disk-io.c 126 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  64. int read_only);
  65. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  66. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  67. struct btrfs_root *root);
  68. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  69. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  70. struct extent_io_tree *dirty_pages,
  71. int mark);
  72. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  73. struct extent_io_tree *pinned_extents);
  74. static int btrfs_cleanup_transaction(struct btrfs_root *root);
  75. static void btrfs_error_commit_super(struct btrfs_root *root);
  76. /*
  77. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  78. * is complete. This is used during reads to verify checksums, and it is used
  79. * by writes to insert metadata for new file extents after IO is complete.
  80. */
  81. struct btrfs_end_io_wq {
  82. struct bio *bio;
  83. bio_end_io_t *end_io;
  84. void *private;
  85. struct btrfs_fs_info *info;
  86. int error;
  87. enum btrfs_wq_endio_type metadata;
  88. struct list_head list;
  89. struct btrfs_work work;
  90. };
  91. static struct kmem_cache *btrfs_end_io_wq_cache;
  92. int __init btrfs_end_io_wq_init(void)
  93. {
  94. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  95. sizeof(struct btrfs_end_io_wq),
  96. 0,
  97. SLAB_MEM_SPREAD,
  98. NULL);
  99. if (!btrfs_end_io_wq_cache)
  100. return -ENOMEM;
  101. return 0;
  102. }
  103. void btrfs_end_io_wq_exit(void)
  104. {
  105. kmem_cache_destroy(btrfs_end_io_wq_cache);
  106. }
  107. /*
  108. * async submit bios are used to offload expensive checksumming
  109. * onto the worker threads. They checksum file and metadata bios
  110. * just before they are sent down the IO stack.
  111. */
  112. struct async_submit_bio {
  113. struct inode *inode;
  114. struct bio *bio;
  115. struct list_head list;
  116. extent_submit_bio_hook_t *submit_bio_start;
  117. extent_submit_bio_hook_t *submit_bio_done;
  118. int mirror_num;
  119. unsigned long bio_flags;
  120. /*
  121. * bio_offset is optional, can be used if the pages in the bio
  122. * can't tell us where in the file the bio should go
  123. */
  124. u64 bio_offset;
  125. struct btrfs_work work;
  126. int error;
  127. };
  128. /*
  129. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  130. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  131. * the level the eb occupies in the tree.
  132. *
  133. * Different roots are used for different purposes and may nest inside each
  134. * other and they require separate keysets. As lockdep keys should be
  135. * static, assign keysets according to the purpose of the root as indicated
  136. * by btrfs_root->objectid. This ensures that all special purpose roots
  137. * have separate keysets.
  138. *
  139. * Lock-nesting across peer nodes is always done with the immediate parent
  140. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  141. * subclass to avoid triggering lockdep warning in such cases.
  142. *
  143. * The key is set by the readpage_end_io_hook after the buffer has passed
  144. * csum validation but before the pages are unlocked. It is also set by
  145. * btrfs_init_new_buffer on freshly allocated blocks.
  146. *
  147. * We also add a check to make sure the highest level of the tree is the
  148. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  149. * needs update as well.
