sdma_v2_4.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385
  1. /*
  2. * Copyright 2014 Advanced Micro Devices, Inc.
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice shall be included in
  12. * all copies or substantial portions of the Software.
  13. *
  14. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  17. * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18. * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19. * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20. * OTHER DEALINGS IN THE SOFTWARE.
  21. *
  22. * Authors: Alex Deucher
  23. */
  24. #include <linux/firmware.h>
  25. #include <drm/drmP.h>
  26. #include "amdgpu.h"
  27. #include "amdgpu_ucode.h"
  28. #include "amdgpu_trace.h"
  29. #include "vi.h"
  30. #include "vid.h"
  31. #include "oss/oss_2_4_d.h"
  32. #include "oss/oss_2_4_sh_mask.h"
  33. #include "gmc/gmc_8_1_d.h"
  34. #include "gmc/gmc_8_1_sh_mask.h"
  35. #include "gca/gfx_8_0_d.h"
  36. #include "gca/gfx_8_0_enum.h"
  37. #include "gca/gfx_8_0_sh_mask.h"
  38. #include "bif/bif_5_0_d.h"
  39. #include "bif/bif_5_0_sh_mask.h"
  40. #include "iceland_sdma_pkt_open.h"
  41. static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev);
  42. static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev);
  43. static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev);
  44. static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev);
  45. MODULE_FIRMWARE("amdgpu/topaz_sdma.bin");
  46. MODULE_FIRMWARE("amdgpu/topaz_sdma1.bin");
  47. static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
  48. {
  49. SDMA0_REGISTER_OFFSET,
  50. SDMA1_REGISTER_OFFSET
  51. };
  52. static const u32 golden_settings_iceland_a11[] =
  53. {
  54. mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
  55. mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
  56. mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
  57. mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
  58. };
  59. static const u32 iceland_mgcg_cgcg_init[] =
  60. {
  61. mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
  62. mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
  63. };
  64. /*
  65. * sDMA - System DMA
  66. * Starting with CIK, the GPU has new asynchronous
  67. * DMA engines. These engines are used for compute
  68. * and gfx. There are two DMA engines (SDMA0, SDMA1)
  69. * and each one supports 1 ring buffer used for gfx
  70. * and 2 queues used for compute.
  71. *
  72. * The programming model is very similar to the CP
  73. * (ring buffer, IBs, etc.), but sDMA has it's own
  74. * packet format that is different from the PM4 format
  75. * used by the CP. sDMA supports copying data, writing
  76. * embedded data, solid fills, and a number of other
  77. * things. It also has support for tiling/detiling of
  78. * buffers.
  79. */
  80. static void sdma_v2_4_init_golden_registers(struct amdgpu_device *adev)
  81. {
  82. switch (adev->asic_type) {
  83. case CHIP_TOPAZ:
  84. amdgpu_program_register_sequence(adev,
  85. iceland_mgcg_cgcg_init,
  86. (const u32)ARRAY_SIZE(iceland_mgcg_cgcg_init));
  87. amdgpu_program_register_sequence(adev,
  88. golden_settings_iceland_a11,
  89. (const u32)ARRAY_SIZE(golden_settings_iceland_a11));
  90. break;
  91. default:
  92. break;
  93. }
  94. }
  95. /**
  96. * sdma_v2_4_init_microcode - load ucode images from disk
  97. *
  98. * @adev: amdgpu_device pointer
  99. *
  100. * Use the firmware interface to load the ucode images into
  101. * the driver (not loaded into hw).
  102. * Returns 0 on success, error on failure.
  103. */
  104. static int sdma_v2_4_init_microcode(struct amdgpu_device *adev)
  105. {
  106. const char *chip_name;
  107. char fw_name[30];
  108. int err = 0, i;
  109. struct amdgpu_firmware_info *info = NULL;
  110. const struct common_firmware_header *header = NULL;
  111. const struct sdma_firmware_header_v1_0 *hdr;
  112. DRM_DEBUG("\n");
  113. switch (adev->asic_type) {
  114. case CHIP_TOPAZ:
  115. chip_name = "topaz";
  116. break;
  117. default: BUG();
  118. }
  119. for (i = 0; i < adev->sdma.num_instances; i++) {
  120. if (i == 0)
  121. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
  122. else
  123. snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
  124. err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
  125. if (err)
  126. goto out;
  127. err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
  128. if (err)
  129. goto out;
  130. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  131. adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
  132. adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
  133. if (adev->sdma.instance[i].feature_version >= 20)
  134. adev->sdma.instance[i].burst_nop = true;
  135. if (adev->firmware.smu_load) {
  136. info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
  137. info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
  138. info->fw = adev->sdma.instance[i].fw;
  139. header = (const struct common_firmware_header *)info->fw->data;
  140. adev->firmware.fw_size +=
  141. ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
  142. }
  143. }
  144. out:
  145. if (err) {
  146. printk(KERN_ERR
  147. "sdma_v2_4: Failed to load firmware \"%s\"\n",
  148. fw_name);
  149. for (i = 0; i < adev->sdma.num_instances; i++) {
  150. release_firmware(adev->sdma.instance[i].fw);
  151. adev->sdma.instance[i].fw = NULL;
  152. }
  153. }
  154. return err;
  155. }
  156. /**
  157. * sdma_v2_4_ring_get_rptr - get the current read pointer
  158. *
  159. * @ring: amdgpu ring pointer
  160. *
  161. * Get the current rptr from the hardware (VI+).
