memcontrol.c 157 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204
  1. /* memcontrol.c - Memory Controller
  2. *
  3. * Copyright IBM Corporation, 2007
  4. * Author Balbir Singh <balbir@linux.vnet.ibm.com>
  5. *
  6. * Copyright 2007 OpenVZ SWsoft Inc
  7. * Author: Pavel Emelianov <xemul@openvz.org>
  8. *
  9. * Memory thresholds
  10. * Copyright (C) 2009 Nokia Corporation
  11. * Author: Kirill A. Shutemov
  12. *
  13. * Kernel Memory Controller
  14. * Copyright (C) 2012 Parallels Inc. and Google Inc.
  15. * Authors: Glauber Costa and Suleiman Souhlal
  16. *
  17. * Native page reclaim
  18. * Charge lifetime sanitation
  19. * Lockless page tracking & accounting
  20. * Unified hierarchy configuration model
  21. * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  22. *
  23. * This program is free software; you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation; either version 2 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. */
  33. #include <linux/page_counter.h>
  34. #include <linux/memcontrol.h>
  35. #include <linux/cgroup.h>
  36. #include <linux/mm.h>
  37. #include <linux/sched/mm.h>
  38. #include <linux/shmem_fs.h>
  39. #include <linux/hugetlb.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/smp.h>
  42. #include <linux/page-flags.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/bit_spinlock.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/limits.h>
  47. #include <linux/export.h>
  48. #include <linux/mutex.h>
  49. #include <linux/rbtree.h>
  50. #include <linux/slab.h>
  51. #include <linux/swap.h>
  52. #include <linux/swapops.h>
  53. #include <linux/spinlock.h>
  54. #include <linux/eventfd.h>
  55. #include <linux/poll.h>
  56. #include <linux/sort.h>
  57. #include <linux/fs.h>
  58. #include <linux/seq_file.h>
  59. #include <linux/vmpressure.h>
  60. #include <linux/mm_inline.h>
  61. #include <linux/swap_cgroup.h>
  62. #include <linux/cpu.h>
  63. #include <linux/oom.h>
  64. #include <linux/lockdep.h>
  65. #include <linux/file.h>
  66. #include <linux/tracehook.h>
  67. #include "internal.h"
  68. #include <net/sock.h>
  69. #include <net/ip.h>
  70. #include "slab.h"
  71. #include <linux/uaccess.h>
  72. #include <trace/events/vmscan.h>
  73. struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  74. EXPORT_SYMBOL(memory_cgrp_subsys);
  75. struct mem_cgroup *root_mem_cgroup __read_mostly;
  76. #define MEM_CGROUP_RECLAIM_RETRIES 5
  77. /* Socket memory accounting disabled? */
  78. static bool cgroup_memory_nosocket;
  79. /* Kernel memory accounting disabled? */
  80. static bool cgroup_memory_nokmem;
  81. /* Whether the swap controller is active */
  82. #ifdef CONFIG_MEMCG_SWAP
  83. int do_swap_account __read_mostly;
  84. #else
  85. #define do_swap_account 0
  86. #endif
  87. /* Whether legacy memory+swap accounting is active */
  88. static bool do_memsw_account(void)
  89. {
  90. return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  91. }
  92. static const char *const mem_cgroup_lru_names[] = {
  93. "inactive_anon",
  94. "active_anon",
  95. "inactive_file",
  96. "active_file",
  97. "unevictable",
  98. };
  99. #define THRESHOLDS_EVENTS_TARGET 128
  100. #define SOFTLIMIT_EVENTS_TARGET 1024
  101. #define NUMAINFO_EVENTS_TARGET 1024
  102. /*
  103. * Cgroups above their limits are maintained in a RB-Tree, independent of
  104. * their hierarchy representation
  105. */
  106. struct mem_cgroup_tree_per_node {
  107. struct rb_root rb_root;
  108. struct rb_node *rb_rightmost;
  109. spinlock_t lock;
  110. };
  111. struct mem_cgroup_tree {
  112. struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
  113. };
  114. static struct mem_cgroup_tree soft_limit_tree __read_mostly;
  115. /* for OOM */
  116. struct mem_cgroup_eventfd_list {
  117. struct list_head list;
  118. struct eventfd_ctx *eventfd;
  119. };
  120. /*
  121. * cgroup_event represents events which userspace want to receive.
  122. */
  123. struct mem_cgroup_event {
  124. /*
  125. * memcg which the event belongs to.
  126. */
  127. struct mem_cgroup *memcg;
  128. /*
  129. * eventfd to signal userspace about the event.
  130. */
  131. struct eventfd_ctx *eventfd;
  132. /*
  133. * Each of these stored in a list by the cgroup.
  134. */
  135. struct list_head list;
  136. /*
  137. * register_event() callback will be used to add new userspace
  138. * waiter for changes related to this event. Use eventfd_signal()
  139. * on eventfd to send notification to userspace.
  140. */
  141. int (*register_event)(struct mem_cgroup *memcg,
  142. struct eventfd_ctx *eventfd, const char *args);
  143. /*
  144. * unregister_event() callback will be called when userspace closes
  145. * the eventfd or on cgroup removing. This callback must be set,
  146. * if you want provide notification functionality.
  147. */
  148. void (*unregister_event)(struct mem_cgroup *memcg,
  149. struct eventfd_ctx *eventfd);
  150. /*
  151. * All fields below needed to unregister event when
  152. * userspace closes eventfd.
  153. */
  154. poll_table pt;
  155. wait_queue_head_t *wqh;
  156. wait_queue_entry_t wait;
  157. struct work_struct remove;
  158. };
  159. static void mem_cgroup_threshold(struct mem_cgroup *memcg);
  160. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
  161. /* Stuffs for move charges at task migration. */
  162. /*
  163. * Types of charges to be moved.
  164. */
  165. #define MOVE_ANON 0x1U
  166. #define MOVE_FILE 0x2U
  167. #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
  168. /* "mc" and its members are protected by cgroup_mutex */
  169. static struct move_charge_struct {
  170. spinlock_t lock; /* for from, to */
  171. struct mm_struct *mm;
  172. struct mem_cgroup *from;
  173. struct mem_cgroup *to;
  174. unsigned long flags;
  175. unsigned long precharge;
  176. unsigned long moved_charge;
  177. unsigned long moved_swap;
  178. struct task_struct *moving_task; /* a task moving charges */
  179. wait_queue_head_t waitq; /* a waitq for other context */
  180. } mc = {
  181. .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
  182. .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
  183. };
  184. /*
  185. * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
  186. * limit reclaim to prevent infinite loops, if they ever occur.
  187. */
  188. #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
  189. #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
  190. enum charge_type {
  191. MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
  192. MEM_CGROUP_CHARGE_TYPE_ANON,
  193. MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
  194. MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
  195. NR_CHARGE_TYPE,
  196. };
  197. /* for encoding cft->private value on file */
  198. enum res_type {
  199. _MEM,
  200. _MEMSWAP,
  201. _OOM_TYPE,
  202. _KMEM,
  203. _TCP,
  204. };
  205. #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
  206. #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
  207. #define MEMFILE_ATTR(val) ((val) & 0xffff)
  208. /* Used for OOM nofiier */
  209. #define OOM_CONTROL (0)
  210. /* Some nice accessors for the vmpressure. */
  211. struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
  212. {
  213. if (!memcg)
  214. memcg = root_mem_cgroup;
  215. return &memcg->vmpressure;
  216. }
  217. struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
  218. {
  219. return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
  220. }
  221. static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
  222. {
  223. return (memcg == root_mem_cgroup);
  224. }
  225. #ifndef CONFIG_SLOB
  226. /*
  227. * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
  228. * The main reason for not using cgroup id for this:
  229. * this works better in sparse environments, where we have a lot of memcgs,
  230. * but only a few kmem-limited. Or also, if we have, for instance, 200
  231. * memcgs, and none but the 200th is kmem-limited, we'd have to have a
  232. * 200 entry array for that.
  233. *
  234. * The current size of the caches array is stored in memcg_nr_cache_ids. It
  235. * will double each time we have to increase it.
  236. */
  237. static DEFINE_IDA(memcg_cache_ida);
  238. int memcg_nr_cache_ids;
  239. /* Protects memcg_nr_cache_ids */
  240. static DECLARE_RWSEM(memcg_cache_ids_sem);
  241. void memcg_get_cache_ids(void)
  242. {
  243. down_read(&memcg_cache_ids_sem);
  244. }
  245. void memcg_put_cache_ids(void)
  246. {
  247. up_read(&memcg_cache_ids_sem);
  248. }
  249. /*
  250. * MIN_SIZE is different than 1, because we would like to avoid going through
  251. * the alloc/free process all the time. In a small machine, 4 kmem-limited
  252. * cgroups is a reasonable guess. In the future, it could be a parameter or
  253. * tunable, but that is strictly not necessary.
  254. *
  255. * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
  256. * this constant directly from cgroup, but it is understandable that this is
  257. * better kept as an internal representation in cgroup.c. In any case, the
  258. * cgrp_id space is not getting any smaller, and we don't have to necessarily
  259. * increase ours as well if it increases.
  260. */
  261. #define MEMCG_CACHES_MIN_SIZE 4
  262. #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
  263. /*
  264. * A lot of the calls to the cache allocation functions are expected to be
  265. * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
  266. * conditional to this static branch, we'll have to allow modules that does
  267. * kmem_cache_alloc and the such to see this symbol as well
  268. */
  269. DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
  270. EXPORT_SYMBOL(memcg_kmem_enabled_key);
  271. struct workqueue_struct *memcg_kmem_cache_wq;
  272. #endif /* !CONFIG_SLOB */
  273. /**
  274. * mem_cgroup_css_from_page - css of the memcg associated with a page
  275. * @page: page of interest
  276. *
  277. * If memcg is bound to the default hierarchy, css of the memcg associated
  278. * with @page is returned. The returned css remains associated with @page
  279. * until it is released.
  280. *
  281. * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
  282. * is returned.
  283. */
  284. struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
  285. {
  286. struct mem_cgroup *memcg;
  287. memcg = page->mem_cgroup;
  288. if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  289. memcg = root_mem_cgroup;
  290. return &memcg->css;
  291. }
  292. /**
  293. * page_cgroup_ino - return inode number of the memcg a page is charged to
  294. * @page: the page
  295. *
  296. * Look up the closest online ancestor of the memory cgroup @page is charged to
  297. * and return its inode number or 0 if @page is not charged to any cgroup. It
  298. * is safe to call this function without holding a reference to @page.
  299. *
  300. * Note, this function is inherently racy, because there is nothing to prevent
  301. * the cgroup inode from getting torn down and potentially reallocated a moment
  302. * after page_cgroup_ino() returns, so it only should be used by callers that
  303. * do not care (such as procfs interfaces).
  304. */
  305. ino_t page_cgroup_ino(struct page *page)
  306. {
  307. struct mem_cgroup *memcg;
  308. unsigned long ino = 0;
  309. rcu_read_lock();
  310. memcg = READ_ONCE(page->mem_cgroup);
  311. while (memcg && !(memcg->css.flags & CSS_ONLINE))
  312. memcg = parent_mem_cgroup(memcg);
  313. if (memcg)
  314. ino = cgroup_ino(memcg->css.cgroup);
  315. rcu_read_unlock();
  316. return ino;
  317. }
  318. static struct mem_cgroup_per_node *
  319. mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
  320. {
  321. int nid = page_to_nid(page);
  322. return memcg->nodeinfo[nid];
  323. }
  324. static struct mem_cgroup_tree_per_node *
  325. soft_limit_tree_node(int nid)
  326. {
  327. return soft_limit_tree.rb_tree_per_node[nid];
  328. }
  329. static struct mem_cgroup_tree_per_node *
  330. soft_limit_tree_from_page(struct page *page)
  331. {
  332. int nid = page_to_nid(page);
  333. return soft_limit_tree.rb_tree_per_node[nid];
  334. }
  335. static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
  336. struct mem_cgroup_tree_per_node *mctz,
  337. unsigned long new_usage_in_excess)
  338. {
  339. struct rb_node **p = &mctz->rb_root.rb_node;
  340. struct rb_node *parent = NULL;
  341. struct mem_cgroup_per_node *mz_node;
  342. bool rightmost = true;
  343. if (mz->on_tree)
  344. return;
  345. mz->usage_in_excess = new_usage_in_excess;
  346. if (!mz->usage_in_excess)
  347. return;
  348. while (*p) {
  349. parent = *p;
  350. mz_node = rb_entry(parent, struct mem_cgroup_per_node,
  351. tree_node);
  352. if (mz->usage_in_excess < mz_node->usage_in_excess) {
  353. p = &(*p)->rb_left;
  354. rightmost = false;
  355. }
  356. /*
  357. * We can't avoid mem cgroups that are over their soft
  358. * limit by the same amount
  359. */
  360. else if (mz->usage_in_excess >= mz_node->usage_in_excess)
  361. p = &(*p)->rb_right;
  362. }
  363. if (rightmost)
  364. mctz->rb_rightmost = &mz->tree_node;
  365. rb_link_node(&mz->tree_node, parent, p);
  366. rb_insert_color(&mz->tree_node, &mctz->rb_root);
  367. mz->on_tree = true;
  368. }
  369. static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
  370. struct mem_cgroup_tree_per_node *mctz)
  371. {
  372. if (!mz->on_tree)
  373. return;
  374. if (&mz->tree_node == mctz->rb_rightmost)
  375. mctz->rb_rightmost = rb_prev(&mz->tree_node);
  376. rb_erase(&mz->tree_node, &mctz->rb_root);
  377. mz->on_tree = false;
  378. }
  379. static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
  380. struct mem_cgroup_tree_per_node *mctz)
  381. {
  382. unsigned long flags;
  383. spin_lock_irqsave(&mctz->lock, flags);
  384. __mem_cgroup_remove_exceeded(mz, mctz);
  385. spin_unlock_irqrestore(&mctz->lock, flags);
  386. }
  387. static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
  388. {
  389. unsigned long nr_pages = page_counter_read(&memcg->memory);
  390. unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
  391. unsigned long excess = 0;
  392. if (nr_pages > soft_limit)
  393. excess = nr_pages - soft_limit;
  394. return excess;
  395. }
  396. static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
  397. {
  398. unsigned long excess;
  399. struct mem_cgroup_per_node *mz;
  400. struct mem_cgroup_tree_per_node *mctz;
  401. mctz = soft_limit_tree_from_page(page);
  402. if (!mctz)
  403. return;
  404. /*
  405. * Necessary to update all ancestors when hierarchy is used.
  406. * because their event counter is not touched.
  407. */
  408. for (; memcg; memcg = parent_mem_cgroup(memcg)) {
  409. mz = mem_cgroup_page_nodeinfo(memcg, page);
  410. excess = soft_limit_excess(memcg);
  411. /*
  412. * We have to update the tree if mz is on RB-tree or
  413. * mem is over its softlimit.
  414. */
  415. if (excess || mz->on_tree) {
  416. unsigned long flags;
  417. spin_lock_irqsave(&mctz->lock, flags);
  418. /* if on-tree, remove it */
  419. if (mz->on_tree)
  420. __mem_cgroup_remove_exceeded(mz, mctz);
  421. /*
  422. * Insert again. mz->usage_in_excess will be updated.
  423. * If excess is 0, no tree ops.
  424. */
  425. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  426. spin_unlock_irqrestore(&mctz->lock, flags);
  427. }
  428. }
  429. }
  430. static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
  431. {
  432. struct mem_cgroup_tree_per_node *mctz;
  433. struct mem_cgroup_per_node *mz;
  434. int nid;
  435. for_each_node(nid) {
  436. mz = mem_cgroup_nodeinfo(memcg, nid);
  437. mctz = soft_limit_tree_node(nid);
  438. if (mctz)
  439. mem_cgroup_remove_exceeded(mz, mctz);
  440. }
  441. }
  442. static struct mem_cgroup_per_node *
  443. __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
  444. {
  445. struct mem_cgroup_per_node *mz;
  446. retry:
  447. mz = NULL;
  448. if (!mctz->rb_rightmost)
  449. goto done; /* Nothing to reclaim from */
  450. mz = rb_entry(mctz->rb_rightmost,
  451. struct mem_cgroup_per_node, tree_node);
  452. /*
  453. * Remove the node now but someone else can add it back,
  454. * we will to add it back at the end of reclaim to its correct
  455. * position in the tree.
  456. */
  457. __mem_cgroup_remove_exceeded(mz, mctz);
  458. if (!soft_limit_excess(mz->memcg) ||
  459. !css_tryget_online(&mz->memcg->css))
  460. goto retry;
  461. done:
  462. return mz;
  463. }
  464. static struct mem_cgroup_per_node *
  465. mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
  466. {
  467. struct mem_cgroup_per_node *mz;
  468. spin_lock_irq(&mctz->lock);
  469. mz = __mem_cgroup_largest_soft_limit_node(mctz);
  470. spin_unlock_irq(&mctz->lock);
  471. return mz;
  472. }
  473. static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
  474. int event)
  475. {
  476. return atomic_long_read(&memcg->events[event]);
  477. }
  478. static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
  479. struct page *page,
  480. bool compound, int nr_pages)
  481. {
  482. /*
  483. * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
  484. * counted as CACHE even if it's on ANON LRU.
  485. */
  486. if (PageAnon(page))
  487. __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
  488. else {
  489. __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
  490. if (PageSwapBacked(page))
  491. __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
  492. }
  493. if (compound) {
  494. VM_BUG_ON_PAGE(!PageTransHuge(page), page);
  495. __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
  496. }
  497. /* pagein of a big page is an event. So, ignore page size */
  498. if (nr_pages > 0)
  499. __count_memcg_events(memcg, PGPGIN, 1);
  500. else {
  501. __count_memcg_events(memcg, PGPGOUT, 1);
  502. nr_pages = -nr_pages; /* for event */
  503. }
  504. __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
  505. }
  506. unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
  507. int nid, unsigned int lru_mask)
  508. {
  509. struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
  510. unsigned long nr = 0;
  511. enum lru_list lru;
  512. VM_BUG_ON((unsigned)nid >= nr_node_ids);
  513. for_each_lru(lru) {
  514. if (!(BIT(lru) & lru_mask))
  515. continue;
  516. nr += mem_cgroup_get_lru_size(lruvec, lru);
  517. }
  518. return nr;
  519. }
  520. static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
  521. unsigned int lru_mask)
  522. {
  523. unsigned long nr = 0;
  524. int nid;
  525. for_each_node_state(nid, N_MEMORY)
  526. nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
  527. return nr;
  528. }
  529. static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
  530. enum mem_cgroup_events_target target)
  531. {
  532. unsigned long val, next;
  533. val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
  534. next = __this_cpu_read(memcg->stat_cpu->targets[target]);
  535. /* from time_after() in jiffies.h */
  536. if ((long)(next - val) < 0) {
  537. switch (target) {
  538. case MEM_CGROUP_TARGET_THRESH:
  539. next = val + THRESHOLDS_EVENTS_TARGET;
  540. break;
  541. case MEM_CGROUP_TARGET_SOFTLIMIT:
  542. next = val + SOFTLIMIT_EVENTS_TARGET;
  543. break;
  544. case MEM_CGROUP_TARGET_NUMAINFO:
  545. next = val + NUMAINFO_EVENTS_TARGET;
  546. break;
  547. default:
  548. break;
  549. }
  550. __this_cpu_write(memcg->stat_cpu->targets[target], next);
  551. return true;
  552. }
  553. return false;
  554. }
  555. /*
  556. * Check events in order.
  557. *
  558. */
  559. static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
  560. {
  561. /* threshold event is triggered in finer grain than soft limit */
  562. if (unlikely(mem_cgroup_event_ratelimit(memcg,
  563. MEM_CGROUP_TARGET_THRESH))) {
  564. bool do_softlimit;
  565. bool do_numainfo __maybe_unused;
  566. do_softlimit = mem_cgroup_event_ratelimit(memcg,
  567. MEM_CGROUP_TARGET_SOFTLIMIT);
  568. #if MAX_NUMNODES > 1
  569. do_numainfo = mem_cgroup_event_ratelimit(memcg,
  570. MEM_CGROUP_TARGET_NUMAINFO);
  571. #endif
  572. mem_cgroup_threshold(memcg);
  573. if (unlikely(do_softlimit))
  574. mem_cgroup_update_tree(memcg, page);
  575. #if MAX_NUMNODES > 1
  576. if (unlikely(do_numainfo))
  577. atomic_inc(&memcg->numainfo_events);
  578. #endif
  579. }
  580. }
  581. struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
  582. {
  583. /*
  584. * mm_update_next_owner() may clear mm->owner to NULL
  585. * if it races with swapoff, page migration, etc.
  586. * So this can be called with p == NULL.
  587. */
  588. if (unlikely(!p))
  589. return NULL;
  590. return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
  591. }
  592. EXPORT_SYMBOL(mem_cgroup_from_task);
  593. static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
  594. {
  595. struct mem_cgroup *memcg = NULL;
  596. rcu_read_lock();
  597. do {
  598. /*
  599. * Page cache insertions can happen withou an
  600. * actual mm context, e.g. during disk probing
  601. * on boot, loopback IO, acct() writes etc.
  602. */
  603. if (unlikely(!mm))
  604. memcg = root_mem_cgroup;
  605. else {
  606. memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
  607. if (unlikely(!memcg))
  608. memcg = root_mem_cgroup;
  609. }
  610. } while (!css_tryget_online(&memcg->css));
  611. rcu_read_unlock();
  612. return memcg;
  613. }
  614. /**
  615. * mem_cgroup_iter - iterate over memory cgroup hierarchy
  616. * @root: hierarchy root
  617. * @prev: previously returned memcg, NULL on first invocation
  618. * @reclaim: cookie for shared reclaim walks, NULL for full walks
  619. *
  620. * Returns references to children of the hierarchy below @root, or
  621. * @root itself, or %NULL after a full round-trip.
  622. *
  623. * Caller must pass the return value in @prev on subsequent
  624. * invocations for reference counting, or use mem_cgroup_iter_break()
  625. * to cancel a hierarchy walk before the round-trip is complete.
  626. *
  627. * Reclaimers can specify a node and a priority level in @reclaim to
  628. * divide up the memcgs in the hierarchy among all concurrent
  629. * reclaimers operating on the same node and priority.
  630. */
  631. struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
  632. struct mem_cgroup *prev,
  633. struct mem_cgroup_reclaim_cookie *reclaim)
  634. {
  635. struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
  636. struct cgroup_subsys_state *css = NULL;
  637. struct mem_cgroup *memcg = NULL;
  638. struct mem_cgroup *pos = NULL;
  639. if (mem_cgroup_disabled())
  640. return NULL;
  641. if (!root)
  642. root = root_mem_cgroup;
  643. if (prev && !reclaim)
  644. pos = prev;
  645. if (!root->use_hierarchy && root != root_mem_cgroup) {
  646. if (prev)
  647. goto out;
  648. return root;
  649. }
  650. rcu_read_lock();
  651. if (reclaim) {
  652. struct mem_cgroup_per_node *mz;
  653. mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
  654. iter = &mz->iter[reclaim->priority];
  655. if (prev && reclaim->generation != iter->generation)
  656. goto out_unlock;
  657. while (1) {
  658. pos = READ_ONCE(iter->position);
  659. if (!pos || css_tryget(&pos->css))
  660. break;
  661. /*
  662. * css reference reached zero, so iter->position will
  663. * be cleared by ->css_released. However, we should not
  664. * rely on this happening soon, because ->css_released
  665. * is called from a work queue, and by busy-waiting we
  666. * might block it. So we clear iter->position right
  667. * away.
  668. */
  669. (void)cmpxchg(&iter->position, pos, NULL);
  670. }
  671. }
  672. if (pos)
  673. css = &pos->css;
  674. for (;;) {
  675. css = css_next_descendant_pre(css, &root->css);
  676. if (!css) {
  677. /*
  678. * Reclaimers share the hierarchy walk, and a
  679. * new one might jump in right at the end of
  680. * the hierarchy - make sure they see at least
  681. * one group and restart from the beginning.
  682. */
  683. if (!prev)
  684. continue;
  685. break;
  686. }
  687. /*
  688. * Verify the css and acquire a reference. The root
  689. * is provided by the caller, so we know it's alive
  690. * and kicking, and don't take an extra reference.
  691. */
  692. memcg = mem_cgroup_from_css(css);
  693. if (css == &root->css)
  694. break;
  695. if (css_tryget(css))
  696. break;
  697. memcg = NULL;
  698. }
  699. if (reclaim) {
  700. /*
  701. * The position could have already been updated by a competing
  702. * thread, so check that the value hasn't changed since we read
  703. * it to avoid reclaiming from the same cgroup twice.
