immediate */
  43. #define OpOne 11ull /* Implied 1 */
  44. #define OpImm 12ull /* Sign extended up to 32-bit immediate */
  45. #define OpMem16 13ull /* Memory operand (16-bit). */
  46. #define OpMem32 14ull /* Memory operand (32-bit). */
  47. #define OpImmU 15ull /* Immediate operand, zero extended */
  48. #define OpSI 16ull /* SI/ESI/RSI */
  49. #define OpImmFAddr 17ull /* Immediate far address */
  50. #define OpMemFAddr 18ull /* Far address in memory */
  51. #define OpImmU16 19ull /* Immediate operand, 16 bits, zero extended */
  52. #define OpES 20ull /* ES */
  53. #define OpCS 21ull /* CS */
  54. #define OpSS 22ull /* SS */
  55. #define OpDS 23ull /* DS */
  56. #define OpFS 24ull /* FS */
  57. #define OpGS 25ull /* GS */
  58. #define OpMem8 26ull /* 8-bit zero extended memory operand */
  59. #define OpImm64 27ull /* Sign extended 16/32/64-bit immediate */
  60. #define OpXLat 28ull /* memory at BX/EBX/RBX + zero-extended AL */
  61. #define OpAccLo 29ull /* Low part of extended acc (AX/AX/EAX/RAX) */
  62. #define OpAccHi 30ull /* High part of extended acc (-/DX/EDX/RDX) */
  63. #define OpBits 5 /* Width of operand field */
  64. #define OpMask ((1ull << OpBits) - 1)
  65. /*
  66. * Opcode effective-address decode tables.
  67. * Note that we only emulate instructions that have at least one memory
  68. * operand (excluding implicit stack references). We assume that stack
  69. * references and instruction fetches will never occur in special memory
  70. * areas that require emulation. So, for example, 'mov <imm>,<reg>' need
  71. * not be handled.
  72. */
  73. /* Operand sizes: 8-bit operands or specified/overridden size. */
  74. #define ByteOp (1<<0) /* 8-bit operands. */
  75. /* Destination operand type. */
  76. #define DstShift 1
  77. #define ImplicitOps (OpImplicit << DstShift)
  78. #define DstReg (OpReg << DstShift)
  79. #define DstMem (OpMem << DstShift)
  80. #define DstAcc (OpAcc << DstShift)
  81. #define DstDI (OpDI << DstShift)
  82. #define DstMem64 (OpMem64 << DstShift)
  83. #define DstMem16 (OpMem16 << DstShift)
  84. #define DstImmUByte (OpImmUByte << DstShift)
  85. #define DstDX (OpDX << DstShift)
  86. #define DstAccLo (OpAccLo << DstShift)
  87. #define DstMask (OpMask << DstShift)
  88. /* Source operand type. */
  89. #define SrcShift 6
  90. #define SrcNone (OpNone << SrcShift)
  91. #define SrcReg (OpReg << SrcShift)
  92. #define SrcMem (OpMem << SrcShift)
  93. #define SrcMem16 (OpMem16 << SrcShift)
  94. #define SrcMem32 (OpMem32 << SrcShift)
  95. #define SrcImm (OpImm << SrcShift)
  96. #define SrcImmByte (OpImmByte << SrcShift)
  97. #define SrcOne (OpOne << SrcShift)
  98. #define SrcImmUByte (OpImmUByte << SrcShift)
  99. #define SrcImmU (OpImmU << SrcShift)
  100. #define SrcSI (OpSI << SrcShift)
  101. #define SrcXLat (OpXLat << SrcShift)
  102. #define SrcImmFAddr (OpImmFAddr << SrcShift)
  103. #define SrcMemFAddr (OpMemFAddr << SrcShift)
  104. #define SrcAcc (OpAcc << SrcShift)
  105. #define SrcImmU16 (OpImmU16 << SrcShift)
  106. #define SrcImm64 (OpImm64 << SrcShift)
  107. #define SrcDX (OpDX << SrcShift)
  108. #define SrcMem8 (OpMem8 << SrcShift)
  109. #define SrcAccHi (OpAccHi << SrcShift)
  110. #define SrcMask (OpMask << SrcShift)
  111. #define BitOp (1<<11)
  112. #define MemAbs (1<<12) /* Memory operand is absolute displacement */
  113. #define String (1<<13) /* String instruction (rep capable) */
  114. #define Stack (1<<14) /* Stack instruction (push/pop) */
  115. #define GroupMask (7<<15) /* Opcode uses one of the group mechanisms */
  116. #define Group (1<<15) /* Bits 3:5 of modrm byte extend opcode */
  117. #define GroupDual (2<<15) /* Alternate decoding of mod == 3 */
  118. #define Prefix (3<<15) /* Instruction varies with 66/f2/f3 prefix */
  119. #define RMExt (4<<15) /* Opcode extension in ModRM r/m if mod == 3 */
  120. #define Escape (5<<15) /* Escape to coprocessor instruction */
  121. #define InstrDual (6<<15) /* Alternate instruction decoding of mod == 3 */
  122. #define ModeDual (7<<15) /* Different instruction for 32/64 bit */
  123. #define Sse (1<<18) /* SSE Vector instruction */
  124. /* Generic ModRM decode. */
  125. #define ModRM (1<<19)
  126. /* Destination is only written; never read. */
  127. #define Mov (1<<20)
  128. /* Misc flags */
  129. #define Prot (1<<21) /* instruction generates #UD if not in prot-mode */
  130. #define EmulateOnUD (1<<22) /* Emulate if unsupported by the host */
  131. #define NoAccess (1<<23) /* Don't access memory (lea/invlpg/verr etc) */
  132. #define Op3264 (1<<24) /* Operand is 64b in long mode, 32b otherwise */
  133. #define Undefined (1<<25) /* No Such Instruction */
  134. #define Lock (1<<26) /* lock prefix is allowed for the instruction */
  135. #define Priv (1<<27) /* instruction generates #GP if current CPL != 0 */
  136. #define No64 (1<<28)
  137. #define PageTable (1 << 29) /* instruction used to write page table */
  138. #define NotImpl (1 << 30) /* instruction is not implemented */
  139. /* Source 2 operand type */
  140. #define Src2Shift (31)
  141. #define Src2None (OpNone << Src2Shift)
  142. #define Src2Mem (OpMem << Src2Shift)
  143. #define Src2CL (OpCL << Src2Shift)
  144. #define Src2ImmByte (OpImmByte << Src2Shift)
  145. #define Src2One (OpOne << Src2Shift)
  146. #define Src2Imm (OpImm << Src2Shift)
  147. #define Src2ES (OpES << Src2Shift)
  148. #define Src2CS (OpCS << Src2Shift)
  149. #define Src2SS (OpSS << Src2Shift)
  150. #define Src2DS (OpDS << Src2Shift)
  151. #define Src2FS (OpFS << Src2Shift)
  152. #define Src2GS (OpGS << Src2Shift)
  153. #define Src2Mask (OpMask << Src2Shift)
  154. #define Mmx ((u64)1 << 40) /* MMX Vector instruction */
  155. #define Aligned ((u64)1 << 41) /* Explicitly aligned (e.g. MOVDQA) */
  156. #define Unaligned ((u64)1 << 42) /* Explicitly unaligned (e.g. MOVDQU) */
  157. #define Avx ((u64)1 << 43) /* Advanced Vector Extensions */
  158. #define Fastop ((u64)1 << 44) /* Use opcode::u.fastop */
  159. #define NoWrite ((u64)1 << 45) /* No writeback */
  160. #define SrcWrite ((u64)1 << 46) /* Write back src operand */
  161. #define NoMod ((u64)1 << 47) /* Mod field is ignored */
  162. #define Intercept ((u64)1 << 48) /* Has valid intercept field */
  163. #define CheckPerm ((u64)1 << 49) /* Has valid check_perm field */
  164. #define PrivUD ((u64)1 << 51) /* #UD instead of #GP on CPL > 0 */
  165. #define NearBranch ((u64)1 << 52) /* Near branches */
  166. #define No16 ((u64)1 << 53) /* No 16 bit operand */
  167. #define IncSP ((u64)1 << 54) /* SP is incremented before ModRM calc */
  168. #define DstXacc (DstAccLo | SrcAccHi | SrcWrite)
  169. #define X2(x...) x, x
  170. #define X3(x...) X2(x), x
  171. #define X4(x...) X2(x), X2(x)
  172. #define X5(x...) X4(x), x
  173. #define X6(x...) X4(x), X2(x)
  174. #define X7(x...) X4(x), X3(x)
  175. #define X8(x...) X4(x), X4(x)
  176. #define X16(x...) X8(x), X8(x)
  177. #define NR_FASTOP (ilog2(sizeof(ulong)) + 1)
  178. #define FASTOP_SIZE 8
  179. /*
  180. * fastop functions have a special calling convention:
  181. *
  182. * dst: rax (in/out)
  183. * src: rdx (in/out)
  184. * src2: rcx (in)
  185. * flags: rflags (in/out)
  186. * ex: rsi (in:fastop pointer, out:zero if exception)
  187. *
  188. * Moreover, they are all exactly FASTOP_SIZE bytes long, so functions for
  189. * different operand sizes can be reached by calculation, rather than a jump
  190. * table (which would be bigger than the code).
  191. *
  192. * fastop functions are declared as taking a never-defined fastop parameter,
  193. * so they can't be called from C directly.
  194. */
  195. struct fastop;
  196. struct opcode {
  197. u64 flags : 56;
  198. u64 intercept : 8;
  199. union {
  200. int (*execute)(struct x86_emulate_ctxt *ctxt);
  201. const struct opcode *group;
  202. const struct group_dual *gdual;
  203. const struct gprefix *gprefix;
  204. const struct escape *esc;
  205. const struct instr_dual *idual;
  206. const struct mode_dual *mdual;
  207. void (*fastop)(struct fastop *fake);
  208. } u;
  209. int (*check_perm)(struct x86_emulate_ctxt *ctxt);
  210. };
  211. struct group_dual {
  212. struct opcode mod012[8];
  213. struct opcode mod3[8];
  214. };
  215. struct gprefix {
  216. struct opcode pfx_no;
  217. struct opcode pfx_66;
  218. struct opcode pfx_f2;
  219. struct opcode pfx_f3;
  220. };
  221. struct escape {
  222. struct opcode op[8];
  223. struct opcode high[64];
  224. };
  225. struct instr_dual {
  226. struct opcode mod012;
  227. struct opcode mod3;
  228. };
  229. struct mode_dual {
  230. struct opcode mode32;
  231. struct opcode mode64;
  232. };
  233. #define EFLG_RESERVED_ZEROS_MASK 0xffc0802a
  234. enum x86_transfer_type {
  235. X86_TRANSFER_NONE,
  236. X86_TRANSFER_CALL_JMP,
  237. X86_TRANSFER_RET,
  238. X86_TRANSFER_TASK_SWITCH,
  239. };
  240. static ulong reg_read(struct x86_emulate_ctxt *ctxt, unsigned nr)
  241. {
  242. if (!(ctxt->regs_valid & (1 << nr))) {
  243. ctxt->regs_valid |= 1 << nr;
  244. ctxt->_regs[nr] = ctxt->ops->read_gpr(ctxt, nr);
  245. }
  246. return ctxt->_regs[nr];
  247. }
  248. static ulong *reg_write(struct x86_emulate_ctxt *ctxt, unsigned nr)
  249. {
  250. ctxt->regs_valid |= 1 << nr;
  251. ctxt->regs_dirty |= 1 << nr;
  252. return &ctxt->_regs[nr];
  253. }
  254. static ulong *reg_rmw(struct x86_emulate_ctxt *ctxt, unsigned nr)
  255. {
  256. reg_read(ctxt, nr);
  257. return reg_write(ctxt, nr);
  258. }
  259. static void writeback_registers(struct x86_emulate_ctxt *ctxt)
  260. {
  261. unsigned reg;
  262. for_each_set_bit(reg, (ulong *)&ctxt->regs_dirty, 16)
  263. ctxt->ops->write_gpr(ctxt, reg, ctxt->_regs[reg]);
  264. }
  265. static void invalidate_registers(struct x86_emulate_ctxt *ctxt)
  266. {
  267. ctxt->regs_dirty = 0;
  268. ctxt->regs_valid = 0;
  269. }
  270. /*
  271. * These EFLAGS bits are restored from saved value during emulation, and
  272. * any changes are written back to the saved value after emulation.
  273. */
  274. #define EFLAGS_MASK (X86_EFLAGS_OF|X86_EFLAGS_SF|X86_EFLAGS_ZF|X86_EFLAGS_AF|\
  275. X86_EFLAGS_PF|X86_EFLAGS_CF)
  276. #ifdef CONFIG_X86_64
  277. #define ON64(x) x
  278. #else
  279. #define ON64(x)
  280. #endif
  281. static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *));
  282. #define FOP_ALIGN ".align " __stringify(FASTOP_SIZE) " \n\t"
  283. #define FOP_RET "ret \n\t"
  284. #define FOP_START(op) \
  285. extern void em_##op(struct fastop *fake); \
  286. asm(".pushsection .text, \"ax\" \n\t" \
  287. ".global em_" #op " \n\t" \
  288. FOP_ALIGN \
  289. "em_" #op ": \n\t"
  290. #define FOP_END \
  291. ".popsection")
  292. #define FOPNOP() FOP_ALIGN FOP_RET
  293. #define FOP1E(op, dst) \
  294. FOP_ALIGN "10: " #op " %" #dst " \n\t" FOP_RET
  295. #define FOP1EEX(op, dst) \
  296. FOP1E(op, dst) _ASM_EXTABLE(10b, kvm_fastop_exception)
  297. #define FASTOP1(op) \
  298. FOP_START(op) \
  299. FOP1E(op##b, al) \
  300. FOP1E(op##w, ax) \
  301. FOP1E(op##l, eax) \
  302. ON64(FOP1E(op##q, rax)) \
  303. FOP_END
  304. /* 1-operand, using src2 (for MUL/DIV r/m) */
  305. #define FASTOP1SRC2(op, name) \
  306. FOP_START(name) \
  307. FOP1E(op, cl) \
  308. FOP1E(op, cx) \
  309. FOP1E(op, ecx) \
  310. ON64(FOP1E(op, rcx)) \
  311. FOP_END
  312. /* 1-operand, using src2 (for MUL/DIV r/m), with exceptions */
  313. #define FASTOP1SRC2EX(op, name) \
  314. FOP_START(name) \
  315. FOP1EEX(op, cl) \
  316. FOP1EEX(op, cx) \
  317. FOP1EEX(op, ecx) \
  318. ON64(FOP1EEX(op, rcx)) \
  319. FOP_END
  320. #define FOP2E(op, dst, src) \
  321. FOP_ALIGN #op " %" #src ", %" #dst " \n\t" FOP_RET
  322. #define FASTOP2(op) \
  323. FOP_START(op) \
  324. FOP2E(op##b, al, dl) \
  325. FOP2E(op##w, ax, dx) \
  326. FOP2E(op##l, eax, edx) \
  327. ON64(FOP2E(op##q, rax, rdx)) \
  328. FOP_END
  329. /* 2 operand, word only */
  330. #define FASTOP2W(op) \
  331. FOP_START(op) \
  332. FOPNOP() \
  333. FOP2E(op##w, ax, dx) \
  334. FOP2E(op##l, eax, edx) \
  335. ON64(FOP2E(op##q, rax, rdx)) \
  336. FOP_END
  337. /* 2 operand, src is CL */
  338. #define FASTOP2CL(op) \
  339. FOP_START(op) \
  340. FOP2E(op##b, al, cl) \
  341. FOP2E(op##w, ax, cl) \
  342. FOP2E(op##l, eax, cl) \
  343. ON64(FOP2E(op##q, rax, cl)) \
  344. FOP_END
  345. /* 2 operand, src and dest are reversed */
  346. #define FASTOP2R(op, name) \
  347. FOP_START(name) \
  348. FOP2E(op##b, dl, al) \
  349. FOP2E(op##w, dx, ax) \
  350. FOP2E(op##l, edx, eax) \
  351. ON64(FOP2E(op##q, rdx, rax)) \
  352. FOP_END
  353. #define FOP3E(op, dst, src, src2) \
  354. FOP_ALIGN #op " %" #src2 ", %" #src ", %" #dst " \n\t" FOP_RET
  355. /* 3-operand, word-only, src2=cl */
  356. #define FASTOP3WCL(op) \
  357. FOP_START(op) \
  358. FOPNOP() \
  359. FOP3E(op##w, ax, dx, cl) \
  360. FOP3E(op##l, eax, edx, cl) \
  361. ON64(FOP3E(op##q, rax, rdx, cl)) \
  362. FOP_END
  363. /* Special case for SETcc - 1 instruction per cc */
  364. #define FOP_SETCC(op) ".align 4; " #op " %al; ret \n\t"
  365. asm(".global kvm_fastop_exception \n"
  366. "kvm_fastop_exception: xor %esi, %esi; ret");
  367. FOP_START(setcc)
  368. FOP_SETCC(seto)
  369. FOP_SETCC(setno)
  370. FOP_SETCC(setc)
  371. FOP_SETCC(setnc)
  372. FOP_SETCC(setz)
  373. FOP_SETCC(setnz)
  374. FOP_SETCC(setbe)
  375. FOP_SETCC(setnbe)
  376. FOP_SETCC(sets)
  377. FOP_SETCC(setns)
  378. FOP_SETCC(setp)
  379. FOP_SETCC(setnp)
  380. FOP_SETCC(setl)
  381. FOP_SETCC(setnl)
  382. FOP_SETCC(setle)
  383. FOP_SETCC(setnle)
  384. FOP_END;
  385. FOP_START(salc) "pushf; sbb %al, %al; popf \n\t" FOP_RET
  386. FOP_END;
  387. static int emulator_check_intercept(struct x86_emulate_ctxt *ctxt,
  388. enum x86_intercept intercept,
  389. enum x86_intercept_stage stage)
  390. {
  391. struct x86_instruction_info info = {
  392. .intercept = intercept,
  393. .rep_prefix = ctxt->rep_prefix,
  394. .modrm_mod = ctxt->modrm_mod,
  395. .modrm_reg = ctxt->modrm_reg,
  396. .modrm_rm = ctxt->modrm_rm,
  397. .src_val = ctxt->src.val64,
  398. .dst_val = ctxt->dst.val64,
  399. .src_bytes = ctxt->src.bytes,
  400. .dst_bytes = ctxt->dst.bytes,
  401. .ad_bytes = ctxt->ad_bytes,
  402. .next_rip = ctxt->eip,
  403. };
  404. return ctxt->ops->intercept(ctxt, &info, stage);
  405. }
  406. static void assign_masked(ulong *dest, ulong src, ulong mask)
  407. {
  408. *dest = (*dest & ~mask) | (src & mask);
  409. }
  410. static void assign_register(unsigned long *reg, u64 val, int bytes)
  411. {
  412. /* The 4-byte case *is* correct: in 64-bit mode we zero-extend. */
  413. switch (bytes) {
  414. case 1:
  415. *(u8 *)reg = (u8)val;
  416. break;
  417. case 2:
  418. *(u16 *)reg = (u16)val;
  419. break;
  420. case 4:
  421. *reg = (u32)val;
  422. break; /* 64b: zero-extend */
  423. case 8:
  424. *reg = val;
  425. break;
  426. }
  427. }
  428. static inline unsigned long ad_mask(struct x86_emulate_ctxt *ctxt)
  429. {
  430. return (1UL << (ctxt->ad_bytes << 3)) - 1;
  431. }
  432. static ulong stack_mask(struct x86_emulate_ctxt *ctxt)
  433. {
  434. u16 sel;
  435. struct desc_struct ss;
  436. if (ctxt->mode == X86EMUL_MODE_PROT64)
  437. return ~0UL;
  438. ctxt->ops->get_segment(ctxt, &sel, &ss, NULL, VCPU_SREG_SS);
  439. return ~0U >> ((ss.d ^ 1) * 16); /* d=0: 0xffff; d=1: 0xffffffff */
  440. }
  441. static int stack_size(struct x86_emulate_ctxt *ctxt)
  442. {
  443. return (__fls(stack_mask(ctxt)) + 1) >> 3;
  444. }
  445. /* Access/update address held in a register, based on addressing mode. */
  446. static inline unsigned long
  447. address_mask(struct x86_emulate_ctxt *ctxt, unsigned long reg)
  448. {
  449. if (ctxt->ad_bytes == sizeof(unsigned long))
  450. return reg;
  451. else
  452. return reg & ad_mask(ctxt);
  453. }
  454. static inline unsigned long
  455. register_address(struct x86_emulate_ctxt *ctxt, int reg)
  456. {
  457. return address_mask(ctxt, reg_read(ctxt, reg));
  458. }
  459. static void masked_increment(ulong *reg, ulong mask, int inc)
  460. {
  461. assign_masked(reg, *reg + inc, mask);
  462. }
  463. static inline void
  464. register_address_increment(struct x86_emulate_ctxt *ctxt, int reg, int inc)
  465. {
  466. ulong mask;
  467. if (ctxt->ad_bytes == sizeof(unsigned long))
  468. mask = ~0UL;
  469. else
  470. mask = ad_mask(ctxt);
  471. masked_increment(reg_rmw(ctxt, reg), mask, inc);
  472. }
  473. static void rsp_increment(struct x86_emulate_ctxt *ctxt, int inc)
  474. {
  475. masked_increment(reg_rmw(ctxt, VCPU_REGS_RSP), stack_mask(ctxt), inc);
  476. }
  477. static u32 desc_limit_scaled(struct desc_struct *desc)
  478. {
  479. u32 limit = get_desc_limit(desc);
  480. return desc->g ? (limit << 12) | 0xfff : limit;
  481. }
  482. static unsigned long seg_base(struct x86_emulate_ctxt *ctxt, int seg)
  483. {
  484. if (ctxt->mode == X86EMUL_MODE_PROT64 && seg < VCPU_SREG_FS)
  485. return 0;
  486. return ctxt->ops->get_cached_segment_base(ctxt, seg);
  487. }
  488. static int emulate_exception(struct x86_emulate_ctxt *ctxt, int vec,
  489. u32 error, bool valid)
  490. {
  491. WARN_ON(vec > 0x1f);
  492. ctxt->exception.vector = vec;
  493. ctxt->exception.error_code = error;
  494. ctxt->exception.error_code_valid = valid;
  495. return X86EMUL_PROPAGATE_FAULT;
  496. }
  497. static int emulate_db(struct x86_emulate_ctxt *ctxt)
  498. {
  499. return emulate_exception(ctxt, DB_VECTOR, 0, false);
  500. }
  501. static int emulate_gp(struct x86_emulate_ctxt *ctxt, int err)
  502. {
  503. return emulate_exception(ctxt, GP_VECTOR, err, true);
  504. }
  505. static int emulate_ss(struct x86_emulate_ctxt *ctxt, int err)
  506. {
  507. return emulate_exception(ctxt, SS_VECTOR, err, true);
  508. }
  509. static int emulate_ud(struct x86_emulate_ctxt *ctxt)
  510. {
  511. return emulate_exception(ctxt, UD_VECTOR, 0, false);
  512. }
  513. static int emulate_ts(struct x86_emulate_ctxt *ctxt, int err)
  514. {
  515. return emulate_exception(ctxt, TS_VECTOR, err, true);
  516. }
  517. static int emulate_de(struct x86_emulate_ctxt *ctxt)
  518. {
  519. return emulate_exception(ctxt, DE_VECTOR, 0, false);
  520. }
  521. static int emulate_nm(struct x86_emulate_ctxt *ctxt)
  522. {
  523. return emulate_exception(ctxt, NM_VECTOR, 0, false);
  524. }
  525. static u16 get_segment_selector(struct x86_emulate_ctxt *ctxt, unsigned seg)
  526. {
  527. u16 selector;
  528. struct desc_struct desc;
  529. ctxt->ops->get_segment(ctxt, &selector, &desc, NULL, seg);
  530. return selector;
  531. }
  532. static void set_segment_selector(struct x86_emulate_ctxt *ctxt, u16 selector,
  533. unsigned seg)
  534. {
  535. u16 dummy;
  536. u32 base3;
  537. struct desc_struct desc;
  538. ctxt->ops->get_segment(ctxt, &dummy, &desc, &base3, seg);
  539. ctxt->ops->set_segment(ctxt, selector, &desc, base3, seg);
  540. }
  541. /*
  542. * x86 defines three classes of vector instructions: explicitly
  543. * aligned, explicitly unaligned, and the rest, which change behaviour
  544. * depending on whether they're AVX encoded or not.
  545. *
  546. * Also included is CMPXCHG16B which is not a vector instruction, yet it is
  547. * subject to the same check.