  162. */
  163. static uint32_t sdma_v2_4_ring_get_rptr(struct amdgpu_ring *ring)
  164. {
  165. u32 rptr;
  166. /* XXX check if swapping is necessary on BE */
  167. rptr = ring->adev->wb.wb[ring->rptr_offs] >> 2;
  168. return rptr;
  169. }
  170. /**
  171. * sdma_v2_4_ring_get_wptr - get the current write pointer
  172. *
  173. * @ring: amdgpu ring pointer
  174. *
  175. * Get the current wptr from the hardware (VI+).
  176. */
  177. static uint32_t sdma_v2_4_ring_get_wptr(struct amdgpu_ring *ring)
  178. {
  179. struct amdgpu_device *adev = ring->adev;
  180. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  181. u32 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) >> 2;
  182. return wptr;
  183. }
  184. /**
  185. * sdma_v2_4_ring_set_wptr - commit the write pointer
  186. *
  187. * @ring: amdgpu ring pointer
  188. *
  189. * Write the wptr back to the hardware (VI+).
  190. */
  191. static void sdma_v2_4_ring_set_wptr(struct amdgpu_ring *ring)
  192. {
  193. struct amdgpu_device *adev = ring->adev;
  194. int me = (ring == &ring->adev->sdma.instance[0].ring) ? 0 : 1;
  195. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], ring->wptr << 2);
  196. }
  197. static void sdma_v2_4_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
  198. {
  199. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
  200. int i;
  201. for (i = 0; i < count; i++)
  202. if (sdma && sdma->burst_nop && (i == 0))
  203. amdgpu_ring_write(ring, ring->nop |
  204. SDMA_PKT_NOP_HEADER_COUNT(count - 1));
  205. else
  206. amdgpu_ring_write(ring, ring->nop);
  207. }
  208. /**
  209. * sdma_v2_4_ring_emit_ib - Schedule an IB on the DMA engine
  210. *
  211. * @ring: amdgpu ring pointer
  212. * @ib: IB object to schedule
  213. *
  214. * Schedule an IB in the DMA ring (VI).
  215. */
  216. static void sdma_v2_4_ring_emit_ib(struct amdgpu_ring *ring,
  217. struct amdgpu_ib *ib)
  218. {
  219. u32 vmid = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
  220. u32 next_rptr = ring->wptr + 5;
  221. while ((next_rptr & 7) != 2)
  222. next_rptr++;
  223. next_rptr += 6;
  224. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  225. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  226. amdgpu_ring_write(ring, lower_32_bits(ring->next_rptr_gpu_addr) & 0xfffffffc);
  227. amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr));
  228. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  229. amdgpu_ring_write(ring, next_rptr);
  230. /* IB packet must end on a 8 DW boundary */
  231. sdma_v2_4_ring_insert_nop(ring, (10 - (ring->wptr & 7)) % 8);
  232. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
  233. SDMA_PKT_INDIRECT_HEADER_VMID(vmid));
  234. /* base must be 32 byte aligned */
  235. amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
  236. amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
  237. amdgpu_ring_write(ring, ib->length_dw);
  238. amdgpu_ring_write(ring, 0);
  239. amdgpu_ring_write(ring, 0);
  240. }
  241. /**
  242. * sdma_v2_4_hdp_flush_ring_emit - emit an hdp flush on the DMA ring
  243. *
  244. * @ring: amdgpu ring pointer
  245. *
  246. * Emit an hdp flush packet on the requested DMA ring.
  247. */
  248. static void sdma_v2_4_ring_emit_hdp_flush(struct amdgpu_ring *ring)
  249. {
  250. u32 ref_and_mask = 0;
  251. if (ring == &ring->adev->sdma.instance[0].ring)
  252. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
  253. else
  254. ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
  255. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  256. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
  257. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
  258. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
  259. amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
  260. amdgpu_ring_write(ring, ref_and_mask); /* reference */
  261. amdgpu_ring_write(ring, ref_and_mask); /* mask */
  262. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  263. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  264. }
  265. /**
  266. * sdma_v2_4_ring_emit_fence - emit a fence on the DMA ring
  267. *
  268. * @ring: amdgpu ring pointer
  269. * @fence: amdgpu fence object
  270. *
  271. * Add a DMA fence packet to the ring to write
  272. * the fence seq number and DMA trap packet to generate
  273. * an interrupt if needed (VI).
  274. */
  275. static void sdma_v2_4_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
  276. unsigned flags)
  277. {
  278. bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
  279. /* write the fence */
  280. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  281. amdgpu_ring_write(ring, lower_32_bits(addr));
  282. amdgpu_ring_write(ring, upper_32_bits(addr));
  283. amdgpu_ring_write(ring, lower_32_bits(seq));
  284. /* optionally write high bits as well */
  285. if (write64bit) {
  286. addr += 4;
  287. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
  288. amdgpu_ring_write(ring, lower_32_bits(addr));
  289. amdgpu_ring_write(ring, upper_32_bits(addr));
  290. amdgpu_ring_write(ring, upper_32_bits(seq));
  291. }
  292. /* generate an interrupt */
  293. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
  294. amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
  295. }
  296. /**
  297. * sdma_v2_4_gfx_stop - stop the gfx async dma engines
  298. *
  299. * @adev: amdgpu_device pointer
  300. *
  301. * Stop the gfx async dma ring buffers (VI).
