intel_pm.c 205 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. /**
  33. * DOC: RC6
  34. *
  35. * RC6 is a special power stage which allows the GPU to enter an very
  36. * low-voltage mode when idle, using down to 0V while at this stage. This
  37. * stage is entered automatically when the GPU is idle when RC6 support is
  38. * enabled, and as soon as new workload arises GPU wakes up automatically as well.
  39. *
  40. * There are different RC6 modes available in Intel GPU, which differentiate
  41. * among each other with the latency required to enter and leave RC6 and
  42. * voltage consumed by the GPU in different states.
  43. *
  44. * The combination of the following flags define which states GPU is allowed
  45. * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
  46. * RC6pp is deepest RC6. Their support by hardware varies according to the
  47. * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
  48. * which brings the most power savings; deeper states save more power, but
  49. * require higher latency to switch to and wake up.
  50. */
  51. #define INTEL_RC6_ENABLE (1<<0)
  52. #define INTEL_RC6p_ENABLE (1<<1)
  53. #define INTEL_RC6pp_ENABLE (1<<2)
  54. static void bxt_init_clock_gating(struct drm_device *dev)
  55. {
  56. struct drm_i915_private *dev_priv = dev->dev_private;
  57. /* WaDisableSDEUnitClockGating:bxt */
  58. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  59. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  60. /*
  61. * FIXME:
  62. * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
  63. */
  64. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  65. GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
  66. /*
  67. * Wa: Backlight PWM may stop in the asserted state, causing backlight
  68. * to stay fully on.
  69. */
  70. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  71. I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
  72. PWM1_GATING_DIS | PWM2_GATING_DIS);
  73. }
  74. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  75. {
  76. struct drm_i915_private *dev_priv = dev->dev_private;
  77. u32 tmp;
  78. tmp = I915_READ(CLKCFG);
  79. switch (tmp & CLKCFG_FSB_MASK) {
  80. case CLKCFG_FSB_533:
  81. dev_priv->fsb_freq = 533; /* 133*4 */
  82. break;
  83. case CLKCFG_FSB_800:
  84. dev_priv->fsb_freq = 800; /* 200*4 */
  85. break;
  86. case CLKCFG_FSB_667:
  87. dev_priv->fsb_freq = 667; /* 167*4 */
  88. break;
  89. case CLKCFG_FSB_400:
  90. dev_priv->fsb_freq = 400; /* 100*4 */
  91. break;
  92. }
  93. switch (tmp & CLKCFG_MEM_MASK) {
  94. case CLKCFG_MEM_533:
  95. dev_priv->mem_freq = 533;
  96. break;
  97. case CLKCFG_MEM_667:
  98. dev_priv->mem_freq = 667;
  99. break;
  100. case CLKCFG_MEM_800:
  101. dev_priv->mem_freq = 800;
  102. break;
  103. }
  104. /* detect pineview DDR3 setting */
  105. tmp = I915_READ(CSHRDDR3CTL);
  106. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  107. }
  108. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  109. {
  110. struct drm_i915_private *dev_priv = dev->dev_private;
  111. u16 ddrpll, csipll;
  112. ddrpll = I915_READ16(DDRMPLL1);
  113. csipll = I915_READ16(CSIPLL0);
  114. switch (ddrpll & 0xff) {
  115. case 0xc:
  116. dev_priv->mem_freq = 800;
  117. break;
  118. case 0x10:
  119. dev_priv->mem_freq = 1066;
  120. break;
  121. case 0x14:
  122. dev_priv->mem_freq = 1333;
  123. break;
  124. case 0x18:
  125. dev_priv->mem_freq = 1600;
  126. break;
  127. default:
  128. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  129. ddrpll & 0xff);
  130. dev_priv->mem_freq = 0;
  131. break;
  132. }
  133. dev_priv->ips.r_t = dev_priv->mem_freq;
  134. switch (csipll & 0x3ff) {
  135. case 0x00c:
  136. dev_priv->fsb_freq = 3200;
  137. break;
  138. case 0x00e:
  139. dev_priv->fsb_freq = 3733;
  140. break;
  141. case 0x010:
  142. dev_priv->fsb_freq = 4266;
  143. break;
  144. case 0x012:
  145. dev_priv->fsb_freq = 4800;
  146. break;
  147. case 0x014:
  148. dev_priv->fsb_freq = 5333;
  149. break;
  150. case 0x016:
  151. dev_priv->fsb_freq = 5866;
  152. break;
  153. case 0x018:
  154. dev_priv->fsb_freq = 6400;
  155. break;
  156. default:
  157. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  158. csipll & 0x3ff);
  159. dev_priv->fsb_freq = 0;
  160. break;
  161. }
  162. if (dev_priv->fsb_freq == 3200) {
  163. dev_priv->ips.c_m = 0;
  164. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  165. dev_priv->ips.c_m = 1;
  166. } else {
  167. dev_priv->ips.c_m = 2;
  168. }
  169. }
  170. static const struct cxsr_latency cxsr_latency_table[] = {
  171. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  172. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  173. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  174. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  175. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  176. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  177. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  178. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  179. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  180. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  181. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  182. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  183. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  184. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  185. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  186. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  187. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  188. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  189. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  190. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  191. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  192. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  193. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  194. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  195. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  196. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  197. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  198. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  199. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  200. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  201. };
  202. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  203. int is_ddr3,
  204. int fsb,
  205. int mem)
  206. {
  207. const struct cxsr_latency *latency;
  208. int i;
  209. if (fsb == 0 || mem == 0)
  210. return NULL;
  211. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  212. latency = &cxsr_latency_table[i];
  213. if (is_desktop == latency->is_desktop &&
  214. is_ddr3 == latency->is_ddr3 &&
  215. fsb == latency->fsb_freq && mem == latency->mem_freq)
  216. return latency;
  217. }
  218. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  219. return NULL;
  220. }
  221. static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
  222. {
  223. u32 val;
  224. mutex_lock(&dev_priv->rps.hw_lock);
  225. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  226. if (enable)
  227. val &= ~FORCE_DDR_HIGH_FREQ;
  228. else
  229. val |= FORCE_DDR_HIGH_FREQ;
  230. val &= ~FORCE_DDR_LOW_FREQ;
  231. val |= FORCE_DDR_FREQ_REQ_ACK;
  232. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  233. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  234. FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
  235. DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
  236. mutex_unlock(&dev_priv->rps.hw_lock);
  237. }
  238. static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
  239. {
  240. u32 val;
  241. mutex_lock(&dev_priv->rps.hw_lock);
  242. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  243. if (enable)
  244. val |= DSP_MAXFIFO_PM5_ENABLE;
  245. else
  246. val &= ~DSP_MAXFIFO_PM5_ENABLE;
  247. vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
  248. mutex_unlock(&dev_priv->rps.hw_lock);
  249. }
  250. #define FW_WM(value, plane) \
  251. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
  252. void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
  253. {
  254. struct drm_device *dev = dev_priv->dev;
  255. u32 val;
  256. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  257. I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
  258. POSTING_READ(FW_BLC_SELF_VLV);
  259. dev_priv->wm.vlv.cxsr = enable;
  260. } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
  261. I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
  262. POSTING_READ(FW_BLC_SELF);
  263. } else if (IS_PINEVIEW(dev)) {
  264. val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
  265. val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
  266. I915_WRITE(DSPFW3, val);
  267. POSTING_READ(DSPFW3);
  268. } else if (IS_I945G(dev) || IS_I945GM(dev)) {
  269. val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
  270. _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
  271. I915_WRITE(FW_BLC_SELF, val);
  272. POSTING_READ(FW_BLC_SELF);
  273. } else if (IS_I915GM(dev)) {
  274. val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
  275. _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
  276. I915_WRITE(INSTPM, val);
  277. POSTING_READ(INSTPM);
  278. } else {
  279. return;
  280. }
  281. DRM_DEBUG_KMS("memory self-refresh is %s\n",
  282. enable ? "enabled" : "disabled");
  283. }
  284. /*
  285. * Latency for FIFO fetches is dependent on several factors:
  286. * - memory configuration (speed, channels)
  287. * - chipset
  288. * - current MCH state
  289. * It can be fairly high in some situations, so here we assume a fairly
  290. * pessimal value. It's a tradeoff between extra memory fetches (if we
  291. * set this value too high, the FIFO will fetch frequently to stay full)
  292. * and power consumption (set it too low to save power and we might see
  293. * FIFO underruns and display "flicker").
  294. *
  295. * A value of 5us seems to be a good balance; safe for very low end
  296. * platforms but not overly aggressive on lower latency configs.
  297. */
  298. static const int pessimal_latency_ns = 5000;
  299. #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
  300. ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
  301. static int vlv_get_fifo_size(struct drm_device *dev,
  302. enum pipe pipe, int plane)
  303. {
  304. struct drm_i915_private *dev_priv = dev->dev_private;
  305. int sprite0_start, sprite1_start, size;
  306. switch (pipe) {
  307. uint32_t dsparb, dsparb2, dsparb3;
  308. case PIPE_A:
  309. dsparb = I915_READ(DSPARB);
  310. dsparb2 = I915_READ(DSPARB2);
  311. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
  312. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
  313. break;
  314. case PIPE_B:
  315. dsparb = I915_READ(DSPARB);
  316. dsparb2 = I915_READ(DSPARB2);
  317. sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
  318. sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
  319. break;
  320. case PIPE_C:
  321. dsparb2 = I915_READ(DSPARB2);
  322. dsparb3 = I915_READ(DSPARB3);
  323. sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
  324. sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
  325. break;
  326. default:
  327. return 0;
  328. }
  329. switch (plane) {
  330. case 0:
  331. size = sprite0_start;
  332. break;
  333. case 1:
  334. size = sprite1_start - sprite0_start;
  335. break;
  336. case 2:
  337. size = 512 - 1 - sprite1_start;
  338. break;
  339. default:
  340. return 0;
  341. }
  342. DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
  343. pipe_name(pipe), plane == 0 ? "primary" : "sprite",
  344. plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
  345. size);
  346. return size;
  347. }
  348. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  349. {
  350. struct drm_i915_private *dev_priv = dev->dev_private;
  351. uint32_t dsparb = I915_READ(DSPARB);
  352. int size;
  353. size = dsparb & 0x7f;
  354. if (plane)
  355. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  356. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  357. plane ? "B" : "A", size);
  358. return size;
  359. }
  360. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  361. {
  362. struct drm_i915_private *dev_priv = dev->dev_private;
  363. uint32_t dsparb = I915_READ(DSPARB);
  364. int size;
  365. size = dsparb & 0x1ff;
  366. if (plane)
  367. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  368. size >>= 1; /* Convert to cachelines */
  369. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  370. plane ? "B" : "A", size);
  371. return size;
  372. }
  373. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  374. {
  375. struct drm_i915_private *dev_priv = dev->dev_private;
  376. uint32_t dsparb = I915_READ(DSPARB);
  377. int size;
  378. size = dsparb & 0x7f;
  379. size >>= 2; /* Convert to cachelines */
  380. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  381. plane ? "B" : "A",
  382. size);
  383. return size;
  384. }
  385. /* Pineview has different values for various configs */
  386. static const struct intel_watermark_params pineview_display_wm = {
  387. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  388. .max_wm = PINEVIEW_MAX_WM,
  389. .default_wm = PINEVIEW_DFT_WM,
  390. .guard_size = PINEVIEW_GUARD_WM,
  391. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  392. };
  393. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  394. .fifo_size = PINEVIEW_DISPLAY_FIFO,
  395. .max_wm = PINEVIEW_MAX_WM,
  396. .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
  397. .guard_size = PINEVIEW_GUARD_WM,
  398. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  399. };
  400. static const struct intel_watermark_params pineview_cursor_wm = {
  401. .fifo_size = PINEVIEW_CURSOR_FIFO,
  402. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  403. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  404. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  405. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  406. };
  407. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  408. .fifo_size = PINEVIEW_CURSOR_FIFO,
  409. .max_wm = PINEVIEW_CURSOR_MAX_WM,
  410. .default_wm = PINEVIEW_CURSOR_DFT_WM,
  411. .guard_size = PINEVIEW_CURSOR_GUARD_WM,
  412. .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
  413. };
  414. static const struct intel_watermark_params g4x_wm_info = {
  415. .fifo_size = G4X_FIFO_SIZE,
  416. .max_wm = G4X_MAX_WM,
  417. .default_wm = G4X_MAX_WM,
  418. .guard_size = 2,
  419. .cacheline_size = G4X_FIFO_LINE_SIZE,
  420. };
  421. static const struct intel_watermark_params g4x_cursor_wm_info = {
  422. .fifo_size = I965_CURSOR_FIFO,
  423. .max_wm = I965_CURSOR_MAX_WM,
  424. .default_wm = I965_CURSOR_DFT_WM,
  425. .guard_size = 2,
  426. .cacheline_size = G4X_FIFO_LINE_SIZE,
  427. };
  428. static const struct intel_watermark_params valleyview_wm_info = {
  429. .fifo_size = VALLEYVIEW_FIFO_SIZE,
  430. .max_wm = VALLEYVIEW_MAX_WM,
  431. .default_wm = VALLEYVIEW_MAX_WM,
  432. .guard_size = 2,
  433. .cacheline_size = G4X_FIFO_LINE_SIZE,
  434. };
  435. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  436. .fifo_size = I965_CURSOR_FIFO,
  437. .max_wm = VALLEYVIEW_CURSOR_MAX_WM,
  438. .default_wm = I965_CURSOR_DFT_WM,
  439. .guard_size = 2,
  440. .cacheline_size = G4X_FIFO_LINE_SIZE,
  441. };
  442. static const struct intel_watermark_params i965_cursor_wm_info = {
  443. .fifo_size = I965_CURSOR_FIFO,
  444. .max_wm = I965_CURSOR_MAX_WM,
  445. .default_wm = I965_CURSOR_DFT_WM,
  446. .guard_size = 2,
  447. .cacheline_size = I915_FIFO_LINE_SIZE,
  448. };
  449. static const struct intel_watermark_params i945_wm_info = {
  450. .fifo_size = I945_FIFO_SIZE,
  451. .max_wm = I915_MAX_WM,
  452. .default_wm = 1,
  453. .guard_size = 2,
  454. .cacheline_size = I915_FIFO_LINE_SIZE,
  455. };
  456. static const struct intel_watermark_params i915_wm_info = {
  457. .fifo_size = I915_FIFO_SIZE,
  458. .max_wm = I915_MAX_WM,
  459. .default_wm = 1,
  460. .guard_size = 2,
  461. .cacheline_size = I915_FIFO_LINE_SIZE,
  462. };
  463. static const struct intel_watermark_params i830_a_wm_info = {
  464. .fifo_size = I855GM_FIFO_SIZE,
  465. .max_wm = I915_MAX_WM,
  466. .default_wm = 1,
  467. .guard_size = 2,
  468. .cacheline_size = I830_FIFO_LINE_SIZE,
  469. };
  470. static const struct intel_watermark_params i830_bc_wm_info = {
  471. .fifo_size = I855GM_FIFO_SIZE,
  472. .max_wm = I915_MAX_WM/2,
  473. .default_wm = 1,
  474. .guard_size = 2,
  475. .cacheline_size = I830_FIFO_LINE_SIZE,
  476. };
  477. static const struct intel_watermark_params i845_wm_info = {
  478. .fifo_size = I830_FIFO_SIZE,
  479. .max_wm = I915_MAX_WM,
  480. .default_wm = 1,
  481. .guard_size = 2,
  482. .cacheline_size = I830_FIFO_LINE_SIZE,
  483. };
  484. /**
  485. * intel_calculate_wm - calculate watermark level
  486. * @clock_in_khz: pixel clock
  487. * @wm: chip FIFO params
  488. * @pixel_size: display pixel size
  489. * @latency_ns: memory latency for the platform
  490. *
  491. * Calculate the watermark level (the level at which the display plane will
  492. * start fetching from memory again). Each chip has a different display
  493. * FIFO size and allocation, so the caller needs to figure that out and pass
  494. * in the correct intel_watermark_params structure.
  495. *
  496. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  497. * on the pixel size. When it reaches the watermark level, it'll start
  498. * fetching FIFO line sized based chunks from memory until the FIFO fills
  499. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  500. * will occur, and a display engine hang could result.
  501. */
  502. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  503. const struct intel_watermark_params *wm,
  504. int fifo_size,
  505. int pixel_size,
  506. unsigned long latency_ns)
  507. {
  508. long entries_required, wm_size;
  509. /*
  510. * Note: we need to make sure we don't overflow for various clock &
  511. * latency values.
  512. * clocks go from a few thousand to several hundred thousand.
  513. * latency is usually a few thousand
  514. */
  515. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  516. 1000;
  517. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  518. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  519. wm_size = fifo_size - (entries_required + wm->guard_size);
  520. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  521. /* Don't promote wm_size to unsigned... */
  522. if (wm_size > (long)wm->max_wm)
  523. wm_size = wm->max_wm;
  524. if (wm_size <= 0)
  525. wm_size = wm->default_wm;
  526. /*
  527. * Bspec seems to indicate that the value shouldn't be lower than
  528. * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
  529. * Lets go for 8 which is the burst size since certain platforms
  530. * already use a hardcoded 8 (which is what the spec says should be
  531. * done).
  532. */
  533. if (wm_size <= 8)
  534. wm_size = 8;
  535. return wm_size;
  536. }
  537. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  538. {
  539. struct drm_crtc *crtc, *enabled = NULL;
  540. for_each_crtc(dev, crtc) {
  541. if (intel_crtc_active(crtc)) {
  542. if (enabled)
  543. return NULL;
  544. enabled = crtc;
  545. }
  546. }
  547. return enabled;
  548. }
  549. static void pineview_update_wm(struct drm_crtc *unused_crtc)
  550. {
  551. struct drm_device *dev = unused_crtc->dev;
  552. struct drm_i915_private *dev_priv = dev->dev_private;
  553. struct drm_crtc *crtc;
  554. const struct cxsr_latency *latency;
  555. u32 reg;
  556. unsigned long wm;
  557. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  558. dev_priv->fsb_freq, dev_priv->mem_freq);
  559. if (!latency) {
  560. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  561. intel_set_memory_cxsr(dev_priv, false);
  562. return;
  563. }
  564. crtc = single_enabled_crtc(dev);
  565. if (crtc) {
  566. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  567. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  568. int clock = adjusted_mode->crtc_clock;
  569. /* Display SR */
  570. wm = intel_calculate_wm(clock, &pineview_display_wm,
  571. pineview_display_wm.fifo_size,
  572. pixel_size, latency->display_sr);
  573. reg = I915_READ(DSPFW1);
  574. reg &= ~DSPFW_SR_MASK;
  575. reg |= FW_WM(wm, SR);
  576. I915_WRITE(DSPFW1, reg);
  577. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  578. /* cursor SR */
  579. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  580. pineview_display_wm.fifo_size,
  581. pixel_size, latency->cursor_sr);
  582. reg = I915_READ(DSPFW3);
  583. reg &= ~DSPFW_CURSOR_SR_MASK;
  584. reg |= FW_WM(wm, CURSOR_SR);
  585. I915_WRITE(DSPFW3, reg);
  586. /* Display HPLL off SR */
  587. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  588. pineview_display_hplloff_wm.fifo_size,
  589. pixel_size, latency->display_hpll_disable);
  590. reg = I915_READ(DSPFW3);
  591. reg &= ~DSPFW_HPLL_SR_MASK;
  592. reg |= FW_WM(wm, HPLL_SR);
  593. I915_WRITE(DSPFW3, reg);
  594. /* cursor HPLL off SR */
  595. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  596. pineview_display_hplloff_wm.fifo_size,
  597. pixel_size, latency->cursor_hpll_disable);
  598. reg = I915_READ(DSPFW3);
  599. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  600. reg |= FW_WM(wm, HPLL_CURSOR);
  601. I915_WRITE(DSPFW3, reg);
  602. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  603. intel_set_memory_cxsr(dev_priv, true);
  604. } else {
  605. intel_set_memory_cxsr(dev_priv, false);
  606. }
  607. }
  608. static bool g4x_compute_wm0(struct drm_device *dev,
  609. int plane,
  610. const struct intel_watermark_params *display,
  611. int display_latency_ns,
  612. const struct intel_watermark_params *cursor,
  613. int cursor_latency_ns,
  614. int *plane_wm,
  615. int *cursor_wm)
  616. {
  617. struct drm_crtc *crtc;
  618. const struct drm_display_mode *adjusted_mode;
  619. int htotal, hdisplay, clock, pixel_size;
  620. int line_time_us, line_count;
  621. int entries, tlb_miss;
  622. crtc = intel_get_crtc_for_plane(dev, plane);
  623. if (!intel_crtc_active(crtc)) {
  624. *cursor_wm = cursor->guard_size;
  625. *plane_wm = display->guard_size;
  626. return false;
  627. }
  628. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  629. clock = adjusted_mode->crtc_clock;
  630. htotal = adjusted_mode->crtc_htotal;
  631. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  632. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  633. /* Use the small buffer method to calculate plane watermark */
  634. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  635. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  636. if (tlb_miss > 0)
  637. entries += tlb_miss;
  638. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  639. *plane_wm = entries + display->guard_size;
  640. if (*plane_wm > (int)display->max_wm)
  641. *plane_wm = display->max_wm;
  642. /* Use the large buffer method to calculate cursor watermark */
  643. line_time_us = max(htotal * 1000 / clock, 1);
  644. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  645. entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
  646. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  647. if (tlb_miss > 0)
  648. entries += tlb_miss;
  649. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  650. *cursor_wm = entries + cursor->guard_size;
  651. if (*cursor_wm > (int)cursor->max_wm)
  652. *cursor_wm = (int)cursor->max_wm;
  653. return true;
  654. }
  655. /*
  656. * Check the wm result.
  657. *
  658. * If any calculated watermark values is larger than the maximum value that
  659. * can be programmed into the associated watermark register, that watermark
  660. * must be disabled.
  661. */
  662. static bool g4x_check_srwm(struct drm_device *dev,
  663. int display_wm, int cursor_wm,
  664. const struct intel_watermark_params *display,
  665. const struct intel_watermark_params *cursor)
  666. {
  667. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  668. display_wm, cursor_wm);
  669. if (display_wm > display->max_wm) {
  670. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  671. display_wm, display->max_wm);
  672. return false;
  673. }
  674. if (cursor_wm > cursor->max_wm) {
  675. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  676. cursor_wm, cursor->max_wm);
  677. return false;
  678. }
  679. if (!(display_wm || cursor_wm)) {
  680. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  681. return false;
  682. }
  683. return true;
  684. }
  685. static bool g4x_compute_srwm(struct drm_device *dev,
  686. int plane,
  687. int latency_ns,
  688. const struct intel_watermark_params *display,
  689. const struct intel_watermark_params *cursor,
  690. int *display_wm, int *cursor_wm)
  691. {
  692. struct drm_crtc *crtc;
  693. const struct drm_display_mode *adjusted_mode;
  694. int hdisplay, htotal, pixel_size, clock;
  695. unsigned long line_time_us;
  696. int line_count, line_size;
  697. int small, large;
  698. int entries;
  699. if (!latency_ns) {
  700. *display_wm = *cursor_wm = 0;
  701. return false;
  702. }
  703. crtc = intel_get_crtc_for_plane(dev, plane);
  704. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  705. clock = adjusted_mode->crtc_clock;
  706. htotal = adjusted_mode->crtc_htotal;
  707. hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  708. pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  709. line_time_us = max(htotal * 1000 / clock, 1);
  710. line_count = (latency_ns / line_time_us + 1000) / 1000;
  711. line_size = hdisplay * pixel_size;
  712. /* Use the minimum of the small and large buffer method for primary */
  713. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  714. large = line_count * line_size;
  715. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  716. *display_wm = entries + display->guard_size;
  717. /* calculate the self-refresh watermark for display cursor */
  718. entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
  719. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  720. *cursor_wm = entries + cursor->guard_size;
  721. return g4x_check_srwm(dev,
  722. *display_wm, *cursor_wm,
  723. display, cursor);
  724. }
  725. #define FW_WM_VLV(value, plane) \
  726. (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
  727. static void vlv_write_wm_values(struct intel_crtc *crtc,
  728. const struct vlv_wm_values *wm)
  729. {
  730. struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
  731. enum pipe pipe = crtc->pipe;
  732. I915_WRITE(VLV_DDL(pipe),
  733. (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
  734. (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
  735. (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
  736. (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
  737. I915_WRITE(DSPFW1,
  738. FW_WM(wm->sr.plane, SR) |
  739. FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
  740. FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
  741. FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
  742. I915_WRITE(DSPFW2,
  743. FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
  744. FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
  745. FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
  746. I915_WRITE(DSPFW3,
  747. FW_WM(wm->sr.cursor, CURSOR_SR));
  748. if (IS_CHERRYVIEW(dev_priv)) {
  749. I915_WRITE(DSPFW7_CHV,
  750. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  751. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  752. I915_WRITE(DSPFW8_CHV,
  753. FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
  754. FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
  755. I915_WRITE(DSPFW9_CHV,
  756. FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
  757. FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
  758. I915_WRITE(DSPHOWM,
  759. FW_WM(wm->sr.plane >> 9, SR_HI) |
  760. FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
  761. FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
  762. FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
  763. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  764. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  765. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  766. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  767. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  768. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  769. } else {
  770. I915_WRITE(DSPFW7,
  771. FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
  772. FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
  773. I915_WRITE(DSPHOWM,
  774. FW_WM(wm->sr.plane >> 9, SR_HI) |
  775. FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
  776. FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
  777. FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
  778. FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
  779. FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
  780. FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
  781. }
  782. /* zero (unused) WM1 watermarks */
  783. I915_WRITE(DSPFW4, 0);
  784. I915_WRITE(DSPFW5, 0);
  785. I915_WRITE(DSPFW6, 0);
  786. I915_WRITE(DSPHOWM1, 0);
  787. POSTING_READ(DSPFW1);
  788. }
  789. #undef FW_WM_VLV
  790. enum vlv_wm_level {
  791. VLV_WM_LEVEL_PM2,
  792. VLV_WM_LEVEL_PM5,
  793. VLV_WM_LEVEL_DDR_DVFS,
  794. };
  795. /* latency must be in 0.1us units. */
  796. static unsigned int vlv_wm_method2(unsigned int pixel_rate,
  797. unsigned int pipe_htotal,
  798. unsigned int horiz_pixels,
  799. unsigned int bytes_per_pixel,
  800. unsigned int latency)
  801. {
  802. unsigned int ret;
  803. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  804. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  805. ret = DIV_ROUND_UP(ret, 64);
  806. return ret;
  807. }
  808. static void vlv_setup_wm_latency(struct drm_device *dev)
  809. {
  810. struct drm_i915_private *dev_priv = dev->dev_private;
  811. /* all latencies in usec */
  812. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
  813. dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
  814. if (IS_CHERRYVIEW(dev_priv)) {
  815. dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
  816. dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
  817. dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
  818. }
  819. }
  820. static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
  821. struct intel_crtc *crtc,
  822. const struct intel_plane_state *state,
  823. int level)
  824. {
  825. struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
  826. int clock, htotal, pixel_size, width, wm;
  827. if (dev_priv->wm.pri_latency[level] == 0)
  828. return USHRT_MAX;
  829. if (!state->visible)
  830. return 0;
  831. pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  832. clock = crtc->config->base.adjusted_mode.crtc_clock;
  833. htotal = crtc->config->base.adjusted_mode.crtc_htotal;
  834. width = crtc->config->pipe_src_w;
  835. if (WARN_ON(htotal == 0))
  836. htotal = 1;
  837. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  838. /*
  839. * FIXME the formula gives values that are
  840. * too big for the cursor FIFO, and hence we
  841. * would never be able to use cursors. For
  842. * now just hardcode the watermark.