  548. */
  549. static bool insn_aligned(struct x86_emulate_ctxt *ctxt, unsigned size)
  550. {
  551. if (likely(size < 16))
  552. return false;
  553. if (ctxt->d & Aligned)
  554. return true;
  555. else if (ctxt->d & Unaligned)
  556. return false;
  557. else if (ctxt->d & Avx)
  558. return false;
  559. else
  560. return true;
  561. }
  562. static __always_inline int __linearize(struct x86_emulate_ctxt *ctxt,
  563. struct segmented_address addr,
  564. unsigned *max_size, unsigned size,
  565. bool write, bool fetch,
  566. enum x86emul_mode mode, ulong *linear)
  567. {
  568. struct desc_struct desc;
  569. bool usable;
  570. ulong la;
  571. u32 lim;
  572. u16 sel;
  573. la = seg_base(ctxt, addr.seg) + addr.ea;
  574. *max_size = 0;
  575. switch (mode) {
  576. case X86EMUL_MODE_PROT64:
  577. if (is_noncanonical_address(la))
  578. goto bad;
  579. *max_size = min_t(u64, ~0u, (1ull << 48) - la);
  580. if (size > *max_size)
  581. goto bad;
  582. break;
  583. default:
  584. usable = ctxt->ops->get_segment(ctxt, &sel, &desc, NULL,
  585. addr.seg);
  586. if (!usable)
  587. goto bad;
  588. /* code segment in protected mode or read-only data segment */
  589. if ((((ctxt->mode != X86EMUL_MODE_REAL) && (desc.type & 8))
  590. || !(desc.type & 2)) && write)
  591. goto bad;
  592. /* unreadable code segment */
  593. if (!fetch && (desc.type & 8) && !(desc.type & 2))
  594. goto bad;
  595. lim = desc_limit_scaled(&desc);
  596. if (!(desc.type & 8) && (desc.type & 4)) {
  597. /* expand-down segment */
  598. if (addr.ea <= lim)
  599. goto bad;
  600. lim = desc.d ? 0xffffffff : 0xffff;
  601. }
  602. if (addr.ea > lim)
  603. goto bad;
  604. if (lim == 0xffffffff)
  605. *max_size = ~0u;
  606. else {
  607. *max_size = (u64)lim + 1 - addr.ea;
  608. if (size > *max_size)
  609. goto bad;
  610. }
  611. la &= (u32)-1;
  612. break;
  613. }
  614. if (insn_aligned(ctxt, size) && ((la & (size - 1)) != 0))
  615. return emulate_gp(ctxt, 0);
  616. *linear = la;
  617. return X86EMUL_CONTINUE;
  618. bad:
  619. if (addr.seg == VCPU_SREG_SS)
  620. return emulate_ss(ctxt, 0);
  621. else
  622. return emulate_gp(ctxt, 0);
  623. }
  624. static int linearize(struct x86_emulate_ctxt *ctxt,
  625. struct segmented_address addr,
  626. unsigned size, bool write,
  627. ulong *linear)
  628. {
  629. unsigned max_size;
  630. return __linearize(ctxt, addr, &max_size, size, write, false,
  631. ctxt->mode, linear);
  632. }
  633. static inline int assign_eip(struct x86_emulate_ctxt *ctxt, ulong dst,
  634. enum x86emul_mode mode)
  635. {
  636. ulong linear;
  637. int rc;
  638. unsigned max_size;
  639. struct segmented_address addr = { .seg = VCPU_SREG_CS,
  640. .ea = dst };
  641. if (ctxt->op_bytes != sizeof(unsigned long))
  642. addr.ea = dst & ((1UL << (ctxt->op_bytes << 3)) - 1);
  643. rc = __linearize(ctxt, addr, &max_size, 1, false, true, mode, &linear);
  644. if (rc == X86EMUL_CONTINUE)
  645. ctxt->_eip = addr.ea;
  646. return rc;
  647. }
  648. static inline int assign_eip_near(struct x86_emulate_ctxt *ctxt, ulong dst)
  649. {
  650. return assign_eip(ctxt, dst, ctxt->mode);
  651. }
  652. static int assign_eip_far(struct x86_emulate_ctxt *ctxt, ulong dst,
  653. const struct desc_struct *cs_desc)
  654. {
  655. enum x86emul_mode mode = ctxt->mode;
  656. int rc;
  657. #ifdef CONFIG_X86_64
  658. if (ctxt->mode >= X86EMUL_MODE_PROT16) {
  659. if (cs_desc->l) {
  660. u64 efer = 0;
  661. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  662. if (efer & EFER_LMA)
  663. mode = X86EMUL_MODE_PROT64;
  664. } else
  665. mode = X86EMUL_MODE_PROT32; /* temporary value */
  666. }
  667. #endif
  668. if (mode == X86EMUL_MODE_PROT16 || mode == X86EMUL_MODE_PROT32)
  669. mode = cs_desc->d ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  670. rc = assign_eip(ctxt, dst, mode);
  671. if (rc == X86EMUL_CONTINUE)
  672. ctxt->mode = mode;
  673. return rc;
  674. }
  675. static inline int jmp_rel(struct x86_emulate_ctxt *ctxt, int rel)
  676. {
  677. return assign_eip_near(ctxt, ctxt->_eip + rel);
  678. }
  679. static int segmented_read_std(struct x86_emulate_ctxt *ctxt,
  680. struct segmented_address addr,
  681. void *data,
  682. unsigned size)
  683. {
  684. int rc;
  685. ulong linear;
  686. rc = linearize(ctxt, addr, size, false, &linear);
  687. if (rc != X86EMUL_CONTINUE)
  688. return rc;
  689. return ctxt->ops->read_std(ctxt, linear, data, size, &ctxt->exception);
  690. }
  691. /*
  692. * Prefetch the remaining bytes of the instruction without crossing page
  693. * boundary if they are not in fetch_cache yet.
  694. */
  695. static int __do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt, int op_size)
  696. {
  697. int rc;
  698. unsigned size, max_size;
  699. unsigned long linear;
  700. int cur_size = ctxt->fetch.end - ctxt->fetch.data;
  701. struct segmented_address addr = { .seg = VCPU_SREG_CS,
  702. .ea = ctxt->eip + cur_size };
  703. /*
  704. * We do not know exactly how many bytes will be needed, and
  705. * __linearize is expensive, so fetch as much as possible. We
  706. * just have to avoid going beyond the 15 byte limit, the end
  707. * of the segment, or the end of the page.
  708. *
  709. * __linearize is called with size 0 so that it does not do any
  710. * boundary check itself. Instead, we use max_size to check
  711. * against op_size.
  712. */
  713. rc = __linearize(ctxt, addr, &max_size, 0, false, true, ctxt->mode,
  714. &linear);
  715. if (unlikely(rc != X86EMUL_CONTINUE))
  716. return rc;
  717. size = min_t(unsigned, 15UL ^ cur_size, max_size);
  718. size = min_t(unsigned, size, PAGE_SIZE - offset_in_page(linear));
  719. /*
  720. * One instruction can only straddle two pages,
  721. * and one has been loaded at the beginning of
  722. * x86_decode_insn. So, if not enough bytes
  723. * still, we must have hit the 15-byte boundary.
  724. */
  725. if (unlikely(size < op_size))
  726. return emulate_gp(ctxt, 0);
  727. rc = ctxt->ops->fetch(ctxt, linear, ctxt->fetch.end,
  728. size, &ctxt->exception);
  729. if (unlikely(rc != X86EMUL_CONTINUE))
  730. return rc;
  731. ctxt->fetch.end += size;
  732. return X86EMUL_CONTINUE;
  733. }
  734. static __always_inline int do_insn_fetch_bytes(struct x86_emulate_ctxt *ctxt,
  735. unsigned size)
  736. {
  737. unsigned done_size = ctxt->fetch.end - ctxt->fetch.ptr;
  738. if (unlikely(done_size < size))
  739. return __do_insn_fetch_bytes(ctxt, size - done_size);
  740. else
  741. return X86EMUL_CONTINUE;
  742. }
  743. /* Fetch next part of the instruction being emulated. */
  744. #define insn_fetch(_type, _ctxt) \
  745. ({ _type _x; \
  746. \
  747. rc = do_insn_fetch_bytes(_ctxt, sizeof(_type)); \
  748. if (rc != X86EMUL_CONTINUE) \
  749. goto done; \
  750. ctxt->_eip += sizeof(_type); \
  751. _x = *(_type __aligned(1) *) ctxt->fetch.ptr; \
  752. ctxt->fetch.ptr += sizeof(_type); \
  753. _x; \
  754. })
  755. #define insn_fetch_arr(_arr, _size, _ctxt) \
  756. ({ \
  757. rc = do_insn_fetch_bytes(_ctxt, _size); \
  758. if (rc != X86EMUL_CONTINUE) \
  759. goto done; \
  760. ctxt->_eip += (_size); \
  761. memcpy(_arr, ctxt->fetch.ptr, _size); \
  762. ctxt->fetch.ptr += (_size); \
  763. })
  764. /*
  765. * Given the 'reg' portion of a ModRM byte, and a register block, return a
  766. * pointer into the block that addresses the relevant register.
  767. * @highbyte_regs specifies whether to decode AH,CH,DH,BH.
  768. */
  769. static void *decode_register(struct x86_emulate_ctxt *ctxt, u8 modrm_reg,
  770. int byteop)
  771. {
  772. void *p;
  773. int highbyte_regs = (ctxt->rex_prefix == 0) && byteop;
  774. if (highbyte_regs && modrm_reg >= 4 && modrm_reg < 8)
  775. p = (unsigned char *)reg_rmw(ctxt, modrm_reg & 3) + 1;
  776. else
  777. p = reg_rmw(ctxt, modrm_reg);
  778. return p;
  779. }
  780. static int read_descriptor(struct x86_emulate_ctxt *ctxt,
  781. struct segmented_address addr,
  782. u16 *size, unsigned long *address, int op_bytes)
  783. {
  784. int rc;
  785. if (op_bytes == 2)
  786. op_bytes = 3;
  787. *address = 0;
  788. rc = segmented_read_std(ctxt, addr, size, 2);
  789. if (rc != X86EMUL_CONTINUE)
  790. return rc;
  791. addr.ea += 2;
  792. rc = segmented_read_std(ctxt, addr, address, op_bytes);
  793. return rc;
  794. }
  795. FASTOP2(add);
  796. FASTOP2(or);
  797. FASTOP2(adc);
  798. FASTOP2(sbb);
  799. FASTOP2(and);
  800. FASTOP2(sub);
  801. FASTOP2(xor);
  802. FASTOP2(cmp);
  803. FASTOP2(test);
  804. FASTOP1SRC2(mul, mul_ex);
  805. FASTOP1SRC2(imul, imul_ex);
  806. FASTOP1SRC2EX(div, div_ex);
  807. FASTOP1SRC2EX(idiv, idiv_ex);
  808. FASTOP3WCL(shld);
  809. FASTOP3WCL(shrd);
  810. FASTOP2W(imul);
  811. FASTOP1(not);
  812. FASTOP1(neg);
  813. FASTOP1(inc);
  814. FASTOP1(dec);
  815. FASTOP2CL(rol);
  816. FASTOP2CL(ror);
  817. FASTOP2CL(rcl);
  818. FASTOP2CL(rcr);
  819. FASTOP2CL(shl);
  820. FASTOP2CL(shr);
  821. FASTOP2CL(sar);
  822. FASTOP2W(bsf);
  823. FASTOP2W(bsr);
  824. FASTOP2W(bt);
  825. FASTOP2W(bts);
  826. FASTOP2W(btr);
  827. FASTOP2W(btc);
  828. FASTOP2(xadd);
  829. FASTOP2R(cmp, cmp_r);
  830. static int em_bsf_c(struct x86_emulate_ctxt *ctxt)
  831. {
  832. /* If src is zero, do not writeback, but update flags */
  833. if (ctxt->src.val == 0)
  834. ctxt->dst.type = OP_NONE;
  835. return fastop(ctxt, em_bsf);
  836. }
  837. static int em_bsr_c(struct x86_emulate_ctxt *ctxt)
  838. {
  839. /* If src is zero, do not writeback, but update flags */
  840. if (ctxt->src.val == 0)
  841. ctxt->dst.type = OP_NONE;
  842. return fastop(ctxt, em_bsr);
  843. }
  844. static u8 test_cc(unsigned int condition, unsigned long flags)
  845. {
  846. u8 rc;
  847. void (*fop)(void) = (void *)em_setcc + 4 * (condition & 0xf);
  848. flags = (flags & EFLAGS_MASK) | X86_EFLAGS_IF;
  849. asm("push %[flags]; popf; call *%[fastop]"
  850. : "=a"(rc) : [fastop]"r"(fop), [flags]"r"(flags));
  851. return rc;
  852. }
  853. static void fetch_register_operand(struct operand *op)
  854. {
  855. switch (op->bytes) {
  856. case 1:
  857. op->val = *(u8 *)op->addr.reg;
  858. break;
  859. case 2:
  860. op->val = *(u16 *)op->addr.reg;
  861. break;
  862. case 4:
  863. op->val = *(u32 *)op->addr.reg;
  864. break;
  865. case 8:
  866. op->val = *(u64 *)op->addr.reg;
  867. break;
  868. }
  869. }
  870. static void read_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data, int reg)
  871. {
  872. ctxt->ops->get_fpu(ctxt);
  873. switch (reg) {
  874. case 0: asm("movdqa %%xmm0, %0" : "=m"(*data)); break;
  875. case 1: asm("movdqa %%xmm1, %0" : "=m"(*data)); break;
  876. case 2: asm("movdqa %%xmm2, %0" : "=m"(*data)); break;
  877. case 3: asm("movdqa %%xmm3, %0" : "=m"(*data)); break;
  878. case 4: asm("movdqa %%xmm4, %0" : "=m"(*data)); break;
  879. case 5: asm("movdqa %%xmm5, %0" : "=m"(*data)); break;
  880. case 6: asm("movdqa %%xmm6, %0" : "=m"(*data)); break;
  881. case 7: asm("movdqa %%xmm7, %0" : "=m"(*data)); break;
  882. #ifdef CONFIG_X86_64
  883. case 8: asm("movdqa %%xmm8, %0" : "=m"(*data)); break;
  884. case 9: asm("movdqa %%xmm9, %0" : "=m"(*data)); break;
  885. case 10: asm("movdqa %%xmm10, %0" : "=m"(*data)); break;
  886. case 11: asm("movdqa %%xmm11, %0" : "=m"(*data)); break;
  887. case 12: asm("movdqa %%xmm12, %0" : "=m"(*data)); break;
  888. case 13: asm("movdqa %%xmm13, %0" : "=m"(*data)); break;
  889. case 14: asm("movdqa %%xmm14, %0" : "=m"(*data)); break;
  890. case 15: asm("movdqa %%xmm15, %0" : "=m"(*data)); break;
  891. #endif
  892. default: BUG();
  893. }
  894. ctxt->ops->put_fpu(ctxt);
  895. }
  896. static void write_sse_reg(struct x86_emulate_ctxt *ctxt, sse128_t *data,
  897. int reg)
  898. {
  899. ctxt->ops->get_fpu(ctxt);
  900. switch (reg) {
  901. case 0: asm("movdqa %0, %%xmm0" : : "m"(*data)); break;
  902. case 1: asm("movdqa %0, %%xmm1" : : "m"(*data)); break;
  903. case 2: asm("movdqa %0, %%xmm2" : : "m"(*data)); break;
  904. case 3: asm("movdqa %0, %%xmm3" : : "m"(*data)); break;
  905. case 4: asm("movdqa %0, %%xmm4" : : "m"(*data)); break;
  906. case 5: asm("movdqa %0, %%xmm5" : : "m"(*data)); break;
  907. case 6: asm("movdqa %0, %%xmm6" : : "m"(*data)); break;
  908. case 7: asm("movdqa %0, %%xmm7" : : "m"(*data)); break;
  909. #ifdef CONFIG_X86_64
  910. case 8: asm("movdqa %0, %%xmm8" : : "m"(*data)); break;
  911. case 9: asm("movdqa %0, %%xmm9" : : "m"(*data)); break;
  912. case 10: asm("movdqa %0, %%xmm10" : : "m"(*data)); break;
  913. case 11: asm("movdqa %0, %%xmm11" : : "m"(*data)); break;
  914. case 12: asm("movdqa %0, %%xmm12" : : "m"(*data)); break;
  915. case 13: asm("movdqa %0, %%xmm13" : : "m"(*data)); break;
  916. case 14: asm("movdqa %0, %%xmm14" : : "m"(*data)); break;
  917. case 15: asm("movdqa %0, %%xmm15" : : "m"(*data)); break;
  918. #endif
  919. default: BUG();
  920. }
  921. ctxt->ops->put_fpu(ctxt);
  922. }
  923. static void read_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
  924. {
  925. ctxt->ops->get_fpu(ctxt);
  926. switch (reg) {
  927. case 0: asm("movq %%mm0, %0" : "=m"(*data)); break;
  928. case 1: asm("movq %%mm1, %0" : "=m"(*data)); break;
  929. case 2: asm("movq %%mm2, %0" : "=m"(*data)); break;
  930. case 3: asm("movq %%mm3, %0" : "=m"(*data)); break;
  931. case 4: asm("movq %%mm4, %0" : "=m"(*data)); break;
  932. case 5: asm("movq %%mm5, %0" : "=m"(*data)); break;
  933. case 6: asm("movq %%mm6, %0" : "=m"(*data)); break;
  934. case 7: asm("movq %%mm7, %0" : "=m"(*data)); break;
  935. default: BUG();
  936. }
  937. ctxt->ops->put_fpu(ctxt);
  938. }
  939. static void write_mmx_reg(struct x86_emulate_ctxt *ctxt, u64 *data, int reg)
  940. {
  941. ctxt->ops->get_fpu(ctxt);
  942. switch (reg) {
  943. case 0: asm("movq %0, %%mm0" : : "m"(*data)); break;
  944. case 1: asm("movq %0, %%mm1" : : "m"(*data)); break;
  945. case 2: asm("movq %0, %%mm2" : : "m"(*data)); break;
  946. case 3: asm("movq %0, %%mm3" : : "m"(*data)); break;
  947. case 4: asm("movq %0, %%mm4" : : "m"(*data)); break;
  948. case 5: asm("movq %0, %%mm5" : : "m"(*data)); break;
  949. case 6: asm("movq %0, %%mm6" : : "m"(*data)); break;
  950. case 7: asm("movq %0, %%mm7" : : "m"(*data)); break;
  951. default: BUG();
  952. }
  953. ctxt->ops->put_fpu(ctxt);
  954. }
  955. static int em_fninit(struct x86_emulate_ctxt *ctxt)
  956. {
  957. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  958. return emulate_nm(ctxt);
  959. ctxt->ops->get_fpu(ctxt);
  960. asm volatile("fninit");
  961. ctxt->ops->put_fpu(ctxt);
  962. return X86EMUL_CONTINUE;
  963. }
  964. static int em_fnstcw(struct x86_emulate_ctxt *ctxt)
  965. {
  966. u16 fcw;
  967. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  968. return emulate_nm(ctxt);
  969. ctxt->ops->get_fpu(ctxt);
  970. asm volatile("fnstcw %0": "+m"(fcw));
  971. ctxt->ops->put_fpu(ctxt);
  972. ctxt->dst.val = fcw;
  973. return X86EMUL_CONTINUE;
  974. }
  975. static int em_fnstsw(struct x86_emulate_ctxt *ctxt)
  976. {
  977. u16 fsw;
  978. if (ctxt->ops->get_cr(ctxt, 0) & (X86_CR0_TS | X86_CR0_EM))
  979. return emulate_nm(ctxt);
  980. ctxt->ops->get_fpu(ctxt);
  981. asm volatile("fnstsw %0": "+m"(fsw));
  982. ctxt->ops->put_fpu(ctxt);
  983. ctxt->dst.val = fsw;
  984. return X86EMUL_CONTINUE;
  985. }
  986. static void decode_register_operand(struct x86_emulate_ctxt *ctxt,
  987. struct operand *op)
  988. {
  989. unsigned reg = ctxt->modrm_reg;
  990. if (!(ctxt->d & ModRM))
  991. reg = (ctxt->b & 7) | ((ctxt->rex_prefix & 1) << 3);
  992. if (ctxt->d & Sse) {
  993. op->type = OP_XMM;
  994. op->bytes = 16;
  995. op->addr.xmm = reg;
  996. read_sse_reg(ctxt, &op->vec_val, reg);
  997. return;
  998. }
  999. if (ctxt->d & Mmx) {
  1000. reg &= 7;
  1001. op->type = OP_MM;
  1002. op->bytes = 8;
  1003. op->addr.mm = reg;
  1004. return;
  1005. }
  1006. op->type = OP_REG;
  1007. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  1008. op->addr.reg = decode_register(ctxt, reg, ctxt->d & ByteOp);
  1009. fetch_register_operand(op);
  1010. op->orig_val = op->val;
  1011. }
  1012. static void adjust_modrm_seg(struct x86_emulate_ctxt *ctxt, int base_reg)
  1013. {
  1014. if (base_reg == VCPU_REGS_RSP || base_reg == VCPU_REGS_RBP)
  1015. ctxt->modrm_seg = VCPU_SREG_SS;
  1016. }
  1017. static int decode_modrm(struct x86_emulate_ctxt *ctxt,
  1018. struct operand *op)
  1019. {
  1020. u8 sib;
  1021. int index_reg, base_reg, scale;
  1022. int rc = X86EMUL_CONTINUE;
  1023. ulong modrm_ea = 0;
  1024. ctxt->modrm_reg = ((ctxt->rex_prefix << 1) & 8); /* REX.R */
  1025. index_reg = (ctxt->rex_prefix << 2) & 8; /* REX.X */
  1026. base_reg = (ctxt->rex_prefix << 3) & 8; /* REX.B */
  1027. ctxt->modrm_mod = (ctxt->modrm & 0xc0) >> 6;
  1028. ctxt->modrm_reg |= (ctxt->modrm & 0x38) >> 3;
  1029. ctxt->modrm_rm = base_reg | (ctxt->modrm & 0x07);
  1030. ctxt->modrm_seg = VCPU_SREG_DS;
  1031. if (ctxt->modrm_mod == 3 || (ctxt->d & NoMod)) {
  1032. op->type = OP_REG;
  1033. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  1034. op->addr.reg = decode_register(ctxt, ctxt->modrm_rm,
  1035. ctxt->d & ByteOp);
  1036. if (ctxt->d & Sse) {
  1037. op->type = OP_XMM;
  1038. op->bytes = 16;
  1039. op->addr.xmm = ctxt->modrm_rm;
  1040. read_sse_reg(ctxt, &op->vec_val, ctxt->modrm_rm);
  1041. return rc;
  1042. }
  1043. if (ctxt->d & Mmx) {
  1044. op->type = OP_MM;
  1045. op->bytes = 8;
  1046. op->addr.mm = ctxt->modrm_rm & 7;
  1047. return rc;
  1048. }
  1049. fetch_register_operand(op);
  1050. return rc;
  1051. }
  1052. op->type = OP_MEM;
  1053. if (ctxt->ad_bytes == 2) {
  1054. unsigned bx = reg_read(ctxt, VCPU_REGS_RBX);
  1055. unsigned bp = reg_read(ctxt, VCPU_REGS_RBP);
  1056. unsigned si = reg_read(ctxt, VCPU_REGS_RSI);
  1057. unsigned di = reg_read(ctxt, VCPU_REGS_RDI);
  1058. /* 16-bit ModR/M decode. */
  1059. switch (ctxt->modrm_mod) {
  1060. case 0:
  1061. if (ctxt->modrm_rm == 6)
  1062. modrm_ea += insn_fetch(u16, ctxt);
  1063. break;
  1064. case 1:
  1065. modrm_ea += insn_fetch(s8, ctxt);
  1066. break;
  1067. case 2:
  1068. modrm_ea += insn_fetch(u16, ctxt);
  1069. break;
  1070. }
  1071. switch (ctxt->modrm_rm) {
  1072. case 0:
  1073. modrm_ea += bx + si;
  1074. break;
  1075. case 1:
  1076. modrm_ea += bx + di;
  1077. break;
  1078. case 2:
  1079. modrm_ea += bp + si;
  1080. break;
  1081. case 3:
  1082. modrm_ea += bp + di;
  1083. break;
  1084. case 4:
  1085. modrm_ea += si;
  1086. break;
  1087. case 5:
  1088. modrm_ea += di;
  1089. break;
  1090. case 6:
  1091. if (ctxt->modrm_mod != 0)
  1092. modrm_ea += bp;
  1093. break;
  1094. case 7:
  1095. modrm_ea += bx;
  1096. break;
  1097. }
  1098. if (ctxt->modrm_rm == 2 || ctxt->modrm_rm == 3 ||
  1099. (ctxt->modrm_rm == 6 && ctxt->modrm_mod != 0))
  1100. ctxt->modrm_seg = VCPU_SREG_SS;
  1101. modrm_ea = (u16)modrm_ea;
  1102. } else {
  1103. /* 32/64-bit ModR/M decode. */
  1104. if ((ctxt->modrm_rm & 7) == 4) {
  1105. sib = insn_fetch(u8, ctxt);
  1106. index_reg |= (sib >> 3) & 7;
  1107. base_reg |= sib & 7;
  1108. scale = sib >> 6;
  1109. if ((base_reg & 7) == 5 && ctxt->modrm_mod == 0)
  1110. modrm_ea += insn_fetch(s32, ctxt);
  1111. else {
  1112. modrm_ea += reg_read(ctxt, base_reg);
  1113. adjust_modrm_seg(ctxt, base_reg);
  1114. /* Increment ESP on POP [ESP] */
  1115. if ((ctxt->d & IncSP) &&
  1116. base_reg == VCPU_REGS_RSP)
  1117. modrm_ea += ctxt->op_bytes;
  1118. }
  1119. if (index_reg != 4)
  1120. modrm_ea += reg_read(ctxt, index_reg) << scale;
  1121. } else if ((ctxt->modrm_rm & 7) == 5 && ctxt->modrm_mod == 0) {
  1122. modrm_ea += insn_fetch(s32, ctxt);
  1123. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1124. ctxt->rip_relative = 1;
  1125. } else {
  1126. base_reg = ctxt->modrm_rm;
  1127. modrm_ea += reg_read(ctxt, base_reg);
  1128. adjust_modrm_seg(ctxt, base_reg);
  1129. }
  1130. switch (ctxt->modrm_mod) {
  1131. case 1:
  1132. modrm_ea += insn_fetch(s8, ctxt);
  1133. break;
  1134. case 2:
  1135. modrm_ea += insn_fetch(s32, ctxt);
  1136. break;
  1137. }
  1138. }
  1139. op->addr.mem.ea = modrm_ea;
  1140. if (ctxt->ad_bytes != 8)
  1141. ctxt->memop.addr.mem.ea = (u32)ctxt->memop.addr.mem.ea;
  1142. done:
  1143. return rc;
  1144. }
  1145. static int decode_abs(struct x86_emulate_ctxt *ctxt,
  1146. struct operand *op)
  1147. {
  1148. int rc = X86EMUL_CONTINUE;
  1149. op->type = OP_MEM;
  1150. switch (ctxt->ad_bytes) {
  1151. case 2:
  1152. op->addr.mem.ea = insn_fetch(u16, ctxt);
  1153. break;
  1154. case 4:
  1155. op->addr.mem.ea = insn_fetch(u32, ctxt);
  1156. break;
  1157. case 8:
  1158. op->addr.mem.ea = insn_fetch(u64, ctxt);
  1159. break;
  1160. }
  1161. done:
  1162. return rc;
  1163. }
  1164. static void fetch_bit_operand(struct x86_emulate_ctxt *ctxt)
  1165. {
  1166. long sv = 0, mask;
  1167. if (ctxt->dst.type == OP_MEM && ctxt->src.type == OP_REG) {
  1168. mask = ~((long)ctxt->dst.bytes * 8 - 1);
  1169. if (ctxt->src.bytes == 2)
  1170. sv = (s16)ctxt->src.val & (s16)mask;
  1171. else if (ctxt->src.bytes == 4)
  1172. sv = (s32)ctxt->src.val & (s32)mask;
  1173. else
  1174. sv = (s64)ctxt->src.val & (s64)mask;
  1175. ctxt->dst.addr.mem.ea = address_mask(ctxt,
  1176. ctxt->dst.addr.mem.ea + (sv >> 3));
  1177. }
  1178. /* only subword offset */
  1179. ctxt->src.val &= (ctxt->dst.bytes << 3) - 1;
  1180. }
  1181. static int read_emulated(struct x86_emulate_ctxt *ctxt,
  1182. unsigned long addr, void *dest, unsigned size)
  1183. {
  1184. int rc;
  1185. struct read_cache *mc = &ctxt->mem_read;
  1186. if (mc->pos < mc->end)
  1187. goto read_cached;
  1188. WARN_ON((mc->end + size) >= sizeof(mc->data));
  1189. rc = ctxt->ops->read_emulated(ctxt, addr, mc->data + mc->end, size,
  1190. &ctxt->exception);
  1191. if (rc != X86EMUL_CONTINUE)
  1192. return rc;
  1193. mc->end += size;
  1194. read_cached:
  1195. memcpy(dest, mc->data + mc->pos, size);
  1196. mc->pos += size;
  1197. return X86EMUL_CONTINUE;
  1198. }
  1199. static int segmented_read(struct x86_emulate_ctxt *ctxt,
  1200. struct segmented_address addr,
  1201. void *data,
  1202. unsigned size)
  1203. {
  1204. int rc;
  1205. ulong linear;
  1206. rc = linearize(ctxt, addr, size, false, &linear);
  1207. if (rc != X86EMUL_CONTINUE)
  1208. return rc;
  1209. return read_emulated(ctxt, linear, data, size);
  1210. }
  1211. static int segmented_write(struct x86_emulate_ctxt *ctxt,
  1212. struct segmented_address addr,
  1213. const void *data,
  1214. unsigned size)
  1215. {
  1216. int rc;
  1217. ulong linear;
  1218. rc = linearize(ctxt, addr, size, true, &linear);
  1219. if (rc != X86EMUL_CONTINUE)
  1220. return rc;
  1221. return ctxt->ops->write_emulated(ctxt, linear, data, size,
  1222. &ctxt->exception);
  1223. }
  1224. static int segmented_cmpxchg(struct x86_emulate_ctxt *ctxt,
  1225. struct segmented_address addr,
  1226. const void *orig_data, const void *data,
  1227. unsigned size)
  1228. {
  1229. int rc;
  1230. ulong linear;
  1231. rc = linearize(ctxt, addr, size, true, &linear);
  1232. if (rc != X86EMUL_CONTINUE)
  1233. return rc;
  1234. return ctxt->ops->cmpxchg_emulated(ctxt, linear, orig_data, data,
  1235. size, &ctxt->exception);
  1236. }
  1237. static int pio_in_emulated(struct x86_emulate_ctxt *ctxt,
  1238. unsigned int size, unsigned short port,
  1239. void *dest)
  1240. {
  1241. struct read_cache *rc = &ctxt->io_read;
  1242. if (rc->pos == rc->end) { /* refill pio read ahead */
  1243. unsigned int in_page, n;
  1244. unsigned int count = ctxt->rep_prefix ?
