checkpoint.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415
  1. /*
  2. * fs/f2fs/checkpoint.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/bio.h>
  13. #include <linux/mpage.h>
  14. #include <linux/writeback.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/f2fs_fs.h>
  17. #include <linux/pagevec.h>
  18. #include <linux/swap.h>
  19. #include "f2fs.h"
  20. #include "node.h"
  21. #include "segment.h"
  22. #include "trace.h"
  23. #include <trace/events/f2fs.h>
  24. static struct kmem_cache *ino_entry_slab;
  25. struct kmem_cache *inode_entry_slab;
  26. void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  27. {
  28. set_ckpt_flags(sbi, CP_ERROR_FLAG);
  29. sbi->sb->s_flags |= MS_RDONLY;
  30. if (!end_io)
  31. f2fs_flush_merged_writes(sbi);
  32. }
  33. /*
  34. * We guarantee no failure on the returned page.
  35. */
  36. struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  37. {
  38. struct address_space *mapping = META_MAPPING(sbi);
  39. struct page *page = NULL;
  40. repeat:
  41. page = f2fs_grab_cache_page(mapping, index, false);
  42. if (!page) {
  43. cond_resched();
  44. goto repeat;
  45. }
  46. f2fs_wait_on_page_writeback(page, META, true);
  47. if (!PageUptodate(page))
  48. SetPageUptodate(page);
  49. return page;
  50. }
  51. /*
  52. * We guarantee no failure on the returned page.
  53. */
  54. static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  55. bool is_meta)
  56. {
  57. struct address_space *mapping = META_MAPPING(sbi);
  58. struct page *page;
  59. struct f2fs_io_info fio = {
  60. .sbi = sbi,
  61. .type = META,
  62. .op = REQ_OP_READ,
  63. .op_flags = REQ_META | REQ_PRIO,
  64. .old_blkaddr = index,
  65. .new_blkaddr = index,
  66. .encrypted_page = NULL,
  67. };
  68. if (unlikely(!is_meta))
  69. fio.op_flags &= ~REQ_META;
  70. repeat:
  71. page = f2fs_grab_cache_page(mapping, index, false);
  72. if (!page) {
  73. cond_resched();
  74. goto repeat;
  75. }
  76. if (PageUptodate(page))
  77. goto out;
  78. fio.page = page;
  79. if (f2fs_submit_page_bio(&fio)) {
  80. f2fs_put_page(page, 1);
  81. goto repeat;
  82. }
  83. lock_page(page);
  84. if (unlikely(page->mapping != mapping)) {
  85. f2fs_put_page(page, 1);
  86. goto repeat;
  87. }
  88. /*
  89. * if there is any IO error when accessing device, make our filesystem
  90. * readonly and make sure do not write checkpoint with non-uptodate
  91. * meta page.
  92. */
  93. if (unlikely(!PageUptodate(page)))
  94. f2fs_stop_checkpoint(sbi, false);
  95. out:
  96. return page;
  97. }
  98. struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  99. {
  100. return __get_meta_page(sbi, index, true);
  101. }
  102. /* for POR only */
  103. struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
  104. {
  105. return __get_meta_page(sbi, index, false);
  106. }
  107. bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
  108. {
  109. switch (type) {
  110. case META_NAT:
  111. break;
  112. case META_SIT:
  113. if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
  114. return false;
  115. break;
  116. case META_SSA:
  117. if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
  118. blkaddr < SM_I(sbi)->ssa_blkaddr))
  119. return false;
  120. break;
  121. case META_CP:
  122. if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
  123. blkaddr < __start_cp_addr(sbi)))
  124. return false;
  125. break;
  126. case META_POR:
  127. if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
  128. blkaddr < MAIN_BLKADDR(sbi)))
  129. return false;
  130. break;
  131. default:
  132. BUG();
  133. }
  134. return true;
  135. }
  136. /*
  137. * Readahead CP/NAT/SIT/SSA pages
  138. */
  139. int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
  140. int type, bool sync)
  141. {
  142. struct page *page;
  143. block_t blkno = start;
  144. struct f2fs_io_info fio = {
  145. .sbi = sbi,
  146. .type = META,
  147. .op = REQ_OP_READ,
  148. .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
  149. .encrypted_page = NULL,
  150. .in_list = false,
  151. };
  152. struct blk_plug plug;
  153. if (unlikely(type == META_POR))
  154. fio.op_flags &= ~REQ_META;
  155. blk_start_plug(&plug);
  156. for (; nrpages-- > 0; blkno++) {
  157. if (!is_valid_blkaddr(sbi, blkno, type))
  158. goto out;
  159. switch (type) {
  160. case META_NAT:
  161. if (unlikely(blkno >=
  162. NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
  163. blkno = 0;
  164. /* get nat block addr */
  165. fio.new_blkaddr = current_nat_addr(sbi,
  166. blkno * NAT_ENTRY_PER_BLOCK);
  167. break;
  168. case META_SIT:
  169. /* get sit block addr */
  170. fio.new_blkaddr = current_sit_addr(sbi,
  171. blkno * SIT_ENTRY_PER_BLOCK);
  172. break;
  173. case META_SSA:
  174. case META_CP:
  175. case META_POR:
  176. fio.new_blkaddr = blkno;
  177. break;
  178. default:
  179. BUG();
  180. }
  181. page = f2fs_grab_cache_page(META_MAPPING(sbi),
