spi-tegra20-sflash.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644
  1. /*
  2. * SPI driver for Nvidia's Tegra20 Serial Flash Controller.
  3. *
  4. * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved.
  5. *
  6. * Author: Laxman Dewangan <ldewangan@nvidia.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms and conditions of the GNU General Public License,
  10. * version 2, as published by the Free Software Foundation.
  11. *
  12. * This program is distributed in the hope it will be useful, but WITHOUT
  13. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  15. * more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. */
  20. #include <linux/clk.h>
  21. #include <linux/completion.h>
  22. #include <linux/delay.h>
  23. #include <linux/err.h>
  24. #include <linux/init.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/io.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/module.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/pm_runtime.h>
  32. #include <linux/of.h>
  33. #include <linux/of_device.h>
  34. #include <linux/reset.h>
  35. #include <linux/spi/spi.h>
  36. #define SPI_COMMAND 0x000
  37. #define SPI_GO BIT(30)
  38. #define SPI_M_S BIT(28)
  39. #define SPI_ACTIVE_SCLK_MASK (0x3 << 26)
  40. #define SPI_ACTIVE_SCLK_DRIVE_LOW (0 << 26)
  41. #define SPI_ACTIVE_SCLK_DRIVE_HIGH (1 << 26)
  42. #define SPI_ACTIVE_SCLK_PULL_LOW (2 << 26)
  43. #define SPI_ACTIVE_SCLK_PULL_HIGH (3 << 26)
  44. #define SPI_CK_SDA_FALLING (1 << 21)
  45. #define SPI_CK_SDA_RISING (0 << 21)
  46. #define SPI_CK_SDA_MASK (1 << 21)
  47. #define SPI_ACTIVE_SDA (0x3 << 18)
  48. #define SPI_ACTIVE_SDA_DRIVE_LOW (0 << 18)
  49. #define SPI_ACTIVE_SDA_DRIVE_HIGH (1 << 18)
  50. #define SPI_ACTIVE_SDA_PULL_LOW (2 << 18)
  51. #define SPI_ACTIVE_SDA_PULL_HIGH (3 << 18)
  52. #define SPI_CS_POL_INVERT BIT(16)
  53. #define SPI_TX_EN BIT(15)
  54. #define SPI_RX_EN BIT(14)
  55. #define SPI_CS_VAL_HIGH BIT(13)
  56. #define SPI_CS_VAL_LOW 0x0
  57. #define SPI_CS_SW BIT(12)
  58. #define SPI_CS_HW 0x0
  59. #define SPI_CS_DELAY_MASK (7 << 9)
  60. #define SPI_CS3_EN BIT(8)
  61. #define SPI_CS2_EN BIT(7)
  62. #define SPI_CS1_EN BIT(6)
  63. #define SPI_CS0_EN BIT(5)
  64. #define SPI_CS_MASK (SPI_CS3_EN | SPI_CS2_EN | \
  65. SPI_CS1_EN | SPI_CS0_EN)
  66. #define SPI_BIT_LENGTH(x) (((x) & 0x1f) << 0)
  67. #define SPI_MODES (SPI_ACTIVE_SCLK_MASK | SPI_CK_SDA_MASK)
  68. #define SPI_STATUS 0x004
  69. #define SPI_BSY BIT(31)
  70. #define SPI_RDY BIT(30)
  71. #define SPI_TXF_FLUSH BIT(29)
  72. #define SPI_RXF_FLUSH BIT(28)
  73. #define SPI_RX_UNF BIT(27)
  74. #define SPI_TX_OVF BIT(26)
  75. #define SPI_RXF_EMPTY BIT(25)
  76. #define SPI_RXF_FULL BIT(24)
  77. #define SPI_TXF_EMPTY BIT(23)
  78. #define SPI_TXF_FULL BIT(22)
  79. #define SPI_BLK_CNT(count) (((count) & 0xffff) + 1)
  80. #define SPI_FIFO_ERROR (SPI_RX_UNF | SPI_TX_OVF)
  81. #define SPI_FIFO_EMPTY (SPI_TX_EMPTY | SPI_RX_EMPTY)
  82. #define SPI_RX_CMP 0x8
  83. #define SPI_DMA_CTL 0x0C
  84. #define SPI_DMA_EN BIT(31)
  85. #define SPI_IE_RXC BIT(27)
  86. #define SPI_IE_TXC BIT(26)
  87. #define SPI_PACKED BIT(20)
  88. #define SPI_RX_TRIG_MASK (0x3 << 18)
  89. #define SPI_RX_TRIG_1W (0x0 << 18)
  90. #define SPI_RX_TRIG_4W (0x1 << 18)
  91. #define SPI_TX_TRIG_MASK (0x3 << 16)