  704. */
  705. (void)cmpxchg(&iter->position, pos, memcg);
  706. if (pos)
  707. css_put(&pos->css);
  708. if (!memcg)
  709. iter->generation++;
  710. else if (!prev)
  711. reclaim->generation = iter->generation;
  712. }
  713. out_unlock:
  714. rcu_read_unlock();
  715. out:
  716. if (prev && prev != root)
  717. css_put(&prev->css);
  718. return memcg;
  719. }
  720. /**
  721. * mem_cgroup_iter_break - abort a hierarchy walk prematurely
  722. * @root: hierarchy root
  723. * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
  724. */
  725. void mem_cgroup_iter_break(struct mem_cgroup *root,
  726. struct mem_cgroup *prev)
  727. {
  728. if (!root)
  729. root = root_mem_cgroup;
  730. if (prev && prev != root)
  731. css_put(&prev->css);
  732. }
  733. static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
  734. {
  735. struct mem_cgroup *memcg = dead_memcg;
  736. struct mem_cgroup_reclaim_iter *iter;
  737. struct mem_cgroup_per_node *mz;
  738. int nid;
  739. int i;
  740. while ((memcg = parent_mem_cgroup(memcg))) {
  741. for_each_node(nid) {
  742. mz = mem_cgroup_nodeinfo(memcg, nid);
  743. for (i = 0; i <= DEF_PRIORITY; i++) {
  744. iter = &mz->iter[i];
  745. cmpxchg(&iter->position,
  746. dead_memcg, NULL);
  747. }
  748. }
  749. }
  750. }
  751. /*
  752. * Iteration constructs for visiting all cgroups (under a tree). If
  753. * loops are exited prematurely (break), mem_cgroup_iter_break() must
  754. * be used for reference counting.
  755. */
  756. #define for_each_mem_cgroup_tree(iter, root) \
  757. for (iter = mem_cgroup_iter(root, NULL, NULL); \
  758. iter != NULL; \
  759. iter = mem_cgroup_iter(root, iter, NULL))
  760. #define for_each_mem_cgroup(iter) \
  761. for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
  762. iter != NULL; \
  763. iter = mem_cgroup_iter(NULL, iter, NULL))
  764. /**
  765. * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
  766. * @memcg: hierarchy root
  767. * @fn: function to call for each task
  768. * @arg: argument passed to @fn
  769. *
  770. * This function iterates over tasks attached to @memcg or to any of its
  771. * descendants and calls @fn for each task. If @fn returns a non-zero
  772. * value, the function breaks the iteration loop and returns the value.
  773. * Otherwise, it will iterate over all tasks and return 0.
  774. *
  775. * This function must not be called for the root memory cgroup.
  776. */
  777. int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
  778. int (*fn)(struct task_struct *, void *), void *arg)
  779. {
  780. struct mem_cgroup *iter;
  781. int ret = 0;
  782. BUG_ON(memcg == root_mem_cgroup);
  783. for_each_mem_cgroup_tree(iter, memcg) {
  784. struct css_task_iter it;
  785. struct task_struct *task;
  786. css_task_iter_start(&iter->css, 0, &it);
  787. while (!ret && (task = css_task_iter_next(&it)))
  788. ret = fn(task, arg);
  789. css_task_iter_end(&it);
  790. if (ret) {
  791. mem_cgroup_iter_break(memcg, iter);
  792. break;
  793. }
  794. }
  795. return ret;
  796. }
  797. /**
  798. * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
  799. * @page: the page
  800. * @pgdat: pgdat of the page
  801. *
  802. * This function is only safe when following the LRU page isolation
  803. * and putback protocol: the LRU lock must be held, and the page must
  804. * either be PageLRU() or the caller must have isolated/allocated it.
  805. */
  806. struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
  807. {
  808. struct mem_cgroup_per_node *mz;
  809. struct mem_cgroup *memcg;
  810. struct lruvec *lruvec;
  811. if (mem_cgroup_disabled()) {
  812. lruvec = &pgdat->lruvec;
  813. goto out;
  814. }
  815. memcg = page->mem_cgroup;
  816. /*
  817. * Swapcache readahead pages are added to the LRU - and
  818. * possibly migrated - before they are charged.
  819. */
  820. if (!memcg)
  821. memcg = root_mem_cgroup;
  822. mz = mem_cgroup_page_nodeinfo(memcg, page);
  823. lruvec = &mz->lruvec;
  824. out:
  825. /*
  826. * Since a node can be onlined after the mem_cgroup was created,
  827. * we have to be prepared to initialize lruvec->zone here;
  828. * and if offlined then reonlined, we need to reinitialize it.
  829. */
  830. if (unlikely(lruvec->pgdat != pgdat))
  831. lruvec->pgdat = pgdat;
  832. return lruvec;
  833. }
  834. /**
  835. * mem_cgroup_update_lru_size - account for adding or removing an lru page
  836. * @lruvec: mem_cgroup per zone lru vector
  837. * @lru: index of lru list the page is sitting on
  838. * @zid: zone id of the accounted pages
  839. * @nr_pages: positive when adding or negative when removing
  840. *
  841. * This function must be called under lru_lock, just before a page is added
  842. * to or just after a page is removed from an lru list (that ordering being
  843. * so as to allow it to check that lru_size 0 is consistent with list_empty).
  844. */
  845. void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
  846. int zid, int nr_pages)
  847. {
  848. struct mem_cgroup_per_node *mz;
  849. unsigned long *lru_size;
  850. long size;
  851. if (mem_cgroup_disabled())
  852. return;
  853. mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
  854. lru_size = &mz->lru_zone_size[zid][lru];
  855. if (nr_pages < 0)
  856. *lru_size += nr_pages;
  857. size = *lru_size;
  858. if (WARN_ONCE(size < 0,
  859. "%s(%p, %d, %d): lru_size %ld\n",
  860. __func__, lruvec, lru, nr_pages, size)) {
  861. VM_BUG_ON(1);
  862. *lru_size = 0;
  863. }
  864. if (nr_pages > 0)
  865. *lru_size += nr_pages;
  866. }
  867. bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
  868. {
  869. struct mem_cgroup *task_memcg;
  870. struct task_struct *p;
  871. bool ret;
  872. p = find_lock_task_mm(task);
  873. if (p) {
  874. task_memcg = get_mem_cgroup_from_mm(p->mm);
  875. task_unlock(p);
  876. } else {
  877. /*
  878. * All threads may have already detached their mm's, but the oom
  879. * killer still needs to detect if they have already been oom
  880. * killed to prevent needlessly killing additional tasks.
  881. */
  882. rcu_read_lock();
  883. task_memcg = mem_cgroup_from_task(task);
  884. css_get(&task_memcg->css);
  885. rcu_read_unlock();
  886. }
  887. ret = mem_cgroup_is_descendant(task_memcg, memcg);
  888. css_put(&task_memcg->css);
  889. return ret;
  890. }
  891. /**
  892. * mem_cgroup_margin - calculate chargeable space of a memory cgroup
  893. * @memcg: the memory cgroup
  894. *
  895. * Returns the maximum amount of memory @mem can be charged with, in
  896. * pages.
  897. */
  898. static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
  899. {
  900. unsigned long margin = 0;
  901. unsigned long count;
  902. unsigned long limit;
  903. count = page_counter_read(&memcg->memory);
  904. limit = READ_ONCE(memcg->memory.limit);
  905. if (count < limit)
  906. margin = limit - count;
  907. if (do_memsw_account()) {
  908. count = page_counter_read(&memcg->memsw);
  909. limit = READ_ONCE(memcg->memsw.limit);
  910. if (count <= limit)
  911. margin = min(margin, limit - count);
  912. else
  913. margin = 0;
  914. }
  915. return margin;
  916. }
  917. /*
  918. * A routine for checking "mem" is under move_account() or not.
  919. *
  920. * Checking a cgroup is mc.from or mc.to or under hierarchy of
  921. * moving cgroups. This is for waiting at high-memory pressure
  922. * caused by "move".
  923. */
  924. static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
  925. {
  926. struct mem_cgroup *from;
  927. struct mem_cgroup *to;
  928. bool ret = false;
  929. /*
  930. * Unlike task_move routines, we access mc.to, mc.from not under
  931. * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
  932. */
  933. spin_lock(&mc.lock);
  934. from = mc.from;
  935. to = mc.to;
  936. if (!from)
  937. goto unlock;
  938. ret = mem_cgroup_is_descendant(from, memcg) ||
  939. mem_cgroup_is_descendant(to, memcg);
  940. unlock:
  941. spin_unlock(&mc.lock);
  942. return ret;
  943. }
  944. static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
  945. {
  946. if (mc.moving_task && current != mc.moving_task) {
  947. if (mem_cgroup_under_move(memcg)) {
  948. DEFINE_WAIT(wait);
  949. prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
  950. /* moving charge context might have finished. */
  951. if (mc.moving_task)
  952. schedule();
  953. finish_wait(&mc.waitq, &wait);
  954. return true;
  955. }
  956. }
  957. return false;
  958. }
  959. static const unsigned int memcg1_stats[] = {
  960. MEMCG_CACHE,
  961. MEMCG_RSS,
  962. MEMCG_RSS_HUGE,
  963. NR_SHMEM,
  964. NR_FILE_MAPPED,
  965. NR_FILE_DIRTY,
  966. NR_WRITEBACK,
  967. MEMCG_SWAP,
  968. };
  969. static const char *const memcg1_stat_names[] = {
  970. "cache",
  971. "rss",
  972. "rss_huge",
  973. "shmem",
  974. "mapped_file",
  975. "dirty",
  976. "writeback",
  977. "swap",
  978. };
  979. #define K(x) ((x) << (PAGE_SHIFT-10))
  980. /**
  981. * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
  982. * @memcg: The memory cgroup that went over limit
  983. * @p: Task that is going to be killed
  984. *
  985. * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
  986. * enabled
  987. */
  988. void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
  989. {
  990. struct mem_cgroup *iter;
  991. unsigned int i;
  992. rcu_read_lock();
  993. if (p) {
  994. pr_info("Task in ");
  995. pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
  996. pr_cont(" killed as a result of limit of ");
  997. } else {
  998. pr_info("Memory limit reached of cgroup ");
  999. }
  1000. pr_cont_cgroup_path(memcg->css.cgroup);
  1001. pr_cont("\n");
  1002. rcu_read_unlock();
  1003. pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
  1004. K((u64)page_counter_read(&memcg->memory)),
  1005. K((u64)memcg->memory.limit), memcg->memory.failcnt);
  1006. pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
  1007. K((u64)page_counter_read(&memcg->memsw)),
  1008. K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
  1009. pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
  1010. K((u64)page_counter_read(&memcg->kmem)),
  1011. K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
  1012. for_each_mem_cgroup_tree(iter, memcg) {
  1013. pr_info("Memory cgroup stats for ");
  1014. pr_cont_cgroup_path(iter->css.cgroup);
  1015. pr_cont(":");
  1016. for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
  1017. if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
  1018. continue;
  1019. pr_cont(" %s:%luKB", memcg1_stat_names[i],
  1020. K(memcg_page_state(iter, memcg1_stats[i])));
  1021. }
  1022. for (i = 0; i < NR_LRU_LISTS; i++)
  1023. pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
  1024. K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
  1025. pr_cont("\n");
  1026. }
  1027. }
  1028. /*
  1029. * Return the memory (and swap, if configured) limit for a memcg.
  1030. */
  1031. unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
  1032. {
  1033. unsigned long limit;
  1034. limit = memcg->memory.limit;
  1035. if (mem_cgroup_swappiness(memcg)) {
  1036. unsigned long memsw_limit;
  1037. unsigned long swap_limit;
  1038. memsw_limit = memcg->memsw.limit;
  1039. swap_limit = memcg->swap.limit;
  1040. swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
  1041. limit = min(limit + swap_limit, memsw_limit);
  1042. }
  1043. return limit;
  1044. }
  1045. static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1046. int order)
  1047. {
  1048. struct oom_control oc = {
  1049. .zonelist = NULL,
  1050. .nodemask = NULL,
  1051. .memcg = memcg,
  1052. .gfp_mask = gfp_mask,
  1053. .order = order,
  1054. };
  1055. bool ret;
  1056. mutex_lock(&oom_lock);
  1057. ret = out_of_memory(&oc);
  1058. mutex_unlock(&oom_lock);
  1059. return ret;
  1060. }
  1061. #if MAX_NUMNODES > 1
  1062. /**
  1063. * test_mem_cgroup_node_reclaimable
  1064. * @memcg: the target memcg
  1065. * @nid: the node ID to be checked.
  1066. * @noswap : specify true here if the user wants flle only information.
  1067. *
  1068. * This function returns whether the specified memcg contains any
  1069. * reclaimable pages on a node. Returns true if there are any reclaimable
  1070. * pages in the node.
  1071. */
  1072. static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
  1073. int nid, bool noswap)
  1074. {
  1075. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
  1076. return true;
  1077. if (noswap || !total_swap_pages)
  1078. return false;
  1079. if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
  1080. return true;
  1081. return false;
  1082. }
  1083. /*
  1084. * Always updating the nodemask is not very good - even if we have an empty
  1085. * list or the wrong list here, we can start from some node and traverse all
  1086. * nodes based on the zonelist. So update the list loosely once per 10 secs.
  1087. *
  1088. */
  1089. static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
  1090. {
  1091. int nid;
  1092. /*
  1093. * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
  1094. * pagein/pageout changes since the last update.
  1095. */
  1096. if (!atomic_read(&memcg->numainfo_events))
  1097. return;
  1098. if (atomic_inc_return(&memcg->numainfo_updating) > 1)
  1099. return;
  1100. /* make a nodemask where this memcg uses memory from */
  1101. memcg->scan_nodes = node_states[N_MEMORY];
  1102. for_each_node_mask(nid, node_states[N_MEMORY]) {
  1103. if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
  1104. node_clear(nid, memcg->scan_nodes);
  1105. }
  1106. atomic_set(&memcg->numainfo_events, 0);
  1107. atomic_set(&memcg->numainfo_updating, 0);
  1108. }
  1109. /*
  1110. * Selecting a node where we start reclaim from. Because what we need is just
  1111. * reducing usage counter, start from anywhere is O,K. Considering
  1112. * memory reclaim from current node, there are pros. and cons.
  1113. *
  1114. * Freeing memory from current node means freeing memory from a node which
  1115. * we'll use or we've used. So, it may make LRU bad. And if several threads
  1116. * hit limits, it will see a contention on a node. But freeing from remote
  1117. * node means more costs for memory reclaim because of memory latency.
  1118. *
  1119. * Now, we use round-robin. Better algorithm is welcomed.
  1120. */
  1121. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1122. {
  1123. int node;
  1124. mem_cgroup_may_update_nodemask(memcg);
  1125. node = memcg->last_scanned_node;
  1126. node = next_node_in(node, memcg->scan_nodes);
  1127. /*
  1128. * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
  1129. * last time it really checked all the LRUs due to rate limiting.
  1130. * Fallback to the current node in that case for simplicity.
  1131. */
  1132. if (unlikely(node == MAX_NUMNODES))
  1133. node = numa_node_id();
  1134. memcg->last_scanned_node = node;
  1135. return node;
  1136. }
  1137. #else
  1138. int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
  1139. {
  1140. return 0;
  1141. }
  1142. #endif
  1143. static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
  1144. pg_data_t *pgdat,
  1145. gfp_t gfp_mask,
  1146. unsigned long *total_scanned)
  1147. {
  1148. struct mem_cgroup *victim = NULL;
  1149. int total = 0;
  1150. int loop = 0;
  1151. unsigned long excess;
  1152. unsigned long nr_scanned;
  1153. struct mem_cgroup_reclaim_cookie reclaim = {
  1154. .pgdat = pgdat,
  1155. .priority = 0,
  1156. };
  1157. excess = soft_limit_excess(root_memcg);
  1158. while (1) {
  1159. victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
  1160. if (!victim) {
  1161. loop++;
  1162. if (loop >= 2) {
  1163. /*
  1164. * If we have not been able to reclaim
  1165. * anything, it might because there are
  1166. * no reclaimable pages under this hierarchy
  1167. */
  1168. if (!total)
  1169. break;
  1170. /*
  1171. * We want to do more targeted reclaim.
  1172. * excess >> 2 is not to excessive so as to
  1173. * reclaim too much, nor too less that we keep
  1174. * coming back to reclaim from this cgroup
  1175. */
  1176. if (total >= (excess >> 2) ||
  1177. (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
  1178. break;
  1179. }
  1180. continue;
  1181. }
  1182. total += mem_cgroup_shrink_node(victim, gfp_mask, false,
  1183. pgdat, &nr_scanned);
  1184. *total_scanned += nr_scanned;
  1185. if (!soft_limit_excess(root_memcg))
  1186. break;
  1187. }
  1188. mem_cgroup_iter_break(root_memcg, victim);
  1189. return total;
  1190. }
  1191. #ifdef CONFIG_LOCKDEP
  1192. static struct lockdep_map memcg_oom_lock_dep_map = {
  1193. .name = "memcg_oom_lock",
  1194. };
  1195. #endif
  1196. static DEFINE_SPINLOCK(memcg_oom_lock);
  1197. /*
  1198. * Check OOM-Killer is already running under our hierarchy.
  1199. * If someone is running, return false.
  1200. */
  1201. static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
  1202. {
  1203. struct mem_cgroup *iter, *failed = NULL;
  1204. spin_lock(&memcg_oom_lock);
  1205. for_each_mem_cgroup_tree(iter, memcg) {
  1206. if (iter->oom_lock) {
  1207. /*
  1208. * this subtree of our hierarchy is already locked
  1209. * so we cannot give a lock.
  1210. */
  1211. failed = iter;
  1212. mem_cgroup_iter_break(memcg, iter);
  1213. break;
  1214. } else
  1215. iter->oom_lock = true;
  1216. }
  1217. if (failed) {
  1218. /*
  1219. * OK, we failed to lock the whole subtree so we have
  1220. * to clean up what we set up to the failing subtree
  1221. */
  1222. for_each_mem_cgroup_tree(iter, memcg) {
  1223. if (iter == failed) {
  1224. mem_cgroup_iter_break(memcg, iter);
  1225. break;
  1226. }
  1227. iter->oom_lock = false;
  1228. }
  1229. } else
  1230. mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
  1231. spin_unlock(&memcg_oom_lock);
  1232. return !failed;
  1233. }
  1234. static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
  1235. {
  1236. struct mem_cgroup *iter;
  1237. spin_lock(&memcg_oom_lock);
  1238. mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
  1239. for_each_mem_cgroup_tree(iter, memcg)
  1240. iter->oom_lock = false;
  1241. spin_unlock(&memcg_oom_lock);
  1242. }
  1243. static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
  1244. {
  1245. struct mem_cgroup *iter;
  1246. spin_lock(&memcg_oom_lock);
  1247. for_each_mem_cgroup_tree(iter, memcg)
  1248. iter->under_oom++;
  1249. spin_unlock(&memcg_oom_lock);
  1250. }
  1251. static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
  1252. {
  1253. struct mem_cgroup *iter;
  1254. /*
  1255. * When a new child is created while the hierarchy is under oom,
  1256. * mem_cgroup_oom_lock() may not be called. Watch for underflow.
  1257. */
  1258. spin_lock(&memcg_oom_lock);
  1259. for_each_mem_cgroup_tree(iter, memcg)
  1260. if (iter->under_oom > 0)
  1261. iter->under_oom--;
  1262. spin_unlock(&memcg_oom_lock);
  1263. }
  1264. static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
  1265. struct oom_wait_info {
  1266. struct mem_cgroup *memcg;
  1267. wait_queue_entry_t wait;
  1268. };
  1269. static int memcg_oom_wake_function(wait_queue_entry_t *wait,
  1270. unsigned mode, int sync, void *arg)
  1271. {
  1272. struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
  1273. struct mem_cgroup *oom_wait_memcg;
  1274. struct oom_wait_info *oom_wait_info;
  1275. oom_wait_info = container_of(wait, struct oom_wait_info, wait);
  1276. oom_wait_memcg = oom_wait_info->memcg;
  1277. if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
  1278. !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
  1279. return 0;
  1280. return autoremove_wake_function(wait, mode, sync, arg);
  1281. }
  1282. static void memcg_oom_recover(struct mem_cgroup *memcg)
  1283. {
  1284. /*
  1285. * For the following lockless ->under_oom test, the only required
  1286. * guarantee is that it must see the state asserted by an OOM when
  1287. * this function is called as a result of userland actions
  1288. * triggered by the notification of the OOM. This is trivially
  1289. * achieved by invoking mem_cgroup_mark_under_oom() before
  1290. * triggering notification.
  1291. */
  1292. if (memcg && memcg->under_oom)
  1293. __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
  1294. }
  1295. static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
  1296. {
  1297. if (!current->memcg_may_oom)
  1298. return;
  1299. /*
  1300. * We are in the middle of the charge context here, so we
  1301. * don't want to block when potentially sitting on a callstack
  1302. * that holds all kinds of filesystem and mm locks.
  1303. *
  1304. * Also, the caller may handle a failed allocation gracefully
  1305. * (like optional page cache readahead) and so an OOM killer
  1306. * invocation might not even be necessary.
  1307. *
  1308. * That's why we don't do anything here except remember the
  1309. * OOM context and then deal with it at the end of the page
  1310. * fault when the stack is unwound, the locks are released,
  1311. * and when we know whether the fault was overall successful.
  1312. */
  1313. css_get(&memcg->css);
  1314. current->memcg_in_oom = memcg;
  1315. current->memcg_oom_gfp_mask = mask;
  1316. current->memcg_oom_order = order;
  1317. }
  1318. /**
  1319. * mem_cgroup_oom_synchronize - complete memcg OOM handling
  1320. * @handle: actually kill/wait or just clean up the OOM state
  1321. *
  1322. * This has to be called at the end of a page fault if the memcg OOM
  1323. * handler was enabled.
  1324. *
  1325. * Memcg supports userspace OOM handling where failed allocations must
  1326. * sleep on a waitqueue until the userspace task resolves the
  1327. * situation. Sleeping directly in the charge context with all kinds
  1328. * of locks held is not a good idea, instead we remember an OOM state
  1329. * in the task and mem_cgroup_oom_synchronize() has to be called at
  1330. * the end of the page fault to complete the OOM handling.
  1331. *
  1332. * Returns %true if an ongoing memcg OOM situation was detected and
  1333. * completed, %false otherwise.
  1334. */
  1335. bool mem_cgroup_oom_synchronize(bool handle)
  1336. {
  1337. struct mem_cgroup *memcg = current->memcg_in_oom;
  1338. struct oom_wait_info owait;
  1339. bool locked;
  1340. /* OOM is global, do not handle */
  1341. if (!memcg)
  1342. return false;
  1343. if (!handle)
  1344. goto cleanup;
  1345. owait.memcg = memcg;
  1346. owait.wait.flags = 0;
  1347. owait.wait.func = memcg_oom_wake_function;
  1348. owait.wait.private = current;
  1349. INIT_LIST_HEAD(&owait.wait.entry);
  1350. prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
  1351. mem_cgroup_mark_under_oom(memcg);
  1352. locked = mem_cgroup_oom_trylock(memcg);
  1353. if (locked)
  1354. mem_cgroup_oom_notify(memcg);
  1355. if (locked && !memcg->oom_kill_disable) {
  1356. mem_cgroup_unmark_under_oom(memcg);
  1357. finish_wait(&memcg_oom_waitq, &owait.wait);
  1358. mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
  1359. current->memcg_oom_order);
  1360. } else {
  1361. schedule();
  1362. mem_cgroup_unmark_under_oom(memcg);
  1363. finish_wait(&memcg_oom_waitq, &owait.wait);
  1364. }
  1365. if (locked) {
  1366. mem_cgroup_oom_unlock(memcg);
  1367. /*
  1368. * There is no guarantee that an OOM-lock contender
  1369. * sees the wakeups triggered by the OOM kill
  1370. * uncharges. Wake any sleepers explicitely.
  1371. */
  1372. memcg_oom_recover(memcg);
  1373. }
  1374. cleanup:
  1375. current->memcg_in_oom = NULL;
  1376. css_put(&memcg->css);
  1377. return true;
  1378. }
  1379. /**
  1380. * lock_page_memcg - lock a page->mem_cgroup binding
  1381. * @page: the page
  1382. *
  1383. * This function protects unlocked LRU pages from being moved to
  1384. * another cgroup.