  182. fio.new_blkaddr, false);
  183. if (!page)
  184. continue;
  185. if (PageUptodate(page)) {
  186. f2fs_put_page(page, 1);
  187. continue;
  188. }
  189. fio.page = page;
  190. f2fs_submit_page_bio(&fio);
  191. f2fs_put_page(page, 0);
  192. }
  193. out:
  194. blk_finish_plug(&plug);
  195. return blkno - start;
  196. }
  197. void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
  198. {
  199. struct page *page;
  200. bool readahead = false;
  201. page = find_get_page(META_MAPPING(sbi), index);
  202. if (!page || !PageUptodate(page))
  203. readahead = true;
  204. f2fs_put_page(page, 0);
  205. if (readahead)
  206. ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
  207. }
  208. static int __f2fs_write_meta_page(struct page *page,
  209. struct writeback_control *wbc,
  210. enum iostat_type io_type)
  211. {
  212. struct f2fs_sb_info *sbi = F2FS_P_SB(page);
  213. trace_f2fs_writepage(page, META);
  214. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  215. goto redirty_out;
  216. if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
  217. goto redirty_out;
  218. if (unlikely(f2fs_cp_error(sbi)))
  219. goto redirty_out;
  220. write_meta_page(sbi, page, io_type);
  221. dec_page_count(sbi, F2FS_DIRTY_META);
  222. if (wbc->for_reclaim)
  223. f2fs_submit_merged_write_cond(sbi, page->mapping->host,
  224. 0, page->index, META);
  225. unlock_page(page);
  226. if (unlikely(f2fs_cp_error(sbi)))
  227. f2fs_submit_merged_write(sbi, META);
  228. return 0;
  229. redirty_out:
  230. redirty_page_for_writepage(wbc, page);
  231. return AOP_WRITEPAGE_ACTIVATE;
  232. }
  233. static int f2fs_write_meta_page(struct page *page,
  234. struct writeback_control *wbc)
  235. {
  236. return __f2fs_write_meta_page(page, wbc, FS_META_IO);
  237. }
  238. static int f2fs_write_meta_pages(struct address_space *mapping,
  239. struct writeback_control *wbc)
  240. {
  241. struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
  242. long diff, written;
  243. if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
  244. goto skip_write;
  245. /* collect a number of dirty meta pages and write together */
  246. if (wbc->for_kupdate ||
  247. get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
  248. goto skip_write;
  249. /* if locked failed, cp will flush dirty pages instead */
  250. if (!mutex_trylock(&sbi->cp_mutex))
  251. goto skip_write;
  252. trace_f2fs_writepages(mapping->host, wbc, META);
  253. diff = nr_pages_to_write(sbi, META, wbc);
  254. written = sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
  255. mutex_unlock(&sbi->cp_mutex);
  256. wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
  257. return 0;
  258. skip_write:
  259. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
  260. trace_f2fs_writepages(mapping->host, wbc, META);
  261. return 0;
  262. }
  263. long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
  264. long nr_to_write, enum iostat_type io_type)
  265. {
  266. struct address_space *mapping = META_MAPPING(sbi);
  267. pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
  268. struct pagevec pvec;
  269. long nwritten = 0;
  270. struct writeback_control wbc = {
  271. .for_reclaim = 0,
  272. };
  273. struct blk_plug plug;
  274. pagevec_init(&pvec, 0);
  275. blk_start_plug(&plug);
  276. while (index <= end) {
  277. int i, nr_pages;
  278. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  279. PAGECACHE_TAG_DIRTY,
  280. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  281. if (unlikely(nr_pages == 0))
  282. break;
  283. for (i = 0; i < nr_pages; i++) {
  284. struct page *page = pvec.pages[i];
  285. if (prev == ULONG_MAX)
  286. prev = page->index - 1;
  287. if (nr_to_write != LONG_MAX && page->index != prev + 1) {
  288. pagevec_release(&pvec);
  289. goto stop;
  290. }
  291. lock_page(page);
  292. if (unlikely(page->mapping != mapping)) {
  293. continue_unlock:
  294. unlock_page(page);
  295. continue;
  296. }
  297. if (!PageDirty(page)) {
  298. /* someone wrote it for us */
  299. goto continue_unlock;
  300. }
  301. f2fs_wait_on_page_writeback(page, META, true);
  302. BUG_ON(PageWriteback(page));
  303. if (!clear_page_dirty_for_io(page))
  304. goto continue_unlock;
  305. if (__f2fs_write_meta_page(page, &wbc, io_type)) {
  306. unlock_page(page);
  307. break;
  308. }
  309. nwritten++;
  310. prev = page->index;
  311. if (unlikely(nwritten >= nr_to_write))
  312. break;
  313. }
  314. pagevec_release(&pvec);
  315. cond_resched();
  316. }
  317. stop:
  318. if (nwritten)
  319. f2fs_submit_merged_write(sbi, type);
  320. blk_finish_plug(&plug);
  321. return nwritten;
  322. }
  323. static int f2fs_set_meta_page_dirty(struct page *page)
  324. {
  325. trace_f2fs_set_page_dirty(page, META);
  326. if (!PageUptodate(page))
  327. SetPageUptodate(page);
  328. if (!PageDirty(page)) {
  329. f2fs_set_page_dirty_nobuffers(page);