  150. */
  151. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  152. # if BTRFS_MAX_LEVEL != 8
  153. # error
  154. # endif
  155. static struct btrfs_lockdep_keyset {
  156. u64 id; /* root objectid */
  157. const char *name_stem; /* lock name stem */
  158. char names[BTRFS_MAX_LEVEL + 1][20];
  159. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  160. } btrfs_lockdep_keysets[] = {
  161. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  162. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  163. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  164. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  165. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  166. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  167. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  168. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  169. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  170. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  171. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  172. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  173. { .id = 0, .name_stem = "tree" },
  174. };
  175. void __init btrfs_init_lockdep(void)
  176. {
  177. int i, j;
  178. /* initialize lockdep class names */
  179. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  180. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  181. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  182. snprintf(ks->names[j], sizeof(ks->names[j]),
  183. "btrfs-%s-%02d", ks->name_stem, j);
  184. }
  185. }
  186. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  187. int level)
  188. {
  189. struct btrfs_lockdep_keyset *ks;
  190. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  191. /* find the matching keyset, id 0 is the default entry */
  192. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  193. if (ks->id == objectid)
  194. break;
  195. lockdep_set_class_and_name(&eb->lock,
  196. &ks->keys[level], ks->names[level]);
  197. }
  198. #endif
  199. /*
  200. * extents on the btree inode are pretty simple, there's one extent
  201. * that covers the entire device
  202. */
  203. static struct extent_map *btree_get_extent(struct inode *inode,
  204. struct page *page, size_t pg_offset, u64 start, u64 len,
  205. int create)
  206. {
  207. struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
  208. struct extent_map *em;
  209. int ret;
  210. read_lock(&em_tree->lock);
  211. em = lookup_extent_mapping(em_tree, start, len);
  212. if (em) {
  213. em->bdev =
  214. BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  215. read_unlock(&em_tree->lock);
  216. goto out;
  217. }
  218. read_unlock(&em_tree->lock);
  219. em = alloc_extent_map();
  220. if (!em) {
  221. em = ERR_PTR(-ENOMEM);
  222. goto out;
  223. }
  224. em->start = 0;
  225. em->len = (u64)-1;
  226. em->block_len = (u64)-1;
  227. em->block_start = 0;
  228. em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
  229. write_lock(&em_tree->lock);
  230. ret = add_extent_mapping(em_tree, em, 0);
  231. if (ret == -EEXIST) {
  232. free_extent_map(em);
  233. em = lookup_extent_mapping(em_tree, start, len);
  234. if (!em)
  235. em = ERR_PTR(-EIO);
  236. } else if (ret) {
  237. free_extent_map(em);
  238. em = ERR_PTR(ret);
  239. }
  240. write_unlock(&em_tree->lock);
  241. out:
  242. return em;
  243. }
  244. u32 btrfs_csum_data(char *data, u32 seed, size_t len)
  245. {
  246. return btrfs_crc32c(seed, data, len);
  247. }
  248. void btrfs_csum_final(u32 crc, char *result)
  249. {
  250. put_unaligned_le32(~crc, result);
  251. }
  252. /*
  253. * compute the csum for a btree block, and either verify it or write it
  254. * into the csum field of the block.
  255. */
  256. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  257. struct extent_buffer *buf,
  258. int verify)
  259. {
  260. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  261. char *result = NULL;
  262. unsigned long len;
  263. unsigned long cur_len;
  264. unsigned long offset = BTRFS_CSUM_SIZE;
  265. char *kaddr;
  266. unsigned long map_start;
  267. unsigned long map_len;
  268. int err;
  269. u32 crc = ~(u32)0;
  270. unsigned long inline_result;
  271. len = buf->len - offset;
  272. while (len > 0) {
  273. err = map_private_extent_buffer(buf, offset, 32,
  274. &kaddr, &map_start, &map_len);
  275. if (err)
  276. return err;
  277. cur_len = min(len, map_len - (offset - map_start));
  278. crc = btrfs_csum_data(kaddr + offset - map_start,
  279. crc, cur_len);
  280. len -= cur_len;
  281. offset += cur_len;
  282. }
  283. if (csum_size > sizeof(inline_result)) {
  284. result = kzalloc(csum_size, GFP_NOFS);
  285. if (!result)
  286. return -ENOMEM;
  287. } else {
  288. result = (char *)&inline_result;
  289. }
  290. btrfs_csum_final(crc, result);
  291. if (verify) {
  292. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  293. u32 val;
  294. u32 found = 0;
  295. memcpy(&found, result, csum_size);
  296. read_extent_buffer(buf, &val, 0, csum_size);
  297. btrfs_warn_rl(fs_info,
  298. "%s checksum verify failed on %llu wanted %X found %X "
  299. "level %d",
  300. fs_info->sb->s_id, buf->start,
  301. val, found, btrfs_header_level(buf));
  302. if (result != (char *)&inline_result)
  303. kfree(result);
  304. return -EUCLEAN;
  305. }
  306. } else {
  307. write_extent_buffer(buf, result, 0, csum_size);
  308. }
  309. if (result != (char *)&inline_result)
  310. kfree(result);
  311. return 0;
  312. }
  313. /*
  314. * we can't consider a given block up to date unless the transid of the
  315. * block matches the transid in the parent node's pointer. This is how we
  316. * detect blocks that either didn't get written at all or got written
  317. * in the wrong place.
