pid.h 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200
  1. #ifndef _LINUX_PID_H
  2. #define _LINUX_PID_H
  3. #include <linux/rculist.h>
  4. enum pid_type
  5. {
  6. PIDTYPE_PID,
  7. PIDTYPE_PGID,
  8. PIDTYPE_SID,
  9. PIDTYPE_MAX
  10. };
  11. /*
  12. * What is struct pid?
  13. *
  14. * A struct pid is the kernel's internal notion of a process identifier.
  15. * It refers to individual tasks, process groups, and sessions. While
  16. * there are processes attached to it the struct pid lives in a hash
  17. * table, so it and then the processes that it refers to can be found
  18. * quickly from the numeric pid value. The attached processes may be
  19. * quickly accessed by following pointers from struct pid.
  20. *
  21. * Storing pid_t values in the kernel and referring to them later has a
  22. * problem. The process originally with that pid may have exited and the
  23. * pid allocator wrapped, and another process could have come along
  24. * and been assigned that pid.
  25. *
  26. * Referring to user space processes by holding a reference to struct
  27. * task_struct has a problem. When the user space process exits
  28. * the now useless task_struct is still kept. A task_struct plus a
  29. * stack consumes around 10K of low kernel memory. More precisely
  30. * this is THREAD_SIZE + sizeof(struct task_struct). By comparison
  31. * a struct pid is about 64 bytes.
  32. *
  33. * Holding a reference to struct pid solves both of these problems.
  34. * It is small so holding a reference does not consume a lot of
  35. * resources, and since a new struct pid is allocated when the numeric pid
  36. * value is reused (when pids wrap around) we don't mistakenly refer to new
  37. * processes.
  38. */
  39. /*
  40. * struct upid is used to get the id of the struct pid, as it is
  41. * seen in particular namespace. Later the struct pid is found with
  42. * find_pid_ns() using the int nr and struct pid_namespace *ns.
  43. */
  44. struct upid {
  45. /* Try to keep pid_chain in the same cacheline as nr for find_vpid */
  46. int nr;
  47. struct pid_namespace *ns;
  48. struct hlist_node pid_chain;
  49. };
  50. struct pid
  51. {
  52. atomic_t count;
  53. unsigned int level;
  54. /* lists of tasks that use this pid */
  55. struct hlist_head tasks[PIDTYPE_MAX];
  56. struct rcu_head rcu;
  57. struct upid numbers[1];
  58. };
  59. extern struct pid init_struct_pid;
  60. struct pid_link
  61. {
  62. struct hlist_node node;
  63. struct pid *pid;
  64. };
  65. static inline struct pid *get_pid(struct pid *pid)
  66. {
  67. if (pid)
  68. atomic_inc(&pid->count);
  69. return pid;
  70. }
  71. extern void put_pid(struct pid *pid);
  72. extern struct task_struct *pid_task(struct pid *pid, enum pid_type);
  73. extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type);
  74. extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type);
  75. /*
  76. * these helpers must be called with the tasklist_lock write-held.
  77. */
  78. extern void attach_pid(struct task_struct *task, enum pid_type);
  79. extern void detach_pid(struct task_struct *task, enum pid_type);
  80. extern void change_pid(struct task_struct *task, enum pid_type,
  81. struct pid *pid);
  82. extern void transfer_pid(struct task_struct *old, struct task_struct *new,
  83. enum pid_type);
  84. struct pid_namespace;
  85. extern struct pid_namespace init_pid_ns;
  86. /*
  87. * look up a PID in the hash table. Must be called with the tasklist_lock
  88. * or rcu_read_lock() held.
  89. *
  90. * find_pid_ns() finds the pid in the namespace specified
  91. * find_vpid() finds the pid by its virtual id, i.e. in the current namespace
  92. *
  93. * see also find_task_by_vpid() set in include/linux/sched.h
  94. */
  95. extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns);
  96. extern struct pid *find_vpid(int nr);
  97. /*
  98. * Lookup a PID in the hash table, and return with it's count elevated.
  99. */
  100. extern struct pid *find_get_pid(int nr);
  101. extern struct pid *find_ge_pid(int nr, struct pid_namespace *);
  102. int next_pidmap(struct pid_namespace *pid_ns, unsigned int last);
  103. extern struct pid *alloc_pid(struct pid_namespace *ns);
  104. extern void free_pid(struct pid *pid);
  105. extern void disable_pid_allocation(struct pid_namespace *ns);
  106. /*
  107. * ns_of_pid() returns the pid namespace in which the specified pid was
  108. * allocated.
  109. *
  110. * NOTE:
  111. * ns_of_pid() is expected to be called for a process (task) that has
  112. * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid
  113. * is expected to be non-NULL. If @pid is NULL, caller should handle
  114. * the resulting NULL pid-ns.
  115. */
  116. static inline struct pid_namespace *ns_of_pid(struct pid *pid)
  117. {
  118. struct pid_namespace *ns = NULL;
  119. if (pid)
  120. ns = pid->numbers[pid->level].ns;
  121. return ns;
  122. }
  123. /*
  124. * is_child_reaper returns true if the pid is the init process
  125. * of the current namespace. As this one could be checked before
  126. * pid_ns->child_reaper is assigned in copy_process, we check
  127. * with the pid number.
  128. */
  129. static inline bool is_child_reaper(struct pid *pid)
  130. {
  131. return pid->numbers[pid->level].nr == 1;
  132. }
  133. /*
  134. * the helpers to get the pid's id seen from different namespaces
  135. *
  136. * pid_nr() : global id, i.e. the id seen from the init namespace;
  137. * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of
  138. * current.
  139. * pid_nr_ns() : id seen from the ns specified.
  140. *
  141. * see also task_xid_nr() etc in include/linux/sched.h
  142. */
  143. static inline pid_t pid_nr(struct pid *pid)
  144. {
  145. pid_t nr = 0;
  146. if (pid)
  147. nr = pid->numbers[0].nr;
  148. return nr;
  149. }
  150. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns);
  151. pid_t pid_vnr(struct pid *pid);
  152. #define do_each_pid_task(pid, type, task) \
  153. do { \
  154. if ((pid) != NULL) \
  155. hlist_for_each_entry_rcu((task), \
  156. &(pid)->tasks[type], pids[type].node) {
  157. /*
  158. * Both old and new leaders may be attached to
  159. * the same pid in the middle of de_thread().
  160. */
  161. #define while_each_pid_task(pid, type, task) \
  162. if (type == PIDTYPE_PID) \
  163. break; \
  164. } \
  165. } while (0)
  166. #define do_each_pid_thread(pid, type, task) \
  167. do_each_pid_task(pid, type, task) { \
  168. struct task_struct *tg___ = task; \
  169. for_each_thread(tg___, task) {
  170. #define while_each_pid_thread(pid, type, task) \
  171. } \
  172. task = tg___; \
  173. } while_each_pid_task(pid, type, task)
  174. #endif /* _LINUX_PID_H */