process.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. /*
  2. * Copyright (C) 2000-2003 Axis Communications AB
  3. *
  4. * Authors: Bjorn Wesen (bjornw@axis.com)
  5. * Mikael Starvik (starvik@axis.com)
  6. * Tobias Anderberg (tobiasa@axis.com), CRISv32 port.
  7. *
  8. * This file handles the architecture-dependent parts of process handling..
  9. */
  10. #include <linux/sched.h>
  11. #include <linux/sched/debug.h>
  12. #include <linux/slab.h>
  13. #include <linux/err.h>
  14. #include <linux/fs.h>
  15. #include <hwregs/reg_rdwr.h>
  16. #include <hwregs/reg_map.h>
  17. #include <hwregs/timer_defs.h>
  18. #include <hwregs/intr_vect_defs.h>
  19. #include <linux/ptrace.h>
  20. extern void stop_watchdog(void);
  21. /* We use this if we don't have any better idle routine. */
  22. void default_idle(void)
  23. {
  24. local_irq_enable();
  25. /* Halt until exception. */
  26. __asm__ volatile("halt");
  27. }
  28. /*
  29. * Free current thread data structures etc..
  30. */
  31. extern void deconfigure_bp(long pid);
  32. void exit_thread(struct task_struct *tsk)
  33. {
  34. deconfigure_bp(tsk->pid);
  35. }
  36. /*
  37. * If the watchdog is enabled, disable interrupts and enter an infinite loop.
  38. * The watchdog will reset the CPU after 0.1s. If the watchdog isn't enabled
  39. * then enable it and wait.
  40. */
  41. extern void arch_enable_nmi(void);
  42. void
  43. hard_reset_now(void)
  44. {
  45. /*
  46. * Don't declare this variable elsewhere. We don't want any other
  47. * code to know about it than the watchdog handler in entry.S and
  48. * this code, implementing hard reset through the watchdog.
  49. */
  50. #if defined(CONFIG_ETRAX_WATCHDOG)
  51. extern int cause_of_death;
  52. #endif
  53. printk("*** HARD RESET ***\n");
  54. local_irq_disable();
  55. #if defined(CONFIG_ETRAX_WATCHDOG)
  56. cause_of_death = 0xbedead;
  57. #else
  58. {
  59. reg_timer_rw_wd_ctrl wd_ctrl = {0};
  60. stop_watchdog();
  61. wd_ctrl.key = 16; /* Arbitrary key. */
  62. wd_ctrl.cnt = 1; /* Minimum time. */
  63. wd_ctrl.cmd = regk_timer_start;
  64. arch_enable_nmi();
  65. REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
  66. }
  67. #endif
  68. while (1)
  69. ; /* Wait for reset. */
  70. }
  71. /*
  72. * Return saved PC of a blocked thread.
  73. */
  74. unsigned long thread_saved_pc(struct task_struct *t)
  75. {
  76. return task_pt_regs(t)->erp;
  77. }
  78. /*
  79. * Setup the child's kernel stack with a pt_regs and call switch_stack() on it.
  80. * It will be unnested during _resume and _ret_from_sys_call when the new thread
  81. * is scheduled.
  82. *
  83. * Also setup the thread switching structure which is used to keep
  84. * thread-specific data during _resumes.
  85. */
  86. extern asmlinkage void ret_from_fork(void);
  87. extern asmlinkage void ret_from_kernel_thread(void);
  88. int
  89. copy_thread(unsigned long clone_flags, unsigned long usp,
  90. unsigned long arg, struct task_struct *p)
  91. {
  92. struct pt_regs *childregs = task_pt_regs(p);
  93. struct switch_stack *swstack = ((struct switch_stack *) childregs) - 1;
  94. /*
  95. * Put the pt_regs structure at the end of the new kernel stack page and
  96. * fix it up. Note: the task_struct doubles as the kernel stack for the
  97. * task.
  98. */
  99. if (unlikely(p->flags & PF_KTHREAD)) {
  100. memset(swstack, 0,
  101. sizeof(struct switch_stack) + sizeof(struct pt_regs));
  102. swstack->r1 = usp;
  103. swstack->r2 = arg;
  104. childregs->ccs = 1 << (I_CCS_BITNR + CCS_SHIFT);
  105. swstack->return_ip = (unsigned long) ret_from_kernel_thread;
  106. p->thread.ksp = (unsigned long) swstack;
  107. p->thread.usp = 0;
  108. return 0;
  109. }
  110. *childregs = *current_pt_regs(); /* Struct copy of pt_regs. */
  111. childregs->r10 = 0; /* Child returns 0 after a fork/clone. */
  112. /* Set a new TLS ?
  113. * The TLS is in $mof because it is the 5th argument to sys_clone.
  114. */
  115. if (p->mm && (clone_flags & CLONE_SETTLS)) {
  116. task_thread_info(p)->tls = childregs->mof;
  117. }
  118. /* Put the switch stack right below the pt_regs. */
  119. /* Parameter to ret_from_sys_call. 0 is don't restart the syscall. */
  120. swstack->r9 = 0;
  121. /*
  122. * We want to return into ret_from_sys_call after the _resume.
  123. * ret_from_fork will call ret_from_sys_call.
  124. */
  125. swstack->return_ip = (unsigned long) ret_from_fork;
  126. /* Fix the user-mode and kernel-mode stackpointer. */
  127. p->thread.usp = usp ?: rdusp();
  128. p->thread.ksp = (unsigned long) swstack;
  129. return 0;
  130. }
  131. unsigned long
  132. get_wchan(struct task_struct *p)
  133. {
  134. /* TODO */
  135. return 0;
  136. }
  137. #undef last_sched
  138. #undef first_sched
  139. void show_regs(struct pt_regs * regs)
  140. {
  141. unsigned long usp = rdusp();
  142. show_regs_print_info(KERN_DEFAULT);
  143. printk("ERP: %08lx SRP: %08lx CCS: %08lx USP: %08lx MOF: %08lx\n",
  144. regs->erp, regs->srp, regs->ccs, usp, regs->mof);
  145. printk(" r0: %08lx r1: %08lx r2: %08lx r3: %08lx\n",
  146. regs->r0, regs->r1, regs->r2, regs->r3);
  147. printk(" r4: %08lx r5: %08lx r6: %08lx r7: %08lx\n",
  148. regs->r4, regs->r5, regs->r6, regs->r7);
  149. printk(" r8: %08lx r9: %08lx r10: %08lx r11: %08lx\n",
  150. regs->r8, regs->r9, regs->r10, regs->r11);
  151. printk("r12: %08lx r13: %08lx oR10: %08lx\n",
  152. regs->r12, regs->r13, regs->orig_r10);
  153. }