  330. inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
  331. SetPagePrivate(page);
  332. f2fs_trace_pid(page);
  333. return 1;
  334. }
  335. return 0;
  336. }
  337. const struct address_space_operations f2fs_meta_aops = {
  338. .writepage = f2fs_write_meta_page,
  339. .writepages = f2fs_write_meta_pages,
  340. .set_page_dirty = f2fs_set_meta_page_dirty,
  341. .invalidatepage = f2fs_invalidate_page,
  342. .releasepage = f2fs_release_page,
  343. #ifdef CONFIG_MIGRATION
  344. .migratepage = f2fs_migrate_page,
  345. #endif
  346. };
  347. static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  348. {
  349. struct inode_management *im = &sbi->im[type];
  350. struct ino_entry *e, *tmp;
  351. tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
  352. retry:
  353. radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
  354. spin_lock(&im->ino_lock);
  355. e = radix_tree_lookup(&im->ino_root, ino);
  356. if (!e) {
  357. e = tmp;
  358. if (radix_tree_insert(&im->ino_root, ino, e)) {
  359. spin_unlock(&im->ino_lock);
  360. radix_tree_preload_end();
  361. goto retry;
  362. }
  363. memset(e, 0, sizeof(struct ino_entry));
  364. e->ino = ino;
  365. list_add_tail(&e->list, &im->ino_list);
  366. if (type != ORPHAN_INO)
  367. im->ino_num++;
  368. }
  369. spin_unlock(&im->ino_lock);
  370. radix_tree_preload_end();
  371. if (e != tmp)
  372. kmem_cache_free(ino_entry_slab, tmp);
  373. }
  374. static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  375. {
  376. struct inode_management *im = &sbi->im[type];
  377. struct ino_entry *e;
  378. spin_lock(&im->ino_lock);
  379. e = radix_tree_lookup(&im->ino_root, ino);
  380. if (e) {
  381. list_del(&e->list);
  382. radix_tree_delete(&im->ino_root, ino);
  383. im->ino_num--;
  384. spin_unlock(&im->ino_lock);
  385. kmem_cache_free(ino_entry_slab, e);
  386. return;
  387. }
  388. spin_unlock(&im->ino_lock);
  389. }
  390. void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  391. {
  392. /* add new dirty ino entry into list */
  393. __add_ino_entry(sbi, ino, type);
  394. }
  395. void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
  396. {
  397. /* remove dirty ino entry from list */
  398. __remove_ino_entry(sbi, ino, type);
  399. }
  400. /* mode should be APPEND_INO or UPDATE_INO */
  401. bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
  402. {
  403. struct inode_management *im = &sbi->im[mode];
  404. struct ino_entry *e;
  405. spin_lock(&im->ino_lock);
  406. e = radix_tree_lookup(&im->ino_root, ino);
  407. spin_unlock(&im->ino_lock);
  408. return e ? true : false;
  409. }
  410. void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
  411. {
  412. struct ino_entry *e, *tmp;
  413. int i;
  414. for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
  415. struct inode_management *im = &sbi->im[i];
  416. spin_lock(&im->ino_lock);
  417. list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
  418. list_del(&e->list);
  419. radix_tree_delete(&im->ino_root, e->ino);
  420. kmem_cache_free(ino_entry_slab, e);
  421. im->ino_num--;
  422. }
  423. spin_unlock(&im->ino_lock);
  424. }
  425. }
  426. int acquire_orphan_inode(struct f2fs_sb_info *sbi)
  427. {
  428. struct inode_management *im = &sbi->im[ORPHAN_INO];
  429. int err = 0;
  430. spin_lock(&im->ino_lock);
  431. #ifdef CONFIG_F2FS_FAULT_INJECTION
  432. if (time_to_inject(sbi, FAULT_ORPHAN)) {
  433. spin_unlock(&im->ino_lock);
  434. f2fs_show_injection_info(FAULT_ORPHAN);
  435. return -ENOSPC;
  436. }
  437. #endif
  438. if (unlikely(im->ino_num >= sbi->max_orphans))
  439. err = -ENOSPC;
  440. else
  441. im->ino_num++;
  442. spin_unlock(&im->ino_lock);
  443. return err;
  444. }
  445. void release_orphan_inode(struct f2fs_sb_info *sbi)
  446. {
  447. struct inode_management *im = &sbi->im[ORPHAN_INO];
  448. spin_lock(&im->ino_lock);
  449. f2fs_bug_on(sbi, im->ino_num == 0);
  450. im->ino_num--;
  451. spin_unlock(&im->ino_lock);
  452. }
  453. void add_orphan_inode(struct inode *inode)
  454. {
  455. /* add new orphan ino entry into list */
  456. __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
  457. update_inode_page(inode);
  458. }
  459. void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  460. {
  461. /* remove orphan entry from orphan list */
  462. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  463. }
  464. static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
  465. {
  466. struct inode *inode;
  467. struct node_info ni;
  468. int err = acquire_orphan_inode(sbi);
  469. if (err) {
  470. set_sbi_flag(sbi, SBI_NEED_FSCK);
  471. f2fs_msg(sbi->sb, KERN_WARNING,
  472. "%s: orphan failed (ino=%x), run fsck to fix.",
  473. __func__, ino);
  474. return err;
  475. }
  476. __add_ino_entry(sbi, ino, ORPHAN_INO);
  477. inode = f2fs_iget_retry(sbi->sb, ino);
  478. if (IS_ERR(inode)) {
  479. /*
  480. * there should be a bug that we can't find the entry
  481. * to orphan inode.