  1245. address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) : 1;
  1246. in_page = (ctxt->eflags & X86_EFLAGS_DF) ?
  1247. offset_in_page(reg_read(ctxt, VCPU_REGS_RDI)) :
  1248. PAGE_SIZE - offset_in_page(reg_read(ctxt, VCPU_REGS_RDI));
  1249. n = min3(in_page, (unsigned int)sizeof(rc->data) / size, count);
  1250. if (n == 0)
  1251. n = 1;
  1252. rc->pos = rc->end = 0;
  1253. if (!ctxt->ops->pio_in_emulated(ctxt, size, port, rc->data, n))
  1254. return 0;
  1255. rc->end = n * size;
  1256. }
  1257. if (ctxt->rep_prefix && (ctxt->d & String) &&
  1258. !(ctxt->eflags & X86_EFLAGS_DF)) {
  1259. ctxt->dst.data = rc->data + rc->pos;
  1260. ctxt->dst.type = OP_MEM_STR;
  1261. ctxt->dst.count = (rc->end - rc->pos) / size;
  1262. rc->pos = rc->end;
  1263. } else {
  1264. memcpy(dest, rc->data + rc->pos, size);
  1265. rc->pos += size;
  1266. }
  1267. return 1;
  1268. }
  1269. static int read_interrupt_descriptor(struct x86_emulate_ctxt *ctxt,
  1270. u16 index, struct desc_struct *desc)
  1271. {
  1272. struct desc_ptr dt;
  1273. ulong addr;
  1274. ctxt->ops->get_idt(ctxt, &dt);
  1275. if (dt.size < index * 8 + 7)
  1276. return emulate_gp(ctxt, index << 3 | 0x2);
  1277. addr = dt.address + index * 8;
  1278. return ctxt->ops->read_std(ctxt, addr, desc, sizeof *desc,
  1279. &ctxt->exception);
  1280. }
  1281. static void get_descriptor_table_ptr(struct x86_emulate_ctxt *ctxt,
  1282. u16 selector, struct desc_ptr *dt)
  1283. {
  1284. const struct x86_emulate_ops *ops = ctxt->ops;
  1285. u32 base3 = 0;
  1286. if (selector & 1 << 2) {
  1287. struct desc_struct desc;
  1288. u16 sel;
  1289. memset (dt, 0, sizeof *dt);
  1290. if (!ops->get_segment(ctxt, &sel, &desc, &base3,
  1291. VCPU_SREG_LDTR))
  1292. return;
  1293. dt->size = desc_limit_scaled(&desc); /* what if limit > 65535? */
  1294. dt->address = get_desc_base(&desc) | ((u64)base3 << 32);
  1295. } else
  1296. ops->get_gdt(ctxt, dt);
  1297. }
  1298. static int get_descriptor_ptr(struct x86_emulate_ctxt *ctxt,
  1299. u16 selector, ulong *desc_addr_p)
  1300. {
  1301. struct desc_ptr dt;
  1302. u16 index = selector >> 3;
  1303. ulong addr;
  1304. get_descriptor_table_ptr(ctxt, selector, &dt);
  1305. if (dt.size < index * 8 + 7)
  1306. return emulate_gp(ctxt, selector & 0xfffc);
  1307. addr = dt.address + index * 8;
  1308. #ifdef CONFIG_X86_64
  1309. if (addr >> 32 != 0) {
  1310. u64 efer = 0;
  1311. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  1312. if (!(efer & EFER_LMA))
  1313. addr &= (u32)-1;
  1314. }
  1315. #endif
  1316. *desc_addr_p = addr;
  1317. return X86EMUL_CONTINUE;
  1318. }
  1319. /* allowed just for 8 bytes segments */
  1320. static int read_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1321. u16 selector, struct desc_struct *desc,
  1322. ulong *desc_addr_p)
  1323. {
  1324. int rc;
  1325. rc = get_descriptor_ptr(ctxt, selector, desc_addr_p);
  1326. if (rc != X86EMUL_CONTINUE)
  1327. return rc;
  1328. return ctxt->ops->read_std(ctxt, *desc_addr_p, desc, sizeof(*desc),
  1329. &ctxt->exception);
  1330. }
  1331. /* allowed just for 8 bytes segments */
  1332. static int write_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1333. u16 selector, struct desc_struct *desc)
  1334. {
  1335. int rc;
  1336. ulong addr;
  1337. rc = get_descriptor_ptr(ctxt, selector, &addr);
  1338. if (rc != X86EMUL_CONTINUE)
  1339. return rc;
  1340. return ctxt->ops->write_std(ctxt, addr, desc, sizeof *desc,
  1341. &ctxt->exception);
  1342. }
  1343. /* Does not support long mode */
  1344. static int __load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1345. u16 selector, int seg, u8 cpl,
  1346. enum x86_transfer_type transfer,
  1347. struct desc_struct *desc)
  1348. {
  1349. struct desc_struct seg_desc, old_desc;
  1350. u8 dpl, rpl;
  1351. unsigned err_vec = GP_VECTOR;
  1352. u32 err_code = 0;
  1353. bool null_selector = !(selector & ~0x3); /* 0000-0003 are null */
  1354. ulong desc_addr;
  1355. int ret;
  1356. u16 dummy;
  1357. u32 base3 = 0;
  1358. memset(&seg_desc, 0, sizeof seg_desc);
  1359. if (ctxt->mode == X86EMUL_MODE_REAL) {
  1360. /* set real mode segment descriptor (keep limit etc. for
  1361. * unreal mode) */
  1362. ctxt->ops->get_segment(ctxt, &dummy, &seg_desc, NULL, seg);
  1363. set_desc_base(&seg_desc, selector << 4);
  1364. goto load;
  1365. } else if (seg <= VCPU_SREG_GS && ctxt->mode == X86EMUL_MODE_VM86) {
  1366. /* VM86 needs a clean new segment descriptor */
  1367. set_desc_base(&seg_desc, selector << 4);
  1368. set_desc_limit(&seg_desc, 0xffff);
  1369. seg_desc.type = 3;
  1370. seg_desc.p = 1;
  1371. seg_desc.s = 1;
  1372. seg_desc.dpl = 3;
  1373. goto load;
  1374. }
  1375. rpl = selector & 3;
  1376. /* NULL selector is not valid for TR, CS and SS (except for long mode) */
  1377. if ((seg == VCPU_SREG_CS
  1378. || (seg == VCPU_SREG_SS
  1379. && (ctxt->mode != X86EMUL_MODE_PROT64 || rpl != cpl))
  1380. || seg == VCPU_SREG_TR)
  1381. && null_selector)
  1382. goto exception;
  1383. /* TR should be in GDT only */
  1384. if (seg == VCPU_SREG_TR && (selector & (1 << 2)))
  1385. goto exception;
  1386. if (null_selector) /* for NULL selector skip all following checks */
  1387. goto load;
  1388. ret = read_segment_descriptor(ctxt, selector, &seg_desc, &desc_addr);
  1389. if (ret != X86EMUL_CONTINUE)
  1390. return ret;
  1391. err_code = selector & 0xfffc;
  1392. err_vec = (transfer == X86_TRANSFER_TASK_SWITCH) ? TS_VECTOR :
  1393. GP_VECTOR;
  1394. /* can't load system descriptor into segment selector */
  1395. if (seg <= VCPU_SREG_GS && !seg_desc.s) {
  1396. if (transfer == X86_TRANSFER_CALL_JMP)
  1397. return X86EMUL_UNHANDLEABLE;
  1398. goto exception;
  1399. }
  1400. if (!seg_desc.p) {
  1401. err_vec = (seg == VCPU_SREG_SS) ? SS_VECTOR : NP_VECTOR;
  1402. goto exception;
  1403. }
  1404. dpl = seg_desc.dpl;
  1405. switch (seg) {
  1406. case VCPU_SREG_SS:
  1407. /*
  1408. * segment is not a writable data segment or segment
  1409. * selector's RPL != CPL or segment selector's RPL != CPL
  1410. */
  1411. if (rpl != cpl || (seg_desc.type & 0xa) != 0x2 || dpl != cpl)
  1412. goto exception;
  1413. break;
  1414. case VCPU_SREG_CS:
  1415. if (!(seg_desc.type & 8))
  1416. goto exception;
  1417. if (seg_desc.type & 4) {
  1418. /* conforming */
  1419. if (dpl > cpl)
  1420. goto exception;
  1421. } else {
  1422. /* nonconforming */
  1423. if (rpl > cpl || dpl != cpl)
  1424. goto exception;
  1425. }
  1426. /* in long-mode d/b must be clear if l is set */
  1427. if (seg_desc.d && seg_desc.l) {
  1428. u64 efer = 0;
  1429. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  1430. if (efer & EFER_LMA)
  1431. goto exception;
  1432. }
  1433. /* CS(RPL) <- CPL */
  1434. selector = (selector & 0xfffc) | cpl;
  1435. break;
  1436. case VCPU_SREG_TR:
  1437. if (seg_desc.s || (seg_desc.type != 1 && seg_desc.type != 9))
  1438. goto exception;
  1439. old_desc = seg_desc;
  1440. seg_desc.type |= 2; /* busy */
  1441. ret = ctxt->ops->cmpxchg_emulated(ctxt, desc_addr, &old_desc, &seg_desc,
  1442. sizeof(seg_desc), &ctxt->exception);
  1443. if (ret != X86EMUL_CONTINUE)
  1444. return ret;
  1445. break;
  1446. case VCPU_SREG_LDTR:
  1447. if (seg_desc.s || seg_desc.type != 2)
  1448. goto exception;
  1449. break;
  1450. default: /* DS, ES, FS, or GS */
  1451. /*
  1452. * segment is not a data or readable code segment or
  1453. * ((segment is a data or nonconforming code segment)
  1454. * and (both RPL and CPL > DPL))
  1455. */
  1456. if ((seg_desc.type & 0xa) == 0x8 ||
  1457. (((seg_desc.type & 0xc) != 0xc) &&
  1458. (rpl > dpl && cpl > dpl)))
  1459. goto exception;
  1460. break;
  1461. }
  1462. if (seg_desc.s) {
  1463. /* mark segment as accessed */
  1464. if (!(seg_desc.type & 1)) {
  1465. seg_desc.type |= 1;
  1466. ret = write_segment_descriptor(ctxt, selector,
  1467. &seg_desc);
  1468. if (ret != X86EMUL_CONTINUE)
  1469. return ret;
  1470. }
  1471. } else if (ctxt->mode == X86EMUL_MODE_PROT64) {
  1472. ret = ctxt->ops->read_std(ctxt, desc_addr+8, &base3,
  1473. sizeof(base3), &ctxt->exception);
  1474. if (ret != X86EMUL_CONTINUE)
  1475. return ret;
  1476. if (is_noncanonical_address(get_desc_base(&seg_desc) |
  1477. ((u64)base3 << 32)))
  1478. return emulate_gp(ctxt, 0);
  1479. }
  1480. load:
  1481. ctxt->ops->set_segment(ctxt, selector, &seg_desc, base3, seg);
  1482. if (desc)
  1483. *desc = seg_desc;
  1484. return X86EMUL_CONTINUE;
  1485. exception:
  1486. return emulate_exception(ctxt, err_vec, err_code, true);
  1487. }
  1488. static int load_segment_descriptor(struct x86_emulate_ctxt *ctxt,
  1489. u16 selector, int seg)
  1490. {
  1491. u8 cpl = ctxt->ops->cpl(ctxt);
  1492. return __load_segment_descriptor(ctxt, selector, seg, cpl,
  1493. X86_TRANSFER_NONE, NULL);
  1494. }
  1495. static void write_register_operand(struct operand *op)
  1496. {
  1497. return assign_register(op->addr.reg, op->val, op->bytes);
  1498. }
  1499. static int writeback(struct x86_emulate_ctxt *ctxt, struct operand *op)
  1500. {
  1501. switch (op->type) {
  1502. case OP_REG:
  1503. write_register_operand(op);
  1504. break;
  1505. case OP_MEM:
  1506. if (ctxt->lock_prefix)
  1507. return segmented_cmpxchg(ctxt,
  1508. op->addr.mem,
  1509. &op->orig_val,
  1510. &op->val,
  1511. op->bytes);
  1512. else
  1513. return segmented_write(ctxt,
  1514. op->addr.mem,
  1515. &op->val,
  1516. op->bytes);
  1517. break;
  1518. case OP_MEM_STR:
  1519. return segmented_write(ctxt,
  1520. op->addr.mem,
  1521. op->data,
  1522. op->bytes * op->count);
  1523. break;
  1524. case OP_XMM:
  1525. write_sse_reg(ctxt, &op->vec_val, op->addr.xmm);
  1526. break;
  1527. case OP_MM:
  1528. write_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
  1529. break;
  1530. case OP_NONE:
  1531. /* no writeback */
  1532. break;
  1533. default:
  1534. break;
  1535. }
  1536. return X86EMUL_CONTINUE;
  1537. }
  1538. static int push(struct x86_emulate_ctxt *ctxt, void *data, int bytes)
  1539. {
  1540. struct segmented_address addr;
  1541. rsp_increment(ctxt, -bytes);
  1542. addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
  1543. addr.seg = VCPU_SREG_SS;
  1544. return segmented_write(ctxt, addr, data, bytes);
  1545. }
  1546. static int em_push(struct x86_emulate_ctxt *ctxt)
  1547. {
  1548. /* Disable writeback. */
  1549. ctxt->dst.type = OP_NONE;
  1550. return push(ctxt, &ctxt->src.val, ctxt->op_bytes);
  1551. }
  1552. static int emulate_pop(struct x86_emulate_ctxt *ctxt,
  1553. void *dest, int len)
  1554. {
  1555. int rc;
  1556. struct segmented_address addr;
  1557. addr.ea = reg_read(ctxt, VCPU_REGS_RSP) & stack_mask(ctxt);
  1558. addr.seg = VCPU_SREG_SS;
  1559. rc = segmented_read(ctxt, addr, dest, len);
  1560. if (rc != X86EMUL_CONTINUE)
  1561. return rc;
  1562. rsp_increment(ctxt, len);
  1563. return rc;
  1564. }
  1565. static int em_pop(struct x86_emulate_ctxt *ctxt)
  1566. {
  1567. return emulate_pop(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  1568. }
  1569. static int emulate_popf(struct x86_emulate_ctxt *ctxt,
  1570. void *dest, int len)
  1571. {
  1572. int rc;
  1573. unsigned long val, change_mask;
  1574. int iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
  1575. int cpl = ctxt->ops->cpl(ctxt);
  1576. rc = emulate_pop(ctxt, &val, len);
  1577. if (rc != X86EMUL_CONTINUE)
  1578. return rc;
  1579. change_mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  1580. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF |
  1581. X86_EFLAGS_TF | X86_EFLAGS_DF | X86_EFLAGS_NT |
  1582. X86_EFLAGS_AC | X86_EFLAGS_ID;
  1583. switch(ctxt->mode) {
  1584. case X86EMUL_MODE_PROT64:
  1585. case X86EMUL_MODE_PROT32:
  1586. case X86EMUL_MODE_PROT16:
  1587. if (cpl == 0)
  1588. change_mask |= X86_EFLAGS_IOPL;
  1589. if (cpl <= iopl)
  1590. change_mask |= X86_EFLAGS_IF;
  1591. break;
  1592. case X86EMUL_MODE_VM86:
  1593. if (iopl < 3)
  1594. return emulate_gp(ctxt, 0);
  1595. change_mask |= X86_EFLAGS_IF;
  1596. break;
  1597. default: /* real mode */
  1598. change_mask |= (X86_EFLAGS_IOPL | X86_EFLAGS_IF);
  1599. break;
  1600. }
  1601. *(unsigned long *)dest =
  1602. (ctxt->eflags & ~change_mask) | (val & change_mask);
  1603. return rc;
  1604. }
  1605. static int em_popf(struct x86_emulate_ctxt *ctxt)
  1606. {
  1607. ctxt->dst.type = OP_REG;
  1608. ctxt->dst.addr.reg = &ctxt->eflags;
  1609. ctxt->dst.bytes = ctxt->op_bytes;
  1610. return emulate_popf(ctxt, &ctxt->dst.val, ctxt->op_bytes);
  1611. }
  1612. static int em_enter(struct x86_emulate_ctxt *ctxt)
  1613. {
  1614. int rc;
  1615. unsigned frame_size = ctxt->src.val;
  1616. unsigned nesting_level = ctxt->src2.val & 31;
  1617. ulong rbp;
  1618. if (nesting_level)
  1619. return X86EMUL_UNHANDLEABLE;
  1620. rbp = reg_read(ctxt, VCPU_REGS_RBP);
  1621. rc = push(ctxt, &rbp, stack_size(ctxt));
  1622. if (rc != X86EMUL_CONTINUE)
  1623. return rc;
  1624. assign_masked(reg_rmw(ctxt, VCPU_REGS_RBP), reg_read(ctxt, VCPU_REGS_RSP),
  1625. stack_mask(ctxt));
  1626. assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP),
  1627. reg_read(ctxt, VCPU_REGS_RSP) - frame_size,
  1628. stack_mask(ctxt));
  1629. return X86EMUL_CONTINUE;
  1630. }
  1631. static int em_leave(struct x86_emulate_ctxt *ctxt)
  1632. {
  1633. assign_masked(reg_rmw(ctxt, VCPU_REGS_RSP), reg_read(ctxt, VCPU_REGS_RBP),
  1634. stack_mask(ctxt));
  1635. return emulate_pop(ctxt, reg_rmw(ctxt, VCPU_REGS_RBP), ctxt->op_bytes);
  1636. }
  1637. static int em_push_sreg(struct x86_emulate_ctxt *ctxt)
  1638. {
  1639. int seg = ctxt->src2.val;
  1640. ctxt->src.val = get_segment_selector(ctxt, seg);
  1641. if (ctxt->op_bytes == 4) {
  1642. rsp_increment(ctxt, -2);
  1643. ctxt->op_bytes = 2;
  1644. }
  1645. return em_push(ctxt);
  1646. }
  1647. static int em_pop_sreg(struct x86_emulate_ctxt *ctxt)
  1648. {
  1649. int seg = ctxt->src2.val;
  1650. unsigned long selector;
  1651. int rc;
  1652. rc = emulate_pop(ctxt, &selector, 2);
  1653. if (rc != X86EMUL_CONTINUE)
  1654. return rc;
  1655. if (ctxt->modrm_reg == VCPU_SREG_SS)
  1656. ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
  1657. if (ctxt->op_bytes > 2)
  1658. rsp_increment(ctxt, ctxt->op_bytes - 2);
  1659. rc = load_segment_descriptor(ctxt, (u16)selector, seg);
  1660. return rc;
  1661. }
  1662. static int em_pusha(struct x86_emulate_ctxt *ctxt)
  1663. {
  1664. unsigned long old_esp = reg_read(ctxt, VCPU_REGS_RSP);
  1665. int rc = X86EMUL_CONTINUE;
  1666. int reg = VCPU_REGS_RAX;
  1667. while (reg <= VCPU_REGS_RDI) {
  1668. (reg == VCPU_REGS_RSP) ?