  843. */
  844. wm = 63;
  845. } else {
  846. wm = vlv_wm_method2(clock, htotal, width, pixel_size,
  847. dev_priv->wm.pri_latency[level] * 10);
  848. }
  849. return min_t(int, wm, USHRT_MAX);
  850. }
  851. static void vlv_compute_fifo(struct intel_crtc *crtc)
  852. {
  853. struct drm_device *dev = crtc->base.dev;
  854. struct vlv_wm_state *wm_state = &crtc->wm_state;
  855. struct intel_plane *plane;
  856. unsigned int total_rate = 0;
  857. const int fifo_size = 512 - 1;
  858. int fifo_extra, fifo_left = fifo_size;
  859. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  860. struct intel_plane_state *state =
  861. to_intel_plane_state(plane->base.state);
  862. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  863. continue;
  864. if (state->visible) {
  865. wm_state->num_active_planes++;
  866. total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  867. }
  868. }
  869. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  870. struct intel_plane_state *state =
  871. to_intel_plane_state(plane->base.state);
  872. unsigned int rate;
  873. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  874. plane->wm.fifo_size = 63;
  875. continue;
  876. }
  877. if (!state->visible) {
  878. plane->wm.fifo_size = 0;
  879. continue;
  880. }
  881. rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
  882. plane->wm.fifo_size = fifo_size * rate / total_rate;
  883. fifo_left -= plane->wm.fifo_size;
  884. }
  885. fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
  886. /* spread the remainder evenly */
  887. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  888. int plane_extra;
  889. if (fifo_left == 0)
  890. break;
  891. if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
  892. continue;
  893. /* give it all to the first plane if none are active */
  894. if (plane->wm.fifo_size == 0 &&
  895. wm_state->num_active_planes)
  896. continue;
  897. plane_extra = min(fifo_extra, fifo_left);
  898. plane->wm.fifo_size += plane_extra;
  899. fifo_left -= plane_extra;
  900. }
  901. WARN_ON(fifo_left != 0);
  902. }
  903. static void vlv_invert_wms(struct intel_crtc *crtc)
  904. {
  905. struct vlv_wm_state *wm_state = &crtc->wm_state;
  906. int level;
  907. for (level = 0; level < wm_state->num_levels; level++) {
  908. struct drm_device *dev = crtc->base.dev;
  909. const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
  910. struct intel_plane *plane;
  911. wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
  912. wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
  913. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  914. switch (plane->base.type) {
  915. int sprite;
  916. case DRM_PLANE_TYPE_CURSOR:
  917. wm_state->wm[level].cursor = plane->wm.fifo_size -
  918. wm_state->wm[level].cursor;
  919. break;
  920. case DRM_PLANE_TYPE_PRIMARY:
  921. wm_state->wm[level].primary = plane->wm.fifo_size -
  922. wm_state->wm[level].primary;
  923. break;
  924. case DRM_PLANE_TYPE_OVERLAY:
  925. sprite = plane->plane;
  926. wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
  927. wm_state->wm[level].sprite[sprite];
  928. break;
  929. }
  930. }
  931. }
  932. }
  933. static void vlv_compute_wm(struct intel_crtc *crtc)
  934. {
  935. struct drm_device *dev = crtc->base.dev;
  936. struct vlv_wm_state *wm_state = &crtc->wm_state;
  937. struct intel_plane *plane;
  938. int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
  939. int level;
  940. memset(wm_state, 0, sizeof(*wm_state));
  941. wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
  942. wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
  943. wm_state->num_active_planes = 0;
  944. vlv_compute_fifo(crtc);
  945. if (wm_state->num_active_planes != 1)
  946. wm_state->cxsr = false;
  947. if (wm_state->cxsr) {
  948. for (level = 0; level < wm_state->num_levels; level++) {
  949. wm_state->sr[level].plane = sr_fifo_size;
  950. wm_state->sr[level].cursor = 63;
  951. }
  952. }
  953. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  954. struct intel_plane_state *state =
  955. to_intel_plane_state(plane->base.state);
  956. if (!state->visible)
  957. continue;
  958. /* normal watermarks */
  959. for (level = 0; level < wm_state->num_levels; level++) {
  960. int wm = vlv_compute_wm_level(plane, crtc, state, level);
  961. int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
  962. /* hack */
  963. if (WARN_ON(level == 0 && wm > max_wm))
  964. wm = max_wm;
  965. if (wm > plane->wm.fifo_size)
  966. break;
  967. switch (plane->base.type) {
  968. int sprite;
  969. case DRM_PLANE_TYPE_CURSOR:
  970. wm_state->wm[level].cursor = wm;
  971. break;
  972. case DRM_PLANE_TYPE_PRIMARY:
  973. wm_state->wm[level].primary = wm;
  974. break;
  975. case DRM_PLANE_TYPE_OVERLAY:
  976. sprite = plane->plane;
  977. wm_state->wm[level].sprite[sprite] = wm;
  978. break;
  979. }
  980. }
  981. wm_state->num_levels = level;
  982. if (!wm_state->cxsr)
  983. continue;
  984. /* maxfifo watermarks */
  985. switch (plane->base.type) {
  986. int sprite, level;
  987. case DRM_PLANE_TYPE_CURSOR:
  988. for (level = 0; level < wm_state->num_levels; level++)
  989. wm_state->sr[level].cursor =
  990. wm_state->wm[level].cursor;
  991. break;
  992. case DRM_PLANE_TYPE_PRIMARY:
  993. for (level = 0; level < wm_state->num_levels; level++)
  994. wm_state->sr[level].plane =
  995. min(wm_state->sr[level].plane,
  996. wm_state->wm[level].primary);
  997. break;
  998. case DRM_PLANE_TYPE_OVERLAY:
  999. sprite = plane->plane;
  1000. for (level = 0; level < wm_state->num_levels; level++)
  1001. wm_state->sr[level].plane =
  1002. min(wm_state->sr[level].plane,
  1003. wm_state->wm[level].sprite[sprite]);
  1004. break;
  1005. }
  1006. }
  1007. /* clear any (partially) filled invalid levels */
  1008. for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
  1009. memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
  1010. memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
  1011. }
  1012. vlv_invert_wms(crtc);
  1013. }
  1014. #define VLV_FIFO(plane, value) \
  1015. (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
  1016. static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
  1017. {
  1018. struct drm_device *dev = crtc->base.dev;
  1019. struct drm_i915_private *dev_priv = to_i915(dev);
  1020. struct intel_plane *plane;
  1021. int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
  1022. for_each_intel_plane_on_crtc(dev, crtc, plane) {
  1023. if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
  1024. WARN_ON(plane->wm.fifo_size != 63);
  1025. continue;
  1026. }
  1027. if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  1028. sprite0_start = plane->wm.fifo_size;
  1029. else if (plane->plane == 0)
  1030. sprite1_start = sprite0_start + plane->wm.fifo_size;
  1031. else
  1032. fifo_size = sprite1_start + plane->wm.fifo_size;
  1033. }
  1034. WARN_ON(fifo_size != 512 - 1);
  1035. DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
  1036. pipe_name(crtc->pipe), sprite0_start,
  1037. sprite1_start, fifo_size);
  1038. switch (crtc->pipe) {
  1039. uint32_t dsparb, dsparb2, dsparb3;
  1040. case PIPE_A:
  1041. dsparb = I915_READ(DSPARB);
  1042. dsparb2 = I915_READ(DSPARB2);
  1043. dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
  1044. VLV_FIFO(SPRITEB, 0xff));
  1045. dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
  1046. VLV_FIFO(SPRITEB, sprite1_start));
  1047. dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
  1048. VLV_FIFO(SPRITEB_HI, 0x1));
  1049. dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
  1050. VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
  1051. I915_WRITE(DSPARB, dsparb);
  1052. I915_WRITE(DSPARB2, dsparb2);
  1053. break;
  1054. case PIPE_B:
  1055. dsparb = I915_READ(DSPARB);
  1056. dsparb2 = I915_READ(DSPARB2);
  1057. dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
  1058. VLV_FIFO(SPRITED, 0xff));
  1059. dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
  1060. VLV_FIFO(SPRITED, sprite1_start));
  1061. dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
  1062. VLV_FIFO(SPRITED_HI, 0xff));
  1063. dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
  1064. VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
  1065. I915_WRITE(DSPARB, dsparb);
  1066. I915_WRITE(DSPARB2, dsparb2);
  1067. break;
  1068. case PIPE_C:
  1069. dsparb3 = I915_READ(DSPARB3);
  1070. dsparb2 = I915_READ(DSPARB2);
  1071. dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
  1072. VLV_FIFO(SPRITEF, 0xff));
  1073. dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
  1074. VLV_FIFO(SPRITEF, sprite1_start));
  1075. dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
  1076. VLV_FIFO(SPRITEF_HI, 0xff));
  1077. dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
  1078. VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
  1079. I915_WRITE(DSPARB3, dsparb3);
  1080. I915_WRITE(DSPARB2, dsparb2);
  1081. break;
  1082. default:
  1083. break;
  1084. }
  1085. }
  1086. #undef VLV_FIFO
  1087. static void vlv_merge_wm(struct drm_device *dev,
  1088. struct vlv_wm_values *wm)
  1089. {
  1090. struct intel_crtc *crtc;
  1091. int num_active_crtcs = 0;
  1092. wm->level = to_i915(dev)->wm.max_level;
  1093. wm->cxsr = true;
  1094. for_each_intel_crtc(dev, crtc) {
  1095. const struct vlv_wm_state *wm_state = &crtc->wm_state;
  1096. if (!crtc->active)
  1097. continue;
  1098. if (!wm_state->cxsr)
  1099. wm->cxsr = false;
  1100. num_active_crtcs++;
  1101. wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
  1102. }
  1103. if (num_active_crtcs != 1)
  1104. wm->cxsr = false;
  1105. if (num_active_crtcs > 1)
  1106. wm->level = VLV_WM_LEVEL_PM2;
  1107. for_each_intel_crtc(dev, crtc) {
  1108. struct vlv_wm_state *wm_state = &crtc->wm_state;
  1109. enum pipe pipe = crtc->pipe;
  1110. if (!crtc->active)
  1111. continue;
  1112. wm->pipe[pipe] = wm_state->wm[wm->level];
  1113. if (wm->cxsr)
  1114. wm->sr = wm_state->sr[wm->level];
  1115. wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
  1116. wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
  1117. wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
  1118. wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
  1119. }
  1120. }
  1121. static void vlv_update_wm(struct drm_crtc *crtc)
  1122. {
  1123. struct drm_device *dev = crtc->dev;
  1124. struct drm_i915_private *dev_priv = dev->dev_private;
  1125. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1126. enum pipe pipe = intel_crtc->pipe;
  1127. struct vlv_wm_values wm = {};
  1128. vlv_compute_wm(intel_crtc);
  1129. vlv_merge_wm(dev, &wm);
  1130. if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
  1131. /* FIXME should be part of crtc atomic commit */
  1132. vlv_pipe_set_fifo_size(intel_crtc);
  1133. return;
  1134. }
  1135. if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
  1136. dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
  1137. chv_set_memory_dvfs(dev_priv, false);
  1138. if (wm.level < VLV_WM_LEVEL_PM5 &&
  1139. dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
  1140. chv_set_memory_pm5(dev_priv, false);
  1141. if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
  1142. intel_set_memory_cxsr(dev_priv, false);
  1143. /* FIXME should be part of crtc atomic commit */
  1144. vlv_pipe_set_fifo_size(intel_crtc);
  1145. vlv_write_wm_values(intel_crtc, &wm);
  1146. DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
  1147. "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
  1148. pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
  1149. wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
  1150. wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
  1151. if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
  1152. intel_set_memory_cxsr(dev_priv, true);
  1153. if (wm.level >= VLV_WM_LEVEL_PM5 &&
  1154. dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
  1155. chv_set_memory_pm5(dev_priv, true);
  1156. if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
  1157. dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
  1158. chv_set_memory_dvfs(dev_priv, true);
  1159. dev_priv->wm.vlv = wm;
  1160. }
  1161. #define single_plane_enabled(mask) is_power_of_2(mask)
  1162. static void g4x_update_wm(struct drm_crtc *crtc)
  1163. {
  1164. struct drm_device *dev = crtc->dev;
  1165. static const int sr_latency_ns = 12000;
  1166. struct drm_i915_private *dev_priv = dev->dev_private;
  1167. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1168. int plane_sr, cursor_sr;
  1169. unsigned int enabled = 0;
  1170. bool cxsr_enabled;
  1171. if (g4x_compute_wm0(dev, PIPE_A,
  1172. &g4x_wm_info, pessimal_latency_ns,
  1173. &g4x_cursor_wm_info, pessimal_latency_ns,
  1174. &planea_wm, &cursora_wm))
  1175. enabled |= 1 << PIPE_A;
  1176. if (g4x_compute_wm0(dev, PIPE_B,
  1177. &g4x_wm_info, pessimal_latency_ns,
  1178. &g4x_cursor_wm_info, pessimal_latency_ns,
  1179. &planeb_wm, &cursorb_wm))
  1180. enabled |= 1 << PIPE_B;
  1181. if (single_plane_enabled(enabled) &&
  1182. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1183. sr_latency_ns,
  1184. &g4x_wm_info,
  1185. &g4x_cursor_wm_info,
  1186. &plane_sr, &cursor_sr)) {
  1187. cxsr_enabled = true;
  1188. } else {
  1189. cxsr_enabled = false;
  1190. intel_set_memory_cxsr(dev_priv, false);
  1191. plane_sr = cursor_sr = 0;
  1192. }
  1193. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
  1194. "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1195. planea_wm, cursora_wm,
  1196. planeb_wm, cursorb_wm,
  1197. plane_sr, cursor_sr);
  1198. I915_WRITE(DSPFW1,
  1199. FW_WM(plane_sr, SR) |
  1200. FW_WM(cursorb_wm, CURSORB) |
  1201. FW_WM(planeb_wm, PLANEB) |
  1202. FW_WM(planea_wm, PLANEA));
  1203. I915_WRITE(DSPFW2,
  1204. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1205. FW_WM(cursora_wm, CURSORA));
  1206. /* HPLL off in SR has some issues on G4x... disable it */
  1207. I915_WRITE(DSPFW3,
  1208. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1209. FW_WM(cursor_sr, CURSOR_SR));
  1210. if (cxsr_enabled)
  1211. intel_set_memory_cxsr(dev_priv, true);
  1212. }
  1213. static void i965_update_wm(struct drm_crtc *unused_crtc)
  1214. {
  1215. struct drm_device *dev = unused_crtc->dev;
  1216. struct drm_i915_private *dev_priv = dev->dev_private;
  1217. struct drm_crtc *crtc;
  1218. int srwm = 1;
  1219. int cursor_sr = 16;
  1220. bool cxsr_enabled;
  1221. /* Calc sr entries for one plane configs */
  1222. crtc = single_enabled_crtc(dev);
  1223. if (crtc) {
  1224. /* self-refresh has much higher latency */
  1225. static const int sr_latency_ns = 12000;
  1226. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1227. int clock = adjusted_mode->crtc_clock;
  1228. int htotal = adjusted_mode->crtc_htotal;
  1229. int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
  1230. int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
  1231. unsigned long line_time_us;
  1232. int entries;
  1233. line_time_us = max(htotal * 1000 / clock, 1);
  1234. /* Use ns/us then divide to preserve precision */
  1235. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1236. pixel_size * hdisplay;
  1237. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1238. srwm = I965_FIFO_SIZE - entries;
  1239. if (srwm < 0)
  1240. srwm = 1;
  1241. srwm &= 0x1ff;
  1242. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1243. entries, srwm);
  1244. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1245. pixel_size * crtc->cursor->state->crtc_w;
  1246. entries = DIV_ROUND_UP(entries,
  1247. i965_cursor_wm_info.cacheline_size);
  1248. cursor_sr = i965_cursor_wm_info.fifo_size -
  1249. (entries + i965_cursor_wm_info.guard_size);
  1250. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1251. cursor_sr = i965_cursor_wm_info.max_wm;
  1252. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1253. "cursor %d\n", srwm, cursor_sr);
  1254. cxsr_enabled = true;
  1255. } else {
  1256. cxsr_enabled = false;
  1257. /* Turn off self refresh if both pipes are enabled */
  1258. intel_set_memory_cxsr(dev_priv, false);
  1259. }
  1260. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1261. srwm);
  1262. /* 965 has limitations... */
  1263. I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
  1264. FW_WM(8, CURSORB) |
  1265. FW_WM(8, PLANEB) |
  1266. FW_WM(8, PLANEA));
  1267. I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
  1268. FW_WM(8, PLANEC_OLD));
  1269. /* update cursor SR watermark */
  1270. I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
  1271. if (cxsr_enabled)
  1272. intel_set_memory_cxsr(dev_priv, true);
  1273. }
  1274. #undef FW_WM
  1275. static void i9xx_update_wm(struct drm_crtc *unused_crtc)
  1276. {
  1277. struct drm_device *dev = unused_crtc->dev;
  1278. struct drm_i915_private *dev_priv = dev->dev_private;
  1279. const struct intel_watermark_params *wm_info;
  1280. uint32_t fwater_lo;
  1281. uint32_t fwater_hi;
  1282. int cwm, srwm = 1;
  1283. int fifo_size;
  1284. int planea_wm, planeb_wm;
  1285. struct drm_crtc *crtc, *enabled = NULL;
  1286. if (IS_I945GM(dev))
  1287. wm_info = &i945_wm_info;
  1288. else if (!IS_GEN2(dev))
  1289. wm_info = &i915_wm_info;
  1290. else
  1291. wm_info = &i830_a_wm_info;
  1292. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1293. crtc = intel_get_crtc_for_plane(dev, 0);
  1294. if (intel_crtc_active(crtc)) {
  1295. const struct drm_display_mode *adjusted_mode;
  1296. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1297. if (IS_GEN2(dev))
  1298. cpp = 4;
  1299. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1300. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1301. wm_info, fifo_size, cpp,
  1302. pessimal_latency_ns);
  1303. enabled = crtc;
  1304. } else {
  1305. planea_wm = fifo_size - wm_info->guard_size;
  1306. if (planea_wm > (long)wm_info->max_wm)
  1307. planea_wm = wm_info->max_wm;
  1308. }
  1309. if (IS_GEN2(dev))
  1310. wm_info = &i830_bc_wm_info;
  1311. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1312. crtc = intel_get_crtc_for_plane(dev, 1);
  1313. if (intel_crtc_active(crtc)) {
  1314. const struct drm_display_mode *adjusted_mode;
  1315. int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
  1316. if (IS_GEN2(dev))
  1317. cpp = 4;
  1318. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1319. planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1320. wm_info, fifo_size, cpp,
  1321. pessimal_latency_ns);
  1322. if (enabled == NULL)
  1323. enabled = crtc;
  1324. else
  1325. enabled = NULL;
  1326. } else {
  1327. planeb_wm = fifo_size - wm_info->guard_size;
  1328. if (planeb_wm > (long)wm_info->max_wm)
  1329. planeb_wm = wm_info->max_wm;
  1330. }
  1331. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1332. if (IS_I915GM(dev) && enabled) {
  1333. struct drm_i915_gem_object *obj;
  1334. obj = intel_fb_obj(enabled->primary->state->fb);
  1335. /* self-refresh seems busted with untiled */
  1336. if (obj->tiling_mode == I915_TILING_NONE)
  1337. enabled = NULL;
  1338. }
  1339. /*
  1340. * Overlay gets an aggressive default since video jitter is bad.
  1341. */
  1342. cwm = 2;
  1343. /* Play safe and disable self-refresh before adjusting watermarks. */
  1344. intel_set_memory_cxsr(dev_priv, false);
  1345. /* Calc sr entries for one plane configs */
  1346. if (HAS_FW_BLC(dev) && enabled) {
  1347. /* self-refresh has much higher latency */
  1348. static const int sr_latency_ns = 6000;
  1349. const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
  1350. int clock = adjusted_mode->crtc_clock;
  1351. int htotal = adjusted_mode->crtc_htotal;
  1352. int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
  1353. int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
  1354. unsigned long line_time_us;
  1355. int entries;
  1356. line_time_us = max(htotal * 1000 / clock, 1);
  1357. /* Use ns/us then divide to preserve precision */
  1358. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1359. pixel_size * hdisplay;
  1360. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1361. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1362. srwm = wm_info->fifo_size - entries;
  1363. if (srwm < 0)
  1364. srwm = 1;
  1365. if (IS_I945G(dev) || IS_I945GM(dev))
  1366. I915_WRITE(FW_BLC_SELF,
  1367. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1368. else if (IS_I915GM(dev))
  1369. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1370. }
  1371. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1372. planea_wm, planeb_wm, cwm, srwm);
  1373. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1374. fwater_hi = (cwm & 0x1f);
  1375. /* Set request length to 8 cachelines per fetch */
  1376. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1377. fwater_hi = fwater_hi | (1 << 8);
  1378. I915_WRITE(FW_BLC, fwater_lo);
  1379. I915_WRITE(FW_BLC2, fwater_hi);
  1380. if (enabled)
  1381. intel_set_memory_cxsr(dev_priv, true);
  1382. }
  1383. static void i845_update_wm(struct drm_crtc *unused_crtc)
  1384. {
  1385. struct drm_device *dev = unused_crtc->dev;
  1386. struct drm_i915_private *dev_priv = dev->dev_private;
  1387. struct drm_crtc *crtc;
  1388. const struct drm_display_mode *adjusted_mode;
  1389. uint32_t fwater_lo;
  1390. int planea_wm;
  1391. crtc = single_enabled_crtc(dev);
  1392. if (crtc == NULL)
  1393. return;
  1394. adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
  1395. planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
  1396. &i845_wm_info,
  1397. dev_priv->display.get_fifo_size(dev, 0),
  1398. 4, pessimal_latency_ns);
  1399. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1400. fwater_lo |= (3<<8) | planea_wm;
  1401. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1402. I915_WRITE(FW_BLC, fwater_lo);
  1403. }
  1404. uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
  1405. {
  1406. uint32_t pixel_rate;
  1407. pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
  1408. /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
  1409. * adjust the pixel_rate here. */
  1410. if (pipe_config->pch_pfit.enabled) {
  1411. uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
  1412. uint32_t pfit_size = pipe_config->pch_pfit.size;
  1413. pipe_w = pipe_config->pipe_src_w;
  1414. pipe_h = pipe_config->pipe_src_h;
  1415. pfit_w = (pfit_size >> 16) & 0xFFFF;
  1416. pfit_h = pfit_size & 0xFFFF;
  1417. if (pipe_w < pfit_w)
  1418. pipe_w = pfit_w;
  1419. if (pipe_h < pfit_h)
  1420. pipe_h = pfit_h;
  1421. if (WARN_ON(!pfit_w || !pfit_h))
  1422. return pixel_rate;
  1423. pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
  1424. pfit_w * pfit_h);
  1425. }
  1426. return pixel_rate;
  1427. }
  1428. /* latency must be in 0.1us units. */
  1429. static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  1430. uint32_t latency)
  1431. {
  1432. uint64_t ret;
  1433. if (WARN(latency == 0, "Latency value missing\n"))
  1434. return UINT_MAX;
  1435. ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
  1436. ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
  1437. return ret;
  1438. }
  1439. /* latency must be in 0.1us units. */
  1440. static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  1441. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  1442. uint32_t latency)
  1443. {
  1444. uint32_t ret;
  1445. if (WARN(latency == 0, "Latency value missing\n"))
  1446. return UINT_MAX;
  1447. if (WARN_ON(!pipe_htotal))
  1448. return UINT_MAX;
  1449. ret = (latency * pixel_rate) / (pipe_htotal * 10000);
  1450. ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
  1451. ret = DIV_ROUND_UP(ret, 64) + 2;
  1452. return ret;
  1453. }
  1454. static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
  1455. uint8_t bytes_per_pixel)
  1456. {
  1457. /*
  1458. * Neither of these should be possible since this function shouldn't be
  1459. * called if the CRTC is off or the plane is invisible. But let's be
  1460. * extra paranoid to avoid a potential divide-by-zero if we screw up
  1461. * elsewhere in the driver.
  1462. */
  1463. if (WARN_ON(!bytes_per_pixel))
  1464. return 0;
  1465. if (WARN_ON(!horiz_pixels))
  1466. return 0;
  1467. return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
  1468. }
  1469. struct ilk_wm_maximums {
  1470. uint16_t pri;
  1471. uint16_t spr;
  1472. uint16_t cur;
  1473. uint16_t fbc;
  1474. };
  1475. /*
  1476. * For both WM_PIPE and WM_LP.
  1477. * mem_value must be in 0.1us units.
  1478. */
  1479. static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
  1480. const struct intel_plane_state *pstate,
  1481. uint32_t mem_value,
  1482. bool is_lp)
  1483. {
  1484. int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
  1485. uint32_t method1, method2;
  1486. if (!cstate->base.active || !pstate->visible)
  1487. return 0;
  1488. method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
  1489. if (!is_lp)
  1490. return method1;
  1491. method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1492. cstate->base.adjusted_mode.crtc_htotal,
  1493. drm_rect_width(&pstate->dst),
  1494. bpp,
  1495. mem_value);
  1496. return min(method1, method2);
  1497. }
  1498. /*
  1499. * For both WM_PIPE and WM_LP.
  1500. * mem_value must be in 0.1us units.
  1501. */
  1502. static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
  1503. const struct intel_plane_state *pstate,
  1504. uint32_t mem_value)
  1505. {
  1506. int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
  1507. uint32_t method1, method2;
  1508. if (!cstate->base.active || !pstate->visible)
  1509. return 0;
  1510. method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
  1511. method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1512. cstate->base.adjusted_mode.crtc_htotal,
  1513. drm_rect_width(&pstate->dst),
  1514. bpp,
  1515. mem_value);
  1516. return min(method1, method2);
  1517. }
  1518. /*
  1519. * For both WM_PIPE and WM_LP.
  1520. * mem_value must be in 0.1us units.
  1521. */
  1522. static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
  1523. const struct intel_plane_state *pstate,
  1524. uint32_t mem_value)
  1525. {
  1526. int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
  1527. if (!cstate->base.active || !pstate->visible)
  1528. return 0;
  1529. return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
  1530. cstate->base.adjusted_mode.crtc_htotal,
  1531. drm_rect_width(&pstate->dst),
  1532. bpp,
  1533. mem_value);
  1534. }
  1535. /* Only for WM_LP. */
  1536. static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
  1537. const struct intel_plane_state *pstate,
  1538. uint32_t pri_val)
  1539. {
  1540. int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
  1541. if (!cstate->base.active || !pstate->visible)
  1542. return 0;
  1543. return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
  1544. }
  1545. static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
  1546. {
  1547. if (INTEL_INFO(dev)->gen >= 8)
  1548. return 3072;
  1549. else if (INTEL_INFO(dev)->gen >= 7)
  1550. return 768;
  1551. else
  1552. return 512;
  1553. }
  1554. static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
  1555. int level, bool is_sprite)
  1556. {
  1557. if (INTEL_INFO(dev)->gen >= 8)
  1558. /* BDW primary/sprite plane watermarks */
  1559. return level == 0 ? 255 : 2047;
  1560. else if (INTEL_INFO(dev)->gen >= 7)
  1561. /* IVB/HSW primary/sprite plane watermarks */
  1562. return level == 0 ? 127 : 1023;
  1563. else if (!is_sprite)
  1564. /* ILK/SNB primary plane watermarks */
  1565. return level == 0 ? 127 : 511;
  1566. else
  1567. /* ILK/SNB sprite plane watermarks */
  1568. return level == 0 ? 63 : 255;
  1569. }
  1570. static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
  1571. int level)
  1572. {
  1573. if (INTEL_INFO(dev)->gen >= 7)
  1574. return level == 0 ? 63 : 255;
  1575. else
  1576. return level == 0 ? 31 : 63;
  1577. }
  1578. static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
  1579. {
  1580. if (INTEL_INFO(dev)->gen >= 8)
  1581. return 31;
  1582. else
  1583. return 15;
  1584. }
  1585. /* Calculate the maximum primary/sprite plane watermark */
  1586. static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
  1587. int level,
  1588. const struct intel_wm_config *config,
  1589. enum intel_ddb_partitioning ddb_partitioning,
  1590. bool is_sprite)
  1591. {
  1592. unsigned int fifo_size = ilk_display_fifo_size(dev);
  1593. /* if sprites aren't enabled, sprites get nothing */
  1594. if (is_sprite && !config->sprites_enabled)
  1595. return 0;
  1596. /* HSW allows LP1+ watermarks even with multiple pipes */
  1597. if (level == 0 || config->num_pipes_active > 1) {
  1598. fifo_size /= INTEL_INFO(dev)->num_pipes;
  1599. /*
  1600. * For some reason the non self refresh
  1601. * FIFO size is only half of the self
  1602. * refresh FIFO size on ILK/SNB.