  482. */
  483. f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
  484. return PTR_ERR(inode);
  485. }
  486. clear_nlink(inode);
  487. /* truncate all the data during iput */
  488. iput(inode);
  489. get_node_info(sbi, ino, &ni);
  490. /* ENOMEM was fully retried in f2fs_evict_inode. */
  491. if (ni.blk_addr != NULL_ADDR) {
  492. set_sbi_flag(sbi, SBI_NEED_FSCK);
  493. f2fs_msg(sbi->sb, KERN_WARNING,
  494. "%s: orphan failed (ino=%x) by kernel, retry mount.",
  495. __func__, ino);
  496. return -EIO;
  497. }
  498. __remove_ino_entry(sbi, ino, ORPHAN_INO);
  499. return 0;
  500. }
  501. int recover_orphan_inodes(struct f2fs_sb_info *sbi)
  502. {
  503. block_t start_blk, orphan_blocks, i, j;
  504. int err;
  505. if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
  506. return 0;
  507. start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
  508. orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
  509. ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
  510. for (i = 0; i < orphan_blocks; i++) {
  511. struct page *page = get_meta_page(sbi, start_blk + i);
  512. struct f2fs_orphan_block *orphan_blk;
  513. orphan_blk = (struct f2fs_orphan_block *)page_address(page);
  514. for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
  515. nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
  516. err = recover_orphan_inode(sbi, ino);
  517. if (err) {
  518. f2fs_put_page(page, 1);
  519. return err;
  520. }
  521. }
  522. f2fs_put_page(page, 1);
  523. }
  524. /* clear Orphan Flag */
  525. clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
  526. return 0;
  527. }
  528. static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
  529. {
  530. struct list_head *head;
  531. struct f2fs_orphan_block *orphan_blk = NULL;
  532. unsigned int nentries = 0;
  533. unsigned short index = 1;
  534. unsigned short orphan_blocks;
  535. struct page *page = NULL;
  536. struct ino_entry *orphan = NULL;
  537. struct inode_management *im = &sbi->im[ORPHAN_INO];
  538. orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
  539. /*
  540. * we don't need to do spin_lock(&im->ino_lock) here, since all the
  541. * orphan inode operations are covered under f2fs_lock_op().
  542. * And, spin_lock should be avoided due to page operations below.
  543. */
  544. head = &im->ino_list;
  545. /* loop for each orphan inode entry and write them in Jornal block */
  546. list_for_each_entry(orphan, head, list) {
  547. if (!page) {
  548. page = grab_meta_page(sbi, start_blk++);
  549. orphan_blk =
  550. (struct f2fs_orphan_block *)page_address(page);
  551. memset(orphan_blk, 0, sizeof(*orphan_blk));
  552. }
  553. orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
  554. if (nentries == F2FS_ORPHANS_PER_BLOCK) {
  555. /*
  556. * an orphan block is full of 1020 entries,
  557. * then we need to flush current orphan blocks
  558. * and bring another one in memory
  559. */
  560. orphan_blk->blk_addr = cpu_to_le16(index);
  561. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  562. orphan_blk->entry_count = cpu_to_le32(nentries);
  563. set_page_dirty(page);
  564. f2fs_put_page(page, 1);
  565. index++;
  566. nentries = 0;
  567. page = NULL;
  568. }
  569. }
  570. if (page) {
  571. orphan_blk->blk_addr = cpu_to_le16(index);
  572. orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
  573. orphan_blk->entry_count = cpu_to_le32(nentries);
  574. set_page_dirty(page);
  575. f2fs_put_page(page, 1);
  576. }
  577. }
  578. static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
  579. struct f2fs_checkpoint **cp_block, struct page **cp_page,
  580. unsigned long long *version)
  581. {
  582. unsigned long blk_size = sbi->blocksize;
  583. size_t crc_offset = 0;
  584. __u32 crc = 0;
  585. *cp_page = get_meta_page(sbi, cp_addr);
  586. *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
  587. crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
  588. if (crc_offset > (blk_size - sizeof(__le32))) {
  589. f2fs_msg(sbi->sb, KERN_WARNING,
  590. "invalid crc_offset: %zu", crc_offset);
  591. return -EINVAL;
  592. }
  593. crc = cur_cp_crc(*cp_block);
  594. if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
  595. f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
  596. return -EINVAL;
  597. }
  598. *version = cur_cp_version(*cp_block);
  599. return 0;
  600. }
  601. static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
  602. block_t cp_addr, unsigned long long *version)
  603. {
  604. struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
  605. struct f2fs_checkpoint *cp_block = NULL;
  606. unsigned long long cur_version = 0, pre_version = 0;
  607. int err;
  608. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  609. &cp_page_1, version);
  610. if (err)
  611. goto invalid_cp1;
  612. pre_version = *version;
  613. cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
  614. err = get_checkpoint_version(sbi, cp_addr, &cp_block,
  615. &cp_page_2, version);
  616. if (err)
  617. goto invalid_cp2;
  618. cur_version = *version;
  619. if (cur_version == pre_version) {
  620. *version = cur_version;
  621. f2fs_put_page(cp_page_2, 1);