  1385. *
  1386. * It ensures lifetime of the returned memcg. Caller is responsible
  1387. * for the lifetime of the page; __unlock_page_memcg() is available
  1388. * when @page might get freed inside the locked section.
  1389. */
  1390. struct mem_cgroup *lock_page_memcg(struct page *page)
  1391. {
  1392. struct mem_cgroup *memcg;
  1393. unsigned long flags;
  1394. /*
  1395. * The RCU lock is held throughout the transaction. The fast
  1396. * path can get away without acquiring the memcg->move_lock
  1397. * because page moving starts with an RCU grace period.
  1398. *
  1399. * The RCU lock also protects the memcg from being freed when
  1400. * the page state that is going to change is the only thing
  1401. * preventing the page itself from being freed. E.g. writeback
  1402. * doesn't hold a page reference and relies on PG_writeback to
  1403. * keep off truncation, migration and so forth.
  1404. */
  1405. rcu_read_lock();
  1406. if (mem_cgroup_disabled())
  1407. return NULL;
  1408. again:
  1409. memcg = page->mem_cgroup;
  1410. if (unlikely(!memcg))
  1411. return NULL;
  1412. if (atomic_read(&memcg->moving_account) <= 0)
  1413. return memcg;
  1414. spin_lock_irqsave(&memcg->move_lock, flags);
  1415. if (memcg != page->mem_cgroup) {
  1416. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1417. goto again;
  1418. }
  1419. /*
  1420. * When charge migration first begins, we can have locked and
  1421. * unlocked page stat updates happening concurrently. Track
  1422. * the task who has the lock for unlock_page_memcg().
  1423. */
  1424. memcg->move_lock_task = current;
  1425. memcg->move_lock_flags = flags;
  1426. return memcg;
  1427. }
  1428. EXPORT_SYMBOL(lock_page_memcg);
  1429. /**
  1430. * __unlock_page_memcg - unlock and unpin a memcg
  1431. * @memcg: the memcg
  1432. *
  1433. * Unlock and unpin a memcg returned by lock_page_memcg().
  1434. */
  1435. void __unlock_page_memcg(struct mem_cgroup *memcg)
  1436. {
  1437. if (memcg && memcg->move_lock_task == current) {
  1438. unsigned long flags = memcg->move_lock_flags;
  1439. memcg->move_lock_task = NULL;
  1440. memcg->move_lock_flags = 0;
  1441. spin_unlock_irqrestore(&memcg->move_lock, flags);
  1442. }
  1443. rcu_read_unlock();
  1444. }
  1445. /**
  1446. * unlock_page_memcg - unlock a page->mem_cgroup binding
  1447. * @page: the page
  1448. */
  1449. void unlock_page_memcg(struct page *page)
  1450. {
  1451. __unlock_page_memcg(page->mem_cgroup);
  1452. }
  1453. EXPORT_SYMBOL(unlock_page_memcg);
  1454. struct memcg_stock_pcp {
  1455. struct mem_cgroup *cached; /* this never be root cgroup */
  1456. unsigned int nr_pages;
  1457. struct work_struct work;
  1458. unsigned long flags;
  1459. #define FLUSHING_CACHED_CHARGE 0
  1460. };
  1461. static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
  1462. static DEFINE_MUTEX(percpu_charge_mutex);
  1463. /**
  1464. * consume_stock: Try to consume stocked charge on this cpu.
  1465. * @memcg: memcg to consume from.
  1466. * @nr_pages: how many pages to charge.
  1467. *
  1468. * The charges will only happen if @memcg matches the current cpu's memcg
  1469. * stock, and at least @nr_pages are available in that stock. Failure to
  1470. * service an allocation will refill the stock.
  1471. *
  1472. * returns true if successful, false otherwise.
  1473. */
  1474. static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1475. {
  1476. struct memcg_stock_pcp *stock;
  1477. unsigned long flags;
  1478. bool ret = false;
  1479. if (nr_pages > MEMCG_CHARGE_BATCH)
  1480. return ret;
  1481. local_irq_save(flags);
  1482. stock = this_cpu_ptr(&memcg_stock);
  1483. if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
  1484. stock->nr_pages -= nr_pages;
  1485. ret = true;
  1486. }
  1487. local_irq_restore(flags);
  1488. return ret;
  1489. }
  1490. /*
  1491. * Returns stocks cached in percpu and reset cached information.
  1492. */
  1493. static void drain_stock(struct memcg_stock_pcp *stock)
  1494. {
  1495. struct mem_cgroup *old = stock->cached;
  1496. if (stock->nr_pages) {
  1497. page_counter_uncharge(&old->memory, stock->nr_pages);
  1498. if (do_memsw_account())
  1499. page_counter_uncharge(&old->memsw, stock->nr_pages);
  1500. css_put_many(&old->css, stock->nr_pages);
  1501. stock->nr_pages = 0;
  1502. }
  1503. stock->cached = NULL;
  1504. }
  1505. static void drain_local_stock(struct work_struct *dummy)
  1506. {
  1507. struct memcg_stock_pcp *stock;
  1508. unsigned long flags;
  1509. /*
  1510. * The only protection from memory hotplug vs. drain_stock races is
  1511. * that we always operate on local CPU stock here with IRQ disabled
  1512. */
  1513. local_irq_save(flags);
  1514. stock = this_cpu_ptr(&memcg_stock);
  1515. drain_stock(stock);
  1516. clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
  1517. local_irq_restore(flags);
  1518. }
  1519. /*
  1520. * Cache charges(val) to local per_cpu area.
  1521. * This will be consumed by consume_stock() function, later.
  1522. */
  1523. static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
  1524. {
  1525. struct memcg_stock_pcp *stock;
  1526. unsigned long flags;
  1527. local_irq_save(flags);
  1528. stock = this_cpu_ptr(&memcg_stock);
  1529. if (stock->cached != memcg) { /* reset if necessary */
  1530. drain_stock(stock);
  1531. stock->cached = memcg;
  1532. }
  1533. stock->nr_pages += nr_pages;
  1534. if (stock->nr_pages > MEMCG_CHARGE_BATCH)
  1535. drain_stock(stock);
  1536. local_irq_restore(flags);
  1537. }
  1538. /*
  1539. * Drains all per-CPU charge caches for given root_memcg resp. subtree
  1540. * of the hierarchy under it.
  1541. */
  1542. static void drain_all_stock(struct mem_cgroup *root_memcg)
  1543. {
  1544. int cpu, curcpu;
  1545. /* If someone's already draining, avoid adding running more workers. */
  1546. if (!mutex_trylock(&percpu_charge_mutex))
  1547. return;
  1548. /*
  1549. * Notify other cpus that system-wide "drain" is running
  1550. * We do not care about races with the cpu hotplug because cpu down
  1551. * as well as workers from this path always operate on the local
  1552. * per-cpu data. CPU up doesn't touch memcg_stock at all.
  1553. */
  1554. curcpu = get_cpu();
  1555. for_each_online_cpu(cpu) {
  1556. struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
  1557. struct mem_cgroup *memcg;
  1558. memcg = stock->cached;
  1559. if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
  1560. continue;
  1561. if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
  1562. css_put(&memcg->css);
  1563. continue;
  1564. }
  1565. if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
  1566. if (cpu == curcpu)
  1567. drain_local_stock(&stock->work);
  1568. else
  1569. schedule_work_on(cpu, &stock->work);
  1570. }
  1571. css_put(&memcg->css);
  1572. }
  1573. put_cpu();
  1574. mutex_unlock(&percpu_charge_mutex);
  1575. }
  1576. static int memcg_hotplug_cpu_dead(unsigned int cpu)
  1577. {
  1578. struct memcg_stock_pcp *stock;
  1579. struct mem_cgroup *memcg;
  1580. stock = &per_cpu(memcg_stock, cpu);
  1581. drain_stock(stock);
  1582. for_each_mem_cgroup(memcg) {
  1583. int i;
  1584. for (i = 0; i < MEMCG_NR_STAT; i++) {
  1585. int nid;
  1586. long x;
  1587. x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
  1588. if (x)
  1589. atomic_long_add(x, &memcg->stat[i]);
  1590. if (i >= NR_VM_NODE_STAT_ITEMS)
  1591. continue;
  1592. for_each_node(nid) {
  1593. struct mem_cgroup_per_node *pn;
  1594. pn = mem_cgroup_nodeinfo(memcg, nid);
  1595. x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
  1596. if (x)
  1597. atomic_long_add(x, &pn->lruvec_stat[i]);
  1598. }
  1599. }
  1600. for (i = 0; i < MEMCG_NR_EVENTS; i++) {
  1601. long x;
  1602. x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
  1603. if (x)
  1604. atomic_long_add(x, &memcg->events[i]);
  1605. }
  1606. }
  1607. return 0;
  1608. }
  1609. static void reclaim_high(struct mem_cgroup *memcg,
  1610. unsigned int nr_pages,
  1611. gfp_t gfp_mask)
  1612. {
  1613. do {
  1614. if (page_counter_read(&memcg->memory) <= memcg->high)
  1615. continue;
  1616. mem_cgroup_event(memcg, MEMCG_HIGH);
  1617. try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
  1618. } while ((memcg = parent_mem_cgroup(memcg)));
  1619. }
  1620. static void high_work_func(struct work_struct *work)
  1621. {
  1622. struct mem_cgroup *memcg;
  1623. memcg = container_of(work, struct mem_cgroup, high_work);
  1624. reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
  1625. }
  1626. /*
  1627. * Scheduled by try_charge() to be executed from the userland return path
  1628. * and reclaims memory over the high limit.
  1629. */
  1630. void mem_cgroup_handle_over_high(void)
  1631. {
  1632. unsigned int nr_pages = current->memcg_nr_pages_over_high;
  1633. struct mem_cgroup *memcg;
  1634. if (likely(!nr_pages))
  1635. return;
  1636. memcg = get_mem_cgroup_from_mm(current->mm);
  1637. reclaim_high(memcg, nr_pages, GFP_KERNEL);
  1638. css_put(&memcg->css);
  1639. current->memcg_nr_pages_over_high = 0;
  1640. }
  1641. static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
  1642. unsigned int nr_pages)
  1643. {
  1644. unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
  1645. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  1646. struct mem_cgroup *mem_over_limit;
  1647. struct page_counter *counter;
  1648. unsigned long nr_reclaimed;
  1649. bool may_swap = true;
  1650. bool drained = false;
  1651. if (mem_cgroup_is_root(memcg))
  1652. return 0;
  1653. retry:
  1654. if (consume_stock(memcg, nr_pages))
  1655. return 0;
  1656. if (!do_memsw_account() ||
  1657. page_counter_try_charge(&memcg->memsw, batch, &counter)) {
  1658. if (page_counter_try_charge(&memcg->memory, batch, &counter))
  1659. goto done_restock;
  1660. if (do_memsw_account())
  1661. page_counter_uncharge(&memcg->memsw, batch);
  1662. mem_over_limit = mem_cgroup_from_counter(counter, memory);
  1663. } else {
  1664. mem_over_limit = mem_cgroup_from_counter(counter, memsw);
  1665. may_swap = false;
  1666. }
  1667. if (batch > nr_pages) {
  1668. batch = nr_pages;
  1669. goto retry;
  1670. }
  1671. /*
  1672. * Unlike in global OOM situations, memcg is not in a physical
  1673. * memory shortage. Allow dying and OOM-killed tasks to
  1674. * bypass the last charges so that they can exit quickly and
  1675. * free their memory.
  1676. */
  1677. if (unlikely(tsk_is_oom_victim(current) ||
  1678. fatal_signal_pending(current) ||
  1679. current->flags & PF_EXITING))
  1680. goto force;
  1681. /*
  1682. * Prevent unbounded recursion when reclaim operations need to
  1683. * allocate memory. This might exceed the limits temporarily,
  1684. * but we prefer facilitating memory reclaim and getting back
  1685. * under the limit over triggering OOM kills in these cases.
  1686. */
  1687. if (unlikely(current->flags & PF_MEMALLOC))
  1688. goto force;
  1689. if (unlikely(task_in_memcg_oom(current)))
  1690. goto nomem;
  1691. if (!gfpflags_allow_blocking(gfp_mask))
  1692. goto nomem;
  1693. mem_cgroup_event(mem_over_limit, MEMCG_MAX);
  1694. nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
  1695. gfp_mask, may_swap);
  1696. if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
  1697. goto retry;
  1698. if (!drained) {
  1699. drain_all_stock(mem_over_limit);
  1700. drained = true;
  1701. goto retry;
  1702. }
  1703. if (gfp_mask & __GFP_NORETRY)
  1704. goto nomem;
  1705. /*
  1706. * Even though the limit is exceeded at this point, reclaim
  1707. * may have been able to free some pages. Retry the charge
  1708. * before killing the task.
  1709. *
  1710. * Only for regular pages, though: huge pages are rather
  1711. * unlikely to succeed so close to the limit, and we fall back
  1712. * to regular pages anyway in case of failure.
  1713. */
  1714. if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
  1715. goto retry;
  1716. /*
  1717. * At task move, charge accounts can be doubly counted. So, it's
  1718. * better to wait until the end of task_move if something is going on.
  1719. */
  1720. if (mem_cgroup_wait_acct_move(mem_over_limit))
  1721. goto retry;
  1722. if (nr_retries--)
  1723. goto retry;
  1724. if (gfp_mask & __GFP_NOFAIL)
  1725. goto force;
  1726. if (fatal_signal_pending(current))
  1727. goto force;
  1728. mem_cgroup_event(mem_over_limit, MEMCG_OOM);
  1729. mem_cgroup_oom(mem_over_limit, gfp_mask,
  1730. get_order(nr_pages * PAGE_SIZE));
  1731. nomem:
  1732. if (!(gfp_mask & __GFP_NOFAIL))
  1733. return -ENOMEM;
  1734. force:
  1735. /*
  1736. * The allocation either can't fail or will lead to more memory
  1737. * being freed very soon. Allow memory usage go over the limit
  1738. * temporarily by force charging it.
  1739. */
  1740. page_counter_charge(&memcg->memory, nr_pages);
  1741. if (do_memsw_account())
  1742. page_counter_charge(&memcg->memsw, nr_pages);
  1743. css_get_many(&memcg->css, nr_pages);
  1744. return 0;
  1745. done_restock:
  1746. css_get_many(&memcg->css, batch);
  1747. if (batch > nr_pages)
  1748. refill_stock(memcg, batch - nr_pages);
  1749. /*
  1750. * If the hierarchy is above the normal consumption range, schedule
  1751. * reclaim on returning to userland. We can perform reclaim here
  1752. * if __GFP_RECLAIM but let's always punt for simplicity and so that
  1753. * GFP_KERNEL can consistently be used during reclaim. @memcg is
  1754. * not recorded as it most likely matches current's and won't
  1755. * change in the meantime. As high limit is checked again before
  1756. * reclaim, the cost of mismatch is negligible.
  1757. */
  1758. do {
  1759. if (page_counter_read(&memcg->memory) > memcg->high) {
  1760. /* Don't bother a random interrupted task */
  1761. if (in_interrupt()) {
  1762. schedule_work(&memcg->high_work);
  1763. break;
  1764. }
  1765. current->memcg_nr_pages_over_high += batch;
  1766. set_notify_resume(current);
  1767. break;
  1768. }
  1769. } while ((memcg = parent_mem_cgroup(memcg)));
  1770. return 0;
  1771. }
  1772. static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
  1773. {
  1774. if (mem_cgroup_is_root(memcg))
  1775. return;
  1776. page_counter_uncharge(&memcg->memory, nr_pages);
  1777. if (do_memsw_account())
  1778. page_counter_uncharge(&memcg->memsw, nr_pages);
  1779. css_put_many(&memcg->css, nr_pages);
  1780. }
  1781. static void lock_page_lru(struct page *page, int *isolated)
  1782. {
  1783. struct zone *zone = page_zone(page);
  1784. spin_lock_irq(zone_lru_lock(zone));
  1785. if (PageLRU(page)) {
  1786. struct lruvec *lruvec;
  1787. lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  1788. ClearPageLRU(page);
  1789. del_page_from_lru_list(page, lruvec, page_lru(page));
  1790. *isolated = 1;
  1791. } else
  1792. *isolated = 0;
  1793. }
  1794. static void unlock_page_lru(struct page *page, int isolated)
  1795. {
  1796. struct zone *zone = page_zone(page);
  1797. if (isolated) {
  1798. struct lruvec *lruvec;
  1799. lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
  1800. VM_BUG_ON_PAGE(PageLRU(page), page);
  1801. SetPageLRU(page);
  1802. add_page_to_lru_list(page, lruvec, page_lru(page));
  1803. }
  1804. spin_unlock_irq(zone_lru_lock(zone));
  1805. }
  1806. static void commit_charge(struct page *page, struct mem_cgroup *memcg,
  1807. bool lrucare)
  1808. {
  1809. int isolated;
  1810. VM_BUG_ON_PAGE(page->mem_cgroup, page);
  1811. /*
  1812. * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
  1813. * may already be on some other mem_cgroup's LRU. Take care of it.
  1814. */
  1815. if (lrucare)
  1816. lock_page_lru(page, &isolated);
  1817. /*
  1818. * Nobody should be changing or seriously looking at
  1819. * page->mem_cgroup at this point:
  1820. *
  1821. * - the page is uncharged
  1822. *
  1823. * - the page is off-LRU
  1824. *
  1825. * - an anonymous fault has exclusive page access, except for
  1826. * a locked page table
  1827. *
  1828. * - a page cache insertion, a swapin fault, or a migration
  1829. * have the page locked
  1830. */
  1831. page->mem_cgroup = memcg;
  1832. if (lrucare)
  1833. unlock_page_lru(page, isolated);
  1834. }
  1835. #ifndef CONFIG_SLOB
  1836. static int memcg_alloc_cache_id(void)
  1837. {
  1838. int id, size;
  1839. int err;
  1840. id = ida_simple_get(&memcg_cache_ida,
  1841. 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
  1842. if (id < 0)
  1843. return id;
  1844. if (id < memcg_nr_cache_ids)
  1845. return id;
  1846. /*
  1847. * There's no space for the new id in memcg_caches arrays,
  1848. * so we have to grow them.
  1849. */
  1850. down_write(&memcg_cache_ids_sem);
  1851. size = 2 * (id + 1);
  1852. if (size < MEMCG_CACHES_MIN_SIZE)
  1853. size = MEMCG_CACHES_MIN_SIZE;
  1854. else if (size > MEMCG_CACHES_MAX_SIZE)
  1855. size = MEMCG_CACHES_MAX_SIZE;
  1856. err = memcg_update_all_caches(size);
  1857. if (!err)
  1858. err = memcg_update_all_list_lrus(size);
  1859. if (!err)
  1860. memcg_nr_cache_ids = size;
  1861. up_write(&memcg_cache_ids_sem);
  1862. if (err) {
  1863. ida_simple_remove(&memcg_cache_ida, id);
  1864. return err;
  1865. }
  1866. return id;
  1867. }
  1868. static void memcg_free_cache_id(int id)
  1869. {
  1870. ida_simple_remove(&memcg_cache_ida, id);
  1871. }
  1872. struct memcg_kmem_cache_create_work {
  1873. struct mem_cgroup *memcg;
  1874. struct kmem_cache *cachep;
  1875. struct work_struct work;
  1876. };
  1877. static void memcg_kmem_cache_create_func(struct work_struct *w)
  1878. {
  1879. struct memcg_kmem_cache_create_work *cw =
  1880. container_of(w, struct memcg_kmem_cache_create_work, work);
  1881. struct mem_cgroup *memcg = cw->memcg;
  1882. struct kmem_cache *cachep = cw->cachep;
  1883. memcg_create_kmem_cache(memcg, cachep);
  1884. css_put(&memcg->css);
  1885. kfree(cw);
  1886. }
  1887. /*
  1888. * Enqueue the creation of a per-memcg kmem_cache.
  1889. */
  1890. static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  1891. struct kmem_cache *cachep)
  1892. {
  1893. struct memcg_kmem_cache_create_work *cw;
  1894. cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
  1895. if (!cw)
  1896. return;
  1897. css_get(&memcg->css);
  1898. cw->memcg = memcg;
  1899. cw->cachep = cachep;
  1900. INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
  1901. queue_work(memcg_kmem_cache_wq, &cw->work);
  1902. }
  1903. static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
  1904. struct kmem_cache *cachep)
  1905. {
  1906. /*
  1907. * We need to stop accounting when we kmalloc, because if the
  1908. * corresponding kmalloc cache is not yet created, the first allocation
  1909. * in __memcg_schedule_kmem_cache_create will recurse.
  1910. *
  1911. * However, it is better to enclose the whole function. Depending on
  1912. * the debugging options enabled, INIT_WORK(), for instance, can
  1913. * trigger an allocation. This too, will make us recurse. Because at
  1914. * this point we can't allow ourselves back into memcg_kmem_get_cache,
  1915. * the safest choice is to do it like this, wrapping the whole function.
  1916. */
  1917. current->memcg_kmem_skip_account = 1;
  1918. __memcg_schedule_kmem_cache_create(memcg, cachep);
  1919. current->memcg_kmem_skip_account = 0;
  1920. }
  1921. static inline bool memcg_kmem_bypass(void)
  1922. {
  1923. if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
  1924. return true;
  1925. return false;
  1926. }
  1927. /**
  1928. * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
  1929. * @cachep: the original global kmem cache
  1930. *
  1931. * Return the kmem_cache we're supposed to use for a slab allocation.
  1932. * We try to use the current memcg's version of the cache.
  1933. *
  1934. * If the cache does not exist yet, if we are the first user of it, we
  1935. * create it asynchronously in a workqueue and let the current allocation
  1936. * go through with the original cache.
  1937. *
  1938. * This function takes a reference to the cache it returns to assure it
  1939. * won't get destroyed while we are working with it. Once the caller is
  1940. * done with it, memcg_kmem_put_cache() must be called to release the
  1941. * reference.
  1942. */
  1943. struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
  1944. {
  1945. struct mem_cgroup *memcg;
  1946. struct kmem_cache *memcg_cachep;
  1947. int kmemcg_id;
  1948. VM_BUG_ON(!is_root_cache(cachep));
  1949. if (memcg_kmem_bypass())
  1950. return cachep;
  1951. if (current->memcg_kmem_skip_account)
  1952. return cachep;
  1953. memcg = get_mem_cgroup_from_mm(current->mm);
  1954. kmemcg_id = READ_ONCE(memcg->kmemcg_id);
  1955. if (kmemcg_id < 0)
  1956. goto out;
  1957. memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
  1958. if (likely(memcg_cachep))
  1959. return memcg_cachep;
  1960. /*
  1961. * If we are in a safe context (can wait, and not in interrupt
  1962. * context), we could be be predictable and return right away.
  1963. * This would guarantee that the allocation being performed
  1964. * already belongs in the new cache.
  1965. *
  1966. * However, there are some clashes that can arrive from locking.
  1967. * For instance, because we acquire the slab_mutex while doing
  1968. * memcg_create_kmem_cache, this means no further allocation
  1969. * could happen with the slab_mutex held. So it's better to
  1970. * defer everything.
  1971. */
  1972. memcg_schedule_kmem_cache_create(memcg, cachep);
  1973. out:
  1974. css_put(&memcg->css);
  1975. return cachep;
  1976. }
  1977. /**
  1978. * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
  1979. * @cachep: the cache returned by memcg_kmem_get_cache
  1980. */
  1981. void memcg_kmem_put_cache(struct kmem_cache *cachep)
  1982. {
  1983. if (!is_root_cache(cachep))
  1984. css_put(&cachep->memcg_params.memcg->css);
  1985. }
  1986. /**
  1987. * memcg_kmem_charge_memcg: charge a kmem page
  1988. * @page: page to charge
  1989. * @gfp: reclaim mode
  1990. * @order: allocation order
  1991. * @memcg: memory cgroup to charge
  1992. *
  1993. * Returns 0 on success, an error code on failure.
  1994. */
  1995. int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
  1996. struct mem_cgroup *memcg)
  1997. {
  1998. unsigned int nr_pages = 1 << order;
  1999. struct page_counter *counter;
  2000. int ret;
  2001. ret = try_charge(memcg, gfp, nr_pages);
  2002. if (ret)
  2003. return ret;
  2004. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
  2005. !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
  2006. cancel_charge(memcg, nr_pages);
  2007. return -ENOMEM;
  2008. }
  2009. page->mem_cgroup = memcg;
  2010. return 0;
  2011. }
  2012. /**
  2013. * memcg_kmem_charge: charge a kmem page to the current memory cgroup
  2014. * @page: page to charge
  2015. * @gfp: reclaim mode
  2016. * @order: allocation order
  2017. *
  2018. * Returns 0 on success, an error code on failure.