  1603. */
  1604. if (INTEL_INFO(dev)->gen <= 6)
  1605. fifo_size /= 2;
  1606. }
  1607. if (config->sprites_enabled) {
  1608. /* level 0 is always calculated with 1:1 split */
  1609. if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
  1610. if (is_sprite)
  1611. fifo_size *= 5;
  1612. fifo_size /= 6;
  1613. } else {
  1614. fifo_size /= 2;
  1615. }
  1616. }
  1617. /* clamp to max that the registers can hold */
  1618. return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
  1619. }
  1620. /* Calculate the maximum cursor plane watermark */
  1621. static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
  1622. int level,
  1623. const struct intel_wm_config *config)
  1624. {
  1625. /* HSW LP1+ watermarks w/ multiple pipes */
  1626. if (level > 0 && config->num_pipes_active > 1)
  1627. return 64;
  1628. /* otherwise just report max that registers can hold */
  1629. return ilk_cursor_wm_reg_max(dev, level);
  1630. }
  1631. static void ilk_compute_wm_maximums(const struct drm_device *dev,
  1632. int level,
  1633. const struct intel_wm_config *config,
  1634. enum intel_ddb_partitioning ddb_partitioning,
  1635. struct ilk_wm_maximums *max)
  1636. {
  1637. max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
  1638. max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
  1639. max->cur = ilk_cursor_wm_max(dev, level, config);
  1640. max->fbc = ilk_fbc_wm_reg_max(dev);
  1641. }
  1642. static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
  1643. int level,
  1644. struct ilk_wm_maximums *max)
  1645. {
  1646. max->pri = ilk_plane_wm_reg_max(dev, level, false);
  1647. max->spr = ilk_plane_wm_reg_max(dev, level, true);
  1648. max->cur = ilk_cursor_wm_reg_max(dev, level);
  1649. max->fbc = ilk_fbc_wm_reg_max(dev);
  1650. }
  1651. static bool ilk_validate_wm_level(int level,
  1652. const struct ilk_wm_maximums *max,
  1653. struct intel_wm_level *result)
  1654. {
  1655. bool ret;
  1656. /* already determined to be invalid? */
  1657. if (!result->enable)
  1658. return false;
  1659. result->enable = result->pri_val <= max->pri &&
  1660. result->spr_val <= max->spr &&
  1661. result->cur_val <= max->cur;
  1662. ret = result->enable;
  1663. /*
  1664. * HACK until we can pre-compute everything,
  1665. * and thus fail gracefully if LP0 watermarks
  1666. * are exceeded...
  1667. */
  1668. if (level == 0 && !result->enable) {
  1669. if (result->pri_val > max->pri)
  1670. DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
  1671. level, result->pri_val, max->pri);
  1672. if (result->spr_val > max->spr)
  1673. DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
  1674. level, result->spr_val, max->spr);
  1675. if (result->cur_val > max->cur)
  1676. DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
  1677. level, result->cur_val, max->cur);
  1678. result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
  1679. result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
  1680. result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
  1681. result->enable = true;
  1682. }
  1683. return ret;
  1684. }
  1685. static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
  1686. const struct intel_crtc *intel_crtc,
  1687. int level,
  1688. struct intel_crtc_state *cstate,
  1689. struct intel_plane_state *pristate,
  1690. struct intel_plane_state *sprstate,
  1691. struct intel_plane_state *curstate,
  1692. struct intel_wm_level *result)
  1693. {
  1694. uint16_t pri_latency = dev_priv->wm.pri_latency[level];
  1695. uint16_t spr_latency = dev_priv->wm.spr_latency[level];
  1696. uint16_t cur_latency = dev_priv->wm.cur_latency[level];
  1697. /* WM1+ latency values stored in 0.5us units */
  1698. if (level > 0) {
  1699. pri_latency *= 5;
  1700. spr_latency *= 5;
  1701. cur_latency *= 5;
  1702. }
  1703. result->pri_val = ilk_compute_pri_wm(cstate, pristate,
  1704. pri_latency, level);
  1705. result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
  1706. result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
  1707. result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
  1708. result->enable = true;
  1709. }
  1710. static uint32_t
  1711. hsw_compute_linetime_wm(struct drm_device *dev,
  1712. struct intel_crtc_state *cstate)
  1713. {
  1714. struct drm_i915_private *dev_priv = dev->dev_private;
  1715. const struct drm_display_mode *adjusted_mode =
  1716. &cstate->base.adjusted_mode;
  1717. u32 linetime, ips_linetime;
  1718. if (!cstate->base.active)
  1719. return 0;
  1720. if (WARN_ON(adjusted_mode->crtc_clock == 0))
  1721. return 0;
  1722. if (WARN_ON(dev_priv->cdclk_freq == 0))
  1723. return 0;
  1724. /* The WM are computed with base on how long it takes to fill a single
  1725. * row at the given clock rate, multiplied by 8.
  1726. * */
  1727. linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1728. adjusted_mode->crtc_clock);
  1729. ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
  1730. dev_priv->cdclk_freq);
  1731. return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
  1732. PIPE_WM_LINETIME_TIME(linetime);
  1733. }
  1734. static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
  1735. {
  1736. struct drm_i915_private *dev_priv = dev->dev_private;
  1737. if (IS_GEN9(dev)) {
  1738. uint32_t val;
  1739. int ret, i;
  1740. int level, max_level = ilk_wm_max_level(dev);
  1741. /* read the first set of memory latencies[0:3] */
  1742. val = 0; /* data0 to be programmed to 0 for first set */
  1743. mutex_lock(&dev_priv->rps.hw_lock);
  1744. ret = sandybridge_pcode_read(dev_priv,
  1745. GEN9_PCODE_READ_MEM_LATENCY,
  1746. &val);
  1747. mutex_unlock(&dev_priv->rps.hw_lock);
  1748. if (ret) {
  1749. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1750. return;
  1751. }
  1752. wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1753. wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1754. GEN9_MEM_LATENCY_LEVEL_MASK;
  1755. wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1756. GEN9_MEM_LATENCY_LEVEL_MASK;
  1757. wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1758. GEN9_MEM_LATENCY_LEVEL_MASK;
  1759. /* read the second set of memory latencies[4:7] */
  1760. val = 1; /* data0 to be programmed to 1 for second set */
  1761. mutex_lock(&dev_priv->rps.hw_lock);
  1762. ret = sandybridge_pcode_read(dev_priv,
  1763. GEN9_PCODE_READ_MEM_LATENCY,
  1764. &val);
  1765. mutex_unlock(&dev_priv->rps.hw_lock);
  1766. if (ret) {
  1767. DRM_ERROR("SKL Mailbox read error = %d\n", ret);
  1768. return;
  1769. }
  1770. wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
  1771. wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
  1772. GEN9_MEM_LATENCY_LEVEL_MASK;
  1773. wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
  1774. GEN9_MEM_LATENCY_LEVEL_MASK;
  1775. wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
  1776. GEN9_MEM_LATENCY_LEVEL_MASK;
  1777. /*
  1778. * WaWmMemoryReadLatency:skl
  1779. *
  1780. * punit doesn't take into account the read latency so we need
  1781. * to add 2us to the various latency levels we retrieve from
  1782. * the punit.
  1783. * - W0 is a bit special in that it's the only level that
  1784. * can't be disabled if we want to have display working, so
  1785. * we always add 2us there.
  1786. * - For levels >=1, punit returns 0us latency when they are
  1787. * disabled, so we respect that and don't add 2us then
  1788. *
  1789. * Additionally, if a level n (n > 1) has a 0us latency, all
  1790. * levels m (m >= n) need to be disabled. We make sure to
  1791. * sanitize the values out of the punit to satisfy this
  1792. * requirement.
  1793. */
  1794. wm[0] += 2;
  1795. for (level = 1; level <= max_level; level++)
  1796. if (wm[level] != 0)
  1797. wm[level] += 2;
  1798. else {
  1799. for (i = level + 1; i <= max_level; i++)
  1800. wm[i] = 0;
  1801. break;
  1802. }
  1803. } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  1804. uint64_t sskpd = I915_READ64(MCH_SSKPD);
  1805. wm[0] = (sskpd >> 56) & 0xFF;
  1806. if (wm[0] == 0)
  1807. wm[0] = sskpd & 0xF;
  1808. wm[1] = (sskpd >> 4) & 0xFF;
  1809. wm[2] = (sskpd >> 12) & 0xFF;
  1810. wm[3] = (sskpd >> 20) & 0x1FF;
  1811. wm[4] = (sskpd >> 32) & 0x1FF;
  1812. } else if (INTEL_INFO(dev)->gen >= 6) {
  1813. uint32_t sskpd = I915_READ(MCH_SSKPD);
  1814. wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
  1815. wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
  1816. wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
  1817. wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
  1818. } else if (INTEL_INFO(dev)->gen >= 5) {
  1819. uint32_t mltr = I915_READ(MLTR_ILK);
  1820. /* ILK primary LP0 latency is 700 ns */
  1821. wm[0] = 7;
  1822. wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
  1823. wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
  1824. }
  1825. }
  1826. static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1827. {
  1828. /* ILK sprite LP0 latency is 1300 ns */
  1829. if (INTEL_INFO(dev)->gen == 5)
  1830. wm[0] = 13;
  1831. }
  1832. static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
  1833. {
  1834. /* ILK cursor LP0 latency is 1300 ns */
  1835. if (INTEL_INFO(dev)->gen == 5)
  1836. wm[0] = 13;
  1837. /* WaDoubleCursorLP3Latency:ivb */
  1838. if (IS_IVYBRIDGE(dev))
  1839. wm[3] *= 2;
  1840. }
  1841. int ilk_wm_max_level(const struct drm_device *dev)
  1842. {
  1843. /* how many WM levels are we expecting */
  1844. if (INTEL_INFO(dev)->gen >= 9)
  1845. return 7;
  1846. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1847. return 4;
  1848. else if (INTEL_INFO(dev)->gen >= 6)
  1849. return 3;
  1850. else
  1851. return 2;
  1852. }
  1853. static void intel_print_wm_latency(struct drm_device *dev,
  1854. const char *name,
  1855. const uint16_t wm[8])
  1856. {
  1857. int level, max_level = ilk_wm_max_level(dev);
  1858. for (level = 0; level <= max_level; level++) {
  1859. unsigned int latency = wm[level];
  1860. if (latency == 0) {
  1861. DRM_ERROR("%s WM%d latency not provided\n",
  1862. name, level);
  1863. continue;
  1864. }
  1865. /*
  1866. * - latencies are in us on gen9.
  1867. * - before then, WM1+ latency values are in 0.5us units
  1868. */
  1869. if (IS_GEN9(dev))
  1870. latency *= 10;
  1871. else if (level > 0)
  1872. latency *= 5;
  1873. DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
  1874. name, level, wm[level],
  1875. latency / 10, latency % 10);
  1876. }
  1877. }
  1878. static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
  1879. uint16_t wm[5], uint16_t min)
  1880. {
  1881. int level, max_level = ilk_wm_max_level(dev_priv->dev);
  1882. if (wm[0] >= min)
  1883. return false;
  1884. wm[0] = max(wm[0], min);
  1885. for (level = 1; level <= max_level; level++)
  1886. wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
  1887. return true;
  1888. }
  1889. static void snb_wm_latency_quirk(struct drm_device *dev)
  1890. {
  1891. struct drm_i915_private *dev_priv = dev->dev_private;
  1892. bool changed;
  1893. /*
  1894. * The BIOS provided WM memory latency values are often
  1895. * inadequate for high resolution displays. Adjust them.
  1896. */
  1897. changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
  1898. ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
  1899. ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
  1900. if (!changed)
  1901. return;
  1902. DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
  1903. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1904. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1905. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1906. }
  1907. static void ilk_setup_wm_latency(struct drm_device *dev)
  1908. {
  1909. struct drm_i915_private *dev_priv = dev->dev_private;
  1910. intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
  1911. memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
  1912. sizeof(dev_priv->wm.pri_latency));
  1913. memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
  1914. sizeof(dev_priv->wm.pri_latency));
  1915. intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
  1916. intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
  1917. intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
  1918. intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
  1919. intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
  1920. if (IS_GEN6(dev))
  1921. snb_wm_latency_quirk(dev);
  1922. }
  1923. static void skl_setup_wm_latency(struct drm_device *dev)
  1924. {
  1925. struct drm_i915_private *dev_priv = dev->dev_private;
  1926. intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
  1927. intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
  1928. }
  1929. /* Compute new watermarks for the pipe */
  1930. static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
  1931. struct drm_atomic_state *state)
  1932. {
  1933. struct intel_pipe_wm *pipe_wm;
  1934. struct drm_device *dev = intel_crtc->base.dev;
  1935. const struct drm_i915_private *dev_priv = dev->dev_private;
  1936. struct intel_crtc_state *cstate = NULL;
  1937. struct intel_plane *intel_plane;
  1938. struct drm_plane_state *ps;
  1939. struct intel_plane_state *pristate = NULL;
  1940. struct intel_plane_state *sprstate = NULL;
  1941. struct intel_plane_state *curstate = NULL;
  1942. int level, max_level = ilk_wm_max_level(dev);
  1943. /* LP0 watermark maximums depend on this pipe alone */
  1944. struct intel_wm_config config = {
  1945. .num_pipes_active = 1,
  1946. };
  1947. struct ilk_wm_maximums max;
  1948. cstate = intel_atomic_get_crtc_state(state, intel_crtc);
  1949. if (IS_ERR(cstate))
  1950. return PTR_ERR(cstate);
  1951. pipe_wm = &cstate->wm.optimal.ilk;
  1952. memset(pipe_wm, 0, sizeof(*pipe_wm));
  1953. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  1954. ps = drm_atomic_get_plane_state(state,
  1955. &intel_plane->base);
  1956. if (IS_ERR(ps))
  1957. return PTR_ERR(ps);
  1958. if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
  1959. pristate = to_intel_plane_state(ps);
  1960. else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
  1961. sprstate = to_intel_plane_state(ps);
  1962. else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  1963. curstate = to_intel_plane_state(ps);
  1964. }
  1965. config.sprites_enabled = sprstate->visible;
  1966. config.sprites_scaled = sprstate->visible &&
  1967. (drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
  1968. drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);
  1969. pipe_wm->pipe_enabled = cstate->base.active;
  1970. pipe_wm->sprites_enabled = config.sprites_enabled;
  1971. pipe_wm->sprites_scaled = config.sprites_scaled;
  1972. /* ILK/SNB: LP2+ watermarks only w/o sprites */
  1973. if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
  1974. max_level = 1;
  1975. /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
  1976. if (config.sprites_scaled)
  1977. max_level = 0;
  1978. ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
  1979. pristate, sprstate, curstate, &pipe_wm->wm[0]);
  1980. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1981. pipe_wm->linetime = hsw_compute_linetime_wm(dev, cstate);
  1982. /* LP0 watermarks always use 1/2 DDB partitioning */
  1983. ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
  1984. /* At least LP0 must be valid */
  1985. if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
  1986. return -EINVAL;
  1987. ilk_compute_wm_reg_maximums(dev, 1, &max);
  1988. for (level = 1; level <= max_level; level++) {
  1989. struct intel_wm_level wm = {};
  1990. ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
  1991. pristate, sprstate, curstate, &wm);
  1992. /*
  1993. * Disable any watermark level that exceeds the
  1994. * register maximums since such watermarks are
  1995. * always invalid.
  1996. */
  1997. if (!ilk_validate_wm_level(level, &max, &wm))
  1998. break;
  1999. pipe_wm->wm[level] = wm;
  2000. }
  2001. return 0;
  2002. }
  2003. /*
  2004. * Merge the watermarks from all active pipes for a specific level.
  2005. */
  2006. static void ilk_merge_wm_level(struct drm_device *dev,
  2007. int level,
  2008. struct intel_wm_level *ret_wm)
  2009. {
  2010. const struct intel_crtc *intel_crtc;
  2011. ret_wm->enable = true;
  2012. for_each_intel_crtc(dev, intel_crtc) {
  2013. const struct intel_crtc_state *cstate =
  2014. to_intel_crtc_state(intel_crtc->base.state);
  2015. const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
  2016. const struct intel_wm_level *wm = &active->wm[level];
  2017. if (!active->pipe_enabled)
  2018. continue;
  2019. /*
  2020. * The watermark values may have been used in the past,
  2021. * so we must maintain them in the registers for some
  2022. * time even if the level is now disabled.
  2023. */
  2024. if (!wm->enable)
  2025. ret_wm->enable = false;
  2026. ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
  2027. ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
  2028. ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
  2029. ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
  2030. }
  2031. }
  2032. /*
  2033. * Merge all low power watermarks for all active pipes.
  2034. */
  2035. static void ilk_wm_merge(struct drm_device *dev,
  2036. const struct intel_wm_config *config,
  2037. const struct ilk_wm_maximums *max,
  2038. struct intel_pipe_wm *merged)
  2039. {
  2040. struct drm_i915_private *dev_priv = dev->dev_private;
  2041. int level, max_level = ilk_wm_max_level(dev);
  2042. int last_enabled_level = max_level;
  2043. /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
  2044. if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
  2045. config->num_pipes_active > 1)
  2046. return;
  2047. /* ILK: FBC WM must be disabled always */
  2048. merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
  2049. /* merge each WM1+ level */
  2050. for (level = 1; level <= max_level; level++) {
  2051. struct intel_wm_level *wm = &merged->wm[level];
  2052. ilk_merge_wm_level(dev, level, wm);
  2053. if (level > last_enabled_level)
  2054. wm->enable = false;
  2055. else if (!ilk_validate_wm_level(level, max, wm))
  2056. /* make sure all following levels get disabled */
  2057. last_enabled_level = level - 1;
  2058. /*
  2059. * The spec says it is preferred to disable
  2060. * FBC WMs instead of disabling a WM level.
  2061. */
  2062. if (wm->fbc_val > max->fbc) {
  2063. if (wm->enable)
  2064. merged->fbc_wm_enabled = false;
  2065. wm->fbc_val = 0;
  2066. }
  2067. }
  2068. /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
  2069. /*
  2070. * FIXME this is racy. FBC might get enabled later.
  2071. * What we should check here is whether FBC can be
  2072. * enabled sometime later.
  2073. */
  2074. if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
  2075. intel_fbc_is_active(dev_priv)) {
  2076. for (level = 2; level <= max_level; level++) {
  2077. struct intel_wm_level *wm = &merged->wm[level];
  2078. wm->enable = false;
  2079. }
  2080. }
  2081. }
  2082. static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
  2083. {
  2084. /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
  2085. return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
  2086. }
  2087. /* The value we need to program into the WM_LPx latency field */
  2088. static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
  2089. {
  2090. struct drm_i915_private *dev_priv = dev->dev_private;
  2091. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  2092. return 2 * level;
  2093. else
  2094. return dev_priv->wm.pri_latency[level];
  2095. }
  2096. static void ilk_compute_wm_results(struct drm_device *dev,
  2097. const struct intel_pipe_wm *merged,
  2098. enum intel_ddb_partitioning partitioning,
  2099. struct ilk_wm_values *results)
  2100. {
  2101. struct intel_crtc *intel_crtc;
  2102. int level, wm_lp;
  2103. results->enable_fbc_wm = merged->fbc_wm_enabled;
  2104. results->partitioning = partitioning;
  2105. /* LP1+ register values */
  2106. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2107. const struct intel_wm_level *r;
  2108. level = ilk_wm_lp_to_level(wm_lp, merged);
  2109. r = &merged->wm[level];
  2110. /*
  2111. * Maintain the watermark values even if the level is
  2112. * disabled. Doing otherwise could cause underruns.
  2113. */
  2114. results->wm_lp[wm_lp - 1] =
  2115. (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
  2116. (r->pri_val << WM1_LP_SR_SHIFT) |
  2117. r->cur_val;
  2118. if (r->enable)
  2119. results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
  2120. if (INTEL_INFO(dev)->gen >= 8)
  2121. results->wm_lp[wm_lp - 1] |=
  2122. r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
  2123. else
  2124. results->wm_lp[wm_lp - 1] |=
  2125. r->fbc_val << WM1_LP_FBC_SHIFT;
  2126. /*
  2127. * Always set WM1S_LP_EN when spr_val != 0, even if the
  2128. * level is disabled. Doing otherwise could cause underruns.
  2129. */
  2130. if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
  2131. WARN_ON(wm_lp != 1);
  2132. results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
  2133. } else
  2134. results->wm_lp_spr[wm_lp - 1] = r->spr_val;
  2135. }
  2136. /* LP0 register values */
  2137. for_each_intel_crtc(dev, intel_crtc) {
  2138. const struct intel_crtc_state *cstate =
  2139. to_intel_crtc_state(intel_crtc->base.state);
  2140. enum pipe pipe = intel_crtc->pipe;
  2141. const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
  2142. if (WARN_ON(!r->enable))
  2143. continue;
  2144. results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
  2145. results->wm_pipe[pipe] =
  2146. (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
  2147. (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
  2148. r->cur_val;
  2149. }
  2150. }
  2151. /* Find the result with the highest level enabled. Check for enable_fbc_wm in
  2152. * case both are at the same level. Prefer r1 in case they're the same. */
  2153. static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
  2154. struct intel_pipe_wm *r1,
  2155. struct intel_pipe_wm *r2)
  2156. {
  2157. int level, max_level = ilk_wm_max_level(dev);
  2158. int level1 = 0, level2 = 0;
  2159. for (level = 1; level <= max_level; level++) {
  2160. if (r1->wm[level].enable)
  2161. level1 = level;
  2162. if (r2->wm[level].enable)
  2163. level2 = level;
  2164. }
  2165. if (level1 == level2) {
  2166. if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
  2167. return r2;
  2168. else
  2169. return r1;
  2170. } else if (level1 > level2) {
  2171. return r1;
  2172. } else {
  2173. return r2;
  2174. }
  2175. }
  2176. /* dirty bits used to track which watermarks need changes */
  2177. #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
  2178. #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
  2179. #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
  2180. #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
  2181. #define WM_DIRTY_FBC (1 << 24)
  2182. #define WM_DIRTY_DDB (1 << 25)
  2183. static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
  2184. const struct ilk_wm_values *old,
  2185. const struct ilk_wm_values *new)
  2186. {
  2187. unsigned int dirty = 0;
  2188. enum pipe pipe;
  2189. int wm_lp;
  2190. for_each_pipe(dev_priv, pipe) {
  2191. if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
  2192. dirty |= WM_DIRTY_LINETIME(pipe);
  2193. /* Must disable LP1+ watermarks too */
  2194. dirty |= WM_DIRTY_LP_ALL;
  2195. }
  2196. if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
  2197. dirty |= WM_DIRTY_PIPE(pipe);
  2198. /* Must disable LP1+ watermarks too */
  2199. dirty |= WM_DIRTY_LP_ALL;
  2200. }
  2201. }
  2202. if (old->enable_fbc_wm != new->enable_fbc_wm) {
  2203. dirty |= WM_DIRTY_FBC;
  2204. /* Must disable LP1+ watermarks too */
  2205. dirty |= WM_DIRTY_LP_ALL;
  2206. }
  2207. if (old->partitioning != new->partitioning) {
  2208. dirty |= WM_DIRTY_DDB;
  2209. /* Must disable LP1+ watermarks too */
  2210. dirty |= WM_DIRTY_LP_ALL;
  2211. }
  2212. /* LP1+ watermarks already deemed dirty, no need to continue */
  2213. if (dirty & WM_DIRTY_LP_ALL)
  2214. return dirty;
  2215. /* Find the lowest numbered LP1+ watermark in need of an update... */
  2216. for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
  2217. if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
  2218. old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
  2219. break;
  2220. }
  2221. /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
  2222. for (; wm_lp <= 3; wm_lp++)
  2223. dirty |= WM_DIRTY_LP(wm_lp);
  2224. return dirty;
  2225. }
  2226. static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
  2227. unsigned int dirty)
  2228. {
  2229. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2230. bool changed = false;
  2231. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
  2232. previous->wm_lp[2] &= ~WM1_LP_SR_EN;
  2233. I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
  2234. changed = true;
  2235. }
  2236. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
  2237. previous->wm_lp[1] &= ~WM1_LP_SR_EN;
  2238. I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
  2239. changed = true;
  2240. }
  2241. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
  2242. previous->wm_lp[0] &= ~WM1_LP_SR_EN;
  2243. I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
  2244. changed = true;
  2245. }
  2246. /*
  2247. * Don't touch WM1S_LP_EN here.
  2248. * Doing so could cause underruns.
  2249. */
  2250. return changed;
  2251. }
  2252. /*
  2253. * The spec says we shouldn't write when we don't need, because every write
  2254. * causes WMs to be re-evaluated, expending some power.
  2255. */
  2256. static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
  2257. struct ilk_wm_values *results)
  2258. {
  2259. struct drm_device *dev = dev_priv->dev;
  2260. struct ilk_wm_values *previous = &dev_priv->wm.hw;
  2261. unsigned int dirty;
  2262. uint32_t val;
  2263. dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
  2264. if (!dirty)
  2265. return;
  2266. _ilk_disable_lp_wm(dev_priv, dirty);
  2267. if (dirty & WM_DIRTY_PIPE(PIPE_A))
  2268. I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
  2269. if (dirty & WM_DIRTY_PIPE(PIPE_B))
  2270. I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
  2271. if (dirty & WM_DIRTY_PIPE(PIPE_C))
  2272. I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
  2273. if (dirty & WM_DIRTY_LINETIME(PIPE_A))
  2274. I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
  2275. if (dirty & WM_DIRTY_LINETIME(PIPE_B))
  2276. I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
  2277. if (dirty & WM_DIRTY_LINETIME(PIPE_C))
  2278. I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
  2279. if (dirty & WM_DIRTY_DDB) {
  2280. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2281. val = I915_READ(WM_MISC);
  2282. if (results->partitioning == INTEL_DDB_PART_1_2)
  2283. val &= ~WM_MISC_DATA_PARTITION_5_6;
  2284. else
  2285. val |= WM_MISC_DATA_PARTITION_5_6;
  2286. I915_WRITE(WM_MISC, val);
  2287. } else {
  2288. val = I915_READ(DISP_ARB_CTL2);
  2289. if (results->partitioning == INTEL_DDB_PART_1_2)
  2290. val &= ~DISP_DATA_PARTITION_5_6;
  2291. else
  2292. val |= DISP_DATA_PARTITION_5_6;
  2293. I915_WRITE(DISP_ARB_CTL2, val);
  2294. }
  2295. }
  2296. if (dirty & WM_DIRTY_FBC) {
  2297. val = I915_READ(DISP_ARB_CTL);
  2298. if (results->enable_fbc_wm)
  2299. val &= ~DISP_FBC_WM_DIS;
  2300. else
  2301. val |= DISP_FBC_WM_DIS;
  2302. I915_WRITE(DISP_ARB_CTL, val);
  2303. }
  2304. if (dirty & WM_DIRTY_LP(1) &&
  2305. previous->wm_lp_spr[0] != results->wm_lp_spr[0])
  2306. I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
  2307. if (INTEL_INFO(dev)->gen >= 7) {
  2308. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
  2309. I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
  2310. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
  2311. I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
  2312. }
  2313. if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
  2314. I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
  2315. if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
  2316. I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
  2317. if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
  2318. I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
  2319. dev_priv->wm.hw = *results;
  2320. }
  2321. static bool ilk_disable_lp_wm(struct drm_device *dev)
  2322. {
  2323. struct drm_i915_private *dev_priv = dev->dev_private;
  2324. return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
  2325. }
  2326. /*
  2327. * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
  2328. * different active planes.