  92. #define SPI_TX_TRIG_1W (0x0 << 16)
  93. #define SPI_TX_TRIG_4W (0x1 << 16)
  94. #define SPI_DMA_BLK_COUNT(count) (((count) - 1) & 0xFFFF);
  95. #define SPI_TX_FIFO 0x10
  96. #define SPI_RX_FIFO 0x20
  97. #define DATA_DIR_TX (1 << 0)
  98. #define DATA_DIR_RX (1 << 1)
  99. #define MAX_CHIP_SELECT 4
  100. #define SPI_FIFO_DEPTH 4
  101. #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
  102. struct tegra_sflash_data {
  103. struct device *dev;
  104. struct spi_master *master;
  105. spinlock_t lock;
  106. struct clk *clk;
  107. struct reset_control *rst;
  108. void __iomem *base;
  109. unsigned irq;
  110. u32 spi_max_frequency;
  111. u32 cur_speed;
  112. struct spi_device *cur_spi;
  113. unsigned cur_pos;
  114. unsigned cur_len;
  115. unsigned bytes_per_word;
  116. unsigned cur_direction;
  117. unsigned curr_xfer_words;
  118. unsigned cur_rx_pos;
  119. unsigned cur_tx_pos;
  120. u32 tx_status;
  121. u32 rx_status;
  122. u32 status_reg;
  123. u32 def_command_reg;
  124. u32 command_reg;
  125. u32 dma_control_reg;
  126. struct completion xfer_completion;
  127. struct spi_transfer *curr_xfer;
  128. };
  129. static int tegra_sflash_runtime_suspend(struct device *dev);
  130. static int tegra_sflash_runtime_resume(struct device *dev);
  131. static inline unsigned long tegra_sflash_readl(struct tegra_sflash_data *tsd,
  132. unsigned long reg)
  133. {
  134. return readl(tsd->base + reg);
  135. }
  136. static inline void tegra_sflash_writel(struct tegra_sflash_data *tsd,
  137. unsigned long val, unsigned long reg)
  138. {
  139. writel(val, tsd->base + reg);
  140. }
  141. static void tegra_sflash_clear_status(struct tegra_sflash_data *tsd)
  142. {
  143. /* Write 1 to clear status register */
  144. tegra_sflash_writel(tsd, SPI_RDY | SPI_FIFO_ERROR, SPI_STATUS);
  145. }
  146. static unsigned tegra_sflash_calculate_curr_xfer_param(
  147. struct spi_device *spi, struct tegra_sflash_data *tsd,
  148. struct spi_transfer *t)
  149. {
  150. unsigned remain_len = t->len - tsd->cur_pos;
  151. unsigned max_word;
  152. tsd->bytes_per_word = DIV_ROUND_UP(t->bits_per_word, 8);
  153. max_word = remain_len / tsd->bytes_per_word;
  154. if (max_word > SPI_FIFO_DEPTH)
  155. max_word = SPI_FIFO_DEPTH;
  156. tsd->curr_xfer_words = max_word;
  157. return max_word;
  158. }
  159. static unsigned tegra_sflash_fill_tx_fifo_from_client_txbuf(
  160. struct tegra_sflash_data *tsd, struct spi_transfer *t)
  161. {
  162. unsigned nbytes;
  163. unsigned long status;
  164. unsigned max_n_32bit = tsd->curr_xfer_words;
  165. u8 *tx_buf = (u8 *)t->tx_buf + tsd->cur_tx_pos;
  166. if (max_n_32bit > SPI_FIFO_DEPTH)
  167. max_n_32bit = SPI_FIFO_DEPTH;
  168. nbytes = max_n_32bit * tsd->bytes_per_word;
  169. status = tegra_sflash_readl(tsd, SPI_STATUS);
  170. while (!(status & SPI_TXF_FULL)) {
  171. int i;
  172. unsigned int x = 0;
  173. for (i = 0; nbytes && (i < tsd->bytes_per_word);
  174. i++, nbytes--)
  175. x |= ((*tx_buf++) << i*8);
  176. tegra_sflash_writel(tsd, x, SPI_TX_FIFO);
  177. if (!nbytes)
  178. break;
  179. status = tegra_sflash_readl(tsd, SPI_STATUS);
  180. }
  181. tsd->cur_tx_pos += max_n_32bit * tsd->bytes_per_word;
  182. return max_n_32bit;
  183. }