  622. return cp_page_1;
  623. }
  624. invalid_cp2:
  625. f2fs_put_page(cp_page_2, 1);
  626. invalid_cp1:
  627. f2fs_put_page(cp_page_1, 1);
  628. return NULL;
  629. }
  630. int get_valid_checkpoint(struct f2fs_sb_info *sbi)
  631. {
  632. struct f2fs_checkpoint *cp_block;
  633. struct f2fs_super_block *fsb = sbi->raw_super;
  634. struct page *cp1, *cp2, *cur_page;
  635. unsigned long blk_size = sbi->blocksize;
  636. unsigned long long cp1_version = 0, cp2_version = 0;
  637. unsigned long long cp_start_blk_no;
  638. unsigned int cp_blks = 1 + __cp_payload(sbi);
  639. block_t cp_blk_no;
  640. int i;
  641. sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
  642. if (!sbi->ckpt)
  643. return -ENOMEM;
  644. /*
  645. * Finding out valid cp block involves read both
  646. * sets( cp pack1 and cp pack 2)
  647. */
  648. cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  649. cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
  650. /* The second checkpoint pack should start at the next segment */
  651. cp_start_blk_no += ((unsigned long long)1) <<
  652. le32_to_cpu(fsb->log_blocks_per_seg);
  653. cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
  654. if (cp1 && cp2) {
  655. if (ver_after(cp2_version, cp1_version))
  656. cur_page = cp2;
  657. else
  658. cur_page = cp1;
  659. } else if (cp1) {
  660. cur_page = cp1;
  661. } else if (cp2) {
  662. cur_page = cp2;
  663. } else {
  664. goto fail_no_cp;
  665. }
  666. cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
  667. memcpy(sbi->ckpt, cp_block, blk_size);
  668. /* Sanity checking of checkpoint */
  669. if (sanity_check_ckpt(sbi))
  670. goto free_fail_no_cp;
  671. if (cur_page == cp1)
  672. sbi->cur_cp_pack = 1;
  673. else
  674. sbi->cur_cp_pack = 2;
  675. if (cp_blks <= 1)
  676. goto done;
  677. cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
  678. if (cur_page == cp2)
  679. cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
  680. for (i = 1; i < cp_blks; i++) {
  681. void *sit_bitmap_ptr;
  682. unsigned char *ckpt = (unsigned char *)sbi->ckpt;
  683. cur_page = get_meta_page(sbi, cp_blk_no + i);
  684. sit_bitmap_ptr = page_address(cur_page);
  685. memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
  686. f2fs_put_page(cur_page, 1);
  687. }
  688. done:
  689. f2fs_put_page(cp1, 1);
  690. f2fs_put_page(cp2, 1);
  691. return 0;
  692. free_fail_no_cp:
  693. f2fs_put_page(cp1, 1);
  694. f2fs_put_page(cp2, 1);
  695. fail_no_cp:
  696. kfree(sbi->ckpt);
  697. return -EINVAL;
  698. }
  699. static void __add_dirty_inode(struct inode *inode, enum inode_type type)
  700. {
  701. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  702. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  703. if (is_inode_flag_set(inode, flag))
  704. return;
  705. set_inode_flag(inode, flag);
  706. if (!f2fs_is_volatile_file(inode))
  707. list_add_tail(&F2FS_I(inode)->dirty_list,
  708. &sbi->inode_list[type]);
  709. stat_inc_dirty_inode(sbi, type);
  710. }
  711. static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
  712. {
  713. int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
  714. if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
  715. return;
  716. list_del_init(&F2FS_I(inode)->dirty_list);
  717. clear_inode_flag(inode, flag);
  718. stat_dec_dirty_inode(F2FS_I_SB(inode), type);
  719. }
  720. void update_dirty_page(struct inode *inode, struct page *page)
  721. {
  722. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  723. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  724. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  725. !S_ISLNK(inode->i_mode))
  726. return;
  727. spin_lock(&sbi->inode_lock[type]);
  728. if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
  729. __add_dirty_inode(inode, type);
  730. inode_inc_dirty_pages(inode);
  731. spin_unlock(&sbi->inode_lock[type]);
  732. SetPagePrivate(page);
  733. f2fs_trace_pid(page);
  734. }
  735. void remove_dirty_inode(struct inode *inode)
  736. {
  737. struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  738. enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
  739. if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
  740. !S_ISLNK(inode->i_mode))
  741. return;
  742. if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
  743. return;
  744. spin_lock(&sbi->inode_lock[type]);
  745. __remove_dirty_inode(inode, type);
  746. spin_unlock(&sbi->inode_lock[type]);
  747. }
  748. int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
  749. {
  750. struct list_head *head;
  751. struct inode *inode;
  752. struct f2fs_inode_info *fi;
  753. bool is_dir = (type == DIR_INODE);
  754. unsigned long ino = 0;
  755. trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
  756. get_pages(sbi, is_dir ?
  757. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  758. retry:
  759. if (unlikely(f2fs_cp_error(sbi)))
  760. return -EIO;
  761. spin_lock(&sbi->inode_lock[type]);
  762. head = &sbi->inode_list[type];
  763. if (list_empty(head)) {
  764. spin_unlock(&sbi->inode_lock[type]);
  765. trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
  766. get_pages(sbi, is_dir ?