  318. */
  319. static int verify_parent_transid(struct extent_io_tree *io_tree,
  320. struct extent_buffer *eb, u64 parent_transid,
  321. int atomic)
  322. {
  323. struct extent_state *cached_state = NULL;
  324. int ret;
  325. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  326. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  327. return 0;
  328. if (atomic)
  329. return -EAGAIN;
  330. if (need_lock) {
  331. btrfs_tree_read_lock(eb);
  332. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  333. }
  334. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  335. &cached_state);
  336. if (extent_buffer_uptodate(eb) &&
  337. btrfs_header_generation(eb) == parent_transid) {
  338. ret = 0;
  339. goto out;
  340. }
  341. btrfs_err_rl(eb->fs_info,
  342. "parent transid verify failed on %llu wanted %llu found %llu",
  343. eb->start,
  344. parent_transid, btrfs_header_generation(eb));
  345. ret = 1;
  346. /*
  347. * Things reading via commit roots that don't have normal protection,
  348. * like send, can have a really old block in cache that may point at a
  349. * block that has been freed and re-allocated. So don't clear uptodate
  350. * if we find an eb that is under IO (dirty/writeback) because we could
  351. * end up reading in the stale data and then writing it back out and
  352. * making everybody very sad.
  353. */
  354. if (!extent_buffer_under_io(eb))
  355. clear_extent_buffer_uptodate(eb);
  356. out:
  357. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  358. &cached_state, GFP_NOFS);
  359. if (need_lock)
  360. btrfs_tree_read_unlock_blocking(eb);
  361. return ret;
  362. }
  363. /*
  364. * Return 0 if the superblock checksum type matches the checksum value of that
  365. * algorithm. Pass the raw disk superblock data.
  366. */
  367. static int btrfs_check_super_csum(char *raw_disk_sb)
  368. {
  369. struct btrfs_super_block *disk_sb =
  370. (struct btrfs_super_block *)raw_disk_sb;
  371. u16 csum_type = btrfs_super_csum_type(disk_sb);
  372. int ret = 0;
  373. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  374. u32 crc = ~(u32)0;
  375. const int csum_size = sizeof(crc);
  376. char result[csum_size];
  377. /*
  378. * The super_block structure does not span the whole
  379. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  380. * is filled with zeros and is included in the checksum.
  381. */
  382. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  383. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  384. btrfs_csum_final(crc, result);
  385. if (memcmp(raw_disk_sb, result, csum_size))
  386. ret = 1;
  387. }
  388. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  389. printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
  390. csum_type);
  391. ret = 1;
  392. }
  393. return ret;
  394. }
  395. /*
  396. * helper to read a given tree block, doing retries as required when
  397. * the checksums don't match and we have alternate mirrors to try.
  398. */
  399. static int btree_read_extent_buffer_pages(struct btrfs_root *root,
  400. struct extent_buffer *eb,
  401. u64 start, u64 parent_transid)
  402. {
  403. struct extent_io_tree *io_tree;
  404. int failed = 0;
  405. int ret;
  406. int num_copies = 0;
  407. int mirror_num = 0;
  408. int failed_mirror = 0;
  409. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  410. io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
  411. while (1) {
  412. ret = read_extent_buffer_pages(io_tree, eb, start,
  413. WAIT_COMPLETE,
  414. btree_get_extent, mirror_num);
  415. if (!ret) {
  416. if (!verify_parent_transid(io_tree, eb,
  417. parent_transid, 0))
  418. break;
  419. else
  420. ret = -EIO;
  421. }
  422. /*
  423. * This buffer's crc is fine, but its contents are corrupted, so
  424. * there is no reason to read the other copies, they won't be
  425. * any less wrong.