  184. static int tegra_sflash_read_rx_fifo_to_client_rxbuf(
  185. struct tegra_sflash_data *tsd, struct spi_transfer *t)
  186. {
  187. unsigned long status;
  188. unsigned int read_words = 0;
  189. u8 *rx_buf = (u8 *)t->rx_buf + tsd->cur_rx_pos;
  190. status = tegra_sflash_readl(tsd, SPI_STATUS);
  191. while (!(status & SPI_RXF_EMPTY)) {
  192. int i;
  193. unsigned long x;
  194. x = tegra_sflash_readl(tsd, SPI_RX_FIFO);
  195. for (i = 0; (i < tsd->bytes_per_word); i++)
  196. *rx_buf++ = (x >> (i*8)) & 0xFF;
  197. read_words++;
  198. status = tegra_sflash_readl(tsd, SPI_STATUS);
  199. }
  200. tsd->cur_rx_pos += read_words * tsd->bytes_per_word;
  201. return 0;
  202. }
  203. static int tegra_sflash_start_cpu_based_transfer(
  204. struct tegra_sflash_data *tsd, struct spi_transfer *t)
  205. {
  206. unsigned long val = 0;
  207. unsigned cur_words;
  208. if (tsd->cur_direction & DATA_DIR_TX)
  209. val |= SPI_IE_TXC;
  210. if (tsd->cur_direction & DATA_DIR_RX)
  211. val |= SPI_IE_RXC;
  212. tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
  213. tsd->dma_control_reg = val;
  214. if (tsd->cur_direction & DATA_DIR_TX)
  215. cur_words = tegra_sflash_fill_tx_fifo_from_client_txbuf(tsd, t);
  216. else
  217. cur_words = tsd->curr_xfer_words;
  218. val |= SPI_DMA_BLK_COUNT(cur_words);
  219. tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
  220. tsd->dma_control_reg = val;
  221. val |= SPI_DMA_EN;
  222. tegra_sflash_writel(tsd, val, SPI_DMA_CTL);
  223. return 0;
  224. }
  225. static int tegra_sflash_start_transfer_one(struct spi_device *spi,
  226. struct spi_transfer *t, bool is_first_of_msg,
  227. bool is_single_xfer)
  228. {
  229. struct tegra_sflash_data *tsd = spi_master_get_devdata(spi->master);
  230. u32 speed;
  231. unsigned long command;
  232. speed = t->speed_hz;
  233. if (speed != tsd->cur_speed) {
  234. clk_set_rate(tsd->clk, speed);
  235. tsd->cur_speed = speed;
  236. }
  237. tsd->cur_spi = spi;
  238. tsd->cur_pos = 0;
  239. tsd->cur_rx_pos = 0;
  240. tsd->cur_tx_pos = 0;
  241. tsd->curr_xfer = t;
  242. tegra_sflash_calculate_curr_xfer_param(spi, tsd, t);
  243. if (is_first_of_msg) {
  244. command = tsd->def_command_reg;
  245. command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
  246. command |= SPI_CS_VAL_HIGH;
  247. command &= ~SPI_MODES;
  248. if (spi->mode & SPI_CPHA)
  249. command |= SPI_CK_SDA_FALLING;
  250. if (spi->mode & SPI_CPOL)
  251. command |= SPI_ACTIVE_SCLK_DRIVE_HIGH;
  252. else
  253. command |= SPI_ACTIVE_SCLK_DRIVE_LOW;
  254. command |= SPI_CS0_EN << spi->chip_select;
  255. } else {
  256. command = tsd->command_reg;
  257. command &= ~SPI_BIT_LENGTH(~0);
  258. command |= SPI_BIT_LENGTH(t->bits_per_word - 1);
  259. command &= ~(SPI_RX_EN | SPI_TX_EN);
  260. }
  261. tsd->cur_direction = 0;
  262. if (t->rx_buf) {
  263. command |= SPI_RX_EN;
  264. tsd->cur_direction |= DATA_DIR_RX;
  265. }
  266. if (t->tx_buf) {
  267. command |= SPI_TX_EN;
  268. tsd->cur_direction |= DATA_DIR_TX;
  269. }
  270. tegra_sflash_writel(tsd, command, SPI_COMMAND);
  271. tsd->command_reg = command;
  272. return tegra_sflash_start_cpu_based_transfer(tsd, t);
  273. }
  274. static int tegra_sflash_setup(struct spi_device *spi)
  275. {
  276. struct tegra_sflash_data *tsd = spi_master_get_devdata(spi->master);