  767. F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
  768. return 0;
  769. }
  770. fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
  771. inode = igrab(&fi->vfs_inode);
  772. spin_unlock(&sbi->inode_lock[type]);
  773. if (inode) {
  774. unsigned long cur_ino = inode->i_ino;
  775. if (is_dir)
  776. F2FS_I(inode)->cp_task = current;
  777. filemap_fdatawrite(inode->i_mapping);
  778. if (is_dir)
  779. F2FS_I(inode)->cp_task = NULL;
  780. iput(inode);
  781. /* We need to give cpu to another writers. */
  782. if (ino == cur_ino) {
  783. congestion_wait(BLK_RW_ASYNC, HZ/50);
  784. cond_resched();
  785. } else {
  786. ino = cur_ino;
  787. }
  788. } else {
  789. /*
  790. * We should submit bio, since it exists several
  791. * wribacking dentry pages in the freeing inode.
  792. */
  793. f2fs_submit_merged_write(sbi, DATA);
  794. cond_resched();
  795. }
  796. goto retry;
  797. }
  798. int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
  799. {
  800. struct list_head *head = &sbi->inode_list[DIRTY_META];
  801. struct inode *inode;
  802. struct f2fs_inode_info *fi;
  803. s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
  804. while (total--) {
  805. if (unlikely(f2fs_cp_error(sbi)))
  806. return -EIO;
  807. spin_lock(&sbi->inode_lock[DIRTY_META]);
  808. if (list_empty(head)) {
  809. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  810. return 0;
  811. }
  812. fi = list_first_entry(head, struct f2fs_inode_info,
  813. gdirty_list);
  814. inode = igrab(&fi->vfs_inode);
  815. spin_unlock(&sbi->inode_lock[DIRTY_META]);
  816. if (inode) {
  817. sync_inode_metadata(inode, 0);
  818. /* it's on eviction */
  819. if (is_inode_flag_set(inode, FI_DIRTY_INODE))
  820. update_inode_page(inode);
  821. iput(inode);
  822. }
  823. };
  824. return 0;
  825. }
  826. static void __prepare_cp_block(struct f2fs_sb_info *sbi)
  827. {
  828. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  829. struct f2fs_nm_info *nm_i = NM_I(sbi);
  830. nid_t last_nid = nm_i->next_scan_nid;
  831. next_free_nid(sbi, &last_nid);
  832. ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
  833. ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
  834. ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
  835. ckpt->next_free_nid = cpu_to_le32(last_nid);
  836. }
  837. /*
  838. * Freeze all the FS-operations for checkpoint.
  839. */
  840. static int block_operations(struct f2fs_sb_info *sbi)
  841. {
  842. struct writeback_control wbc = {
  843. .sync_mode = WB_SYNC_ALL,
  844. .nr_to_write = LONG_MAX,
  845. .for_reclaim = 0,
  846. };
  847. struct blk_plug plug;
  848. int err = 0;
  849. blk_start_plug(&plug);
  850. retry_flush_dents:
  851. f2fs_lock_all(sbi);
  852. /* write all the dirty dentry pages */
  853. if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
  854. f2fs_unlock_all(sbi);
  855. err = sync_dirty_inodes(sbi, DIR_INODE);
  856. if (err)
  857. goto out;
  858. cond_resched();
  859. goto retry_flush_dents;
  860. }
  861. /*
  862. * POR: we should ensure that there are no dirty node pages
  863. * until finishing nat/sit flush. inode->i_blocks can be updated.
  864. */
  865. down_write(&sbi->node_change);
  866. if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
  867. up_write(&sbi->node_change);
  868. f2fs_unlock_all(sbi);
  869. err = f2fs_sync_inode_meta(sbi);
  870. if (err)
  871. goto out;
  872. cond_resched();
  873. goto retry_flush_dents;
  874. }
  875. retry_flush_nodes:
  876. down_write(&sbi->node_write);
  877. if (get_pages(sbi, F2FS_DIRTY_NODES)) {
  878. up_write(&sbi->node_write);
  879. err = sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
  880. if (err) {
  881. up_write(&sbi->node_change);
  882. f2fs_unlock_all(sbi);
  883. goto out;
  884. }
  885. cond_resched();
  886. goto retry_flush_nodes;
  887. }
  888. /*
  889. * sbi->node_change is used only for AIO write_begin path which produces
  890. * dirty node blocks and some checkpoint values by block allocation.