  1669. (ctxt->src.val = old_esp) : (ctxt->src.val = reg_read(ctxt, reg));
  1670. rc = em_push(ctxt);
  1671. if (rc != X86EMUL_CONTINUE)
  1672. return rc;
  1673. ++reg;
  1674. }
  1675. return rc;
  1676. }
  1677. static int em_pushf(struct x86_emulate_ctxt *ctxt)
  1678. {
  1679. ctxt->src.val = (unsigned long)ctxt->eflags & ~X86_EFLAGS_VM;
  1680. return em_push(ctxt);
  1681. }
  1682. static int em_popa(struct x86_emulate_ctxt *ctxt)
  1683. {
  1684. int rc = X86EMUL_CONTINUE;
  1685. int reg = VCPU_REGS_RDI;
  1686. u32 val;
  1687. while (reg >= VCPU_REGS_RAX) {
  1688. if (reg == VCPU_REGS_RSP) {
  1689. rsp_increment(ctxt, ctxt->op_bytes);
  1690. --reg;
  1691. }
  1692. rc = emulate_pop(ctxt, &val, ctxt->op_bytes);
  1693. if (rc != X86EMUL_CONTINUE)
  1694. break;
  1695. assign_register(reg_rmw(ctxt, reg), val, ctxt->op_bytes);
  1696. --reg;
  1697. }
  1698. return rc;
  1699. }
  1700. static int __emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
  1701. {
  1702. const struct x86_emulate_ops *ops = ctxt->ops;
  1703. int rc;
  1704. struct desc_ptr dt;
  1705. gva_t cs_addr;
  1706. gva_t eip_addr;
  1707. u16 cs, eip;
  1708. /* TODO: Add limit checks */
  1709. ctxt->src.val = ctxt->eflags;
  1710. rc = em_push(ctxt);
  1711. if (rc != X86EMUL_CONTINUE)
  1712. return rc;
  1713. ctxt->eflags &= ~(X86_EFLAGS_IF | X86_EFLAGS_TF | X86_EFLAGS_AC);
  1714. ctxt->src.val = get_segment_selector(ctxt, VCPU_SREG_CS);
  1715. rc = em_push(ctxt);
  1716. if (rc != X86EMUL_CONTINUE)
  1717. return rc;
  1718. ctxt->src.val = ctxt->_eip;
  1719. rc = em_push(ctxt);
  1720. if (rc != X86EMUL_CONTINUE)
  1721. return rc;
  1722. ops->get_idt(ctxt, &dt);
  1723. eip_addr = dt.address + (irq << 2);
  1724. cs_addr = dt.address + (irq << 2) + 2;
  1725. rc = ops->read_std(ctxt, cs_addr, &cs, 2, &ctxt->exception);
  1726. if (rc != X86EMUL_CONTINUE)
  1727. return rc;
  1728. rc = ops->read_std(ctxt, eip_addr, &eip, 2, &ctxt->exception);
  1729. if (rc != X86EMUL_CONTINUE)
  1730. return rc;
  1731. rc = load_segment_descriptor(ctxt, cs, VCPU_SREG_CS);
  1732. if (rc != X86EMUL_CONTINUE)
  1733. return rc;
  1734. ctxt->_eip = eip;
  1735. return rc;
  1736. }
  1737. int emulate_int_real(struct x86_emulate_ctxt *ctxt, int irq)
  1738. {
  1739. int rc;
  1740. invalidate_registers(ctxt);
  1741. rc = __emulate_int_real(ctxt, irq);
  1742. if (rc == X86EMUL_CONTINUE)
  1743. writeback_registers(ctxt);
  1744. return rc;
  1745. }
  1746. static int emulate_int(struct x86_emulate_ctxt *ctxt, int irq)
  1747. {
  1748. switch(ctxt->mode) {
  1749. case X86EMUL_MODE_REAL:
  1750. return __emulate_int_real(ctxt, irq);
  1751. case X86EMUL_MODE_VM86:
  1752. case X86EMUL_MODE_PROT16:
  1753. case X86EMUL_MODE_PROT32:
  1754. case X86EMUL_MODE_PROT64:
  1755. default:
  1756. /* Protected mode interrupts unimplemented yet */
  1757. return X86EMUL_UNHANDLEABLE;
  1758. }
  1759. }
  1760. static int emulate_iret_real(struct x86_emulate_ctxt *ctxt)
  1761. {
  1762. int rc = X86EMUL_CONTINUE;
  1763. unsigned long temp_eip = 0;
  1764. unsigned long temp_eflags = 0;
  1765. unsigned long cs = 0;
  1766. unsigned long mask = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  1767. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_TF |
  1768. X86_EFLAGS_IF | X86_EFLAGS_DF | X86_EFLAGS_OF |
  1769. X86_EFLAGS_IOPL | X86_EFLAGS_NT | X86_EFLAGS_RF |
  1770. X86_EFLAGS_AC | X86_EFLAGS_ID |
  1771. X86_EFLAGS_FIXED_BIT;
  1772. unsigned long vm86_mask = X86_EFLAGS_VM | X86_EFLAGS_VIF |
  1773. X86_EFLAGS_VIP;
  1774. /* TODO: Add stack limit check */
  1775. rc = emulate_pop(ctxt, &temp_eip, ctxt->op_bytes);
  1776. if (rc != X86EMUL_CONTINUE)
  1777. return rc;
  1778. if (temp_eip & ~0xffff)
  1779. return emulate_gp(ctxt, 0);
  1780. rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
  1781. if (rc != X86EMUL_CONTINUE)
  1782. return rc;
  1783. rc = emulate_pop(ctxt, &temp_eflags, ctxt->op_bytes);
  1784. if (rc != X86EMUL_CONTINUE)
  1785. return rc;
  1786. rc = load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS);
  1787. if (rc != X86EMUL_CONTINUE)
  1788. return rc;
  1789. ctxt->_eip = temp_eip;
  1790. if (ctxt->op_bytes == 4)
  1791. ctxt->eflags = ((temp_eflags & mask) | (ctxt->eflags & vm86_mask));
  1792. else if (ctxt->op_bytes == 2) {
  1793. ctxt->eflags &= ~0xffff;
  1794. ctxt->eflags |= temp_eflags;
  1795. }
  1796. ctxt->eflags &= ~EFLG_RESERVED_ZEROS_MASK; /* Clear reserved zeros */
  1797. ctxt->eflags |= X86_EFLAGS_FIXED_BIT;
  1798. ctxt->ops->set_nmi_mask(ctxt, false);
  1799. return rc;
  1800. }
  1801. static int em_iret(struct x86_emulate_ctxt *ctxt)
  1802. {
  1803. switch(ctxt->mode) {
  1804. case X86EMUL_MODE_REAL:
  1805. return emulate_iret_real(ctxt);
  1806. case X86EMUL_MODE_VM86:
  1807. case X86EMUL_MODE_PROT16:
  1808. case X86EMUL_MODE_PROT32:
  1809. case X86EMUL_MODE_PROT64:
  1810. default:
  1811. /* iret from protected mode unimplemented yet */
  1812. return X86EMUL_UNHANDLEABLE;
  1813. }
  1814. }
  1815. static int em_jmp_far(struct x86_emulate_ctxt *ctxt)
  1816. {
  1817. int rc;
  1818. unsigned short sel, old_sel;
  1819. struct desc_struct old_desc, new_desc;
  1820. const struct x86_emulate_ops *ops = ctxt->ops;
  1821. u8 cpl = ctxt->ops->cpl(ctxt);
  1822. /* Assignment of RIP may only fail in 64-bit mode */
  1823. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1824. ops->get_segment(ctxt, &old_sel, &old_desc, NULL,
  1825. VCPU_SREG_CS);
  1826. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  1827. rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
  1828. X86_TRANSFER_CALL_JMP,
  1829. &new_desc);
  1830. if (rc != X86EMUL_CONTINUE)
  1831. return rc;
  1832. rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
  1833. if (rc != X86EMUL_CONTINUE) {
  1834. WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64);
  1835. /* assigning eip failed; restore the old cs */
  1836. ops->set_segment(ctxt, old_sel, &old_desc, 0, VCPU_SREG_CS);
  1837. return rc;
  1838. }
  1839. return rc;
  1840. }
  1841. static int em_jmp_abs(struct x86_emulate_ctxt *ctxt)
  1842. {
  1843. return assign_eip_near(ctxt, ctxt->src.val);
  1844. }
  1845. static int em_call_near_abs(struct x86_emulate_ctxt *ctxt)
  1846. {
  1847. int rc;
  1848. long int old_eip;
  1849. old_eip = ctxt->_eip;
  1850. rc = assign_eip_near(ctxt, ctxt->src.val);
  1851. if (rc != X86EMUL_CONTINUE)
  1852. return rc;
  1853. ctxt->src.val = old_eip;
  1854. rc = em_push(ctxt);
  1855. return rc;
  1856. }
  1857. static int em_cmpxchg8b(struct x86_emulate_ctxt *ctxt)
  1858. {
  1859. u64 old = ctxt->dst.orig_val64;
  1860. if (ctxt->dst.bytes == 16)
  1861. return X86EMUL_UNHANDLEABLE;
  1862. if (((u32) (old >> 0) != (u32) reg_read(ctxt, VCPU_REGS_RAX)) ||
  1863. ((u32) (old >> 32) != (u32) reg_read(ctxt, VCPU_REGS_RDX))) {
  1864. *reg_write(ctxt, VCPU_REGS_RAX) = (u32) (old >> 0);
  1865. *reg_write(ctxt, VCPU_REGS_RDX) = (u32) (old >> 32);
  1866. ctxt->eflags &= ~X86_EFLAGS_ZF;
  1867. } else {
  1868. ctxt->dst.val64 = ((u64)reg_read(ctxt, VCPU_REGS_RCX) << 32) |
  1869. (u32) reg_read(ctxt, VCPU_REGS_RBX);
  1870. ctxt->eflags |= X86_EFLAGS_ZF;
  1871. }
  1872. return X86EMUL_CONTINUE;
  1873. }
  1874. static int em_ret(struct x86_emulate_ctxt *ctxt)
  1875. {
  1876. int rc;
  1877. unsigned long eip;
  1878. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  1879. if (rc != X86EMUL_CONTINUE)
  1880. return rc;
  1881. return assign_eip_near(ctxt, eip);
  1882. }
  1883. static int em_ret_far(struct x86_emulate_ctxt *ctxt)
  1884. {
  1885. int rc;
  1886. unsigned long eip, cs;
  1887. u16 old_cs;
  1888. int cpl = ctxt->ops->cpl(ctxt);
  1889. struct desc_struct old_desc, new_desc;
  1890. const struct x86_emulate_ops *ops = ctxt->ops;
  1891. if (ctxt->mode == X86EMUL_MODE_PROT64)
  1892. ops->get_segment(ctxt, &old_cs, &old_desc, NULL,
  1893. VCPU_SREG_CS);
  1894. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  1895. if (rc != X86EMUL_CONTINUE)
  1896. return rc;
  1897. rc = emulate_pop(ctxt, &cs, ctxt->op_bytes);
  1898. if (rc != X86EMUL_CONTINUE)
  1899. return rc;
  1900. /* Outer-privilege level return is not implemented */
  1901. if (ctxt->mode >= X86EMUL_MODE_PROT16 && (cs & 3) > cpl)
  1902. return X86EMUL_UNHANDLEABLE;
  1903. rc = __load_segment_descriptor(ctxt, (u16)cs, VCPU_SREG_CS, cpl,
  1904. X86_TRANSFER_RET,
  1905. &new_desc);
  1906. if (rc != X86EMUL_CONTINUE)
  1907. return rc;
  1908. rc = assign_eip_far(ctxt, eip, &new_desc);
  1909. if (rc != X86EMUL_CONTINUE) {
  1910. WARN_ON(ctxt->mode != X86EMUL_MODE_PROT64);
  1911. ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
  1912. }
  1913. return rc;
  1914. }
  1915. static int em_ret_far_imm(struct x86_emulate_ctxt *ctxt)
  1916. {
  1917. int rc;
  1918. rc = em_ret_far(ctxt);
  1919. if (rc != X86EMUL_CONTINUE)
  1920. return rc;
  1921. rsp_increment(ctxt, ctxt->src.val);
  1922. return X86EMUL_CONTINUE;
  1923. }
  1924. static int em_cmpxchg(struct x86_emulate_ctxt *ctxt)
  1925. {
  1926. /* Save real source value, then compare EAX against destination. */
  1927. ctxt->dst.orig_val = ctxt->dst.val;
  1928. ctxt->dst.val = reg_read(ctxt, VCPU_REGS_RAX);
  1929. ctxt->src.orig_val = ctxt->src.val;
  1930. ctxt->src.val = ctxt->dst.orig_val;
  1931. fastop(ctxt, em_cmp);
  1932. if (ctxt->eflags & X86_EFLAGS_ZF) {
  1933. /* Success: write back to memory; no update of EAX */
  1934. ctxt->src.type = OP_NONE;
  1935. ctxt->dst.val = ctxt->src.orig_val;
  1936. } else {
  1937. /* Failure: write the value we saw to EAX. */
  1938. ctxt->src.type = OP_REG;
  1939. ctxt->src.addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  1940. ctxt->src.val = ctxt->dst.orig_val;
  1941. /* Create write-cycle to dest by writing the same value */
  1942. ctxt->dst.val = ctxt->dst.orig_val;
  1943. }
  1944. return X86EMUL_CONTINUE;
  1945. }
  1946. static int em_lseg(struct x86_emulate_ctxt *ctxt)
  1947. {
  1948. int seg = ctxt->src2.val;
  1949. unsigned short sel;
  1950. int rc;
  1951. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  1952. rc = load_segment_descriptor(ctxt, sel, seg);
  1953. if (rc != X86EMUL_CONTINUE)
  1954. return rc;
  1955. ctxt->dst.val = ctxt->src.val;
  1956. return rc;
  1957. }
  1958. static void
  1959. setup_syscalls_segments(struct x86_emulate_ctxt *ctxt,
  1960. struct desc_struct *cs, struct desc_struct *ss)
  1961. {
  1962. cs->l = 0; /* will be adjusted later */
  1963. set_desc_base(cs, 0); /* flat segment */
  1964. cs->g = 1; /* 4kb granularity */
  1965. set_desc_limit(cs, 0xfffff); /* 4GB limit */
  1966. cs->type = 0x0b; /* Read, Execute, Accessed */
  1967. cs->s = 1;
  1968. cs->dpl = 0; /* will be adjusted later */
  1969. cs->p = 1;
  1970. cs->d = 1;
  1971. cs->avl = 0;
  1972. set_desc_base(ss, 0); /* flat segment */
  1973. set_desc_limit(ss, 0xfffff); /* 4GB limit */
  1974. ss->g = 1; /* 4kb granularity */
  1975. ss->s = 1;
  1976. ss->type = 0x03; /* Read/Write, Accessed */
  1977. ss->d = 1; /* 32bit stack segment */
  1978. ss->dpl = 0;
  1979. ss->p = 1;
  1980. ss->l = 0;
  1981. ss->avl = 0;
  1982. }
  1983. static bool vendor_intel(struct x86_emulate_ctxt *ctxt)
  1984. {
  1985. u32 eax, ebx, ecx, edx;
  1986. eax = ecx = 0;
  1987. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  1988. return ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx
  1989. && ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx
  1990. && edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx;
  1991. }
  1992. static bool em_syscall_is_enabled(struct x86_emulate_ctxt *ctxt)
  1993. {
  1994. const struct x86_emulate_ops *ops = ctxt->ops;
  1995. u32 eax, ebx, ecx, edx;
  1996. /*
  1997. * syscall should always be enabled in longmode - so only become
  1998. * vendor specific (cpuid) if other modes are active...
  1999. */
  2000. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2001. return true;
  2002. eax = 0x00000000;
  2003. ecx = 0x00000000;
  2004. ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  2005. /*
  2006. * Intel ("GenuineIntel")
  2007. * remark: Intel CPUs only support "syscall" in 64bit
  2008. * longmode. Also an 64bit guest with a
  2009. * 32bit compat-app running will #UD !! While this
  2010. * behaviour can be fixed (by emulating) into AMD
  2011. * response - CPUs of AMD can't behave like Intel.
  2012. */
  2013. if (ebx == X86EMUL_CPUID_VENDOR_GenuineIntel_ebx &&
  2014. ecx == X86EMUL_CPUID_VENDOR_GenuineIntel_ecx &&
  2015. edx == X86EMUL_CPUID_VENDOR_GenuineIntel_edx)
  2016. return false;
  2017. /* AMD ("AuthenticAMD") */
  2018. if (ebx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ebx &&
  2019. ecx == X86EMUL_CPUID_VENDOR_AuthenticAMD_ecx &&
  2020. edx == X86EMUL_CPUID_VENDOR_AuthenticAMD_edx)
  2021. return true;
  2022. /* AMD ("AMDisbetter!") */
  2023. if (ebx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ebx &&
  2024. ecx == X86EMUL_CPUID_VENDOR_AMDisbetterI_ecx &&
  2025. edx == X86EMUL_CPUID_VENDOR_AMDisbetterI_edx)
  2026. return true;
  2027. /* default: (not Intel, not AMD), apply Intel's stricter rules... */
  2028. return false;
  2029. }
  2030. static int em_syscall(struct x86_emulate_ctxt *ctxt)
  2031. {
  2032. const struct x86_emulate_ops *ops = ctxt->ops;
  2033. struct desc_struct cs, ss;
  2034. u64 msr_data;
  2035. u16 cs_sel, ss_sel;
  2036. u64 efer = 0;
  2037. /* syscall is not available in real mode */
  2038. if (ctxt->mode == X86EMUL_MODE_REAL ||
  2039. ctxt->mode == X86EMUL_MODE_VM86)
  2040. return emulate_ud(ctxt);
  2041. if (!(em_syscall_is_enabled(ctxt)))
  2042. return emulate_ud(ctxt);
  2043. ops->get_msr(ctxt, MSR_EFER, &efer);
  2044. setup_syscalls_segments(ctxt, &cs, &ss);
  2045. if (!(efer & EFER_SCE))
  2046. return emulate_ud(ctxt);
  2047. ops->get_msr(ctxt, MSR_STAR, &msr_data);
  2048. msr_data >>= 32;
  2049. cs_sel = (u16)(msr_data & 0xfffc);
  2050. ss_sel = (u16)(msr_data + 8);
  2051. if (efer & EFER_LMA) {
  2052. cs.d = 0;
  2053. cs.l = 1;
  2054. }
  2055. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2056. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2057. *reg_write(ctxt, VCPU_REGS_RCX) = ctxt->_eip;
  2058. if (efer & EFER_LMA) {
  2059. #ifdef CONFIG_X86_64
  2060. *reg_write(ctxt, VCPU_REGS_R11) = ctxt->eflags;
  2061. ops->get_msr(ctxt,
  2062. ctxt->mode == X86EMUL_MODE_PROT64 ?
  2063. MSR_LSTAR : MSR_CSTAR, &msr_data);
  2064. ctxt->_eip = msr_data;
  2065. ops->get_msr(ctxt, MSR_SYSCALL_MASK, &msr_data);
  2066. ctxt->eflags &= ~msr_data;
  2067. ctxt->eflags |= X86_EFLAGS_FIXED_BIT;
  2068. #endif
  2069. } else {
  2070. /* legacy mode */
  2071. ops->get_msr(ctxt, MSR_STAR, &msr_data);
  2072. ctxt->_eip = (u32)msr_data;
  2073. ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
  2074. }
  2075. return X86EMUL_CONTINUE;
  2076. }
  2077. static int em_sysenter(struct x86_emulate_ctxt *ctxt)
  2078. {
  2079. const struct x86_emulate_ops *ops = ctxt->ops;
  2080. struct desc_struct cs, ss;
  2081. u64 msr_data;
  2082. u16 cs_sel, ss_sel;
  2083. u64 efer = 0;
  2084. ops->get_msr(ctxt, MSR_EFER, &efer);
  2085. /* inject #GP if in real mode */
  2086. if (ctxt->mode == X86EMUL_MODE_REAL)
  2087. return emulate_gp(ctxt, 0);
  2088. /*
  2089. * Not recognized on AMD in compat mode (but is recognized in legacy
  2090. * mode).
  2091. */
  2092. if ((ctxt->mode != X86EMUL_MODE_PROT64) && (efer & EFER_LMA)
  2093. && !vendor_intel(ctxt))
  2094. return emulate_ud(ctxt);
  2095. /* sysenter/sysexit have not been tested in 64bit mode. */
  2096. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2097. return X86EMUL_UNHANDLEABLE;
  2098. setup_syscalls_segments(ctxt, &cs, &ss);
  2099. ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
  2100. if ((msr_data & 0xfffc) == 0x0)
  2101. return emulate_gp(ctxt, 0);
  2102. ctxt->eflags &= ~(X86_EFLAGS_VM | X86_EFLAGS_IF);
  2103. cs_sel = (u16)msr_data & ~SEGMENT_RPL_MASK;
  2104. ss_sel = cs_sel + 8;
  2105. if (efer & EFER_LMA) {
  2106. cs.d = 0;
  2107. cs.l = 1;
  2108. }
  2109. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2110. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2111. ops->get_msr(ctxt, MSR_IA32_SYSENTER_EIP, &msr_data);
  2112. ctxt->_eip = (efer & EFER_LMA) ? msr_data : (u32)msr_data;
  2113. ops->get_msr(ctxt, MSR_IA32_SYSENTER_ESP, &msr_data);
  2114. *reg_write(ctxt, VCPU_REGS_RSP) = (efer & EFER_LMA) ? msr_data :
  2115. (u32)msr_data;
  2116. return X86EMUL_CONTINUE;
  2117. }
  2118. static int em_sysexit(struct x86_emulate_ctxt *ctxt)
  2119. {
  2120. const struct x86_emulate_ops *ops = ctxt->ops;
  2121. struct desc_struct cs, ss;
  2122. u64 msr_data, rcx, rdx;
  2123. int usermode;
  2124. u16 cs_sel = 0, ss_sel = 0;
  2125. /* inject #GP if in real mode or Virtual 8086 mode */
  2126. if (ctxt->mode == X86EMUL_MODE_REAL ||
  2127. ctxt->mode == X86EMUL_MODE_VM86)
  2128. return emulate_gp(ctxt, 0);
  2129. setup_syscalls_segments(ctxt, &cs, &ss);
  2130. if ((ctxt->rex_prefix & 0x8) != 0x0)
  2131. usermode = X86EMUL_MODE_PROT64;
  2132. else
  2133. usermode = X86EMUL_MODE_PROT32;
  2134. rcx = reg_read(ctxt, VCPU_REGS_RCX);
  2135. rdx = reg_read(ctxt, VCPU_REGS_RDX);
  2136. cs.dpl = 3;
  2137. ss.dpl = 3;
  2138. ops->get_msr(ctxt, MSR_IA32_SYSENTER_CS, &msr_data);
  2139. switch (usermode) {
  2140. case X86EMUL_MODE_PROT32:
  2141. cs_sel = (u16)(msr_data + 16);
  2142. if ((msr_data & 0xfffc) == 0x0)
  2143. return emulate_gp(ctxt, 0);
  2144. ss_sel = (u16)(msr_data + 24);
  2145. rcx = (u32)rcx;
  2146. rdx = (u32)rdx;
  2147. break;
  2148. case X86EMUL_MODE_PROT64:
  2149. cs_sel = (u16)(msr_data + 32);
  2150. if (msr_data == 0x0)
  2151. return emulate_gp(ctxt, 0);
  2152. ss_sel = cs_sel + 8;
  2153. cs.d = 0;
  2154. cs.l = 1;
  2155. if (is_noncanonical_address(rcx) ||
  2156. is_noncanonical_address(rdx))
  2157. return emulate_gp(ctxt, 0);
  2158. break;
  2159. }
  2160. cs_sel |= SEGMENT_RPL_MASK;
  2161. ss_sel |= SEGMENT_RPL_MASK;
  2162. ops->set_segment(ctxt, cs_sel, &cs, 0, VCPU_SREG_CS);
  2163. ops->set_segment(ctxt, ss_sel, &ss, 0, VCPU_SREG_SS);
  2164. ctxt->_eip = rdx;
  2165. *reg_write(ctxt, VCPU_REGS_RSP) = rcx;
  2166. return X86EMUL_CONTINUE;
  2167. }
  2168. static bool emulator_bad_iopl(struct x86_emulate_ctxt *ctxt)
  2169. {
  2170. int iopl;
  2171. if (ctxt->mode == X86EMUL_MODE_REAL)
  2172. return false;
  2173. if (ctxt->mode == X86EMUL_MODE_VM86)
  2174. return true;
  2175. iopl = (ctxt->eflags & X86_EFLAGS_IOPL) >> X86_EFLAGS_IOPL_BIT;
  2176. return ctxt->ops->cpl(ctxt) > iopl;
  2177. }
  2178. static bool emulator_io_port_access_allowed(struct x86_emulate_ctxt *ctxt,
  2179. u16 port, u16 len)
  2180. {
  2181. const struct x86_emulate_ops *ops = ctxt->ops;
  2182. struct desc_struct tr_seg;
  2183. u32 base3;
  2184. int r;
  2185. u16 tr, io_bitmap_ptr, perm, bit_idx = port & 0x7;
  2186. unsigned mask = (1 << len) - 1;
  2187. unsigned long base;
  2188. ops->get_segment(ctxt, &tr, &tr_seg, &base3, VCPU_SREG_TR);
  2189. if (!tr_seg.p)
  2190. return false;
  2191. if (desc_limit_scaled(&tr_seg) < 103)
  2192. return false;
  2193. base = get_desc_base(&tr_seg);
  2194. #ifdef CONFIG_X86_64
  2195. base |= ((u64)base3) << 32;
  2196. #endif
  2197. r = ops->read_std(ctxt, base + 102, &io_bitmap_ptr, 2, NULL);
  2198. if (r != X86EMUL_CONTINUE)
  2199. return false;
  2200. if (io_bitmap_ptr + port/8 > desc_limit_scaled(&tr_seg))
  2201. return false;
  2202. r = ops->read_std(ctxt, base + io_bitmap_ptr + port/8, &perm, 2, NULL);
  2203. if (r != X86EMUL_CONTINUE)
  2204. return false;
  2205. if ((perm >> bit_idx) & mask)
  2206. return false;
  2207. return true;
  2208. }
  2209. static bool emulator_io_permited(struct x86_emulate_ctxt *ctxt,
  2210. u16 port, u16 len)
  2211. {
  2212. if (ctxt->perm_ok)
  2213. return true;
  2214. if (emulator_bad_iopl(ctxt))
  2215. if (!emulator_io_port_access_allowed(ctxt, port, len))
  2216. return false;
  2217. ctxt->perm_ok = true;
  2218. return true;
  2219. }
  2220. static void save_state_to_tss16(struct x86_emulate_ctxt *ctxt,
  2221. struct tss_segment_16 *tss)
  2222. {
  2223. tss->ip = ctxt->_eip;
  2224. tss->flag = ctxt->eflags;
  2225. tss->ax = reg_read(ctxt, VCPU_REGS_RAX);
  2226. tss->cx = reg_read(ctxt, VCPU_REGS_RCX);
  2227. tss->dx = reg_read(ctxt, VCPU_REGS_RDX);
  2228. tss->bx = reg_read(ctxt, VCPU_REGS_RBX);
  2229. tss->sp = reg_read(ctxt, VCPU_REGS_RSP);
  2230. tss->bp = reg_read(ctxt, VCPU_REGS_RBP);
  2231. tss->si = reg_read(ctxt, VCPU_REGS_RSI);
  2232. tss->di = reg_read(ctxt, VCPU_REGS_RDI);
  2233. tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
  2234. tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2235. tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
  2236. tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
  2237. tss->ldt = get_segment_selector(ctxt, VCPU_SREG_LDTR);
  2238. }
  2239. static int load_state_from_tss16(struct x86_emulate_ctxt *ctxt,
  2240. struct tss_segment_16 *tss)
  2241. {
  2242. int ret;
  2243. u8 cpl;
  2244. ctxt->_eip = tss->ip;
  2245. ctxt->eflags = tss->flag | 2;
  2246. *reg_write(ctxt, VCPU_REGS_RAX) = tss->ax;
  2247. *reg_write(ctxt, VCPU_REGS_RCX) = tss->cx;
  2248. *reg_write(ctxt, VCPU_REGS_RDX) = tss->dx;
  2249. *reg_write(ctxt, VCPU_REGS_RBX) = tss->bx;
  2250. *reg_write(ctxt, VCPU_REGS_RSP) = tss->sp;
  2251. *reg_write(ctxt, VCPU_REGS_RBP) = tss->bp;
  2252. *reg_write(ctxt, VCPU_REGS_RSI) = tss->si;
  2253. *reg_write(ctxt, VCPU_REGS_RDI) = tss->di;
  2254. /*
  2255. * SDM says that segment selectors are loaded before segment
  2256. * descriptors
  2257. */
  2258. set_segment_selector(ctxt, tss->ldt, VCPU_SREG_LDTR);
  2259. set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
  2260. set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
  2261. set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
  2262. set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
  2263. cpl = tss->cs & 3;
  2264. /*
  2265. * Now load segment descriptors. If fault happens at this stage
  2266. * it is handled in a context of new task
  2267. */
  2268. ret = __load_segment_descriptor(ctxt, tss->ldt, VCPU_SREG_LDTR, cpl,
  2269. X86_TRANSFER_TASK_SWITCH, NULL);
  2270. if (ret != X86EMUL_CONTINUE)
  2271. return ret;
  2272. ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
  2273. X86_TRANSFER_TASK_SWITCH, NULL);
  2274. if (ret != X86EMUL_CONTINUE)
  2275. return ret;
  2276. ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
  2277. X86_TRANSFER_TASK_SWITCH, NULL);
  2278. if (ret != X86EMUL_CONTINUE)
  2279. return ret;
  2280. ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
  2281. X86_TRANSFER_TASK_SWITCH, NULL);
  2282. if (ret != X86EMUL_CONTINUE)
  2283. return ret;
  2284. ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
  2285. X86_TRANSFER_TASK_SWITCH, NULL);
  2286. if (ret != X86EMUL_CONTINUE)
  2287. return ret;
  2288. return X86EMUL_CONTINUE;
  2289. }
  2290. static int task_switch_16(struct x86_emulate_ctxt *ctxt,
  2291. u16 tss_selector, u16 old_tss_sel,
  2292. ulong old_tss_base, struct desc_struct *new_desc)
  2293. {
  2294. const struct x86_emulate_ops *ops = ctxt->ops;
  2295. struct tss_segment_16 tss_seg;
  2296. int ret;
  2297. u32 new_tss_base = get_desc_base(new_desc);
  2298. ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2299. &ctxt->exception);
  2300. if (ret != X86EMUL_CONTINUE)
  2301. return ret;
  2302. save_state_to_tss16(ctxt, &tss_seg);
  2303. ret = ops->write_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2304. &ctxt->exception);
  2305. if (ret != X86EMUL_CONTINUE)
  2306. return ret;
  2307. ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
  2308. &ctxt->exception);
  2309. if (ret != X86EMUL_CONTINUE)
  2310. return ret;
  2311. if (old_tss_sel != 0xffff) {
  2312. tss_seg.prev_task_link = old_tss_sel;
  2313. ret = ops->write_std(ctxt, new_tss_base,
  2314. &tss_seg.prev_task_link,
  2315. sizeof tss_seg.prev_task_link,
  2316. &ctxt->exception);
  2317. if (ret != X86EMUL_CONTINUE)
  2318. return ret;
  2319. }
  2320. return load_state_from_tss16(ctxt, &tss_seg);
  2321. }
  2322. static void save_state_to_tss32(struct x86_emulate_ctxt *ctxt,
  2323. struct tss_segment_32 *tss)
  2324. {
  2325. /* CR3 and ldt selector are not saved intentionally */
  2326. tss->eip = ctxt->_eip;
  2327. tss->eflags = ctxt->eflags;
  2328. tss->eax = reg_read(ctxt, VCPU_REGS_RAX);
  2329. tss->ecx = reg_read(ctxt, VCPU_REGS_RCX);
  2330. tss->edx = reg_read(ctxt, VCPU_REGS_RDX);
  2331. tss->ebx = reg_read(ctxt, VCPU_REGS_RBX);
  2332. tss->esp = reg_read(ctxt, VCPU_REGS_RSP);
  2333. tss->ebp = reg_read(ctxt, VCPU_REGS_RBP);
  2334. tss->esi = reg_read(ctxt, VCPU_REGS_RSI);
  2335. tss->edi = reg_read(ctxt, VCPU_REGS_RDI);
  2336. tss->es = get_segment_selector(ctxt, VCPU_SREG_ES);
  2337. tss->cs = get_segment_selector(ctxt, VCPU_SREG_CS);
  2338. tss->ss = get_segment_selector(ctxt, VCPU_SREG_SS);
  2339. tss->ds = get_segment_selector(ctxt, VCPU_SREG_DS);
  2340. tss->fs = get_segment_selector(ctxt, VCPU_SREG_FS);
  2341. tss->gs = get_segment_selector(ctxt, VCPU_SREG_GS);
  2342. }
  2343. static int load_state_from_tss32(struct x86_emulate_ctxt *ctxt,
  2344. struct tss_segment_32 *tss)
  2345. {
  2346. int ret;
  2347. u8 cpl;
  2348. if (ctxt->ops->set_cr(ctxt, 3, tss->cr3))
  2349. return emulate_gp(ctxt, 0);
  2350. ctxt->_eip = tss->eip;
  2351. ctxt->eflags = tss->eflags | 2;
  2352. /* General purpose registers */
  2353. *reg_write(ctxt, VCPU_REGS_RAX) = tss->eax;
  2354. *reg_write(ctxt, VCPU_REGS_RCX) = tss->ecx;
  2355. *reg_write(ctxt, VCPU_REGS_RDX) = tss->edx;
  2356. *reg_write(ctxt, VCPU_REGS_RBX) = tss->ebx;
  2357. *reg_write(ctxt, VCPU_REGS_RSP) = tss->esp;
  2358. *reg_write(ctxt, VCPU_REGS_RBP) = tss->ebp;
  2359. *reg_write(ctxt, VCPU_REGS_RSI) = tss->esi;
  2360. *reg_write(ctxt, VCPU_REGS_RDI) = tss->edi;
  2361. /*
  2362. * SDM says that segment selectors are loaded before segment
  2363. * descriptors. This is important because CPL checks will
  2364. * use CS.RPL.