  2329. */
  2330. #define SKL_DDB_SIZE 896 /* in blocks */
  2331. #define BXT_DDB_SIZE 512
  2332. /*
  2333. * Return the index of a plane in the SKL DDB and wm result arrays. Primary
  2334. * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
  2335. * other universal planes are in indices 1..n. Note that this may leave unused
  2336. * indices between the top "sprite" plane and the cursor.
  2337. */
  2338. static int
  2339. skl_wm_plane_id(const struct intel_plane *plane)
  2340. {
  2341. switch (plane->base.type) {
  2342. case DRM_PLANE_TYPE_PRIMARY:
  2343. return 0;
  2344. case DRM_PLANE_TYPE_CURSOR:
  2345. return PLANE_CURSOR;
  2346. case DRM_PLANE_TYPE_OVERLAY:
  2347. return plane->plane + 1;
  2348. default:
  2349. MISSING_CASE(plane->base.type);
  2350. return plane->plane;
  2351. }
  2352. }
  2353. static void
  2354. skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
  2355. const struct intel_crtc_state *cstate,
  2356. const struct intel_wm_config *config,
  2357. struct skl_ddb_entry *alloc /* out */)
  2358. {
  2359. struct drm_crtc *for_crtc = cstate->base.crtc;
  2360. struct drm_crtc *crtc;
  2361. unsigned int pipe_size, ddb_size;
  2362. int nth_active_pipe;
  2363. if (!cstate->base.active) {
  2364. alloc->start = 0;
  2365. alloc->end = 0;
  2366. return;
  2367. }
  2368. if (IS_BROXTON(dev))
  2369. ddb_size = BXT_DDB_SIZE;
  2370. else
  2371. ddb_size = SKL_DDB_SIZE;
  2372. ddb_size -= 4; /* 4 blocks for bypass path allocation */
  2373. nth_active_pipe = 0;
  2374. for_each_crtc(dev, crtc) {
  2375. if (!to_intel_crtc(crtc)->active)
  2376. continue;
  2377. if (crtc == for_crtc)
  2378. break;
  2379. nth_active_pipe++;
  2380. }
  2381. pipe_size = ddb_size / config->num_pipes_active;
  2382. alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
  2383. alloc->end = alloc->start + pipe_size;
  2384. }
  2385. static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
  2386. {
  2387. if (config->num_pipes_active == 1)
  2388. return 32;
  2389. return 8;
  2390. }
  2391. static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
  2392. {
  2393. entry->start = reg & 0x3ff;
  2394. entry->end = (reg >> 16) & 0x3ff;
  2395. if (entry->end)
  2396. entry->end += 1;
  2397. }
  2398. void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
  2399. struct skl_ddb_allocation *ddb /* out */)
  2400. {
  2401. enum pipe pipe;
  2402. int plane;
  2403. u32 val;
  2404. memset(ddb, 0, sizeof(*ddb));
  2405. for_each_pipe(dev_priv, pipe) {
  2406. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe)))
  2407. continue;
  2408. for_each_plane(dev_priv, pipe, plane) {
  2409. val = I915_READ(PLANE_BUF_CFG(pipe, plane));
  2410. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
  2411. val);
  2412. }
  2413. val = I915_READ(CUR_BUF_CFG(pipe));
  2414. skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
  2415. val);
  2416. }
  2417. }
  2418. static unsigned int
  2419. skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
  2420. const struct drm_plane_state *pstate,
  2421. int y)
  2422. {
  2423. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2424. struct drm_framebuffer *fb = pstate->fb;
  2425. /* for planar format */
  2426. if (fb->pixel_format == DRM_FORMAT_NV12) {
  2427. if (y) /* y-plane data rate */
  2428. return intel_crtc->config->pipe_src_w *
  2429. intel_crtc->config->pipe_src_h *
  2430. drm_format_plane_cpp(fb->pixel_format, 0);
  2431. else /* uv-plane data rate */
  2432. return (intel_crtc->config->pipe_src_w/2) *
  2433. (intel_crtc->config->pipe_src_h/2) *
  2434. drm_format_plane_cpp(fb->pixel_format, 1);
  2435. }
  2436. /* for packed formats */
  2437. return intel_crtc->config->pipe_src_w *
  2438. intel_crtc->config->pipe_src_h *
  2439. drm_format_plane_cpp(fb->pixel_format, 0);
  2440. }
  2441. /*
  2442. * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
  2443. * a 8192x4096@32bpp framebuffer:
  2444. * 3 * 4096 * 8192 * 4 < 2^32
  2445. */
  2446. static unsigned int
  2447. skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
  2448. {
  2449. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2450. struct drm_device *dev = intel_crtc->base.dev;
  2451. const struct intel_plane *intel_plane;
  2452. unsigned int total_data_rate = 0;
  2453. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2454. const struct drm_plane_state *pstate = intel_plane->base.state;
  2455. if (pstate->fb == NULL)
  2456. continue;
  2457. if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
  2458. continue;
  2459. /* packed/uv */
  2460. total_data_rate += skl_plane_relative_data_rate(cstate,
  2461. pstate,
  2462. 0);
  2463. if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
  2464. /* y-plane */
  2465. total_data_rate += skl_plane_relative_data_rate(cstate,
  2466. pstate,
  2467. 1);
  2468. }
  2469. return total_data_rate;
  2470. }
  2471. static void
  2472. skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
  2473. struct skl_ddb_allocation *ddb /* out */)
  2474. {
  2475. struct drm_crtc *crtc = cstate->base.crtc;
  2476. struct drm_device *dev = crtc->dev;
  2477. struct drm_i915_private *dev_priv = to_i915(dev);
  2478. struct intel_wm_config *config = &dev_priv->wm.config;
  2479. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2480. struct intel_plane *intel_plane;
  2481. enum pipe pipe = intel_crtc->pipe;
  2482. struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
  2483. uint16_t alloc_size, start, cursor_blocks;
  2484. uint16_t minimum[I915_MAX_PLANES];
  2485. uint16_t y_minimum[I915_MAX_PLANES];
  2486. unsigned int total_data_rate;
  2487. skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
  2488. alloc_size = skl_ddb_entry_size(alloc);
  2489. if (alloc_size == 0) {
  2490. memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
  2491. memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
  2492. sizeof(ddb->plane[pipe][PLANE_CURSOR]));
  2493. return;
  2494. }
  2495. cursor_blocks = skl_cursor_allocation(config);
  2496. ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
  2497. ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
  2498. alloc_size -= cursor_blocks;
  2499. alloc->end -= cursor_blocks;
  2500. /* 1. Allocate the mininum required blocks for each active plane */
  2501. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2502. struct drm_plane *plane = &intel_plane->base;
  2503. struct drm_framebuffer *fb = plane->state->fb;
  2504. int id = skl_wm_plane_id(intel_plane);
  2505. if (fb == NULL)
  2506. continue;
  2507. if (plane->type == DRM_PLANE_TYPE_CURSOR)
  2508. continue;
  2509. minimum[id] = 8;
  2510. alloc_size -= minimum[id];
  2511. y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
  2512. alloc_size -= y_minimum[id];
  2513. }
  2514. /*
  2515. * 2. Distribute the remaining space in proportion to the amount of
  2516. * data each plane needs to fetch from memory.
  2517. *
  2518. * FIXME: we may not allocate every single block here.
  2519. */
  2520. total_data_rate = skl_get_total_relative_data_rate(cstate);
  2521. start = alloc->start;
  2522. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2523. struct drm_plane *plane = &intel_plane->base;
  2524. struct drm_plane_state *pstate = intel_plane->base.state;
  2525. unsigned int data_rate, y_data_rate;
  2526. uint16_t plane_blocks, y_plane_blocks = 0;
  2527. int id = skl_wm_plane_id(intel_plane);
  2528. if (pstate->fb == NULL)
  2529. continue;
  2530. if (plane->type == DRM_PLANE_TYPE_CURSOR)
  2531. continue;
  2532. data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
  2533. /*
  2534. * allocation for (packed formats) or (uv-plane part of planar format):
  2535. * promote the expression to 64 bits to avoid overflowing, the
  2536. * result is < available as data_rate / total_data_rate < 1
  2537. */
  2538. plane_blocks = minimum[id];
  2539. plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
  2540. total_data_rate);
  2541. ddb->plane[pipe][id].start = start;
  2542. ddb->plane[pipe][id].end = start + plane_blocks;
  2543. start += plane_blocks;
  2544. /*
  2545. * allocation for y_plane part of planar format:
  2546. */
  2547. if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
  2548. y_data_rate = skl_plane_relative_data_rate(cstate,
  2549. pstate,
  2550. 1);
  2551. y_plane_blocks = y_minimum[id];
  2552. y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
  2553. total_data_rate);
  2554. ddb->y_plane[pipe][id].start = start;
  2555. ddb->y_plane[pipe][id].end = start + y_plane_blocks;
  2556. start += y_plane_blocks;
  2557. }
  2558. }
  2559. }
  2560. static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
  2561. {
  2562. /* TODO: Take into account the scalers once we support them */
  2563. return config->base.adjusted_mode.crtc_clock;
  2564. }
  2565. /*
  2566. * The max latency should be 257 (max the punit can code is 255 and we add 2us
  2567. * for the read latency) and bytes_per_pixel should always be <= 8, so that
  2568. * should allow pixel_rate up to ~2 GHz which seems sufficient since max
  2569. * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
  2570. */
  2571. static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
  2572. uint32_t latency)
  2573. {
  2574. uint32_t wm_intermediate_val, ret;
  2575. if (latency == 0)
  2576. return UINT_MAX;
  2577. wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
  2578. ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
  2579. return ret;
  2580. }
  2581. static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
  2582. uint32_t horiz_pixels, uint8_t bytes_per_pixel,
  2583. uint64_t tiling, uint32_t latency)
  2584. {
  2585. uint32_t ret;
  2586. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2587. uint32_t wm_intermediate_val;
  2588. if (latency == 0)
  2589. return UINT_MAX;
  2590. plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
  2591. if (tiling == I915_FORMAT_MOD_Y_TILED ||
  2592. tiling == I915_FORMAT_MOD_Yf_TILED) {
  2593. plane_bytes_per_line *= 4;
  2594. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2595. plane_blocks_per_line /= 4;
  2596. } else {
  2597. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2598. }
  2599. wm_intermediate_val = latency * pixel_rate;
  2600. ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
  2601. plane_blocks_per_line;
  2602. return ret;
  2603. }
  2604. static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
  2605. const struct intel_crtc *intel_crtc)
  2606. {
  2607. struct drm_device *dev = intel_crtc->base.dev;
  2608. struct drm_i915_private *dev_priv = dev->dev_private;
  2609. const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2610. /*
  2611. * If ddb allocation of pipes changed, it may require recalculation of
  2612. * watermarks
  2613. */
  2614. if (memcmp(new_ddb->pipe, cur_ddb->pipe, sizeof(new_ddb->pipe)))
  2615. return true;
  2616. return false;
  2617. }
  2618. static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
  2619. struct intel_crtc_state *cstate,
  2620. struct intel_plane *intel_plane,
  2621. uint16_t ddb_allocation,
  2622. int level,
  2623. uint16_t *out_blocks, /* out */
  2624. uint8_t *out_lines /* out */)
  2625. {
  2626. struct drm_plane *plane = &intel_plane->base;
  2627. struct drm_framebuffer *fb = plane->state->fb;
  2628. uint32_t latency = dev_priv->wm.skl_latency[level];
  2629. uint32_t method1, method2;
  2630. uint32_t plane_bytes_per_line, plane_blocks_per_line;
  2631. uint32_t res_blocks, res_lines;
  2632. uint32_t selected_result;
  2633. uint8_t bytes_per_pixel;
  2634. if (latency == 0 || !cstate->base.active || !fb)
  2635. return false;
  2636. bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
  2637. method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
  2638. bytes_per_pixel,
  2639. latency);
  2640. method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
  2641. cstate->base.adjusted_mode.crtc_htotal,
  2642. cstate->pipe_src_w,
  2643. bytes_per_pixel,
  2644. fb->modifier[0],
  2645. latency);
  2646. plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
  2647. plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
  2648. if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
  2649. fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
  2650. uint32_t min_scanlines = 4;
  2651. uint32_t y_tile_minimum;
  2652. if (intel_rotation_90_or_270(plane->state->rotation)) {
  2653. int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
  2654. drm_format_plane_cpp(fb->pixel_format, 1) :
  2655. drm_format_plane_cpp(fb->pixel_format, 0);
  2656. switch (bpp) {
  2657. case 1:
  2658. min_scanlines = 16;
  2659. break;
  2660. case 2:
  2661. min_scanlines = 8;
  2662. break;
  2663. case 8:
  2664. WARN(1, "Unsupported pixel depth for rotation");
  2665. }
  2666. }
  2667. y_tile_minimum = plane_blocks_per_line * min_scanlines;
  2668. selected_result = max(method2, y_tile_minimum);
  2669. } else {
  2670. if ((ddb_allocation / plane_blocks_per_line) >= 1)
  2671. selected_result = min(method1, method2);
  2672. else
  2673. selected_result = method1;
  2674. }
  2675. res_blocks = selected_result + 1;
  2676. res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
  2677. if (level >= 1 && level <= 7) {
  2678. if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
  2679. fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
  2680. res_lines += 4;
  2681. else
  2682. res_blocks++;
  2683. }
  2684. if (res_blocks >= ddb_allocation || res_lines > 31)
  2685. return false;
  2686. *out_blocks = res_blocks;
  2687. *out_lines = res_lines;
  2688. return true;
  2689. }
  2690. static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
  2691. struct skl_ddb_allocation *ddb,
  2692. struct intel_crtc_state *cstate,
  2693. int level,
  2694. struct skl_wm_level *result)
  2695. {
  2696. struct drm_device *dev = dev_priv->dev;
  2697. struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
  2698. struct intel_plane *intel_plane;
  2699. uint16_t ddb_blocks;
  2700. enum pipe pipe = intel_crtc->pipe;
  2701. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2702. int i = skl_wm_plane_id(intel_plane);
  2703. ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
  2704. result->plane_en[i] = skl_compute_plane_wm(dev_priv,
  2705. cstate,
  2706. intel_plane,
  2707. ddb_blocks,
  2708. level,
  2709. &result->plane_res_b[i],
  2710. &result->plane_res_l[i]);
  2711. }
  2712. }
  2713. static uint32_t
  2714. skl_compute_linetime_wm(struct intel_crtc_state *cstate)
  2715. {
  2716. if (!cstate->base.active)
  2717. return 0;
  2718. if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
  2719. return 0;
  2720. return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
  2721. skl_pipe_pixel_rate(cstate));
  2722. }
  2723. static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
  2724. struct skl_wm_level *trans_wm /* out */)
  2725. {
  2726. struct drm_crtc *crtc = cstate->base.crtc;
  2727. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2728. struct intel_plane *intel_plane;
  2729. if (!cstate->base.active)
  2730. return;
  2731. /* Until we know more, just disable transition WMs */
  2732. for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
  2733. int i = skl_wm_plane_id(intel_plane);
  2734. trans_wm->plane_en[i] = false;
  2735. }
  2736. }
  2737. static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
  2738. struct skl_ddb_allocation *ddb,
  2739. struct skl_pipe_wm *pipe_wm)
  2740. {
  2741. struct drm_device *dev = cstate->base.crtc->dev;
  2742. const struct drm_i915_private *dev_priv = dev->dev_private;
  2743. int level, max_level = ilk_wm_max_level(dev);
  2744. for (level = 0; level <= max_level; level++) {
  2745. skl_compute_wm_level(dev_priv, ddb, cstate,
  2746. level, &pipe_wm->wm[level]);
  2747. }
  2748. pipe_wm->linetime = skl_compute_linetime_wm(cstate);
  2749. skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
  2750. }
  2751. static void skl_compute_wm_results(struct drm_device *dev,
  2752. struct skl_pipe_wm *p_wm,
  2753. struct skl_wm_values *r,
  2754. struct intel_crtc *intel_crtc)
  2755. {
  2756. int level, max_level = ilk_wm_max_level(dev);
  2757. enum pipe pipe = intel_crtc->pipe;
  2758. uint32_t temp;
  2759. int i;
  2760. for (level = 0; level <= max_level; level++) {
  2761. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2762. temp = 0;
  2763. temp |= p_wm->wm[level].plane_res_l[i] <<
  2764. PLANE_WM_LINES_SHIFT;
  2765. temp |= p_wm->wm[level].plane_res_b[i];
  2766. if (p_wm->wm[level].plane_en[i])
  2767. temp |= PLANE_WM_EN;
  2768. r->plane[pipe][i][level] = temp;
  2769. }
  2770. temp = 0;
  2771. temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
  2772. temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
  2773. if (p_wm->wm[level].plane_en[PLANE_CURSOR])
  2774. temp |= PLANE_WM_EN;
  2775. r->plane[pipe][PLANE_CURSOR][level] = temp;
  2776. }
  2777. /* transition WMs */
  2778. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  2779. temp = 0;
  2780. temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
  2781. temp |= p_wm->trans_wm.plane_res_b[i];
  2782. if (p_wm->trans_wm.plane_en[i])
  2783. temp |= PLANE_WM_EN;
  2784. r->plane_trans[pipe][i] = temp;
  2785. }
  2786. temp = 0;
  2787. temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
  2788. temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
  2789. if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
  2790. temp |= PLANE_WM_EN;
  2791. r->plane_trans[pipe][PLANE_CURSOR] = temp;
  2792. r->wm_linetime[pipe] = p_wm->linetime;
  2793. }
  2794. static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
  2795. i915_reg_t reg,
  2796. const struct skl_ddb_entry *entry)
  2797. {
  2798. if (entry->end)
  2799. I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
  2800. else
  2801. I915_WRITE(reg, 0);
  2802. }
  2803. static void skl_write_wm_values(struct drm_i915_private *dev_priv,
  2804. const struct skl_wm_values *new)
  2805. {
  2806. struct drm_device *dev = dev_priv->dev;
  2807. struct intel_crtc *crtc;
  2808. for_each_intel_crtc(dev, crtc) {
  2809. int i, level, max_level = ilk_wm_max_level(dev);
  2810. enum pipe pipe = crtc->pipe;
  2811. if (!new->dirty[pipe])
  2812. continue;
  2813. I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
  2814. for (level = 0; level <= max_level; level++) {
  2815. for (i = 0; i < intel_num_planes(crtc); i++)
  2816. I915_WRITE(PLANE_WM(pipe, i, level),
  2817. new->plane[pipe][i][level]);
  2818. I915_WRITE(CUR_WM(pipe, level),
  2819. new->plane[pipe][PLANE_CURSOR][level]);
  2820. }
  2821. for (i = 0; i < intel_num_planes(crtc); i++)
  2822. I915_WRITE(PLANE_WM_TRANS(pipe, i),
  2823. new->plane_trans[pipe][i]);
  2824. I915_WRITE(CUR_WM_TRANS(pipe),
  2825. new->plane_trans[pipe][PLANE_CURSOR]);
  2826. for (i = 0; i < intel_num_planes(crtc); i++) {
  2827. skl_ddb_entry_write(dev_priv,
  2828. PLANE_BUF_CFG(pipe, i),
  2829. &new->ddb.plane[pipe][i]);
  2830. skl_ddb_entry_write(dev_priv,
  2831. PLANE_NV12_BUF_CFG(pipe, i),
  2832. &new->ddb.y_plane[pipe][i]);
  2833. }
  2834. skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
  2835. &new->ddb.plane[pipe][PLANE_CURSOR]);
  2836. }
  2837. }
  2838. /*
  2839. * When setting up a new DDB allocation arrangement, we need to correctly
  2840. * sequence the times at which the new allocations for the pipes are taken into
  2841. * account or we'll have pipes fetching from space previously allocated to
  2842. * another pipe.
  2843. *
  2844. * Roughly the sequence looks like:
  2845. * 1. re-allocate the pipe(s) with the allocation being reduced and not
  2846. * overlapping with a previous light-up pipe (another way to put it is:
  2847. * pipes with their new allocation strickly included into their old ones).
  2848. * 2. re-allocate the other pipes that get their allocation reduced
  2849. * 3. allocate the pipes having their allocation increased
  2850. *
  2851. * Steps 1. and 2. are here to take care of the following case:
  2852. * - Initially DDB looks like this:
  2853. * | B | C |
  2854. * - enable pipe A.
  2855. * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
  2856. * allocation
  2857. * | A | B | C |
  2858. *
  2859. * We need to sequence the re-allocation: C, B, A (and not B, C, A).
  2860. */
  2861. static void
  2862. skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
  2863. {
  2864. int plane;
  2865. DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
  2866. for_each_plane(dev_priv, pipe, plane) {
  2867. I915_WRITE(PLANE_SURF(pipe, plane),
  2868. I915_READ(PLANE_SURF(pipe, plane)));
  2869. }
  2870. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  2871. }
  2872. static bool
  2873. skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
  2874. const struct skl_ddb_allocation *new,
  2875. enum pipe pipe)
  2876. {
  2877. uint16_t old_size, new_size;
  2878. old_size = skl_ddb_entry_size(&old->pipe[pipe]);
  2879. new_size = skl_ddb_entry_size(&new->pipe[pipe]);
  2880. return old_size != new_size &&
  2881. new->pipe[pipe].start >= old->pipe[pipe].start &&
  2882. new->pipe[pipe].end <= old->pipe[pipe].end;
  2883. }
  2884. static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
  2885. struct skl_wm_values *new_values)
  2886. {
  2887. struct drm_device *dev = dev_priv->dev;
  2888. struct skl_ddb_allocation *cur_ddb, *new_ddb;
  2889. bool reallocated[I915_MAX_PIPES] = {};
  2890. struct intel_crtc *crtc;
  2891. enum pipe pipe;
  2892. new_ddb = &new_values->ddb;
  2893. cur_ddb = &dev_priv->wm.skl_hw.ddb;
  2894. /*
  2895. * First pass: flush the pipes with the new allocation contained into
  2896. * the old space.
  2897. *
  2898. * We'll wait for the vblank on those pipes to ensure we can safely
  2899. * re-allocate the freed space without this pipe fetching from it.
  2900. */
  2901. for_each_intel_crtc(dev, crtc) {
  2902. if (!crtc->active)
  2903. continue;
  2904. pipe = crtc->pipe;
  2905. if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
  2906. continue;
  2907. skl_wm_flush_pipe(dev_priv, pipe, 1);
  2908. intel_wait_for_vblank(dev, pipe);
  2909. reallocated[pipe] = true;
  2910. }
  2911. /*
  2912. * Second pass: flush the pipes that are having their allocation
  2913. * reduced, but overlapping with a previous allocation.
  2914. *
  2915. * Here as well we need to wait for the vblank to make sure the freed
  2916. * space is not used anymore.
  2917. */
  2918. for_each_intel_crtc(dev, crtc) {
  2919. if (!crtc->active)
  2920. continue;
  2921. pipe = crtc->pipe;
  2922. if (reallocated[pipe])
  2923. continue;
  2924. if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
  2925. skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
  2926. skl_wm_flush_pipe(dev_priv, pipe, 2);
  2927. intel_wait_for_vblank(dev, pipe);
  2928. reallocated[pipe] = true;
  2929. }
  2930. }
  2931. /*
  2932. * Third pass: flush the pipes that got more space allocated.
  2933. *
  2934. * We don't need to actively wait for the update here, next vblank
  2935. * will just get more DDB space with the correct WM values.
  2936. */
  2937. for_each_intel_crtc(dev, crtc) {
  2938. if (!crtc->active)
  2939. continue;
  2940. pipe = crtc->pipe;
  2941. /*
  2942. * At this point, only the pipes more space than before are
  2943. * left to re-allocate.
  2944. */
  2945. if (reallocated[pipe])
  2946. continue;
  2947. skl_wm_flush_pipe(dev_priv, pipe, 3);
  2948. }
  2949. }
  2950. static bool skl_update_pipe_wm(struct drm_crtc *crtc,
  2951. struct skl_ddb_allocation *ddb, /* out */
  2952. struct skl_pipe_wm *pipe_wm /* out */)
  2953. {
  2954. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2955. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  2956. skl_allocate_pipe_ddb(cstate, ddb);
  2957. skl_compute_pipe_wm(cstate, ddb, pipe_wm);
  2958. if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
  2959. return false;
  2960. intel_crtc->wm.active.skl = *pipe_wm;
  2961. return true;
  2962. }
  2963. static void skl_update_other_pipe_wm(struct drm_device *dev,
  2964. struct drm_crtc *crtc,
  2965. struct skl_wm_values *r)
  2966. {
  2967. struct intel_crtc *intel_crtc;
  2968. struct intel_crtc *this_crtc = to_intel_crtc(crtc);
  2969. /*
  2970. * If the WM update hasn't changed the allocation for this_crtc (the
  2971. * crtc we are currently computing the new WM values for), other
  2972. * enabled crtcs will keep the same allocation and we don't need to
  2973. * recompute anything for them.
  2974. */
  2975. if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
  2976. return;
  2977. /*
  2978. * Otherwise, because of this_crtc being freshly enabled/disabled, the
  2979. * other active pipes need new DDB allocation and WM values.
  2980. */
  2981. for_each_intel_crtc(dev, intel_crtc) {
  2982. struct skl_pipe_wm pipe_wm = {};
  2983. bool wm_changed;
  2984. if (this_crtc->pipe == intel_crtc->pipe)
  2985. continue;
  2986. if (!intel_crtc->active)
  2987. continue;
  2988. wm_changed = skl_update_pipe_wm(&intel_crtc->base,
  2989. &r->ddb, &pipe_wm);
  2990. /*
  2991. * If we end up re-computing the other pipe WM values, it's
  2992. * because it was really needed, so we expect the WM values to
  2993. * be different.
  2994. */
  2995. WARN_ON(!wm_changed);
  2996. skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
  2997. r->dirty[intel_crtc->pipe] = true;
  2998. }
  2999. }
  3000. static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
  3001. {
  3002. watermarks->wm_linetime[pipe] = 0;
  3003. memset(watermarks->plane[pipe], 0,
  3004. sizeof(uint32_t) * 8 * I915_MAX_PLANES);
  3005. memset(watermarks->plane_trans[pipe],
  3006. 0, sizeof(uint32_t) * I915_MAX_PLANES);
  3007. watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
  3008. /* Clear ddb entries for pipe */
  3009. memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
  3010. memset(&watermarks->ddb.plane[pipe], 0,
  3011. sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
  3012. memset(&watermarks->ddb.y_plane[pipe], 0,
  3013. sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
  3014. memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
  3015. sizeof(struct skl_ddb_entry));
  3016. }
  3017. static void skl_update_wm(struct drm_crtc *crtc)
  3018. {
  3019. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3020. struct drm_device *dev = crtc->dev;
  3021. struct drm_i915_private *dev_priv = dev->dev_private;
  3022. struct skl_wm_values *results = &dev_priv->wm.skl_results;
  3023. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3024. struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
  3025. /* Clear all dirty flags */
  3026. memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);
  3027. skl_clear_wm(results, intel_crtc->pipe);
  3028. if (!skl_update_pipe_wm(crtc, &results->ddb, pipe_wm))
  3029. return;
  3030. skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
  3031. results->dirty[intel_crtc->pipe] = true;
  3032. skl_update_other_pipe_wm(dev, crtc, results);
  3033. skl_write_wm_values(dev_priv, results);
  3034. skl_flush_wm_values(dev_priv, results);
  3035. /* store the new configuration */
  3036. dev_priv->wm.skl_hw = *results;
  3037. }
  3038. static void ilk_compute_wm_config(struct drm_device *dev,
  3039. struct intel_wm_config *config)
  3040. {
  3041. struct intel_crtc *crtc;
  3042. /* Compute the currently _active_ config */
  3043. for_each_intel_crtc(dev, crtc) {
  3044. const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
  3045. if (!wm->pipe_enabled)
  3046. continue;
  3047. config->sprites_enabled |= wm->sprites_enabled;
  3048. config->sprites_scaled |= wm->sprites_scaled;
  3049. config->num_pipes_active++;
  3050. }
  3051. }
  3052. static void ilk_program_watermarks(struct intel_crtc_state *cstate)
  3053. {
  3054. struct drm_crtc *crtc = cstate->base.crtc;
  3055. struct drm_device *dev = crtc->dev;
  3056. struct drm_i915_private *dev_priv = to_i915(dev);
  3057. struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
  3058. struct ilk_wm_maximums max;
  3059. struct intel_wm_config config = {};
  3060. struct ilk_wm_values results = {};
  3061. enum intel_ddb_partitioning partitioning;
  3062. ilk_compute_wm_config(dev, &config);
  3063. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
  3064. ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
  3065. /* 5/6 split only in single pipe config on IVB+ */
  3066. if (INTEL_INFO(dev)->gen >= 7 &&
  3067. config.num_pipes_active == 1 && config.sprites_enabled) {
  3068. ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
  3069. ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
  3070. best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
  3071. } else {
  3072. best_lp_wm = &lp_wm_1_2;
  3073. }
  3074. partitioning = (best_lp_wm == &lp_wm_1_2) ?