  891. */
  892. __prepare_cp_block(sbi);
  893. up_write(&sbi->node_change);
  894. out:
  895. blk_finish_plug(&plug);
  896. return err;
  897. }
  898. static void unblock_operations(struct f2fs_sb_info *sbi)
  899. {
  900. up_write(&sbi->node_write);
  901. f2fs_unlock_all(sbi);
  902. }
  903. static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
  904. {
  905. DEFINE_WAIT(wait);
  906. for (;;) {
  907. prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
  908. if (!get_pages(sbi, F2FS_WB_CP_DATA))
  909. break;
  910. io_schedule_timeout(5*HZ);
  911. }
  912. finish_wait(&sbi->cp_wait, &wait);
  913. }
  914. static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  915. {
  916. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
  917. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  918. unsigned long flags;
  919. spin_lock_irqsave(&sbi->cp_lock, flags);
  920. if ((cpc->reason & CP_UMOUNT) &&
  921. le32_to_cpu(ckpt->cp_pack_total_block_count) >
  922. sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
  923. disable_nat_bits(sbi, false);
  924. if (cpc->reason & CP_TRIMMED)
  925. __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
  926. if (cpc->reason & CP_UMOUNT)
  927. __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  928. else
  929. __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
  930. if (cpc->reason & CP_FASTBOOT)
  931. __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  932. else
  933. __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
  934. if (orphan_num)
  935. __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  936. else
  937. __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
  938. if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
  939. __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
  940. /* set this flag to activate crc|cp_ver for recovery */
  941. __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
  942. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  943. }
  944. static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  945. {
  946. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  947. struct f2fs_nm_info *nm_i = NM_I(sbi);
  948. unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
  949. block_t start_blk;
  950. unsigned int data_sum_blocks, orphan_blocks;
  951. __u32 crc32 = 0;
  952. int i;
  953. int cp_payload_blks = __cp_payload(sbi);
  954. struct super_block *sb = sbi->sb;
  955. struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
  956. u64 kbytes_written;
  957. /* Flush all the NAT/SIT pages */
  958. while (get_pages(sbi, F2FS_DIRTY_META)) {
  959. sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  960. if (unlikely(f2fs_cp_error(sbi)))
  961. return -EIO;
  962. }
  963. /*
  964. * modify checkpoint
  965. * version number is already updated
  966. */
  967. ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
  968. ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
  969. for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
  970. ckpt->cur_node_segno[i] =
  971. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
  972. ckpt->cur_node_blkoff[i] =
  973. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
  974. ckpt->alloc_type[i + CURSEG_HOT_NODE] =
  975. curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
  976. }
  977. for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
  978. ckpt->cur_data_segno[i] =
  979. cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
  980. ckpt->cur_data_blkoff[i] =
  981. cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
  982. ckpt->alloc_type[i + CURSEG_HOT_DATA] =
  983. curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
  984. }
  985. /* 2 cp + n data seg summary + orphan inode blocks */
  986. data_sum_blocks = npages_for_summary_flush(sbi, false);
  987. spin_lock_irqsave(&sbi->cp_lock, flags);
  988. if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
  989. __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  990. else
  991. __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
  992. spin_unlock_irqrestore(&sbi->cp_lock, flags);
  993. orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
  994. ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
  995. orphan_blocks);
  996. if (__remain_node_summaries(cpc->reason))
  997. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
  998. cp_payload_blks + data_sum_blocks +
  999. orphan_blocks + NR_CURSEG_NODE_TYPE);
  1000. else
  1001. ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
  1002. cp_payload_blks + data_sum_blocks +
  1003. orphan_blocks);
  1004. /* update ckpt flag for checkpoint */
  1005. update_ckpt_flags(sbi, cpc);
  1006. /* update SIT/NAT bitmap */
  1007. get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
  1008. get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
  1009. crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
  1010. *((__le32 *)((unsigned char *)ckpt +
  1011. le32_to_cpu(ckpt->checksum_offset)))
  1012. = cpu_to_le32(crc32);
  1013. start_blk = __start_cp_next_addr(sbi);
  1014. /* write nat bits */
  1015. if (enabled_nat_bits(sbi, cpc)) {
  1016. __u64 cp_ver = cur_cp_version(ckpt);
  1017. block_t blk;
  1018. cp_ver |= ((__u64)crc32 << 32);
  1019. *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
  1020. blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
  1021. for (i = 0; i < nm_i->nat_bits_blocks; i++)
  1022. update_meta_page(sbi, nm_i->nat_bits +
  1023. (i << F2FS_BLKSIZE_BITS), blk + i);
  1024. /* Flush all the NAT BITS pages */
  1025. while (get_pages(sbi, F2FS_DIRTY_META)) {
  1026. sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
  1027. if (unlikely(f2fs_cp_error(sbi)))
  1028. return -EIO;
  1029. }
  1030. }
  1031. /* need to wait for end_io results */
  1032. wait_on_all_pages_writeback(sbi);
  1033. if (unlikely(f2fs_cp_error(sbi)))
  1034. return -EIO;
  1035. /* write out checkpoint buffer at block 0 */
  1036. update_meta_page(sbi, ckpt, start_blk++);
  1037. for (i = 1; i < 1 + cp_payload_blks; i++)
  1038. update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
  1039. start_blk++);
  1040. if (orphan_num) {
  1041. write_orphan_inodes(sbi, start_blk);
  1042. start_blk += orphan_blocks;
  1043. }
  1044. write_data_summaries(sbi, start_blk);
  1045. start_blk += data_sum_blocks;
  1046. /* Record write statistics in the hot node summary */
  1047. kbytes_written = sbi->kbytes_written;
  1048. if (sb->s_bdev->bd_part)
  1049. kbytes_written += BD_PART_WRITTEN(sbi);
  1050. seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
  1051. if (__remain_node_summaries(cpc->reason)) {
  1052. write_node_summaries(sbi, start_blk);
  1053. start_blk += NR_CURSEG_NODE_TYPE;
  1054. }
  1055. /* writeout checkpoint block */
  1056. update_meta_page(sbi, ckpt, start_blk);
  1057. /* wait for previous submitted node/meta pages writeback */
  1058. wait_on_all_pages_writeback(sbi);
  1059. if (unlikely(f2fs_cp_error(sbi)))
  1060. return -EIO;
  1061. filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
  1062. filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
  1063. /* update user_block_counts */
  1064. sbi->last_valid_block_count = sbi->total_valid_block_count;
  1065. percpu_counter_set(&sbi->alloc_valid_block_count, 0);
  1066. /* Here, we only have one bio having CP pack */
  1067. sync_meta_pages(sbi, META_FLUSH, LONG_MAX, FS_CP_META_IO);
  1068. /* wait for previous submitted meta pages writeback */
  1069. wait_on_all_pages_writeback(sbi);
  1070. release_ino_entry(sbi, false);
  1071. if (unlikely(f2fs_cp_error(sbi)))
  1072. return -EIO;
  1073. clear_sbi_flag(sbi, SBI_IS_DIRTY);
  1074. clear_sbi_flag(sbi, SBI_NEED_CP);
  1075. __set_cp_next_pack(sbi);
  1076. /*
  1077. * redirty superblock if metadata like node page or inode cache is
  1078. * updated during writing checkpoint.
