init.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725
  1. /* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/config.h>
  8. #include <linux/module.h>
  9. #include <linux/kernel.h>
  10. #include <linux/sched.h>
  11. #include <linux/string.h>
  12. #include <linux/init.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/mm.h>
  15. #include <linux/hugetlb.h>
  16. #include <linux/slab.h>
  17. #include <linux/initrd.h>
  18. #include <linux/swap.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/cache.h>
  24. #include <linux/sort.h>
  25. #include <asm/head.h>
  26. #include <asm/system.h>
  27. #include <asm/page.h>
  28. #include <asm/pgalloc.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/oplib.h>
  31. #include <asm/iommu.h>
  32. #include <asm/io.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/tlbflush.h>
  36. #include <asm/dma.h>
  37. #include <asm/starfire.h>
  38. #include <asm/tlb.h>
  39. #include <asm/spitfire.h>
  40. #include <asm/sections.h>
  41. #include <asm/tsb.h>
  42. #include <asm/hypervisor.h>
  43. extern void device_scan(void);
  44. #define MAX_PHYS_ADDRESS (1UL << 42UL)
  45. #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
  46. #define KPTE_BITMAP_BYTES \
  47. ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
  48. unsigned long kern_linear_pte_xor[2] __read_mostly;
  49. /* A bitmap, one bit for every 256MB of physical memory. If the bit
  50. * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  51. * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  52. */
  53. unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  54. /* A special kernel TSB for 4MB and 256MB linear mappings. */
  55. struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  56. #define MAX_BANKS 32
  57. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  58. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  59. static int pavail_ents __initdata;
  60. static int pavail_rescan_ents __initdata;
  61. static int cmp_p64(const void *a, const void *b)
  62. {
  63. const struct linux_prom64_registers *x = a, *y = b;
  64. if (x->phys_addr > y->phys_addr)
  65. return 1;
  66. if (x->phys_addr < y->phys_addr)
  67. return -1;
  68. return 0;
  69. }
  70. static void __init read_obp_memory(const char *property,
  71. struct linux_prom64_registers *regs,
  72. int *num_ents)
  73. {
  74. int node = prom_finddevice("/memory");
  75. int prop_size = prom_getproplen(node, property);
  76. int ents, ret, i;
  77. ents = prop_size / sizeof(struct linux_prom64_registers);
  78. if (ents > MAX_BANKS) {
  79. prom_printf("The machine has more %s property entries than "
  80. "this kernel can support (%d).\n",
  81. property, MAX_BANKS);
  82. prom_halt();
  83. }
  84. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  85. if (ret == -1) {
  86. prom_printf("Couldn't get %s property from /memory.\n");
  87. prom_halt();
  88. }
  89. *num_ents = ents;
  90. /* Sanitize what we got from the firmware, by page aligning
  91. * everything.
  92. */
  93. for (i = 0; i < ents; i++) {
  94. unsigned long base, size;
  95. base = regs[i].phys_addr;
  96. size = regs[i].reg_size;
  97. size &= PAGE_MASK;
  98. if (base & ~PAGE_MASK) {
  99. unsigned long new_base = PAGE_ALIGN(base);
  100. size -= new_base - base;
  101. if ((long) size < 0L)
  102. size = 0UL;
  103. base = new_base;
  104. }
  105. regs[i].phys_addr = base;
  106. regs[i].reg_size = size;
  107. }
  108. sort(regs, ents, sizeof(struct linux_prom64_registers),
  109. cmp_p64, NULL);
  110. }
  111. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  112. /* Ugly, but necessary... -DaveM */
  113. unsigned long phys_base __read_mostly;
  114. unsigned long kern_base __read_mostly;
  115. unsigned long kern_size __read_mostly;
  116. unsigned long pfn_base __read_mostly;
  117. /* get_new_mmu_context() uses "cache + 1". */
  118. DEFINE_SPINLOCK(ctx_alloc_lock);
  119. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  120. #define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
  121. unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
  122. /* References to special section boundaries */
  123. extern char _start[], _end[];
  124. /* Initial ramdisk setup */
  125. extern unsigned long sparc_ramdisk_image64;
  126. extern unsigned int sparc_ramdisk_image;
  127. extern unsigned int sparc_ramdisk_size;
  128. struct page *mem_map_zero __read_mostly;
  129. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  130. unsigned long sparc64_kern_pri_context __read_mostly;
  131. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  132. unsigned long sparc64_kern_sec_context __read_mostly;
  133. int bigkernel = 0;
  134. kmem_cache_t *pgtable_cache __read_mostly;
  135. static void zero_ctor(void *addr, kmem_cache_t *cache, unsigned long flags)
  136. {
  137. clear_page(addr);
  138. }
  139. void pgtable_cache_init(void)
  140. {
  141. pgtable_cache = kmem_cache_create("pgtable_cache",
  142. PAGE_SIZE, PAGE_SIZE,
  143. SLAB_HWCACHE_ALIGN |
  144. SLAB_MUST_HWCACHE_ALIGN,
  145. zero_ctor,
  146. NULL);
  147. if (!pgtable_cache) {
  148. prom_printf("pgtable_cache_init(): Could not create!\n");
  149. prom_halt();
  150. }
  151. }
  152. #ifdef CONFIG_DEBUG_DCFLUSH
  153. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  154. #ifdef CONFIG_SMP
  155. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  156. #endif
  157. #endif
  158. __inline__ void flush_dcache_page_impl(struct page *page)
  159. {
  160. #ifdef CONFIG_DEBUG_DCFLUSH
  161. atomic_inc(&dcpage_flushes);
  162. #endif
  163. #ifdef DCACHE_ALIASING_POSSIBLE
  164. __flush_dcache_page(page_address(page),
  165. ((tlb_type == spitfire) &&
  166. page_mapping(page) != NULL));
  167. #else
  168. if (page_mapping(page) != NULL &&
  169. tlb_type == spitfire)
  170. __flush_icache_page(__pa(page_address(page)));
  171. #endif
  172. }
  173. #define PG_dcache_dirty PG_arch_1
  174. #define PG_dcache_cpu_shift 24
  175. #define PG_dcache_cpu_mask (256 - 1)
  176. #if NR_CPUS > 256
  177. #error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
  178. #endif
  179. #define dcache_dirty_cpu(page) \