  302. */
  303. static void sdma_v2_4_gfx_stop(struct amdgpu_device *adev)
  304. {
  305. struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
  306. struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
  307. u32 rb_cntl, ib_cntl;
  308. int i;
  309. if ((adev->mman.buffer_funcs_ring == sdma0) ||
  310. (adev->mman.buffer_funcs_ring == sdma1))
  311. amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
  312. for (i = 0; i < adev->sdma.num_instances; i++) {
  313. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  314. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
  315. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  316. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  317. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
  318. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  319. }
  320. sdma0->ready = false;
  321. sdma1->ready = false;
  322. }
  323. /**
  324. * sdma_v2_4_rlc_stop - stop the compute async dma engines
  325. *
  326. * @adev: amdgpu_device pointer
  327. *
  328. * Stop the compute async dma queues (VI).
  329. */
  330. static void sdma_v2_4_rlc_stop(struct amdgpu_device *adev)
  331. {
  332. /* XXX todo */
  333. }
  334. /**
  335. * sdma_v2_4_enable - stop the async dma engines
  336. *
  337. * @adev: amdgpu_device pointer
  338. * @enable: enable/disable the DMA MEs.
  339. *
  340. * Halt or unhalt the async dma engines (VI).
  341. */
  342. static void sdma_v2_4_enable(struct amdgpu_device *adev, bool enable)
  343. {
  344. u32 f32_cntl;
  345. int i;
  346. if (enable == false) {
  347. sdma_v2_4_gfx_stop(adev);
  348. sdma_v2_4_rlc_stop(adev);
  349. }
  350. for (i = 0; i < adev->sdma.num_instances; i++) {
  351. f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
  352. if (enable)
  353. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
  354. else
  355. f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
  356. WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
  357. }
  358. }
  359. /**
  360. * sdma_v2_4_gfx_resume - setup and start the async dma engines
  361. *
  362. * @adev: amdgpu_device pointer
  363. *
  364. * Set up the gfx DMA ring buffers and enable them (VI).
  365. * Returns 0 for success, error for failure.
  366. */
  367. static int sdma_v2_4_gfx_resume(struct amdgpu_device *adev)
  368. {
  369. struct amdgpu_ring *ring;
  370. u32 rb_cntl, ib_cntl;
  371. u32 rb_bufsz;
  372. u32 wb_offset;
  373. int i, j, r;
  374. for (i = 0; i < adev->sdma.num_instances; i++) {
  375. ring = &adev->sdma.instance[i].ring;
  376. wb_offset = (ring->rptr_offs * 4);
  377. mutex_lock(&adev->srbm_mutex);
  378. for (j = 0; j < 16; j++) {
  379. vi_srbm_select(adev, 0, 0, 0, j);
  380. /* SDMA GFX */
  381. WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
  382. WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
  383. }
  384. vi_srbm_select(adev, 0, 0, 0, 0);
  385. mutex_unlock(&adev->srbm_mutex);
  386. WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
  387. /* Set ring buffer size in dwords */
  388. rb_bufsz = order_base_2(ring->ring_size / 4);
  389. rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
  390. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
  391. #ifdef __BIG_ENDIAN
  392. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
  393. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
  394. RPTR_WRITEBACK_SWAP_ENABLE, 1);
  395. #endif
  396. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  397. /* Initialize the ring buffer's read and write pointers */
  398. WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
  399. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
  400. /* set the wb address whether it's enabled or not */
  401. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
  402. upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
  403. WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
  404. lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
  405. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
  406. WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
  407. WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
  408. ring->wptr = 0;
  409. WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
  410. /* enable DMA RB */
  411. rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
  412. WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
  413. ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
  414. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
  415. #ifdef __BIG_ENDIAN
  416. ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
  417. #endif
  418. /* enable DMA IBs */
  419. WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
  420. ring->ready = true;
  421. r = amdgpu_ring_test_ring(ring);
  422. if (r) {
  423. ring->ready = false;
  424. return r;
  425. }
  426. if (adev->mman.buffer_funcs_ring == ring)
  427. amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
  428. }
  429. return 0;
  430. }
  431. /**
  432. * sdma_v2_4_rlc_resume - setup and start the async dma engines
  433. *
  434. * @adev: amdgpu_device pointer
  435. *
  436. * Set up the compute DMA queues and enable them (VI).
  437. * Returns 0 for success, error for failure.
  438. */
  439. static int sdma_v2_4_rlc_resume(struct amdgpu_device *adev)
  440. {
  441. /* XXX todo */
  442. return 0;
  443. }
  444. /**
  445. * sdma_v2_4_load_microcode - load the sDMA ME ucode
  446. *
  447. * @adev: amdgpu_device pointer
  448. *
  449. * Loads the sDMA0/1 ucode.
  450. * Returns 0 for success, -EINVAL if the ucode is not available.
  451. */
  452. static int sdma_v2_4_load_microcode(struct amdgpu_device *adev)
  453. {
  454. const struct sdma_firmware_header_v1_0 *hdr;
  455. const __le32 *fw_data;
  456. u32 fw_size;
  457. int i, j;
  458. /* halt the MEs */
  459. sdma_v2_4_enable(adev, false);
  460. for (i = 0; i < adev->sdma.num_instances; i++) {
  461. if (!adev->sdma.instance[i].fw)
  462. return -EINVAL;
  463. hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
  464. amdgpu_ucode_print_sdma_hdr(&hdr->header);
  465. fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
  466. fw_data = (const __le32 *)
  467. (adev->sdma.instance[i].fw->data +
  468. le32_to_cpu(hdr->header.ucode_array_offset_bytes));
  469. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
  470. for (j = 0; j < fw_size; j++)
  471. WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
  472. WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
  473. }
  474. return 0;
  475. }
  476. /**
  477. * sdma_v2_4_start - setup and start the async dma engines
  478. *
  479. * @adev: amdgpu_device pointer
  480. *
  481. * Set up the DMA engines and enable them (VI).