  3075. INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
  3076. ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
  3077. ilk_write_wm_values(dev_priv, &results);
  3078. }
  3079. static void ilk_update_wm(struct drm_crtc *crtc)
  3080. {
  3081. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3082. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3083. WARN_ON(cstate->base.active != intel_crtc->active);
  3084. /*
  3085. * IVB workaround: must disable low power watermarks for at least
  3086. * one frame before enabling scaling. LP watermarks can be re-enabled
  3087. * when scaling is disabled.
  3088. *
  3089. * WaCxSRDisabledForSpriteScaling:ivb
  3090. */
  3091. if (cstate->disable_lp_wm) {
  3092. ilk_disable_lp_wm(crtc->dev);
  3093. intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
  3094. }
  3095. intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
  3096. ilk_program_watermarks(cstate);
  3097. }
  3098. static void skl_pipe_wm_active_state(uint32_t val,
  3099. struct skl_pipe_wm *active,
  3100. bool is_transwm,
  3101. bool is_cursor,
  3102. int i,
  3103. int level)
  3104. {
  3105. bool is_enabled = (val & PLANE_WM_EN) != 0;
  3106. if (!is_transwm) {
  3107. if (!is_cursor) {
  3108. active->wm[level].plane_en[i] = is_enabled;
  3109. active->wm[level].plane_res_b[i] =
  3110. val & PLANE_WM_BLOCKS_MASK;
  3111. active->wm[level].plane_res_l[i] =
  3112. (val >> PLANE_WM_LINES_SHIFT) &
  3113. PLANE_WM_LINES_MASK;
  3114. } else {
  3115. active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
  3116. active->wm[level].plane_res_b[PLANE_CURSOR] =
  3117. val & PLANE_WM_BLOCKS_MASK;
  3118. active->wm[level].plane_res_l[PLANE_CURSOR] =
  3119. (val >> PLANE_WM_LINES_SHIFT) &
  3120. PLANE_WM_LINES_MASK;
  3121. }
  3122. } else {
  3123. if (!is_cursor) {
  3124. active->trans_wm.plane_en[i] = is_enabled;
  3125. active->trans_wm.plane_res_b[i] =
  3126. val & PLANE_WM_BLOCKS_MASK;
  3127. active->trans_wm.plane_res_l[i] =
  3128. (val >> PLANE_WM_LINES_SHIFT) &
  3129. PLANE_WM_LINES_MASK;
  3130. } else {
  3131. active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
  3132. active->trans_wm.plane_res_b[PLANE_CURSOR] =
  3133. val & PLANE_WM_BLOCKS_MASK;
  3134. active->trans_wm.plane_res_l[PLANE_CURSOR] =
  3135. (val >> PLANE_WM_LINES_SHIFT) &
  3136. PLANE_WM_LINES_MASK;
  3137. }
  3138. }
  3139. }
  3140. static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3141. {
  3142. struct drm_device *dev = crtc->dev;
  3143. struct drm_i915_private *dev_priv = dev->dev_private;
  3144. struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
  3145. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3146. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3147. struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
  3148. enum pipe pipe = intel_crtc->pipe;
  3149. int level, i, max_level;
  3150. uint32_t temp;
  3151. max_level = ilk_wm_max_level(dev);
  3152. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3153. for (level = 0; level <= max_level; level++) {
  3154. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  3155. hw->plane[pipe][i][level] =
  3156. I915_READ(PLANE_WM(pipe, i, level));
  3157. hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
  3158. }
  3159. for (i = 0; i < intel_num_planes(intel_crtc); i++)
  3160. hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
  3161. hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
  3162. if (!intel_crtc->active)
  3163. return;
  3164. hw->dirty[pipe] = true;
  3165. active->linetime = hw->wm_linetime[pipe];
  3166. for (level = 0; level <= max_level; level++) {
  3167. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3168. temp = hw->plane[pipe][i][level];
  3169. skl_pipe_wm_active_state(temp, active, false,
  3170. false, i, level);
  3171. }
  3172. temp = hw->plane[pipe][PLANE_CURSOR][level];
  3173. skl_pipe_wm_active_state(temp, active, false, true, i, level);
  3174. }
  3175. for (i = 0; i < intel_num_planes(intel_crtc); i++) {
  3176. temp = hw->plane_trans[pipe][i];
  3177. skl_pipe_wm_active_state(temp, active, true, false, i, 0);
  3178. }
  3179. temp = hw->plane_trans[pipe][PLANE_CURSOR];
  3180. skl_pipe_wm_active_state(temp, active, true, true, i, 0);
  3181. intel_crtc->wm.active.skl = *active;
  3182. }
  3183. void skl_wm_get_hw_state(struct drm_device *dev)
  3184. {
  3185. struct drm_i915_private *dev_priv = dev->dev_private;
  3186. struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
  3187. struct drm_crtc *crtc;
  3188. skl_ddb_get_hw_state(dev_priv, ddb);
  3189. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
  3190. skl_pipe_wm_get_hw_state(crtc);
  3191. }
  3192. static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
  3193. {
  3194. struct drm_device *dev = crtc->dev;
  3195. struct drm_i915_private *dev_priv = dev->dev_private;
  3196. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3197. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3198. struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
  3199. struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
  3200. enum pipe pipe = intel_crtc->pipe;
  3201. static const i915_reg_t wm0_pipe_reg[] = {
  3202. [PIPE_A] = WM0_PIPEA_ILK,
  3203. [PIPE_B] = WM0_PIPEB_ILK,
  3204. [PIPE_C] = WM0_PIPEC_IVB,
  3205. };
  3206. hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
  3207. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3208. hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
  3209. active->pipe_enabled = intel_crtc->active;
  3210. if (active->pipe_enabled) {
  3211. u32 tmp = hw->wm_pipe[pipe];
  3212. /*
  3213. * For active pipes LP0 watermark is marked as
  3214. * enabled, and LP1+ watermaks as disabled since
  3215. * we can't really reverse compute them in case
  3216. * multiple pipes are active.
  3217. */
  3218. active->wm[0].enable = true;
  3219. active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
  3220. active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
  3221. active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
  3222. active->linetime = hw->wm_linetime[pipe];
  3223. } else {
  3224. int level, max_level = ilk_wm_max_level(dev);
  3225. /*
  3226. * For inactive pipes, all watermark levels
  3227. * should be marked as enabled but zeroed,
  3228. * which is what we'd compute them to.
  3229. */
  3230. for (level = 0; level <= max_level; level++)
  3231. active->wm[level].enable = true;
  3232. }
  3233. intel_crtc->wm.active.ilk = *active;
  3234. }
  3235. #define _FW_WM(value, plane) \
  3236. (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
  3237. #define _FW_WM_VLV(value, plane) \
  3238. (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
  3239. static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
  3240. struct vlv_wm_values *wm)
  3241. {
  3242. enum pipe pipe;
  3243. uint32_t tmp;
  3244. for_each_pipe(dev_priv, pipe) {
  3245. tmp = I915_READ(VLV_DDL(pipe));
  3246. wm->ddl[pipe].primary =
  3247. (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3248. wm->ddl[pipe].cursor =
  3249. (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3250. wm->ddl[pipe].sprite[0] =
  3251. (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3252. wm->ddl[pipe].sprite[1] =
  3253. (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
  3254. }
  3255. tmp = I915_READ(DSPFW1);
  3256. wm->sr.plane = _FW_WM(tmp, SR);
  3257. wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
  3258. wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
  3259. wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
  3260. tmp = I915_READ(DSPFW2);
  3261. wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
  3262. wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
  3263. wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
  3264. tmp = I915_READ(DSPFW3);
  3265. wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
  3266. if (IS_CHERRYVIEW(dev_priv)) {
  3267. tmp = I915_READ(DSPFW7_CHV);
  3268. wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
  3269. wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
  3270. tmp = I915_READ(DSPFW8_CHV);
  3271. wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
  3272. wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
  3273. tmp = I915_READ(DSPFW9_CHV);
  3274. wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
  3275. wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
  3276. tmp = I915_READ(DSPHOWM);
  3277. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3278. wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
  3279. wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
  3280. wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
  3281. wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3282. wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3283. wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
  3284. wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3285. wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3286. wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
  3287. } else {
  3288. tmp = I915_READ(DSPFW7);
  3289. wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
  3290. wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
  3291. tmp = I915_READ(DSPHOWM);
  3292. wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
  3293. wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
  3294. wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
  3295. wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
  3296. wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
  3297. wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
  3298. wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
  3299. }
  3300. }
  3301. #undef _FW_WM
  3302. #undef _FW_WM_VLV
  3303. void vlv_wm_get_hw_state(struct drm_device *dev)
  3304. {
  3305. struct drm_i915_private *dev_priv = to_i915(dev);
  3306. struct vlv_wm_values *wm = &dev_priv->wm.vlv;
  3307. struct intel_plane *plane;
  3308. enum pipe pipe;
  3309. u32 val;
  3310. vlv_read_wm_values(dev_priv, wm);
  3311. for_each_intel_plane(dev, plane) {
  3312. switch (plane->base.type) {
  3313. int sprite;
  3314. case DRM_PLANE_TYPE_CURSOR:
  3315. plane->wm.fifo_size = 63;
  3316. break;
  3317. case DRM_PLANE_TYPE_PRIMARY:
  3318. plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
  3319. break;
  3320. case DRM_PLANE_TYPE_OVERLAY:
  3321. sprite = plane->plane;
  3322. plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
  3323. break;
  3324. }
  3325. }
  3326. wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  3327. wm->level = VLV_WM_LEVEL_PM2;
  3328. if (IS_CHERRYVIEW(dev_priv)) {
  3329. mutex_lock(&dev_priv->rps.hw_lock);
  3330. val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
  3331. if (val & DSP_MAXFIFO_PM5_ENABLE)
  3332. wm->level = VLV_WM_LEVEL_PM5;
  3333. /*
  3334. * If DDR DVFS is disabled in the BIOS, Punit
  3335. * will never ack the request. So if that happens
  3336. * assume we don't have to enable/disable DDR DVFS
  3337. * dynamically. To test that just set the REQ_ACK
  3338. * bit to poke the Punit, but don't change the
  3339. * HIGH/LOW bits so that we don't actually change
  3340. * the current state.
  3341. */
  3342. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3343. val |= FORCE_DDR_FREQ_REQ_ACK;
  3344. vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
  3345. if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
  3346. FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
  3347. DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
  3348. "assuming DDR DVFS is disabled\n");
  3349. dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
  3350. } else {
  3351. val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
  3352. if ((val & FORCE_DDR_HIGH_FREQ) == 0)
  3353. wm->level = VLV_WM_LEVEL_DDR_DVFS;
  3354. }
  3355. mutex_unlock(&dev_priv->rps.hw_lock);
  3356. }
  3357. for_each_pipe(dev_priv, pipe)
  3358. DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
  3359. pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
  3360. wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
  3361. DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
  3362. wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
  3363. }
  3364. void ilk_wm_get_hw_state(struct drm_device *dev)
  3365. {
  3366. struct drm_i915_private *dev_priv = dev->dev_private;
  3367. struct ilk_wm_values *hw = &dev_priv->wm.hw;
  3368. struct drm_crtc *crtc;
  3369. for_each_crtc(dev, crtc)
  3370. ilk_pipe_wm_get_hw_state(crtc);
  3371. hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
  3372. hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
  3373. hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
  3374. hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
  3375. if (INTEL_INFO(dev)->gen >= 7) {
  3376. hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
  3377. hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
  3378. }
  3379. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3380. hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
  3381. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3382. else if (IS_IVYBRIDGE(dev))
  3383. hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
  3384. INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
  3385. hw->enable_fbc_wm =
  3386. !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
  3387. }
  3388. /**
  3389. * intel_update_watermarks - update FIFO watermark values based on current modes
  3390. *
  3391. * Calculate watermark values for the various WM regs based on current mode
  3392. * and plane configuration.
  3393. *
  3394. * There are several cases to deal with here:
  3395. * - normal (i.e. non-self-refresh)
  3396. * - self-refresh (SR) mode
  3397. * - lines are large relative to FIFO size (buffer can hold up to 2)
  3398. * - lines are small relative to FIFO size (buffer can hold more than 2
  3399. * lines), so need to account for TLB latency
  3400. *
  3401. * The normal calculation is:
  3402. * watermark = dotclock * bytes per pixel * latency
  3403. * where latency is platform & configuration dependent (we assume pessimal
  3404. * values here).
  3405. *
  3406. * The SR calculation is:
  3407. * watermark = (trunc(latency/line time)+1) * surface width *
  3408. * bytes per pixel
  3409. * where
  3410. * line time = htotal / dotclock
  3411. * surface width = hdisplay for normal plane and 64 for cursor
  3412. * and latency is assumed to be high, as above.
  3413. *
  3414. * The final value programmed to the register should always be rounded up,
  3415. * and include an extra 2 entries to account for clock crossings.
  3416. *
  3417. * We don't use the sprite, so we can ignore that. And on Crestline we have
  3418. * to set the non-SR watermarks to 8.
  3419. */
  3420. void intel_update_watermarks(struct drm_crtc *crtc)
  3421. {
  3422. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  3423. if (dev_priv->display.update_wm)
  3424. dev_priv->display.update_wm(crtc);
  3425. }
  3426. /*
  3427. * Lock protecting IPS related data structures
  3428. */
  3429. DEFINE_SPINLOCK(mchdev_lock);
  3430. /* Global for IPS driver to get at the current i915 device. Protected by
  3431. * mchdev_lock. */
  3432. static struct drm_i915_private *i915_mch_dev;
  3433. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  3434. {
  3435. struct drm_i915_private *dev_priv = dev->dev_private;
  3436. u16 rgvswctl;
  3437. assert_spin_locked(&mchdev_lock);
  3438. rgvswctl = I915_READ16(MEMSWCTL);
  3439. if (rgvswctl & MEMCTL_CMD_STS) {
  3440. DRM_DEBUG("gpu busy, RCS change rejected\n");
  3441. return false; /* still busy with another command */
  3442. }
  3443. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  3444. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  3445. I915_WRITE16(MEMSWCTL, rgvswctl);
  3446. POSTING_READ16(MEMSWCTL);
  3447. rgvswctl |= MEMCTL_CMD_STS;
  3448. I915_WRITE16(MEMSWCTL, rgvswctl);
  3449. return true;
  3450. }
  3451. static void ironlake_enable_drps(struct drm_device *dev)
  3452. {
  3453. struct drm_i915_private *dev_priv = dev->dev_private;
  3454. u32 rgvmodectl = I915_READ(MEMMODECTL);
  3455. u8 fmax, fmin, fstart, vstart;
  3456. spin_lock_irq(&mchdev_lock);
  3457. /* Enable temp reporting */
  3458. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  3459. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  3460. /* 100ms RC evaluation intervals */
  3461. I915_WRITE(RCUPEI, 100000);
  3462. I915_WRITE(RCDNEI, 100000);
  3463. /* Set max/min thresholds to 90ms and 80ms respectively */
  3464. I915_WRITE(RCBMAXAVG, 90000);
  3465. I915_WRITE(RCBMINAVG, 80000);
  3466. I915_WRITE(MEMIHYST, 1);
  3467. /* Set up min, max, and cur for interrupt handling */
  3468. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  3469. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  3470. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  3471. MEMMODE_FSTART_SHIFT;
  3472. vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
  3473. PXVFREQ_PX_SHIFT;
  3474. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  3475. dev_priv->ips.fstart = fstart;
  3476. dev_priv->ips.max_delay = fstart;
  3477. dev_priv->ips.min_delay = fmin;
  3478. dev_priv->ips.cur_delay = fstart;
  3479. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  3480. fmax, fmin, fstart);
  3481. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  3482. /*
  3483. * Interrupts will be enabled in ironlake_irq_postinstall
  3484. */
  3485. I915_WRITE(VIDSTART, vstart);
  3486. POSTING_READ(VIDSTART);
  3487. rgvmodectl |= MEMMODE_SWMODE_EN;
  3488. I915_WRITE(MEMMODECTL, rgvmodectl);
  3489. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  3490. DRM_ERROR("stuck trying to change perf mode\n");
  3491. mdelay(1);
  3492. ironlake_set_drps(dev, fstart);
  3493. dev_priv->ips.last_count1 = I915_READ(DMIEC) +
  3494. I915_READ(DDREC) + I915_READ(CSIEC);
  3495. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  3496. dev_priv->ips.last_count2 = I915_READ(GFXEC);
  3497. dev_priv->ips.last_time2 = ktime_get_raw_ns();
  3498. spin_unlock_irq(&mchdev_lock);
  3499. }
  3500. static void ironlake_disable_drps(struct drm_device *dev)
  3501. {
  3502. struct drm_i915_private *dev_priv = dev->dev_private;
  3503. u16 rgvswctl;
  3504. spin_lock_irq(&mchdev_lock);
  3505. rgvswctl = I915_READ16(MEMSWCTL);
  3506. /* Ack interrupts, disable EFC interrupt */
  3507. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  3508. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  3509. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  3510. I915_WRITE(DEIIR, DE_PCU_EVENT);
  3511. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  3512. /* Go back to the starting frequency */
  3513. ironlake_set_drps(dev, dev_priv->ips.fstart);
  3514. mdelay(1);
  3515. rgvswctl |= MEMCTL_CMD_STS;
  3516. I915_WRITE(MEMSWCTL, rgvswctl);
  3517. mdelay(1);
  3518. spin_unlock_irq(&mchdev_lock);
  3519. }
  3520. /* There's a funny hw issue where the hw returns all 0 when reading from
  3521. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  3522. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  3523. * all limits and the gpu stuck at whatever frequency it is at atm).
  3524. */
  3525. static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
  3526. {
  3527. u32 limits;
  3528. /* Only set the down limit when we've reached the lowest level to avoid
  3529. * getting more interrupts, otherwise leave this clear. This prevents a
  3530. * race in the hw when coming out of rc6: There's a tiny window where
  3531. * the hw runs at the minimal clock before selecting the desired
  3532. * frequency, if the down threshold expires in that window we will not
  3533. * receive a down interrupt. */
  3534. if (IS_GEN9(dev_priv->dev)) {
  3535. limits = (dev_priv->rps.max_freq_softlimit) << 23;
  3536. if (val <= dev_priv->rps.min_freq_softlimit)
  3537. limits |= (dev_priv->rps.min_freq_softlimit) << 14;
  3538. } else {
  3539. limits = dev_priv->rps.max_freq_softlimit << 24;
  3540. if (val <= dev_priv->rps.min_freq_softlimit)
  3541. limits |= dev_priv->rps.min_freq_softlimit << 16;
  3542. }
  3543. return limits;
  3544. }
  3545. static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
  3546. {
  3547. int new_power;
  3548. u32 threshold_up = 0, threshold_down = 0; /* in % */
  3549. u32 ei_up = 0, ei_down = 0;
  3550. new_power = dev_priv->rps.power;
  3551. switch (dev_priv->rps.power) {
  3552. case LOW_POWER:
  3553. if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
  3554. new_power = BETWEEN;
  3555. break;
  3556. case BETWEEN:
  3557. if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
  3558. new_power = LOW_POWER;
  3559. else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
  3560. new_power = HIGH_POWER;
  3561. break;
  3562. case HIGH_POWER:
  3563. if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
  3564. new_power = BETWEEN;
  3565. break;
  3566. }
  3567. /* Max/min bins are special */
  3568. if (val <= dev_priv->rps.min_freq_softlimit)
  3569. new_power = LOW_POWER;
  3570. if (val >= dev_priv->rps.max_freq_softlimit)
  3571. new_power = HIGH_POWER;
  3572. if (new_power == dev_priv->rps.power)
  3573. return;
  3574. /* Note the units here are not exactly 1us, but 1280ns. */
  3575. switch (new_power) {
  3576. case LOW_POWER:
  3577. /* Upclock if more than 95% busy over 16ms */
  3578. ei_up = 16000;
  3579. threshold_up = 95;
  3580. /* Downclock if less than 85% busy over 32ms */
  3581. ei_down = 32000;
  3582. threshold_down = 85;
  3583. break;
  3584. case BETWEEN:
  3585. /* Upclock if more than 90% busy over 13ms */
  3586. ei_up = 13000;
  3587. threshold_up = 90;
  3588. /* Downclock if less than 75% busy over 32ms */
  3589. ei_down = 32000;
  3590. threshold_down = 75;
  3591. break;
  3592. case HIGH_POWER:
  3593. /* Upclock if more than 85% busy over 10ms */
  3594. ei_up = 10000;
  3595. threshold_up = 85;
  3596. /* Downclock if less than 60% busy over 32ms */
  3597. ei_down = 32000;
  3598. threshold_down = 60;
  3599. break;
  3600. }
  3601. I915_WRITE(GEN6_RP_UP_EI,
  3602. GT_INTERVAL_FROM_US(dev_priv, ei_up));
  3603. I915_WRITE(GEN6_RP_UP_THRESHOLD,
  3604. GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
  3605. I915_WRITE(GEN6_RP_DOWN_EI,
  3606. GT_INTERVAL_FROM_US(dev_priv, ei_down));
  3607. I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
  3608. GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
  3609. I915_WRITE(GEN6_RP_CONTROL,
  3610. GEN6_RP_MEDIA_TURBO |
  3611. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  3612. GEN6_RP_MEDIA_IS_GFX |
  3613. GEN6_RP_ENABLE |
  3614. GEN6_RP_UP_BUSY_AVG |
  3615. GEN6_RP_DOWN_IDLE_AVG);
  3616. dev_priv->rps.power = new_power;
  3617. dev_priv->rps.up_threshold = threshold_up;
  3618. dev_priv->rps.down_threshold = threshold_down;
  3619. dev_priv->rps.last_adj = 0;
  3620. }
  3621. static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
  3622. {
  3623. u32 mask = 0;
  3624. if (val > dev_priv->rps.min_freq_softlimit)
  3625. mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
  3626. if (val < dev_priv->rps.max_freq_softlimit)
  3627. mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
  3628. mask &= dev_priv->pm_rps_events;
  3629. return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
  3630. }
  3631. /* gen6_set_rps is called to update the frequency request, but should also be
  3632. * called when the range (min_delay and max_delay) is modified so that we can
  3633. * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
  3634. static void gen6_set_rps(struct drm_device *dev, u8 val)
  3635. {
  3636. struct drm_i915_private *dev_priv = dev->dev_private;
  3637. /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  3638. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
  3639. return;
  3640. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3641. WARN_ON(val > dev_priv->rps.max_freq);
  3642. WARN_ON(val < dev_priv->rps.min_freq);
  3643. /* min/max delay may still have been modified so be sure to
  3644. * write the limits value.
  3645. */
  3646. if (val != dev_priv->rps.cur_freq) {
  3647. gen6_set_rps_thresholds(dev_priv, val);
  3648. if (IS_GEN9(dev))
  3649. I915_WRITE(GEN6_RPNSWREQ,
  3650. GEN9_FREQUENCY(val));
  3651. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3652. I915_WRITE(GEN6_RPNSWREQ,
  3653. HSW_FREQUENCY(val));
  3654. else
  3655. I915_WRITE(GEN6_RPNSWREQ,
  3656. GEN6_FREQUENCY(val) |
  3657. GEN6_OFFSET(0) |
  3658. GEN6_AGGRESSIVE_TURBO);
  3659. }
  3660. /* Make sure we continue to get interrupts
  3661. * until we hit the minimum or maximum frequencies.
  3662. */
  3663. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
  3664. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3665. POSTING_READ(GEN6_RPNSWREQ);
  3666. dev_priv->rps.cur_freq = val;
  3667. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3668. }
  3669. static void valleyview_set_rps(struct drm_device *dev, u8 val)
  3670. {
  3671. struct drm_i915_private *dev_priv = dev->dev_private;
  3672. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3673. WARN_ON(val > dev_priv->rps.max_freq);
  3674. WARN_ON(val < dev_priv->rps.min_freq);
  3675. if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
  3676. "Odd GPU freq value\n"))
  3677. val &= ~1;
  3678. I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
  3679. if (val != dev_priv->rps.cur_freq) {
  3680. vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
  3681. if (!IS_CHERRYVIEW(dev_priv))
  3682. gen6_set_rps_thresholds(dev_priv, val);
  3683. }
  3684. dev_priv->rps.cur_freq = val;
  3685. trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
  3686. }
  3687. /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
  3688. *
  3689. * * If Gfx is Idle, then
  3690. * 1. Forcewake Media well.
  3691. * 2. Request idle freq.
  3692. * 3. Release Forcewake of Media well.
  3693. */
  3694. static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
  3695. {
  3696. u32 val = dev_priv->rps.idle_freq;
  3697. if (dev_priv->rps.cur_freq <= val)
  3698. return;
  3699. /* Wake up the media well, as that takes a lot less
  3700. * power than the Render well. */
  3701. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
  3702. valleyview_set_rps(dev_priv->dev, val);
  3703. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
  3704. }
  3705. void gen6_rps_busy(struct drm_i915_private *dev_priv)
  3706. {
  3707. mutex_lock(&dev_priv->rps.hw_lock);
  3708. if (dev_priv->rps.enabled) {
  3709. if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
  3710. gen6_rps_reset_ei(dev_priv);
  3711. I915_WRITE(GEN6_PMINTRMSK,
  3712. gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
  3713. }
  3714. mutex_unlock(&dev_priv->rps.hw_lock);
  3715. }
  3716. void gen6_rps_idle(struct drm_i915_private *dev_priv)
  3717. {
  3718. struct drm_device *dev = dev_priv->dev;
  3719. mutex_lock(&dev_priv->rps.hw_lock);
  3720. if (dev_priv->rps.enabled) {
  3721. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3722. vlv_set_rps_idle(dev_priv);
  3723. else
  3724. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  3725. dev_priv->rps.last_adj = 0;
  3726. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  3727. }
  3728. mutex_unlock(&dev_priv->rps.hw_lock);
  3729. spin_lock(&dev_priv->rps.client_lock);
  3730. while (!list_empty(&dev_priv->rps.clients))
  3731. list_del_init(dev_priv->rps.clients.next);
  3732. spin_unlock(&dev_priv->rps.client_lock);
  3733. }
  3734. void gen6_rps_boost(struct drm_i915_private *dev_priv,
  3735. struct intel_rps_client *rps,
  3736. unsigned long submitted)
  3737. {
  3738. /* This is intentionally racy! We peek at the state here, then
  3739. * validate inside the RPS worker.
  3740. */
  3741. if (!(dev_priv->mm.busy &&
  3742. dev_priv->rps.enabled &&
  3743. dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
  3744. return;
  3745. /* Force a RPS boost (and don't count it against the client) if
  3746. * the GPU is severely congested.