  277. /* Set speed to the spi max fequency if spi device has not set */
  278. spi->max_speed_hz = spi->max_speed_hz ? : tsd->spi_max_frequency;
  279. return 0;
  280. }
  281. static int tegra_sflash_transfer_one_message(struct spi_master *master,
  282. struct spi_message *msg)
  283. {
  284. bool is_first_msg = true;
  285. int single_xfer;
  286. struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
  287. struct spi_transfer *xfer;
  288. struct spi_device *spi = msg->spi;
  289. int ret;
  290. msg->status = 0;
  291. msg->actual_length = 0;
  292. single_xfer = list_is_singular(&msg->transfers);
  293. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  294. reinit_completion(&tsd->xfer_completion);
  295. ret = tegra_sflash_start_transfer_one(spi, xfer,
  296. is_first_msg, single_xfer);
  297. if (ret < 0) {
  298. dev_err(tsd->dev,
  299. "spi can not start transfer, err %d\n", ret);
  300. goto exit;
  301. }
  302. is_first_msg = false;
  303. ret = wait_for_completion_timeout(&tsd->xfer_completion,
  304. SPI_DMA_TIMEOUT);
  305. if (WARN_ON(ret == 0)) {
  306. dev_err(tsd->dev,
  307. "spi trasfer timeout, err %d\n", ret);
  308. ret = -EIO;
  309. goto exit;
  310. }
  311. if (tsd->tx_status || tsd->rx_status) {
  312. dev_err(tsd->dev, "Error in Transfer\n");
  313. ret = -EIO;
  314. goto exit;
  315. }
  316. msg->actual_length += xfer->len;
  317. if (xfer->cs_change && xfer->delay_usecs) {
  318. tegra_sflash_writel(tsd, tsd->def_command_reg,
  319. SPI_COMMAND);
  320. udelay(xfer->delay_usecs);
  321. }
  322. }
  323. ret = 0;
  324. exit:
  325. tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
  326. msg->status = ret;
  327. spi_finalize_current_message(master);
  328. return ret;
  329. }
  330. static irqreturn_t handle_cpu_based_xfer(struct tegra_sflash_data *tsd)
  331. {
  332. struct spi_transfer *t = tsd->curr_xfer;
  333. unsigned long flags;
  334. spin_lock_irqsave(&tsd->lock, flags);
  335. if (tsd->tx_status || tsd->rx_status || (tsd->status_reg & SPI_BSY)) {
  336. dev_err(tsd->dev,
  337. "CpuXfer ERROR bit set 0x%x\n", tsd->status_reg);
  338. dev_err(tsd->dev,
  339. "CpuXfer 0x%08x:0x%08x\n", tsd->command_reg,
  340. tsd->dma_control_reg);
  341. reset_control_assert(tsd->rst);
  342. udelay(2);
  343. reset_control_deassert(tsd->rst);
  344. complete(&tsd->xfer_completion);
  345. goto exit;
  346. }
  347. if (tsd->cur_direction & DATA_DIR_RX)
  348. tegra_sflash_read_rx_fifo_to_client_rxbuf(tsd, t);
  349. if (tsd->cur_direction & DATA_DIR_TX)
  350. tsd->cur_pos = tsd->cur_tx_pos;
  351. else
  352. tsd->cur_pos = tsd->cur_rx_pos;
  353. if (tsd->cur_pos == t->len) {
  354. complete(&tsd->xfer_completion);
  355. goto exit;
  356. }
  357. tegra_sflash_calculate_curr_xfer_param(tsd->cur_spi, tsd, t);
  358. tegra_sflash_start_cpu_based_transfer(tsd, t);
  359. exit:
  360. spin_unlock_irqrestore(&tsd->lock, flags);
  361. return IRQ_HANDLED;
  362. }
  363. static irqreturn_t tegra_sflash_isr(int irq, void *context_data)
  364. {
  365. struct tegra_sflash_data *tsd = context_data;
  366. tsd->status_reg = tegra_sflash_readl(tsd, SPI_STATUS);
  367. if (tsd->cur_direction & DATA_DIR_TX)
  368. tsd->tx_status = tsd->status_reg & SPI_TX_OVF;
  369. if (tsd->cur_direction & DATA_DIR_RX)