  180. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  181. static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
  182. {
  183. unsigned long mask = this_cpu;
  184. unsigned long non_cpu_bits;
  185. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  186. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  187. __asm__ __volatile__("1:\n\t"
  188. "ldx [%2], %%g7\n\t"
  189. "and %%g7, %1, %%g1\n\t"
  190. "or %%g1, %0, %%g1\n\t"
  191. "casx [%2], %%g7, %%g1\n\t"
  192. "cmp %%g7, %%g1\n\t"
  193. "membar #StoreLoad | #StoreStore\n\t"
  194. "bne,pn %%xcc, 1b\n\t"
  195. " nop"
  196. : /* no outputs */
  197. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  198. : "g1", "g7");
  199. }
  200. static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  201. {
  202. unsigned long mask = (1UL << PG_dcache_dirty);
  203. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  204. "1:\n\t"
  205. "ldx [%2], %%g7\n\t"
  206. "srlx %%g7, %4, %%g1\n\t"
  207. "and %%g1, %3, %%g1\n\t"
  208. "cmp %%g1, %0\n\t"
  209. "bne,pn %%icc, 2f\n\t"
  210. " andn %%g7, %1, %%g1\n\t"
  211. "casx [%2], %%g7, %%g1\n\t"
  212. "cmp %%g7, %%g1\n\t"
  213. "membar #StoreLoad | #StoreStore\n\t"
  214. "bne,pn %%xcc, 1b\n\t"
  215. " nop\n"
  216. "2:"
  217. : /* no outputs */
  218. : "r" (cpu), "r" (mask), "r" (&page->flags),
  219. "i" (PG_dcache_cpu_mask),
  220. "i" (PG_dcache_cpu_shift)
  221. : "g1", "g7");
  222. }
  223. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  224. {
  225. unsigned long tsb_addr = (unsigned long) ent;
  226. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  227. tsb_addr = __pa(tsb_addr);
  228. __tsb_insert(tsb_addr, tag, pte);
  229. }
  230. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  231. unsigned long _PAGE_SZBITS __read_mostly;
  232. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  233. {
  234. struct mm_struct *mm;
  235. struct page *page;
  236. unsigned long pfn;
  237. unsigned long pg_flags;
  238. pfn = pte_pfn(pte);
  239. if (pfn_valid(pfn) &&
  240. (page = pfn_to_page(pfn), page_mapping(page)) &&
  241. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  242. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  243. PG_dcache_cpu_mask);
  244. int this_cpu = get_cpu();
  245. /* This is just to optimize away some function calls
  246. * in the SMP case.
  247. */
  248. if (cpu == this_cpu)
  249. flush_dcache_page_impl(page);
  250. else
  251. smp_flush_dcache_page_impl(page, cpu);
  252. clear_dcache_dirty_cpu(page, cpu);
  253. put_cpu();
  254. }
  255. mm = vma->vm_mm;
  256. if ((pte_val(pte) & _PAGE_ALL_SZ_BITS) == _PAGE_SZBITS) {
  257. struct tsb *tsb;
  258. unsigned long tag;
  259. tsb = &mm->context.tsb[(address >> PAGE_SHIFT) &
  260. (mm->context.tsb_nentries - 1UL)];
  261. tag = (address >> 22UL);
  262. tsb_insert(tsb, tag, pte_val(pte));
  263. }
  264. }
  265. void flush_dcache_page(struct page *page)
  266. {
  267. struct address_space *mapping;
  268. int this_cpu;
  269. /* Do not bother with the expensive D-cache flush if it
  270. * is merely the zero page. The 'bigcore' testcase in GDB
  271. * causes this case to run millions of times.
  272. */
  273. if (page == ZERO_PAGE(0))
  274. return;
  275. this_cpu = get_cpu();
  276. mapping = page_mapping(page);
  277. if (mapping && !mapping_mapped(mapping)) {
  278. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  279. if (dirty) {
  280. int dirty_cpu = dcache_dirty_cpu(page);
  281. if (dirty_cpu == this_cpu)
  282. goto out;
  283. smp_flush_dcache_page_impl(page, dirty_cpu);
  284. }
  285. set_dcache_dirty(page, this_cpu);
  286. } else {
  287. /* We could delay the flush for the !page_mapping
  288. * case too. But that case is for exec env/arg
  289. * pages and those are %99 certainly going to get
  290. * faulted into the tlb (and thus flushed) anyways.
  291. */
  292. flush_dcache_page_impl(page);
  293. }
  294. out:
  295. put_cpu();
  296. }
  297. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  298. {
  299. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  300. if (tlb_type == spitfire) {
  301. unsigned long kaddr;
  302. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
  303. __flush_icache_page(__get_phys(kaddr));
  304. }
  305. }
  306. unsigned long page_to_pfn(struct page *page)
  307. {
  308. return (unsigned long) ((page - mem_map) + pfn_base);
  309. }
  310. struct page *pfn_to_page(unsigned long pfn)
  311. {
  312. return (mem_map + (pfn - pfn_base));
  313. }
  314. void show_mem(void)
  315. {
  316. printk("Mem-info:\n");
  317. show_free_areas();
  318. printk("Free swap: %6ldkB\n",
  319. nr_swap_pages << (PAGE_SHIFT-10));
  320. printk("%ld pages of RAM\n", num_physpages);
  321. printk("%d free pages\n", nr_free_pages());
  322. }
  323. void mmu_info(struct seq_file *m)
  324. {
  325. if (tlb_type == cheetah)
  326. seq_printf(m, "MMU Type\t: Cheetah\n");
  327. else if (tlb_type == cheetah_plus)
  328. seq_printf(m, "MMU Type\t: Cheetah+\n");
  329. else if (tlb_type == spitfire)
  330. seq_printf(m, "MMU Type\t: Spitfire\n");
  331. else if (tlb_type == hypervisor)
  332. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  333. else
  334. seq_printf(m, "MMU Type\t: ???\n");
  335. #ifdef CONFIG_DEBUG_DCFLUSH
  336. seq_printf(m, "DCPageFlushes\t: %d\n",
  337. atomic_read(&dcpage_flushes));
  338. #ifdef CONFIG_SMP
  339. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  340. atomic_read(&dcpage_flushes_xcall));
  341. #endif /* CONFIG_SMP */
  342. #endif /* CONFIG_DEBUG_DCFLUSH */
  343. }
  344. struct linux_prom_translation {
  345. unsigned long virt;
  346. unsigned long size;
  347. unsigned long data;
  348. };
  349. /* Exported for kernel TLB miss handling in ktlb.S */
  350. struct linux_prom_translation prom_trans[512] __read_mostly;
  351. unsigned int prom_trans_ents __read_mostly;
  352. /* Exported for SMP bootup purposes. */
  353. unsigned long kern_locked_tte_data;
  354. /* The obp translations are saved based on 8k pagesize, since obp can
  355. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  356. * HI_OBP_ADDRESS range are handled in ktlb.S.