  3747. */
  3748. if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
  3749. rps = NULL;
  3750. spin_lock(&dev_priv->rps.client_lock);
  3751. if (rps == NULL || list_empty(&rps->link)) {
  3752. spin_lock_irq(&dev_priv->irq_lock);
  3753. if (dev_priv->rps.interrupts_enabled) {
  3754. dev_priv->rps.client_boost = true;
  3755. queue_work(dev_priv->wq, &dev_priv->rps.work);
  3756. }
  3757. spin_unlock_irq(&dev_priv->irq_lock);
  3758. if (rps != NULL) {
  3759. list_add(&rps->link, &dev_priv->rps.clients);
  3760. rps->boosts++;
  3761. } else
  3762. dev_priv->rps.boosts++;
  3763. }
  3764. spin_unlock(&dev_priv->rps.client_lock);
  3765. }
  3766. void intel_set_rps(struct drm_device *dev, u8 val)
  3767. {
  3768. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3769. valleyview_set_rps(dev, val);
  3770. else
  3771. gen6_set_rps(dev, val);
  3772. }
  3773. static void gen9_disable_rps(struct drm_device *dev)
  3774. {
  3775. struct drm_i915_private *dev_priv = dev->dev_private;
  3776. I915_WRITE(GEN6_RC_CONTROL, 0);
  3777. I915_WRITE(GEN9_PG_ENABLE, 0);
  3778. }
  3779. static void gen6_disable_rps(struct drm_device *dev)
  3780. {
  3781. struct drm_i915_private *dev_priv = dev->dev_private;
  3782. I915_WRITE(GEN6_RC_CONTROL, 0);
  3783. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  3784. }
  3785. static void cherryview_disable_rps(struct drm_device *dev)
  3786. {
  3787. struct drm_i915_private *dev_priv = dev->dev_private;
  3788. I915_WRITE(GEN6_RC_CONTROL, 0);
  3789. }
  3790. static void valleyview_disable_rps(struct drm_device *dev)
  3791. {
  3792. struct drm_i915_private *dev_priv = dev->dev_private;
  3793. /* we're doing forcewake before Disabling RC6,
  3794. * This what the BIOS expects when going into suspend */
  3795. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3796. I915_WRITE(GEN6_RC_CONTROL, 0);
  3797. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3798. }
  3799. static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
  3800. {
  3801. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  3802. if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
  3803. mode = GEN6_RC_CTL_RC6_ENABLE;
  3804. else
  3805. mode = 0;
  3806. }
  3807. if (HAS_RC6p(dev))
  3808. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
  3809. onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
  3810. onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
  3811. onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
  3812. else
  3813. DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
  3814. onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
  3815. }
  3816. static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
  3817. {
  3818. /* No RC6 before Ironlake and code is gone for ilk. */
  3819. if (INTEL_INFO(dev)->gen < 6)
  3820. return 0;
  3821. /* Respect the kernel parameter if it is set */
  3822. if (enable_rc6 >= 0) {
  3823. int mask;
  3824. if (HAS_RC6p(dev))
  3825. mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
  3826. INTEL_RC6pp_ENABLE;
  3827. else
  3828. mask = INTEL_RC6_ENABLE;
  3829. if ((enable_rc6 & mask) != enable_rc6)
  3830. DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
  3831. enable_rc6 & mask, enable_rc6, mask);
  3832. return enable_rc6 & mask;
  3833. }
  3834. if (IS_IVYBRIDGE(dev))
  3835. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  3836. return INTEL_RC6_ENABLE;
  3837. }
  3838. int intel_enable_rc6(const struct drm_device *dev)
  3839. {
  3840. return i915.enable_rc6;
  3841. }
  3842. static void gen6_init_rps_frequencies(struct drm_device *dev)
  3843. {
  3844. struct drm_i915_private *dev_priv = dev->dev_private;
  3845. uint32_t rp_state_cap;
  3846. u32 ddcc_status = 0;
  3847. int ret;
  3848. /* All of these values are in units of 50MHz */
  3849. dev_priv->rps.cur_freq = 0;
  3850. /* static values from HW: RP0 > RP1 > RPn (min_freq) */
  3851. if (IS_BROXTON(dev)) {
  3852. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  3853. dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
  3854. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3855. dev_priv->rps.min_freq = (rp_state_cap >> 0) & 0xff;
  3856. } else {
  3857. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  3858. dev_priv->rps.rp0_freq = (rp_state_cap >> 0) & 0xff;
  3859. dev_priv->rps.rp1_freq = (rp_state_cap >> 8) & 0xff;
  3860. dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
  3861. }
  3862. /* hw_max = RP0 until we check for overclocking */
  3863. dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
  3864. dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
  3865. if (IS_HASWELL(dev) || IS_BROADWELL(dev) ||
  3866. IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  3867. ret = sandybridge_pcode_read(dev_priv,
  3868. HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
  3869. &ddcc_status);
  3870. if (0 == ret)
  3871. dev_priv->rps.efficient_freq =
  3872. clamp_t(u8,
  3873. ((ddcc_status >> 8) & 0xff),
  3874. dev_priv->rps.min_freq,
  3875. dev_priv->rps.max_freq);
  3876. }
  3877. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  3878. /* Store the frequency values in 16.66 MHZ units, which is
  3879. the natural hardware unit for SKL */
  3880. dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
  3881. dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
  3882. dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
  3883. dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
  3884. dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
  3885. }
  3886. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  3887. /* Preserve min/max settings in case of re-init */
  3888. if (dev_priv->rps.max_freq_softlimit == 0)
  3889. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  3890. if (dev_priv->rps.min_freq_softlimit == 0) {
  3891. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  3892. dev_priv->rps.min_freq_softlimit =
  3893. max_t(int, dev_priv->rps.efficient_freq,
  3894. intel_freq_opcode(dev_priv, 450));
  3895. else
  3896. dev_priv->rps.min_freq_softlimit =
  3897. dev_priv->rps.min_freq;
  3898. }
  3899. }
  3900. /* See the Gen9_GT_PM_Programming_Guide doc for the below */
  3901. static void gen9_enable_rps(struct drm_device *dev)
  3902. {
  3903. struct drm_i915_private *dev_priv = dev->dev_private;
  3904. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3905. gen6_init_rps_frequencies(dev);
  3906. /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
  3907. if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  3908. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3909. return;
  3910. }
  3911. /* Program defaults and thresholds for RPS*/
  3912. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  3913. GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
  3914. /* 1 second timeout*/
  3915. I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
  3916. GT_INTERVAL_FROM_US(dev_priv, 1000000));
  3917. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
  3918. /* Leaning on the below call to gen6_set_rps to program/setup the
  3919. * Up/Down EI & threshold registers, as well as the RP_CONTROL,
  3920. * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
  3921. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  3922. gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
  3923. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3924. }
  3925. static void gen9_enable_rc6(struct drm_device *dev)
  3926. {
  3927. struct drm_i915_private *dev_priv = dev->dev_private;
  3928. struct intel_engine_cs *ring;
  3929. uint32_t rc6_mask = 0;
  3930. int unused;
  3931. /* 1a: Software RC state - RC0 */
  3932. I915_WRITE(GEN6_RC_STATE, 0);
  3933. /* 1b: Get forcewake during program sequence. Although the driver
  3934. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3935. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3936. /* 2a: Disable RC states. */
  3937. I915_WRITE(GEN6_RC_CONTROL, 0);
  3938. /* 2b: Program RC6 thresholds.*/
  3939. /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
  3940. if (IS_SKYLAKE(dev))
  3941. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
  3942. else
  3943. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
  3944. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  3945. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  3946. for_each_ring(ring, dev_priv, unused)
  3947. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  3948. if (HAS_GUC_UCODE(dev))
  3949. I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
  3950. I915_WRITE(GEN6_RC_SLEEP, 0);
  3951. /* 2c: Program Coarse Power Gating Policies. */
  3952. I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
  3953. I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
  3954. /* 3a: Enable RC6 */
  3955. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  3956. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  3957. DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
  3958. /* WaRsUseTimeoutMode */
  3959. if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
  3960. IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
  3961. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
  3962. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3963. GEN7_RC_CTL_TO_MODE |
  3964. rc6_mask);
  3965. } else {
  3966. I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
  3967. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  3968. GEN6_RC_CTL_EI_MODE(1) |
  3969. rc6_mask);
  3970. }
  3971. /*
  3972. * 3b: Enable Coarse Power Gating only when RC6 is enabled.
  3973. * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
  3974. */
  3975. if (NEEDS_WaRsDisableCoarsePowerGating(dev))
  3976. I915_WRITE(GEN9_PG_ENABLE, 0);
  3977. else
  3978. I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
  3979. (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
  3980. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  3981. }
  3982. static void gen8_enable_rps(struct drm_device *dev)
  3983. {
  3984. struct drm_i915_private *dev_priv = dev->dev_private;
  3985. struct intel_engine_cs *ring;
  3986. uint32_t rc6_mask = 0;
  3987. int unused;
  3988. /* 1a: Software RC state - RC0 */
  3989. I915_WRITE(GEN6_RC_STATE, 0);
  3990. /* 1c & 1d: Get forcewake during program sequence. Although the driver
  3991. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  3992. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  3993. /* 2a: Disable RC states. */
  3994. I915_WRITE(GEN6_RC_CONTROL, 0);
  3995. /* Initialize rps frequencies */
  3996. gen6_init_rps_frequencies(dev);
  3997. /* 2b: Program RC6 thresholds.*/
  3998. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  3999. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4000. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4001. for_each_ring(ring, dev_priv, unused)
  4002. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4003. I915_WRITE(GEN6_RC_SLEEP, 0);
  4004. if (IS_BROADWELL(dev))
  4005. I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
  4006. else
  4007. I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
  4008. /* 3: Enable RC6 */
  4009. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4010. rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
  4011. intel_print_rc6_info(dev, rc6_mask);
  4012. if (IS_BROADWELL(dev))
  4013. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4014. GEN7_RC_CTL_TO_MODE |
  4015. rc6_mask);
  4016. else
  4017. I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
  4018. GEN6_RC_CTL_EI_MODE(1) |
  4019. rc6_mask);
  4020. /* 4 Program defaults and thresholds for RPS*/
  4021. I915_WRITE(GEN6_RPNSWREQ,
  4022. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4023. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  4024. HSW_FREQUENCY(dev_priv->rps.rp1_freq));
  4025. /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
  4026. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
  4027. /* Docs recommend 900MHz, and 300 MHz respectively */
  4028. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  4029. dev_priv->rps.max_freq_softlimit << 24 |
  4030. dev_priv->rps.min_freq_softlimit << 16);
  4031. I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
  4032. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
  4033. I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
  4034. I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
  4035. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4036. /* 5: Enable RPS */
  4037. I915_WRITE(GEN6_RP_CONTROL,
  4038. GEN6_RP_MEDIA_TURBO |
  4039. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4040. GEN6_RP_MEDIA_IS_GFX |
  4041. GEN6_RP_ENABLE |
  4042. GEN6_RP_UP_BUSY_AVG |
  4043. GEN6_RP_DOWN_IDLE_AVG);
  4044. /* 6: Ring frequency + overclocking (our driver does this later */
  4045. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4046. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4047. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4048. }
  4049. static void gen6_enable_rps(struct drm_device *dev)
  4050. {
  4051. struct drm_i915_private *dev_priv = dev->dev_private;
  4052. struct intel_engine_cs *ring;
  4053. u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
  4054. u32 gtfifodbg;
  4055. int rc6_mode;
  4056. int i, ret;
  4057. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4058. /* Here begins a magic sequence of register writes to enable
  4059. * auto-downclocking.
  4060. *
  4061. * Perhaps there might be some value in exposing these to
  4062. * userspace...
  4063. */
  4064. I915_WRITE(GEN6_RC_STATE, 0);
  4065. /* Clear the DBG now so we don't confuse earlier errors */
  4066. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4067. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  4068. I915_WRITE(GTFIFODBG, gtfifodbg);
  4069. }
  4070. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4071. /* Initialize rps frequencies */
  4072. gen6_init_rps_frequencies(dev);
  4073. /* disable the counters and set deterministic thresholds */
  4074. I915_WRITE(GEN6_RC_CONTROL, 0);
  4075. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  4076. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  4077. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  4078. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4079. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4080. for_each_ring(ring, dev_priv, i)
  4081. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4082. I915_WRITE(GEN6_RC_SLEEP, 0);
  4083. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  4084. if (IS_IVYBRIDGE(dev))
  4085. I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
  4086. else
  4087. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  4088. I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
  4089. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  4090. /* Check if we are enabling RC6 */
  4091. rc6_mode = intel_enable_rc6(dev_priv->dev);
  4092. if (rc6_mode & INTEL_RC6_ENABLE)
  4093. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  4094. /* We don't use those on Haswell */
  4095. if (!IS_HASWELL(dev)) {
  4096. if (rc6_mode & INTEL_RC6p_ENABLE)
  4097. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  4098. if (rc6_mode & INTEL_RC6pp_ENABLE)
  4099. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  4100. }
  4101. intel_print_rc6_info(dev, rc6_mask);
  4102. I915_WRITE(GEN6_RC_CONTROL,
  4103. rc6_mask |
  4104. GEN6_RC_CTL_EI_MODE(1) |
  4105. GEN6_RC_CTL_HW_ENABLE);
  4106. /* Power down if completely idle for over 50ms */
  4107. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
  4108. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4109. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  4110. if (ret)
  4111. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  4112. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  4113. if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
  4114. DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
  4115. (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
  4116. (pcu_mbox & 0xff) * 50);
  4117. dev_priv->rps.max_freq = pcu_mbox & 0xff;
  4118. }
  4119. dev_priv->rps.power = HIGH_POWER; /* force a reset */
  4120. gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
  4121. rc6vids = 0;
  4122. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  4123. if (IS_GEN6(dev) && ret) {
  4124. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  4125. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  4126. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  4127. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  4128. rc6vids &= 0xffff00;
  4129. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  4130. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  4131. if (ret)
  4132. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  4133. }
  4134. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4135. }
  4136. static void __gen6_update_ring_freq(struct drm_device *dev)
  4137. {
  4138. struct drm_i915_private *dev_priv = dev->dev_private;
  4139. int min_freq = 15;
  4140. unsigned int gpu_freq;
  4141. unsigned int max_ia_freq, min_ring_freq;
  4142. unsigned int max_gpu_freq, min_gpu_freq;
  4143. int scaling_factor = 180;
  4144. struct cpufreq_policy *policy;
  4145. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4146. policy = cpufreq_cpu_get(0);
  4147. if (policy) {
  4148. max_ia_freq = policy->cpuinfo.max_freq;
  4149. cpufreq_cpu_put(policy);
  4150. } else {
  4151. /*
  4152. * Default to measured freq if none found, PCU will ensure we
  4153. * don't go over
  4154. */
  4155. max_ia_freq = tsc_khz;
  4156. }
  4157. /* Convert from kHz to MHz */
  4158. max_ia_freq /= 1000;
  4159. min_ring_freq = I915_READ(DCLK) & 0xf;
  4160. /* convert DDR frequency from units of 266.6MHz to bandwidth */
  4161. min_ring_freq = mult_frac(min_ring_freq, 8, 3);
  4162. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  4163. /* Convert GT frequency to 50 HZ units */
  4164. min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
  4165. max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
  4166. } else {
  4167. min_gpu_freq = dev_priv->rps.min_freq;
  4168. max_gpu_freq = dev_priv->rps.max_freq;
  4169. }
  4170. /*
  4171. * For each potential GPU frequency, load a ring frequency we'd like
  4172. * to use for memory access. We do this by specifying the IA frequency
  4173. * the PCU should use as a reference to determine the ring frequency.
  4174. */
  4175. for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
  4176. int diff = max_gpu_freq - gpu_freq;
  4177. unsigned int ia_freq = 0, ring_freq = 0;
  4178. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  4179. /*
  4180. * ring_freq = 2 * GT. ring_freq is in 100MHz units
  4181. * No floor required for ring frequency on SKL.
  4182. */
  4183. ring_freq = gpu_freq;
  4184. } else if (INTEL_INFO(dev)->gen >= 8) {
  4185. /* max(2 * GT, DDR). NB: GT is 50MHz units */
  4186. ring_freq = max(min_ring_freq, gpu_freq);
  4187. } else if (IS_HASWELL(dev)) {
  4188. ring_freq = mult_frac(gpu_freq, 5, 4);
  4189. ring_freq = max(min_ring_freq, ring_freq);
  4190. /* leave ia_freq as the default, chosen by cpufreq */
  4191. } else {
  4192. /* On older processors, there is no separate ring
  4193. * clock domain, so in order to boost the bandwidth
  4194. * of the ring, we need to upclock the CPU (ia_freq).
  4195. *
  4196. * For GPU frequencies less than 750MHz,
  4197. * just use the lowest ring freq.
  4198. */
  4199. if (gpu_freq < min_freq)
  4200. ia_freq = 800;
  4201. else
  4202. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  4203. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  4204. }
  4205. sandybridge_pcode_write(dev_priv,
  4206. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  4207. ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
  4208. ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
  4209. gpu_freq);
  4210. }
  4211. }
  4212. void gen6_update_ring_freq(struct drm_device *dev)
  4213. {
  4214. struct drm_i915_private *dev_priv = dev->dev_private;
  4215. if (!HAS_CORE_RING_FREQ(dev))
  4216. return;
  4217. mutex_lock(&dev_priv->rps.hw_lock);
  4218. __gen6_update_ring_freq(dev);
  4219. mutex_unlock(&dev_priv->rps.hw_lock);
  4220. }
  4221. static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
  4222. {
  4223. struct drm_device *dev = dev_priv->dev;
  4224. u32 val, rp0;
  4225. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4226. switch (INTEL_INFO(dev)->eu_total) {
  4227. case 8:
  4228. /* (2 * 4) config */
  4229. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
  4230. break;
  4231. case 12:
  4232. /* (2 * 6) config */
  4233. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
  4234. break;
  4235. case 16:
  4236. /* (2 * 8) config */
  4237. default:
  4238. /* Setting (2 * 8) Min RP0 for any other combination */
  4239. rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
  4240. break;
  4241. }
  4242. rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
  4243. return rp0;
  4244. }
  4245. static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4246. {
  4247. u32 val, rpe;
  4248. val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
  4249. rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
  4250. return rpe;
  4251. }
  4252. static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4253. {
  4254. u32 val, rp1;
  4255. val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
  4256. rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
  4257. return rp1;
  4258. }
  4259. static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
  4260. {
  4261. u32 val, rp1;
  4262. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4263. rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
  4264. return rp1;
  4265. }
  4266. static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
  4267. {
  4268. u32 val, rp0;
  4269. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
  4270. rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
  4271. /* Clamp to max */
  4272. rp0 = min_t(u32, rp0, 0xea);
  4273. return rp0;
  4274. }
  4275. static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
  4276. {
  4277. u32 val, rpe;
  4278. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
  4279. rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
  4280. val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
  4281. rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
  4282. return rpe;
  4283. }
  4284. static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
  4285. {
  4286. u32 val;
  4287. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
  4288. /*
  4289. * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
  4290. * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
  4291. * a BYT-M B0 the above register contains 0xbf. Moreover when setting
  4292. * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
  4293. * to make sure it matches what Punit accepts.
  4294. */
  4295. return max_t(u32, val, 0xc0);
  4296. }
  4297. /* Check that the pctx buffer wasn't move under us. */
  4298. static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
  4299. {
  4300. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4301. WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
  4302. dev_priv->vlv_pctx->stolen->start);
  4303. }
  4304. /* Check that the pcbr address is not empty. */
  4305. static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
  4306. {
  4307. unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
  4308. WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
  4309. }
  4310. static void cherryview_setup_pctx(struct drm_device *dev)
  4311. {
  4312. struct drm_i915_private *dev_priv = dev->dev_private;
  4313. unsigned long pctx_paddr, paddr;
  4314. struct i915_gtt *gtt = &dev_priv->gtt;
  4315. u32 pcbr;
  4316. int pctx_size = 32*1024;
  4317. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  4318. pcbr = I915_READ(VLV_PCBR);
  4319. if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
  4320. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4321. paddr = (dev_priv->mm.stolen_base +
  4322. (gtt->stolen_size - pctx_size));
  4323. pctx_paddr = (paddr & (~4095));
  4324. I915_WRITE(VLV_PCBR, pctx_paddr);
  4325. }
  4326. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4327. }
  4328. static void valleyview_setup_pctx(struct drm_device *dev)
  4329. {
  4330. struct drm_i915_private *dev_priv = dev->dev_private;
  4331. struct drm_i915_gem_object *pctx;
  4332. unsigned long pctx_paddr;
  4333. u32 pcbr;
  4334. int pctx_size = 24*1024;
  4335. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  4336. pcbr = I915_READ(VLV_PCBR);
  4337. if (pcbr) {
  4338. /* BIOS set it up already, grab the pre-alloc'd space */
  4339. int pcbr_offset;
  4340. pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
  4341. pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
  4342. pcbr_offset,
  4343. I915_GTT_OFFSET_NONE,
  4344. pctx_size);
  4345. goto out;
  4346. }
  4347. DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
  4348. /*
  4349. * From the Gunit register HAS:
  4350. * The Gfx driver is expected to program this register and ensure
  4351. * proper allocation within Gfx stolen memory. For example, this
  4352. * register should be programmed such than the PCBR range does not
  4353. * overlap with other ranges, such as the frame buffer, protected
  4354. * memory, or any other relevant ranges.
  4355. */
  4356. pctx = i915_gem_object_create_stolen(dev, pctx_size);
  4357. if (!pctx) {
  4358. DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
  4359. return;
  4360. }
  4361. pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
  4362. I915_WRITE(VLV_PCBR, pctx_paddr);
  4363. out:
  4364. DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
  4365. dev_priv->vlv_pctx = pctx;
  4366. }
  4367. static void valleyview_cleanup_pctx(struct drm_device *dev)
  4368. {
  4369. struct drm_i915_private *dev_priv = dev->dev_private;
  4370. if (WARN_ON(!dev_priv->vlv_pctx))
  4371. return;
  4372. drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
  4373. dev_priv->vlv_pctx = NULL;
  4374. }
  4375. static void valleyview_init_gt_powersave(struct drm_device *dev)
  4376. {
  4377. struct drm_i915_private *dev_priv = dev->dev_private;
  4378. u32 val;
  4379. valleyview_setup_pctx(dev);
  4380. mutex_lock(&dev_priv->rps.hw_lock);
  4381. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4382. switch ((val >> 6) & 3) {
  4383. case 0:
  4384. case 1:
  4385. dev_priv->mem_freq = 800;
  4386. break;
  4387. case 2:
  4388. dev_priv->mem_freq = 1066;
  4389. break;
  4390. case 3:
  4391. dev_priv->mem_freq = 1333;
  4392. break;
  4393. }
  4394. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4395. dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
  4396. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4397. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4398. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4399. dev_priv->rps.max_freq);
  4400. dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
  4401. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4402. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4403. dev_priv->rps.efficient_freq);
  4404. dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
  4405. DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
  4406. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4407. dev_priv->rps.rp1_freq);
  4408. dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
  4409. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4410. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4411. dev_priv->rps.min_freq);
  4412. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4413. /* Preserve min/max settings in case of re-init */
  4414. if (dev_priv->rps.max_freq_softlimit == 0)
  4415. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4416. if (dev_priv->rps.min_freq_softlimit == 0)
  4417. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4418. mutex_unlock(&dev_priv->rps.hw_lock);
  4419. }
  4420. static void cherryview_init_gt_powersave(struct drm_device *dev)
  4421. {
  4422. struct drm_i915_private *dev_priv = dev->dev_private;
  4423. u32 val;
  4424. cherryview_setup_pctx(dev);
  4425. mutex_lock(&dev_priv->rps.hw_lock);
  4426. mutex_lock(&dev_priv->sb_lock);
  4427. val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
  4428. mutex_unlock(&dev_priv->sb_lock);
  4429. switch ((val >> 2) & 0x7) {
  4430. case 3:
  4431. dev_priv->mem_freq = 2000;
  4432. break;
  4433. default:
  4434. dev_priv->mem_freq = 1600;
  4435. break;
  4436. }
  4437. DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
  4438. dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
  4439. dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
  4440. DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
  4441. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
  4442. dev_priv->rps.max_freq);
  4443. dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
  4444. DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
  4445. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4446. dev_priv->rps.efficient_freq);
  4447. dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
  4448. DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
  4449. intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
  4450. dev_priv->rps.rp1_freq);
  4451. /* PUnit validated range is only [RPe, RP0] */
  4452. dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
  4453. DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
  4454. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  4455. dev_priv->rps.min_freq);
  4456. WARN_ONCE((dev_priv->rps.max_freq |
  4457. dev_priv->rps.efficient_freq |
  4458. dev_priv->rps.rp1_freq |
  4459. dev_priv->rps.min_freq) & 1,
  4460. "Odd GPU freq values\n");
  4461. dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
  4462. /* Preserve min/max settings in case of re-init */
  4463. if (dev_priv->rps.max_freq_softlimit == 0)
  4464. dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
  4465. if (dev_priv->rps.min_freq_softlimit == 0)
  4466. dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
  4467. mutex_unlock(&dev_priv->rps.hw_lock);
  4468. }
  4469. static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
  4470. {
  4471. valleyview_cleanup_pctx(dev);
  4472. }
  4473. static void cherryview_enable_rps(struct drm_device *dev)
  4474. {
  4475. struct drm_i915_private *dev_priv = dev->dev_private;
  4476. struct intel_engine_cs *ring;
  4477. u32 gtfifodbg, val, rc6_mode = 0, pcbr;
  4478. int i;
  4479. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4480. gtfifodbg = I915_READ(GTFIFODBG);
  4481. if (gtfifodbg) {
  4482. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4483. gtfifodbg);
  4484. I915_WRITE(GTFIFODBG, gtfifodbg);
  4485. }
  4486. cherryview_check_pctx(dev_priv);
  4487. /* 1a & 1b: Get forcewake during program sequence. Although the driver
  4488. * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
  4489. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4490. /* Disable RC states. */
  4491. I915_WRITE(GEN6_RC_CONTROL, 0);
  4492. /* 2a: Program RC6 thresholds.*/
  4493. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
  4494. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
  4495. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
  4496. for_each_ring(ring, dev_priv, i)
  4497. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4498. I915_WRITE(GEN6_RC_SLEEP, 0);
  4499. /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
  4500. I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
  4501. /* allows RC6 residency counter to work */
  4502. I915_WRITE(VLV_COUNTER_CONTROL,
  4503. _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
  4504. VLV_MEDIA_RC6_COUNT_EN |
  4505. VLV_RENDER_RC6_COUNT_EN));
  4506. /* For now we assume BIOS is allocating and populating the PCBR */
  4507. pcbr = I915_READ(VLV_PCBR);
  4508. /* 3: Enable RC6 */
  4509. if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
  4510. (pcbr >> VLV_PCBR_ADDR_SHIFT))
  4511. rc6_mode = GEN7_RC_CTL_TO_MODE;
  4512. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4513. /* 4 Program defaults and thresholds for RPS*/
  4514. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4515. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4516. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4517. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4518. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4519. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4520. /* 5: Enable RPS */
  4521. I915_WRITE(GEN6_RP_CONTROL,
  4522. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4523. GEN6_RP_MEDIA_IS_GFX |
  4524. GEN6_RP_ENABLE |
  4525. GEN6_RP_UP_BUSY_AVG |
  4526. GEN6_RP_DOWN_IDLE_AVG);
  4527. /* Setting Fixed Bias */
  4528. val = VLV_OVERRIDE_EN |
  4529. VLV_SOC_TDP_EN |
  4530. CHV_BIAS_CPU_50_SOC_50;
  4531. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  4532. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4533. /* RPS code assumes GPLL is used */
  4534. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4535. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  4536. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4537. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4538. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4539. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4540. dev_priv->rps.cur_freq);
  4541. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4542. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4543. dev_priv->rps.efficient_freq);
  4544. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4545. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4546. }
  4547. static void valleyview_enable_rps(struct drm_device *dev)
  4548. {
  4549. struct drm_i915_private *dev_priv = dev->dev_private;
  4550. struct intel_engine_cs *ring;
  4551. u32 gtfifodbg, val, rc6_mode = 0;
  4552. int i;
  4553. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  4554. valleyview_check_pctx(dev_priv);
  4555. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  4556. DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
  4557. gtfifodbg);
  4558. I915_WRITE(GTFIFODBG, gtfifodbg);
  4559. }
  4560. /* If VLV, Forcewake all wells, else re-direct to regular path */
  4561. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4562. /* Disable RC states. */
  4563. I915_WRITE(GEN6_RC_CONTROL, 0);
  4564. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  4565. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  4566. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  4567. I915_WRITE(GEN6_RP_UP_EI, 66000);
  4568. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  4569. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  4570. I915_WRITE(GEN6_RP_CONTROL,
  4571. GEN6_RP_MEDIA_TURBO |
  4572. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  4573. GEN6_RP_MEDIA_IS_GFX |
  4574. GEN6_RP_ENABLE |
  4575. GEN6_RP_UP_BUSY_AVG |
  4576. GEN6_RP_DOWN_IDLE_CONT);
  4577. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
  4578. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  4579. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  4580. for_each_ring(ring, dev_priv, i)
  4581. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  4582. I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
  4583. /* allows RC6 residency counter to work */
  4584. I915_WRITE(VLV_COUNTER_CONTROL,
  4585. _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
  4586. VLV_RENDER_RC0_COUNT_EN |
  4587. VLV_MEDIA_RC6_COUNT_EN |
  4588. VLV_RENDER_RC6_COUNT_EN));
  4589. if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
  4590. rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
  4591. intel_print_rc6_info(dev, rc6_mode);
  4592. I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
  4593. /* Setting Fixed Bias */
  4594. val = VLV_OVERRIDE_EN |
  4595. VLV_SOC_TDP_EN |
  4596. VLV_BIAS_CPU_125_SOC_875;
  4597. vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
  4598. val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  4599. /* RPS code assumes GPLL is used */
  4600. WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
  4601. DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
  4602. DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
  4603. dev_priv->rps.cur_freq = (val >> 8) & 0xff;
  4604. DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
  4605. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  4606. dev_priv->rps.cur_freq);
  4607. DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
  4608. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
  4609. dev_priv->rps.efficient_freq);
  4610. valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
  4611. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4612. }
  4613. static unsigned long intel_pxfreq(u32 vidfreq)
  4614. {
  4615. unsigned long freq;
  4616. int div = (vidfreq & 0x3f0000) >> 16;
  4617. int post = (vidfreq & 0x3000) >> 12;
  4618. int pre = (vidfreq & 0x7);
  4619. if (!pre)
  4620. return 0;
  4621. freq = ((div * 133333) / ((1<<post) * pre));
  4622. return freq;
  4623. }
  4624. static const struct cparams {
  4625. u16 i;
  4626. u16 t;
  4627. u16 m;
  4628. u16 c;
  4629. } cparams[] = {
  4630. { 1, 1333, 301, 28664 },
  4631. { 1, 1066, 294, 24460 },
  4632. { 1, 800, 294, 25192 },
  4633. { 0, 1333, 276, 27605 },
  4634. { 0, 1066, 276, 27605 },
  4635. { 0, 800, 231, 23784 },
  4636. };
  4637. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  4638. {
  4639. u64 total_count, diff, ret;
  4640. u32 count1, count2, count3, m = 0, c = 0;
  4641. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  4642. int i;
  4643. assert_spin_locked(&mchdev_lock);
  4644. diff1 = now - dev_priv->ips.last_time1;
  4645. /* Prevent division-by-zero if we are asking too fast.