  482. * Returns 0 for success, error for failure.
  483. */
  484. static int sdma_v2_4_start(struct amdgpu_device *adev)
  485. {
  486. int r;
  487. if (!adev->firmware.smu_load) {
  488. r = sdma_v2_4_load_microcode(adev);
  489. if (r)
  490. return r;
  491. } else {
  492. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  493. AMDGPU_UCODE_ID_SDMA0);
  494. if (r)
  495. return -EINVAL;
  496. r = adev->smu.smumgr_funcs->check_fw_load_finish(adev,
  497. AMDGPU_UCODE_ID_SDMA1);
  498. if (r)
  499. return -EINVAL;
  500. }
  501. /* unhalt the MEs */
  502. sdma_v2_4_enable(adev, true);
  503. /* start the gfx rings and rlc compute queues */
  504. r = sdma_v2_4_gfx_resume(adev);
  505. if (r)
  506. return r;
  507. r = sdma_v2_4_rlc_resume(adev);
  508. if (r)
  509. return r;
  510. return 0;
  511. }
  512. /**
  513. * sdma_v2_4_ring_test_ring - simple async dma engine test
  514. *
  515. * @ring: amdgpu_ring structure holding ring information
  516. *
  517. * Test the DMA engine by writing using it to write an
  518. * value to memory. (VI).
  519. * Returns 0 for success, error for failure.
  520. */
  521. static int sdma_v2_4_ring_test_ring(struct amdgpu_ring *ring)
  522. {
  523. struct amdgpu_device *adev = ring->adev;
  524. unsigned i;
  525. unsigned index;
  526. int r;
  527. u32 tmp;
  528. u64 gpu_addr;
  529. r = amdgpu_wb_get(adev, &index);
  530. if (r) {
  531. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  532. return r;
  533. }
  534. gpu_addr = adev->wb.gpu_addr + (index * 4);
  535. tmp = 0xCAFEDEAD;
  536. adev->wb.wb[index] = cpu_to_le32(tmp);
  537. r = amdgpu_ring_alloc(ring, 5);
  538. if (r) {
  539. DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
  540. amdgpu_wb_free(adev, index);
  541. return r;
  542. }
  543. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  544. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
  545. amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
  546. amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
  547. amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
  548. amdgpu_ring_write(ring, 0xDEADBEEF);
  549. amdgpu_ring_commit(ring);
  550. for (i = 0; i < adev->usec_timeout; i++) {
  551. tmp = le32_to_cpu(adev->wb.wb[index]);
  552. if (tmp == 0xDEADBEEF)
  553. break;
  554. DRM_UDELAY(1);
  555. }
  556. if (i < adev->usec_timeout) {
  557. DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
  558. } else {
  559. DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
  560. ring->idx, tmp);
  561. r = -EINVAL;
  562. }
  563. amdgpu_wb_free(adev, index);
  564. return r;
  565. }
  566. /**
  567. * sdma_v2_4_ring_test_ib - test an IB on the DMA engine
  568. *
  569. * @ring: amdgpu_ring structure holding ring information
  570. *
  571. * Test a simple IB in the DMA ring (VI).
  572. * Returns 0 on success, error on failure.
  573. */
  574. static int sdma_v2_4_ring_test_ib(struct amdgpu_ring *ring)
  575. {
  576. struct amdgpu_device *adev = ring->adev;
  577. struct amdgpu_ib ib;
  578. struct fence *f = NULL;
  579. unsigned i;
  580. unsigned index;
  581. int r;
  582. u32 tmp = 0;
  583. u64 gpu_addr;
  584. r = amdgpu_wb_get(adev, &index);
  585. if (r) {
  586. dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
  587. return r;
  588. }
  589. gpu_addr = adev->wb.gpu_addr + (index * 4);
  590. tmp = 0xCAFEDEAD;
  591. adev->wb.wb[index] = cpu_to_le32(tmp);
  592. memset(&ib, 0, sizeof(ib));
  593. r = amdgpu_ib_get(ring, NULL, 256, &ib);
  594. if (r) {
  595. DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
  596. goto err0;
  597. }
  598. ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  599. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
  600. ib.ptr[1] = lower_32_bits(gpu_addr);
  601. ib.ptr[2] = upper_32_bits(gpu_addr);
  602. ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
  603. ib.ptr[4] = 0xDEADBEEF;
  604. ib.ptr[5] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  605. ib.ptr[6] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  606. ib.ptr[7] = SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  607. ib.length_dw = 8;
  608. r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
  609. AMDGPU_FENCE_OWNER_UNDEFINED,
  610. &f);
  611. if (r)
  612. goto err1;
  613. r = fence_wait(f, false);
  614. if (r) {
  615. DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
  616. goto err1;
  617. }
  618. for (i = 0; i < adev->usec_timeout; i++) {
  619. tmp = le32_to_cpu(adev->wb.wb[index]);
  620. if (tmp == 0xDEADBEEF)
  621. break;
  622. DRM_UDELAY(1);
  623. }
  624. if (i < adev->usec_timeout) {
  625. DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
  626. ring->idx, i);
  627. goto err1;
  628. } else {
  629. DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
  630. r = -EINVAL;
  631. }
  632. err1:
  633. fence_put(f);
  634. amdgpu_ib_free(adev, &ib);
  635. err0:
  636. amdgpu_wb_free(adev, index);
  637. return r;
  638. }
  639. /**
  640. * sdma_v2_4_vm_copy_pte - update PTEs by copying them from the GART
  641. *
  642. * @ib: indirect buffer to fill with commands
  643. * @pe: addr of the page entry
  644. * @src: src addr to copy from
  645. * @count: number of page entries to update
  646. *
  647. * Update PTEs by copying them from the GART using sDMA (CIK).