  357. */
  358. static inline int in_obp_range(unsigned long vaddr)
  359. {
  360. return (vaddr >= LOW_OBP_ADDRESS &&
  361. vaddr < HI_OBP_ADDRESS);
  362. }
  363. static int cmp_ptrans(const void *a, const void *b)
  364. {
  365. const struct linux_prom_translation *x = a, *y = b;
  366. if (x->virt > y->virt)
  367. return 1;
  368. if (x->virt < y->virt)
  369. return -1;
  370. return 0;
  371. }
  372. /* Read OBP translations property into 'prom_trans[]'. */
  373. static void __init read_obp_translations(void)
  374. {
  375. int n, node, ents, first, last, i;
  376. node = prom_finddevice("/virtual-memory");
  377. n = prom_getproplen(node, "translations");
  378. if (unlikely(n == 0 || n == -1)) {
  379. prom_printf("prom_mappings: Couldn't get size.\n");
  380. prom_halt();
  381. }
  382. if (unlikely(n > sizeof(prom_trans))) {
  383. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  384. prom_halt();
  385. }
  386. if ((n = prom_getproperty(node, "translations",
  387. (char *)&prom_trans[0],
  388. sizeof(prom_trans))) == -1) {
  389. prom_printf("prom_mappings: Couldn't get property.\n");
  390. prom_halt();
  391. }
  392. n = n / sizeof(struct linux_prom_translation);
  393. ents = n;
  394. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  395. cmp_ptrans, NULL);
  396. /* Now kick out all the non-OBP entries. */
  397. for (i = 0; i < ents; i++) {
  398. if (in_obp_range(prom_trans[i].virt))
  399. break;
  400. }
  401. first = i;
  402. for (; i < ents; i++) {
  403. if (!in_obp_range(prom_trans[i].virt))
  404. break;
  405. }
  406. last = i;
  407. for (i = 0; i < (last - first); i++) {
  408. struct linux_prom_translation *src = &prom_trans[i + first];
  409. struct linux_prom_translation *dest = &prom_trans[i];
  410. *dest = *src;
  411. }
  412. for (; i < ents; i++) {
  413. struct linux_prom_translation *dest = &prom_trans[i];
  414. dest->virt = dest->size = dest->data = 0x0UL;
  415. }
  416. prom_trans_ents = last - first;
  417. if (tlb_type == spitfire) {
  418. /* Clear diag TTE bits. */
  419. for (i = 0; i < prom_trans_ents; i++)
  420. prom_trans[i].data &= ~0x0003fe0000000000UL;
  421. }
  422. }
  423. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  424. unsigned long pte,
  425. unsigned long mmu)
  426. {
  427. register unsigned long func asm("%o5");
  428. register unsigned long arg0 asm("%o0");
  429. register unsigned long arg1 asm("%o1");
  430. register unsigned long arg2 asm("%o2");
  431. register unsigned long arg3 asm("%o3");
  432. func = HV_FAST_MMU_MAP_PERM_ADDR;
  433. arg0 = vaddr;
  434. arg1 = 0;
  435. arg2 = pte;
  436. arg3 = mmu;
  437. __asm__ __volatile__("ta 0x80"
  438. : "=&r" (func), "=&r" (arg0),
  439. "=&r" (arg1), "=&r" (arg2),
  440. "=&r" (arg3)
  441. : "0" (func), "1" (arg0), "2" (arg1),
  442. "3" (arg2), "4" (arg3));
  443. if (arg0 != 0) {
  444. prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
  445. "errors with %lx\n", vaddr, 0, pte, mmu, arg0);
  446. prom_halt();
  447. }
  448. }
  449. static unsigned long kern_large_tte(unsigned long paddr);
  450. static void __init remap_kernel(void)
  451. {
  452. unsigned long phys_page, tte_vaddr, tte_data;
  453. int tlb_ent = sparc64_highest_locked_tlbent();
  454. tte_vaddr = (unsigned long) KERNBASE;
  455. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  456. tte_data = kern_large_tte(phys_page);
  457. kern_locked_tte_data = tte_data;
  458. /* Now lock us into the TLBs via Hypervisor or OBP. */
  459. if (tlb_type == hypervisor) {
  460. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  461. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  462. if (bigkernel) {
  463. tte_vaddr += 0x400000;
  464. tte_data += 0x400000;
  465. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  466. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  467. }
  468. } else {
  469. prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
  470. prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
  471. if (bigkernel) {
  472. tlb_ent -= 1;
  473. prom_dtlb_load(tlb_ent,
  474. tte_data + 0x400000,
  475. tte_vaddr + 0x400000);
  476. prom_itlb_load(tlb_ent,
  477. tte_data + 0x400000,
  478. tte_vaddr + 0x400000);
  479. }
  480. sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
  481. }
  482. if (tlb_type == cheetah_plus) {
  483. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  484. CTX_CHEETAH_PLUS_NUC);
  485. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  486. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  487. }
  488. }
  489. static void __init inherit_prom_mappings(void)
  490. {
  491. read_obp_translations();
  492. /* Now fixup OBP's idea about where we really are mapped. */
  493. prom_printf("Remapping the kernel... ");
  494. remap_kernel();
  495. prom_printf("done.\n");
  496. }
  497. void prom_world(int enter)
  498. {
  499. if (!enter)
  500. set_fs((mm_segment_t) { get_thread_current_ds() });
  501. __asm__ __volatile__("flushw");
  502. }
  503. #ifdef DCACHE_ALIASING_POSSIBLE
  504. void __flush_dcache_range(unsigned long start, unsigned long end)
  505. {
  506. unsigned long va;
  507. if (tlb_type == spitfire) {
  508. int n = 0;
  509. for (va = start; va < end; va += 32) {
  510. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  511. if (++n >= 512)
  512. break;
  513. }
  514. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  515. start = __pa(start);
  516. end = __pa(end);
  517. for (va = start; va < end; va += 32)
  518. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  519. "membar #Sync"
  520. : /* no outputs */
  521. : "r" (va),
  522. "i" (ASI_DCACHE_INVALIDATE));
  523. }
  524. }
  525. #endif /* DCACHE_ALIASING_POSSIBLE */
  526. /* Caller does TLB context flushing on local CPU if necessary.
  527. * The caller also ensures that CTX_VALID(mm->context) is false.
  528. *
  529. * We must be careful about boundary cases so that we never
  530. * let the user have CTX 0 (nucleus) or we ever use a CTX
  531. * version of zero (and thus NO_CONTEXT would not be caught
  532. * by version mis-match tests in mmu_context.h).