  4646. * Also, we don't get interesting results if we are polling
  4647. * faster than once in 10ms, so just return the saved value
  4648. * in such cases.
  4649. */
  4650. if (diff1 <= 10)
  4651. return dev_priv->ips.chipset_power;
  4652. count1 = I915_READ(DMIEC);
  4653. count2 = I915_READ(DDREC);
  4654. count3 = I915_READ(CSIEC);
  4655. total_count = count1 + count2 + count3;
  4656. /* FIXME: handle per-counter overflow */
  4657. if (total_count < dev_priv->ips.last_count1) {
  4658. diff = ~0UL - dev_priv->ips.last_count1;
  4659. diff += total_count;
  4660. } else {
  4661. diff = total_count - dev_priv->ips.last_count1;
  4662. }
  4663. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  4664. if (cparams[i].i == dev_priv->ips.c_m &&
  4665. cparams[i].t == dev_priv->ips.r_t) {
  4666. m = cparams[i].m;
  4667. c = cparams[i].c;
  4668. break;
  4669. }
  4670. }
  4671. diff = div_u64(diff, diff1);
  4672. ret = ((m * diff) + c);
  4673. ret = div_u64(ret, 10);
  4674. dev_priv->ips.last_count1 = total_count;
  4675. dev_priv->ips.last_time1 = now;
  4676. dev_priv->ips.chipset_power = ret;
  4677. return ret;
  4678. }
  4679. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  4680. {
  4681. struct drm_device *dev = dev_priv->dev;
  4682. unsigned long val;
  4683. if (INTEL_INFO(dev)->gen != 5)
  4684. return 0;
  4685. spin_lock_irq(&mchdev_lock);
  4686. val = __i915_chipset_val(dev_priv);
  4687. spin_unlock_irq(&mchdev_lock);
  4688. return val;
  4689. }
  4690. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  4691. {
  4692. unsigned long m, x, b;
  4693. u32 tsfs;
  4694. tsfs = I915_READ(TSFS);
  4695. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  4696. x = I915_READ8(TR1);
  4697. b = tsfs & TSFS_INTR_MASK;
  4698. return ((m * x) / 127) - b;
  4699. }
  4700. static int _pxvid_to_vd(u8 pxvid)
  4701. {
  4702. if (pxvid == 0)
  4703. return 0;
  4704. if (pxvid >= 8 && pxvid < 31)
  4705. pxvid = 31;
  4706. return (pxvid + 2) * 125;
  4707. }
  4708. static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  4709. {
  4710. struct drm_device *dev = dev_priv->dev;
  4711. const int vd = _pxvid_to_vd(pxvid);
  4712. const int vm = vd - 1125;
  4713. if (INTEL_INFO(dev)->is_mobile)
  4714. return vm > 0 ? vm : 0;
  4715. return vd;
  4716. }
  4717. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4718. {
  4719. u64 now, diff, diffms;
  4720. u32 count;
  4721. assert_spin_locked(&mchdev_lock);
  4722. now = ktime_get_raw_ns();
  4723. diffms = now - dev_priv->ips.last_time2;
  4724. do_div(diffms, NSEC_PER_MSEC);
  4725. /* Don't divide by 0 */
  4726. if (!diffms)
  4727. return;
  4728. count = I915_READ(GFXEC);
  4729. if (count < dev_priv->ips.last_count2) {
  4730. diff = ~0UL - dev_priv->ips.last_count2;
  4731. diff += count;
  4732. } else {
  4733. diff = count - dev_priv->ips.last_count2;
  4734. }
  4735. dev_priv->ips.last_count2 = count;
  4736. dev_priv->ips.last_time2 = now;
  4737. /* More magic constants... */
  4738. diff = diff * 1181;
  4739. diff = div_u64(diff, diffms * 10);
  4740. dev_priv->ips.gfx_power = diff;
  4741. }
  4742. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  4743. {
  4744. struct drm_device *dev = dev_priv->dev;
  4745. if (INTEL_INFO(dev)->gen != 5)
  4746. return;
  4747. spin_lock_irq(&mchdev_lock);
  4748. __i915_update_gfx_val(dev_priv);
  4749. spin_unlock_irq(&mchdev_lock);
  4750. }
  4751. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  4752. {
  4753. unsigned long t, corr, state1, corr2, state2;
  4754. u32 pxvid, ext_v;
  4755. assert_spin_locked(&mchdev_lock);
  4756. pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
  4757. pxvid = (pxvid >> 24) & 0x7f;
  4758. ext_v = pvid_to_extvid(dev_priv, pxvid);
  4759. state1 = ext_v;
  4760. t = i915_mch_val(dev_priv);
  4761. /* Revel in the empirically derived constants */
  4762. /* Correction factor in 1/100000 units */
  4763. if (t > 80)
  4764. corr = ((t * 2349) + 135940);
  4765. else if (t >= 50)
  4766. corr = ((t * 964) + 29317);
  4767. else /* < 50 */
  4768. corr = ((t * 301) + 1004);
  4769. corr = corr * ((150142 * state1) / 10000 - 78642);
  4770. corr /= 100000;
  4771. corr2 = (corr * dev_priv->ips.corr);
  4772. state2 = (corr2 * state1) / 10000;
  4773. state2 /= 100; /* convert to mW */
  4774. __i915_update_gfx_val(dev_priv);
  4775. return dev_priv->ips.gfx_power + state2;
  4776. }
  4777. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  4778. {
  4779. struct drm_device *dev = dev_priv->dev;
  4780. unsigned long val;
  4781. if (INTEL_INFO(dev)->gen != 5)
  4782. return 0;
  4783. spin_lock_irq(&mchdev_lock);
  4784. val = __i915_gfx_val(dev_priv);
  4785. spin_unlock_irq(&mchdev_lock);
  4786. return val;
  4787. }
  4788. /**
  4789. * i915_read_mch_val - return value for IPS use
  4790. *
  4791. * Calculate and return a value for the IPS driver to use when deciding whether
  4792. * we have thermal and power headroom to increase CPU or GPU power budget.
  4793. */
  4794. unsigned long i915_read_mch_val(void)
  4795. {
  4796. struct drm_i915_private *dev_priv;
  4797. unsigned long chipset_val, graphics_val, ret = 0;
  4798. spin_lock_irq(&mchdev_lock);
  4799. if (!i915_mch_dev)
  4800. goto out_unlock;
  4801. dev_priv = i915_mch_dev;
  4802. chipset_val = __i915_chipset_val(dev_priv);
  4803. graphics_val = __i915_gfx_val(dev_priv);
  4804. ret = chipset_val + graphics_val;
  4805. out_unlock:
  4806. spin_unlock_irq(&mchdev_lock);
  4807. return ret;
  4808. }
  4809. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  4810. /**
  4811. * i915_gpu_raise - raise GPU frequency limit
  4812. *
  4813. * Raise the limit; IPS indicates we have thermal headroom.
  4814. */
  4815. bool i915_gpu_raise(void)
  4816. {
  4817. struct drm_i915_private *dev_priv;
  4818. bool ret = true;
  4819. spin_lock_irq(&mchdev_lock);
  4820. if (!i915_mch_dev) {
  4821. ret = false;
  4822. goto out_unlock;
  4823. }
  4824. dev_priv = i915_mch_dev;
  4825. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  4826. dev_priv->ips.max_delay--;
  4827. out_unlock:
  4828. spin_unlock_irq(&mchdev_lock);
  4829. return ret;
  4830. }
  4831. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  4832. /**
  4833. * i915_gpu_lower - lower GPU frequency limit
  4834. *
  4835. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  4836. * frequency maximum.
  4837. */
  4838. bool i915_gpu_lower(void)
  4839. {
  4840. struct drm_i915_private *dev_priv;
  4841. bool ret = true;
  4842. spin_lock_irq(&mchdev_lock);
  4843. if (!i915_mch_dev) {
  4844. ret = false;
  4845. goto out_unlock;
  4846. }
  4847. dev_priv = i915_mch_dev;
  4848. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  4849. dev_priv->ips.max_delay++;
  4850. out_unlock:
  4851. spin_unlock_irq(&mchdev_lock);
  4852. return ret;
  4853. }
  4854. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  4855. /**
  4856. * i915_gpu_busy - indicate GPU business to IPS
  4857. *
  4858. * Tell the IPS driver whether or not the GPU is busy.
  4859. */
  4860. bool i915_gpu_busy(void)
  4861. {
  4862. struct drm_i915_private *dev_priv;
  4863. struct intel_engine_cs *ring;
  4864. bool ret = false;
  4865. int i;
  4866. spin_lock_irq(&mchdev_lock);
  4867. if (!i915_mch_dev)
  4868. goto out_unlock;
  4869. dev_priv = i915_mch_dev;
  4870. for_each_ring(ring, dev_priv, i)
  4871. ret |= !list_empty(&ring->request_list);
  4872. out_unlock:
  4873. spin_unlock_irq(&mchdev_lock);
  4874. return ret;
  4875. }
  4876. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  4877. /**
  4878. * i915_gpu_turbo_disable - disable graphics turbo
  4879. *
  4880. * Disable graphics turbo by resetting the max frequency and setting the
  4881. * current frequency to the default.
  4882. */
  4883. bool i915_gpu_turbo_disable(void)
  4884. {
  4885. struct drm_i915_private *dev_priv;
  4886. bool ret = true;
  4887. spin_lock_irq(&mchdev_lock);
  4888. if (!i915_mch_dev) {
  4889. ret = false;
  4890. goto out_unlock;
  4891. }
  4892. dev_priv = i915_mch_dev;
  4893. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  4894. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  4895. ret = false;
  4896. out_unlock:
  4897. spin_unlock_irq(&mchdev_lock);
  4898. return ret;
  4899. }
  4900. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  4901. /**
  4902. * Tells the intel_ips driver that the i915 driver is now loaded, if
  4903. * IPS got loaded first.
  4904. *
  4905. * This awkward dance is so that neither module has to depend on the
  4906. * other in order for IPS to do the appropriate communication of
  4907. * GPU turbo limits to i915.
  4908. */
  4909. static void
  4910. ips_ping_for_i915_load(void)
  4911. {
  4912. void (*link)(void);
  4913. link = symbol_get(ips_link_to_i915_driver);
  4914. if (link) {
  4915. link();
  4916. symbol_put(ips_link_to_i915_driver);
  4917. }
  4918. }
  4919. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  4920. {
  4921. /* We only register the i915 ips part with intel-ips once everything is
  4922. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  4923. spin_lock_irq(&mchdev_lock);
  4924. i915_mch_dev = dev_priv;
  4925. spin_unlock_irq(&mchdev_lock);
  4926. ips_ping_for_i915_load();
  4927. }
  4928. void intel_gpu_ips_teardown(void)
  4929. {
  4930. spin_lock_irq(&mchdev_lock);
  4931. i915_mch_dev = NULL;
  4932. spin_unlock_irq(&mchdev_lock);
  4933. }
  4934. static void intel_init_emon(struct drm_device *dev)
  4935. {
  4936. struct drm_i915_private *dev_priv = dev->dev_private;
  4937. u32 lcfuse;
  4938. u8 pxw[16];
  4939. int i;
  4940. /* Disable to program */
  4941. I915_WRITE(ECR, 0);
  4942. POSTING_READ(ECR);
  4943. /* Program energy weights for various events */
  4944. I915_WRITE(SDEW, 0x15040d00);
  4945. I915_WRITE(CSIEW0, 0x007f0000);
  4946. I915_WRITE(CSIEW1, 0x1e220004);
  4947. I915_WRITE(CSIEW2, 0x04000004);
  4948. for (i = 0; i < 5; i++)
  4949. I915_WRITE(PEW(i), 0);
  4950. for (i = 0; i < 3; i++)
  4951. I915_WRITE(DEW(i), 0);
  4952. /* Program P-state weights to account for frequency power adjustment */
  4953. for (i = 0; i < 16; i++) {
  4954. u32 pxvidfreq = I915_READ(PXVFREQ(i));
  4955. unsigned long freq = intel_pxfreq(pxvidfreq);
  4956. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  4957. PXVFREQ_PX_SHIFT;
  4958. unsigned long val;
  4959. val = vid * vid;
  4960. val *= (freq / 1000);
  4961. val *= 255;
  4962. val /= (127*127*900);
  4963. if (val > 0xff)
  4964. DRM_ERROR("bad pxval: %ld\n", val);
  4965. pxw[i] = val;
  4966. }
  4967. /* Render standby states get 0 weight */
  4968. pxw[14] = 0;
  4969. pxw[15] = 0;
  4970. for (i = 0; i < 4; i++) {
  4971. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  4972. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  4973. I915_WRITE(PXW(i), val);
  4974. }
  4975. /* Adjust magic regs to magic values (more experimental results) */
  4976. I915_WRITE(OGW0, 0);
  4977. I915_WRITE(OGW1, 0);
  4978. I915_WRITE(EG0, 0x00007f00);
  4979. I915_WRITE(EG1, 0x0000000e);
  4980. I915_WRITE(EG2, 0x000e0000);
  4981. I915_WRITE(EG3, 0x68000300);
  4982. I915_WRITE(EG4, 0x42000000);
  4983. I915_WRITE(EG5, 0x00140031);
  4984. I915_WRITE(EG6, 0);
  4985. I915_WRITE(EG7, 0);
  4986. for (i = 0; i < 8; i++)
  4987. I915_WRITE(PXWL(i), 0);
  4988. /* Enable PMON + select events */
  4989. I915_WRITE(ECR, 0x80000019);
  4990. lcfuse = I915_READ(LCFUSE02);
  4991. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  4992. }
  4993. void intel_init_gt_powersave(struct drm_device *dev)
  4994. {
  4995. struct drm_i915_private *dev_priv = dev->dev_private;
  4996. i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
  4997. /*
  4998. * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
  4999. * requirement.
  5000. */
  5001. if (!i915.enable_rc6) {
  5002. DRM_INFO("RC6 disabled, disabling runtime PM support\n");
  5003. intel_runtime_pm_get(dev_priv);
  5004. }
  5005. if (IS_CHERRYVIEW(dev))
  5006. cherryview_init_gt_powersave(dev);
  5007. else if (IS_VALLEYVIEW(dev))
  5008. valleyview_init_gt_powersave(dev);
  5009. }
  5010. void intel_cleanup_gt_powersave(struct drm_device *dev)
  5011. {
  5012. struct drm_i915_private *dev_priv = dev->dev_private;
  5013. if (IS_CHERRYVIEW(dev))
  5014. return;
  5015. else if (IS_VALLEYVIEW(dev))
  5016. valleyview_cleanup_gt_powersave(dev);
  5017. if (!i915.enable_rc6)
  5018. intel_runtime_pm_put(dev_priv);
  5019. }
  5020. static void gen6_suspend_rps(struct drm_device *dev)
  5021. {
  5022. struct drm_i915_private *dev_priv = dev->dev_private;
  5023. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  5024. gen6_disable_rps_interrupts(dev);
  5025. }
  5026. /**
  5027. * intel_suspend_gt_powersave - suspend PM work and helper threads
  5028. * @dev: drm device
  5029. *
  5030. * We don't want to disable RC6 or other features here, we just want
  5031. * to make sure any work we've queued has finished and won't bother
  5032. * us while we're suspended.
  5033. */
  5034. void intel_suspend_gt_powersave(struct drm_device *dev)
  5035. {
  5036. struct drm_i915_private *dev_priv = dev->dev_private;
  5037. if (INTEL_INFO(dev)->gen < 6)
  5038. return;
  5039. gen6_suspend_rps(dev);
  5040. /* Force GPU to min freq during suspend */
  5041. gen6_rps_idle(dev_priv);
  5042. }
  5043. void intel_disable_gt_powersave(struct drm_device *dev)
  5044. {
  5045. struct drm_i915_private *dev_priv = dev->dev_private;
  5046. if (IS_IRONLAKE_M(dev)) {
  5047. ironlake_disable_drps(dev);
  5048. } else if (INTEL_INFO(dev)->gen >= 6) {
  5049. intel_suspend_gt_powersave(dev);
  5050. mutex_lock(&dev_priv->rps.hw_lock);
  5051. if (INTEL_INFO(dev)->gen >= 9)
  5052. gen9_disable_rps(dev);
  5053. else if (IS_CHERRYVIEW(dev))
  5054. cherryview_disable_rps(dev);
  5055. else if (IS_VALLEYVIEW(dev))
  5056. valleyview_disable_rps(dev);
  5057. else
  5058. gen6_disable_rps(dev);
  5059. dev_priv->rps.enabled = false;
  5060. mutex_unlock(&dev_priv->rps.hw_lock);
  5061. }
  5062. }
  5063. static void intel_gen6_powersave_work(struct work_struct *work)
  5064. {
  5065. struct drm_i915_private *dev_priv =
  5066. container_of(work, struct drm_i915_private,
  5067. rps.delayed_resume_work.work);
  5068. struct drm_device *dev = dev_priv->dev;
  5069. mutex_lock(&dev_priv->rps.hw_lock);
  5070. gen6_reset_rps_interrupts(dev);
  5071. if (IS_CHERRYVIEW(dev)) {
  5072. cherryview_enable_rps(dev);
  5073. } else if (IS_VALLEYVIEW(dev)) {
  5074. valleyview_enable_rps(dev);
  5075. } else if (INTEL_INFO(dev)->gen >= 9) {
  5076. gen9_enable_rc6(dev);
  5077. gen9_enable_rps(dev);
  5078. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  5079. __gen6_update_ring_freq(dev);
  5080. } else if (IS_BROADWELL(dev)) {
  5081. gen8_enable_rps(dev);
  5082. __gen6_update_ring_freq(dev);
  5083. } else {
  5084. gen6_enable_rps(dev);
  5085. __gen6_update_ring_freq(dev);
  5086. }
  5087. WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
  5088. WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
  5089. WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
  5090. WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
  5091. dev_priv->rps.enabled = true;
  5092. gen6_enable_rps_interrupts(dev);
  5093. mutex_unlock(&dev_priv->rps.hw_lock);
  5094. intel_runtime_pm_put(dev_priv);
  5095. }
  5096. void intel_enable_gt_powersave(struct drm_device *dev)
  5097. {
  5098. struct drm_i915_private *dev_priv = dev->dev_private;
  5099. /* Powersaving is controlled by the host when inside a VM */
  5100. if (intel_vgpu_active(dev))
  5101. return;
  5102. if (IS_IRONLAKE_M(dev)) {
  5103. mutex_lock(&dev->struct_mutex);
  5104. ironlake_enable_drps(dev);
  5105. intel_init_emon(dev);
  5106. mutex_unlock(&dev->struct_mutex);
  5107. } else if (INTEL_INFO(dev)->gen >= 6) {
  5108. /*
  5109. * PCU communication is slow and this doesn't need to be
  5110. * done at any specific time, so do this out of our fast path
  5111. * to make resume and init faster.
  5112. *
  5113. * We depend on the HW RC6 power context save/restore
  5114. * mechanism when entering D3 through runtime PM suspend. So
  5115. * disable RPM until RPS/RC6 is properly setup. We can only
  5116. * get here via the driver load/system resume/runtime resume
  5117. * paths, so the _noresume version is enough (and in case of
  5118. * runtime resume it's necessary).
  5119. */
  5120. if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  5121. round_jiffies_up_relative(HZ)))
  5122. intel_runtime_pm_get_noresume(dev_priv);
  5123. }
  5124. }
  5125. void intel_reset_gt_powersave(struct drm_device *dev)
  5126. {
  5127. struct drm_i915_private *dev_priv = dev->dev_private;
  5128. if (INTEL_INFO(dev)->gen < 6)
  5129. return;
  5130. gen6_suspend_rps(dev);
  5131. dev_priv->rps.enabled = false;
  5132. }
  5133. static void ibx_init_clock_gating(struct drm_device *dev)
  5134. {
  5135. struct drm_i915_private *dev_priv = dev->dev_private;
  5136. /*
  5137. * On Ibex Peak and Cougar Point, we need to disable clock
  5138. * gating for the panel power sequencer or it will fail to
  5139. * start up when no ports are active.
  5140. */
  5141. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  5142. }
  5143. static void g4x_disable_trickle_feed(struct drm_device *dev)
  5144. {
  5145. struct drm_i915_private *dev_priv = dev->dev_private;
  5146. enum pipe pipe;
  5147. for_each_pipe(dev_priv, pipe) {
  5148. I915_WRITE(DSPCNTR(pipe),
  5149. I915_READ(DSPCNTR(pipe)) |
  5150. DISPPLANE_TRICKLE_FEED_DISABLE);
  5151. I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
  5152. POSTING_READ(DSPSURF(pipe));
  5153. }
  5154. }
  5155. static void ilk_init_lp_watermarks(struct drm_device *dev)
  5156. {
  5157. struct drm_i915_private *dev_priv = dev->dev_private;
  5158. I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
  5159. I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
  5160. I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
  5161. /*
  5162. * Don't touch WM1S_LP_EN here.
  5163. * Doing so could cause underruns.
  5164. */
  5165. }
  5166. static void ironlake_init_clock_gating(struct drm_device *dev)
  5167. {
  5168. struct drm_i915_private *dev_priv = dev->dev_private;
  5169. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5170. /*
  5171. * Required for FBC
  5172. * WaFbcDisableDpfcClockGating:ilk
  5173. */
  5174. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  5175. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  5176. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  5177. I915_WRITE(PCH_3DCGDIS0,
  5178. MARIUNIT_CLOCK_GATE_DISABLE |
  5179. SVSMUNIT_CLOCK_GATE_DISABLE);
  5180. I915_WRITE(PCH_3DCGDIS1,
  5181. VFMUNIT_CLOCK_GATE_DISABLE);
  5182. /*
  5183. * According to the spec the following bits should be set in
  5184. * order to enable memory self-refresh
  5185. * The bit 22/21 of 0x42004
  5186. * The bit 5 of 0x42020
  5187. * The bit 15 of 0x45000
  5188. */
  5189. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5190. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  5191. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  5192. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  5193. I915_WRITE(DISP_ARB_CTL,
  5194. (I915_READ(DISP_ARB_CTL) |
  5195. DISP_FBC_WM_DIS));
  5196. ilk_init_lp_watermarks(dev);
  5197. /*
  5198. * Based on the document from hardware guys the following bits
  5199. * should be set unconditionally in order to enable FBC.
  5200. * The bit 22 of 0x42000
  5201. * The bit 22 of 0x42004
  5202. * The bit 7,8,9 of 0x42020.
  5203. */
  5204. if (IS_IRONLAKE_M(dev)) {
  5205. /* WaFbcAsynchFlipDisableFbcQueue:ilk */
  5206. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5207. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5208. ILK_FBCQ_DIS);
  5209. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5210. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5211. ILK_DPARB_GATE);
  5212. }
  5213. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5214. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5215. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5216. ILK_ELPIN_409_SELECT);
  5217. I915_WRITE(_3D_CHICKEN2,
  5218. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  5219. _3D_CHICKEN2_WM_READ_PIPELINED);
  5220. /* WaDisableRenderCachePipelinedFlush:ilk */
  5221. I915_WRITE(CACHE_MODE_0,
  5222. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5223. /* WaDisable_RenderCache_OperationalFlush:ilk */
  5224. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5225. g4x_disable_trickle_feed(dev);
  5226. ibx_init_clock_gating(dev);
  5227. }
  5228. static void cpt_init_clock_gating(struct drm_device *dev)
  5229. {
  5230. struct drm_i915_private *dev_priv = dev->dev_private;
  5231. int pipe;
  5232. uint32_t val;
  5233. /*
  5234. * On Ibex Peak and Cougar Point, we need to disable clock
  5235. * gating for the panel power sequencer or it will fail to
  5236. * start up when no ports are active.
  5237. */
  5238. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
  5239. PCH_DPLUNIT_CLOCK_GATE_DISABLE |
  5240. PCH_CPUNIT_CLOCK_GATE_DISABLE);
  5241. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  5242. DPLS_EDP_PPS_FIX_DIS);
  5243. /* The below fixes the weird display corruption, a few pixels shifted
  5244. * downward, on (only) LVDS of some HP laptops with IVY.
  5245. */
  5246. for_each_pipe(dev_priv, pipe) {
  5247. val = I915_READ(TRANS_CHICKEN2(pipe));
  5248. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  5249. val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5250. if (dev_priv->vbt.fdi_rx_polarity_inverted)
  5251. val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
  5252. val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
  5253. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
  5254. val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
  5255. I915_WRITE(TRANS_CHICKEN2(pipe), val);
  5256. }
  5257. /* WADP0ClockGatingDisable */
  5258. for_each_pipe(dev_priv, pipe) {
  5259. I915_WRITE(TRANS_CHICKEN1(pipe),
  5260. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5261. }
  5262. }
  5263. static void gen6_check_mch_setup(struct drm_device *dev)
  5264. {
  5265. struct drm_i915_private *dev_priv = dev->dev_private;
  5266. uint32_t tmp;
  5267. tmp = I915_READ(MCH_SSKPD);
  5268. if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
  5269. DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
  5270. tmp);
  5271. }
  5272. static void gen6_init_clock_gating(struct drm_device *dev)
  5273. {
  5274. struct drm_i915_private *dev_priv = dev->dev_private;
  5275. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  5276. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  5277. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5278. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5279. ILK_ELPIN_409_SELECT);
  5280. /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
  5281. I915_WRITE(_3D_CHICKEN,
  5282. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  5283. /* WaDisable_RenderCache_OperationalFlush:snb */
  5284. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5285. /*
  5286. * BSpec recoomends 8x4 when MSAA is used,
  5287. * however in practice 16x4 seems fastest.