  2365. */
  2366. set_segment_selector(ctxt, tss->ldt_selector, VCPU_SREG_LDTR);
  2367. set_segment_selector(ctxt, tss->es, VCPU_SREG_ES);
  2368. set_segment_selector(ctxt, tss->cs, VCPU_SREG_CS);
  2369. set_segment_selector(ctxt, tss->ss, VCPU_SREG_SS);
  2370. set_segment_selector(ctxt, tss->ds, VCPU_SREG_DS);
  2371. set_segment_selector(ctxt, tss->fs, VCPU_SREG_FS);
  2372. set_segment_selector(ctxt, tss->gs, VCPU_SREG_GS);
  2373. /*
  2374. * If we're switching between Protected Mode and VM86, we need to make
  2375. * sure to update the mode before loading the segment descriptors so
  2376. * that the selectors are interpreted correctly.
  2377. */
  2378. if (ctxt->eflags & X86_EFLAGS_VM) {
  2379. ctxt->mode = X86EMUL_MODE_VM86;
  2380. cpl = 3;
  2381. } else {
  2382. ctxt->mode = X86EMUL_MODE_PROT32;
  2383. cpl = tss->cs & 3;
  2384. }
  2385. /*
  2386. * Now load segment descriptors. If fault happenes at this stage
  2387. * it is handled in a context of new task
  2388. */
  2389. ret = __load_segment_descriptor(ctxt, tss->ldt_selector, VCPU_SREG_LDTR,
  2390. cpl, X86_TRANSFER_TASK_SWITCH, NULL);
  2391. if (ret != X86EMUL_CONTINUE)
  2392. return ret;
  2393. ret = __load_segment_descriptor(ctxt, tss->es, VCPU_SREG_ES, cpl,
  2394. X86_TRANSFER_TASK_SWITCH, NULL);
  2395. if (ret != X86EMUL_CONTINUE)
  2396. return ret;
  2397. ret = __load_segment_descriptor(ctxt, tss->cs, VCPU_SREG_CS, cpl,
  2398. X86_TRANSFER_TASK_SWITCH, NULL);
  2399. if (ret != X86EMUL_CONTINUE)
  2400. return ret;
  2401. ret = __load_segment_descriptor(ctxt, tss->ss, VCPU_SREG_SS, cpl,
  2402. X86_TRANSFER_TASK_SWITCH, NULL);
  2403. if (ret != X86EMUL_CONTINUE)
  2404. return ret;
  2405. ret = __load_segment_descriptor(ctxt, tss->ds, VCPU_SREG_DS, cpl,
  2406. X86_TRANSFER_TASK_SWITCH, NULL);
  2407. if (ret != X86EMUL_CONTINUE)
  2408. return ret;
  2409. ret = __load_segment_descriptor(ctxt, tss->fs, VCPU_SREG_FS, cpl,
  2410. X86_TRANSFER_TASK_SWITCH, NULL);
  2411. if (ret != X86EMUL_CONTINUE)
  2412. return ret;
  2413. ret = __load_segment_descriptor(ctxt, tss->gs, VCPU_SREG_GS, cpl,
  2414. X86_TRANSFER_TASK_SWITCH, NULL);
  2415. if (ret != X86EMUL_CONTINUE)
  2416. return ret;
  2417. return X86EMUL_CONTINUE;
  2418. }
  2419. static int task_switch_32(struct x86_emulate_ctxt *ctxt,
  2420. u16 tss_selector, u16 old_tss_sel,
  2421. ulong old_tss_base, struct desc_struct *new_desc)
  2422. {
  2423. const struct x86_emulate_ops *ops = ctxt->ops;
  2424. struct tss_segment_32 tss_seg;
  2425. int ret;
  2426. u32 new_tss_base = get_desc_base(new_desc);
  2427. u32 eip_offset = offsetof(struct tss_segment_32, eip);
  2428. u32 ldt_sel_offset = offsetof(struct tss_segment_32, ldt_selector);
  2429. ret = ops->read_std(ctxt, old_tss_base, &tss_seg, sizeof tss_seg,
  2430. &ctxt->exception);
  2431. if (ret != X86EMUL_CONTINUE)
  2432. return ret;
  2433. save_state_to_tss32(ctxt, &tss_seg);
  2434. /* Only GP registers and segment selectors are saved */
  2435. ret = ops->write_std(ctxt, old_tss_base + eip_offset, &tss_seg.eip,
  2436. ldt_sel_offset - eip_offset, &ctxt->exception);
  2437. if (ret != X86EMUL_CONTINUE)
  2438. return ret;
  2439. ret = ops->read_std(ctxt, new_tss_base, &tss_seg, sizeof tss_seg,
  2440. &ctxt->exception);
  2441. if (ret != X86EMUL_CONTINUE)
  2442. return ret;
  2443. if (old_tss_sel != 0xffff) {
  2444. tss_seg.prev_task_link = old_tss_sel;
  2445. ret = ops->write_std(ctxt, new_tss_base,
  2446. &tss_seg.prev_task_link,
  2447. sizeof tss_seg.prev_task_link,
  2448. &ctxt->exception);
  2449. if (ret != X86EMUL_CONTINUE)
  2450. return ret;
  2451. }
  2452. return load_state_from_tss32(ctxt, &tss_seg);
  2453. }
  2454. static int emulator_do_task_switch(struct x86_emulate_ctxt *ctxt,
  2455. u16 tss_selector, int idt_index, int reason,
  2456. bool has_error_code, u32 error_code)
  2457. {
  2458. const struct x86_emulate_ops *ops = ctxt->ops;
  2459. struct desc_struct curr_tss_desc, next_tss_desc;
  2460. int ret;
  2461. u16 old_tss_sel = get_segment_selector(ctxt, VCPU_SREG_TR);
  2462. ulong old_tss_base =
  2463. ops->get_cached_segment_base(ctxt, VCPU_SREG_TR);
  2464. u32 desc_limit;
  2465. ulong desc_addr;
  2466. /* FIXME: old_tss_base == ~0 ? */
  2467. ret = read_segment_descriptor(ctxt, tss_selector, &next_tss_desc, &desc_addr);
  2468. if (ret != X86EMUL_CONTINUE)
  2469. return ret;
  2470. ret = read_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc, &desc_addr);
  2471. if (ret != X86EMUL_CONTINUE)
  2472. return ret;
  2473. /* FIXME: check that next_tss_desc is tss */
  2474. /*
  2475. * Check privileges. The three cases are task switch caused by...
  2476. *
  2477. * 1. jmp/call/int to task gate: Check against DPL of the task gate
  2478. * 2. Exception/IRQ/iret: No check is performed
  2479. * 3. jmp/call to TSS/task-gate: No check is performed since the
  2480. * hardware checks it before exiting.
  2481. */
  2482. if (reason == TASK_SWITCH_GATE) {
  2483. if (idt_index != -1) {
  2484. /* Software interrupts */
  2485. struct desc_struct task_gate_desc;
  2486. int dpl;
  2487. ret = read_interrupt_descriptor(ctxt, idt_index,
  2488. &task_gate_desc);
  2489. if (ret != X86EMUL_CONTINUE)
  2490. return ret;
  2491. dpl = task_gate_desc.dpl;
  2492. if ((tss_selector & 3) > dpl || ops->cpl(ctxt) > dpl)
  2493. return emulate_gp(ctxt, (idt_index << 3) | 0x2);
  2494. }
  2495. }
  2496. desc_limit = desc_limit_scaled(&next_tss_desc);
  2497. if (!next_tss_desc.p ||
  2498. ((desc_limit < 0x67 && (next_tss_desc.type & 8)) ||
  2499. desc_limit < 0x2b)) {
  2500. return emulate_ts(ctxt, tss_selector & 0xfffc);
  2501. }
  2502. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2503. curr_tss_desc.type &= ~(1 << 1); /* clear busy flag */
  2504. write_segment_descriptor(ctxt, old_tss_sel, &curr_tss_desc);
  2505. }
  2506. if (reason == TASK_SWITCH_IRET)
  2507. ctxt->eflags = ctxt->eflags & ~X86_EFLAGS_NT;
  2508. /* set back link to prev task only if NT bit is set in eflags
  2509. note that old_tss_sel is not used after this point */
  2510. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  2511. old_tss_sel = 0xffff;
  2512. if (next_tss_desc.type & 8)
  2513. ret = task_switch_32(ctxt, tss_selector, old_tss_sel,
  2514. old_tss_base, &next_tss_desc);
  2515. else
  2516. ret = task_switch_16(ctxt, tss_selector, old_tss_sel,
  2517. old_tss_base, &next_tss_desc);
  2518. if (ret != X86EMUL_CONTINUE)
  2519. return ret;
  2520. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE)
  2521. ctxt->eflags = ctxt->eflags | X86_EFLAGS_NT;
  2522. if (reason != TASK_SWITCH_IRET) {
  2523. next_tss_desc.type |= (1 << 1); /* set busy flag */
  2524. write_segment_descriptor(ctxt, tss_selector, &next_tss_desc);
  2525. }
  2526. ops->set_cr(ctxt, 0, ops->get_cr(ctxt, 0) | X86_CR0_TS);
  2527. ops->set_segment(ctxt, tss_selector, &next_tss_desc, 0, VCPU_SREG_TR);
  2528. if (has_error_code) {
  2529. ctxt->op_bytes = ctxt->ad_bytes = (next_tss_desc.type & 8) ? 4 : 2;
  2530. ctxt->lock_prefix = 0;
  2531. ctxt->src.val = (unsigned long) error_code;
  2532. ret = em_push(ctxt);
  2533. }
  2534. return ret;
  2535. }
  2536. int emulator_task_switch(struct x86_emulate_ctxt *ctxt,
  2537. u16 tss_selector, int idt_index, int reason,
  2538. bool has_error_code, u32 error_code)
  2539. {
  2540. int rc;
  2541. invalidate_registers(ctxt);
  2542. ctxt->_eip = ctxt->eip;
  2543. ctxt->dst.type = OP_NONE;
  2544. rc = emulator_do_task_switch(ctxt, tss_selector, idt_index, reason,
  2545. has_error_code, error_code);
  2546. if (rc == X86EMUL_CONTINUE) {
  2547. ctxt->eip = ctxt->_eip;
  2548. writeback_registers(ctxt);
  2549. }
  2550. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  2551. }
  2552. static void string_addr_inc(struct x86_emulate_ctxt *ctxt, int reg,
  2553. struct operand *op)
  2554. {
  2555. int df = (ctxt->eflags & X86_EFLAGS_DF) ? -op->count : op->count;
  2556. register_address_increment(ctxt, reg, df * op->bytes);
  2557. op->addr.mem.ea = register_address(ctxt, reg);
  2558. }
  2559. static int em_das(struct x86_emulate_ctxt *ctxt)
  2560. {
  2561. u8 al, old_al;
  2562. bool af, cf, old_cf;
  2563. cf = ctxt->eflags & X86_EFLAGS_CF;
  2564. al = ctxt->dst.val;
  2565. old_al = al;
  2566. old_cf = cf;
  2567. cf = false;
  2568. af = ctxt->eflags & X86_EFLAGS_AF;
  2569. if ((al & 0x0f) > 9 || af) {
  2570. al -= 6;
  2571. cf = old_cf | (al >= 250);
  2572. af = true;
  2573. } else {
  2574. af = false;
  2575. }
  2576. if (old_al > 0x99 || old_cf) {
  2577. al -= 0x60;
  2578. cf = true;
  2579. }
  2580. ctxt->dst.val = al;
  2581. /* Set PF, ZF, SF */
  2582. ctxt->src.type = OP_IMM;
  2583. ctxt->src.val = 0;
  2584. ctxt->src.bytes = 1;
  2585. fastop(ctxt, em_or);
  2586. ctxt->eflags &= ~(X86_EFLAGS_AF | X86_EFLAGS_CF);
  2587. if (cf)
  2588. ctxt->eflags |= X86_EFLAGS_CF;
  2589. if (af)
  2590. ctxt->eflags |= X86_EFLAGS_AF;
  2591. return X86EMUL_CONTINUE;
  2592. }
  2593. static int em_aam(struct x86_emulate_ctxt *ctxt)
  2594. {
  2595. u8 al, ah;
  2596. if (ctxt->src.val == 0)
  2597. return emulate_de(ctxt);
  2598. al = ctxt->dst.val & 0xff;
  2599. ah = al / ctxt->src.val;
  2600. al %= ctxt->src.val;
  2601. ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al | (ah << 8);
  2602. /* Set PF, ZF, SF */
  2603. ctxt->src.type = OP_IMM;
  2604. ctxt->src.val = 0;
  2605. ctxt->src.bytes = 1;
  2606. fastop(ctxt, em_or);
  2607. return X86EMUL_CONTINUE;
  2608. }
  2609. static int em_aad(struct x86_emulate_ctxt *ctxt)
  2610. {
  2611. u8 al = ctxt->dst.val & 0xff;
  2612. u8 ah = (ctxt->dst.val >> 8) & 0xff;
  2613. al = (al + (ah * ctxt->src.val)) & 0xff;
  2614. ctxt->dst.val = (ctxt->dst.val & 0xffff0000) | al;
  2615. /* Set PF, ZF, SF */
  2616. ctxt->src.type = OP_IMM;
  2617. ctxt->src.val = 0;
  2618. ctxt->src.bytes = 1;
  2619. fastop(ctxt, em_or);
  2620. return X86EMUL_CONTINUE;
  2621. }
  2622. static int em_call(struct x86_emulate_ctxt *ctxt)
  2623. {
  2624. int rc;
  2625. long rel = ctxt->src.val;
  2626. ctxt->src.val = (unsigned long)ctxt->_eip;
  2627. rc = jmp_rel(ctxt, rel);
  2628. if (rc != X86EMUL_CONTINUE)
  2629. return rc;
  2630. return em_push(ctxt);
  2631. }
  2632. static int em_call_far(struct x86_emulate_ctxt *ctxt)
  2633. {
  2634. u16 sel, old_cs;
  2635. ulong old_eip;
  2636. int rc;
  2637. struct desc_struct old_desc, new_desc;
  2638. const struct x86_emulate_ops *ops = ctxt->ops;
  2639. int cpl = ctxt->ops->cpl(ctxt);
  2640. enum x86emul_mode prev_mode = ctxt->mode;
  2641. old_eip = ctxt->_eip;
  2642. ops->get_segment(ctxt, &old_cs, &old_desc, NULL, VCPU_SREG_CS);
  2643. memcpy(&sel, ctxt->src.valptr + ctxt->op_bytes, 2);
  2644. rc = __load_segment_descriptor(ctxt, sel, VCPU_SREG_CS, cpl,
  2645. X86_TRANSFER_CALL_JMP, &new_desc);
  2646. if (rc != X86EMUL_CONTINUE)
  2647. return rc;
  2648. rc = assign_eip_far(ctxt, ctxt->src.val, &new_desc);
  2649. if (rc != X86EMUL_CONTINUE)
  2650. goto fail;
  2651. ctxt->src.val = old_cs;
  2652. rc = em_push(ctxt);
  2653. if (rc != X86EMUL_CONTINUE)
  2654. goto fail;
  2655. ctxt->src.val = old_eip;
  2656. rc = em_push(ctxt);
  2657. /* If we failed, we tainted the memory, but the very least we should
  2658. restore cs */
  2659. if (rc != X86EMUL_CONTINUE) {
  2660. pr_warn_once("faulting far call emulation tainted memory\n");
  2661. goto fail;
  2662. }
  2663. return rc;
  2664. fail:
  2665. ops->set_segment(ctxt, old_cs, &old_desc, 0, VCPU_SREG_CS);
  2666. ctxt->mode = prev_mode;
  2667. return rc;
  2668. }
  2669. static int em_ret_near_imm(struct x86_emulate_ctxt *ctxt)
  2670. {
  2671. int rc;
  2672. unsigned long eip;
  2673. rc = emulate_pop(ctxt, &eip, ctxt->op_bytes);
  2674. if (rc != X86EMUL_CONTINUE)
  2675. return rc;
  2676. rc = assign_eip_near(ctxt, eip);
  2677. if (rc != X86EMUL_CONTINUE)
  2678. return rc;
  2679. rsp_increment(ctxt, ctxt->src.val);
  2680. return X86EMUL_CONTINUE;
  2681. }
  2682. static int em_xchg(struct x86_emulate_ctxt *ctxt)
  2683. {
  2684. /* Write back the register source. */
  2685. ctxt->src.val = ctxt->dst.val;
  2686. write_register_operand(&ctxt->src);
  2687. /* Write back the memory destination with implicit LOCK prefix. */
  2688. ctxt->dst.val = ctxt->src.orig_val;
  2689. ctxt->lock_prefix = 1;
  2690. return X86EMUL_CONTINUE;
  2691. }
  2692. static int em_imul_3op(struct x86_emulate_ctxt *ctxt)
  2693. {
  2694. ctxt->dst.val = ctxt->src2.val;
  2695. return fastop(ctxt, em_imul);
  2696. }
  2697. static int em_cwd(struct x86_emulate_ctxt *ctxt)
  2698. {
  2699. ctxt->dst.type = OP_REG;
  2700. ctxt->dst.bytes = ctxt->src.bytes;
  2701. ctxt->dst.addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  2702. ctxt->dst.val = ~((ctxt->src.val >> (ctxt->src.bytes * 8 - 1)) - 1);
  2703. return X86EMUL_CONTINUE;
  2704. }
  2705. static int em_rdtsc(struct x86_emulate_ctxt *ctxt)
  2706. {
  2707. u64 tsc = 0;
  2708. ctxt->ops->get_msr(ctxt, MSR_IA32_TSC, &tsc);
  2709. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)tsc;
  2710. *reg_write(ctxt, VCPU_REGS_RDX) = tsc >> 32;
  2711. return X86EMUL_CONTINUE;
  2712. }
  2713. static int em_rdpmc(struct x86_emulate_ctxt *ctxt)
  2714. {
  2715. u64 pmc;
  2716. if (ctxt->ops->read_pmc(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &pmc))
  2717. return emulate_gp(ctxt, 0);
  2718. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)pmc;
  2719. *reg_write(ctxt, VCPU_REGS_RDX) = pmc >> 32;
  2720. return X86EMUL_CONTINUE;
  2721. }
  2722. static int em_mov(struct x86_emulate_ctxt *ctxt)
  2723. {
  2724. memcpy(ctxt->dst.valptr, ctxt->src.valptr, sizeof(ctxt->src.valptr));
  2725. return X86EMUL_CONTINUE;
  2726. }
  2727. #define FFL(x) bit(X86_FEATURE_##x)
  2728. static int em_movbe(struct x86_emulate_ctxt *ctxt)
  2729. {
  2730. u32 ebx, ecx, edx, eax = 1;
  2731. u16 tmp;
  2732. /*
  2733. * Check MOVBE is set in the guest-visible CPUID leaf.
  2734. */
  2735. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  2736. if (!(ecx & FFL(MOVBE)))
  2737. return emulate_ud(ctxt);
  2738. switch (ctxt->op_bytes) {
  2739. case 2:
  2740. /*
  2741. * From MOVBE definition: "...When the operand size is 16 bits,
  2742. * the upper word of the destination register remains unchanged
  2743. * ..."
  2744. *
  2745. * Both casting ->valptr and ->val to u16 breaks strict aliasing
  2746. * rules so we have to do the operation almost per hand.