  426. */
  427. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  428. break;
  429. num_copies = btrfs_num_copies(root->fs_info,
  430. eb->start, eb->len);
  431. if (num_copies == 1)
  432. break;
  433. if (!failed_mirror) {
  434. failed = 1;
  435. failed_mirror = eb->read_mirror;
  436. }
  437. mirror_num++;
  438. if (mirror_num == failed_mirror)
  439. mirror_num++;
  440. if (mirror_num > num_copies)
  441. break;
  442. }
  443. if (failed && !ret && failed_mirror)
  444. repair_eb_io_failure(root, eb, failed_mirror);
  445. return ret;
  446. }
  447. /*
  448. * checksum a dirty tree block before IO. This has extra checks to make sure
  449. * we only fill in the checksum field in the first page of a multi-page block
  450. */
  451. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  452. {
  453. u64 start = page_offset(page);
  454. u64 found_start;
  455. struct extent_buffer *eb;
  456. eb = (struct extent_buffer *)page->private;
  457. if (page != eb->pages[0])
  458. return 0;
  459. found_start = btrfs_header_bytenr(eb);
  460. /*
  461. * Please do not consolidate these warnings into a single if.
  462. * It is useful to know what went wrong.
  463. */
  464. if (WARN_ON(found_start != start))
  465. return -EUCLEAN;
  466. if (WARN_ON(!PageUptodate(page)))
  467. return -EUCLEAN;
  468. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  469. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  470. return csum_tree_block(fs_info, eb, 0);
  471. }
  472. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  473. struct extent_buffer *eb)
  474. {
  475. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  476. u8 fsid[BTRFS_UUID_SIZE];
  477. int ret = 1;
  478. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  479. while (fs_devices) {
  480. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  481. ret = 0;
  482. break;
  483. }
  484. fs_devices = fs_devices->seed;
  485. }
  486. return ret;
  487. }
  488. #define CORRUPT(reason, eb, root, slot) \
  489. btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
  490. "root=%llu, slot=%d", reason, \
  491. btrfs_header_bytenr(eb), root->objectid, slot)
  492. static noinline int check_leaf(struct btrfs_root *root,
  493. struct extent_buffer *leaf)
  494. {
  495. struct btrfs_key key;
  496. struct btrfs_key leaf_key;
  497. u32 nritems = btrfs_header_nritems(leaf);
  498. int slot;
  499. if (nritems == 0) {
  500. struct btrfs_root *check_root;
  501. key.objectid = btrfs_header_owner(leaf);
  502. key.type = BTRFS_ROOT_ITEM_KEY;
  503. key.offset = (u64)-1;
  504. check_root = btrfs_get_fs_root(root->fs_info, &key, false);
  505. /*
  506. * The only reason we also check NULL here is that during
  507. * open_ctree() some roots has not yet been set up.
  508. */
  509. if (!IS_ERR_OR_NULL(check_root)) {
  510. /* if leaf is the root, then it's fine */
  511. if (leaf->start !=
  512. btrfs_root_bytenr(&check_root->root_item)) {
  513. CORRUPT("non-root leaf's nritems is 0",
  514. leaf, root, 0);
  515. return -EIO;
  516. }
  517. }
  518. return 0;
  519. }
  520. /* Check the 0 item */
  521. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  522. BTRFS_LEAF_DATA_SIZE(root)) {
  523. CORRUPT("invalid item offset size pair", leaf, root, 0);
  524. return -EIO;
  525. }
  526. /*
  527. * Check to make sure each items keys are in the correct order and their
  528. * offsets make sense. We only have to loop through nritems-1 because
  529. * we check the current slot against the next slot, which verifies the
  530. * next slot's offset+size makes sense and that the current's slot
  531. * offset is correct.
  532. */
  533. for (slot = 0; slot < nritems - 1; slot++) {
  534. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  535. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  536. /* Make sure the keys are in the right order */
  537. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  538. CORRUPT("bad key order", leaf, root, slot);
  539. return -EIO;
  540. }
  541. /*
  542. * Make sure the offset and ends are right, remember that the
  543. * item data starts at the end of the leaf and grows towards the
  544. * front.