  2019. */
  2020. int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
  2021. {
  2022. struct mem_cgroup *memcg;
  2023. int ret = 0;
  2024. if (memcg_kmem_bypass())
  2025. return 0;
  2026. memcg = get_mem_cgroup_from_mm(current->mm);
  2027. if (!mem_cgroup_is_root(memcg)) {
  2028. ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
  2029. if (!ret)
  2030. __SetPageKmemcg(page);
  2031. }
  2032. css_put(&memcg->css);
  2033. return ret;
  2034. }
  2035. /**
  2036. * memcg_kmem_uncharge: uncharge a kmem page
  2037. * @page: page to uncharge
  2038. * @order: allocation order
  2039. */
  2040. void memcg_kmem_uncharge(struct page *page, int order)
  2041. {
  2042. struct mem_cgroup *memcg = page->mem_cgroup;
  2043. unsigned int nr_pages = 1 << order;
  2044. if (!memcg)
  2045. return;
  2046. VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
  2047. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
  2048. page_counter_uncharge(&memcg->kmem, nr_pages);
  2049. page_counter_uncharge(&memcg->memory, nr_pages);
  2050. if (do_memsw_account())
  2051. page_counter_uncharge(&memcg->memsw, nr_pages);
  2052. page->mem_cgroup = NULL;
  2053. /* slab pages do not have PageKmemcg flag set */
  2054. if (PageKmemcg(page))
  2055. __ClearPageKmemcg(page);
  2056. css_put_many(&memcg->css, nr_pages);
  2057. }
  2058. #endif /* !CONFIG_SLOB */
  2059. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  2060. /*
  2061. * Because tail pages are not marked as "used", set it. We're under
  2062. * zone_lru_lock and migration entries setup in all page mappings.
  2063. */
  2064. void mem_cgroup_split_huge_fixup(struct page *head)
  2065. {
  2066. int i;
  2067. if (mem_cgroup_disabled())
  2068. return;
  2069. for (i = 1; i < HPAGE_PMD_NR; i++)
  2070. head[i].mem_cgroup = head->mem_cgroup;
  2071. __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
  2072. }
  2073. #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
  2074. #ifdef CONFIG_MEMCG_SWAP
  2075. /**
  2076. * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
  2077. * @entry: swap entry to be moved
  2078. * @from: mem_cgroup which the entry is moved from
  2079. * @to: mem_cgroup which the entry is moved to
  2080. *
  2081. * It succeeds only when the swap_cgroup's record for this entry is the same
  2082. * as the mem_cgroup's id of @from.
  2083. *
  2084. * Returns 0 on success, -EINVAL on failure.
  2085. *
  2086. * The caller must have charged to @to, IOW, called page_counter_charge() about
  2087. * both res and memsw, and called css_get().
  2088. */
  2089. static int mem_cgroup_move_swap_account(swp_entry_t entry,
  2090. struct mem_cgroup *from, struct mem_cgroup *to)
  2091. {
  2092. unsigned short old_id, new_id;
  2093. old_id = mem_cgroup_id(from);
  2094. new_id = mem_cgroup_id(to);
  2095. if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
  2096. mod_memcg_state(from, MEMCG_SWAP, -1);
  2097. mod_memcg_state(to, MEMCG_SWAP, 1);
  2098. return 0;
  2099. }
  2100. return -EINVAL;
  2101. }
  2102. #else
  2103. static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
  2104. struct mem_cgroup *from, struct mem_cgroup *to)
  2105. {
  2106. return -EINVAL;
  2107. }
  2108. #endif
  2109. static DEFINE_MUTEX(memcg_limit_mutex);
  2110. static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
  2111. unsigned long limit, bool memsw)
  2112. {
  2113. bool enlarge = false;
  2114. int ret;
  2115. bool limits_invariant;
  2116. struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
  2117. do {
  2118. if (signal_pending(current)) {
  2119. ret = -EINTR;
  2120. break;
  2121. }
  2122. mutex_lock(&memcg_limit_mutex);
  2123. /*
  2124. * Make sure that the new limit (memsw or memory limit) doesn't
  2125. * break our basic invariant rule memory.limit <= memsw.limit.
  2126. */
  2127. limits_invariant = memsw ? limit >= memcg->memory.limit :
  2128. limit <= memcg->memsw.limit;
  2129. if (!limits_invariant) {
  2130. mutex_unlock(&memcg_limit_mutex);
  2131. ret = -EINVAL;
  2132. break;
  2133. }
  2134. if (limit > counter->limit)
  2135. enlarge = true;
  2136. ret = page_counter_limit(counter, limit);
  2137. mutex_unlock(&memcg_limit_mutex);
  2138. if (!ret)
  2139. break;
  2140. if (!try_to_free_mem_cgroup_pages(memcg, 1,
  2141. GFP_KERNEL, !memsw)) {
  2142. ret = -EBUSY;
  2143. break;
  2144. }
  2145. } while (true);
  2146. if (!ret && enlarge)
  2147. memcg_oom_recover(memcg);
  2148. return ret;
  2149. }
  2150. unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
  2151. gfp_t gfp_mask,
  2152. unsigned long *total_scanned)
  2153. {
  2154. unsigned long nr_reclaimed = 0;
  2155. struct mem_cgroup_per_node *mz, *next_mz = NULL;
  2156. unsigned long reclaimed;
  2157. int loop = 0;
  2158. struct mem_cgroup_tree_per_node *mctz;
  2159. unsigned long excess;
  2160. unsigned long nr_scanned;
  2161. if (order > 0)
  2162. return 0;
  2163. mctz = soft_limit_tree_node(pgdat->node_id);
  2164. /*
  2165. * Do not even bother to check the largest node if the root
  2166. * is empty. Do it lockless to prevent lock bouncing. Races
  2167. * are acceptable as soft limit is best effort anyway.
  2168. */
  2169. if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
  2170. return 0;
  2171. /*
  2172. * This loop can run a while, specially if mem_cgroup's continuously
  2173. * keep exceeding their soft limit and putting the system under
  2174. * pressure
  2175. */
  2176. do {
  2177. if (next_mz)
  2178. mz = next_mz;
  2179. else
  2180. mz = mem_cgroup_largest_soft_limit_node(mctz);
  2181. if (!mz)
  2182. break;
  2183. nr_scanned = 0;
  2184. reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
  2185. gfp_mask, &nr_scanned);
  2186. nr_reclaimed += reclaimed;
  2187. *total_scanned += nr_scanned;
  2188. spin_lock_irq(&mctz->lock);
  2189. __mem_cgroup_remove_exceeded(mz, mctz);
  2190. /*
  2191. * If we failed to reclaim anything from this memory cgroup
  2192. * it is time to move on to the next cgroup
  2193. */
  2194. next_mz = NULL;
  2195. if (!reclaimed)
  2196. next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
  2197. excess = soft_limit_excess(mz->memcg);
  2198. /*
  2199. * One school of thought says that we should not add
  2200. * back the node to the tree if reclaim returns 0.
  2201. * But our reclaim could return 0, simply because due
  2202. * to priority we are exposing a smaller subset of
  2203. * memory to reclaim from. Consider this as a longer
  2204. * term TODO.
  2205. */
  2206. /* If excess == 0, no tree ops */
  2207. __mem_cgroup_insert_exceeded(mz, mctz, excess);
  2208. spin_unlock_irq(&mctz->lock);
  2209. css_put(&mz->memcg->css);
  2210. loop++;
  2211. /*
  2212. * Could not reclaim anything and there are no more
  2213. * mem cgroups to try or we seem to be looping without
  2214. * reclaiming anything.
  2215. */
  2216. if (!nr_reclaimed &&
  2217. (next_mz == NULL ||
  2218. loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
  2219. break;
  2220. } while (!nr_reclaimed);
  2221. if (next_mz)
  2222. css_put(&next_mz->memcg->css);
  2223. return nr_reclaimed;
  2224. }
  2225. /*
  2226. * Test whether @memcg has children, dead or alive. Note that this
  2227. * function doesn't care whether @memcg has use_hierarchy enabled and
  2228. * returns %true if there are child csses according to the cgroup
  2229. * hierarchy. Testing use_hierarchy is the caller's responsiblity.
  2230. */
  2231. static inline bool memcg_has_children(struct mem_cgroup *memcg)
  2232. {
  2233. bool ret;
  2234. rcu_read_lock();
  2235. ret = css_next_child(NULL, &memcg->css);
  2236. rcu_read_unlock();
  2237. return ret;
  2238. }
  2239. /*
  2240. * Reclaims as many pages from the given memcg as possible.
  2241. *
  2242. * Caller is responsible for holding css reference for memcg.
  2243. */
  2244. static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
  2245. {
  2246. int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
  2247. /* we call try-to-free pages for make this cgroup empty */
  2248. lru_add_drain_all();
  2249. /* try to free all pages in this cgroup */
  2250. while (nr_retries && page_counter_read(&memcg->memory)) {
  2251. int progress;
  2252. if (signal_pending(current))
  2253. return -EINTR;
  2254. progress = try_to_free_mem_cgroup_pages(memcg, 1,
  2255. GFP_KERNEL, true);
  2256. if (!progress) {
  2257. nr_retries--;
  2258. /* maybe some writeback is necessary */
  2259. congestion_wait(BLK_RW_ASYNC, HZ/10);
  2260. }
  2261. }
  2262. return 0;
  2263. }
  2264. static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
  2265. char *buf, size_t nbytes,
  2266. loff_t off)
  2267. {
  2268. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2269. if (mem_cgroup_is_root(memcg))
  2270. return -EINVAL;
  2271. return mem_cgroup_force_empty(memcg) ?: nbytes;
  2272. }
  2273. static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
  2274. struct cftype *cft)
  2275. {
  2276. return mem_cgroup_from_css(css)->use_hierarchy;
  2277. }
  2278. static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
  2279. struct cftype *cft, u64 val)
  2280. {
  2281. int retval = 0;
  2282. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2283. struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
  2284. if (memcg->use_hierarchy == val)
  2285. return 0;
  2286. /*
  2287. * If parent's use_hierarchy is set, we can't make any modifications
  2288. * in the child subtrees. If it is unset, then the change can
  2289. * occur, provided the current cgroup has no children.
  2290. *
  2291. * For the root cgroup, parent_mem is NULL, we allow value to be
  2292. * set if there are no children.
  2293. */
  2294. if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
  2295. (val == 1 || val == 0)) {
  2296. if (!memcg_has_children(memcg))
  2297. memcg->use_hierarchy = val;
  2298. else
  2299. retval = -EBUSY;
  2300. } else
  2301. retval = -EINVAL;
  2302. return retval;
  2303. }
  2304. static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
  2305. {
  2306. struct mem_cgroup *iter;
  2307. int i;
  2308. memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
  2309. for_each_mem_cgroup_tree(iter, memcg) {
  2310. for (i = 0; i < MEMCG_NR_STAT; i++)
  2311. stat[i] += memcg_page_state(iter, i);
  2312. }
  2313. }
  2314. static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
  2315. {
  2316. struct mem_cgroup *iter;
  2317. int i;
  2318. memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
  2319. for_each_mem_cgroup_tree(iter, memcg) {
  2320. for (i = 0; i < MEMCG_NR_EVENTS; i++)
  2321. events[i] += memcg_sum_events(iter, i);
  2322. }
  2323. }
  2324. static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
  2325. {
  2326. unsigned long val = 0;
  2327. if (mem_cgroup_is_root(memcg)) {
  2328. struct mem_cgroup *iter;
  2329. for_each_mem_cgroup_tree(iter, memcg) {
  2330. val += memcg_page_state(iter, MEMCG_CACHE);
  2331. val += memcg_page_state(iter, MEMCG_RSS);
  2332. if (swap)
  2333. val += memcg_page_state(iter, MEMCG_SWAP);
  2334. }
  2335. } else {
  2336. if (!swap)
  2337. val = page_counter_read(&memcg->memory);
  2338. else
  2339. val = page_counter_read(&memcg->memsw);
  2340. }
  2341. return val;
  2342. }
  2343. enum {
  2344. RES_USAGE,
  2345. RES_LIMIT,
  2346. RES_MAX_USAGE,
  2347. RES_FAILCNT,
  2348. RES_SOFT_LIMIT,
  2349. };
  2350. static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
  2351. struct cftype *cft)
  2352. {
  2353. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2354. struct page_counter *counter;
  2355. switch (MEMFILE_TYPE(cft->private)) {
  2356. case _MEM:
  2357. counter = &memcg->memory;
  2358. break;
  2359. case _MEMSWAP:
  2360. counter = &memcg->memsw;
  2361. break;
  2362. case _KMEM:
  2363. counter = &memcg->kmem;
  2364. break;
  2365. case _TCP:
  2366. counter = &memcg->tcpmem;
  2367. break;
  2368. default:
  2369. BUG();
  2370. }
  2371. switch (MEMFILE_ATTR(cft->private)) {
  2372. case RES_USAGE:
  2373. if (counter == &memcg->memory)
  2374. return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
  2375. if (counter == &memcg->memsw)
  2376. return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
  2377. return (u64)page_counter_read(counter) * PAGE_SIZE;
  2378. case RES_LIMIT:
  2379. return (u64)counter->limit * PAGE_SIZE;
  2380. case RES_MAX_USAGE:
  2381. return (u64)counter->watermark * PAGE_SIZE;
  2382. case RES_FAILCNT:
  2383. return counter->failcnt;
  2384. case RES_SOFT_LIMIT:
  2385. return (u64)memcg->soft_limit * PAGE_SIZE;
  2386. default:
  2387. BUG();
  2388. }
  2389. }
  2390. #ifndef CONFIG_SLOB
  2391. static int memcg_online_kmem(struct mem_cgroup *memcg)
  2392. {
  2393. int memcg_id;
  2394. if (cgroup_memory_nokmem)
  2395. return 0;
  2396. BUG_ON(memcg->kmemcg_id >= 0);
  2397. BUG_ON(memcg->kmem_state);
  2398. memcg_id = memcg_alloc_cache_id();
  2399. if (memcg_id < 0)
  2400. return memcg_id;
  2401. static_branch_inc(&memcg_kmem_enabled_key);
  2402. /*
  2403. * A memory cgroup is considered kmem-online as soon as it gets
  2404. * kmemcg_id. Setting the id after enabling static branching will
  2405. * guarantee no one starts accounting before all call sites are
  2406. * patched.
  2407. */
  2408. memcg->kmemcg_id = memcg_id;
  2409. memcg->kmem_state = KMEM_ONLINE;
  2410. INIT_LIST_HEAD(&memcg->kmem_caches);
  2411. return 0;
  2412. }
  2413. static void memcg_offline_kmem(struct mem_cgroup *memcg)
  2414. {
  2415. struct cgroup_subsys_state *css;
  2416. struct mem_cgroup *parent, *child;
  2417. int kmemcg_id;
  2418. if (memcg->kmem_state != KMEM_ONLINE)
  2419. return;
  2420. /*
  2421. * Clear the online state before clearing memcg_caches array
  2422. * entries. The slab_mutex in memcg_deactivate_kmem_caches()
  2423. * guarantees that no cache will be created for this cgroup
  2424. * after we are done (see memcg_create_kmem_cache()).
  2425. */
  2426. memcg->kmem_state = KMEM_ALLOCATED;
  2427. memcg_deactivate_kmem_caches(memcg);
  2428. kmemcg_id = memcg->kmemcg_id;
  2429. BUG_ON(kmemcg_id < 0);
  2430. parent = parent_mem_cgroup(memcg);
  2431. if (!parent)
  2432. parent = root_mem_cgroup;
  2433. /*
  2434. * Change kmemcg_id of this cgroup and all its descendants to the
  2435. * parent's id, and then move all entries from this cgroup's list_lrus
  2436. * to ones of the parent. After we have finished, all list_lrus
  2437. * corresponding to this cgroup are guaranteed to remain empty. The
  2438. * ordering is imposed by list_lru_node->lock taken by
  2439. * memcg_drain_all_list_lrus().
  2440. */
  2441. rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
  2442. css_for_each_descendant_pre(css, &memcg->css) {
  2443. child = mem_cgroup_from_css(css);
  2444. BUG_ON(child->kmemcg_id != kmemcg_id);
  2445. child->kmemcg_id = parent->kmemcg_id;
  2446. if (!memcg->use_hierarchy)
  2447. break;
  2448. }
  2449. rcu_read_unlock();
  2450. memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
  2451. memcg_free_cache_id(kmemcg_id);
  2452. }
  2453. static void memcg_free_kmem(struct mem_cgroup *memcg)
  2454. {
  2455. /* css_alloc() failed, offlining didn't happen */
  2456. if (unlikely(memcg->kmem_state == KMEM_ONLINE))
  2457. memcg_offline_kmem(memcg);
  2458. if (memcg->kmem_state == KMEM_ALLOCATED) {
  2459. memcg_destroy_kmem_caches(memcg);
  2460. static_branch_dec(&memcg_kmem_enabled_key);
  2461. WARN_ON(page_counter_read(&memcg->kmem));
  2462. }
  2463. }
  2464. #else
  2465. static int memcg_online_kmem(struct mem_cgroup *memcg)
  2466. {
  2467. return 0;
  2468. }
  2469. static void memcg_offline_kmem(struct mem_cgroup *memcg)
  2470. {
  2471. }
  2472. static void memcg_free_kmem(struct mem_cgroup *memcg)
  2473. {
  2474. }
  2475. #endif /* !CONFIG_SLOB */
  2476. static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
  2477. unsigned long limit)
  2478. {
  2479. int ret;
  2480. mutex_lock(&memcg_limit_mutex);
  2481. ret = page_counter_limit(&memcg->kmem, limit);
  2482. mutex_unlock(&memcg_limit_mutex);
  2483. return ret;
  2484. }
  2485. static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
  2486. {
  2487. int ret;
  2488. mutex_lock(&memcg_limit_mutex);
  2489. ret = page_counter_limit(&memcg->tcpmem, limit);
  2490. if (ret)
  2491. goto out;
  2492. if (!memcg->tcpmem_active) {
  2493. /*
  2494. * The active flag needs to be written after the static_key
  2495. * update. This is what guarantees that the socket activation
  2496. * function is the last one to run. See mem_cgroup_sk_alloc()
  2497. * for details, and note that we don't mark any socket as
  2498. * belonging to this memcg until that flag is up.
  2499. *
  2500. * We need to do this, because static_keys will span multiple
  2501. * sites, but we can't control their order. If we mark a socket
  2502. * as accounted, but the accounting functions are not patched in
  2503. * yet, we'll lose accounting.
  2504. *
  2505. * We never race with the readers in mem_cgroup_sk_alloc(),
  2506. * because when this value change, the code to process it is not
  2507. * patched in yet.
  2508. */
  2509. static_branch_inc(&memcg_sockets_enabled_key);
  2510. memcg->tcpmem_active = true;
  2511. }
  2512. out:
  2513. mutex_unlock(&memcg_limit_mutex);
  2514. return ret;
  2515. }
  2516. /*
  2517. * The user of this function is...
  2518. * RES_LIMIT.
  2519. */
  2520. static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
  2521. char *buf, size_t nbytes, loff_t off)
  2522. {
  2523. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2524. unsigned long nr_pages;
  2525. int ret;
  2526. buf = strstrip(buf);
  2527. ret = page_counter_memparse(buf, "-1", &nr_pages);
  2528. if (ret)
  2529. return ret;
  2530. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2531. case RES_LIMIT:
  2532. if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
  2533. ret = -EINVAL;
  2534. break;
  2535. }
  2536. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2537. case _MEM:
  2538. ret = mem_cgroup_resize_limit(memcg, nr_pages, false);
  2539. break;
  2540. case _MEMSWAP:
  2541. ret = mem_cgroup_resize_limit(memcg, nr_pages, true);
  2542. break;
  2543. case _KMEM:
  2544. ret = memcg_update_kmem_limit(memcg, nr_pages);
  2545. break;
  2546. case _TCP:
  2547. ret = memcg_update_tcp_limit(memcg, nr_pages);
  2548. break;
  2549. }
  2550. break;
  2551. case RES_SOFT_LIMIT:
  2552. memcg->soft_limit = nr_pages;
  2553. ret = 0;
  2554. break;
  2555. }
  2556. return ret ?: nbytes;
  2557. }
  2558. static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
  2559. size_t nbytes, loff_t off)
  2560. {
  2561. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  2562. struct page_counter *counter;
  2563. switch (MEMFILE_TYPE(of_cft(of)->private)) {
  2564. case _MEM:
  2565. counter = &memcg->memory;
  2566. break;
  2567. case _MEMSWAP:
  2568. counter = &memcg->memsw;
  2569. break;
  2570. case _KMEM:
  2571. counter = &memcg->kmem;
  2572. break;
  2573. case _TCP:
  2574. counter = &memcg->tcpmem;
  2575. break;
  2576. default:
  2577. BUG();
  2578. }
  2579. switch (MEMFILE_ATTR(of_cft(of)->private)) {
  2580. case RES_MAX_USAGE:
  2581. page_counter_reset_watermark(counter);
  2582. break;
  2583. case RES_FAILCNT:
  2584. counter->failcnt = 0;
  2585. break;
  2586. default:
  2587. BUG();
  2588. }
  2589. return nbytes;
  2590. }
  2591. static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
  2592. struct cftype *cft)
  2593. {
  2594. return mem_cgroup_from_css(css)->move_charge_at_immigrate;
  2595. }
  2596. #ifdef CONFIG_MMU
  2597. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2598. struct cftype *cft, u64 val)
  2599. {
  2600. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2601. if (val & ~MOVE_MASK)
  2602. return -EINVAL;
  2603. /*
  2604. * No kind of locking is needed in here, because ->can_attach() will
  2605. * check this value once in the beginning of the process, and then carry
  2606. * on with stale data. This means that changes to this value will only
  2607. * affect task migrations starting after the change.