  533. */
  534. void get_new_mmu_context(struct mm_struct *mm)
  535. {
  536. unsigned long ctx, new_ctx;
  537. unsigned long orig_pgsz_bits;
  538. spin_lock(&ctx_alloc_lock);
  539. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  540. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  541. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  542. if (new_ctx >= (1 << CTX_NR_BITS)) {
  543. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  544. if (new_ctx >= ctx) {
  545. int i;
  546. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  547. CTX_FIRST_VERSION;
  548. if (new_ctx == 1)
  549. new_ctx = CTX_FIRST_VERSION;
  550. /* Don't call memset, for 16 entries that's just
  551. * plain silly...
  552. */
  553. mmu_context_bmap[0] = 3;
  554. mmu_context_bmap[1] = 0;
  555. mmu_context_bmap[2] = 0;
  556. mmu_context_bmap[3] = 0;
  557. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  558. mmu_context_bmap[i + 0] = 0;
  559. mmu_context_bmap[i + 1] = 0;
  560. mmu_context_bmap[i + 2] = 0;
  561. mmu_context_bmap[i + 3] = 0;
  562. }
  563. goto out;
  564. }
  565. }
  566. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  567. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  568. out:
  569. tlb_context_cache = new_ctx;
  570. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  571. spin_unlock(&ctx_alloc_lock);
  572. }
  573. void sparc_ultra_dump_itlb(void)
  574. {
  575. int slot;
  576. if (tlb_type == spitfire) {
  577. printk ("Contents of itlb: ");
  578. for (slot = 0; slot < 14; slot++) printk (" ");
  579. printk ("%2x:%016lx,%016lx\n",
  580. 0,
  581. spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
  582. for (slot = 1; slot < 64; slot+=3) {
  583. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  584. slot,
  585. spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
  586. slot+1,
  587. spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
  588. slot+2,
  589. spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
  590. }
  591. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  592. printk ("Contents of itlb0:\n");
  593. for (slot = 0; slot < 16; slot+=2) {
  594. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  595. slot,
  596. cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
  597. slot+1,
  598. cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
  599. }
  600. printk ("Contents of itlb2:\n");
  601. for (slot = 0; slot < 128; slot+=2) {
  602. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  603. slot,
  604. cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
  605. slot+1,
  606. cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
  607. }
  608. }
  609. }
  610. void sparc_ultra_dump_dtlb(void)
  611. {
  612. int slot;
  613. if (tlb_type == spitfire) {
  614. printk ("Contents of dtlb: ");
  615. for (slot = 0; slot < 14; slot++) printk (" ");
  616. printk ("%2x:%016lx,%016lx\n", 0,
  617. spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
  618. for (slot = 1; slot < 64; slot+=3) {
  619. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  620. slot,
  621. spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
  622. slot+1,
  623. spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
  624. slot+2,
  625. spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
  626. }
  627. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  628. printk ("Contents of dtlb0:\n");
  629. for (slot = 0; slot < 16; slot+=2) {
  630. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  631. slot,
  632. cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
  633. slot+1,
  634. cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
  635. }
  636. printk ("Contents of dtlb2:\n");
  637. for (slot = 0; slot < 512; slot+=2) {
  638. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  639. slot,
  640. cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
  641. slot+1,
  642. cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
  643. }
  644. if (tlb_type == cheetah_plus) {
  645. printk ("Contents of dtlb3:\n");
  646. for (slot = 0; slot < 512; slot+=2) {
  647. printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
  648. slot,
  649. cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
  650. slot+1,
  651. cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
  652. }
  653. }
  654. }
  655. }
  656. extern unsigned long cmdline_memory_size;
  657. unsigned long __init bootmem_init(unsigned long *pages_avail)
  658. {
  659. unsigned long bootmap_size, start_pfn, end_pfn;
  660. unsigned long end_of_phys_memory = 0UL;
  661. unsigned long bootmap_pfn, bytes_avail, size;
  662. int i;
  663. #ifdef CONFIG_DEBUG_BOOTMEM
  664. prom_printf("bootmem_init: Scan pavail, ");
  665. #endif
  666. bytes_avail = 0UL;
  667. for (i = 0; i < pavail_ents; i++) {
  668. end_of_phys_memory = pavail[i].phys_addr +
  669. pavail[i].reg_size;
  670. bytes_avail += pavail[i].reg_size;
  671. if (cmdline_memory_size) {
  672. if (bytes_avail > cmdline_memory_size) {
  673. unsigned long slack = bytes_avail - cmdline_memory_size;
  674. bytes_avail -= slack;
  675. end_of_phys_memory -= slack;
  676. pavail[i].reg_size -= slack;
  677. if ((long)pavail[i].reg_size <= 0L) {
  678. pavail[i].phys_addr = 0xdeadbeefUL;
  679. pavail[i].reg_size = 0UL;
  680. pavail_ents = i;
  681. } else {
  682. pavail[i+1].reg_size = 0Ul;
  683. pavail[i+1].phys_addr = 0xdeadbeefUL;
  684. pavail_ents = i + 1;
  685. }
  686. break;
  687. }
  688. }
  689. }
  690. *pages_avail = bytes_avail >> PAGE_SHIFT;
  691. /* Start with page aligned address of last symbol in kernel
  692. * image. The kernel is hard mapped below PAGE_OFFSET in a
  693. * 4MB locked TLB translation.
  694. */
  695. start_pfn = PAGE_ALIGN(kern_base + kern_size) >> PAGE_SHIFT;
  696. bootmap_pfn = start_pfn;
  697. end_pfn = end_of_phys_memory >> PAGE_SHIFT;
  698. #ifdef CONFIG_BLK_DEV_INITRD
  699. /* Now have to check initial ramdisk, so that bootmap does not overwrite it */
  700. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  701. unsigned long ramdisk_image = sparc_ramdisk_image ?
  702. sparc_ramdisk_image : sparc_ramdisk_image64;
  703. if (ramdisk_image >= (unsigned long)_end - 2 * PAGE_SIZE)
  704. ramdisk_image -= KERNBASE;
  705. initrd_start = ramdisk_image + phys_base;
  706. initrd_end = initrd_start + sparc_ramdisk_size;
  707. if (initrd_end > end_of_phys_memory) {
  708. printk(KERN_CRIT "initrd extends beyond end of memory "
  709. "(0x%016lx > 0x%016lx)\ndisabling initrd\n",
  710. initrd_end, end_of_phys_memory);
  711. initrd_start = 0;
  712. }
  713. if (initrd_start) {
  714. if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
  715. initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
  716. bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
  717. }
  718. }
  719. #endif
  720. /* Initialize the boot-time allocator. */
  721. max_pfn = max_low_pfn = end_pfn;
  722. min_low_pfn = pfn_base;
  723. #ifdef CONFIG_DEBUG_BOOTMEM
  724. prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
  725. min_low_pfn, bootmap_pfn, max_low_pfn);
  726. #endif
  727. bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base, end_pfn);
  728. /* Now register the available physical memory with the
  729. * allocator.