  545. */
  546. if (btrfs_item_offset_nr(leaf, slot) !=
  547. btrfs_item_end_nr(leaf, slot + 1)) {
  548. CORRUPT("slot offset bad", leaf, root, slot);
  549. return -EIO;
  550. }
  551. /*
  552. * Check to make sure that we don't point outside of the leaf,
  553. * just in case all the items are consistent to each other, but
  554. * all point outside of the leaf.
  555. */
  556. if (btrfs_item_end_nr(leaf, slot) >
  557. BTRFS_LEAF_DATA_SIZE(root)) {
  558. CORRUPT("slot end outside of leaf", leaf, root, slot);
  559. return -EIO;
  560. }
  561. }
  562. return 0;
  563. }
  564. static int check_node(struct btrfs_root *root, struct extent_buffer *node)
  565. {
  566. unsigned long nr = btrfs_header_nritems(node);
  567. if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root)) {
  568. btrfs_crit(root->fs_info,
  569. "corrupt node: block %llu root %llu nritems %lu",
  570. node->start, root->objectid, nr);
  571. return -EIO;
  572. }
  573. return 0;
  574. }
  575. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  576. u64 phy_offset, struct page *page,
  577. u64 start, u64 end, int mirror)
  578. {
  579. u64 found_start;
  580. int found_level;
  581. struct extent_buffer *eb;
  582. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  583. struct btrfs_fs_info *fs_info = root->fs_info;
  584. int ret = 0;
  585. int reads_done;
  586. if (!page->private)
  587. goto out;
  588. eb = (struct extent_buffer *)page->private;
  589. /* the pending IO might have been the only thing that kept this buffer
  590. * in memory. Make sure we have a ref for all this other checks
  591. */
  592. extent_buffer_get(eb);
  593. reads_done = atomic_dec_and_test(&eb->io_pages);
  594. if (!reads_done)
  595. goto err;
  596. eb->read_mirror = mirror;
  597. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  598. ret = -EIO;
  599. goto err;
  600. }
  601. found_start = btrfs_header_bytenr(eb);
  602. if (found_start != eb->start) {
  603. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  604. found_start, eb->start);
  605. ret = -EIO;
  606. goto err;
  607. }
  608. if (check_tree_block_fsid(fs_info, eb)) {
  609. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  610. eb->start);
  611. ret = -EIO;
  612. goto err;
  613. }
  614. found_level = btrfs_header_level(eb);
  615. if (found_level >= BTRFS_MAX_LEVEL) {
  616. btrfs_err(fs_info, "bad tree block level %d",
  617. (int)btrfs_header_level(eb));
  618. ret = -EIO;
  619. goto err;
  620. }
  621. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  622. eb, found_level);
  623. ret = csum_tree_block(fs_info, eb, 1);
  624. if (ret)
  625. goto err;
  626. /*
  627. * If this is a leaf block and it is corrupt, set the corrupt bit so
  628. * that we don't try and read the other copies of this block, just
  629. * return -EIO.
  630. */
  631. if (found_level == 0 && check_leaf(root, eb)) {
  632. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  633. ret = -EIO;
  634. }
  635. if (found_level > 0 && check_node(root, eb))
  636. ret = -EIO;
  637. if (!ret)
  638. set_extent_buffer_uptodate(eb);
  639. err:
  640. if (reads_done &&
  641. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  642. btree_readahead_hook(fs_info, eb, eb->start, ret);
  643. if (ret) {
  644. /*
  645. * our io error hook is going to dec the io pages
  646. * again, we have to make sure it has something
  647. * to decrement
  648. */
  649. atomic_inc(&eb->io_pages);
  650. clear_extent_buffer_uptodate(eb);
  651. }
  652. free_extent_buffer(eb);
  653. out:
  654. return ret;
  655. }
  656. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  657. {
  658. struct extent_buffer *eb;
  659. eb = (struct extent_buffer *)page->private;
  660. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  661. eb->read_mirror = failed_mirror;
  662. atomic_dec(&eb->io_pages);
  663. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  664. btree_readahead_hook(eb->fs_info, eb, eb->start, -EIO);
  665. return -EIO; /* we fixed nothing */
  666. }
  667. static void end_workqueue_bio(struct bio *bio)
  668. {