  370. tsd->rx_status = tsd->status_reg & SPI_RX_UNF;
  371. tegra_sflash_clear_status(tsd);
  372. return handle_cpu_based_xfer(tsd);
  373. }
  374. static void tegra_sflash_parse_dt(struct tegra_sflash_data *tsd)
  375. {
  376. struct device_node *np = tsd->dev->of_node;
  377. if (of_property_read_u32(np, "spi-max-frequency",
  378. &tsd->spi_max_frequency))
  379. tsd->spi_max_frequency = 25000000; /* 25MHz */
  380. }
  381. static struct of_device_id tegra_sflash_of_match[] = {
  382. { .compatible = "nvidia,tegra20-sflash", },
  383. {}
  384. };
  385. MODULE_DEVICE_TABLE(of, tegra_sflash_of_match);
  386. static int tegra_sflash_probe(struct platform_device *pdev)
  387. {
  388. struct spi_master *master;
  389. struct tegra_sflash_data *tsd;
  390. struct resource *r;
  391. int ret;
  392. const struct of_device_id *match;
  393. match = of_match_device(tegra_sflash_of_match, &pdev->dev);
  394. if (!match) {
  395. dev_err(&pdev->dev, "Error: No device match found\n");
  396. return -ENODEV;
  397. }
  398. master = spi_alloc_master(&pdev->dev, sizeof(*tsd));
  399. if (!master) {
  400. dev_err(&pdev->dev, "master allocation failed\n");
  401. return -ENOMEM;
  402. }
  403. /* the spi->mode bits understood by this driver: */
  404. master->mode_bits = SPI_CPOL | SPI_CPHA;
  405. master->setup = tegra_sflash_setup;
  406. master->transfer_one_message = tegra_sflash_transfer_one_message;
  407. master->auto_runtime_pm = true;
  408. master->num_chipselect = MAX_CHIP_SELECT;
  409. master->bus_num = -1;
  410. platform_set_drvdata(pdev, master);
  411. tsd = spi_master_get_devdata(master);
  412. tsd->master = master;
  413. tsd->dev = &pdev->dev;
  414. spin_lock_init(&tsd->lock);
  415. tegra_sflash_parse_dt(tsd);
  416. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  417. tsd->base = devm_ioremap_resource(&pdev->dev, r);
  418. if (IS_ERR(tsd->base)) {
  419. ret = PTR_ERR(tsd->base);
  420. goto exit_free_master;
  421. }
  422. tsd->irq = platform_get_irq(pdev, 0);
  423. ret = request_irq(tsd->irq, tegra_sflash_isr, 0,
  424. dev_name(&pdev->dev), tsd);
  425. if (ret < 0) {
  426. dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
  427. tsd->irq);
  428. goto exit_free_master;
  429. }
  430. tsd->clk = devm_clk_get(&pdev->dev, NULL);
  431. if (IS_ERR(tsd->clk)) {
  432. dev_err(&pdev->dev, "can not get clock\n");
  433. ret = PTR_ERR(tsd->clk);
  434. goto exit_free_irq;
  435. }
  436. tsd->rst = devm_reset_control_get(&pdev->dev, "spi");
  437. if (IS_ERR(tsd->rst)) {
  438. dev_err(&pdev->dev, "can not get reset\n");
  439. ret = PTR_ERR(tsd->rst);
  440. goto exit_free_irq;
  441. }
  442. init_completion(&tsd->xfer_completion);
  443. pm_runtime_enable(&pdev->dev);
  444. if (!pm_runtime_enabled(&pdev->dev)) {
  445. ret = tegra_sflash_runtime_resume(&pdev->dev);
  446. if (ret)
  447. goto exit_pm_disable;
  448. }
  449. ret = pm_runtime_get_sync(&pdev->dev);
  450. if (ret < 0) {
  451. dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
  452. goto exit_pm_disable;
  453. }
  454. /* Reset controller */
  455. reset_control_assert(tsd->rst);
  456. udelay(2);
  457. reset_control_deassert(tsd->rst);
  458. tsd->def_command_reg = SPI_M_S | SPI_CS_SW;
  459. tegra_sflash_writel(tsd, tsd->def_command_reg, SPI_COMMAND);