  730. */
  731. for (i = 0; i < pavail_ents; i++) {
  732. #ifdef CONFIG_DEBUG_BOOTMEM
  733. prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
  734. i, pavail[i].phys_addr, pavail[i].reg_size);
  735. #endif
  736. free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
  737. }
  738. #ifdef CONFIG_BLK_DEV_INITRD
  739. if (initrd_start) {
  740. size = initrd_end - initrd_start;
  741. /* Resert the initrd image area. */
  742. #ifdef CONFIG_DEBUG_BOOTMEM
  743. prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
  744. initrd_start, initrd_end);
  745. #endif
  746. reserve_bootmem(initrd_start, size);
  747. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  748. initrd_start += PAGE_OFFSET;
  749. initrd_end += PAGE_OFFSET;
  750. }
  751. #endif
  752. /* Reserve the kernel text/data/bss. */
  753. #ifdef CONFIG_DEBUG_BOOTMEM
  754. prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
  755. #endif
  756. reserve_bootmem(kern_base, kern_size);
  757. *pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
  758. /* Reserve the bootmem map. We do not account for it
  759. * in pages_avail because we will release that memory
  760. * in free_all_bootmem.
  761. */
  762. size = bootmap_size;
  763. #ifdef CONFIG_DEBUG_BOOTMEM
  764. prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
  765. (bootmap_pfn << PAGE_SHIFT), size);
  766. #endif
  767. reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
  768. *pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
  769. return end_pfn;
  770. }
  771. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  772. static int pall_ents __initdata;
  773. #ifdef CONFIG_DEBUG_PAGEALLOC
  774. static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
  775. {
  776. unsigned long vstart = PAGE_OFFSET + pstart;
  777. unsigned long vend = PAGE_OFFSET + pend;
  778. unsigned long alloc_bytes = 0UL;
  779. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  780. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  781. vstart, vend);
  782. prom_halt();
  783. }
  784. while (vstart < vend) {
  785. unsigned long this_end, paddr = __pa(vstart);
  786. pgd_t *pgd = pgd_offset_k(vstart);
  787. pud_t *pud;
  788. pmd_t *pmd;
  789. pte_t *pte;
  790. pud = pud_offset(pgd, vstart);
  791. if (pud_none(*pud)) {
  792. pmd_t *new;
  793. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  794. alloc_bytes += PAGE_SIZE;
  795. pud_populate(&init_mm, pud, new);
  796. }
  797. pmd = pmd_offset(pud, vstart);
  798. if (!pmd_present(*pmd)) {
  799. pte_t *new;
  800. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  801. alloc_bytes += PAGE_SIZE;
  802. pmd_populate_kernel(&init_mm, pmd, new);
  803. }
  804. pte = pte_offset_kernel(pmd, vstart);
  805. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  806. if (this_end > vend)
  807. this_end = vend;
  808. while (vstart < this_end) {
  809. pte_val(*pte) = (paddr | pgprot_val(prot));
  810. vstart += PAGE_SIZE;
  811. paddr += PAGE_SIZE;
  812. pte++;
  813. }
  814. }
  815. return alloc_bytes;
  816. }
  817. extern unsigned int kvmap_linear_patch[1];
  818. #endif /* CONFIG_DEBUG_PAGEALLOC */
  819. static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
  820. {
  821. const unsigned long shift_256MB = 28;
  822. const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
  823. const unsigned long size_256MB = (1UL << shift_256MB);
  824. while (start < end) {
  825. long remains;
  826. if (start & mask_256MB) {
  827. start = (start + size_256MB) & ~mask_256MB;
  828. continue;
  829. }
  830. remains = end - start;
  831. while (remains >= size_256MB) {
  832. unsigned long index = start >> shift_256MB;
  833. __set_bit(index, kpte_linear_bitmap);
  834. start += size_256MB;
  835. remains -= size_256MB;
  836. }
  837. }
  838. }
  839. static void __init kernel_physical_mapping_init(void)
  840. {
  841. unsigned long i;
  842. #ifdef CONFIG_DEBUG_PAGEALLOC
  843. unsigned long mem_alloced = 0UL;
  844. #endif
  845. read_obp_memory("reg", &pall[0], &pall_ents);
  846. for (i = 0; i < pall_ents; i++) {
  847. unsigned long phys_start, phys_end;
  848. phys_start = pall[i].phys_addr;
  849. phys_end = phys_start + pall[i].reg_size;
  850. mark_kpte_bitmap(phys_start, phys_end);
  851. #ifdef CONFIG_DEBUG_PAGEALLOC
  852. mem_alloced += kernel_map_range(phys_start, phys_end,
  853. PAGE_KERNEL);
  854. #endif
  855. }
  856. #ifdef CONFIG_DEBUG_PAGEALLOC
  857. printk("Allocated %ld bytes for kernel page tables.\n",
  858. mem_alloced);
  859. kvmap_linear_patch[0] = 0x01000000; /* nop */
  860. flushi(&kvmap_linear_patch[0]);
  861. __flush_tlb_all();
  862. #endif
  863. }
  864. #ifdef CONFIG_DEBUG_PAGEALLOC
  865. void kernel_map_pages(struct page *page, int numpages, int enable)
  866. {
  867. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  868. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  869. kernel_map_range(phys_start, phys_end,
  870. (enable ? PAGE_KERNEL : __pgprot(0)));
  871. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  872. PAGE_OFFSET + phys_end);
  873. /* we should perform an IPI and flush all tlbs,
  874. * but that can deadlock->flush only current cpu.