  669. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  670. struct btrfs_fs_info *fs_info;
  671. struct btrfs_workqueue *wq;
  672. btrfs_work_func_t func;
  673. fs_info = end_io_wq->info;
  674. end_io_wq->error = bio->bi_error;
  675. if (bio_op(bio) == REQ_OP_WRITE) {
  676. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  677. wq = fs_info->endio_meta_write_workers;
  678. func = btrfs_endio_meta_write_helper;
  679. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  680. wq = fs_info->endio_freespace_worker;
  681. func = btrfs_freespace_write_helper;
  682. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  683. wq = fs_info->endio_raid56_workers;
  684. func = btrfs_endio_raid56_helper;
  685. } else {
  686. wq = fs_info->endio_write_workers;
  687. func = btrfs_endio_write_helper;
  688. }
  689. } else {
  690. if (unlikely(end_io_wq->metadata ==
  691. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  692. wq = fs_info->endio_repair_workers;
  693. func = btrfs_endio_repair_helper;
  694. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  695. wq = fs_info->endio_raid56_workers;
  696. func = btrfs_endio_raid56_helper;
  697. } else if (end_io_wq->metadata) {
  698. wq = fs_info->endio_meta_workers;
  699. func = btrfs_endio_meta_helper;
  700. } else {
  701. wq = fs_info->endio_workers;
  702. func = btrfs_endio_helper;
  703. }
  704. }
  705. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  706. btrfs_queue_work(wq, &end_io_wq->work);
  707. }
  708. int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  709. enum btrfs_wq_endio_type metadata)
  710. {
  711. struct btrfs_end_io_wq *end_io_wq;
  712. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  713. if (!end_io_wq)
  714. return -ENOMEM;
  715. end_io_wq->private = bio->bi_private;
  716. end_io_wq->end_io = bio->bi_end_io;
  717. end_io_wq->info = info;
  718. end_io_wq->error = 0;
  719. end_io_wq->bio = bio;
  720. end_io_wq->metadata = metadata;
  721. bio->bi_private = end_io_wq;
  722. bio->bi_end_io = end_workqueue_bio;
  723. return 0;
  724. }
  725. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  726. {
  727. unsigned long limit = min_t(unsigned long,
  728. info->thread_pool_size,
  729. info->fs_devices->open_devices);
  730. return 256 * limit;
  731. }
  732. static void run_one_async_start(struct btrfs_work *work)
  733. {
  734. struct async_submit_bio *async;
  735. int ret;
  736. async = container_of(work, struct async_submit_bio, work);
  737. ret = async->submit_bio_start(async->inode, async->bio,
  738. async->mirror_num, async->bio_flags,
  739. async->bio_offset);
  740. if (ret)
  741. async->error = ret;
  742. }
  743. static void run_one_async_done(struct btrfs_work *work)
  744. {
  745. struct btrfs_fs_info *fs_info;
  746. struct async_submit_bio *async;
  747. int limit;
  748. async = container_of(work, struct async_submit_bio, work);
  749. fs_info = BTRFS_I(async->inode)->root->fs_info;
  750. limit = btrfs_async_submit_limit(fs_info);
  751. limit = limit * 2 / 3;
  752. /*
  753. * atomic_dec_return implies a barrier for waitqueue_active
  754. */
  755. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  756. waitqueue_active(&fs_info->async_submit_wait))
  757. wake_up(&fs_info->async_submit_wait);
  758. /* If an error occurred we just want to clean up the bio and move on */
  759. if (async->error) {
  760. async->bio->bi_error = async->error;
  761. bio_endio(async->bio);
  762. return;
  763. }
  764. async->submit_bio_done(async->inode, async->bio, async->mirror_num,
  765. async->bio_flags, async->bio_offset);
  766. }
  767. static void run_one_async_free(struct btrfs_work *work)
  768. {
  769. struct async_submit_bio *async;
  770. async = container_of(work, struct async_submit_bio, work);
  771. kfree(async);
  772. }
  773. int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
  774. struct bio *bio, int mirror_num,
  775. unsigned long bio_flags,
  776. u64 bio_offset,
  777. extent_submit_bio_hook_t *submit_bio_start,
  778. extent_submit_bio_hook_t *submit_bio_done)
  779. {