  460. pm_runtime_put(&pdev->dev);
  461. master->dev.of_node = pdev->dev.of_node;
  462. ret = devm_spi_register_master(&pdev->dev, master);
  463. if (ret < 0) {
  464. dev_err(&pdev->dev, "can not register to master err %d\n", ret);
  465. goto exit_pm_disable;
  466. }
  467. return ret;
  468. exit_pm_disable:
  469. pm_runtime_disable(&pdev->dev);
  470. if (!pm_runtime_status_suspended(&pdev->dev))
  471. tegra_sflash_runtime_suspend(&pdev->dev);
  472. exit_free_irq:
  473. free_irq(tsd->irq, tsd);
  474. exit_free_master:
  475. spi_master_put(master);
  476. return ret;
  477. }
  478. static int tegra_sflash_remove(struct platform_device *pdev)
  479. {
  480. struct spi_master *master = platform_get_drvdata(pdev);
  481. struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
  482. free_irq(tsd->irq, tsd);
  483. pm_runtime_disable(&pdev->dev);
  484. if (!pm_runtime_status_suspended(&pdev->dev))
  485. tegra_sflash_runtime_suspend(&pdev->dev);
  486. return 0;
  487. }
  488. #ifdef CONFIG_PM_SLEEP
  489. static int tegra_sflash_suspend(struct device *dev)
  490. {
  491. struct spi_master *master = dev_get_drvdata(dev);
  492. return spi_master_suspend(master);
  493. }
  494. static int tegra_sflash_resume(struct device *dev)
  495. {
  496. struct spi_master *master = dev_get_drvdata(dev);
  497. struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
  498. int ret;
  499. ret = pm_runtime_get_sync(dev);
  500. if (ret < 0) {
  501. dev_err(dev, "pm runtime failed, e = %d\n", ret);
  502. return ret;
  503. }
  504. tegra_sflash_writel(tsd, tsd->command_reg, SPI_COMMAND);
  505. pm_runtime_put(dev);
  506. return spi_master_resume(master);
  507. }
  508. #endif
  509. static int tegra_sflash_runtime_suspend(struct device *dev)
  510. {
  511. struct spi_master *master = dev_get_drvdata(dev);
  512. struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
  513. /* Flush all write which are in PPSB queue by reading back */
  514. tegra_sflash_readl(tsd, SPI_COMMAND);
  515. clk_disable_unprepare(tsd->clk);
  516. return 0;
  517. }
  518. static int tegra_sflash_runtime_resume(struct device *dev)
  519. {
  520. struct spi_master *master = dev_get_drvdata(dev);
  521. struct tegra_sflash_data *tsd = spi_master_get_devdata(master);
  522. int ret;
  523. ret = clk_prepare_enable(tsd->clk);
  524. if (ret < 0) {
  525. dev_err(tsd->dev, "clk_prepare failed: %d\n", ret);
  526. return ret;
  527. }
  528. return 0;
  529. }
  530. static const struct dev_pm_ops slink_pm_ops = {
  531. SET_RUNTIME_PM_OPS(tegra_sflash_runtime_suspend,
  532. tegra_sflash_runtime_resume, NULL)
  533. SET_SYSTEM_SLEEP_PM_OPS(tegra_sflash_suspend, tegra_sflash_resume)
  534. };
  535. static struct platform_driver tegra_sflash_driver = {
  536. .driver = {
  537. .name = "spi-tegra-sflash",
  538. .owner = THIS_MODULE,
  539. .pm = &slink_pm_ops,
  540. .of_match_table = tegra_sflash_of_match,
  541. },
  542. .probe = tegra_sflash_probe,
  543. .remove = tegra_sflash_remove,
  544. };
  545. module_platform_driver(tegra_sflash_driver);
  546. MODULE_ALIAS("platform:spi-tegra-sflash");
  547. MODULE_DESCRIPTION("NVIDIA Tegra20 Serial Flash Controller Driver");
  548. MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
  549. MODULE_LICENSE("GPL v2");