  1079. */
  1080. if (get_pages(sbi, F2FS_DIRTY_NODES) ||
  1081. get_pages(sbi, F2FS_DIRTY_IMETA))
  1082. set_sbi_flag(sbi, SBI_IS_DIRTY);
  1083. f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
  1084. return 0;
  1085. }
  1086. /*
  1087. * We guarantee that this checkpoint procedure will not fail.
  1088. */
  1089. int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
  1090. {
  1091. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  1092. unsigned long long ckpt_ver;
  1093. int err = 0;
  1094. mutex_lock(&sbi->cp_mutex);
  1095. if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
  1096. ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
  1097. ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
  1098. goto out;
  1099. if (unlikely(f2fs_cp_error(sbi))) {
  1100. err = -EIO;
  1101. goto out;
  1102. }
  1103. if (f2fs_readonly(sbi->sb)) {
  1104. err = -EROFS;
  1105. goto out;
  1106. }
  1107. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
  1108. err = block_operations(sbi);
  1109. if (err)
  1110. goto out;
  1111. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
  1112. f2fs_flush_merged_writes(sbi);
  1113. /* this is the case of multiple fstrims without any changes */
  1114. if (cpc->reason & CP_DISCARD) {
  1115. if (!exist_trim_candidates(sbi, cpc)) {
  1116. unblock_operations(sbi);
  1117. goto out;
  1118. }
  1119. if (NM_I(sbi)->dirty_nat_cnt == 0 &&
  1120. SIT_I(sbi)->dirty_sentries == 0 &&
  1121. prefree_segments(sbi) == 0) {
  1122. flush_sit_entries(sbi, cpc);
  1123. clear_prefree_segments(sbi, cpc);
  1124. unblock_operations(sbi);
  1125. goto out;
  1126. }
  1127. }
  1128. /*
  1129. * update checkpoint pack index
  1130. * Increase the version number so that
  1131. * SIT entries and seg summaries are written at correct place
  1132. */
  1133. ckpt_ver = cur_cp_version(ckpt);
  1134. ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
  1135. /* write cached NAT/SIT entries to NAT/SIT area */
  1136. flush_nat_entries(sbi, cpc);
  1137. flush_sit_entries(sbi, cpc);
  1138. /* unlock all the fs_lock[] in do_checkpoint() */
  1139. err = do_checkpoint(sbi, cpc);
  1140. if (err)
  1141. release_discard_addrs(sbi);
  1142. else
  1143. clear_prefree_segments(sbi, cpc);
  1144. unblock_operations(sbi);
  1145. stat_inc_cp_count(sbi->stat_info);
  1146. if (cpc->reason & CP_RECOVERY)
  1147. f2fs_msg(sbi->sb, KERN_NOTICE,
  1148. "checkpoint: version = %llx", ckpt_ver);
  1149. /* do checkpoint periodically */
  1150. f2fs_update_time(sbi, CP_TIME);
  1151. trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
  1152. out:
  1153. mutex_unlock(&sbi->cp_mutex);
  1154. return err;
  1155. }
  1156. void init_ino_entry_info(struct f2fs_sb_info *sbi)
  1157. {
  1158. int i;
  1159. for (i = 0; i < MAX_INO_ENTRY; i++) {
  1160. struct inode_management *im = &sbi->im[i];
  1161. INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
  1162. spin_lock_init(&im->ino_lock);
  1163. INIT_LIST_HEAD(&im->ino_list);
  1164. im->ino_num = 0;
  1165. }
  1166. sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
  1167. NR_CURSEG_TYPE - __cp_payload(sbi)) *
  1168. F2FS_ORPHANS_PER_BLOCK;
  1169. }
  1170. int __init create_checkpoint_caches(void)
  1171. {
  1172. ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
  1173. sizeof(struct ino_entry));
  1174. if (!ino_entry_slab)
  1175. return -ENOMEM;
  1176. inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
  1177. sizeof(struct inode_entry));
  1178. if (!inode_entry_slab) {
  1179. kmem_cache_destroy(ino_entry_slab);
  1180. return -ENOMEM;
  1181. }
  1182. return 0;
  1183. }
  1184. void destroy_checkpoint_caches(void)
  1185. {
  1186. kmem_cache_destroy(ino_entry_slab);
  1187. kmem_cache_destroy(inode_entry_slab);
  1188. }