  875. */
  876. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  877. PAGE_OFFSET + phys_end);
  878. }
  879. #endif
  880. unsigned long __init find_ecache_flush_span(unsigned long size)
  881. {
  882. int i;
  883. for (i = 0; i < pavail_ents; i++) {
  884. if (pavail[i].reg_size >= size)
  885. return pavail[i].phys_addr;
  886. }
  887. return ~0UL;
  888. }
  889. static void __init tsb_phys_patch(void)
  890. {
  891. struct tsb_ldquad_phys_patch_entry *pquad;
  892. struct tsb_phys_patch_entry *p;
  893. pquad = &__tsb_ldquad_phys_patch;
  894. while (pquad < &__tsb_ldquad_phys_patch_end) {
  895. unsigned long addr = pquad->addr;
  896. if (tlb_type == hypervisor)
  897. *(unsigned int *) addr = pquad->sun4v_insn;
  898. else
  899. *(unsigned int *) addr = pquad->sun4u_insn;
  900. wmb();
  901. __asm__ __volatile__("flush %0"
  902. : /* no outputs */
  903. : "r" (addr));
  904. pquad++;
  905. }
  906. p = &__tsb_phys_patch;
  907. while (p < &__tsb_phys_patch_end) {
  908. unsigned long addr = p->addr;
  909. *(unsigned int *) addr = p->insn;
  910. wmb();
  911. __asm__ __volatile__("flush %0"
  912. : /* no outputs */
  913. : "r" (addr));
  914. p++;
  915. }
  916. }
  917. /* Don't mark as init, we give this to the Hypervisor. */
  918. static struct hv_tsb_descr ktsb_descr[2];
  919. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  920. static void __init sun4v_ktsb_init(void)
  921. {
  922. unsigned long ktsb_pa;
  923. /* First KTSB for PAGE_SIZE mappings. */
  924. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  925. switch (PAGE_SIZE) {
  926. case 8 * 1024:
  927. default:
  928. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  929. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  930. break;
  931. case 64 * 1024:
  932. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  933. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  934. break;
  935. case 512 * 1024:
  936. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  937. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  938. break;
  939. case 4 * 1024 * 1024:
  940. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  941. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  942. break;
  943. };
  944. ktsb_descr[0].assoc = 1;
  945. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  946. ktsb_descr[0].ctx_idx = 0;
  947. ktsb_descr[0].tsb_base = ktsb_pa;
  948. ktsb_descr[0].resv = 0;
  949. /* Second KTSB for 4MB/256MB mappings. */
  950. ktsb_pa = (kern_base +
  951. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  952. ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
  953. ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
  954. HV_PGSZ_MASK_256MB);
  955. ktsb_descr[1].assoc = 1;
  956. ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
  957. ktsb_descr[1].ctx_idx = 0;
  958. ktsb_descr[1].tsb_base = ktsb_pa;
  959. ktsb_descr[1].resv = 0;
  960. }
  961. void __cpuinit sun4v_ktsb_register(void)
  962. {
  963. register unsigned long func asm("%o5");
  964. register unsigned long arg0 asm("%o0");
  965. register unsigned long arg1 asm("%o1");
  966. unsigned long pa;
  967. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  968. func = HV_FAST_MMU_TSB_CTX0;
  969. arg0 = 2;
  970. arg1 = pa;
  971. __asm__ __volatile__("ta %6"
  972. : "=&r" (func), "=&r" (arg0), "=&r" (arg1)
  973. : "0" (func), "1" (arg0), "2" (arg1),
  974. "i" (HV_FAST_TRAP));
  975. }
  976. /* paging_init() sets up the page tables */
  977. extern void cheetah_ecache_flush_init(void);
  978. extern void sun4v_patch_tlb_handlers(void);
  979. static unsigned long last_valid_pfn;
  980. pgd_t swapper_pg_dir[2048];
  981. static void sun4u_pgprot_init(void);
  982. static void sun4v_pgprot_init(void);
  983. void __init paging_init(void)
  984. {
  985. unsigned long end_pfn, pages_avail, shift;
  986. unsigned long real_end, i;
  987. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  988. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  989. /* Invalidate both kernel TSBs. */
  990. memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
  991. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  992. if (tlb_type == hypervisor)
  993. sun4v_pgprot_init();
  994. else
  995. sun4u_pgprot_init();
  996. if (tlb_type == cheetah_plus ||
  997. tlb_type == hypervisor)
  998. tsb_phys_patch();
  999. if (tlb_type == hypervisor) {
  1000. sun4v_patch_tlb_handlers();
  1001. sun4v_ktsb_init();
  1002. }
  1003. /* Find available physical memory... */
  1004. read_obp_memory("available", &pavail[0], &pavail_ents);
  1005. phys_base = 0xffffffffffffffffUL;
  1006. for (i = 0; i < pavail_ents; i++)
  1007. phys_base = min(phys_base, pavail[i].phys_addr);
  1008. pfn_base = phys_base >> PAGE_SHIFT;
  1009. set_bit(0, mmu_context_bmap);
  1010. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1011. real_end = (unsigned long)_end;
  1012. if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
  1013. bigkernel = 1;
  1014. if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
  1015. prom_printf("paging_init: Kernel > 8MB, too large.\n");
  1016. prom_halt();
  1017. }
  1018. /* Set kernel pgd to upper alias so physical page computations
  1019. * work.
  1020. */
  1021. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1022. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1023. /* Now can init the kernel/bad page tables. */
  1024. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1025. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1026. inherit_prom_mappings();
  1027. /* Ok, we can use our TLB miss and window trap handlers safely. */
  1028. setup_tba();
  1029. __flush_tlb_all();
  1030. if (tlb_type == hypervisor)
  1031. sun4v_ktsb_register();
  1032. /* Setup bootmem... */
  1033. pages_avail = 0;
  1034. last_valid_pfn = end_pfn = bootmem_init(&pages_avail);
  1035. kernel_physical_mapping_init();
  1036. {
  1037. unsigned long zones_size[MAX_NR_ZONES];
  1038. unsigned long zholes_size[MAX_NR_ZONES];
  1039. unsigned long npages;
  1040. int znum;
  1041. for (znum = 0; znum < MAX_NR_ZONES; znum++)
  1042. zones_size[znum] = zholes_size[znum] = 0;
  1043. npages = end_pfn - pfn_base;
  1044. zones_size[ZONE_DMA] = npages;
  1045. zholes_size[ZONE_DMA] = npages - pages_avail;
  1046. free_area_init_node(0, &contig_page_data, zones_size,
  1047. phys_base >> PAGE_SHIFT, zholes_size);
  1048. }
  1049. device_scan();
  1050. }
  1051. static void __init taint_real_pages(void)
  1052. {
  1053. int i;
  1054. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1055. /* Find changes discovered in the physmem available rescan and
  1056. * reserve the lost portions in the bootmem maps.