  2747. */
  2748. tmp = (u16)ctxt->src.val;
  2749. ctxt->dst.val &= ~0xffffUL;
  2750. ctxt->dst.val |= (unsigned long)swab16(tmp);
  2751. break;
  2752. case 4:
  2753. ctxt->dst.val = swab32((u32)ctxt->src.val);
  2754. break;
  2755. case 8:
  2756. ctxt->dst.val = swab64(ctxt->src.val);
  2757. break;
  2758. default:
  2759. BUG();
  2760. }
  2761. return X86EMUL_CONTINUE;
  2762. }
  2763. static int em_cr_write(struct x86_emulate_ctxt *ctxt)
  2764. {
  2765. if (ctxt->ops->set_cr(ctxt, ctxt->modrm_reg, ctxt->src.val))
  2766. return emulate_gp(ctxt, 0);
  2767. /* Disable writeback. */
  2768. ctxt->dst.type = OP_NONE;
  2769. return X86EMUL_CONTINUE;
  2770. }
  2771. static int em_dr_write(struct x86_emulate_ctxt *ctxt)
  2772. {
  2773. unsigned long val;
  2774. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2775. val = ctxt->src.val & ~0ULL;
  2776. else
  2777. val = ctxt->src.val & ~0U;
  2778. /* #UD condition is already handled. */
  2779. if (ctxt->ops->set_dr(ctxt, ctxt->modrm_reg, val) < 0)
  2780. return emulate_gp(ctxt, 0);
  2781. /* Disable writeback. */
  2782. ctxt->dst.type = OP_NONE;
  2783. return X86EMUL_CONTINUE;
  2784. }
  2785. static int em_wrmsr(struct x86_emulate_ctxt *ctxt)
  2786. {
  2787. u64 msr_data;
  2788. msr_data = (u32)reg_read(ctxt, VCPU_REGS_RAX)
  2789. | ((u64)reg_read(ctxt, VCPU_REGS_RDX) << 32);
  2790. if (ctxt->ops->set_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), msr_data))
  2791. return emulate_gp(ctxt, 0);
  2792. return X86EMUL_CONTINUE;
  2793. }
  2794. static int em_rdmsr(struct x86_emulate_ctxt *ctxt)
  2795. {
  2796. u64 msr_data;
  2797. if (ctxt->ops->get_msr(ctxt, reg_read(ctxt, VCPU_REGS_RCX), &msr_data))
  2798. return emulate_gp(ctxt, 0);
  2799. *reg_write(ctxt, VCPU_REGS_RAX) = (u32)msr_data;
  2800. *reg_write(ctxt, VCPU_REGS_RDX) = msr_data >> 32;
  2801. return X86EMUL_CONTINUE;
  2802. }
  2803. static int em_mov_rm_sreg(struct x86_emulate_ctxt *ctxt)
  2804. {
  2805. if (ctxt->modrm_reg > VCPU_SREG_GS)
  2806. return emulate_ud(ctxt);
  2807. ctxt->dst.val = get_segment_selector(ctxt, ctxt->modrm_reg);
  2808. if (ctxt->dst.bytes == 4 && ctxt->dst.type == OP_MEM)
  2809. ctxt->dst.bytes = 2;
  2810. return X86EMUL_CONTINUE;
  2811. }
  2812. static int em_mov_sreg_rm(struct x86_emulate_ctxt *ctxt)
  2813. {
  2814. u16 sel = ctxt->src.val;
  2815. if (ctxt->modrm_reg == VCPU_SREG_CS || ctxt->modrm_reg > VCPU_SREG_GS)
  2816. return emulate_ud(ctxt);
  2817. if (ctxt->modrm_reg == VCPU_SREG_SS)
  2818. ctxt->interruptibility = KVM_X86_SHADOW_INT_MOV_SS;
  2819. /* Disable writeback. */
  2820. ctxt->dst.type = OP_NONE;
  2821. return load_segment_descriptor(ctxt, sel, ctxt->modrm_reg);
  2822. }
  2823. static int em_lldt(struct x86_emulate_ctxt *ctxt)
  2824. {
  2825. u16 sel = ctxt->src.val;
  2826. /* Disable writeback. */
  2827. ctxt->dst.type = OP_NONE;
  2828. return load_segment_descriptor(ctxt, sel, VCPU_SREG_LDTR);
  2829. }
  2830. static int em_ltr(struct x86_emulate_ctxt *ctxt)
  2831. {
  2832. u16 sel = ctxt->src.val;
  2833. /* Disable writeback. */
  2834. ctxt->dst.type = OP_NONE;
  2835. return load_segment_descriptor(ctxt, sel, VCPU_SREG_TR);
  2836. }
  2837. static int em_invlpg(struct x86_emulate_ctxt *ctxt)
  2838. {
  2839. int rc;
  2840. ulong linear;
  2841. rc = linearize(ctxt, ctxt->src.addr.mem, 1, false, &linear);
  2842. if (rc == X86EMUL_CONTINUE)
  2843. ctxt->ops->invlpg(ctxt, linear);
  2844. /* Disable writeback. */
  2845. ctxt->dst.type = OP_NONE;
  2846. return X86EMUL_CONTINUE;
  2847. }
  2848. static int em_clts(struct x86_emulate_ctxt *ctxt)
  2849. {
  2850. ulong cr0;
  2851. cr0 = ctxt->ops->get_cr(ctxt, 0);
  2852. cr0 &= ~X86_CR0_TS;
  2853. ctxt->ops->set_cr(ctxt, 0, cr0);
  2854. return X86EMUL_CONTINUE;
  2855. }
  2856. static int em_hypercall(struct x86_emulate_ctxt *ctxt)
  2857. {
  2858. int rc = ctxt->ops->fix_hypercall(ctxt);
  2859. if (rc != X86EMUL_CONTINUE)
  2860. return rc;
  2861. /* Let the processor re-execute the fixed hypercall */
  2862. ctxt->_eip = ctxt->eip;
  2863. /* Disable writeback. */
  2864. ctxt->dst.type = OP_NONE;
  2865. return X86EMUL_CONTINUE;
  2866. }
  2867. static int emulate_store_desc_ptr(struct x86_emulate_ctxt *ctxt,
  2868. void (*get)(struct x86_emulate_ctxt *ctxt,
  2869. struct desc_ptr *ptr))
  2870. {
  2871. struct desc_ptr desc_ptr;
  2872. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2873. ctxt->op_bytes = 8;
  2874. get(ctxt, &desc_ptr);
  2875. if (ctxt->op_bytes == 2) {
  2876. ctxt->op_bytes = 4;
  2877. desc_ptr.address &= 0x00ffffff;
  2878. }
  2879. /* Disable writeback. */
  2880. ctxt->dst.type = OP_NONE;
  2881. return segmented_write(ctxt, ctxt->dst.addr.mem,
  2882. &desc_ptr, 2 + ctxt->op_bytes);
  2883. }
  2884. static int em_sgdt(struct x86_emulate_ctxt *ctxt)
  2885. {
  2886. return emulate_store_desc_ptr(ctxt, ctxt->ops->get_gdt);
  2887. }
  2888. static int em_sidt(struct x86_emulate_ctxt *ctxt)
  2889. {
  2890. return emulate_store_desc_ptr(ctxt, ctxt->ops->get_idt);
  2891. }
  2892. static int em_lgdt_lidt(struct x86_emulate_ctxt *ctxt, bool lgdt)
  2893. {
  2894. struct desc_ptr desc_ptr;
  2895. int rc;
  2896. if (ctxt->mode == X86EMUL_MODE_PROT64)
  2897. ctxt->op_bytes = 8;
  2898. rc = read_descriptor(ctxt, ctxt->src.addr.mem,
  2899. &desc_ptr.size, &desc_ptr.address,
  2900. ctxt->op_bytes);
  2901. if (rc != X86EMUL_CONTINUE)
  2902. return rc;
  2903. if (ctxt->mode == X86EMUL_MODE_PROT64 &&
  2904. is_noncanonical_address(desc_ptr.address))
  2905. return emulate_gp(ctxt, 0);
  2906. if (lgdt)
  2907. ctxt->ops->set_gdt(ctxt, &desc_ptr);
  2908. else
  2909. ctxt->ops->set_idt(ctxt, &desc_ptr);
  2910. /* Disable writeback. */
  2911. ctxt->dst.type = OP_NONE;
  2912. return X86EMUL_CONTINUE;
  2913. }
  2914. static int em_lgdt(struct x86_emulate_ctxt *ctxt)
  2915. {
  2916. return em_lgdt_lidt(ctxt, true);
  2917. }
  2918. static int em_lidt(struct x86_emulate_ctxt *ctxt)
  2919. {
  2920. return em_lgdt_lidt(ctxt, false);
  2921. }
  2922. static int em_smsw(struct x86_emulate_ctxt *ctxt)
  2923. {
  2924. if (ctxt->dst.type == OP_MEM)
  2925. ctxt->dst.bytes = 2;
  2926. ctxt->dst.val = ctxt->ops->get_cr(ctxt, 0);
  2927. return X86EMUL_CONTINUE;
  2928. }
  2929. static int em_lmsw(struct x86_emulate_ctxt *ctxt)
  2930. {
  2931. ctxt->ops->set_cr(ctxt, 0, (ctxt->ops->get_cr(ctxt, 0) & ~0x0eul)
  2932. | (ctxt->src.val & 0x0f));
  2933. ctxt->dst.type = OP_NONE;
  2934. return X86EMUL_CONTINUE;
  2935. }
  2936. static int em_loop(struct x86_emulate_ctxt *ctxt)
  2937. {
  2938. int rc = X86EMUL_CONTINUE;
  2939. register_address_increment(ctxt, VCPU_REGS_RCX, -1);
  2940. if ((address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) != 0) &&
  2941. (ctxt->b == 0xe2 || test_cc(ctxt->b ^ 0x5, ctxt->eflags)))
  2942. rc = jmp_rel(ctxt, ctxt->src.val);
  2943. return rc;
  2944. }
  2945. static int em_jcxz(struct x86_emulate_ctxt *ctxt)
  2946. {
  2947. int rc = X86EMUL_CONTINUE;
  2948. if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0)
  2949. rc = jmp_rel(ctxt, ctxt->src.val);
  2950. return rc;
  2951. }
  2952. static int em_in(struct x86_emulate_ctxt *ctxt)
  2953. {
  2954. if (!pio_in_emulated(ctxt, ctxt->dst.bytes, ctxt->src.val,
  2955. &ctxt->dst.val))
  2956. return X86EMUL_IO_NEEDED;
  2957. return X86EMUL_CONTINUE;
  2958. }
  2959. static int em_out(struct x86_emulate_ctxt *ctxt)
  2960. {
  2961. ctxt->ops->pio_out_emulated(ctxt, ctxt->src.bytes, ctxt->dst.val,
  2962. &ctxt->src.val, 1);
  2963. /* Disable writeback. */
  2964. ctxt->dst.type = OP_NONE;
  2965. return X86EMUL_CONTINUE;
  2966. }
  2967. static int em_cli(struct x86_emulate_ctxt *ctxt)
  2968. {
  2969. if (emulator_bad_iopl(ctxt))
  2970. return emulate_gp(ctxt, 0);
  2971. ctxt->eflags &= ~X86_EFLAGS_IF;
  2972. return X86EMUL_CONTINUE;
  2973. }
  2974. static int em_sti(struct x86_emulate_ctxt *ctxt)
  2975. {
  2976. if (emulator_bad_iopl(ctxt))
  2977. return emulate_gp(ctxt, 0);
  2978. ctxt->interruptibility = KVM_X86_SHADOW_INT_STI;
  2979. ctxt->eflags |= X86_EFLAGS_IF;
  2980. return X86EMUL_CONTINUE;
  2981. }
  2982. static int em_cpuid(struct x86_emulate_ctxt *ctxt)
  2983. {
  2984. u32 eax, ebx, ecx, edx;
  2985. eax = reg_read(ctxt, VCPU_REGS_RAX);
  2986. ecx = reg_read(ctxt, VCPU_REGS_RCX);
  2987. ctxt->ops->get_cpuid(ctxt, &eax, &ebx, &ecx, &edx);
  2988. *reg_write(ctxt, VCPU_REGS_RAX) = eax;
  2989. *reg_write(ctxt, VCPU_REGS_RBX) = ebx;
  2990. *reg_write(ctxt, VCPU_REGS_RCX) = ecx;
  2991. *reg_write(ctxt, VCPU_REGS_RDX) = edx;
  2992. return X86EMUL_CONTINUE;
  2993. }
  2994. static int em_sahf(struct x86_emulate_ctxt *ctxt)
  2995. {
  2996. u32 flags;
  2997. flags = X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  2998. X86_EFLAGS_SF;
  2999. flags &= *reg_rmw(ctxt, VCPU_REGS_RAX) >> 8;
  3000. ctxt->eflags &= ~0xffUL;
  3001. ctxt->eflags |= flags | X86_EFLAGS_FIXED;
  3002. return X86EMUL_CONTINUE;
  3003. }
  3004. static int em_lahf(struct x86_emulate_ctxt *ctxt)
  3005. {
  3006. *reg_rmw(ctxt, VCPU_REGS_RAX) &= ~0xff00UL;
  3007. *reg_rmw(ctxt, VCPU_REGS_RAX) |= (ctxt->eflags & 0xff) << 8;
  3008. return X86EMUL_CONTINUE;
  3009. }
  3010. static int em_bswap(struct x86_emulate_ctxt *ctxt)
  3011. {
  3012. switch (ctxt->op_bytes) {
  3013. #ifdef CONFIG_X86_64
  3014. case 8:
  3015. asm("bswap %0" : "+r"(ctxt->dst.val));
  3016. break;
  3017. #endif
  3018. default:
  3019. asm("bswap %0" : "+r"(*(u32 *)&ctxt->dst.val));
  3020. break;
  3021. }
  3022. return X86EMUL_CONTINUE;
  3023. }
  3024. static int em_clflush(struct x86_emulate_ctxt *ctxt)
  3025. {
  3026. /* emulating clflush regardless of cpuid */
  3027. return X86EMUL_CONTINUE;
  3028. }
  3029. static int em_movsxd(struct x86_emulate_ctxt *ctxt)
  3030. {
  3031. ctxt->dst.val = (s32) ctxt->src.val;
  3032. return X86EMUL_CONTINUE;
  3033. }
  3034. static bool valid_cr(int nr)
  3035. {
  3036. switch (nr) {
  3037. case 0:
  3038. case 2 ... 4:
  3039. case 8:
  3040. return true;
  3041. default:
  3042. return false;
  3043. }
  3044. }
  3045. static int check_cr_read(struct x86_emulate_ctxt *ctxt)
  3046. {
  3047. if (!valid_cr(ctxt->modrm_reg))
  3048. return emulate_ud(ctxt);
  3049. return X86EMUL_CONTINUE;
  3050. }
  3051. static int check_cr_write(struct x86_emulate_ctxt *ctxt)
  3052. {
  3053. u64 new_val = ctxt->src.val64;
  3054. int cr = ctxt->modrm_reg;
  3055. u64 efer = 0;
  3056. static u64 cr_reserved_bits[] = {
  3057. 0xffffffff00000000ULL,
  3058. 0, 0, 0, /* CR3 checked later */
  3059. CR4_RESERVED_BITS,
  3060. 0, 0, 0,
  3061. CR8_RESERVED_BITS,
  3062. };
  3063. if (!valid_cr(cr))
  3064. return emulate_ud(ctxt);
  3065. if (new_val & cr_reserved_bits[cr])
  3066. return emulate_gp(ctxt, 0);
  3067. switch (cr) {
  3068. case 0: {
  3069. u64 cr4;
  3070. if (((new_val & X86_CR0_PG) && !(new_val & X86_CR0_PE)) ||
  3071. ((new_val & X86_CR0_NW) && !(new_val & X86_CR0_CD)))
  3072. return emulate_gp(ctxt, 0);
  3073. cr4 = ctxt->ops->get_cr(ctxt, 4);
  3074. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3075. if ((new_val & X86_CR0_PG) && (efer & EFER_LME) &&
  3076. !(cr4 & X86_CR4_PAE))
  3077. return emulate_gp(ctxt, 0);
  3078. break;
  3079. }
  3080. case 3: {
  3081. u64 rsvd = 0;
  3082. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3083. if (efer & EFER_LMA)
  3084. rsvd = CR3_L_MODE_RESERVED_BITS & ~CR3_PCID_INVD;
  3085. if (new_val & rsvd)
  3086. return emulate_gp(ctxt, 0);
  3087. break;
  3088. }
  3089. case 4: {
  3090. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3091. if ((efer & EFER_LMA) && !(new_val & X86_CR4_PAE))
  3092. return emulate_gp(ctxt, 0);
  3093. break;
  3094. }
  3095. }
  3096. return X86EMUL_CONTINUE;
  3097. }
  3098. static int check_dr7_gd(struct x86_emulate_ctxt *ctxt)
  3099. {
  3100. unsigned long dr7;
  3101. ctxt->ops->get_dr(ctxt, 7, &dr7);
  3102. /* Check if DR7.Global_Enable is set */
  3103. return dr7 & (1 << 13);
  3104. }
  3105. static int check_dr_read(struct x86_emulate_ctxt *ctxt)
  3106. {
  3107. int dr = ctxt->modrm_reg;
  3108. u64 cr4;
  3109. if (dr > 7)
  3110. return emulate_ud(ctxt);
  3111. cr4 = ctxt->ops->get_cr(ctxt, 4);
  3112. if ((cr4 & X86_CR4_DE) && (dr == 4 || dr == 5))
  3113. return emulate_ud(ctxt);
  3114. if (check_dr7_gd(ctxt)) {
  3115. ulong dr6;
  3116. ctxt->ops->get_dr(ctxt, 6, &dr6);
  3117. dr6 &= ~15;
  3118. dr6 |= DR6_BD | DR6_RTM;
  3119. ctxt->ops->set_dr(ctxt, 6, dr6);
  3120. return emulate_db(ctxt);
  3121. }
  3122. return X86EMUL_CONTINUE;
  3123. }
  3124. static int check_dr_write(struct x86_emulate_ctxt *ctxt)
  3125. {
  3126. u64 new_val = ctxt->src.val64;
  3127. int dr = ctxt->modrm_reg;
  3128. if ((dr == 6 || dr == 7) && (new_val & 0xffffffff00000000ULL))
  3129. return emulate_gp(ctxt, 0);
  3130. return check_dr_read(ctxt);
  3131. }
  3132. static int check_svme(struct x86_emulate_ctxt *ctxt)
  3133. {
  3134. u64 efer;
  3135. ctxt->ops->get_msr(ctxt, MSR_EFER, &efer);
  3136. if (!(efer & EFER_SVME))
  3137. return emulate_ud(ctxt);
  3138. return X86EMUL_CONTINUE;
  3139. }
  3140. static int check_svme_pa(struct x86_emulate_ctxt *ctxt)
  3141. {
  3142. u64 rax = reg_read(ctxt, VCPU_REGS_RAX);
  3143. /* Valid physical address? */
  3144. if (rax & 0xffff000000000000ULL)
  3145. return emulate_gp(ctxt, 0);
  3146. return check_svme(ctxt);
  3147. }
  3148. static int check_rdtsc(struct x86_emulate_ctxt *ctxt)
  3149. {
  3150. u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
  3151. if (cr4 & X86_CR4_TSD && ctxt->ops->cpl(ctxt))
  3152. return emulate_ud(ctxt);
  3153. return X86EMUL_CONTINUE;
  3154. }
  3155. static int check_rdpmc(struct x86_emulate_ctxt *ctxt)
  3156. {
  3157. u64 cr4 = ctxt->ops->get_cr(ctxt, 4);
  3158. u64 rcx = reg_read(ctxt, VCPU_REGS_RCX);
  3159. if ((!(cr4 & X86_CR4_PCE) && ctxt->ops->cpl(ctxt)) ||
  3160. ctxt->ops->check_pmc(ctxt, rcx))
  3161. return emulate_gp(ctxt, 0);
  3162. return X86EMUL_CONTINUE;
  3163. }
  3164. static int check_perm_in(struct x86_emulate_ctxt *ctxt)
  3165. {
  3166. ctxt->dst.bytes = min(ctxt->dst.bytes, 4u);
  3167. if (!emulator_io_permited(ctxt, ctxt->src.val, ctxt->dst.bytes))
  3168. return emulate_gp(ctxt, 0);
  3169. return X86EMUL_CONTINUE;
  3170. }
  3171. static int check_perm_out(struct x86_emulate_ctxt *ctxt)
  3172. {
  3173. ctxt->src.bytes = min(ctxt->src.bytes, 4u);
  3174. if (!emulator_io_permited(ctxt, ctxt->dst.val, ctxt->src.bytes))
  3175. return emulate_gp(ctxt, 0);
  3176. return X86EMUL_CONTINUE;
  3177. }
  3178. #define D(_y) { .flags = (_y) }
  3179. #define DI(_y, _i) { .flags = (_y)|Intercept, .intercept = x86_intercept_##_i }
  3180. #define DIP(_y, _i, _p) { .flags = (_y)|Intercept|CheckPerm, \
  3181. .intercept = x86_intercept_##_i, .check_perm = (_p) }
  3182. #define N D(NotImpl)
  3183. #define EXT(_f, _e) { .flags = ((_f) | RMExt), .u.group = (_e) }
  3184. #define G(_f, _g) { .flags = ((_f) | Group | ModRM), .u.group = (_g) }
  3185. #define GD(_f, _g) { .flags = ((_f) | GroupDual | ModRM), .u.gdual = (_g) }
  3186. #define ID(_f, _i) { .flags = ((_f) | InstrDual | ModRM), .u.idual = (_i) }
  3187. #define MD(_f, _m) { .flags = ((_f) | ModeDual), .u.mdual = (_m) }
  3188. #define E(_f, _e) { .flags = ((_f) | Escape | ModRM), .u.esc = (_e) }
  3189. #define I(_f, _e) { .flags = (_f), .u.execute = (_e) }
  3190. #define F(_f, _e) { .flags = (_f) | Fastop, .u.fastop = (_e) }
  3191. #define II(_f, _e, _i) \
  3192. { .flags = (_f)|Intercept, .u.execute = (_e), .intercept = x86_intercept_##_i }
  3193. #define IIP(_f, _e, _i, _p) \
  3194. { .flags = (_f)|Intercept|CheckPerm, .u.execute = (_e), \
  3195. .intercept = x86_intercept_##_i, .check_perm = (_p) }
  3196. #define GP(_f, _g) { .flags = ((_f) | Prefix), .u.gprefix = (_g) }
  3197. #define D2bv(_f) D((_f) | ByteOp), D(_f)
  3198. #define D2bvIP(_f, _i, _p) DIP((_f) | ByteOp, _i, _p), DIP(_f, _i, _p)
  3199. #define I2bv(_f, _e) I((_f) | ByteOp, _e), I(_f, _e)
  3200. #define F2bv(_f, _e) F((_f) | ByteOp, _e), F(_f, _e)
  3201. #define I2bvIP(_f, _e, _i, _p) \
  3202. IIP((_f) | ByteOp, _e, _i, _p), IIP(_f, _e, _i, _p)
  3203. #define F6ALU(_f, _e) F2bv((_f) | DstMem | SrcReg | ModRM, _e), \
  3204. F2bv(((_f) | DstReg | SrcMem | ModRM) & ~Lock, _e), \
  3205. F2bv(((_f) & ~Lock) | DstAcc | SrcImm, _e)
  3206. static const struct opcode group7_rm0[] = {
  3207. N,
  3208. I(SrcNone | Priv | EmulateOnUD, em_hypercall),
  3209. N, N, N, N, N, N,
  3210. };
  3211. static const struct opcode group7_rm1[] = {
  3212. DI(SrcNone | Priv, monitor),
  3213. DI(SrcNone | Priv, mwait),
  3214. N, N, N, N, N, N,
  3215. };
  3216. static const struct opcode group7_rm3[] = {
  3217. DIP(SrcNone | Prot | Priv, vmrun, check_svme_pa),
  3218. II(SrcNone | Prot | EmulateOnUD, em_hypercall, vmmcall),
  3219. DIP(SrcNone | Prot | Priv, vmload, check_svme_pa),
  3220. DIP(SrcNone | Prot | Priv, vmsave, check_svme_pa),
  3221. DIP(SrcNone | Prot | Priv, stgi, check_svme),
  3222. DIP(SrcNone | Prot | Priv, clgi, check_svme),
  3223. DIP(SrcNone | Prot | Priv, skinit, check_svme),
  3224. DIP(SrcNone | Prot | Priv, invlpga, check_svme),
  3225. };
  3226. static const struct opcode group7_rm7[] = {
  3227. N,
  3228. DIP(SrcNone, rdtscp, check_rdtsc),
  3229. N, N, N, N, N, N,
  3230. };
  3231. static const struct opcode group1[] = {
  3232. F(Lock, em_add),
  3233. F(Lock | PageTable, em_or),
  3234. F(Lock, em_adc),
  3235. F(Lock, em_sbb),
  3236. F(Lock | PageTable, em_and),
  3237. F(Lock, em_sub),
  3238. F(Lock, em_xor),
  3239. F(NoWrite, em_cmp),
  3240. };
  3241. static const struct opcode group1A[] = {
  3242. I(DstMem | SrcNone | Mov | Stack | IncSP, em_pop), N, N, N, N, N, N, N,
  3243. };
  3244. static const struct opcode group2[] = {
  3245. F(DstMem | ModRM, em_rol),
  3246. F(DstMem | ModRM, em_ror),
  3247. F(DstMem | ModRM, em_rcl),
  3248. F(DstMem | ModRM, em_rcr),
  3249. F(DstMem | ModRM, em_shl),
  3250. F(DstMem | ModRM, em_shr),
  3251. F(DstMem | ModRM, em_shl),
  3252. F(DstMem | ModRM, em_sar),
  3253. };
  3254. static const struct opcode group3[] = {
  3255. F(DstMem | SrcImm | NoWrite, em_test),
  3256. F(DstMem | SrcImm | NoWrite, em_test),
  3257. F(DstMem | SrcNone | Lock, em_not),
  3258. F(DstMem | SrcNone | Lock, em_neg),
  3259. F(DstXacc | Src2Mem, em_mul_ex),
  3260. F(DstXacc | Src2Mem, em_imul_ex),
  3261. F(DstXacc | Src2Mem, em_div_ex),
  3262. F(DstXacc | Src2Mem, em_idiv_ex),
  3263. };
  3264. static const struct opcode group4[] = {
  3265. F(ByteOp | DstMem | SrcNone | Lock, em_inc),
  3266. F(ByteOp | DstMem | SrcNone | Lock, em_dec),
  3267. N, N, N, N, N, N,
  3268. };
  3269. static const struct opcode group5[] = {
  3270. F(DstMem | SrcNone | Lock, em_inc),
  3271. F(DstMem | SrcNone | Lock, em_dec),
  3272. I(SrcMem | NearBranch, em_call_near_abs),
  3273. I(SrcMemFAddr | ImplicitOps | Stack, em_call_far),
  3274. I(SrcMem | NearBranch, em_jmp_abs),
  3275. I(SrcMemFAddr | ImplicitOps, em_jmp_far),
  3276. I(SrcMem | Stack, em_push), D(Undefined),
  3277. };
  3278. static const struct opcode group6[] = {
  3279. DI(Prot | DstMem, sldt),
  3280. DI(Prot | DstMem, str),
  3281. II(Prot | Priv | SrcMem16, em_lldt, lldt),
  3282. II(Prot | Priv | SrcMem16, em_ltr, ltr),
  3283. N, N, N, N,
  3284. };
  3285. static const struct group_dual group7 = { {
  3286. II(Mov | DstMem, em_sgdt, sgdt),
  3287. II(Mov | DstMem, em_sidt, sidt),
  3288. II(SrcMem | Priv, em_lgdt, lgdt),
  3289. II(SrcMem | Priv, em_lidt, lidt),
  3290. II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
  3291. II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
  3292. II(SrcMem | ByteOp | Priv | NoAccess, em_invlpg, invlpg),
  3293. }, {
  3294. EXT(0, group7_rm0),
  3295. EXT(0, group7_rm1),
  3296. N, EXT(0, group7_rm3),
  3297. II(SrcNone | DstMem | Mov, em_smsw, smsw), N,
  3298. II(SrcMem16 | Mov | Priv, em_lmsw, lmsw),
  3299. EXT(0, group7_rm7),
  3300. } };
  3301. static const struct opcode group8[] = {
  3302. N, N, N, N,
  3303. F(DstMem | SrcImmByte | NoWrite, em_bt),
  3304. F(DstMem | SrcImmByte | Lock | PageTable, em_bts),
  3305. F(DstMem | SrcImmByte | Lock, em_btr),
  3306. F(DstMem | SrcImmByte | Lock | PageTable, em_btc),
  3307. };
  3308. static const struct group_dual group9 = { {
  3309. N, I(DstMem64 | Lock | PageTable, em_cmpxchg8b), N, N, N, N, N, N,
  3310. }, {
  3311. N, N, N, N, N, N, N, N,
  3312. } };
  3313. static const struct opcode group11[] = {
  3314. I(DstMem | SrcImm | Mov | PageTable, em_mov),
  3315. X7(D(Undefined)),
  3316. };
  3317. static const struct gprefix pfx_0f_ae_7 = {
  3318. I(SrcMem | ByteOp, em_clflush), N, N, N,
  3319. };
  3320. static const struct group_dual group15 = { {
  3321. N, N, N, N, N, N, N, GP(0, &pfx_0f_ae_7),
  3322. }, {
  3323. N, N, N, N, N, N, N, N,
  3324. } };
  3325. static const struct gprefix pfx_0f_6f_0f_7f = {
  3326. I(Mmx, em_mov), I(Sse | Aligned, em_mov), N, I(Sse | Unaligned, em_mov),
  3327. };
  3328. static const struct instr_dual instr_dual_0f_2b = {
  3329. I(0, em_mov), N
  3330. };
  3331. static const struct gprefix pfx_0f_2b = {
  3332. ID(0, &instr_dual_0f_2b), ID(0, &instr_dual_0f_2b), N, N,
  3333. };
  3334. static const struct gprefix pfx_0f_28_0f_29 = {
  3335. I(Aligned, em_mov), I(Aligned, em_mov), N, N,
  3336. };
  3337. static const struct gprefix pfx_0f_e7 = {
  3338. N, I(Sse, em_mov), N, N,
  3339. };
  3340. static const struct escape escape_d9 = { {
  3341. N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstcw),
  3342. }, {
  3343. /* 0xC0 - 0xC7 */
  3344. N, N, N, N, N, N, N, N,
  3345. /* 0xC8 - 0xCF */
  3346. N, N, N, N, N, N, N, N,
  3347. /* 0xD0 - 0xC7 */
  3348. N, N, N, N, N, N, N, N,
  3349. /* 0xD8 - 0xDF */
  3350. N, N, N, N, N, N, N, N,
  3351. /* 0xE0 - 0xE7 */
  3352. N, N, N, N, N, N, N, N,
  3353. /* 0xE8 - 0xEF */
  3354. N, N, N, N, N, N, N, N,
  3355. /* 0xF0 - 0xF7 */
  3356. N, N, N, N, N, N, N, N,
  3357. /* 0xF8 - 0xFF */
  3358. N, N, N, N, N, N, N, N,
  3359. } };
  3360. static const struct escape escape_db = { {
  3361. N, N, N, N, N, N, N, N,
  3362. }, {
  3363. /* 0xC0 - 0xC7 */
  3364. N, N, N, N, N, N, N, N,
  3365. /* 0xC8 - 0xCF */
  3366. N, N, N, N, N, N, N, N,
  3367. /* 0xD0 - 0xC7 */
  3368. N, N, N, N, N, N, N, N,
  3369. /* 0xD8 - 0xDF */
  3370. N, N, N, N, N, N, N, N,
  3371. /* 0xE0 - 0xE7 */
  3372. N, N, N, I(ImplicitOps, em_fninit), N, N, N, N,
  3373. /* 0xE8 - 0xEF */
  3374. N, N, N, N, N, N, N, N,
  3375. /* 0xF0 - 0xF7 */
  3376. N, N, N, N, N, N, N, N,
  3377. /* 0xF8 - 0xFF */
  3378. N, N, N, N, N, N, N, N,
  3379. } };
  3380. static const struct escape escape_dd = { {
  3381. N, N, N, N, N, N, N, I(DstMem16 | Mov, em_fnstsw),
  3382. }, {
  3383. /* 0xC0 - 0xC7 */
  3384. N, N, N, N, N, N, N, N,
  3385. /* 0xC8 - 0xCF */
  3386. N, N, N, N, N, N, N, N,
  3387. /* 0xD0 - 0xC7 */
  3388. N, N, N, N, N, N, N, N,
  3389. /* 0xD8 - 0xDF */
  3390. N, N, N, N, N, N, N, N,
  3391. /* 0xE0 - 0xE7 */
  3392. N, N, N, N, N, N, N, N,
  3393. /* 0xE8 - 0xEF */
  3394. N, N, N, N, N, N, N, N,