  780. struct async_submit_bio *async;
  781. async = kmalloc(sizeof(*async), GFP_NOFS);
  782. if (!async)
  783. return -ENOMEM;
  784. async->inode = inode;
  785. async->bio = bio;
  786. async->mirror_num = mirror_num;
  787. async->submit_bio_start = submit_bio_start;
  788. async->submit_bio_done = submit_bio_done;
  789. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  790. run_one_async_done, run_one_async_free);
  791. async->bio_flags = bio_flags;
  792. async->bio_offset = bio_offset;
  793. async->error = 0;
  794. atomic_inc(&fs_info->nr_async_submits);
  795. if (bio->bi_opf & REQ_SYNC)
  796. btrfs_set_work_high_priority(&async->work);
  797. btrfs_queue_work(fs_info->workers, &async->work);
  798. while (atomic_read(&fs_info->async_submit_draining) &&
  799. atomic_read(&fs_info->nr_async_submits)) {
  800. wait_event(fs_info->async_submit_wait,
  801. (atomic_read(&fs_info->nr_async_submits) == 0));
  802. }
  803. return 0;
  804. }
  805. static int btree_csum_one_bio(struct bio *bio)
  806. {
  807. struct bio_vec *bvec;
  808. struct btrfs_root *root;
  809. int i, ret = 0;
  810. bio_for_each_segment_all(bvec, bio, i) {
  811. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  812. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  813. if (ret)
  814. break;
  815. }
  816. return ret;
  817. }
  818. static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
  819. int mirror_num, unsigned long bio_flags,
  820. u64 bio_offset)
  821. {
  822. /*
  823. * when we're called for a write, we're already in the async
  824. * submission context. Just jump into btrfs_map_bio
  825. */
  826. return btree_csum_one_bio(bio);
  827. }
  828. static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
  829. int mirror_num, unsigned long bio_flags,
  830. u64 bio_offset)
  831. {
  832. int ret;
  833. /*
  834. * when we're called for a write, we're already in the async
  835. * submission context. Just jump into btrfs_map_bio
  836. */
  837. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 1);
  838. if (ret) {
  839. bio->bi_error = ret;
  840. bio_endio(bio);
  841. }
  842. return ret;
  843. }
  844. static int check_async_write(struct inode *inode, unsigned long bio_flags)
  845. {
  846. if (bio_flags & EXTENT_BIO_TREE_LOG)
  847. return 0;
  848. #ifdef CONFIG_X86
  849. if (static_cpu_has(X86_FEATURE_XMM4_2))
  850. return 0;
  851. #endif
  852. return 1;
  853. }
  854. static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
  855. int mirror_num, unsigned long bio_flags,
  856. u64 bio_offset)
  857. {
  858. int async = check_async_write(inode, bio_flags);
  859. int ret;
  860. if (bio_op(bio) != REQ_OP_WRITE) {
  861. /*
  862. * called for a read, do the setup so that checksum validation
  863. * can happen in the async kernel threads
  864. */
  865. ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
  866. bio, BTRFS_WQ_ENDIO_METADATA);
  867. if (ret)
  868. goto out_w_error;
  869. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
  870. } else if (!async) {
  871. ret = btree_csum_one_bio(bio);
  872. if (ret)
  873. goto out_w_error;
  874. ret = btrfs_map_bio(BTRFS_I(inode)->root, bio, mirror_num, 0);
  875. } else {
  876. /*
  877. * kthread helpers are used to submit writes so that
  878. * checksumming can happen in parallel across all CPUs
  879. */
  880. ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
  881. inode, bio, mirror_num, 0,
  882. bio_offset,
  883. __btree_submit_bio_start,
  884. __btree_submit_bio_done);
  885. }
  886. if (ret)
  887. goto out_w_error;
  888. return 0;
  889. out_w_error:
  890. bio->bi_error = ret;
  891. bio_endio(bio);
  892. return ret;
  893. }
  894. #ifdef CONFIG_MIGRATION
  895. static int btree_migratepage(struct address_space *mapping,
  896. struct page *newpage, struct page *page,
  897. enum migrate_mode mode)
  898. {
  899. /*
  900. * we can't safely write a btree page from here,
  901. * we haven't done the locking hook
  902. */
  903. if (PageDirty(page))
  904. return -EAGAIN;
  905. /*
  906. * Buffers may be managed in a filesystem specific way.