  648. */
  649. static void sdma_v2_4_vm_copy_pte(struct amdgpu_ib *ib,
  650. uint64_t pe, uint64_t src,
  651. unsigned count)
  652. {
  653. while (count) {
  654. unsigned bytes = count * 8;
  655. if (bytes > 0x1FFFF8)
  656. bytes = 0x1FFFF8;
  657. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  658. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  659. ib->ptr[ib->length_dw++] = bytes;
  660. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  661. ib->ptr[ib->length_dw++] = lower_32_bits(src);
  662. ib->ptr[ib->length_dw++] = upper_32_bits(src);
  663. ib->ptr[ib->length_dw++] = lower_32_bits(pe);
  664. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  665. pe += bytes;
  666. src += bytes;
  667. count -= bytes / 8;
  668. }
  669. }
  670. /**
  671. * sdma_v2_4_vm_write_pte - update PTEs by writing them manually
  672. *
  673. * @ib: indirect buffer to fill with commands
  674. * @pe: addr of the page entry
  675. * @addr: dst addr to write into pe
  676. * @count: number of page entries to update
  677. * @incr: increase next addr by incr bytes
  678. * @flags: access flags
  679. *
  680. * Update PTEs by writing them manually using sDMA (CIK).
  681. */
  682. static void sdma_v2_4_vm_write_pte(struct amdgpu_ib *ib,
  683. const dma_addr_t *pages_addr, uint64_t pe,
  684. uint64_t addr, unsigned count,
  685. uint32_t incr, uint32_t flags)
  686. {
  687. uint64_t value;
  688. unsigned ndw;
  689. while (count) {
  690. ndw = count * 2;
  691. if (ndw > 0xFFFFE)
  692. ndw = 0xFFFFE;
  693. /* for non-physically contiguous pages (system) */
  694. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
  695. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  696. ib->ptr[ib->length_dw++] = pe;
  697. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  698. ib->ptr[ib->length_dw++] = ndw;
  699. for (; ndw > 0; ndw -= 2, --count, pe += 8) {
  700. value = amdgpu_vm_map_gart(pages_addr, addr);
  701. addr += incr;
  702. value |= flags;
  703. ib->ptr[ib->length_dw++] = value;
  704. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  705. }
  706. }
  707. }
  708. /**
  709. * sdma_v2_4_vm_set_pte_pde - update the page tables using sDMA
  710. *
  711. * @ib: indirect buffer to fill with commands
  712. * @pe: addr of the page entry
  713. * @addr: dst addr to write into pe
  714. * @count: number of page entries to update
  715. * @incr: increase next addr by incr bytes
  716. * @flags: access flags
  717. *
  718. * Update the page tables using sDMA (CIK).
  719. */
  720. static void sdma_v2_4_vm_set_pte_pde(struct amdgpu_ib *ib,
  721. uint64_t pe,
  722. uint64_t addr, unsigned count,
  723. uint32_t incr, uint32_t flags)
  724. {
  725. uint64_t value;
  726. unsigned ndw;
  727. while (count) {
  728. ndw = count;
  729. if (ndw > 0x7FFFF)
  730. ndw = 0x7FFFF;
  731. if (flags & AMDGPU_PTE_VALID)
  732. value = addr;
  733. else
  734. value = 0;
  735. /* for physically contiguous pages (vram) */
  736. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
  737. ib->ptr[ib->length_dw++] = pe; /* dst addr */
  738. ib->ptr[ib->length_dw++] = upper_32_bits(pe);
  739. ib->ptr[ib->length_dw++] = flags; /* mask */
  740. ib->ptr[ib->length_dw++] = 0;
  741. ib->ptr[ib->length_dw++] = value; /* value */
  742. ib->ptr[ib->length_dw++] = upper_32_bits(value);
  743. ib->ptr[ib->length_dw++] = incr; /* increment size */
  744. ib->ptr[ib->length_dw++] = 0;
  745. ib->ptr[ib->length_dw++] = ndw; /* number of entries */
  746. pe += ndw * 8;
  747. addr += ndw * incr;
  748. count -= ndw;
  749. }
  750. }
  751. /**
  752. * sdma_v2_4_vm_pad_ib - pad the IB to the required number of dw
  753. *
  754. * @ib: indirect buffer to fill with padding
  755. *
  756. */
  757. static void sdma_v2_4_vm_pad_ib(struct amdgpu_ib *ib)
  758. {
  759. struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ib->ring);
  760. u32 pad_count;
  761. int i;
  762. pad_count = (8 - (ib->length_dw & 0x7)) % 8;
  763. for (i = 0; i < pad_count; i++)
  764. if (sdma && sdma->burst_nop && (i == 0))
  765. ib->ptr[ib->length_dw++] =
  766. SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
  767. SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
  768. else
  769. ib->ptr[ib->length_dw++] =
  770. SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
  771. }
  772. /**
  773. * sdma_v2_4_ring_emit_vm_flush - cik vm flush using sDMA
  774. *
  775. * @ring: amdgpu_ring pointer
  776. * @vm: amdgpu_vm pointer
  777. *
  778. * Update the page table base and flush the VM TLB
  779. * using sDMA (VI).