  2608. */
  2609. memcg->move_charge_at_immigrate = val;
  2610. return 0;
  2611. }
  2612. #else
  2613. static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
  2614. struct cftype *cft, u64 val)
  2615. {
  2616. return -ENOSYS;
  2617. }
  2618. #endif
  2619. #ifdef CONFIG_NUMA
  2620. static int memcg_numa_stat_show(struct seq_file *m, void *v)
  2621. {
  2622. struct numa_stat {
  2623. const char *name;
  2624. unsigned int lru_mask;
  2625. };
  2626. static const struct numa_stat stats[] = {
  2627. { "total", LRU_ALL },
  2628. { "file", LRU_ALL_FILE },
  2629. { "anon", LRU_ALL_ANON },
  2630. { "unevictable", BIT(LRU_UNEVICTABLE) },
  2631. };
  2632. const struct numa_stat *stat;
  2633. int nid;
  2634. unsigned long nr;
  2635. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2636. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2637. nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
  2638. seq_printf(m, "%s=%lu", stat->name, nr);
  2639. for_each_node_state(nid, N_MEMORY) {
  2640. nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
  2641. stat->lru_mask);
  2642. seq_printf(m, " N%d=%lu", nid, nr);
  2643. }
  2644. seq_putc(m, '\n');
  2645. }
  2646. for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
  2647. struct mem_cgroup *iter;
  2648. nr = 0;
  2649. for_each_mem_cgroup_tree(iter, memcg)
  2650. nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
  2651. seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
  2652. for_each_node_state(nid, N_MEMORY) {
  2653. nr = 0;
  2654. for_each_mem_cgroup_tree(iter, memcg)
  2655. nr += mem_cgroup_node_nr_lru_pages(
  2656. iter, nid, stat->lru_mask);
  2657. seq_printf(m, " N%d=%lu", nid, nr);
  2658. }
  2659. seq_putc(m, '\n');
  2660. }
  2661. return 0;
  2662. }
  2663. #endif /* CONFIG_NUMA */
  2664. /* Universal VM events cgroup1 shows, original sort order */
  2665. unsigned int memcg1_events[] = {
  2666. PGPGIN,
  2667. PGPGOUT,
  2668. PGFAULT,
  2669. PGMAJFAULT,
  2670. };
  2671. static const char *const memcg1_event_names[] = {
  2672. "pgpgin",
  2673. "pgpgout",
  2674. "pgfault",
  2675. "pgmajfault",
  2676. };
  2677. static int memcg_stat_show(struct seq_file *m, void *v)
  2678. {
  2679. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  2680. unsigned long memory, memsw;
  2681. struct mem_cgroup *mi;
  2682. unsigned int i;
  2683. BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
  2684. BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
  2685. for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
  2686. if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
  2687. continue;
  2688. seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
  2689. memcg_page_state(memcg, memcg1_stats[i]) *
  2690. PAGE_SIZE);
  2691. }
  2692. for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
  2693. seq_printf(m, "%s %lu\n", memcg1_event_names[i],
  2694. memcg_sum_events(memcg, memcg1_events[i]));
  2695. for (i = 0; i < NR_LRU_LISTS; i++)
  2696. seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
  2697. mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
  2698. /* Hierarchical information */
  2699. memory = memsw = PAGE_COUNTER_MAX;
  2700. for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
  2701. memory = min(memory, mi->memory.limit);
  2702. memsw = min(memsw, mi->memsw.limit);
  2703. }
  2704. seq_printf(m, "hierarchical_memory_limit %llu\n",
  2705. (u64)memory * PAGE_SIZE);
  2706. if (do_memsw_account())
  2707. seq_printf(m, "hierarchical_memsw_limit %llu\n",
  2708. (u64)memsw * PAGE_SIZE);
  2709. for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
  2710. unsigned long long val = 0;
  2711. if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
  2712. continue;
  2713. for_each_mem_cgroup_tree(mi, memcg)
  2714. val += memcg_page_state(mi, memcg1_stats[i]) *
  2715. PAGE_SIZE;
  2716. seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
  2717. }
  2718. for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
  2719. unsigned long long val = 0;
  2720. for_each_mem_cgroup_tree(mi, memcg)
  2721. val += memcg_sum_events(mi, memcg1_events[i]);
  2722. seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
  2723. }
  2724. for (i = 0; i < NR_LRU_LISTS; i++) {
  2725. unsigned long long val = 0;
  2726. for_each_mem_cgroup_tree(mi, memcg)
  2727. val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
  2728. seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
  2729. }
  2730. #ifdef CONFIG_DEBUG_VM
  2731. {
  2732. pg_data_t *pgdat;
  2733. struct mem_cgroup_per_node *mz;
  2734. struct zone_reclaim_stat *rstat;
  2735. unsigned long recent_rotated[2] = {0, 0};
  2736. unsigned long recent_scanned[2] = {0, 0};
  2737. for_each_online_pgdat(pgdat) {
  2738. mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
  2739. rstat = &mz->lruvec.reclaim_stat;
  2740. recent_rotated[0] += rstat->recent_rotated[0];
  2741. recent_rotated[1] += rstat->recent_rotated[1];
  2742. recent_scanned[0] += rstat->recent_scanned[0];
  2743. recent_scanned[1] += rstat->recent_scanned[1];
  2744. }
  2745. seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
  2746. seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
  2747. seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
  2748. seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
  2749. }
  2750. #endif
  2751. return 0;
  2752. }
  2753. static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
  2754. struct cftype *cft)
  2755. {
  2756. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2757. return mem_cgroup_swappiness(memcg);
  2758. }
  2759. static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
  2760. struct cftype *cft, u64 val)
  2761. {
  2762. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  2763. if (val > 100)
  2764. return -EINVAL;
  2765. if (css->parent)
  2766. memcg->swappiness = val;
  2767. else
  2768. vm_swappiness = val;
  2769. return 0;
  2770. }
  2771. static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
  2772. {
  2773. struct mem_cgroup_threshold_ary *t;
  2774. unsigned long usage;
  2775. int i;
  2776. rcu_read_lock();
  2777. if (!swap)
  2778. t = rcu_dereference(memcg->thresholds.primary);
  2779. else
  2780. t = rcu_dereference(memcg->memsw_thresholds.primary);
  2781. if (!t)
  2782. goto unlock;
  2783. usage = mem_cgroup_usage(memcg, swap);
  2784. /*
  2785. * current_threshold points to threshold just below or equal to usage.
  2786. * If it's not true, a threshold was crossed after last
  2787. * call of __mem_cgroup_threshold().
  2788. */
  2789. i = t->current_threshold;
  2790. /*
  2791. * Iterate backward over array of thresholds starting from
  2792. * current_threshold and check if a threshold is crossed.
  2793. * If none of thresholds below usage is crossed, we read
  2794. * only one element of the array here.
  2795. */
  2796. for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
  2797. eventfd_signal(t->entries[i].eventfd, 1);
  2798. /* i = current_threshold + 1 */
  2799. i++;
  2800. /*
  2801. * Iterate forward over array of thresholds starting from
  2802. * current_threshold+1 and check if a threshold is crossed.
  2803. * If none of thresholds above usage is crossed, we read
  2804. * only one element of the array here.
  2805. */
  2806. for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
  2807. eventfd_signal(t->entries[i].eventfd, 1);
  2808. /* Update current_threshold */
  2809. t->current_threshold = i - 1;
  2810. unlock:
  2811. rcu_read_unlock();
  2812. }
  2813. static void mem_cgroup_threshold(struct mem_cgroup *memcg)
  2814. {
  2815. while (memcg) {
  2816. __mem_cgroup_threshold(memcg, false);
  2817. if (do_memsw_account())
  2818. __mem_cgroup_threshold(memcg, true);
  2819. memcg = parent_mem_cgroup(memcg);
  2820. }
  2821. }
  2822. static int compare_thresholds(const void *a, const void *b)
  2823. {
  2824. const struct mem_cgroup_threshold *_a = a;
  2825. const struct mem_cgroup_threshold *_b = b;
  2826. if (_a->threshold > _b->threshold)
  2827. return 1;
  2828. if (_a->threshold < _b->threshold)
  2829. return -1;
  2830. return 0;
  2831. }
  2832. static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
  2833. {
  2834. struct mem_cgroup_eventfd_list *ev;
  2835. spin_lock(&memcg_oom_lock);
  2836. list_for_each_entry(ev, &memcg->oom_notify, list)
  2837. eventfd_signal(ev->eventfd, 1);
  2838. spin_unlock(&memcg_oom_lock);
  2839. return 0;
  2840. }
  2841. static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
  2842. {
  2843. struct mem_cgroup *iter;
  2844. for_each_mem_cgroup_tree(iter, memcg)
  2845. mem_cgroup_oom_notify_cb(iter);
  2846. }
  2847. static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2848. struct eventfd_ctx *eventfd, const char *args, enum res_type type)
  2849. {
  2850. struct mem_cgroup_thresholds *thresholds;
  2851. struct mem_cgroup_threshold_ary *new;
  2852. unsigned long threshold;
  2853. unsigned long usage;
  2854. int i, size, ret;
  2855. ret = page_counter_memparse(args, "-1", &threshold);
  2856. if (ret)
  2857. return ret;
  2858. mutex_lock(&memcg->thresholds_lock);
  2859. if (type == _MEM) {
  2860. thresholds = &memcg->thresholds;
  2861. usage = mem_cgroup_usage(memcg, false);
  2862. } else if (type == _MEMSWAP) {
  2863. thresholds = &memcg->memsw_thresholds;
  2864. usage = mem_cgroup_usage(memcg, true);
  2865. } else
  2866. BUG();
  2867. /* Check if a threshold crossed before adding a new one */
  2868. if (thresholds->primary)
  2869. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  2870. size = thresholds->primary ? thresholds->primary->size + 1 : 1;
  2871. /* Allocate memory for new array of thresholds */
  2872. new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
  2873. GFP_KERNEL);
  2874. if (!new) {
  2875. ret = -ENOMEM;
  2876. goto unlock;
  2877. }
  2878. new->size = size;
  2879. /* Copy thresholds (if any) to new array */
  2880. if (thresholds->primary) {
  2881. memcpy(new->entries, thresholds->primary->entries, (size - 1) *
  2882. sizeof(struct mem_cgroup_threshold));
  2883. }
  2884. /* Add new threshold */
  2885. new->entries[size - 1].eventfd = eventfd;
  2886. new->entries[size - 1].threshold = threshold;
  2887. /* Sort thresholds. Registering of new threshold isn't time-critical */
  2888. sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
  2889. compare_thresholds, NULL);
  2890. /* Find current threshold */
  2891. new->current_threshold = -1;
  2892. for (i = 0; i < size; i++) {
  2893. if (new->entries[i].threshold <= usage) {
  2894. /*
  2895. * new->current_threshold will not be used until
  2896. * rcu_assign_pointer(), so it's safe to increment
  2897. * it here.
  2898. */
  2899. ++new->current_threshold;
  2900. } else
  2901. break;
  2902. }
  2903. /* Free old spare buffer and save old primary buffer as spare */
  2904. kfree(thresholds->spare);
  2905. thresholds->spare = thresholds->primary;
  2906. rcu_assign_pointer(thresholds->primary, new);
  2907. /* To be sure that nobody uses thresholds */
  2908. synchronize_rcu();
  2909. unlock:
  2910. mutex_unlock(&memcg->thresholds_lock);
  2911. return ret;
  2912. }
  2913. static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2914. struct eventfd_ctx *eventfd, const char *args)
  2915. {
  2916. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
  2917. }
  2918. static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
  2919. struct eventfd_ctx *eventfd, const char *args)
  2920. {
  2921. return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
  2922. }
  2923. static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  2924. struct eventfd_ctx *eventfd, enum res_type type)
  2925. {
  2926. struct mem_cgroup_thresholds *thresholds;
  2927. struct mem_cgroup_threshold_ary *new;
  2928. unsigned long usage;
  2929. int i, j, size;
  2930. mutex_lock(&memcg->thresholds_lock);
  2931. if (type == _MEM) {
  2932. thresholds = &memcg->thresholds;
  2933. usage = mem_cgroup_usage(memcg, false);
  2934. } else if (type == _MEMSWAP) {
  2935. thresholds = &memcg->memsw_thresholds;
  2936. usage = mem_cgroup_usage(memcg, true);
  2937. } else
  2938. BUG();
  2939. if (!thresholds->primary)
  2940. goto unlock;
  2941. /* Check if a threshold crossed before removing */
  2942. __mem_cgroup_threshold(memcg, type == _MEMSWAP);
  2943. /* Calculate new number of threshold */
  2944. size = 0;
  2945. for (i = 0; i < thresholds->primary->size; i++) {
  2946. if (thresholds->primary->entries[i].eventfd != eventfd)
  2947. size++;
  2948. }
  2949. new = thresholds->spare;
  2950. /* Set thresholds array to NULL if we don't have thresholds */
  2951. if (!size) {
  2952. kfree(new);
  2953. new = NULL;
  2954. goto swap_buffers;
  2955. }
  2956. new->size = size;
  2957. /* Copy thresholds and find current threshold */
  2958. new->current_threshold = -1;
  2959. for (i = 0, j = 0; i < thresholds->primary->size; i++) {
  2960. if (thresholds->primary->entries[i].eventfd == eventfd)
  2961. continue;
  2962. new->entries[j] = thresholds->primary->entries[i];
  2963. if (new->entries[j].threshold <= usage) {
  2964. /*
  2965. * new->current_threshold will not be used
  2966. * until rcu_assign_pointer(), so it's safe to increment
  2967. * it here.
  2968. */
  2969. ++new->current_threshold;
  2970. }
  2971. j++;
  2972. }
  2973. swap_buffers:
  2974. /* Swap primary and spare array */
  2975. thresholds->spare = thresholds->primary;
  2976. rcu_assign_pointer(thresholds->primary, new);
  2977. /* To be sure that nobody uses thresholds */
  2978. synchronize_rcu();
  2979. /* If all events are unregistered, free the spare array */
  2980. if (!new) {
  2981. kfree(thresholds->spare);
  2982. thresholds->spare = NULL;
  2983. }
  2984. unlock:
  2985. mutex_unlock(&memcg->thresholds_lock);
  2986. }
  2987. static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  2988. struct eventfd_ctx *eventfd)
  2989. {
  2990. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
  2991. }
  2992. static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
  2993. struct eventfd_ctx *eventfd)
  2994. {
  2995. return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
  2996. }
  2997. static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
  2998. struct eventfd_ctx *eventfd, const char *args)
  2999. {
  3000. struct mem_cgroup_eventfd_list *event;
  3001. event = kmalloc(sizeof(*event), GFP_KERNEL);
  3002. if (!event)
  3003. return -ENOMEM;
  3004. spin_lock(&memcg_oom_lock);
  3005. event->eventfd = eventfd;
  3006. list_add(&event->list, &memcg->oom_notify);
  3007. /* already in OOM ? */
  3008. if (memcg->under_oom)
  3009. eventfd_signal(eventfd, 1);
  3010. spin_unlock(&memcg_oom_lock);
  3011. return 0;
  3012. }
  3013. static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
  3014. struct eventfd_ctx *eventfd)
  3015. {
  3016. struct mem_cgroup_eventfd_list *ev, *tmp;
  3017. spin_lock(&memcg_oom_lock);
  3018. list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
  3019. if (ev->eventfd == eventfd) {
  3020. list_del(&ev->list);
  3021. kfree(ev);
  3022. }
  3023. }
  3024. spin_unlock(&memcg_oom_lock);
  3025. }
  3026. static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
  3027. {
  3028. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
  3029. seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
  3030. seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
  3031. seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
  3032. return 0;
  3033. }
  3034. static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
  3035. struct cftype *cft, u64 val)
  3036. {
  3037. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3038. /* cannot set to root cgroup and only 0 and 1 are allowed */
  3039. if (!css->parent || !((val == 0) || (val == 1)))
  3040. return -EINVAL;
  3041. memcg->oom_kill_disable = val;
  3042. if (!val)
  3043. memcg_oom_recover(memcg);
  3044. return 0;
  3045. }
  3046. #ifdef CONFIG_CGROUP_WRITEBACK
  3047. struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
  3048. {
  3049. return &memcg->cgwb_list;
  3050. }
  3051. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3052. {
  3053. return wb_domain_init(&memcg->cgwb_domain, gfp);
  3054. }
  3055. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3056. {
  3057. wb_domain_exit(&memcg->cgwb_domain);
  3058. }
  3059. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3060. {
  3061. wb_domain_size_changed(&memcg->cgwb_domain);
  3062. }
  3063. struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
  3064. {
  3065. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3066. if (!memcg->css.parent)
  3067. return NULL;
  3068. return &memcg->cgwb_domain;
  3069. }
  3070. /**
  3071. * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
  3072. * @wb: bdi_writeback in question
  3073. * @pfilepages: out parameter for number of file pages
  3074. * @pheadroom: out parameter for number of allocatable pages according to memcg
  3075. * @pdirty: out parameter for number of dirty pages
  3076. * @pwriteback: out parameter for number of pages under writeback
  3077. *
  3078. * Determine the numbers of file, headroom, dirty, and writeback pages in
  3079. * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
  3080. * is a bit more involved.
  3081. *
  3082. * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
  3083. * headroom is calculated as the lowest headroom of itself and the
  3084. * ancestors. Note that this doesn't consider the actual amount of
  3085. * available memory in the system. The caller should further cap
  3086. * *@pheadroom accordingly.
  3087. */
  3088. void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
  3089. unsigned long *pheadroom, unsigned long *pdirty,
  3090. unsigned long *pwriteback)
  3091. {
  3092. struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
  3093. struct mem_cgroup *parent;
  3094. *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
  3095. /* this should eventually include NR_UNSTABLE_NFS */
  3096. *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
  3097. *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
  3098. (1 << LRU_ACTIVE_FILE));
  3099. *pheadroom = PAGE_COUNTER_MAX;
  3100. while ((parent = parent_mem_cgroup(memcg))) {
  3101. unsigned long ceiling = min(memcg->memory.limit, memcg->high);
  3102. unsigned long used = page_counter_read(&memcg->memory);
  3103. *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
  3104. memcg = parent;
  3105. }
  3106. }
  3107. #else /* CONFIG_CGROUP_WRITEBACK */
  3108. static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
  3109. {
  3110. return 0;
  3111. }
  3112. static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
  3113. {
  3114. }
  3115. static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
  3116. {
  3117. }
  3118. #endif /* CONFIG_CGROUP_WRITEBACK */
  3119. /*
  3120. * DO NOT USE IN NEW FILES.
  3121. *
  3122. * "cgroup.event_control" implementation.
  3123. *
  3124. * This is way over-engineered. It tries to support fully configurable
  3125. * events for each user. Such level of flexibility is completely
  3126. * unnecessary especially in the light of the planned unified hierarchy.
  3127. *
  3128. * Please deprecate this and replace with something simpler if at all
  3129. * possible.
  3130. */
  3131. /*
  3132. * Unregister event and free resources.
  3133. *
  3134. * Gets called from workqueue.
  3135. */
  3136. static void memcg_event_remove(struct work_struct *work)
  3137. {
  3138. struct mem_cgroup_event *event =
  3139. container_of(work, struct mem_cgroup_event, remove);
  3140. struct mem_cgroup *memcg = event->memcg;
  3141. remove_wait_queue(event->wqh, &event->wait);
  3142. event->unregister_event(memcg, event->eventfd);
  3143. /* Notify userspace the event is going away. */
  3144. eventfd_signal(event->eventfd, 1);
  3145. eventfd_ctx_put(event->eventfd);
  3146. kfree(event);
  3147. css_put(&memcg->css);
  3148. }
  3149. /*
  3150. * Gets called on EPOLLHUP on eventfd when user closes it.
  3151. *
  3152. * Called with wqh->lock held and interrupts disabled.
  3153. */
  3154. static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
  3155. int sync, void *key)
  3156. {
  3157. struct mem_cgroup_event *event =
  3158. container_of(wait, struct mem_cgroup_event, wait);
  3159. struct mem_cgroup *memcg = event->memcg;
  3160. __poll_t flags = key_to_poll(key);
  3161. if (flags & EPOLLHUP) {
  3162. /*
  3163. * If the event has been detached at cgroup removal, we
  3164. * can simply return knowing the other side will cleanup
  3165. * for us.
  3166. *
  3167. * We can't race against event freeing since the other
  3168. * side will require wqh->lock via remove_wait_queue(),
  3169. * which we hold.
  3170. */
  3171. spin_lock(&memcg->event_list_lock);
  3172. if (!list_empty(&event->list)) {
  3173. list_del_init(&event->list);
  3174. /*
  3175. * We are in atomic context, but cgroup_event_remove()
  3176. * may sleep, so we have to call it in workqueue.
  3177. */
  3178. schedule_work(&event->remove);
  3179. }
  3180. spin_unlock(&memcg->event_list_lock);
  3181. }
  3182. return 0;
  3183. }
  3184. static void memcg_event_ptable_queue_proc(struct file *file,
  3185. wait_queue_head_t *wqh, poll_table *pt)
  3186. {
  3187. struct mem_cgroup_event *event =
  3188. container_of(pt, struct mem_cgroup_event, pt);
  3189. event->wqh = wqh;
  3190. add_wait_queue(wqh, &event->wait);
  3191. }
  3192. /*
  3193. * DO NOT USE IN NEW FILES.
  3194. *
  3195. * Parse input and register new cgroup event handler.
  3196. *
  3197. * Input must be in format '<event_fd> <control_fd> <args>'.
  3198. * Interpretation of args is defined by control file implementation.
  3199. */
  3200. static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
  3201. char *buf, size_t nbytes, loff_t off)
  3202. {
  3203. struct cgroup_subsys_state *css = of_css(of);
  3204. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3205. struct mem_cgroup_event *event;
  3206. struct cgroup_subsys_state *cfile_css;
  3207. unsigned int efd, cfd;
  3208. struct fd efile;
  3209. struct fd cfile;
  3210. const char *name;
  3211. char *endp;
  3212. int ret;
  3213. buf = strstrip(buf);
  3214. efd = simple_strtoul(buf, &endp, 10);
  3215. if (*endp != ' ')
  3216. return -EINVAL;
  3217. buf = endp + 1;
  3218. cfd = simple_strtoul(buf, &endp, 10);
  3219. if ((*endp != ' ') && (*endp != '\0'))
  3220. return -EINVAL;
  3221. buf = endp + 1;
  3222. event = kzalloc(sizeof(*event), GFP_KERNEL);
  3223. if (!event)
  3224. return -ENOMEM;
  3225. event->memcg = memcg;
  3226. INIT_LIST_HEAD(&event->list);
  3227. init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
  3228. init_waitqueue_func_entry(&event->wait, memcg_event_wake);
  3229. INIT_WORK(&event->remove, memcg_event_remove);
  3230. efile = fdget(efd);
  3231. if (!efile.file) {
  3232. ret = -EBADF;
  3233. goto out_kfree;
  3234. }
  3235. event->eventfd = eventfd_ctx_fileget(efile.file);
  3236. if (IS_ERR(event->eventfd)) {
  3237. ret = PTR_ERR(event->eventfd);
  3238. goto out_put_efile;
  3239. }
  3240. cfile = fdget(cfd);
  3241. if (!cfile.file) {
  3242. ret = -EBADF;
  3243. goto out_put_eventfd;
  3244. }
  3245. /* the process need read permission on control file */
  3246. /* AV: shouldn't we check that it's been opened for read instead? */
  3247. ret = inode_permission(file_inode(cfile.file), MAY_READ);
  3248. if (ret < 0)
  3249. goto out_put_cfile;
  3250. /*
  3251. * Determine the event callbacks and set them in @event. This used
  3252. * to be done via struct cftype but cgroup core no longer knows
  3253. * about these events. The following is crude but the whole thing
  3254. * is for compatibility anyway.
  3255. *
  3256. * DO NOT ADD NEW FILES.
  3257. */
  3258. name = cfile.file->f_path.dentry->d_name.name;
  3259. if (!strcmp(name, "memory.usage_in_bytes")) {
  3260. event->register_event = mem_cgroup_usage_register_event;
  3261. event->unregister_event = mem_cgroup_usage_unregister_event;
  3262. } else if (!strcmp(name, "memory.oom_control")) {
  3263. event->register_event = mem_cgroup_oom_register_event;
  3264. event->unregister_event = mem_cgroup_oom_unregister_event;
  3265. } else if (!strcmp(name, "memory.pressure_level")) {
  3266. event->register_event = vmpressure_register_event;
  3267. event->unregister_event = vmpressure_unregister_event;
  3268. } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
  3269. event->register_event = memsw_cgroup_usage_register_event;
  3270. event->unregister_event = memsw_cgroup_usage_unregister_event;
  3271. } else {
  3272. ret = -EINVAL;
  3273. goto out_put_cfile;
  3274. }
  3275. /*
  3276. * Verify @cfile should belong to @css. Also, remaining events are
  3277. * automatically removed on cgroup destruction but the removal is
  3278. * asynchronous, so take an extra ref on @css.