  3395. /* 0xF0 - 0xF7 */
  3396. N, N, N, N, N, N, N, N,
  3397. /* 0xF8 - 0xFF */
  3398. N, N, N, N, N, N, N, N,
  3399. } };
  3400. static const struct instr_dual instr_dual_0f_c3 = {
  3401. I(DstMem | SrcReg | ModRM | No16 | Mov, em_mov), N
  3402. };
  3403. static const struct mode_dual mode_dual_63 = {
  3404. N, I(DstReg | SrcMem32 | ModRM | Mov, em_movsxd)
  3405. };
  3406. static const struct opcode opcode_table[256] = {
  3407. /* 0x00 - 0x07 */
  3408. F6ALU(Lock, em_add),
  3409. I(ImplicitOps | Stack | No64 | Src2ES, em_push_sreg),
  3410. I(ImplicitOps | Stack | No64 | Src2ES, em_pop_sreg),
  3411. /* 0x08 - 0x0F */
  3412. F6ALU(Lock | PageTable, em_or),
  3413. I(ImplicitOps | Stack | No64 | Src2CS, em_push_sreg),
  3414. N,
  3415. /* 0x10 - 0x17 */
  3416. F6ALU(Lock, em_adc),
  3417. I(ImplicitOps | Stack | No64 | Src2SS, em_push_sreg),
  3418. I(ImplicitOps | Stack | No64 | Src2SS, em_pop_sreg),
  3419. /* 0x18 - 0x1F */
  3420. F6ALU(Lock, em_sbb),
  3421. I(ImplicitOps | Stack | No64 | Src2DS, em_push_sreg),
  3422. I(ImplicitOps | Stack | No64 | Src2DS, em_pop_sreg),
  3423. /* 0x20 - 0x27 */
  3424. F6ALU(Lock | PageTable, em_and), N, N,
  3425. /* 0x28 - 0x2F */
  3426. F6ALU(Lock, em_sub), N, I(ByteOp | DstAcc | No64, em_das),
  3427. /* 0x30 - 0x37 */
  3428. F6ALU(Lock, em_xor), N, N,
  3429. /* 0x38 - 0x3F */
  3430. F6ALU(NoWrite, em_cmp), N, N,
  3431. /* 0x40 - 0x4F */
  3432. X8(F(DstReg, em_inc)), X8(F(DstReg, em_dec)),
  3433. /* 0x50 - 0x57 */
  3434. X8(I(SrcReg | Stack, em_push)),
  3435. /* 0x58 - 0x5F */
  3436. X8(I(DstReg | Stack, em_pop)),
  3437. /* 0x60 - 0x67 */
  3438. I(ImplicitOps | Stack | No64, em_pusha),
  3439. I(ImplicitOps | Stack | No64, em_popa),
  3440. N, MD(ModRM, &mode_dual_63),
  3441. N, N, N, N,
  3442. /* 0x68 - 0x6F */
  3443. I(SrcImm | Mov | Stack, em_push),
  3444. I(DstReg | SrcMem | ModRM | Src2Imm, em_imul_3op),
  3445. I(SrcImmByte | Mov | Stack, em_push),
  3446. I(DstReg | SrcMem | ModRM | Src2ImmByte, em_imul_3op),
  3447. I2bvIP(DstDI | SrcDX | Mov | String | Unaligned, em_in, ins, check_perm_in), /* insb, insw/insd */
  3448. I2bvIP(SrcSI | DstDX | String, em_out, outs, check_perm_out), /* outsb, outsw/outsd */
  3449. /* 0x70 - 0x7F */
  3450. X16(D(SrcImmByte | NearBranch)),
  3451. /* 0x80 - 0x87 */
  3452. G(ByteOp | DstMem | SrcImm, group1),
  3453. G(DstMem | SrcImm, group1),
  3454. G(ByteOp | DstMem | SrcImm | No64, group1),
  3455. G(DstMem | SrcImmByte, group1),
  3456. F2bv(DstMem | SrcReg | ModRM | NoWrite, em_test),
  3457. I2bv(DstMem | SrcReg | ModRM | Lock | PageTable, em_xchg),
  3458. /* 0x88 - 0x8F */
  3459. I2bv(DstMem | SrcReg | ModRM | Mov | PageTable, em_mov),
  3460. I2bv(DstReg | SrcMem | ModRM | Mov, em_mov),
  3461. I(DstMem | SrcNone | ModRM | Mov | PageTable, em_mov_rm_sreg),
  3462. D(ModRM | SrcMem | NoAccess | DstReg),
  3463. I(ImplicitOps | SrcMem16 | ModRM, em_mov_sreg_rm),
  3464. G(0, group1A),
  3465. /* 0x90 - 0x97 */
  3466. DI(SrcAcc | DstReg, pause), X7(D(SrcAcc | DstReg)),
  3467. /* 0x98 - 0x9F */
  3468. D(DstAcc | SrcNone), I(ImplicitOps | SrcAcc, em_cwd),
  3469. I(SrcImmFAddr | No64, em_call_far), N,
  3470. II(ImplicitOps | Stack, em_pushf, pushf),
  3471. II(ImplicitOps | Stack, em_popf, popf),
  3472. I(ImplicitOps, em_sahf), I(ImplicitOps, em_lahf),
  3473. /* 0xA0 - 0xA7 */
  3474. I2bv(DstAcc | SrcMem | Mov | MemAbs, em_mov),
  3475. I2bv(DstMem | SrcAcc | Mov | MemAbs | PageTable, em_mov),
  3476. I2bv(SrcSI | DstDI | Mov | String, em_mov),
  3477. F2bv(SrcSI | DstDI | String | NoWrite, em_cmp_r),
  3478. /* 0xA8 - 0xAF */
  3479. F2bv(DstAcc | SrcImm | NoWrite, em_test),
  3480. I2bv(SrcAcc | DstDI | Mov | String, em_mov),
  3481. I2bv(SrcSI | DstAcc | Mov | String, em_mov),
  3482. F2bv(SrcAcc | DstDI | String | NoWrite, em_cmp_r),
  3483. /* 0xB0 - 0xB7 */
  3484. X8(I(ByteOp | DstReg | SrcImm | Mov, em_mov)),
  3485. /* 0xB8 - 0xBF */
  3486. X8(I(DstReg | SrcImm64 | Mov, em_mov)),
  3487. /* 0xC0 - 0xC7 */
  3488. G(ByteOp | Src2ImmByte, group2), G(Src2ImmByte, group2),
  3489. I(ImplicitOps | NearBranch | SrcImmU16, em_ret_near_imm),
  3490. I(ImplicitOps | NearBranch, em_ret),
  3491. I(DstReg | SrcMemFAddr | ModRM | No64 | Src2ES, em_lseg),
  3492. I(DstReg | SrcMemFAddr | ModRM | No64 | Src2DS, em_lseg),
  3493. G(ByteOp, group11), G(0, group11),
  3494. /* 0xC8 - 0xCF */
  3495. I(Stack | SrcImmU16 | Src2ImmByte, em_enter), I(Stack, em_leave),
  3496. I(ImplicitOps | SrcImmU16, em_ret_far_imm),
  3497. I(ImplicitOps, em_ret_far),
  3498. D(ImplicitOps), DI(SrcImmByte, intn),
  3499. D(ImplicitOps | No64), II(ImplicitOps, em_iret, iret),
  3500. /* 0xD0 - 0xD7 */
  3501. G(Src2One | ByteOp, group2), G(Src2One, group2),
  3502. G(Src2CL | ByteOp, group2), G(Src2CL, group2),
  3503. I(DstAcc | SrcImmUByte | No64, em_aam),
  3504. I(DstAcc | SrcImmUByte | No64, em_aad),
  3505. F(DstAcc | ByteOp | No64, em_salc),
  3506. I(DstAcc | SrcXLat | ByteOp, em_mov),
  3507. /* 0xD8 - 0xDF */
  3508. N, E(0, &escape_d9), N, E(0, &escape_db), N, E(0, &escape_dd), N, N,
  3509. /* 0xE0 - 0xE7 */
  3510. X3(I(SrcImmByte | NearBranch, em_loop)),
  3511. I(SrcImmByte | NearBranch, em_jcxz),
  3512. I2bvIP(SrcImmUByte | DstAcc, em_in, in, check_perm_in),
  3513. I2bvIP(SrcAcc | DstImmUByte, em_out, out, check_perm_out),
  3514. /* 0xE8 - 0xEF */
  3515. I(SrcImm | NearBranch, em_call), D(SrcImm | ImplicitOps | NearBranch),
  3516. I(SrcImmFAddr | No64, em_jmp_far),
  3517. D(SrcImmByte | ImplicitOps | NearBranch),
  3518. I2bvIP(SrcDX | DstAcc, em_in, in, check_perm_in),
  3519. I2bvIP(SrcAcc | DstDX, em_out, out, check_perm_out),
  3520. /* 0xF0 - 0xF7 */
  3521. N, DI(ImplicitOps, icebp), N, N,
  3522. DI(ImplicitOps | Priv, hlt), D(ImplicitOps),
  3523. G(ByteOp, group3), G(0, group3),
  3524. /* 0xF8 - 0xFF */
  3525. D(ImplicitOps), D(ImplicitOps),
  3526. I(ImplicitOps, em_cli), I(ImplicitOps, em_sti),
  3527. D(ImplicitOps), D(ImplicitOps), G(0, group4), G(0, group5),
  3528. };
  3529. static const struct opcode twobyte_table[256] = {
  3530. /* 0x00 - 0x0F */
  3531. G(0, group6), GD(0, &group7), N, N,
  3532. N, I(ImplicitOps | EmulateOnUD, em_syscall),
  3533. II(ImplicitOps | Priv, em_clts, clts), N,
  3534. DI(ImplicitOps | Priv, invd), DI(ImplicitOps | Priv, wbinvd), N, N,
  3535. N, D(ImplicitOps | ModRM | SrcMem | NoAccess), N, N,
  3536. /* 0x10 - 0x1F */
  3537. N, N, N, N, N, N, N, N,
  3538. D(ImplicitOps | ModRM | SrcMem | NoAccess),
  3539. N, N, N, N, N, N, D(ImplicitOps | ModRM | SrcMem | NoAccess),
  3540. /* 0x20 - 0x2F */
  3541. DIP(ModRM | DstMem | Priv | Op3264 | NoMod, cr_read, check_cr_read),
  3542. DIP(ModRM | DstMem | Priv | Op3264 | NoMod, dr_read, check_dr_read),
  3543. IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_cr_write, cr_write,
  3544. check_cr_write),
  3545. IIP(ModRM | SrcMem | Priv | Op3264 | NoMod, em_dr_write, dr_write,
  3546. check_dr_write),
  3547. N, N, N, N,
  3548. GP(ModRM | DstReg | SrcMem | Mov | Sse, &pfx_0f_28_0f_29),
  3549. GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_28_0f_29),
  3550. N, GP(ModRM | DstMem | SrcReg | Mov | Sse, &pfx_0f_2b),
  3551. N, N, N, N,
  3552. /* 0x30 - 0x3F */
  3553. II(ImplicitOps | Priv, em_wrmsr, wrmsr),
  3554. IIP(ImplicitOps, em_rdtsc, rdtsc, check_rdtsc),
  3555. II(ImplicitOps | Priv, em_rdmsr, rdmsr),
  3556. IIP(ImplicitOps, em_rdpmc, rdpmc, check_rdpmc),
  3557. I(ImplicitOps | EmulateOnUD, em_sysenter),
  3558. I(ImplicitOps | Priv | EmulateOnUD, em_sysexit),
  3559. N, N,
  3560. N, N, N, N, N, N, N, N,
  3561. /* 0x40 - 0x4F */
  3562. X16(D(DstReg | SrcMem | ModRM)),
  3563. /* 0x50 - 0x5F */
  3564. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  3565. /* 0x60 - 0x6F */
  3566. N, N, N, N,
  3567. N, N, N, N,
  3568. N, N, N, N,
  3569. N, N, N, GP(SrcMem | DstReg | ModRM | Mov, &pfx_0f_6f_0f_7f),
  3570. /* 0x70 - 0x7F */
  3571. N, N, N, N,
  3572. N, N, N, N,
  3573. N, N, N, N,
  3574. N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_6f_0f_7f),
  3575. /* 0x80 - 0x8F */
  3576. X16(D(SrcImm | NearBranch)),
  3577. /* 0x90 - 0x9F */
  3578. X16(D(ByteOp | DstMem | SrcNone | ModRM| Mov)),
  3579. /* 0xA0 - 0xA7 */
  3580. I(Stack | Src2FS, em_push_sreg), I(Stack | Src2FS, em_pop_sreg),
  3581. II(ImplicitOps, em_cpuid, cpuid),
  3582. F(DstMem | SrcReg | ModRM | BitOp | NoWrite, em_bt),
  3583. F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shld),
  3584. F(DstMem | SrcReg | Src2CL | ModRM, em_shld), N, N,
  3585. /* 0xA8 - 0xAF */
  3586. I(Stack | Src2GS, em_push_sreg), I(Stack | Src2GS, em_pop_sreg),
  3587. DI(ImplicitOps, rsm),
  3588. F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_bts),
  3589. F(DstMem | SrcReg | Src2ImmByte | ModRM, em_shrd),
  3590. F(DstMem | SrcReg | Src2CL | ModRM, em_shrd),
  3591. GD(0, &group15), F(DstReg | SrcMem | ModRM, em_imul),
  3592. /* 0xB0 - 0xB7 */
  3593. I2bv(DstMem | SrcReg | ModRM | Lock | PageTable | SrcWrite, em_cmpxchg),
  3594. I(DstReg | SrcMemFAddr | ModRM | Src2SS, em_lseg),
  3595. F(DstMem | SrcReg | ModRM | BitOp | Lock, em_btr),
  3596. I(DstReg | SrcMemFAddr | ModRM | Src2FS, em_lseg),
  3597. I(DstReg | SrcMemFAddr | ModRM | Src2GS, em_lseg),
  3598. D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  3599. /* 0xB8 - 0xBF */
  3600. N, N,
  3601. G(BitOp, group8),
  3602. F(DstMem | SrcReg | ModRM | BitOp | Lock | PageTable, em_btc),
  3603. I(DstReg | SrcMem | ModRM, em_bsf_c),
  3604. I(DstReg | SrcMem | ModRM, em_bsr_c),
  3605. D(DstReg | SrcMem8 | ModRM | Mov), D(DstReg | SrcMem16 | ModRM | Mov),
  3606. /* 0xC0 - 0xC7 */
  3607. F2bv(DstMem | SrcReg | ModRM | SrcWrite | Lock, em_xadd),
  3608. N, ID(0, &instr_dual_0f_c3),
  3609. N, N, N, GD(0, &group9),
  3610. /* 0xC8 - 0xCF */
  3611. X8(I(DstReg, em_bswap)),
  3612. /* 0xD0 - 0xDF */
  3613. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N,
  3614. /* 0xE0 - 0xEF */
  3615. N, N, N, N, N, N, N, GP(SrcReg | DstMem | ModRM | Mov, &pfx_0f_e7),
  3616. N, N, N, N, N, N, N, N,
  3617. /* 0xF0 - 0xFF */
  3618. N, N, N, N, N, N, N, N, N, N, N, N, N, N, N, N
  3619. };
  3620. static const struct instr_dual instr_dual_0f_38_f0 = {
  3621. I(DstReg | SrcMem | Mov, em_movbe), N
  3622. };
  3623. static const struct instr_dual instr_dual_0f_38_f1 = {
  3624. I(DstMem | SrcReg | Mov, em_movbe), N
  3625. };
  3626. static const struct gprefix three_byte_0f_38_f0 = {
  3627. ID(0, &instr_dual_0f_38_f0), N, N, N
  3628. };
  3629. static const struct gprefix three_byte_0f_38_f1 = {
  3630. ID(0, &instr_dual_0f_38_f1), N, N, N
  3631. };
  3632. /*
  3633. * Insns below are selected by the prefix which indexed by the third opcode
  3634. * byte.
  3635. */
  3636. static const struct opcode opcode_map_0f_38[256] = {
  3637. /* 0x00 - 0x7f */
  3638. X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
  3639. /* 0x80 - 0xef */
  3640. X16(N), X16(N), X16(N), X16(N), X16(N), X16(N), X16(N),
  3641. /* 0xf0 - 0xf1 */
  3642. GP(EmulateOnUD | ModRM, &three_byte_0f_38_f0),
  3643. GP(EmulateOnUD | ModRM, &three_byte_0f_38_f1),
  3644. /* 0xf2 - 0xff */
  3645. N, N, X4(N), X8(N)
  3646. };
  3647. #undef D
  3648. #undef N
  3649. #undef G
  3650. #undef GD
  3651. #undef I
  3652. #undef GP
  3653. #undef EXT
  3654. #undef MD
  3655. #undef ID
  3656. #undef D2bv
  3657. #undef D2bvIP
  3658. #undef I2bv
  3659. #undef I2bvIP
  3660. #undef I6ALU
  3661. static unsigned imm_size(struct x86_emulate_ctxt *ctxt)
  3662. {
  3663. unsigned size;
  3664. size = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3665. if (size == 8)
  3666. size = 4;
  3667. return size;
  3668. }
  3669. static int decode_imm(struct x86_emulate_ctxt *ctxt, struct operand *op,
  3670. unsigned size, bool sign_extension)
  3671. {
  3672. int rc = X86EMUL_CONTINUE;
  3673. op->type = OP_IMM;
  3674. op->bytes = size;
  3675. op->addr.mem.ea = ctxt->_eip;
  3676. /* NB. Immediates are sign-extended as necessary. */
  3677. switch (op->bytes) {
  3678. case 1:
  3679. op->val = insn_fetch(s8, ctxt);
  3680. break;
  3681. case 2:
  3682. op->val = insn_fetch(s16, ctxt);
  3683. break;
  3684. case 4:
  3685. op->val = insn_fetch(s32, ctxt);
  3686. break;
  3687. case 8:
  3688. op->val = insn_fetch(s64, ctxt);
  3689. break;
  3690. }
  3691. if (!sign_extension) {
  3692. switch (op->bytes) {
  3693. case 1:
  3694. op->val &= 0xff;
  3695. break;
  3696. case 2:
  3697. op->val &= 0xffff;
  3698. break;
  3699. case 4:
  3700. op->val &= 0xffffffff;
  3701. break;
  3702. }
  3703. }
  3704. done:
  3705. return rc;
  3706. }
  3707. static int decode_operand(struct x86_emulate_ctxt *ctxt, struct operand *op,
  3708. unsigned d)
  3709. {
  3710. int rc = X86EMUL_CONTINUE;
  3711. switch (d) {
  3712. case OpReg:
  3713. decode_register_operand(ctxt, op);
  3714. break;
  3715. case OpImmUByte:
  3716. rc = decode_imm(ctxt, op, 1, false);
  3717. break;
  3718. case OpMem:
  3719. ctxt->memop.bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3720. mem_common:
  3721. *op = ctxt->memop;
  3722. ctxt->memopp = op;
  3723. if (ctxt->d & BitOp)
  3724. fetch_bit_operand(ctxt);
  3725. op->orig_val = op->val;
  3726. break;
  3727. case OpMem64:
  3728. ctxt->memop.bytes = (ctxt->op_bytes == 8) ? 16 : 8;
  3729. goto mem_common;
  3730. case OpAcc:
  3731. op->type = OP_REG;
  3732. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3733. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  3734. fetch_register_operand(op);
  3735. op->orig_val = op->val;
  3736. break;
  3737. case OpAccLo:
  3738. op->type = OP_REG;
  3739. op->bytes = (ctxt->d & ByteOp) ? 2 : ctxt->op_bytes;
  3740. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RAX);
  3741. fetch_register_operand(op);
  3742. op->orig_val = op->val;
  3743. break;
  3744. case OpAccHi:
  3745. if (ctxt->d & ByteOp) {
  3746. op->type = OP_NONE;
  3747. break;
  3748. }
  3749. op->type = OP_REG;
  3750. op->bytes = ctxt->op_bytes;
  3751. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  3752. fetch_register_operand(op);
  3753. op->orig_val = op->val;
  3754. break;
  3755. case OpDI:
  3756. op->type = OP_MEM;
  3757. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3758. op->addr.mem.ea =
  3759. register_address(ctxt, VCPU_REGS_RDI);
  3760. op->addr.mem.seg = VCPU_SREG_ES;
  3761. op->val = 0;
  3762. op->count = 1;
  3763. break;
  3764. case OpDX:
  3765. op->type = OP_REG;
  3766. op->bytes = 2;
  3767. op->addr.reg = reg_rmw(ctxt, VCPU_REGS_RDX);
  3768. fetch_register_operand(op);
  3769. break;
  3770. case OpCL:
  3771. op->type = OP_IMM;
  3772. op->bytes = 1;
  3773. op->val = reg_read(ctxt, VCPU_REGS_RCX) & 0xff;
  3774. break;
  3775. case OpImmByte:
  3776. rc = decode_imm(ctxt, op, 1, true);
  3777. break;
  3778. case OpOne:
  3779. op->type = OP_IMM;
  3780. op->bytes = 1;
  3781. op->val = 1;
  3782. break;
  3783. case OpImm:
  3784. rc = decode_imm(ctxt, op, imm_size(ctxt), true);
  3785. break;
  3786. case OpImm64:
  3787. rc = decode_imm(ctxt, op, ctxt->op_bytes, true);
  3788. break;
  3789. case OpMem8:
  3790. ctxt->memop.bytes = 1;
  3791. if (ctxt->memop.type == OP_REG) {
  3792. ctxt->memop.addr.reg = decode_register(ctxt,
  3793. ctxt->modrm_rm, true);
  3794. fetch_register_operand(&ctxt->memop);
  3795. }
  3796. goto mem_common;
  3797. case OpMem16:
  3798. ctxt->memop.bytes = 2;
  3799. goto mem_common;
  3800. case OpMem32:
  3801. ctxt->memop.bytes = 4;
  3802. goto mem_common;
  3803. case OpImmU16:
  3804. rc = decode_imm(ctxt, op, 2, false);
  3805. break;
  3806. case OpImmU:
  3807. rc = decode_imm(ctxt, op, imm_size(ctxt), false);
  3808. break;
  3809. case OpSI:
  3810. op->type = OP_MEM;
  3811. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3812. op->addr.mem.ea =
  3813. register_address(ctxt, VCPU_REGS_RSI);
  3814. op->addr.mem.seg = ctxt->seg_override;
  3815. op->val = 0;
  3816. op->count = 1;
  3817. break;
  3818. case OpXLat:
  3819. op->type = OP_MEM;
  3820. op->bytes = (ctxt->d & ByteOp) ? 1 : ctxt->op_bytes;
  3821. op->addr.mem.ea =
  3822. address_mask(ctxt,
  3823. reg_read(ctxt, VCPU_REGS_RBX) +
  3824. (reg_read(ctxt, VCPU_REGS_RAX) & 0xff));
  3825. op->addr.mem.seg = ctxt->seg_override;
  3826. op->val = 0;
  3827. break;
  3828. case OpImmFAddr:
  3829. op->type = OP_IMM;
  3830. op->addr.mem.ea = ctxt->_eip;
  3831. op->bytes = ctxt->op_bytes + 2;
  3832. insn_fetch_arr(op->valptr, op->bytes, ctxt);
  3833. break;
  3834. case OpMemFAddr:
  3835. ctxt->memop.bytes = ctxt->op_bytes + 2;
  3836. goto mem_common;
  3837. case OpES:
  3838. op->type = OP_IMM;
  3839. op->val = VCPU_SREG_ES;
  3840. break;
  3841. case OpCS:
  3842. op->type = OP_IMM;
  3843. op->val = VCPU_SREG_CS;
  3844. break;
  3845. case OpSS:
  3846. op->type = OP_IMM;
  3847. op->val = VCPU_SREG_SS;
  3848. break;
  3849. case OpDS:
  3850. op->type = OP_IMM;
  3851. op->val = VCPU_SREG_DS;
  3852. break;
  3853. case OpFS:
  3854. op->type = OP_IMM;
  3855. op->val = VCPU_SREG_FS;
  3856. break;
  3857. case OpGS:
  3858. op->type = OP_IMM;
  3859. op->val = VCPU_SREG_GS;
  3860. break;
  3861. case OpImplicit:
  3862. /* Special instructions do their own operand decoding. */
  3863. default:
  3864. op->type = OP_NONE; /* Disable writeback. */
  3865. break;
  3866. }
  3867. done:
  3868. return rc;
  3869. }
  3870. int x86_decode_insn(struct x86_emulate_ctxt *ctxt, void *insn, int insn_len)
  3871. {
  3872. int rc = X86EMUL_CONTINUE;
  3873. int mode = ctxt->mode;
  3874. int def_op_bytes, def_ad_bytes, goffset, simd_prefix;
  3875. bool op_prefix = false;
  3876. bool has_seg_override = false;
  3877. struct opcode opcode;
  3878. ctxt->memop.type = OP_NONE;
  3879. ctxt->memopp = NULL;
  3880. ctxt->_eip = ctxt->eip;
  3881. ctxt->fetch.ptr = ctxt->fetch.data;
  3882. ctxt->fetch.end = ctxt->fetch.data + insn_len;
  3883. ctxt->opcode_len = 1;
  3884. if (insn_len > 0)
  3885. memcpy(ctxt->fetch.data, insn, insn_len);
  3886. else {
  3887. rc = __do_insn_fetch_bytes(ctxt, 1);
  3888. if (rc != X86EMUL_CONTINUE)
  3889. return rc;
  3890. }
  3891. switch (mode) {
  3892. case X86EMUL_MODE_REAL:
  3893. case X86EMUL_MODE_VM86:
  3894. case X86EMUL_MODE_PROT16:
  3895. def_op_bytes = def_ad_bytes = 2;
  3896. break;
  3897. case X86EMUL_MODE_PROT32:
  3898. def_op_bytes = def_ad_bytes = 4;
  3899. break;
  3900. #ifdef CONFIG_X86_64
  3901. case X86EMUL_MODE_PROT64:
  3902. def_op_bytes = 4;
  3903. def_ad_bytes = 8;
  3904. break;
  3905. #endif
  3906. default:
  3907. return EMULATION_FAILED;
  3908. }
  3909. ctxt->op_bytes = def_op_bytes;
  3910. ctxt->ad_bytes = def_ad_bytes;
  3911. /* Legacy prefixes. */
  3912. for (;;) {
  3913. switch (ctxt->b = insn_fetch(u8, ctxt)) {
  3914. case 0x66: /* operand-size override */
  3915. op_prefix = true;
  3916. /* switch between 2/4 bytes */
  3917. ctxt->op_bytes = def_op_bytes ^ 6;
  3918. break;
  3919. case 0x67: /* address-size override */
  3920. if (mode == X86EMUL_MODE_PROT64)
  3921. /* switch between 4/8 bytes */
  3922. ctxt->ad_bytes = def_ad_bytes ^ 12;
  3923. else
  3924. /* switch between 2/4 bytes */
  3925. ctxt->ad_bytes = def_ad_bytes ^ 6;
  3926. break;
  3927. case 0x26: /* ES override */
  3928. case 0x2e: /* CS override */
  3929. case 0x36: /* SS override */
  3930. case 0x3e: /* DS override */
  3931. has_seg_override = true;
  3932. ctxt->seg_override = (ctxt->b >> 3) & 3;
  3933. break;
  3934. case 0x64: /* FS override */
  3935. case 0x65: /* GS override */
  3936. has_seg_override = true;
  3937. ctxt->seg_override = ctxt->b & 7;
  3938. break;
  3939. case 0x40 ... 0x4f: /* REX */
  3940. if (mode != X86EMUL_MODE_PROT64)
  3941. goto done_prefixes;
  3942. ctxt->rex_prefix = ctxt->b;
  3943. continue;
  3944. case 0xf0: /* LOCK */
  3945. ctxt->lock_prefix = 1;
  3946. break;
  3947. case 0xf2: /* REPNE/REPNZ */
  3948. case 0xf3: /* REP/REPE/REPZ */
  3949. ctxt->rep_prefix = ctxt->b;
  3950. break;
  3951. default:
  3952. goto done_prefixes;
  3953. }
  3954. /* Any legacy prefix after a REX prefix nullifies its effect. */
  3955. ctxt->rex_prefix = 0;
  3956. }
  3957. done_prefixes:
  3958. /* REX prefix. */
  3959. if (ctxt->rex_prefix & 8)
  3960. ctxt->op_bytes = 8; /* REX.W */
  3961. /* Opcode byte(s). */
  3962. opcode = opcode_table[ctxt->b];
  3963. /* Two-byte opcode? */
  3964. if (ctxt->b == 0x0f) {
  3965. ctxt->opcode_len = 2;
  3966. ctxt->b = insn_fetch(u8, ctxt);
  3967. opcode = twobyte_table[ctxt->b];
  3968. /* 0F_38 opcode map */
  3969. if (ctxt->b == 0x38) {
  3970. ctxt->opcode_len = 3;
  3971. ctxt->b = insn_fetch(u8, ctxt);
  3972. opcode = opcode_map_0f_38[ctxt->b];
  3973. }
  3974. }
  3975. ctxt->d = opcode.flags;
  3976. if (ctxt->d & ModRM)
  3977. ctxt->modrm = insn_fetch(u8, ctxt);
  3978. /* vex-prefix instructions are not implemented */
  3979. if (ctxt->opcode_len == 1 && (ctxt->b == 0xc5 || ctxt->b == 0xc4) &&
  3980. (mode == X86EMUL_MODE_PROT64 || (ctxt->modrm & 0xc0) == 0xc0)) {
  3981. ctxt->d = NotImpl;
  3982. }
  3983. while (ctxt->d & GroupMask) {
  3984. switch (ctxt->d & GroupMask) {
  3985. case Group:
  3986. goffset = (ctxt->modrm >> 3) & 7;
  3987. opcode = opcode.u.group[goffset];
  3988. break;
  3989. case GroupDual:
  3990. goffset = (ctxt->modrm >> 3) & 7;
  3991. if ((ctxt->modrm >> 6) == 3)
  3992. opcode = opcode.u.gdual->mod3[goffset];
  3993. else
  3994. opcode = opcode.u.gdual->mod012[goffset];
  3995. break;
  3996. case RMExt:
  3997. goffset = ctxt->modrm & 7;
  3998. opcode = opcode.u.group[goffset];
  3999. break;
  4000. case Prefix:
  4001. if (ctxt->rep_prefix && op_prefix)
  4002. return EMULATION_FAILED;
  4003. simd_prefix = op_prefix ? 0x66 : ctxt->rep_prefix;
  4004. switch (simd_prefix) {
  4005. case 0x00: opcode = opcode.u.gprefix->pfx_no; break;
  4006. case 0x66: opcode = opcode.u.gprefix->pfx_66; break;
  4007. case 0xf2: opcode = opcode.u.gprefix->pfx_f2; break;
  4008. case 0xf3: opcode = opcode.u.gprefix->pfx_f3; break;
  4009. }
  4010. break;
  4011. case Escape:
  4012. if (ctxt->modrm > 0xbf)
  4013. opcode = opcode.u.esc->high[ctxt->modrm - 0xc0];
  4014. else
  4015. opcode = opcode.u.esc->op[(ctxt->modrm >> 3) & 7];
  4016. break;
  4017. case InstrDual:
  4018. if ((ctxt->modrm >> 6) == 3)
  4019. opcode = opcode.u.idual->mod3;
  4020. else
  4021. opcode = opcode.u.idual->mod012;
  4022. break;
  4023. case ModeDual:
  4024. if (ctxt->mode == X86EMUL_MODE_PROT64)
  4025. opcode = opcode.u.mdual->mode64;
  4026. else
  4027. opcode = opcode.u.mdual->mode32;
  4028. break;
  4029. default:
  4030. return EMULATION_FAILED;
  4031. }
  4032. ctxt->d &= ~(u64)GroupMask;
  4033. ctxt->d |= opcode.flags;
  4034. }
  4035. /* Unrecognised? */
  4036. if (ctxt->d == 0)
  4037. return EMULATION_FAILED;
  4038. ctxt->execute = opcode.u.execute;
  4039. if (unlikely(ctxt->ud) && likely(!(ctxt->d & EmulateOnUD)))
  4040. return EMULATION_FAILED;
  4041. if (unlikely(ctxt->d &
  4042. (NotImpl|Stack|Op3264|Sse|Mmx|Intercept|CheckPerm|NearBranch|
  4043. No16))) {
  4044. /*
  4045. * These are copied unconditionally here, and checked unconditionally
  4046. * in x86_emulate_insn.