  780. */
  781. static void sdma_v2_4_ring_emit_vm_flush(struct amdgpu_ring *ring,
  782. unsigned vm_id, uint64_t pd_addr)
  783. {
  784. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  785. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  786. if (vm_id < 8) {
  787. amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
  788. } else {
  789. amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
  790. }
  791. amdgpu_ring_write(ring, pd_addr >> 12);
  792. /* flush TLB */
  793. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
  794. SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
  795. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
  796. amdgpu_ring_write(ring, 1 << vm_id);
  797. /* wait for flush */
  798. amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
  799. SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
  800. SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
  801. amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
  802. amdgpu_ring_write(ring, 0);
  803. amdgpu_ring_write(ring, 0); /* reference */
  804. amdgpu_ring_write(ring, 0); /* mask */
  805. amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
  806. SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
  807. }
  808. static int sdma_v2_4_early_init(void *handle)
  809. {
  810. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  811. adev->sdma.num_instances = SDMA_MAX_INSTANCE;
  812. sdma_v2_4_set_ring_funcs(adev);
  813. sdma_v2_4_set_buffer_funcs(adev);
  814. sdma_v2_4_set_vm_pte_funcs(adev);
  815. sdma_v2_4_set_irq_funcs(adev);
  816. return 0;
  817. }
  818. static int sdma_v2_4_sw_init(void *handle)
  819. {
  820. struct amdgpu_ring *ring;
  821. int r, i;
  822. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  823. /* SDMA trap event */
  824. r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
  825. if (r)
  826. return r;
  827. /* SDMA Privileged inst */
  828. r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
  829. if (r)
  830. return r;
  831. /* SDMA Privileged inst */
  832. r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
  833. if (r)
  834. return r;
  835. r = sdma_v2_4_init_microcode(adev);
  836. if (r) {
  837. DRM_ERROR("Failed to load sdma firmware!\n");
  838. return r;
  839. }
  840. for (i = 0; i < adev->sdma.num_instances; i++) {
  841. ring = &adev->sdma.instance[i].ring;
  842. ring->ring_obj = NULL;
  843. ring->use_doorbell = false;
  844. sprintf(ring->name, "sdma%d", i);
  845. r = amdgpu_ring_init(adev, ring, 256 * 1024,
  846. SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP), 0xf,
  847. &adev->sdma.trap_irq,
  848. (i == 0) ?
  849. AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
  850. AMDGPU_RING_TYPE_SDMA);
  851. if (r)
  852. return r;
  853. }
  854. return r;
  855. }
  856. static int sdma_v2_4_sw_fini(void *handle)
  857. {
  858. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  859. int i;
  860. for (i = 0; i < adev->sdma.num_instances; i++)
  861. amdgpu_ring_fini(&adev->sdma.instance[i].ring);
  862. return 0;
  863. }
  864. static int sdma_v2_4_hw_init(void *handle)
  865. {
  866. int r;
  867. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  868. sdma_v2_4_init_golden_registers(adev);
  869. r = sdma_v2_4_start(adev);
  870. if (r)
  871. return r;
  872. return r;
  873. }
  874. static int sdma_v2_4_hw_fini(void *handle)
  875. {
  876. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  877. sdma_v2_4_enable(adev, false);
  878. return 0;
  879. }
  880. static int sdma_v2_4_suspend(void *handle)
  881. {
  882. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  883. return sdma_v2_4_hw_fini(adev);
  884. }
  885. static int sdma_v2_4_resume(void *handle)
  886. {
  887. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  888. return sdma_v2_4_hw_init(adev);
  889. }
  890. static bool sdma_v2_4_is_idle(void *handle)
  891. {
  892. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  893. u32 tmp = RREG32(mmSRBM_STATUS2);
  894. if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
  895. SRBM_STATUS2__SDMA1_BUSY_MASK))
  896. return false;
  897. return true;
  898. }
  899. static int sdma_v2_4_wait_for_idle(void *handle)
  900. {
  901. unsigned i;
  902. u32 tmp;
  903. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  904. for (i = 0; i < adev->usec_timeout; i++) {
  905. tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
  906. SRBM_STATUS2__SDMA1_BUSY_MASK);
  907. if (!tmp)
  908. return 0;
  909. udelay(1);
  910. }
  911. return -ETIMEDOUT;
  912. }
  913. static void sdma_v2_4_print_status(void *handle)
  914. {
  915. int i, j;
  916. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  917. dev_info(adev->dev, "VI SDMA registers\n");
  918. dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
  919. RREG32(mmSRBM_STATUS2));
  920. for (i = 0; i < adev->sdma.num_instances; i++) {
  921. dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
  922. i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
  923. dev_info(adev->dev, " SDMA%d_F32_CNTL=0x%08X\n",
  924. i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
  925. dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
  926. i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
  927. dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
  928. i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
  929. dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
  930. i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