  3279. */
  3280. cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
  3281. &memory_cgrp_subsys);
  3282. ret = -EINVAL;
  3283. if (IS_ERR(cfile_css))
  3284. goto out_put_cfile;
  3285. if (cfile_css != css) {
  3286. css_put(cfile_css);
  3287. goto out_put_cfile;
  3288. }
  3289. ret = event->register_event(memcg, event->eventfd, buf);
  3290. if (ret)
  3291. goto out_put_css;
  3292. efile.file->f_op->poll(efile.file, &event->pt);
  3293. spin_lock(&memcg->event_list_lock);
  3294. list_add(&event->list, &memcg->event_list);
  3295. spin_unlock(&memcg->event_list_lock);
  3296. fdput(cfile);
  3297. fdput(efile);
  3298. return nbytes;
  3299. out_put_css:
  3300. css_put(css);
  3301. out_put_cfile:
  3302. fdput(cfile);
  3303. out_put_eventfd:
  3304. eventfd_ctx_put(event->eventfd);
  3305. out_put_efile:
  3306. fdput(efile);
  3307. out_kfree:
  3308. kfree(event);
  3309. return ret;
  3310. }
  3311. static struct cftype mem_cgroup_legacy_files[] = {
  3312. {
  3313. .name = "usage_in_bytes",
  3314. .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
  3315. .read_u64 = mem_cgroup_read_u64,
  3316. },
  3317. {
  3318. .name = "max_usage_in_bytes",
  3319. .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
  3320. .write = mem_cgroup_reset,
  3321. .read_u64 = mem_cgroup_read_u64,
  3322. },
  3323. {
  3324. .name = "limit_in_bytes",
  3325. .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
  3326. .write = mem_cgroup_write,
  3327. .read_u64 = mem_cgroup_read_u64,
  3328. },
  3329. {
  3330. .name = "soft_limit_in_bytes",
  3331. .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
  3332. .write = mem_cgroup_write,
  3333. .read_u64 = mem_cgroup_read_u64,
  3334. },
  3335. {
  3336. .name = "failcnt",
  3337. .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
  3338. .write = mem_cgroup_reset,
  3339. .read_u64 = mem_cgroup_read_u64,
  3340. },
  3341. {
  3342. .name = "stat",
  3343. .seq_show = memcg_stat_show,
  3344. },
  3345. {
  3346. .name = "force_empty",
  3347. .write = mem_cgroup_force_empty_write,
  3348. },
  3349. {
  3350. .name = "use_hierarchy",
  3351. .write_u64 = mem_cgroup_hierarchy_write,
  3352. .read_u64 = mem_cgroup_hierarchy_read,
  3353. },
  3354. {
  3355. .name = "cgroup.event_control", /* XXX: for compat */
  3356. .write = memcg_write_event_control,
  3357. .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
  3358. },
  3359. {
  3360. .name = "swappiness",
  3361. .read_u64 = mem_cgroup_swappiness_read,
  3362. .write_u64 = mem_cgroup_swappiness_write,
  3363. },
  3364. {
  3365. .name = "move_charge_at_immigrate",
  3366. .read_u64 = mem_cgroup_move_charge_read,
  3367. .write_u64 = mem_cgroup_move_charge_write,
  3368. },
  3369. {
  3370. .name = "oom_control",
  3371. .seq_show = mem_cgroup_oom_control_read,
  3372. .write_u64 = mem_cgroup_oom_control_write,
  3373. .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
  3374. },
  3375. {
  3376. .name = "pressure_level",
  3377. },
  3378. #ifdef CONFIG_NUMA
  3379. {
  3380. .name = "numa_stat",
  3381. .seq_show = memcg_numa_stat_show,
  3382. },
  3383. #endif
  3384. {
  3385. .name = "kmem.limit_in_bytes",
  3386. .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
  3387. .write = mem_cgroup_write,
  3388. .read_u64 = mem_cgroup_read_u64,
  3389. },
  3390. {
  3391. .name = "kmem.usage_in_bytes",
  3392. .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
  3393. .read_u64 = mem_cgroup_read_u64,
  3394. },
  3395. {
  3396. .name = "kmem.failcnt",
  3397. .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
  3398. .write = mem_cgroup_reset,
  3399. .read_u64 = mem_cgroup_read_u64,
  3400. },
  3401. {
  3402. .name = "kmem.max_usage_in_bytes",
  3403. .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
  3404. .write = mem_cgroup_reset,
  3405. .read_u64 = mem_cgroup_read_u64,
  3406. },
  3407. #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
  3408. {
  3409. .name = "kmem.slabinfo",
  3410. .seq_start = memcg_slab_start,
  3411. .seq_next = memcg_slab_next,
  3412. .seq_stop = memcg_slab_stop,
  3413. .seq_show = memcg_slab_show,
  3414. },
  3415. #endif
  3416. {
  3417. .name = "kmem.tcp.limit_in_bytes",
  3418. .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
  3419. .write = mem_cgroup_write,
  3420. .read_u64 = mem_cgroup_read_u64,
  3421. },
  3422. {
  3423. .name = "kmem.tcp.usage_in_bytes",
  3424. .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
  3425. .read_u64 = mem_cgroup_read_u64,
  3426. },
  3427. {
  3428. .name = "kmem.tcp.failcnt",
  3429. .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
  3430. .write = mem_cgroup_reset,
  3431. .read_u64 = mem_cgroup_read_u64,
  3432. },
  3433. {
  3434. .name = "kmem.tcp.max_usage_in_bytes",
  3435. .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
  3436. .write = mem_cgroup_reset,
  3437. .read_u64 = mem_cgroup_read_u64,
  3438. },
  3439. { }, /* terminate */
  3440. };
  3441. /*
  3442. * Private memory cgroup IDR
  3443. *
  3444. * Swap-out records and page cache shadow entries need to store memcg
  3445. * references in constrained space, so we maintain an ID space that is
  3446. * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
  3447. * memory-controlled cgroups to 64k.
  3448. *
  3449. * However, there usually are many references to the oflline CSS after
  3450. * the cgroup has been destroyed, such as page cache or reclaimable
  3451. * slab objects, that don't need to hang on to the ID. We want to keep
  3452. * those dead CSS from occupying IDs, or we might quickly exhaust the
  3453. * relatively small ID space and prevent the creation of new cgroups
  3454. * even when there are much fewer than 64k cgroups - possibly none.
  3455. *
  3456. * Maintain a private 16-bit ID space for memcg, and allow the ID to
  3457. * be freed and recycled when it's no longer needed, which is usually
  3458. * when the CSS is offlined.
  3459. *
  3460. * The only exception to that are records of swapped out tmpfs/shmem
  3461. * pages that need to be attributed to live ancestors on swapin. But
  3462. * those references are manageable from userspace.
  3463. */
  3464. static DEFINE_IDR(mem_cgroup_idr);
  3465. static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
  3466. {
  3467. VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
  3468. atomic_add(n, &memcg->id.ref);
  3469. }
  3470. static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
  3471. {
  3472. VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
  3473. if (atomic_sub_and_test(n, &memcg->id.ref)) {
  3474. idr_remove(&mem_cgroup_idr, memcg->id.id);
  3475. memcg->id.id = 0;
  3476. /* Memcg ID pins CSS */
  3477. css_put(&memcg->css);
  3478. }
  3479. }
  3480. static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
  3481. {
  3482. mem_cgroup_id_get_many(memcg, 1);
  3483. }
  3484. static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
  3485. {
  3486. mem_cgroup_id_put_many(memcg, 1);
  3487. }
  3488. /**
  3489. * mem_cgroup_from_id - look up a memcg from a memcg id
  3490. * @id: the memcg id to look up
  3491. *
  3492. * Caller must hold rcu_read_lock().
  3493. */
  3494. struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
  3495. {
  3496. WARN_ON_ONCE(!rcu_read_lock_held());
  3497. return idr_find(&mem_cgroup_idr, id);
  3498. }
  3499. static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
  3500. {
  3501. struct mem_cgroup_per_node *pn;
  3502. int tmp = node;
  3503. /*
  3504. * This routine is called against possible nodes.
  3505. * But it's BUG to call kmalloc() against offline node.
  3506. *
  3507. * TODO: this routine can waste much memory for nodes which will
  3508. * never be onlined. It's better to use memory hotplug callback
  3509. * function.
  3510. */
  3511. if (!node_state(node, N_NORMAL_MEMORY))
  3512. tmp = -1;
  3513. pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
  3514. if (!pn)
  3515. return 1;
  3516. pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
  3517. if (!pn->lruvec_stat_cpu) {
  3518. kfree(pn);
  3519. return 1;
  3520. }
  3521. lruvec_init(&pn->lruvec);
  3522. pn->usage_in_excess = 0;
  3523. pn->on_tree = false;
  3524. pn->memcg = memcg;
  3525. memcg->nodeinfo[node] = pn;
  3526. return 0;
  3527. }
  3528. static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
  3529. {
  3530. struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
  3531. free_percpu(pn->lruvec_stat_cpu);
  3532. kfree(pn);
  3533. }
  3534. static void __mem_cgroup_free(struct mem_cgroup *memcg)
  3535. {
  3536. int node;
  3537. for_each_node(node)
  3538. free_mem_cgroup_per_node_info(memcg, node);
  3539. free_percpu(memcg->stat_cpu);
  3540. kfree(memcg);
  3541. }
  3542. static void mem_cgroup_free(struct mem_cgroup *memcg)
  3543. {
  3544. memcg_wb_domain_exit(memcg);
  3545. __mem_cgroup_free(memcg);
  3546. }
  3547. static struct mem_cgroup *mem_cgroup_alloc(void)
  3548. {
  3549. struct mem_cgroup *memcg;
  3550. size_t size;
  3551. int node;
  3552. size = sizeof(struct mem_cgroup);
  3553. size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
  3554. memcg = kzalloc(size, GFP_KERNEL);
  3555. if (!memcg)
  3556. return NULL;
  3557. memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
  3558. 1, MEM_CGROUP_ID_MAX,
  3559. GFP_KERNEL);
  3560. if (memcg->id.id < 0)
  3561. goto fail;
  3562. memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
  3563. if (!memcg->stat_cpu)
  3564. goto fail;
  3565. for_each_node(node)
  3566. if (alloc_mem_cgroup_per_node_info(memcg, node))
  3567. goto fail;
  3568. if (memcg_wb_domain_init(memcg, GFP_KERNEL))
  3569. goto fail;
  3570. INIT_WORK(&memcg->high_work, high_work_func);
  3571. memcg->last_scanned_node = MAX_NUMNODES;
  3572. INIT_LIST_HEAD(&memcg->oom_notify);
  3573. mutex_init(&memcg->thresholds_lock);
  3574. spin_lock_init(&memcg->move_lock);
  3575. vmpressure_init(&memcg->vmpressure);
  3576. INIT_LIST_HEAD(&memcg->event_list);
  3577. spin_lock_init(&memcg->event_list_lock);
  3578. memcg->socket_pressure = jiffies;
  3579. #ifndef CONFIG_SLOB
  3580. memcg->kmemcg_id = -1;
  3581. #endif
  3582. #ifdef CONFIG_CGROUP_WRITEBACK
  3583. INIT_LIST_HEAD(&memcg->cgwb_list);
  3584. #endif
  3585. idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
  3586. return memcg;
  3587. fail:
  3588. if (memcg->id.id > 0)
  3589. idr_remove(&mem_cgroup_idr, memcg->id.id);
  3590. __mem_cgroup_free(memcg);
  3591. return NULL;
  3592. }
  3593. static struct cgroup_subsys_state * __ref
  3594. mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  3595. {
  3596. struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
  3597. struct mem_cgroup *memcg;
  3598. long error = -ENOMEM;
  3599. memcg = mem_cgroup_alloc();
  3600. if (!memcg)
  3601. return ERR_PTR(error);
  3602. memcg->high = PAGE_COUNTER_MAX;
  3603. memcg->soft_limit = PAGE_COUNTER_MAX;
  3604. if (parent) {
  3605. memcg->swappiness = mem_cgroup_swappiness(parent);
  3606. memcg->oom_kill_disable = parent->oom_kill_disable;
  3607. }
  3608. if (parent && parent->use_hierarchy) {
  3609. memcg->use_hierarchy = true;
  3610. page_counter_init(&memcg->memory, &parent->memory);
  3611. page_counter_init(&memcg->swap, &parent->swap);
  3612. page_counter_init(&memcg->memsw, &parent->memsw);
  3613. page_counter_init(&memcg->kmem, &parent->kmem);
  3614. page_counter_init(&memcg->tcpmem, &parent->tcpmem);
  3615. } else {
  3616. page_counter_init(&memcg->memory, NULL);
  3617. page_counter_init(&memcg->swap, NULL);
  3618. page_counter_init(&memcg->memsw, NULL);
  3619. page_counter_init(&memcg->kmem, NULL);
  3620. page_counter_init(&memcg->tcpmem, NULL);
  3621. /*
  3622. * Deeper hierachy with use_hierarchy == false doesn't make
  3623. * much sense so let cgroup subsystem know about this
  3624. * unfortunate state in our controller.
  3625. */
  3626. if (parent != root_mem_cgroup)
  3627. memory_cgrp_subsys.broken_hierarchy = true;
  3628. }
  3629. /* The following stuff does not apply to the root */
  3630. if (!parent) {
  3631. root_mem_cgroup = memcg;
  3632. return &memcg->css;
  3633. }
  3634. error = memcg_online_kmem(memcg);
  3635. if (error)
  3636. goto fail;
  3637. if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
  3638. static_branch_inc(&memcg_sockets_enabled_key);
  3639. return &memcg->css;
  3640. fail:
  3641. mem_cgroup_free(memcg);
  3642. return ERR_PTR(-ENOMEM);
  3643. }
  3644. static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
  3645. {
  3646. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3647. /* Online state pins memcg ID, memcg ID pins CSS */
  3648. atomic_set(&memcg->id.ref, 1);
  3649. css_get(css);
  3650. return 0;
  3651. }
  3652. static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
  3653. {
  3654. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3655. struct mem_cgroup_event *event, *tmp;
  3656. /*
  3657. * Unregister events and notify userspace.
  3658. * Notify userspace about cgroup removing only after rmdir of cgroup
  3659. * directory to avoid race between userspace and kernelspace.
  3660. */
  3661. spin_lock(&memcg->event_list_lock);
  3662. list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
  3663. list_del_init(&event->list);
  3664. schedule_work(&event->remove);
  3665. }
  3666. spin_unlock(&memcg->event_list_lock);
  3667. memcg->low = 0;
  3668. memcg_offline_kmem(memcg);
  3669. wb_memcg_offline(memcg);
  3670. mem_cgroup_id_put(memcg);
  3671. }
  3672. static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
  3673. {
  3674. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3675. invalidate_reclaim_iterators(memcg);
  3676. }
  3677. static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
  3678. {
  3679. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3680. if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
  3681. static_branch_dec(&memcg_sockets_enabled_key);
  3682. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
  3683. static_branch_dec(&memcg_sockets_enabled_key);
  3684. vmpressure_cleanup(&memcg->vmpressure);
  3685. cancel_work_sync(&memcg->high_work);
  3686. mem_cgroup_remove_from_trees(memcg);
  3687. memcg_free_kmem(memcg);
  3688. mem_cgroup_free(memcg);
  3689. }
  3690. /**
  3691. * mem_cgroup_css_reset - reset the states of a mem_cgroup
  3692. * @css: the target css
  3693. *
  3694. * Reset the states of the mem_cgroup associated with @css. This is
  3695. * invoked when the userland requests disabling on the default hierarchy
  3696. * but the memcg is pinned through dependency. The memcg should stop
  3697. * applying policies and should revert to the vanilla state as it may be
  3698. * made visible again.
  3699. *
  3700. * The current implementation only resets the essential configurations.
  3701. * This needs to be expanded to cover all the visible parts.
  3702. */
  3703. static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
  3704. {
  3705. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  3706. page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
  3707. page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
  3708. page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
  3709. page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
  3710. page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
  3711. memcg->low = 0;
  3712. memcg->high = PAGE_COUNTER_MAX;
  3713. memcg->soft_limit = PAGE_COUNTER_MAX;
  3714. memcg_wb_domain_size_changed(memcg);
  3715. }
  3716. #ifdef CONFIG_MMU
  3717. /* Handlers for move charge at task migration. */
  3718. static int mem_cgroup_do_precharge(unsigned long count)
  3719. {
  3720. int ret;
  3721. /* Try a single bulk charge without reclaim first, kswapd may wake */
  3722. ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
  3723. if (!ret) {
  3724. mc.precharge += count;
  3725. return ret;
  3726. }
  3727. /* Try charges one by one with reclaim, but do not retry */
  3728. while (count--) {
  3729. ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
  3730. if (ret)
  3731. return ret;
  3732. mc.precharge++;
  3733. cond_resched();
  3734. }
  3735. return 0;
  3736. }
  3737. union mc_target {
  3738. struct page *page;
  3739. swp_entry_t ent;
  3740. };
  3741. enum mc_target_type {
  3742. MC_TARGET_NONE = 0,
  3743. MC_TARGET_PAGE,
  3744. MC_TARGET_SWAP,
  3745. MC_TARGET_DEVICE,
  3746. };
  3747. static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
  3748. unsigned long addr, pte_t ptent)
  3749. {
  3750. struct page *page = _vm_normal_page(vma, addr, ptent, true);
  3751. if (!page || !page_mapped(page))
  3752. return NULL;
  3753. if (PageAnon(page)) {
  3754. if (!(mc.flags & MOVE_ANON))
  3755. return NULL;
  3756. } else {
  3757. if (!(mc.flags & MOVE_FILE))
  3758. return NULL;
  3759. }
  3760. if (!get_page_unless_zero(page))
  3761. return NULL;
  3762. return page;
  3763. }
  3764. #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
  3765. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  3766. pte_t ptent, swp_entry_t *entry)
  3767. {
  3768. struct page *page = NULL;
  3769. swp_entry_t ent = pte_to_swp_entry(ptent);
  3770. if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
  3771. return NULL;
  3772. /*
  3773. * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
  3774. * a device and because they are not accessible by CPU they are store
  3775. * as special swap entry in the CPU page table.
  3776. */
  3777. if (is_device_private_entry(ent)) {
  3778. page = device_private_entry_to_page(ent);
  3779. /*
  3780. * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
  3781. * a refcount of 1 when free (unlike normal page)
  3782. */
  3783. if (!page_ref_add_unless(page, 1, 1))
  3784. return NULL;
  3785. return page;
  3786. }
  3787. /*
  3788. * Because lookup_swap_cache() updates some statistics counter,
  3789. * we call find_get_page() with swapper_space directly.
  3790. */
  3791. page = find_get_page(swap_address_space(ent), swp_offset(ent));
  3792. if (do_memsw_account())
  3793. entry->val = ent.val;
  3794. return page;
  3795. }
  3796. #else
  3797. static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
  3798. pte_t ptent, swp_entry_t *entry)
  3799. {
  3800. return NULL;
  3801. }
  3802. #endif
  3803. static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
  3804. unsigned long addr, pte_t ptent, swp_entry_t *entry)
  3805. {
  3806. struct page *page = NULL;
  3807. struct address_space *mapping;
  3808. pgoff_t pgoff;
  3809. if (!vma->vm_file) /* anonymous vma */
  3810. return NULL;
  3811. if (!(mc.flags & MOVE_FILE))
  3812. return NULL;
  3813. mapping = vma->vm_file->f_mapping;
  3814. pgoff = linear_page_index(vma, addr);
  3815. /* page is moved even if it's not RSS of this task(page-faulted). */
  3816. #ifdef CONFIG_SWAP
  3817. /* shmem/tmpfs may report page out on swap: account for that too. */
  3818. if (shmem_mapping(mapping)) {
  3819. page = find_get_entry(mapping, pgoff);
  3820. if (radix_tree_exceptional_entry(page)) {
  3821. swp_entry_t swp = radix_to_swp_entry(page);
  3822. if (do_memsw_account())
  3823. *entry = swp;
  3824. page = find_get_page(swap_address_space(swp),
  3825. swp_offset(swp));
  3826. }
  3827. } else
  3828. page = find_get_page(mapping, pgoff);
  3829. #else
  3830. page = find_get_page(mapping, pgoff);
  3831. #endif
  3832. return page;
  3833. }
  3834. /**
  3835. * mem_cgroup_move_account - move account of the page
  3836. * @page: the page
  3837. * @compound: charge the page as compound or small page
  3838. * @from: mem_cgroup which the page is moved from.
  3839. * @to: mem_cgroup which the page is moved to. @from != @to.
  3840. *
  3841. * The caller must make sure the page is not on LRU (isolate_page() is useful.)
  3842. *
  3843. * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
  3844. * from old cgroup.
  3845. */
  3846. static int mem_cgroup_move_account(struct page *page,
  3847. bool compound,
  3848. struct mem_cgroup *from,
  3849. struct mem_cgroup *to)
  3850. {
  3851. unsigned long flags;
  3852. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  3853. int ret;
  3854. bool anon;
  3855. VM_BUG_ON(from == to);
  3856. VM_BUG_ON_PAGE(PageLRU(page), page);
  3857. VM_BUG_ON(compound && !PageTransHuge(page));
  3858. /*
  3859. * Prevent mem_cgroup_migrate() from looking at
  3860. * page->mem_cgroup of its source page while we change it.
  3861. */
  3862. ret = -EBUSY;
  3863. if (!trylock_page(page))
  3864. goto out;
  3865. ret = -EINVAL;
  3866. if (page->mem_cgroup != from)
  3867. goto out_unlock;
  3868. anon = PageAnon(page);
  3869. spin_lock_irqsave(&from->move_lock, flags);
  3870. if (!anon && page_mapped(page)) {
  3871. __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
  3872. __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
  3873. }
  3874. /*
  3875. * move_lock grabbed above and caller set from->moving_account, so
  3876. * mod_memcg_page_state will serialize updates to PageDirty.
  3877. * So mapping should be stable for dirty pages.
  3878. */
  3879. if (!anon && PageDirty(page)) {
  3880. struct address_space *mapping = page_mapping(page);
  3881. if (mapping_cap_account_dirty(mapping)) {
  3882. __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
  3883. __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
  3884. }
  3885. }
  3886. if (PageWriteback(page)) {
  3887. __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
  3888. __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
  3889. }
  3890. /*
  3891. * It is safe to change page->mem_cgroup here because the page
  3892. * is referenced, charged, and isolated - we can't race with
  3893. * uncharging, charging, migration, or LRU putback.
  3894. */
  3895. /* caller should have done css_get */
  3896. page->mem_cgroup = to;
  3897. spin_unlock_irqrestore(&from->move_lock, flags);
  3898. ret = 0;
  3899. local_irq_disable();
  3900. mem_cgroup_charge_statistics(to, page, compound, nr_pages);
  3901. memcg_check_events(to, page);
  3902. mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
  3903. memcg_check_events(from, page);
  3904. local_irq_enable();
  3905. out_unlock:
  3906. unlock_page(page);
  3907. out:
  3908. return ret;
  3909. }
  3910. /**
  3911. * get_mctgt_type - get target type of moving charge
  3912. * @vma: the vma the pte to be checked belongs
  3913. * @addr: the address corresponding to the pte to be checked
  3914. * @ptent: the pte to be checked
  3915. * @target: the pointer the target page or swap ent will be stored(can be NULL)
  3916. *
  3917. * Returns
  3918. * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
  3919. * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
  3920. * move charge. if @target is not NULL, the page is stored in target->page
  3921. * with extra refcnt got(Callers should handle it).
  3922. * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
  3923. * target for charge migration. if @target is not NULL, the entry is stored
  3924. * in target->ent.
  3925. * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
  3926. * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
  3927. * For now we such page is charge like a regular page would be as for all
  3928. * intent and purposes it is just special memory taking the place of a
  3929. * regular page.
  3930. *
  3931. * See Documentations/vm/hmm.txt and include/linux/hmm.h
  3932. *
  3933. * Called with pte lock held.
  3934. */
  3935. static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
  3936. unsigned long addr, pte_t ptent, union mc_target *target)
  3937. {
  3938. struct page *page = NULL;
  3939. enum mc_target_type ret = MC_TARGET_NONE;
  3940. swp_entry_t ent = { .val = 0 };
  3941. if (pte_present(ptent))
  3942. page = mc_handle_present_pte(vma, addr, ptent);
  3943. else if (is_swap_pte(ptent))
  3944. page = mc_handle_swap_pte(vma, ptent, &ent);
  3945. else if (pte_none(ptent))
  3946. page = mc_handle_file_pte(vma, addr, ptent, &ent);
  3947. if (!page && !ent.val)
  3948. return ret;
  3949. if (page) {
  3950. /*
  3951. * Do only loose check w/o serialization.
  3952. * mem_cgroup_move_account() checks the page is valid or
  3953. * not under LRU exclusion.
  3954. */
  3955. if (page->mem_cgroup == mc.from) {
  3956. ret = MC_TARGET_PAGE;
  3957. if (is_device_private_page(page) ||
  3958. is_device_public_page(page))
  3959. ret = MC_TARGET_DEVICE;
  3960. if (target)
  3961. target->page = page;
  3962. }
  3963. if (!ret || !target)
  3964. put_page(page);
  3965. }
  3966. /*
  3967. * There is a swap entry and a page doesn't exist or isn't charged.
  3968. * But we cannot move a tail-page in a THP.
  3969. */
  3970. if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
  3971. mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
  3972. ret = MC_TARGET_SWAP;
  3973. if (target)
  3974. target->ent = ent;
  3975. }
  3976. return ret;
  3977. }
  3978. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  3979. /*
  3980. * We don't consider PMD mapped swapping or file mapped pages because THP does
  3981. * not support them for now.
  3982. * Caller should make sure that pmd_trans_huge(pmd) is true.
  3983. */
  3984. static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  3985. unsigned long addr, pmd_t pmd, union mc_target *target)
  3986. {
  3987. struct page *page = NULL;
  3988. enum mc_target_type ret = MC_TARGET_NONE;
  3989. if (unlikely(is_swap_pmd(pmd))) {
  3990. VM_BUG_ON(thp_migration_supported() &&
  3991. !is_pmd_migration_entry(pmd));
  3992. return ret;
  3993. }
  3994. page = pmd_page(pmd);
  3995. VM_BUG_ON_PAGE(!page || !PageHead(page), page);
  3996. if (!(mc.flags & MOVE_ANON))
  3997. return ret;
  3998. if (page->mem_cgroup == mc.from) {
  3999. ret = MC_TARGET_PAGE;
  4000. if (target) {
  4001. get_page(page);
  4002. target->page = page;
  4003. }
  4004. }
  4005. return ret;
  4006. }
  4007. #else
  4008. static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
  4009. unsigned long addr, pmd_t pmd, union mc_target *target)
  4010. {
  4011. return MC_TARGET_NONE;
  4012. }
  4013. #endif
  4014. static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
  4015. unsigned long addr, unsigned long end,
  4016. struct mm_walk *walk)
  4017. {
  4018. struct vm_area_struct *vma = walk->vma;
  4019. pte_t *pte;
  4020. spinlock_t *ptl;
  4021. ptl = pmd_trans_huge_lock(pmd, vma);
  4022. if (ptl) {
  4023. /*
  4024. * Note their can not be MC_TARGET_DEVICE for now as we do not
  4025. * support transparent huge page with MEMORY_DEVICE_PUBLIC or
  4026. * MEMORY_DEVICE_PRIVATE but this might change.