  1057. */
  1058. for (i = 0; i < pavail_ents; i++) {
  1059. unsigned long old_start, old_end;
  1060. old_start = pavail[i].phys_addr;
  1061. old_end = old_start +
  1062. pavail[i].reg_size;
  1063. while (old_start < old_end) {
  1064. int n;
  1065. for (n = 0; pavail_rescan_ents; n++) {
  1066. unsigned long new_start, new_end;
  1067. new_start = pavail_rescan[n].phys_addr;
  1068. new_end = new_start +
  1069. pavail_rescan[n].reg_size;
  1070. if (new_start <= old_start &&
  1071. new_end >= (old_start + PAGE_SIZE)) {
  1072. set_bit(old_start >> 22,
  1073. sparc64_valid_addr_bitmap);
  1074. goto do_next_page;
  1075. }
  1076. }
  1077. reserve_bootmem(old_start, PAGE_SIZE);
  1078. do_next_page:
  1079. old_start += PAGE_SIZE;
  1080. }
  1081. }
  1082. }
  1083. void __init mem_init(void)
  1084. {
  1085. unsigned long codepages, datapages, initpages;
  1086. unsigned long addr, last;
  1087. int i;
  1088. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1089. i += 1;
  1090. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1091. if (sparc64_valid_addr_bitmap == NULL) {
  1092. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1093. prom_halt();
  1094. }
  1095. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1096. addr = PAGE_OFFSET + kern_base;
  1097. last = PAGE_ALIGN(kern_size) + addr;
  1098. while (addr < last) {
  1099. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1100. addr += PAGE_SIZE;
  1101. }
  1102. taint_real_pages();
  1103. max_mapnr = last_valid_pfn - pfn_base;
  1104. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1105. #ifdef CONFIG_DEBUG_BOOTMEM
  1106. prom_printf("mem_init: Calling free_all_bootmem().\n");
  1107. #endif
  1108. totalram_pages = num_physpages = free_all_bootmem() - 1;
  1109. /*
  1110. * Set up the zero page, mark it reserved, so that page count
  1111. * is not manipulated when freeing the page from user ptes.
  1112. */
  1113. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1114. if (mem_map_zero == NULL) {
  1115. prom_printf("paging_init: Cannot alloc zero page.\n");
  1116. prom_halt();
  1117. }
  1118. SetPageReserved(mem_map_zero);
  1119. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1120. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1121. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1122. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1123. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1124. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1125. printk("Memory: %uk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1126. nr_free_pages() << (PAGE_SHIFT-10),
  1127. codepages << (PAGE_SHIFT-10),
  1128. datapages << (PAGE_SHIFT-10),
  1129. initpages << (PAGE_SHIFT-10),
  1130. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1131. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1132. cheetah_ecache_flush_init();
  1133. }
  1134. void free_initmem(void)
  1135. {
  1136. unsigned long addr, initend;
  1137. /*
  1138. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1139. */
  1140. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1141. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1142. for (; addr < initend; addr += PAGE_SIZE) {
  1143. unsigned long page;
  1144. struct page *p;
  1145. page = (addr +
  1146. ((unsigned long) __va(kern_base)) -
  1147. ((unsigned long) KERNBASE));
  1148. memset((void *)addr, 0xcc, PAGE_SIZE);
  1149. p = virt_to_page(page);
  1150. ClearPageReserved(p);
  1151. set_page_count(p, 1);
  1152. __free_page(p);
  1153. num_physpages++;
  1154. totalram_pages++;
  1155. }
  1156. }
  1157. #ifdef CONFIG_BLK_DEV_INITRD
  1158. void free_initrd_mem(unsigned long start, unsigned long end)
  1159. {
  1160. if (start < end)
  1161. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1162. for (; start < end; start += PAGE_SIZE) {
  1163. struct page *p = virt_to_page(start);
  1164. ClearPageReserved(p);
  1165. set_page_count(p, 1);
  1166. __free_page(p);
  1167. num_physpages++;
  1168. totalram_pages++;
  1169. }
  1170. }
  1171. #endif
  1172. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1173. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1174. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1175. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1176. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1177. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1178. pgprot_t PAGE_KERNEL __read_mostly;
  1179. EXPORT_SYMBOL(PAGE_KERNEL);
  1180. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1181. pgprot_t PAGE_COPY __read_mostly;
  1182. pgprot_t PAGE_SHARED __read_mostly;
  1183. EXPORT_SYMBOL(PAGE_SHARED);
  1184. pgprot_t PAGE_EXEC __read_mostly;
  1185. unsigned long pg_iobits __read_mostly;
  1186. unsigned long _PAGE_IE __read_mostly;
  1187. unsigned long _PAGE_E __read_mostly;
  1188. EXPORT_SYMBOL(_PAGE_E);
  1189. unsigned long _PAGE_CACHE __read_mostly;
  1190. EXPORT_SYMBOL(_PAGE_CACHE);
  1191. static void prot_init_common(unsigned long page_none,
  1192. unsigned long page_shared,
  1193. unsigned long page_copy,
  1194. unsigned long page_readonly,
  1195. unsigned long page_exec_bit)
  1196. {
  1197. PAGE_COPY = __pgprot(page_copy);
  1198. PAGE_SHARED = __pgprot(page_shared);
  1199. protection_map[0x0] = __pgprot(page_none);
  1200. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1201. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1202. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1203. protection_map[0x4] = __pgprot(page_readonly);
  1204. protection_map[0x5] = __pgprot(page_readonly);
  1205. protection_map[0x6] = __pgprot(page_copy);
  1206. protection_map[0x7] = __pgprot(page_copy);
  1207. protection_map[0x8] = __pgprot(page_none);
  1208. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1209. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1210. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1211. protection_map[0xc] = __pgprot(page_readonly);
  1212. protection_map[0xd] = __pgprot(page_readonly);
  1213. protection_map[0xe] = __pgprot(page_shared);
  1214. protection_map[0xf] = __pgprot(page_shared);
  1215. }
  1216. static void __init sun4u_pgprot_init(void)
  1217. {
  1218. unsigned long page_none, page_shared, page_copy, page_readonly;
  1219. unsigned long page_exec_bit;
  1220. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1221. _PAGE_CACHE_4U | _PAGE_P_4U |
  1222. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1223. _PAGE_EXEC_4U);
  1224. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1225. _PAGE_CACHE_4U | _PAGE_P_4U |
  1226. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1227. _PAGE_EXEC_4U | _PAGE_L_4U);
  1228. PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
  1229. _PAGE_IE = _PAGE_IE_4U;
  1230. _PAGE_E = _PAGE_E_4U;
  1231. _PAGE_CACHE = _PAGE_CACHE_4U;
  1232. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1233. __ACCESS_BITS_4U | _PAGE_E_4U);
  1234. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1235. 0xfffff80000000000;
  1236. kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1237. _PAGE_P_4U | _PAGE_W_4U);
  1238. /* XXX Should use 256MB on Panther. XXX */
  1239. kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
  1240. _PAGE_SZBITS = _PAGE_SZBITS_4U;