  931. dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
  932. i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
  933. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
  934. i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
  935. dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
  936. i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
  937. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
  938. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
  939. dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
  940. i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
  941. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
  942. i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
  943. dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
  944. i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
  945. mutex_lock(&adev->srbm_mutex);
  946. for (j = 0; j < 16; j++) {
  947. vi_srbm_select(adev, 0, 0, 0, j);
  948. dev_info(adev->dev, " VM %d:\n", j);
  949. dev_info(adev->dev, " SDMA%d_GFX_VIRTUAL_ADDR=0x%08X\n",
  950. i, RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
  951. dev_info(adev->dev, " SDMA%d_GFX_APE1_CNTL=0x%08X\n",
  952. i, RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
  953. }
  954. vi_srbm_select(adev, 0, 0, 0, 0);
  955. mutex_unlock(&adev->srbm_mutex);
  956. }
  957. }
  958. static int sdma_v2_4_soft_reset(void *handle)
  959. {
  960. u32 srbm_soft_reset = 0;
  961. struct amdgpu_device *adev = (struct amdgpu_device *)handle;
  962. u32 tmp = RREG32(mmSRBM_STATUS2);
  963. if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
  964. /* sdma0 */
  965. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
  966. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  967. WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
  968. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
  969. }
  970. if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
  971. /* sdma1 */
  972. tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
  973. tmp = REG_SET_FIELD(tmp, SDMA0_F32_CNTL, HALT, 0);
  974. WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
  975. srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
  976. }
  977. if (srbm_soft_reset) {
  978. sdma_v2_4_print_status((void *)adev);
  979. tmp = RREG32(mmSRBM_SOFT_RESET);
  980. tmp |= srbm_soft_reset;
  981. dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
  982. WREG32(mmSRBM_SOFT_RESET, tmp);
  983. tmp = RREG32(mmSRBM_SOFT_RESET);
  984. udelay(50);
  985. tmp &= ~srbm_soft_reset;
  986. WREG32(mmSRBM_SOFT_RESET, tmp);
  987. tmp = RREG32(mmSRBM_SOFT_RESET);
  988. /* Wait a little for things to settle down */
  989. udelay(50);
  990. sdma_v2_4_print_status((void *)adev);
  991. }
  992. return 0;
  993. }
  994. static int sdma_v2_4_set_trap_irq_state(struct amdgpu_device *adev,
  995. struct amdgpu_irq_src *src,
  996. unsigned type,
  997. enum amdgpu_interrupt_state state)
  998. {
  999. u32 sdma_cntl;
  1000. switch (type) {
  1001. case AMDGPU_SDMA_IRQ_TRAP0:
  1002. switch (state) {
  1003. case AMDGPU_IRQ_STATE_DISABLE:
  1004. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1005. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1006. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1007. break;
  1008. case AMDGPU_IRQ_STATE_ENABLE:
  1009. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
  1010. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1011. WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
  1012. break;
  1013. default:
  1014. break;
  1015. }
  1016. break;
  1017. case AMDGPU_SDMA_IRQ_TRAP1:
  1018. switch (state) {
  1019. case AMDGPU_IRQ_STATE_DISABLE:
  1020. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1021. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
  1022. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1023. break;
  1024. case AMDGPU_IRQ_STATE_ENABLE:
  1025. sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
  1026. sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
  1027. WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
  1028. break;
  1029. default:
  1030. break;
  1031. }
  1032. break;
  1033. default:
  1034. break;
  1035. }
  1036. return 0;
  1037. }
  1038. static int sdma_v2_4_process_trap_irq(struct amdgpu_device *adev,
  1039. struct amdgpu_irq_src *source,
  1040. struct amdgpu_iv_entry *entry)
  1041. {
  1042. u8 instance_id, queue_id;
  1043. instance_id = (entry->ring_id & 0x3) >> 0;
  1044. queue_id = (entry->ring_id & 0xc) >> 2;
  1045. DRM_DEBUG("IH: SDMA trap\n");
  1046. switch (instance_id) {
  1047. case 0:
  1048. switch (queue_id) {
  1049. case 0:
  1050. amdgpu_fence_process(&adev->sdma.instance[0].ring);
  1051. break;
  1052. case 1:
  1053. /* XXX compute */
  1054. break;
  1055. case 2:
  1056. /* XXX compute */
  1057. break;
  1058. }
  1059. break;
  1060. case 1:
  1061. switch (queue_id) {
  1062. case 0:
  1063. amdgpu_fence_process(&adev->sdma.instance[1].ring);
  1064. break;
  1065. case 1:
  1066. /* XXX compute */
  1067. break;
  1068. case 2:
  1069. /* XXX compute */
  1070. break;
  1071. }
  1072. break;
  1073. }
  1074. return 0;
  1075. }
  1076. static int sdma_v2_4_process_illegal_inst_irq(struct amdgpu_device *adev,
  1077. struct amdgpu_irq_src *source,
  1078. struct amdgpu_iv_entry *entry)
  1079. {
  1080. DRM_ERROR("Illegal instruction in SDMA command stream\n");
  1081. schedule_work(&adev->reset_work);
  1082. return 0;
  1083. }
  1084. static int sdma_v2_4_set_clockgating_state(void *handle,