  4027. */
  4028. if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
  4029. mc.precharge += HPAGE_PMD_NR;
  4030. spin_unlock(ptl);
  4031. return 0;
  4032. }
  4033. if (pmd_trans_unstable(pmd))
  4034. return 0;
  4035. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4036. for (; addr != end; pte++, addr += PAGE_SIZE)
  4037. if (get_mctgt_type(vma, addr, *pte, NULL))
  4038. mc.precharge++; /* increment precharge temporarily */
  4039. pte_unmap_unlock(pte - 1, ptl);
  4040. cond_resched();
  4041. return 0;
  4042. }
  4043. static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
  4044. {
  4045. unsigned long precharge;
  4046. struct mm_walk mem_cgroup_count_precharge_walk = {
  4047. .pmd_entry = mem_cgroup_count_precharge_pte_range,
  4048. .mm = mm,
  4049. };
  4050. down_read(&mm->mmap_sem);
  4051. walk_page_range(0, mm->highest_vm_end,
  4052. &mem_cgroup_count_precharge_walk);
  4053. up_read(&mm->mmap_sem);
  4054. precharge = mc.precharge;
  4055. mc.precharge = 0;
  4056. return precharge;
  4057. }
  4058. static int mem_cgroup_precharge_mc(struct mm_struct *mm)
  4059. {
  4060. unsigned long precharge = mem_cgroup_count_precharge(mm);
  4061. VM_BUG_ON(mc.moving_task);
  4062. mc.moving_task = current;
  4063. return mem_cgroup_do_precharge(precharge);
  4064. }
  4065. /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
  4066. static void __mem_cgroup_clear_mc(void)
  4067. {
  4068. struct mem_cgroup *from = mc.from;
  4069. struct mem_cgroup *to = mc.to;
  4070. /* we must uncharge all the leftover precharges from mc.to */
  4071. if (mc.precharge) {
  4072. cancel_charge(mc.to, mc.precharge);
  4073. mc.precharge = 0;
  4074. }
  4075. /*
  4076. * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
  4077. * we must uncharge here.
  4078. */
  4079. if (mc.moved_charge) {
  4080. cancel_charge(mc.from, mc.moved_charge);
  4081. mc.moved_charge = 0;
  4082. }
  4083. /* we must fixup refcnts and charges */
  4084. if (mc.moved_swap) {
  4085. /* uncharge swap account from the old cgroup */
  4086. if (!mem_cgroup_is_root(mc.from))
  4087. page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
  4088. mem_cgroup_id_put_many(mc.from, mc.moved_swap);
  4089. /*
  4090. * we charged both to->memory and to->memsw, so we
  4091. * should uncharge to->memory.
  4092. */
  4093. if (!mem_cgroup_is_root(mc.to))
  4094. page_counter_uncharge(&mc.to->memory, mc.moved_swap);
  4095. mem_cgroup_id_get_many(mc.to, mc.moved_swap);
  4096. css_put_many(&mc.to->css, mc.moved_swap);
  4097. mc.moved_swap = 0;
  4098. }
  4099. memcg_oom_recover(from);
  4100. memcg_oom_recover(to);
  4101. wake_up_all(&mc.waitq);
  4102. }
  4103. static void mem_cgroup_clear_mc(void)
  4104. {
  4105. struct mm_struct *mm = mc.mm;
  4106. /*
  4107. * we must clear moving_task before waking up waiters at the end of
  4108. * task migration.
  4109. */
  4110. mc.moving_task = NULL;
  4111. __mem_cgroup_clear_mc();
  4112. spin_lock(&mc.lock);
  4113. mc.from = NULL;
  4114. mc.to = NULL;
  4115. mc.mm = NULL;
  4116. spin_unlock(&mc.lock);
  4117. mmput(mm);
  4118. }
  4119. static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
  4120. {
  4121. struct cgroup_subsys_state *css;
  4122. struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
  4123. struct mem_cgroup *from;
  4124. struct task_struct *leader, *p;
  4125. struct mm_struct *mm;
  4126. unsigned long move_flags;
  4127. int ret = 0;
  4128. /* charge immigration isn't supported on the default hierarchy */
  4129. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  4130. return 0;
  4131. /*
  4132. * Multi-process migrations only happen on the default hierarchy
  4133. * where charge immigration is not used. Perform charge
  4134. * immigration if @tset contains a leader and whine if there are
  4135. * multiple.
  4136. */
  4137. p = NULL;
  4138. cgroup_taskset_for_each_leader(leader, css, tset) {
  4139. WARN_ON_ONCE(p);
  4140. p = leader;
  4141. memcg = mem_cgroup_from_css(css);
  4142. }
  4143. if (!p)
  4144. return 0;
  4145. /*
  4146. * We are now commited to this value whatever it is. Changes in this
  4147. * tunable will only affect upcoming migrations, not the current one.
  4148. * So we need to save it, and keep it going.
  4149. */
  4150. move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
  4151. if (!move_flags)
  4152. return 0;
  4153. from = mem_cgroup_from_task(p);
  4154. VM_BUG_ON(from == memcg);
  4155. mm = get_task_mm(p);
  4156. if (!mm)
  4157. return 0;
  4158. /* We move charges only when we move a owner of the mm */
  4159. if (mm->owner == p) {
  4160. VM_BUG_ON(mc.from);
  4161. VM_BUG_ON(mc.to);
  4162. VM_BUG_ON(mc.precharge);
  4163. VM_BUG_ON(mc.moved_charge);
  4164. VM_BUG_ON(mc.moved_swap);
  4165. spin_lock(&mc.lock);
  4166. mc.mm = mm;
  4167. mc.from = from;
  4168. mc.to = memcg;
  4169. mc.flags = move_flags;
  4170. spin_unlock(&mc.lock);
  4171. /* We set mc.moving_task later */
  4172. ret = mem_cgroup_precharge_mc(mm);
  4173. if (ret)
  4174. mem_cgroup_clear_mc();
  4175. } else {
  4176. mmput(mm);
  4177. }
  4178. return ret;
  4179. }
  4180. static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
  4181. {
  4182. if (mc.to)
  4183. mem_cgroup_clear_mc();
  4184. }
  4185. static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
  4186. unsigned long addr, unsigned long end,
  4187. struct mm_walk *walk)
  4188. {
  4189. int ret = 0;
  4190. struct vm_area_struct *vma = walk->vma;
  4191. pte_t *pte;
  4192. spinlock_t *ptl;
  4193. enum mc_target_type target_type;
  4194. union mc_target target;
  4195. struct page *page;
  4196. ptl = pmd_trans_huge_lock(pmd, vma);
  4197. if (ptl) {
  4198. if (mc.precharge < HPAGE_PMD_NR) {
  4199. spin_unlock(ptl);
  4200. return 0;
  4201. }
  4202. target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
  4203. if (target_type == MC_TARGET_PAGE) {
  4204. page = target.page;
  4205. if (!isolate_lru_page(page)) {
  4206. if (!mem_cgroup_move_account(page, true,
  4207. mc.from, mc.to)) {
  4208. mc.precharge -= HPAGE_PMD_NR;
  4209. mc.moved_charge += HPAGE_PMD_NR;
  4210. }
  4211. putback_lru_page(page);
  4212. }
  4213. put_page(page);
  4214. } else if (target_type == MC_TARGET_DEVICE) {
  4215. page = target.page;
  4216. if (!mem_cgroup_move_account(page, true,
  4217. mc.from, mc.to)) {
  4218. mc.precharge -= HPAGE_PMD_NR;
  4219. mc.moved_charge += HPAGE_PMD_NR;
  4220. }
  4221. put_page(page);
  4222. }
  4223. spin_unlock(ptl);
  4224. return 0;
  4225. }
  4226. if (pmd_trans_unstable(pmd))
  4227. return 0;
  4228. retry:
  4229. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  4230. for (; addr != end; addr += PAGE_SIZE) {
  4231. pte_t ptent = *(pte++);
  4232. bool device = false;
  4233. swp_entry_t ent;
  4234. if (!mc.precharge)
  4235. break;
  4236. switch (get_mctgt_type(vma, addr, ptent, &target)) {
  4237. case MC_TARGET_DEVICE:
  4238. device = true;
  4239. /* fall through */
  4240. case MC_TARGET_PAGE:
  4241. page = target.page;
  4242. /*
  4243. * We can have a part of the split pmd here. Moving it
  4244. * can be done but it would be too convoluted so simply
  4245. * ignore such a partial THP and keep it in original
  4246. * memcg. There should be somebody mapping the head.
  4247. */
  4248. if (PageTransCompound(page))
  4249. goto put;
  4250. if (!device && isolate_lru_page(page))
  4251. goto put;
  4252. if (!mem_cgroup_move_account(page, false,
  4253. mc.from, mc.to)) {
  4254. mc.precharge--;
  4255. /* we uncharge from mc.from later. */
  4256. mc.moved_charge++;
  4257. }
  4258. if (!device)
  4259. putback_lru_page(page);
  4260. put: /* get_mctgt_type() gets the page */
  4261. put_page(page);
  4262. break;
  4263. case MC_TARGET_SWAP:
  4264. ent = target.ent;
  4265. if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
  4266. mc.precharge--;
  4267. /* we fixup refcnts and charges later. */
  4268. mc.moved_swap++;
  4269. }
  4270. break;
  4271. default:
  4272. break;
  4273. }
  4274. }
  4275. pte_unmap_unlock(pte - 1, ptl);
  4276. cond_resched();
  4277. if (addr != end) {
  4278. /*
  4279. * We have consumed all precharges we got in can_attach().
  4280. * We try charge one by one, but don't do any additional
  4281. * charges to mc.to if we have failed in charge once in attach()
  4282. * phase.
  4283. */
  4284. ret = mem_cgroup_do_precharge(1);
  4285. if (!ret)
  4286. goto retry;
  4287. }
  4288. return ret;
  4289. }
  4290. static void mem_cgroup_move_charge(void)
  4291. {
  4292. struct mm_walk mem_cgroup_move_charge_walk = {
  4293. .pmd_entry = mem_cgroup_move_charge_pte_range,
  4294. .mm = mc.mm,
  4295. };
  4296. lru_add_drain_all();
  4297. /*
  4298. * Signal lock_page_memcg() to take the memcg's move_lock
  4299. * while we're moving its pages to another memcg. Then wait
  4300. * for already started RCU-only updates to finish.
  4301. */
  4302. atomic_inc(&mc.from->moving_account);
  4303. synchronize_rcu();
  4304. retry:
  4305. if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
  4306. /*
  4307. * Someone who are holding the mmap_sem might be waiting in
  4308. * waitq. So we cancel all extra charges, wake up all waiters,
  4309. * and retry. Because we cancel precharges, we might not be able
  4310. * to move enough charges, but moving charge is a best-effort
  4311. * feature anyway, so it wouldn't be a big problem.
  4312. */
  4313. __mem_cgroup_clear_mc();
  4314. cond_resched();
  4315. goto retry;
  4316. }
  4317. /*
  4318. * When we have consumed all precharges and failed in doing
  4319. * additional charge, the page walk just aborts.
  4320. */
  4321. walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
  4322. up_read(&mc.mm->mmap_sem);
  4323. atomic_dec(&mc.from->moving_account);
  4324. }
  4325. static void mem_cgroup_move_task(void)
  4326. {
  4327. if (mc.to) {
  4328. mem_cgroup_move_charge();
  4329. mem_cgroup_clear_mc();
  4330. }
  4331. }
  4332. #else /* !CONFIG_MMU */
  4333. static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
  4334. {
  4335. return 0;
  4336. }
  4337. static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
  4338. {
  4339. }
  4340. static void mem_cgroup_move_task(void)
  4341. {
  4342. }
  4343. #endif
  4344. /*
  4345. * Cgroup retains root cgroups across [un]mount cycles making it necessary
  4346. * to verify whether we're attached to the default hierarchy on each mount
  4347. * attempt.
  4348. */
  4349. static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
  4350. {
  4351. /*
  4352. * use_hierarchy is forced on the default hierarchy. cgroup core
  4353. * guarantees that @root doesn't have any children, so turning it
  4354. * on for the root memcg is enough.
  4355. */
  4356. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  4357. root_mem_cgroup->use_hierarchy = true;
  4358. else
  4359. root_mem_cgroup->use_hierarchy = false;
  4360. }
  4361. static u64 memory_current_read(struct cgroup_subsys_state *css,
  4362. struct cftype *cft)
  4363. {
  4364. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  4365. return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
  4366. }
  4367. static int memory_low_show(struct seq_file *m, void *v)
  4368. {
  4369. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4370. unsigned long low = READ_ONCE(memcg->low);
  4371. if (low == PAGE_COUNTER_MAX)
  4372. seq_puts(m, "max\n");
  4373. else
  4374. seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
  4375. return 0;
  4376. }
  4377. static ssize_t memory_low_write(struct kernfs_open_file *of,
  4378. char *buf, size_t nbytes, loff_t off)
  4379. {
  4380. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4381. unsigned long low;
  4382. int err;
  4383. buf = strstrip(buf);
  4384. err = page_counter_memparse(buf, "max", &low);
  4385. if (err)
  4386. return err;
  4387. memcg->low = low;
  4388. return nbytes;
  4389. }
  4390. static int memory_high_show(struct seq_file *m, void *v)
  4391. {
  4392. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4393. unsigned long high = READ_ONCE(memcg->high);
  4394. if (high == PAGE_COUNTER_MAX)
  4395. seq_puts(m, "max\n");
  4396. else
  4397. seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
  4398. return 0;
  4399. }
  4400. static ssize_t memory_high_write(struct kernfs_open_file *of,
  4401. char *buf, size_t nbytes, loff_t off)
  4402. {
  4403. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4404. unsigned long nr_pages;
  4405. unsigned long high;
  4406. int err;
  4407. buf = strstrip(buf);
  4408. err = page_counter_memparse(buf, "max", &high);
  4409. if (err)
  4410. return err;
  4411. memcg->high = high;
  4412. nr_pages = page_counter_read(&memcg->memory);
  4413. if (nr_pages > high)
  4414. try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
  4415. GFP_KERNEL, true);
  4416. memcg_wb_domain_size_changed(memcg);
  4417. return nbytes;
  4418. }
  4419. static int memory_max_show(struct seq_file *m, void *v)
  4420. {
  4421. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4422. unsigned long max = READ_ONCE(memcg->memory.limit);
  4423. if (max == PAGE_COUNTER_MAX)
  4424. seq_puts(m, "max\n");
  4425. else
  4426. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  4427. return 0;
  4428. }
  4429. static ssize_t memory_max_write(struct kernfs_open_file *of,
  4430. char *buf, size_t nbytes, loff_t off)
  4431. {
  4432. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  4433. unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
  4434. bool drained = false;
  4435. unsigned long max;
  4436. int err;
  4437. buf = strstrip(buf);
  4438. err = page_counter_memparse(buf, "max", &max);
  4439. if (err)
  4440. return err;
  4441. xchg(&memcg->memory.limit, max);
  4442. for (;;) {
  4443. unsigned long nr_pages = page_counter_read(&memcg->memory);
  4444. if (nr_pages <= max)
  4445. break;
  4446. if (signal_pending(current)) {
  4447. err = -EINTR;
  4448. break;
  4449. }
  4450. if (!drained) {
  4451. drain_all_stock(memcg);
  4452. drained = true;
  4453. continue;
  4454. }
  4455. if (nr_reclaims) {
  4456. if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
  4457. GFP_KERNEL, true))
  4458. nr_reclaims--;
  4459. continue;
  4460. }
  4461. mem_cgroup_event(memcg, MEMCG_OOM);
  4462. if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
  4463. break;
  4464. }
  4465. memcg_wb_domain_size_changed(memcg);
  4466. return nbytes;
  4467. }
  4468. static int memory_events_show(struct seq_file *m, void *v)
  4469. {
  4470. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4471. seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
  4472. seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
  4473. seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
  4474. seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
  4475. seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
  4476. return 0;
  4477. }
  4478. static int memory_stat_show(struct seq_file *m, void *v)
  4479. {
  4480. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  4481. unsigned long stat[MEMCG_NR_STAT];
  4482. unsigned long events[MEMCG_NR_EVENTS];
  4483. int i;
  4484. /*
  4485. * Provide statistics on the state of the memory subsystem as
  4486. * well as cumulative event counters that show past behavior.
  4487. *
  4488. * This list is ordered following a combination of these gradients:
  4489. * 1) generic big picture -> specifics and details
  4490. * 2) reflecting userspace activity -> reflecting kernel heuristics
  4491. *
  4492. * Current memory state:
  4493. */
  4494. tree_stat(memcg, stat);
  4495. tree_events(memcg, events);
  4496. seq_printf(m, "anon %llu\n",
  4497. (u64)stat[MEMCG_RSS] * PAGE_SIZE);
  4498. seq_printf(m, "file %llu\n",
  4499. (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
  4500. seq_printf(m, "kernel_stack %llu\n",
  4501. (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
  4502. seq_printf(m, "slab %llu\n",
  4503. (u64)(stat[NR_SLAB_RECLAIMABLE] +
  4504. stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
  4505. seq_printf(m, "sock %llu\n",
  4506. (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
  4507. seq_printf(m, "shmem %llu\n",
  4508. (u64)stat[NR_SHMEM] * PAGE_SIZE);
  4509. seq_printf(m, "file_mapped %llu\n",
  4510. (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
  4511. seq_printf(m, "file_dirty %llu\n",
  4512. (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
  4513. seq_printf(m, "file_writeback %llu\n",
  4514. (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
  4515. for (i = 0; i < NR_LRU_LISTS; i++) {
  4516. struct mem_cgroup *mi;
  4517. unsigned long val = 0;
  4518. for_each_mem_cgroup_tree(mi, memcg)
  4519. val += mem_cgroup_nr_lru_pages(mi, BIT(i));
  4520. seq_printf(m, "%s %llu\n",
  4521. mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
  4522. }
  4523. seq_printf(m, "slab_reclaimable %llu\n",
  4524. (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
  4525. seq_printf(m, "slab_unreclaimable %llu\n",
  4526. (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
  4527. /* Accumulated memory events */
  4528. seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
  4529. seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
  4530. seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
  4531. seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
  4532. events[PGSCAN_DIRECT]);
  4533. seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
  4534. events[PGSTEAL_DIRECT]);
  4535. seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
  4536. seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
  4537. seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
  4538. seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
  4539. seq_printf(m, "workingset_refault %lu\n",
  4540. stat[WORKINGSET_REFAULT]);
  4541. seq_printf(m, "workingset_activate %lu\n",
  4542. stat[WORKINGSET_ACTIVATE]);
  4543. seq_printf(m, "workingset_nodereclaim %lu\n",
  4544. stat[WORKINGSET_NODERECLAIM]);
  4545. return 0;
  4546. }
  4547. static struct cftype memory_files[] = {
  4548. {
  4549. .name = "current",
  4550. .flags = CFTYPE_NOT_ON_ROOT,
  4551. .read_u64 = memory_current_read,
  4552. },
  4553. {
  4554. .name = "low",
  4555. .flags = CFTYPE_NOT_ON_ROOT,
  4556. .seq_show = memory_low_show,
  4557. .write = memory_low_write,
  4558. },
  4559. {
  4560. .name = "high",
  4561. .flags = CFTYPE_NOT_ON_ROOT,
  4562. .seq_show = memory_high_show,
  4563. .write = memory_high_write,
  4564. },
  4565. {
  4566. .name = "max",
  4567. .flags = CFTYPE_NOT_ON_ROOT,
  4568. .seq_show = memory_max_show,
  4569. .write = memory_max_write,
  4570. },
  4571. {
  4572. .name = "events",
  4573. .flags = CFTYPE_NOT_ON_ROOT,
  4574. .file_offset = offsetof(struct mem_cgroup, events_file),
  4575. .seq_show = memory_events_show,
  4576. },
  4577. {
  4578. .name = "stat",
  4579. .flags = CFTYPE_NOT_ON_ROOT,
  4580. .seq_show = memory_stat_show,
  4581. },
  4582. { } /* terminate */
  4583. };
  4584. struct cgroup_subsys memory_cgrp_subsys = {
  4585. .css_alloc = mem_cgroup_css_alloc,
  4586. .css_online = mem_cgroup_css_online,
  4587. .css_offline = mem_cgroup_css_offline,
  4588. .css_released = mem_cgroup_css_released,
  4589. .css_free = mem_cgroup_css_free,
  4590. .css_reset = mem_cgroup_css_reset,
  4591. .can_attach = mem_cgroup_can_attach,
  4592. .cancel_attach = mem_cgroup_cancel_attach,
  4593. .post_attach = mem_cgroup_move_task,
  4594. .bind = mem_cgroup_bind,
  4595. .dfl_cftypes = memory_files,
  4596. .legacy_cftypes = mem_cgroup_legacy_files,
  4597. .early_init = 0,
  4598. };
  4599. /**
  4600. * mem_cgroup_low - check if memory consumption is below the normal range
  4601. * @root: the top ancestor of the sub-tree being checked
  4602. * @memcg: the memory cgroup to check
  4603. *
  4604. * Returns %true if memory consumption of @memcg, and that of all
  4605. * ancestors up to (but not including) @root, is below the normal range.
  4606. *
  4607. * @root is exclusive; it is never low when looked at directly and isn't
  4608. * checked when traversing the hierarchy.
  4609. *
  4610. * Excluding @root enables using memory.low to prioritize memory usage
  4611. * between cgroups within a subtree of the hierarchy that is limited by
  4612. * memory.high or memory.max.
  4613. *
  4614. * For example, given cgroup A with children B and C:
  4615. *
  4616. * A
  4617. * / \
  4618. * B C
  4619. *
  4620. * and
  4621. *
  4622. * 1. A/memory.current > A/memory.high
  4623. * 2. A/B/memory.current < A/B/memory.low
  4624. * 3. A/C/memory.current >= A/C/memory.low
  4625. *
  4626. * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
  4627. * should reclaim from 'C' until 'A' is no longer high or until we can
  4628. * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
  4629. * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
  4630. * low and we will reclaim indiscriminately from both 'B' and 'C'.
  4631. */
  4632. bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
  4633. {
  4634. if (mem_cgroup_disabled())
  4635. return false;
  4636. if (!root)
  4637. root = root_mem_cgroup;
  4638. if (memcg == root)
  4639. return false;
  4640. for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
  4641. if (page_counter_read(&memcg->memory) >= memcg->low)
  4642. return false;
  4643. }
  4644. return true;
  4645. }
  4646. /**
  4647. * mem_cgroup_try_charge - try charging a page
  4648. * @page: page to charge
  4649. * @mm: mm context of the victim
  4650. * @gfp_mask: reclaim mode
  4651. * @memcgp: charged memcg return
  4652. * @compound: charge the page as compound or small page
  4653. *
  4654. * Try to charge @page to the memcg that @mm belongs to, reclaiming
  4655. * pages according to @gfp_mask if necessary.
  4656. *
  4657. * Returns 0 on success, with *@memcgp pointing to the charged memcg.
  4658. * Otherwise, an error code is returned.
  4659. *
  4660. * After page->mapping has been set up, the caller must finalize the
  4661. * charge with mem_cgroup_commit_charge(). Or abort the transaction
  4662. * with mem_cgroup_cancel_charge() in case page instantiation fails.
  4663. */
  4664. int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
  4665. gfp_t gfp_mask, struct mem_cgroup **memcgp,
  4666. bool compound)
  4667. {
  4668. struct mem_cgroup *memcg = NULL;
  4669. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4670. int ret = 0;
  4671. if (mem_cgroup_disabled())
  4672. goto out;
  4673. if (PageSwapCache(page)) {
  4674. /*
  4675. * Every swap fault against a single page tries to charge the
  4676. * page, bail as early as possible. shmem_unuse() encounters
  4677. * already charged pages, too. The USED bit is protected by
  4678. * the page lock, which serializes swap cache removal, which
  4679. * in turn serializes uncharging.