  5288. *
  5289. * Note that PS/WM thread counts depend on the WIZ hashing
  5290. * disable bit, which we don't touch here, but it's good
  5291. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5292. */
  5293. I915_WRITE(GEN6_GT_MODE,
  5294. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5295. ilk_init_lp_watermarks(dev);
  5296. I915_WRITE(CACHE_MODE_0,
  5297. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  5298. I915_WRITE(GEN6_UCGCTL1,
  5299. I915_READ(GEN6_UCGCTL1) |
  5300. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  5301. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5302. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  5303. * gating disable must be set. Failure to set it results in
  5304. * flickering pixels due to Z write ordering failures after
  5305. * some amount of runtime in the Mesa "fire" demo, and Unigine
  5306. * Sanctuary and Tropics, and apparently anything else with
  5307. * alpha test or pixel discard.
  5308. *
  5309. * According to the spec, bit 11 (RCCUNIT) must also be set,
  5310. * but we didn't debug actual testcases to find it out.
  5311. *
  5312. * WaDisableRCCUnitClockGating:snb
  5313. * WaDisableRCPBUnitClockGating:snb
  5314. */
  5315. I915_WRITE(GEN6_UCGCTL2,
  5316. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  5317. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  5318. /* WaStripsFansDisableFastClipPerformanceFix:snb */
  5319. I915_WRITE(_3D_CHICKEN3,
  5320. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
  5321. /*
  5322. * Bspec says:
  5323. * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
  5324. * 3DSTATE_SF number of SF output attributes is more than 16."
  5325. */
  5326. I915_WRITE(_3D_CHICKEN3,
  5327. _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
  5328. /*
  5329. * According to the spec the following bits should be
  5330. * set in order to enable memory self-refresh and fbc:
  5331. * The bit21 and bit22 of 0x42000
  5332. * The bit21 and bit22 of 0x42004
  5333. * The bit5 and bit7 of 0x42020
  5334. * The bit14 of 0x70180
  5335. * The bit14 of 0x71180
  5336. *
  5337. * WaFbcAsynchFlipDisableFbcQueue:snb
  5338. */
  5339. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  5340. I915_READ(ILK_DISPLAY_CHICKEN1) |
  5341. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  5342. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  5343. I915_READ(ILK_DISPLAY_CHICKEN2) |
  5344. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  5345. I915_WRITE(ILK_DSPCLK_GATE_D,
  5346. I915_READ(ILK_DSPCLK_GATE_D) |
  5347. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  5348. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  5349. g4x_disable_trickle_feed(dev);
  5350. cpt_init_clock_gating(dev);
  5351. gen6_check_mch_setup(dev);
  5352. }
  5353. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  5354. {
  5355. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  5356. /*
  5357. * WaVSThreadDispatchOverride:ivb,vlv
  5358. *
  5359. * This actually overrides the dispatch
  5360. * mode for all thread types.
  5361. */
  5362. reg &= ~GEN7_FF_SCHED_MASK;
  5363. reg |= GEN7_FF_TS_SCHED_HW;
  5364. reg |= GEN7_FF_VS_SCHED_HW;
  5365. reg |= GEN7_FF_DS_SCHED_HW;
  5366. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  5367. }
  5368. static void lpt_init_clock_gating(struct drm_device *dev)
  5369. {
  5370. struct drm_i915_private *dev_priv = dev->dev_private;
  5371. /*
  5372. * TODO: this bit should only be enabled when really needed, then
  5373. * disabled when not needed anymore in order to save power.
  5374. */
  5375. if (HAS_PCH_LPT_LP(dev))
  5376. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  5377. I915_READ(SOUTH_DSPCLK_GATE_D) |
  5378. PCH_LP_PARTITION_LEVEL_DISABLE);
  5379. /* WADPOClockGatingDisable:hsw */
  5380. I915_WRITE(TRANS_CHICKEN1(PIPE_A),
  5381. I915_READ(TRANS_CHICKEN1(PIPE_A)) |
  5382. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  5383. }
  5384. static void lpt_suspend_hw(struct drm_device *dev)
  5385. {
  5386. struct drm_i915_private *dev_priv = dev->dev_private;
  5387. if (HAS_PCH_LPT_LP(dev)) {
  5388. uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5389. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5390. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5391. }
  5392. }
  5393. static void broadwell_init_clock_gating(struct drm_device *dev)
  5394. {
  5395. struct drm_i915_private *dev_priv = dev->dev_private;
  5396. enum pipe pipe;
  5397. uint32_t misccpctl;
  5398. ilk_init_lp_watermarks(dev);
  5399. /* WaSwitchSolVfFArbitrationPriority:bdw */
  5400. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5401. /* WaPsrDPAMaskVBlankInSRD:bdw */
  5402. I915_WRITE(CHICKEN_PAR1_1,
  5403. I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
  5404. /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
  5405. for_each_pipe(dev_priv, pipe) {
  5406. I915_WRITE(CHICKEN_PIPESL_1(pipe),
  5407. I915_READ(CHICKEN_PIPESL_1(pipe)) |
  5408. BDW_DPRS_MASK_VBLANK_SRD);
  5409. }
  5410. /* WaVSRefCountFullforceMissDisable:bdw */
  5411. /* WaDSRefCountFullforceMissDisable:bdw */
  5412. I915_WRITE(GEN7_FF_THREAD_MODE,
  5413. I915_READ(GEN7_FF_THREAD_MODE) &
  5414. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5415. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5416. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5417. /* WaDisableSDEUnitClockGating:bdw */
  5418. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5419. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5420. /*
  5421. * WaProgramL3SqcReg1Default:bdw
  5422. * WaTempDisableDOPClkGating:bdw
  5423. */
  5424. misccpctl = I915_READ(GEN7_MISCCPCTL);
  5425. I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
  5426. I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
  5427. I915_WRITE(GEN7_MISCCPCTL, misccpctl);
  5428. /*
  5429. * WaGttCachingOffByDefault:bdw
  5430. * GTT cache may not work with big pages, so if those
  5431. * are ever enabled GTT cache may need to be disabled.
  5432. */
  5433. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  5434. lpt_init_clock_gating(dev);
  5435. }
  5436. static void haswell_init_clock_gating(struct drm_device *dev)
  5437. {
  5438. struct drm_i915_private *dev_priv = dev->dev_private;
  5439. ilk_init_lp_watermarks(dev);
  5440. /* L3 caching of data atomics doesn't work -- disable it. */
  5441. I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
  5442. I915_WRITE(HSW_ROW_CHICKEN3,
  5443. _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
  5444. /* This is required by WaCatErrorRejectionIssue:hsw */
  5445. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5446. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5447. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5448. /* WaVSRefCountFullforceMissDisable:hsw */
  5449. I915_WRITE(GEN7_FF_THREAD_MODE,
  5450. I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
  5451. /* WaDisable_RenderCache_OperationalFlush:hsw */
  5452. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5453. /* enable HiZ Raw Stall Optimization */
  5454. I915_WRITE(CACHE_MODE_0_GEN7,
  5455. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5456. /* WaDisable4x2SubspanOptimization:hsw */
  5457. I915_WRITE(CACHE_MODE_1,
  5458. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5459. /*
  5460. * BSpec recommends 8x4 when MSAA is used,
  5461. * however in practice 16x4 seems fastest.
  5462. *
  5463. * Note that PS/WM thread counts depend on the WIZ hashing
  5464. * disable bit, which we don't touch here, but it's good
  5465. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5466. */
  5467. I915_WRITE(GEN7_GT_MODE,
  5468. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5469. /* WaSampleCChickenBitEnable:hsw */
  5470. I915_WRITE(HALF_SLICE_CHICKEN3,
  5471. _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
  5472. /* WaSwitchSolVfFArbitrationPriority:hsw */
  5473. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
  5474. /* WaRsPkgCStateDisplayPMReq:hsw */
  5475. I915_WRITE(CHICKEN_PAR1_1,
  5476. I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
  5477. lpt_init_clock_gating(dev);
  5478. }
  5479. static void ivybridge_init_clock_gating(struct drm_device *dev)
  5480. {
  5481. struct drm_i915_private *dev_priv = dev->dev_private;
  5482. uint32_t snpcr;
  5483. ilk_init_lp_watermarks(dev);
  5484. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  5485. /* WaDisableEarlyCull:ivb */
  5486. I915_WRITE(_3D_CHICKEN3,
  5487. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5488. /* WaDisableBackToBackFlipFix:ivb */
  5489. I915_WRITE(IVB_CHICKEN3,
  5490. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5491. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5492. /* WaDisablePSDDualDispatchEnable:ivb */
  5493. if (IS_IVB_GT1(dev))
  5494. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5495. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5496. /* WaDisable_RenderCache_OperationalFlush:ivb */
  5497. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5498. /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
  5499. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  5500. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  5501. /* WaApplyL3ControlAndL3ChickenMode:ivb */
  5502. I915_WRITE(GEN7_L3CNTLREG1,
  5503. GEN7_WA_FOR_GEN7_L3_CONTROL);
  5504. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  5505. GEN7_WA_L3_CHICKEN_MODE);
  5506. if (IS_IVB_GT1(dev))
  5507. I915_WRITE(GEN7_ROW_CHICKEN2,
  5508. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5509. else {
  5510. /* must write both registers */
  5511. I915_WRITE(GEN7_ROW_CHICKEN2,
  5512. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5513. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  5514. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5515. }
  5516. /* WaForceL3Serialization:ivb */
  5517. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5518. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5519. /*
  5520. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5521. * This implements the WaDisableRCZUnitClockGating:ivb workaround.
  5522. */
  5523. I915_WRITE(GEN6_UCGCTL2,
  5524. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5525. /* This is required by WaCatErrorRejectionIssue:ivb */
  5526. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5527. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5528. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5529. g4x_disable_trickle_feed(dev);
  5530. gen7_setup_fixed_func_scheduler(dev_priv);
  5531. if (0) { /* causes HiZ corruption on ivb:gt1 */
  5532. /* enable HiZ Raw Stall Optimization */
  5533. I915_WRITE(CACHE_MODE_0_GEN7,
  5534. _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
  5535. }
  5536. /* WaDisable4x2SubspanOptimization:ivb */
  5537. I915_WRITE(CACHE_MODE_1,
  5538. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5539. /*
  5540. * BSpec recommends 8x4 when MSAA is used,
  5541. * however in practice 16x4 seems fastest.
  5542. *
  5543. * Note that PS/WM thread counts depend on the WIZ hashing
  5544. * disable bit, which we don't touch here, but it's good
  5545. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5546. */
  5547. I915_WRITE(GEN7_GT_MODE,
  5548. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5549. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  5550. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  5551. snpcr |= GEN6_MBC_SNPCR_MED;
  5552. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  5553. if (!HAS_PCH_NOP(dev))
  5554. cpt_init_clock_gating(dev);
  5555. gen6_check_mch_setup(dev);
  5556. }
  5557. static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
  5558. {
  5559. I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
  5560. /*
  5561. * Disable trickle feed and enable pnd deadline calculation
  5562. */
  5563. I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
  5564. I915_WRITE(CBR1_VLV, 0);
  5565. }
  5566. static void valleyview_init_clock_gating(struct drm_device *dev)
  5567. {
  5568. struct drm_i915_private *dev_priv = dev->dev_private;
  5569. vlv_init_display_clock_gating(dev_priv);
  5570. /* WaDisableEarlyCull:vlv */
  5571. I915_WRITE(_3D_CHICKEN3,
  5572. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  5573. /* WaDisableBackToBackFlipFix:vlv */
  5574. I915_WRITE(IVB_CHICKEN3,
  5575. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  5576. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  5577. /* WaPsdDispatchEnable:vlv */
  5578. /* WaDisablePSDDualDispatchEnable:vlv */
  5579. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  5580. _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
  5581. GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  5582. /* WaDisable_RenderCache_OperationalFlush:vlv */
  5583. I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5584. /* WaForceL3Serialization:vlv */
  5585. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  5586. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  5587. /* WaDisableDopClockGating:vlv */
  5588. I915_WRITE(GEN7_ROW_CHICKEN2,
  5589. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  5590. /* This is required by WaCatErrorRejectionIssue:vlv */
  5591. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  5592. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  5593. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  5594. gen7_setup_fixed_func_scheduler(dev_priv);
  5595. /*
  5596. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  5597. * This implements the WaDisableRCZUnitClockGating:vlv workaround.
  5598. */
  5599. I915_WRITE(GEN6_UCGCTL2,
  5600. GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  5601. /* WaDisableL3Bank2xClockGate:vlv
  5602. * Disabling L3 clock gating- MMIO 940c[25] = 1
  5603. * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
  5604. I915_WRITE(GEN7_UCGCTL4,
  5605. I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  5606. /*
  5607. * BSpec says this must be set, even though
  5608. * WaDisable4x2SubspanOptimization isn't listed for VLV.
  5609. */
  5610. I915_WRITE(CACHE_MODE_1,
  5611. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  5612. /*
  5613. * BSpec recommends 8x4 when MSAA is used,
  5614. * however in practice 16x4 seems fastest.
  5615. *
  5616. * Note that PS/WM thread counts depend on the WIZ hashing
  5617. * disable bit, which we don't touch here, but it's good
  5618. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  5619. */
  5620. I915_WRITE(GEN7_GT_MODE,
  5621. _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
  5622. /*
  5623. * WaIncreaseL3CreditsForVLVB0:vlv
  5624. * This is the hardware default actually.
  5625. */
  5626. I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
  5627. /*
  5628. * WaDisableVLVClockGating_VBIIssue:vlv
  5629. * Disable clock gating on th GCFG unit to prevent a delay
  5630. * in the reporting of vblank events.
  5631. */
  5632. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  5633. }
  5634. static void cherryview_init_clock_gating(struct drm_device *dev)
  5635. {
  5636. struct drm_i915_private *dev_priv = dev->dev_private;
  5637. vlv_init_display_clock_gating(dev_priv);
  5638. /* WaVSRefCountFullforceMissDisable:chv */
  5639. /* WaDSRefCountFullforceMissDisable:chv */
  5640. I915_WRITE(GEN7_FF_THREAD_MODE,
  5641. I915_READ(GEN7_FF_THREAD_MODE) &
  5642. ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
  5643. /* WaDisableSemaphoreAndSyncFlipWait:chv */
  5644. I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
  5645. _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
  5646. /* WaDisableCSUnitClockGating:chv */
  5647. I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
  5648. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  5649. /* WaDisableSDEUnitClockGating:chv */
  5650. I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
  5651. GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
  5652. /*
  5653. * GTT cache may not work with big pages, so if those
  5654. * are ever enabled GTT cache may need to be disabled.
  5655. */
  5656. I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
  5657. }
  5658. static void g4x_init_clock_gating(struct drm_device *dev)
  5659. {
  5660. struct drm_i915_private *dev_priv = dev->dev_private;
  5661. uint32_t dspclk_gate;
  5662. I915_WRITE(RENCLK_GATE_D1, 0);
  5663. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  5664. GS_UNIT_CLOCK_GATE_DISABLE |
  5665. CL_UNIT_CLOCK_GATE_DISABLE);
  5666. I915_WRITE(RAMCLK_GATE_D, 0);
  5667. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  5668. OVRUNIT_CLOCK_GATE_DISABLE |
  5669. OVCUNIT_CLOCK_GATE_DISABLE;
  5670. if (IS_GM45(dev))
  5671. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  5672. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  5673. /* WaDisableRenderCachePipelinedFlush */
  5674. I915_WRITE(CACHE_MODE_0,
  5675. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  5676. /* WaDisable_RenderCache_OperationalFlush:g4x */
  5677. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5678. g4x_disable_trickle_feed(dev);
  5679. }
  5680. static void crestline_init_clock_gating(struct drm_device *dev)
  5681. {
  5682. struct drm_i915_private *dev_priv = dev->dev_private;
  5683. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  5684. I915_WRITE(RENCLK_GATE_D2, 0);
  5685. I915_WRITE(DSPCLK_GATE_D, 0);
  5686. I915_WRITE(RAMCLK_GATE_D, 0);
  5687. I915_WRITE16(DEUC, 0);
  5688. I915_WRITE(MI_ARB_STATE,
  5689. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5690. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5691. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5692. }
  5693. static void broadwater_init_clock_gating(struct drm_device *dev)
  5694. {
  5695. struct drm_i915_private *dev_priv = dev->dev_private;
  5696. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  5697. I965_RCC_CLOCK_GATE_DISABLE |
  5698. I965_RCPB_CLOCK_GATE_DISABLE |
  5699. I965_ISC_CLOCK_GATE_DISABLE |
  5700. I965_FBC_CLOCK_GATE_DISABLE);
  5701. I915_WRITE(RENCLK_GATE_D2, 0);
  5702. I915_WRITE(MI_ARB_STATE,
  5703. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5704. /* WaDisable_RenderCache_OperationalFlush:gen4 */
  5705. I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
  5706. }
  5707. static void gen3_init_clock_gating(struct drm_device *dev)
  5708. {
  5709. struct drm_i915_private *dev_priv = dev->dev_private;
  5710. u32 dstate = I915_READ(D_STATE);
  5711. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  5712. DSTATE_DOT_CLOCK_GATING;
  5713. I915_WRITE(D_STATE, dstate);
  5714. if (IS_PINEVIEW(dev))
  5715. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  5716. /* IIR "flip pending" means done if this bit is set */
  5717. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  5718. /* interrupts should cause a wake up from C3 */
  5719. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
  5720. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  5721. I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
  5722. I915_WRITE(MI_ARB_STATE,
  5723. _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
  5724. }
  5725. static void i85x_init_clock_gating(struct drm_device *dev)
  5726. {
  5727. struct drm_i915_private *dev_priv = dev->dev_private;
  5728. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  5729. /* interrupts should cause a wake up from C3 */
  5730. I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
  5731. _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
  5732. I915_WRITE(MEM_MODE,
  5733. _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
  5734. }
  5735. static void i830_init_clock_gating(struct drm_device *dev)
  5736. {
  5737. struct drm_i915_private *dev_priv = dev->dev_private;
  5738. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  5739. I915_WRITE(MEM_MODE,
  5740. _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
  5741. _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
  5742. }
  5743. void intel_init_clock_gating(struct drm_device *dev)
  5744. {
  5745. struct drm_i915_private *dev_priv = dev->dev_private;
  5746. if (dev_priv->display.init_clock_gating)
  5747. dev_priv->display.init_clock_gating(dev);
  5748. }
  5749. void intel_suspend_hw(struct drm_device *dev)
  5750. {
  5751. if (HAS_PCH_LPT(dev))
  5752. lpt_suspend_hw(dev);
  5753. }
  5754. /* Set up chip specific power management-related functions */
  5755. void intel_init_pm(struct drm_device *dev)
  5756. {
  5757. struct drm_i915_private *dev_priv = dev->dev_private;
  5758. intel_fbc_init(dev_priv);
  5759. /* For cxsr */
  5760. if (IS_PINEVIEW(dev))
  5761. i915_pineview_get_mem_freq(dev);
  5762. else if (IS_GEN5(dev))
  5763. i915_ironlake_get_mem_freq(dev);
  5764. /* For FIFO watermark updates */
  5765. if (INTEL_INFO(dev)->gen >= 9) {
  5766. skl_setup_wm_latency(dev);
  5767. if (IS_BROXTON(dev))
  5768. dev_priv->display.init_clock_gating =
  5769. bxt_init_clock_gating;
  5770. dev_priv->display.update_wm = skl_update_wm;
  5771. } else if (HAS_PCH_SPLIT(dev)) {
  5772. ilk_setup_wm_latency(dev);
  5773. if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
  5774. dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
  5775. (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
  5776. dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
  5777. dev_priv->display.update_wm = ilk_update_wm;
  5778. dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
  5779. dev_priv->display.program_watermarks = ilk_program_watermarks;
  5780. } else {
  5781. DRM_DEBUG_KMS("Failed to read display plane latency. "
  5782. "Disable CxSR\n");
  5783. }
  5784. if (IS_GEN5(dev))
  5785. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  5786. else if (IS_GEN6(dev))
  5787. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  5788. else if (IS_IVYBRIDGE(dev))
  5789. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  5790. else if (IS_HASWELL(dev))
  5791. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  5792. else if (INTEL_INFO(dev)->gen == 8)
  5793. dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
  5794. } else if (IS_CHERRYVIEW(dev)) {
  5795. vlv_setup_wm_latency(dev);
  5796. dev_priv->display.update_wm = vlv_update_wm;
  5797. dev_priv->display.init_clock_gating =
  5798. cherryview_init_clock_gating;
  5799. } else if (IS_VALLEYVIEW(dev)) {
  5800. vlv_setup_wm_latency(dev);
  5801. dev_priv->display.update_wm = vlv_update_wm;
  5802. dev_priv->display.init_clock_gating =
  5803. valleyview_init_clock_gating;
  5804. } else if (IS_PINEVIEW(dev)) {
  5805. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  5806. dev_priv->is_ddr3,
  5807. dev_priv->fsb_freq,
  5808. dev_priv->mem_freq)) {
  5809. DRM_INFO("failed to find known CxSR latency "
  5810. "(found ddr%s fsb freq %d, mem freq %d), "
  5811. "disabling CxSR\n",
  5812. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  5813. dev_priv->fsb_freq, dev_priv->mem_freq);
  5814. /* Disable CxSR and never update its watermark again */
  5815. intel_set_memory_cxsr(dev_priv, false);
  5816. dev_priv->display.update_wm = NULL;
  5817. } else
  5818. dev_priv->display.update_wm = pineview_update_wm;
  5819. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5820. } else if (IS_G4X(dev)) {
  5821. dev_priv->display.update_wm = g4x_update_wm;
  5822. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  5823. } else if (IS_GEN4(dev)) {
  5824. dev_priv->display.update_wm = i965_update_wm;
  5825. if (IS_CRESTLINE(dev))
  5826. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  5827. else if (IS_BROADWATER(dev))
  5828. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  5829. } else if (IS_GEN3(dev)) {
  5830. dev_priv->display.update_wm = i9xx_update_wm;
  5831. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  5832. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  5833. } else if (IS_GEN2(dev)) {
  5834. if (INTEL_INFO(dev)->num_pipes == 1) {
  5835. dev_priv->display.update_wm = i845_update_wm;
  5836. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  5837. } else {
  5838. dev_priv->display.update_wm = i9xx_update_wm;
  5839. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  5840. }
  5841. if (IS_I85X(dev) || IS_I865G(dev))
  5842. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  5843. else
  5844. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  5845. } else {
  5846. DRM_ERROR("unexpected fall-through in intel_init_pm\n");
  5847. }
  5848. }
  5849. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
  5850. {
  5851. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5852. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5853. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  5854. return -EAGAIN;
  5855. }
  5856. I915_WRITE(GEN6_PCODE_DATA, *val);
  5857. I915_WRITE(GEN6_PCODE_DATA1, 0);
  5858. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5859. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5860. 500)) {
  5861. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  5862. return -ETIMEDOUT;
  5863. }
  5864. *val = I915_READ(GEN6_PCODE_DATA);
  5865. I915_WRITE(GEN6_PCODE_DATA, 0);
  5866. return 0;
  5867. }
  5868. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
  5869. {
  5870. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  5871. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  5872. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  5873. return -EAGAIN;
  5874. }
  5875. I915_WRITE(GEN6_PCODE_DATA, val);
  5876. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  5877. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  5878. 500)) {
  5879. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  5880. return -ETIMEDOUT;
  5881. }
  5882. I915_WRITE(GEN6_PCODE_DATA, 0);
  5883. return 0;
  5884. }
  5885. static int vlv_gpu_freq_div(unsigned int czclk_freq)
  5886. {
  5887. switch (czclk_freq) {
  5888. case 200:
  5889. return 10;
  5890. case 267:
  5891. return 12;
  5892. case 320:
  5893. case 333:
  5894. return 16;
  5895. case 400:
  5896. return 20;
  5897. default:
  5898. return -1;
  5899. }
  5900. }
  5901. static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5902. {
  5903. int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5904. div = vlv_gpu_freq_div(czclk_freq);
  5905. if (div < 0)
  5906. return div;
  5907. return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
  5908. }
  5909. static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5910. {
  5911. int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5912. mul = vlv_gpu_freq_div(czclk_freq);
  5913. if (mul < 0)
  5914. return mul;
  5915. return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
  5916. }
  5917. static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5918. {
  5919. int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5920. div = vlv_gpu_freq_div(czclk_freq) / 2;
  5921. if (div < 0)
  5922. return div;
  5923. return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
  5924. }
  5925. static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5926. {
  5927. int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
  5928. mul = vlv_gpu_freq_div(czclk_freq) / 2;
  5929. if (mul < 0)
  5930. return mul;
  5931. /* CHV needs even values */
  5932. return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
  5933. }
  5934. int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
  5935. {
  5936. if (IS_GEN9(dev_priv->dev))
  5937. return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
  5938. GEN9_FREQ_SCALER);
  5939. else if (IS_CHERRYVIEW(dev_priv->dev))
  5940. return chv_gpu_freq(dev_priv, val);
  5941. else if (IS_VALLEYVIEW(dev_priv->dev))
  5942. return byt_gpu_freq(dev_priv, val);
  5943. else
  5944. return val * GT_FREQUENCY_MULTIPLIER;
  5945. }
  5946. int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
  5947. {
  5948. if (IS_GEN9(dev_priv->dev))
  5949. return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
  5950. GT_FREQUENCY_MULTIPLIER);
  5951. else if (IS_CHERRYVIEW(dev_priv->dev))
  5952. return chv_freq_opcode(dev_priv, val);
  5953. else if (IS_VALLEYVIEW(dev_priv->dev))
  5954. return byt_freq_opcode(dev_priv, val);
  5955. else
  5956. return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
  5957. }
  5958. struct request_boost {
  5959. struct work_struct work;
  5960. struct drm_i915_gem_request *req;
  5961. };
  5962. static void __intel_rps_boost_work(struct work_struct *work)
  5963. {
  5964. struct request_boost *boost = container_of(work, struct request_boost, work);
  5965. struct drm_i915_gem_request *req = boost->req;
  5966. if (!i915_gem_request_completed(req, true))
  5967. gen6_rps_boost(to_i915(req->ring->dev), NULL,
  5968. req->emitted_jiffies);
  5969. i915_gem_request_unreference__unlocked(req);
  5970. kfree(boost);
  5971. }
  5972. void intel_queue_rps_boost_for_request(struct drm_device *dev,
  5973. struct drm_i915_gem_request *req)
  5974. {
  5975. struct request_boost *boost;
  5976. if (req == NULL || INTEL_INFO(dev)->gen < 6)
  5977. return;
  5978. if (i915_gem_request_completed(req, true))
  5979. return;
  5980. boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
  5981. if (boost == NULL)
  5982. return;
  5983. i915_gem_request_reference(req);
  5984. boost->req = req;
  5985. INIT_WORK(&boost->work, __intel_rps_boost_work);
  5986. queue_work(to_i915(dev)->wq, &boost->work);
  5987. }
  5988. void intel_pm_setup(struct drm_device *dev)
  5989. {
  5990. struct drm_i915_private *dev_priv = dev->dev_private;
  5991. mutex_init(&dev_priv->rps.hw_lock);
  5992. spin_lock_init(&dev_priv->rps.client_lock);
  5993. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  5994. intel_gen6_powersave_work);
  5995. INIT_LIST_HEAD(&dev_priv->rps.clients);
  5996. INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
  5997. INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
  5998. dev_priv->pm.suspended = false;
  5999. atomic_set(&dev_priv->pm.wakeref_count, 0);
  6000. atomic_set(&dev_priv->pm.atomic_seq, 0);
  6001. }