  1241. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1242. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1243. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1244. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1245. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1246. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1247. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1248. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1249. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1250. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1251. page_exec_bit = _PAGE_EXEC_4U;
  1252. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1253. page_exec_bit);
  1254. }
  1255. static void __init sun4v_pgprot_init(void)
  1256. {
  1257. unsigned long page_none, page_shared, page_copy, page_readonly;
  1258. unsigned long page_exec_bit;
  1259. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1260. _PAGE_CACHE_4V | _PAGE_P_4V |
  1261. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1262. _PAGE_EXEC_4V);
  1263. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1264. PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
  1265. _PAGE_IE = _PAGE_IE_4V;
  1266. _PAGE_E = _PAGE_E_4V;
  1267. _PAGE_CACHE = _PAGE_CACHE_4V;
  1268. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1269. 0xfffff80000000000;
  1270. kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1271. _PAGE_P_4V | _PAGE_W_4V);
  1272. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
  1273. 0xfffff80000000000;
  1274. kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1275. _PAGE_P_4V | _PAGE_W_4V);
  1276. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1277. __ACCESS_BITS_4V | _PAGE_E_4V);
  1278. _PAGE_SZBITS = _PAGE_SZBITS_4V;
  1279. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1280. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1281. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1282. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1283. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1284. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1285. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1286. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1287. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1288. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1289. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1290. page_exec_bit = _PAGE_EXEC_4V;
  1291. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1292. page_exec_bit);
  1293. }
  1294. unsigned long pte_sz_bits(unsigned long sz)
  1295. {
  1296. if (tlb_type == hypervisor) {
  1297. switch (sz) {
  1298. case 8 * 1024:
  1299. default:
  1300. return _PAGE_SZ8K_4V;
  1301. case 64 * 1024:
  1302. return _PAGE_SZ64K_4V;
  1303. case 512 * 1024:
  1304. return _PAGE_SZ512K_4V;
  1305. case 4 * 1024 * 1024:
  1306. return _PAGE_SZ4MB_4V;
  1307. };
  1308. } else {
  1309. switch (sz) {
  1310. case 8 * 1024:
  1311. default:
  1312. return _PAGE_SZ8K_4U;
  1313. case 64 * 1024:
  1314. return _PAGE_SZ64K_4U;
  1315. case 512 * 1024:
  1316. return _PAGE_SZ512K_4U;
  1317. case 4 * 1024 * 1024:
  1318. return _PAGE_SZ4MB_4U;
  1319. };
  1320. }
  1321. }
  1322. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1323. {
  1324. pte_t pte;
  1325. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1326. pte_val(pte) |= (((unsigned long)space) << 32);
  1327. pte_val(pte) |= pte_sz_bits(page_size);
  1328. return pte;
  1329. }
  1330. static unsigned long kern_large_tte(unsigned long paddr)
  1331. {
  1332. unsigned long val;
  1333. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1334. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1335. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1336. if (tlb_type == hypervisor)
  1337. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1338. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1339. _PAGE_EXEC_4V | _PAGE_W_4V);
  1340. return val | paddr;
  1341. }
  1342. /*
  1343. * Translate PROM's mapping we capture at boot time into physical address.
  1344. * The second parameter is only set from prom_callback() invocations.
  1345. */
  1346. unsigned long prom_virt_to_phys(unsigned long promva, int *error)
  1347. {
  1348. unsigned long mask;
  1349. int i;
  1350. mask = _PAGE_PADDR_4U;
  1351. if (tlb_type == hypervisor)
  1352. mask = _PAGE_PADDR_4V;
  1353. for (i = 0; i < prom_trans_ents; i++) {
  1354. struct linux_prom_translation *p = &prom_trans[i];
  1355. if (promva >= p->virt &&
  1356. promva < (p->virt + p->size)) {
  1357. unsigned long base = p->data & mask;
  1358. if (error)
  1359. *error = 0;
  1360. return base + (promva & (8192 - 1));
  1361. }
  1362. }
  1363. if (error)
  1364. *error = 1;
  1365. return 0UL;
  1366. }
  1367. /* XXX We should kill off this ugly thing at so me point. XXX */
  1368. unsigned long sun4u_get_pte(unsigned long addr)
  1369. {
  1370. pgd_t *pgdp;
  1371. pud_t *pudp;
  1372. pmd_t *pmdp;
  1373. pte_t *ptep;
  1374. unsigned long mask = _PAGE_PADDR_4U;
  1375. if (tlb_type == hypervisor)
  1376. mask = _PAGE_PADDR_4V;
  1377. if (addr >= PAGE_OFFSET)
  1378. return addr & mask;
  1379. if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
  1380. return prom_virt_to_phys(addr, NULL);
  1381. pgdp = pgd_offset_k(addr);
  1382. pudp = pud_offset(pgdp, addr);
  1383. pmdp = pmd_offset(pudp, addr);
  1384. ptep = pte_offset_kernel(pmdp, addr);
  1385. return pte_val(*ptep) & mask;
  1386. }
  1387. /* If not locked, zap it. */
  1388. void __flush_tlb_all(void)
  1389. {
  1390. unsigned long pstate;
  1391. int i;
  1392. __asm__ __volatile__("flushw\n\t"
  1393. "rdpr %%pstate, %0\n\t"
  1394. "wrpr %0, %1, %%pstate"
  1395. : "=r" (pstate)
  1396. : "i" (PSTATE_IE));
  1397. if (tlb_type == spitfire) {
  1398. for (i = 0; i < 64; i++) {
  1399. /* Spitfire Errata #32 workaround */
  1400. /* NOTE: Always runs on spitfire, so no
  1401. * cheetah+ page size encodings.
  1402. */
  1403. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1404. "flush %%g6"
  1405. : /* No outputs */
  1406. : "r" (0),
  1407. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1408. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1409. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1410. "membar #Sync"
  1411. : /* no outputs */
  1412. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1413. spitfire_put_dtlb_data(i, 0x0UL);
  1414. }
  1415. /* Spitfire Errata #32 workaround */
  1416. /* NOTE: Always runs on spitfire, so no
  1417. * cheetah+ page size encodings.
  1418. */
  1419. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1420. "flush %%g6"
  1421. : /* No outputs */
  1422. : "r" (0),
  1423. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1424. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1425. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1426. "membar #Sync"
  1427. : /* no outputs */
  1428. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1429. spitfire_put_itlb_data(i, 0x0UL);
  1430. }
  1431. }
  1432. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1433. cheetah_flush_dtlb_all();
  1434. cheetah_flush_itlb_all();
  1435. }
  1436. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  1437. : : "r" (pstate));
  1438. }