  4680. */
  4681. VM_BUG_ON_PAGE(!PageLocked(page), page);
  4682. if (compound_head(page)->mem_cgroup)
  4683. goto out;
  4684. if (do_swap_account) {
  4685. swp_entry_t ent = { .val = page_private(page), };
  4686. unsigned short id = lookup_swap_cgroup_id(ent);
  4687. rcu_read_lock();
  4688. memcg = mem_cgroup_from_id(id);
  4689. if (memcg && !css_tryget_online(&memcg->css))
  4690. memcg = NULL;
  4691. rcu_read_unlock();
  4692. }
  4693. }
  4694. if (!memcg)
  4695. memcg = get_mem_cgroup_from_mm(mm);
  4696. ret = try_charge(memcg, gfp_mask, nr_pages);
  4697. css_put(&memcg->css);
  4698. out:
  4699. *memcgp = memcg;
  4700. return ret;
  4701. }
  4702. /**
  4703. * mem_cgroup_commit_charge - commit a page charge
  4704. * @page: page to charge
  4705. * @memcg: memcg to charge the page to
  4706. * @lrucare: page might be on LRU already
  4707. * @compound: charge the page as compound or small page
  4708. *
  4709. * Finalize a charge transaction started by mem_cgroup_try_charge(),
  4710. * after page->mapping has been set up. This must happen atomically
  4711. * as part of the page instantiation, i.e. under the page table lock
  4712. * for anonymous pages, under the page lock for page and swap cache.
  4713. *
  4714. * In addition, the page must not be on the LRU during the commit, to
  4715. * prevent racing with task migration. If it might be, use @lrucare.
  4716. *
  4717. * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
  4718. */
  4719. void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
  4720. bool lrucare, bool compound)
  4721. {
  4722. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4723. VM_BUG_ON_PAGE(!page->mapping, page);
  4724. VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
  4725. if (mem_cgroup_disabled())
  4726. return;
  4727. /*
  4728. * Swap faults will attempt to charge the same page multiple
  4729. * times. But reuse_swap_page() might have removed the page
  4730. * from swapcache already, so we can't check PageSwapCache().
  4731. */
  4732. if (!memcg)
  4733. return;
  4734. commit_charge(page, memcg, lrucare);
  4735. local_irq_disable();
  4736. mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
  4737. memcg_check_events(memcg, page);
  4738. local_irq_enable();
  4739. if (do_memsw_account() && PageSwapCache(page)) {
  4740. swp_entry_t entry = { .val = page_private(page) };
  4741. /*
  4742. * The swap entry might not get freed for a long time,
  4743. * let's not wait for it. The page already received a
  4744. * memory+swap charge, drop the swap entry duplicate.
  4745. */
  4746. mem_cgroup_uncharge_swap(entry, nr_pages);
  4747. }
  4748. }
  4749. /**
  4750. * mem_cgroup_cancel_charge - cancel a page charge
  4751. * @page: page to charge
  4752. * @memcg: memcg to charge the page to
  4753. * @compound: charge the page as compound or small page
  4754. *
  4755. * Cancel a charge transaction started by mem_cgroup_try_charge().
  4756. */
  4757. void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
  4758. bool compound)
  4759. {
  4760. unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
  4761. if (mem_cgroup_disabled())
  4762. return;
  4763. /*
  4764. * Swap faults will attempt to charge the same page multiple
  4765. * times. But reuse_swap_page() might have removed the page
  4766. * from swapcache already, so we can't check PageSwapCache().
  4767. */
  4768. if (!memcg)
  4769. return;
  4770. cancel_charge(memcg, nr_pages);
  4771. }
  4772. struct uncharge_gather {
  4773. struct mem_cgroup *memcg;
  4774. unsigned long pgpgout;
  4775. unsigned long nr_anon;
  4776. unsigned long nr_file;
  4777. unsigned long nr_kmem;
  4778. unsigned long nr_huge;
  4779. unsigned long nr_shmem;
  4780. struct page *dummy_page;
  4781. };
  4782. static inline void uncharge_gather_clear(struct uncharge_gather *ug)
  4783. {
  4784. memset(ug, 0, sizeof(*ug));
  4785. }
  4786. static void uncharge_batch(const struct uncharge_gather *ug)
  4787. {
  4788. unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
  4789. unsigned long flags;
  4790. if (!mem_cgroup_is_root(ug->memcg)) {
  4791. page_counter_uncharge(&ug->memcg->memory, nr_pages);
  4792. if (do_memsw_account())
  4793. page_counter_uncharge(&ug->memcg->memsw, nr_pages);
  4794. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
  4795. page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
  4796. memcg_oom_recover(ug->memcg);
  4797. }
  4798. local_irq_save(flags);
  4799. __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
  4800. __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
  4801. __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
  4802. __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
  4803. __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
  4804. __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
  4805. memcg_check_events(ug->memcg, ug->dummy_page);
  4806. local_irq_restore(flags);
  4807. if (!mem_cgroup_is_root(ug->memcg))
  4808. css_put_many(&ug->memcg->css, nr_pages);
  4809. }
  4810. static void uncharge_page(struct page *page, struct uncharge_gather *ug)
  4811. {
  4812. VM_BUG_ON_PAGE(PageLRU(page), page);
  4813. VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
  4814. !PageHWPoison(page) , page);
  4815. if (!page->mem_cgroup)
  4816. return;
  4817. /*
  4818. * Nobody should be changing or seriously looking at
  4819. * page->mem_cgroup at this point, we have fully
  4820. * exclusive access to the page.
  4821. */
  4822. if (ug->memcg != page->mem_cgroup) {
  4823. if (ug->memcg) {
  4824. uncharge_batch(ug);
  4825. uncharge_gather_clear(ug);
  4826. }
  4827. ug->memcg = page->mem_cgroup;
  4828. }
  4829. if (!PageKmemcg(page)) {
  4830. unsigned int nr_pages = 1;
  4831. if (PageTransHuge(page)) {
  4832. nr_pages <<= compound_order(page);
  4833. ug->nr_huge += nr_pages;
  4834. }
  4835. if (PageAnon(page))
  4836. ug->nr_anon += nr_pages;
  4837. else {
  4838. ug->nr_file += nr_pages;
  4839. if (PageSwapBacked(page))
  4840. ug->nr_shmem += nr_pages;
  4841. }
  4842. ug->pgpgout++;
  4843. } else {
  4844. ug->nr_kmem += 1 << compound_order(page);
  4845. __ClearPageKmemcg(page);
  4846. }
  4847. ug->dummy_page = page;
  4848. page->mem_cgroup = NULL;
  4849. }
  4850. static void uncharge_list(struct list_head *page_list)
  4851. {
  4852. struct uncharge_gather ug;
  4853. struct list_head *next;
  4854. uncharge_gather_clear(&ug);
  4855. /*
  4856. * Note that the list can be a single page->lru; hence the
  4857. * do-while loop instead of a simple list_for_each_entry().
  4858. */
  4859. next = page_list->next;
  4860. do {
  4861. struct page *page;
  4862. page = list_entry(next, struct page, lru);
  4863. next = page->lru.next;
  4864. uncharge_page(page, &ug);
  4865. } while (next != page_list);
  4866. if (ug.memcg)
  4867. uncharge_batch(&ug);
  4868. }
  4869. /**
  4870. * mem_cgroup_uncharge - uncharge a page
  4871. * @page: page to uncharge
  4872. *
  4873. * Uncharge a page previously charged with mem_cgroup_try_charge() and
  4874. * mem_cgroup_commit_charge().
  4875. */
  4876. void mem_cgroup_uncharge(struct page *page)
  4877. {
  4878. struct uncharge_gather ug;
  4879. if (mem_cgroup_disabled())
  4880. return;
  4881. /* Don't touch page->lru of any random page, pre-check: */
  4882. if (!page->mem_cgroup)
  4883. return;
  4884. uncharge_gather_clear(&ug);
  4885. uncharge_page(page, &ug);
  4886. uncharge_batch(&ug);
  4887. }
  4888. /**
  4889. * mem_cgroup_uncharge_list - uncharge a list of page
  4890. * @page_list: list of pages to uncharge
  4891. *
  4892. * Uncharge a list of pages previously charged with
  4893. * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
  4894. */
  4895. void mem_cgroup_uncharge_list(struct list_head *page_list)
  4896. {
  4897. if (mem_cgroup_disabled())
  4898. return;
  4899. if (!list_empty(page_list))
  4900. uncharge_list(page_list);
  4901. }
  4902. /**
  4903. * mem_cgroup_migrate - charge a page's replacement
  4904. * @oldpage: currently circulating page
  4905. * @newpage: replacement page
  4906. *
  4907. * Charge @newpage as a replacement page for @oldpage. @oldpage will
  4908. * be uncharged upon free.
  4909. *
  4910. * Both pages must be locked, @newpage->mapping must be set up.
  4911. */
  4912. void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
  4913. {
  4914. struct mem_cgroup *memcg;
  4915. unsigned int nr_pages;
  4916. bool compound;
  4917. unsigned long flags;
  4918. VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
  4919. VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
  4920. VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
  4921. VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
  4922. newpage);
  4923. if (mem_cgroup_disabled())
  4924. return;
  4925. /* Page cache replacement: new page already charged? */
  4926. if (newpage->mem_cgroup)
  4927. return;
  4928. /* Swapcache readahead pages can get replaced before being charged */
  4929. memcg = oldpage->mem_cgroup;
  4930. if (!memcg)
  4931. return;
  4932. /* Force-charge the new page. The old one will be freed soon */
  4933. compound = PageTransHuge(newpage);
  4934. nr_pages = compound ? hpage_nr_pages(newpage) : 1;
  4935. page_counter_charge(&memcg->memory, nr_pages);
  4936. if (do_memsw_account())
  4937. page_counter_charge(&memcg->memsw, nr_pages);
  4938. css_get_many(&memcg->css, nr_pages);
  4939. commit_charge(newpage, memcg, false);
  4940. local_irq_save(flags);
  4941. mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
  4942. memcg_check_events(memcg, newpage);
  4943. local_irq_restore(flags);
  4944. }
  4945. DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
  4946. EXPORT_SYMBOL(memcg_sockets_enabled_key);
  4947. void mem_cgroup_sk_alloc(struct sock *sk)
  4948. {
  4949. struct mem_cgroup *memcg;
  4950. if (!mem_cgroup_sockets_enabled)
  4951. return;
  4952. /*
  4953. * Socket cloning can throw us here with sk_memcg already
  4954. * filled. It won't however, necessarily happen from
  4955. * process context. So the test for root memcg given
  4956. * the current task's memcg won't help us in this case.
  4957. *
  4958. * Respecting the original socket's memcg is a better
  4959. * decision in this case.
  4960. */
  4961. if (sk->sk_memcg) {
  4962. css_get(&sk->sk_memcg->css);
  4963. return;
  4964. }
  4965. rcu_read_lock();
  4966. memcg = mem_cgroup_from_task(current);
  4967. if (memcg == root_mem_cgroup)
  4968. goto out;
  4969. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
  4970. goto out;
  4971. if (css_tryget_online(&memcg->css))
  4972. sk->sk_memcg = memcg;
  4973. out:
  4974. rcu_read_unlock();
  4975. }
  4976. void mem_cgroup_sk_free(struct sock *sk)
  4977. {
  4978. if (sk->sk_memcg)
  4979. css_put(&sk->sk_memcg->css);
  4980. }
  4981. /**
  4982. * mem_cgroup_charge_skmem - charge socket memory
  4983. * @memcg: memcg to charge
  4984. * @nr_pages: number of pages to charge
  4985. *
  4986. * Charges @nr_pages to @memcg. Returns %true if the charge fit within
  4987. * @memcg's configured limit, %false if the charge had to be forced.
  4988. */
  4989. bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
  4990. {
  4991. gfp_t gfp_mask = GFP_KERNEL;
  4992. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
  4993. struct page_counter *fail;
  4994. if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
  4995. memcg->tcpmem_pressure = 0;
  4996. return true;
  4997. }
  4998. page_counter_charge(&memcg->tcpmem, nr_pages);
  4999. memcg->tcpmem_pressure = 1;
  5000. return false;
  5001. }
  5002. /* Don't block in the packet receive path */
  5003. if (in_softirq())
  5004. gfp_mask = GFP_NOWAIT;
  5005. mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
  5006. if (try_charge(memcg, gfp_mask, nr_pages) == 0)
  5007. return true;
  5008. try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
  5009. return false;
  5010. }
  5011. /**
  5012. * mem_cgroup_uncharge_skmem - uncharge socket memory
  5013. * @memcg: memcg to uncharge
  5014. * @nr_pages: number of pages to uncharge
  5015. */
  5016. void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
  5017. {
  5018. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
  5019. page_counter_uncharge(&memcg->tcpmem, nr_pages);
  5020. return;
  5021. }
  5022. mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
  5023. refill_stock(memcg, nr_pages);
  5024. }
  5025. static int __init cgroup_memory(char *s)
  5026. {
  5027. char *token;
  5028. while ((token = strsep(&s, ",")) != NULL) {
  5029. if (!*token)
  5030. continue;
  5031. if (!strcmp(token, "nosocket"))
  5032. cgroup_memory_nosocket = true;
  5033. if (!strcmp(token, "nokmem"))
  5034. cgroup_memory_nokmem = true;
  5035. }
  5036. return 0;
  5037. }
  5038. __setup("cgroup.memory=", cgroup_memory);
  5039. /*
  5040. * subsys_initcall() for memory controller.
  5041. *
  5042. * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
  5043. * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
  5044. * basically everything that doesn't depend on a specific mem_cgroup structure
  5045. * should be initialized from here.
  5046. */
  5047. static int __init mem_cgroup_init(void)
  5048. {
  5049. int cpu, node;
  5050. #ifndef CONFIG_SLOB
  5051. /*
  5052. * Kmem cache creation is mostly done with the slab_mutex held,
  5053. * so use a workqueue with limited concurrency to avoid stalling
  5054. * all worker threads in case lots of cgroups are created and
  5055. * destroyed simultaneously.
  5056. */
  5057. memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
  5058. BUG_ON(!memcg_kmem_cache_wq);
  5059. #endif
  5060. cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
  5061. memcg_hotplug_cpu_dead);
  5062. for_each_possible_cpu(cpu)
  5063. INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
  5064. drain_local_stock);
  5065. for_each_node(node) {
  5066. struct mem_cgroup_tree_per_node *rtpn;
  5067. rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
  5068. node_online(node) ? node : NUMA_NO_NODE);
  5069. rtpn->rb_root = RB_ROOT;
  5070. rtpn->rb_rightmost = NULL;
  5071. spin_lock_init(&rtpn->lock);
  5072. soft_limit_tree.rb_tree_per_node[node] = rtpn;
  5073. }
  5074. return 0;
  5075. }
  5076. subsys_initcall(mem_cgroup_init);
  5077. #ifdef CONFIG_MEMCG_SWAP
  5078. static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
  5079. {
  5080. while (!atomic_inc_not_zero(&memcg->id.ref)) {
  5081. /*
  5082. * The root cgroup cannot be destroyed, so it's refcount must
  5083. * always be >= 1.
  5084. */
  5085. if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
  5086. VM_BUG_ON(1);
  5087. break;
  5088. }
  5089. memcg = parent_mem_cgroup(memcg);
  5090. if (!memcg)
  5091. memcg = root_mem_cgroup;
  5092. }
  5093. return memcg;
  5094. }
  5095. /**
  5096. * mem_cgroup_swapout - transfer a memsw charge to swap
  5097. * @page: page whose memsw charge to transfer
  5098. * @entry: swap entry to move the charge to
  5099. *
  5100. * Transfer the memsw charge of @page to @entry.
  5101. */
  5102. void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
  5103. {
  5104. struct mem_cgroup *memcg, *swap_memcg;
  5105. unsigned int nr_entries;
  5106. unsigned short oldid;
  5107. VM_BUG_ON_PAGE(PageLRU(page), page);
  5108. VM_BUG_ON_PAGE(page_count(page), page);
  5109. if (!do_memsw_account())
  5110. return;
  5111. memcg = page->mem_cgroup;
  5112. /* Readahead page, never charged */
  5113. if (!memcg)
  5114. return;
  5115. /*
  5116. * In case the memcg owning these pages has been offlined and doesn't
  5117. * have an ID allocated to it anymore, charge the closest online
  5118. * ancestor for the swap instead and transfer the memory+swap charge.
  5119. */
  5120. swap_memcg = mem_cgroup_id_get_online(memcg);
  5121. nr_entries = hpage_nr_pages(page);
  5122. /* Get references for the tail pages, too */
  5123. if (nr_entries > 1)
  5124. mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
  5125. oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
  5126. nr_entries);
  5127. VM_BUG_ON_PAGE(oldid, page);
  5128. mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
  5129. page->mem_cgroup = NULL;
  5130. if (!mem_cgroup_is_root(memcg))
  5131. page_counter_uncharge(&memcg->memory, nr_entries);
  5132. if (memcg != swap_memcg) {
  5133. if (!mem_cgroup_is_root(swap_memcg))
  5134. page_counter_charge(&swap_memcg->memsw, nr_entries);
  5135. page_counter_uncharge(&memcg->memsw, nr_entries);
  5136. }
  5137. /*
  5138. * Interrupts should be disabled here because the caller holds the
  5139. * mapping->tree_lock lock which is taken with interrupts-off. It is
  5140. * important here to have the interrupts disabled because it is the
  5141. * only synchronisation we have for udpating the per-CPU variables.
  5142. */
  5143. VM_BUG_ON(!irqs_disabled());
  5144. mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
  5145. -nr_entries);
  5146. memcg_check_events(memcg, page);
  5147. if (!mem_cgroup_is_root(memcg))
  5148. css_put_many(&memcg->css, nr_entries);
  5149. }
  5150. /**
  5151. * mem_cgroup_try_charge_swap - try charging swap space for a page
  5152. * @page: page being added to swap
  5153. * @entry: swap entry to charge
  5154. *
  5155. * Try to charge @page's memcg for the swap space at @entry.
  5156. *
  5157. * Returns 0 on success, -ENOMEM on failure.
  5158. */
  5159. int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
  5160. {
  5161. unsigned int nr_pages = hpage_nr_pages(page);
  5162. struct page_counter *counter;
  5163. struct mem_cgroup *memcg;
  5164. unsigned short oldid;
  5165. if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
  5166. return 0;
  5167. memcg = page->mem_cgroup;
  5168. /* Readahead page, never charged */
  5169. if (!memcg)
  5170. return 0;
  5171. memcg = mem_cgroup_id_get_online(memcg);
  5172. if (!mem_cgroup_is_root(memcg) &&
  5173. !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
  5174. mem_cgroup_id_put(memcg);
  5175. return -ENOMEM;
  5176. }
  5177. /* Get references for the tail pages, too */
  5178. if (nr_pages > 1)
  5179. mem_cgroup_id_get_many(memcg, nr_pages - 1);
  5180. oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
  5181. VM_BUG_ON_PAGE(oldid, page);
  5182. mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
  5183. return 0;
  5184. }
  5185. /**
  5186. * mem_cgroup_uncharge_swap - uncharge swap space
  5187. * @entry: swap entry to uncharge
  5188. * @nr_pages: the amount of swap space to uncharge
  5189. */
  5190. void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
  5191. {
  5192. struct mem_cgroup *memcg;
  5193. unsigned short id;
  5194. if (!do_swap_account)
  5195. return;
  5196. id = swap_cgroup_record(entry, 0, nr_pages);
  5197. rcu_read_lock();
  5198. memcg = mem_cgroup_from_id(id);
  5199. if (memcg) {
  5200. if (!mem_cgroup_is_root(memcg)) {
  5201. if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5202. page_counter_uncharge(&memcg->swap, nr_pages);
  5203. else
  5204. page_counter_uncharge(&memcg->memsw, nr_pages);
  5205. }
  5206. mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
  5207. mem_cgroup_id_put_many(memcg, nr_pages);
  5208. }
  5209. rcu_read_unlock();
  5210. }
  5211. long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
  5212. {
  5213. long nr_swap_pages = get_nr_swap_pages();
  5214. if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5215. return nr_swap_pages;
  5216. for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
  5217. nr_swap_pages = min_t(long, nr_swap_pages,
  5218. READ_ONCE(memcg->swap.limit) -
  5219. page_counter_read(&memcg->swap));
  5220. return nr_swap_pages;
  5221. }
  5222. bool mem_cgroup_swap_full(struct page *page)
  5223. {
  5224. struct mem_cgroup *memcg;
  5225. VM_BUG_ON_PAGE(!PageLocked(page), page);
  5226. if (vm_swap_full())
  5227. return true;
  5228. if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
  5229. return false;
  5230. memcg = page->mem_cgroup;
  5231. if (!memcg)
  5232. return false;
  5233. for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
  5234. if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
  5235. return true;
  5236. return false;
  5237. }
  5238. /* for remember boot option*/
  5239. #ifdef CONFIG_MEMCG_SWAP_ENABLED
  5240. static int really_do_swap_account __initdata = 1;
  5241. #else
  5242. static int really_do_swap_account __initdata;
  5243. #endif
  5244. static int __init enable_swap_account(char *s)
  5245. {
  5246. if (!strcmp(s, "1"))
  5247. really_do_swap_account = 1;
  5248. else if (!strcmp(s, "0"))
  5249. really_do_swap_account = 0;
  5250. return 1;
  5251. }
  5252. __setup("swapaccount=", enable_swap_account);
  5253. static u64 swap_current_read(struct cgroup_subsys_state *css,
  5254. struct cftype *cft)
  5255. {
  5256. struct mem_cgroup *memcg = mem_cgroup_from_css(css);
  5257. return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
  5258. }
  5259. static int swap_max_show(struct seq_file *m, void *v)
  5260. {
  5261. struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
  5262. unsigned long max = READ_ONCE(memcg->swap.limit);
  5263. if (max == PAGE_COUNTER_MAX)
  5264. seq_puts(m, "max\n");
  5265. else
  5266. seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
  5267. return 0;
  5268. }
  5269. static ssize_t swap_max_write(struct kernfs_open_file *of,
  5270. char *buf, size_t nbytes, loff_t off)
  5271. {
  5272. struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
  5273. unsigned long max;
  5274. int err;
  5275. buf = strstrip(buf);
  5276. err = page_counter_memparse(buf, "max", &max);
  5277. if (err)
  5278. return err;
  5279. mutex_lock(&memcg_limit_mutex);
  5280. err = page_counter_limit(&memcg->swap, max);
  5281. mutex_unlock(&memcg_limit_mutex);
  5282. if (err)
  5283. return err;
  5284. return nbytes;
  5285. }
  5286. static struct cftype swap_files[] = {
  5287. {
  5288. .name = "swap.current",
  5289. .flags = CFTYPE_NOT_ON_ROOT,
  5290. .read_u64 = swap_current_read,
  5291. },
  5292. {
  5293. .name = "swap.max",
  5294. .flags = CFTYPE_NOT_ON_ROOT,
  5295. .seq_show = swap_max_show,
  5296. .write = swap_max_write,
  5297. },
  5298. { } /* terminate */
  5299. };
  5300. static struct cftype memsw_cgroup_files[] = {
  5301. {
  5302. .name = "memsw.usage_in_bytes",
  5303. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
  5304. .read_u64 = mem_cgroup_read_u64,
  5305. },
  5306. {
  5307. .name = "memsw.max_usage_in_bytes",
  5308. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
  5309. .write = mem_cgroup_reset,
  5310. .read_u64 = mem_cgroup_read_u64,
  5311. },
  5312. {
  5313. .name = "memsw.limit_in_bytes",
  5314. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
  5315. .write = mem_cgroup_write,
  5316. .read_u64 = mem_cgroup_read_u64,
  5317. },
  5318. {
  5319. .name = "memsw.failcnt",
  5320. .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
  5321. .write = mem_cgroup_reset,
  5322. .read_u64 = mem_cgroup_read_u64,
  5323. },
  5324. { }, /* terminate */
  5325. };
  5326. static int __init mem_cgroup_swap_init(void)
  5327. {
  5328. if (!mem_cgroup_disabled() && really_do_swap_account) {
  5329. do_swap_account = 1;
  5330. WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
  5331. swap_files));
  5332. WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
  5333. memsw_cgroup_files));
  5334. }
  5335. return 0;
  5336. }
  5337. subsys_initcall(mem_cgroup_swap_init);
  5338. #endif /* CONFIG_MEMCG_SWAP */