  1085. enum amd_clockgating_state state)
  1086. {
  1087. /* XXX handled via the smc on VI */
  1088. return 0;
  1089. }
  1090. static int sdma_v2_4_set_powergating_state(void *handle,
  1091. enum amd_powergating_state state)
  1092. {
  1093. return 0;
  1094. }
  1095. const struct amd_ip_funcs sdma_v2_4_ip_funcs = {
  1096. .early_init = sdma_v2_4_early_init,
  1097. .late_init = NULL,
  1098. .sw_init = sdma_v2_4_sw_init,
  1099. .sw_fini = sdma_v2_4_sw_fini,
  1100. .hw_init = sdma_v2_4_hw_init,
  1101. .hw_fini = sdma_v2_4_hw_fini,
  1102. .suspend = sdma_v2_4_suspend,
  1103. .resume = sdma_v2_4_resume,
  1104. .is_idle = sdma_v2_4_is_idle,
  1105. .wait_for_idle = sdma_v2_4_wait_for_idle,
  1106. .soft_reset = sdma_v2_4_soft_reset,
  1107. .print_status = sdma_v2_4_print_status,
  1108. .set_clockgating_state = sdma_v2_4_set_clockgating_state,
  1109. .set_powergating_state = sdma_v2_4_set_powergating_state,
  1110. };
  1111. static const struct amdgpu_ring_funcs sdma_v2_4_ring_funcs = {
  1112. .get_rptr = sdma_v2_4_ring_get_rptr,
  1113. .get_wptr = sdma_v2_4_ring_get_wptr,
  1114. .set_wptr = sdma_v2_4_ring_set_wptr,
  1115. .parse_cs = NULL,
  1116. .emit_ib = sdma_v2_4_ring_emit_ib,
  1117. .emit_fence = sdma_v2_4_ring_emit_fence,
  1118. .emit_vm_flush = sdma_v2_4_ring_emit_vm_flush,
  1119. .emit_hdp_flush = sdma_v2_4_ring_emit_hdp_flush,
  1120. .test_ring = sdma_v2_4_ring_test_ring,
  1121. .test_ib = sdma_v2_4_ring_test_ib,
  1122. .insert_nop = sdma_v2_4_ring_insert_nop,
  1123. };
  1124. static void sdma_v2_4_set_ring_funcs(struct amdgpu_device *adev)
  1125. {
  1126. int i;
  1127. for (i = 0; i < adev->sdma.num_instances; i++)
  1128. adev->sdma.instance[i].ring.funcs = &sdma_v2_4_ring_funcs;
  1129. }
  1130. static const struct amdgpu_irq_src_funcs sdma_v2_4_trap_irq_funcs = {
  1131. .set = sdma_v2_4_set_trap_irq_state,
  1132. .process = sdma_v2_4_process_trap_irq,
  1133. };
  1134. static const struct amdgpu_irq_src_funcs sdma_v2_4_illegal_inst_irq_funcs = {
  1135. .process = sdma_v2_4_process_illegal_inst_irq,
  1136. };
  1137. static void sdma_v2_4_set_irq_funcs(struct amdgpu_device *adev)
  1138. {
  1139. adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
  1140. adev->sdma.trap_irq.funcs = &sdma_v2_4_trap_irq_funcs;
  1141. adev->sdma.illegal_inst_irq.funcs = &sdma_v2_4_illegal_inst_irq_funcs;
  1142. }
  1143. /**
  1144. * sdma_v2_4_emit_copy_buffer - copy buffer using the sDMA engine
  1145. *
  1146. * @ring: amdgpu_ring structure holding ring information
  1147. * @src_offset: src GPU address
  1148. * @dst_offset: dst GPU address
  1149. * @byte_count: number of bytes to xfer
  1150. *
  1151. * Copy GPU buffers using the DMA engine (VI).
  1152. * Used by the amdgpu ttm implementation to move pages if
  1153. * registered as the asic copy callback.
  1154. */
  1155. static void sdma_v2_4_emit_copy_buffer(struct amdgpu_ib *ib,
  1156. uint64_t src_offset,
  1157. uint64_t dst_offset,
  1158. uint32_t byte_count)
  1159. {
  1160. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
  1161. SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
  1162. ib->ptr[ib->length_dw++] = byte_count;
  1163. ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
  1164. ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
  1165. ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
  1166. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1167. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1168. }
  1169. /**
  1170. * sdma_v2_4_emit_fill_buffer - fill buffer using the sDMA engine
  1171. *
  1172. * @ring: amdgpu_ring structure holding ring information
  1173. * @src_data: value to write to buffer
  1174. * @dst_offset: dst GPU address
  1175. * @byte_count: number of bytes to xfer
  1176. *
  1177. * Fill GPU buffers using the DMA engine (VI).
  1178. */
  1179. static void sdma_v2_4_emit_fill_buffer(struct amdgpu_ib *ib,
  1180. uint32_t src_data,
  1181. uint64_t dst_offset,
  1182. uint32_t byte_count)
  1183. {
  1184. ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
  1185. ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
  1186. ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
  1187. ib->ptr[ib->length_dw++] = src_data;
  1188. ib->ptr[ib->length_dw++] = byte_count;
  1189. }
  1190. static const struct amdgpu_buffer_funcs sdma_v2_4_buffer_funcs = {
  1191. .copy_max_bytes = 0x1fffff,
  1192. .copy_num_dw = 7,
  1193. .emit_copy_buffer = sdma_v2_4_emit_copy_buffer,
  1194. .fill_max_bytes = 0x1fffff,
  1195. .fill_num_dw = 7,
  1196. .emit_fill_buffer = sdma_v2_4_emit_fill_buffer,
  1197. };
  1198. static void sdma_v2_4_set_buffer_funcs(struct amdgpu_device *adev)
  1199. {
  1200. if (adev->mman.buffer_funcs == NULL) {
  1201. adev->mman.buffer_funcs = &sdma_v2_4_buffer_funcs;
  1202. adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
  1203. }
  1204. }
  1205. static const struct amdgpu_vm_pte_funcs sdma_v2_4_vm_pte_funcs = {
  1206. .copy_pte = sdma_v2_4_vm_copy_pte,
  1207. .write_pte = sdma_v2_4_vm_write_pte,
  1208. .set_pte_pde = sdma_v2_4_vm_set_pte_pde,
  1209. .pad_ib = sdma_v2_4_vm_pad_ib,
  1210. };
  1211. static void sdma_v2_4_set_vm_pte_funcs(struct amdgpu_device *adev)
  1212. {
  1213. if (adev->vm_manager.vm_pte_funcs == NULL) {
  1214. adev->vm_manager.vm_pte_funcs = &sdma_v2_4_vm_pte_funcs;
  1215. adev->vm_manager.vm_pte_funcs_ring = &adev->sdma.instance[0].ring;
  1216. adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
  1217. }
  1218. }