  4047. */
  4048. ctxt->check_perm = opcode.check_perm;
  4049. ctxt->intercept = opcode.intercept;
  4050. if (ctxt->d & NotImpl)
  4051. return EMULATION_FAILED;
  4052. if (mode == X86EMUL_MODE_PROT64) {
  4053. if (ctxt->op_bytes == 4 && (ctxt->d & Stack))
  4054. ctxt->op_bytes = 8;
  4055. else if (ctxt->d & NearBranch)
  4056. ctxt->op_bytes = 8;
  4057. }
  4058. if (ctxt->d & Op3264) {
  4059. if (mode == X86EMUL_MODE_PROT64)
  4060. ctxt->op_bytes = 8;
  4061. else
  4062. ctxt->op_bytes = 4;
  4063. }
  4064. if ((ctxt->d & No16) && ctxt->op_bytes == 2)
  4065. ctxt->op_bytes = 4;
  4066. if (ctxt->d & Sse)
  4067. ctxt->op_bytes = 16;
  4068. else if (ctxt->d & Mmx)
  4069. ctxt->op_bytes = 8;
  4070. }
  4071. /* ModRM and SIB bytes. */
  4072. if (ctxt->d & ModRM) {
  4073. rc = decode_modrm(ctxt, &ctxt->memop);
  4074. if (!has_seg_override) {
  4075. has_seg_override = true;
  4076. ctxt->seg_override = ctxt->modrm_seg;
  4077. }
  4078. } else if (ctxt->d & MemAbs)
  4079. rc = decode_abs(ctxt, &ctxt->memop);
  4080. if (rc != X86EMUL_CONTINUE)
  4081. goto done;
  4082. if (!has_seg_override)
  4083. ctxt->seg_override = VCPU_SREG_DS;
  4084. ctxt->memop.addr.mem.seg = ctxt->seg_override;
  4085. /*
  4086. * Decode and fetch the source operand: register, memory
  4087. * or immediate.
  4088. */
  4089. rc = decode_operand(ctxt, &ctxt->src, (ctxt->d >> SrcShift) & OpMask);
  4090. if (rc != X86EMUL_CONTINUE)
  4091. goto done;
  4092. /*
  4093. * Decode and fetch the second source operand: register, memory
  4094. * or immediate.
  4095. */
  4096. rc = decode_operand(ctxt, &ctxt->src2, (ctxt->d >> Src2Shift) & OpMask);
  4097. if (rc != X86EMUL_CONTINUE)
  4098. goto done;
  4099. /* Decode and fetch the destination operand: register or memory. */
  4100. rc = decode_operand(ctxt, &ctxt->dst, (ctxt->d >> DstShift) & OpMask);
  4101. if (ctxt->rip_relative)
  4102. ctxt->memopp->addr.mem.ea = address_mask(ctxt,
  4103. ctxt->memopp->addr.mem.ea + ctxt->_eip);
  4104. done:
  4105. return (rc != X86EMUL_CONTINUE) ? EMULATION_FAILED : EMULATION_OK;
  4106. }
  4107. bool x86_page_table_writing_insn(struct x86_emulate_ctxt *ctxt)
  4108. {
  4109. return ctxt->d & PageTable;
  4110. }
  4111. static bool string_insn_completed(struct x86_emulate_ctxt *ctxt)
  4112. {
  4113. /* The second termination condition only applies for REPE
  4114. * and REPNE. Test if the repeat string operation prefix is
  4115. * REPE/REPZ or REPNE/REPNZ and if it's the case it tests the
  4116. * corresponding termination condition according to:
  4117. * - if REPE/REPZ and ZF = 0 then done
  4118. * - if REPNE/REPNZ and ZF = 1 then done
  4119. */
  4120. if (((ctxt->b == 0xa6) || (ctxt->b == 0xa7) ||
  4121. (ctxt->b == 0xae) || (ctxt->b == 0xaf))
  4122. && (((ctxt->rep_prefix == REPE_PREFIX) &&
  4123. ((ctxt->eflags & X86_EFLAGS_ZF) == 0))
  4124. || ((ctxt->rep_prefix == REPNE_PREFIX) &&
  4125. ((ctxt->eflags & X86_EFLAGS_ZF) == X86_EFLAGS_ZF))))
  4126. return true;
  4127. return false;
  4128. }
  4129. static int flush_pending_x87_faults(struct x86_emulate_ctxt *ctxt)
  4130. {
  4131. bool fault = false;
  4132. ctxt->ops->get_fpu(ctxt);
  4133. asm volatile("1: fwait \n\t"
  4134. "2: \n\t"
  4135. ".pushsection .fixup,\"ax\" \n\t"
  4136. "3: \n\t"
  4137. "movb $1, %[fault] \n\t"
  4138. "jmp 2b \n\t"
  4139. ".popsection \n\t"
  4140. _ASM_EXTABLE(1b, 3b)
  4141. : [fault]"+qm"(fault));
  4142. ctxt->ops->put_fpu(ctxt);
  4143. if (unlikely(fault))
  4144. return emulate_exception(ctxt, MF_VECTOR, 0, false);
  4145. return X86EMUL_CONTINUE;
  4146. }
  4147. static void fetch_possible_mmx_operand(struct x86_emulate_ctxt *ctxt,
  4148. struct operand *op)
  4149. {
  4150. if (op->type == OP_MM)
  4151. read_mmx_reg(ctxt, &op->mm_val, op->addr.mm);
  4152. }
  4153. static int fastop(struct x86_emulate_ctxt *ctxt, void (*fop)(struct fastop *))
  4154. {
  4155. ulong flags = (ctxt->eflags & EFLAGS_MASK) | X86_EFLAGS_IF;
  4156. if (!(ctxt->d & ByteOp))
  4157. fop += __ffs(ctxt->dst.bytes) * FASTOP_SIZE;
  4158. asm("push %[flags]; popf; call *%[fastop]; pushf; pop %[flags]\n"
  4159. : "+a"(ctxt->dst.val), "+d"(ctxt->src.val), [flags]"+D"(flags),
  4160. [fastop]"+S"(fop)
  4161. : "c"(ctxt->src2.val));
  4162. ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
  4163. if (!fop) /* exception is returned in fop variable */
  4164. return emulate_de(ctxt);
  4165. return X86EMUL_CONTINUE;
  4166. }
  4167. void init_decode_cache(struct x86_emulate_ctxt *ctxt)
  4168. {
  4169. memset(&ctxt->rip_relative, 0,
  4170. (void *)&ctxt->modrm - (void *)&ctxt->rip_relative);
  4171. ctxt->io_read.pos = 0;
  4172. ctxt->io_read.end = 0;
  4173. ctxt->mem_read.end = 0;
  4174. }
  4175. int x86_emulate_insn(struct x86_emulate_ctxt *ctxt)
  4176. {
  4177. const struct x86_emulate_ops *ops = ctxt->ops;
  4178. int rc = X86EMUL_CONTINUE;
  4179. int saved_dst_type = ctxt->dst.type;
  4180. ctxt->mem_read.pos = 0;
  4181. /* LOCK prefix is allowed only with some instructions */
  4182. if (ctxt->lock_prefix && (!(ctxt->d & Lock) || ctxt->dst.type != OP_MEM)) {
  4183. rc = emulate_ud(ctxt);
  4184. goto done;
  4185. }
  4186. if ((ctxt->d & SrcMask) == SrcMemFAddr && ctxt->src.type != OP_MEM) {
  4187. rc = emulate_ud(ctxt);
  4188. goto done;
  4189. }
  4190. if (unlikely(ctxt->d &
  4191. (No64|Undefined|Sse|Mmx|Intercept|CheckPerm|Priv|Prot|String))) {
  4192. if ((ctxt->mode == X86EMUL_MODE_PROT64 && (ctxt->d & No64)) ||
  4193. (ctxt->d & Undefined)) {
  4194. rc = emulate_ud(ctxt);
  4195. goto done;
  4196. }
  4197. if (((ctxt->d & (Sse|Mmx)) && ((ops->get_cr(ctxt, 0) & X86_CR0_EM)))
  4198. || ((ctxt->d & Sse) && !(ops->get_cr(ctxt, 4) & X86_CR4_OSFXSR))) {
  4199. rc = emulate_ud(ctxt);
  4200. goto done;
  4201. }
  4202. if ((ctxt->d & (Sse|Mmx)) && (ops->get_cr(ctxt, 0) & X86_CR0_TS)) {
  4203. rc = emulate_nm(ctxt);
  4204. goto done;
  4205. }
  4206. if (ctxt->d & Mmx) {
  4207. rc = flush_pending_x87_faults(ctxt);
  4208. if (rc != X86EMUL_CONTINUE)
  4209. goto done;
  4210. /*
  4211. * Now that we know the fpu is exception safe, we can fetch
  4212. * operands from it.
  4213. */
  4214. fetch_possible_mmx_operand(ctxt, &ctxt->src);
  4215. fetch_possible_mmx_operand(ctxt, &ctxt->src2);
  4216. if (!(ctxt->d & Mov))
  4217. fetch_possible_mmx_operand(ctxt, &ctxt->dst);
  4218. }
  4219. if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
  4220. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4221. X86_ICPT_PRE_EXCEPT);
  4222. if (rc != X86EMUL_CONTINUE)
  4223. goto done;
  4224. }
  4225. /* Instruction can only be executed in protected mode */
  4226. if ((ctxt->d & Prot) && ctxt->mode < X86EMUL_MODE_PROT16) {
  4227. rc = emulate_ud(ctxt);
  4228. goto done;
  4229. }
  4230. /* Privileged instruction can be executed only in CPL=0 */
  4231. if ((ctxt->d & Priv) && ops->cpl(ctxt)) {
  4232. if (ctxt->d & PrivUD)
  4233. rc = emulate_ud(ctxt);
  4234. else
  4235. rc = emulate_gp(ctxt, 0);
  4236. goto done;
  4237. }
  4238. /* Do instruction specific permission checks */
  4239. if (ctxt->d & CheckPerm) {
  4240. rc = ctxt->check_perm(ctxt);
  4241. if (rc != X86EMUL_CONTINUE)
  4242. goto done;
  4243. }
  4244. if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
  4245. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4246. X86_ICPT_POST_EXCEPT);
  4247. if (rc != X86EMUL_CONTINUE)
  4248. goto done;
  4249. }
  4250. if (ctxt->rep_prefix && (ctxt->d & String)) {
  4251. /* All REP prefixes have the same first termination condition */
  4252. if (address_mask(ctxt, reg_read(ctxt, VCPU_REGS_RCX)) == 0) {
  4253. ctxt->eip = ctxt->_eip;
  4254. ctxt->eflags &= ~X86_EFLAGS_RF;
  4255. goto done;
  4256. }
  4257. }
  4258. }
  4259. if ((ctxt->src.type == OP_MEM) && !(ctxt->d & NoAccess)) {
  4260. rc = segmented_read(ctxt, ctxt->src.addr.mem,
  4261. ctxt->src.valptr, ctxt->src.bytes);
  4262. if (rc != X86EMUL_CONTINUE)
  4263. goto done;
  4264. ctxt->src.orig_val64 = ctxt->src.val64;
  4265. }
  4266. if (ctxt->src2.type == OP_MEM) {
  4267. rc = segmented_read(ctxt, ctxt->src2.addr.mem,
  4268. &ctxt->src2.val, ctxt->src2.bytes);
  4269. if (rc != X86EMUL_CONTINUE)
  4270. goto done;
  4271. }
  4272. if ((ctxt->d & DstMask) == ImplicitOps)
  4273. goto special_insn;
  4274. if ((ctxt->dst.type == OP_MEM) && !(ctxt->d & Mov)) {
  4275. /* optimisation - avoid slow emulated read if Mov */
  4276. rc = segmented_read(ctxt, ctxt->dst.addr.mem,
  4277. &ctxt->dst.val, ctxt->dst.bytes);
  4278. if (rc != X86EMUL_CONTINUE) {
  4279. if (!(ctxt->d & NoWrite) &&
  4280. rc == X86EMUL_PROPAGATE_FAULT &&
  4281. ctxt->exception.vector == PF_VECTOR)
  4282. ctxt->exception.error_code |= PFERR_WRITE_MASK;
  4283. goto done;
  4284. }
  4285. }
  4286. /* Copy full 64-bit value for CMPXCHG8B. */
  4287. ctxt->dst.orig_val64 = ctxt->dst.val64;
  4288. special_insn:
  4289. if (unlikely(ctxt->guest_mode) && (ctxt->d & Intercept)) {
  4290. rc = emulator_check_intercept(ctxt, ctxt->intercept,
  4291. X86_ICPT_POST_MEMACCESS);
  4292. if (rc != X86EMUL_CONTINUE)
  4293. goto done;
  4294. }
  4295. if (ctxt->rep_prefix && (ctxt->d & String))
  4296. ctxt->eflags |= X86_EFLAGS_RF;
  4297. else
  4298. ctxt->eflags &= ~X86_EFLAGS_RF;
  4299. if (ctxt->execute) {
  4300. if (ctxt->d & Fastop) {
  4301. void (*fop)(struct fastop *) = (void *)ctxt->execute;
  4302. rc = fastop(ctxt, fop);
  4303. if (rc != X86EMUL_CONTINUE)
  4304. goto done;
  4305. goto writeback;
  4306. }
  4307. rc = ctxt->execute(ctxt);
  4308. if (rc != X86EMUL_CONTINUE)
  4309. goto done;
  4310. goto writeback;
  4311. }
  4312. if (ctxt->opcode_len == 2)
  4313. goto twobyte_insn;
  4314. else if (ctxt->opcode_len == 3)
  4315. goto threebyte_insn;
  4316. switch (ctxt->b) {
  4317. case 0x70 ... 0x7f: /* jcc (short) */
  4318. if (test_cc(ctxt->b, ctxt->eflags))
  4319. rc = jmp_rel(ctxt, ctxt->src.val);
  4320. break;
  4321. case 0x8d: /* lea r16/r32, m */
  4322. ctxt->dst.val = ctxt->src.addr.mem.ea;
  4323. break;
  4324. case 0x90 ... 0x97: /* nop / xchg reg, rax */
  4325. if (ctxt->dst.addr.reg == reg_rmw(ctxt, VCPU_REGS_RAX))
  4326. ctxt->dst.type = OP_NONE;
  4327. else
  4328. rc = em_xchg(ctxt);
  4329. break;
  4330. case 0x98: /* cbw/cwde/cdqe */
  4331. switch (ctxt->op_bytes) {
  4332. case 2: ctxt->dst.val = (s8)ctxt->dst.val; break;
  4333. case 4: ctxt->dst.val = (s16)ctxt->dst.val; break;
  4334. case 8: ctxt->dst.val = (s32)ctxt->dst.val; break;
  4335. }
  4336. break;
  4337. case 0xcc: /* int3 */
  4338. rc = emulate_int(ctxt, 3);
  4339. break;
  4340. case 0xcd: /* int n */
  4341. rc = emulate_int(ctxt, ctxt->src.val);
  4342. break;
  4343. case 0xce: /* into */
  4344. if (ctxt->eflags & X86_EFLAGS_OF)
  4345. rc = emulate_int(ctxt, 4);
  4346. break;
  4347. case 0xe9: /* jmp rel */
  4348. case 0xeb: /* jmp rel short */
  4349. rc = jmp_rel(ctxt, ctxt->src.val);
  4350. ctxt->dst.type = OP_NONE; /* Disable writeback. */
  4351. break;
  4352. case 0xf4: /* hlt */
  4353. ctxt->ops->halt(ctxt);
  4354. break;
  4355. case 0xf5: /* cmc */
  4356. /* complement carry flag from eflags reg */
  4357. ctxt->eflags ^= X86_EFLAGS_CF;
  4358. break;
  4359. case 0xf8: /* clc */
  4360. ctxt->eflags &= ~X86_EFLAGS_CF;
  4361. break;
  4362. case 0xf9: /* stc */
  4363. ctxt->eflags |= X86_EFLAGS_CF;
  4364. break;
  4365. case 0xfc: /* cld */
  4366. ctxt->eflags &= ~X86_EFLAGS_DF;
  4367. break;
  4368. case 0xfd: /* std */
  4369. ctxt->eflags |= X86_EFLAGS_DF;
  4370. break;
  4371. default:
  4372. goto cannot_emulate;
  4373. }
  4374. if (rc != X86EMUL_CONTINUE)
  4375. goto done;
  4376. writeback:
  4377. if (ctxt->d & SrcWrite) {
  4378. BUG_ON(ctxt->src.type == OP_MEM || ctxt->src.type == OP_MEM_STR);
  4379. rc = writeback(ctxt, &ctxt->src);
  4380. if (rc != X86EMUL_CONTINUE)
  4381. goto done;
  4382. }
  4383. if (!(ctxt->d & NoWrite)) {
  4384. rc = writeback(ctxt, &ctxt->dst);
  4385. if (rc != X86EMUL_CONTINUE)
  4386. goto done;
  4387. }
  4388. /*
  4389. * restore dst type in case the decoding will be reused
  4390. * (happens for string instruction )
  4391. */
  4392. ctxt->dst.type = saved_dst_type;
  4393. if ((ctxt->d & SrcMask) == SrcSI)
  4394. string_addr_inc(ctxt, VCPU_REGS_RSI, &ctxt->src);
  4395. if ((ctxt->d & DstMask) == DstDI)
  4396. string_addr_inc(ctxt, VCPU_REGS_RDI, &ctxt->dst);
  4397. if (ctxt->rep_prefix && (ctxt->d & String)) {
  4398. unsigned int count;
  4399. struct read_cache *r = &ctxt->io_read;
  4400. if ((ctxt->d & SrcMask) == SrcSI)
  4401. count = ctxt->src.count;
  4402. else
  4403. count = ctxt->dst.count;
  4404. register_address_increment(ctxt, VCPU_REGS_RCX, -count);
  4405. if (!string_insn_completed(ctxt)) {
  4406. /*
  4407. * Re-enter guest when pio read ahead buffer is empty
  4408. * or, if it is not used, after each 1024 iteration.
  4409. */
  4410. if ((r->end != 0 || reg_read(ctxt, VCPU_REGS_RCX) & 0x3ff) &&
  4411. (r->end == 0 || r->end != r->pos)) {
  4412. /*
  4413. * Reset read cache. Usually happens before
  4414. * decode, but since instruction is restarted
  4415. * we have to do it here.
  4416. */
  4417. ctxt->mem_read.end = 0;
  4418. writeback_registers(ctxt);
  4419. return EMULATION_RESTART;
  4420. }
  4421. goto done; /* skip rip writeback */
  4422. }
  4423. ctxt->eflags &= ~X86_EFLAGS_RF;
  4424. }
  4425. ctxt->eip = ctxt->_eip;
  4426. done:
  4427. if (rc == X86EMUL_PROPAGATE_FAULT) {
  4428. WARN_ON(ctxt->exception.vector > 0x1f);
  4429. ctxt->have_exception = true;
  4430. }
  4431. if (rc == X86EMUL_INTERCEPTED)
  4432. return EMULATION_INTERCEPTED;
  4433. if (rc == X86EMUL_CONTINUE)
  4434. writeback_registers(ctxt);
  4435. return (rc == X86EMUL_UNHANDLEABLE) ? EMULATION_FAILED : EMULATION_OK;
  4436. twobyte_insn:
  4437. switch (ctxt->b) {
  4438. case 0x09: /* wbinvd */
  4439. (ctxt->ops->wbinvd)(ctxt);
  4440. break;
  4441. case 0x08: /* invd */
  4442. case 0x0d: /* GrpP (prefetch) */
  4443. case 0x18: /* Grp16 (prefetch/nop) */
  4444. case 0x1f: /* nop */
  4445. break;
  4446. case 0x20: /* mov cr, reg */
  4447. ctxt->dst.val = ops->get_cr(ctxt, ctxt->modrm_reg);
  4448. break;
  4449. case 0x21: /* mov from dr to reg */
  4450. ops->get_dr(ctxt, ctxt->modrm_reg, &ctxt->dst.val);
  4451. break;
  4452. case 0x40 ... 0x4f: /* cmov */
  4453. if (test_cc(ctxt->b, ctxt->eflags))
  4454. ctxt->dst.val = ctxt->src.val;
  4455. else if (ctxt->op_bytes != 4)
  4456. ctxt->dst.type = OP_NONE; /* no writeback */
  4457. break;
  4458. case 0x80 ... 0x8f: /* jnz rel, etc*/
  4459. if (test_cc(ctxt->b, ctxt->eflags))
  4460. rc = jmp_rel(ctxt, ctxt->src.val);
  4461. break;
  4462. case 0x90 ... 0x9f: /* setcc r/m8 */
  4463. ctxt->dst.val = test_cc(ctxt->b, ctxt->eflags);
  4464. break;
  4465. case 0xb6 ... 0xb7: /* movzx */
  4466. ctxt->dst.bytes = ctxt->op_bytes;
  4467. ctxt->dst.val = (ctxt->src.bytes == 1) ? (u8) ctxt->src.val
  4468. : (u16) ctxt->src.val;
  4469. break;
  4470. case 0xbe ... 0xbf: /* movsx */
  4471. ctxt->dst.bytes = ctxt->op_bytes;
  4472. ctxt->dst.val = (ctxt->src.bytes == 1) ? (s8) ctxt->src.val :
  4473. (s16) ctxt->src.val;
  4474. break;
  4475. default:
  4476. goto cannot_emulate;
  4477. }
  4478. threebyte_insn:
  4479. if (rc != X86EMUL_CONTINUE)
  4480. goto done;
  4481. goto writeback;
  4482. cannot_emulate:
  4483. return EMULATION_FAILED;
  4484. }
  4485. void emulator_invalidate_register_cache(struct x86_emulate_ctxt *ctxt)
  4486. {
  4487. invalidate_registers(ctxt);
  4488. }
  4489. void emulator_writeback_register_cache(struct x86_emulate_ctxt *ctxt)
  4490. {
  4491. writeback_registers(ctxt);
  4492. }