  907. * We must have no buffers or drop them.
  908. */
  909. if (page_has_private(page) &&
  910. !try_to_release_page(page, GFP_KERNEL))
  911. return -EAGAIN;
  912. return migrate_page(mapping, newpage, page, mode);
  913. }
  914. #endif
  915. static int btree_writepages(struct address_space *mapping,
  916. struct writeback_control *wbc)
  917. {
  918. struct btrfs_fs_info *fs_info;
  919. int ret;
  920. if (wbc->sync_mode == WB_SYNC_NONE) {
  921. if (wbc->for_kupdate)
  922. return 0;
  923. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  924. /* this is a bit racy, but that's ok */
  925. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  926. BTRFS_DIRTY_METADATA_THRESH);
  927. if (ret < 0)
  928. return 0;
  929. }
  930. return btree_write_cache_pages(mapping, wbc);
  931. }
  932. static int btree_readpage(struct file *file, struct page *page)
  933. {
  934. struct extent_io_tree *tree;
  935. tree = &BTRFS_I(page->mapping->host)->io_tree;
  936. return extent_read_full_page(tree, page, btree_get_extent, 0);
  937. }
  938. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  939. {
  940. if (PageWriteback(page) || PageDirty(page))
  941. return 0;
  942. return try_release_extent_buffer(page);
  943. }
  944. static void btree_invalidatepage(struct page *page, unsigned int offset,
  945. unsigned int length)
  946. {
  947. struct extent_io_tree *tree;
  948. tree = &BTRFS_I(page->mapping->host)->io_tree;
  949. extent_invalidatepage(tree, page, offset);
  950. btree_releasepage(page, GFP_NOFS);
  951. if (PagePrivate(page)) {
  952. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  953. "page private not zero on page %llu",
  954. (unsigned long long)page_offset(page));
  955. ClearPagePrivate(page);
  956. set_page_private(page, 0);
  957. put_page(page);
  958. }
  959. }
  960. static int btree_set_page_dirty(struct page *page)
  961. {
  962. #ifdef DEBUG
  963. struct extent_buffer *eb;
  964. BUG_ON(!PagePrivate(page));
  965. eb = (struct extent_buffer *)page->private;
  966. BUG_ON(!eb);
  967. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  968. BUG_ON(!atomic_read(&eb->refs));
  969. btrfs_assert_tree_locked(eb);
  970. #endif
  971. return __set_page_dirty_nobuffers(page);
  972. }
  973. static const struct address_space_operations btree_aops = {
  974. .readpage = btree_readpage,
  975. .writepages = btree_writepages,
  976. .releasepage = btree_releasepage,
  977. .invalidatepage = btree_invalidatepage,
  978. #ifdef CONFIG_MIGRATION
  979. .migratepage = btree_migratepage,
  980. #endif
  981. .set_page_dirty = btree_set_page_dirty,
  982. };
  983. void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
  984. {
  985. struct extent_buffer *buf = NULL;
  986. struct inode *btree_inode = root->fs_info->btree_inode;
  987. buf = btrfs_find_create_tree_block(root, bytenr);
  988. if (IS_ERR(buf))
  989. return;
  990. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  991. buf, 0, WAIT_NONE, btree_get_extent, 0);
  992. free_extent_buffer(buf);
  993. }
  994. int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
  995. int mirror_num, struct extent_buffer **eb)
  996. {
  997. struct extent_buffer *buf = NULL;
  998. struct inode *btree_inode = root->fs_info->btree_inode;
  999. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  1000. int ret;
  1001. buf = btrfs_find_create_tree_block(root, bytenr);
  1002. if (IS_ERR(buf))
  1003. return 0;
  1004. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  1005. ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
  1006. btree_get_extent, mirror_num);
  1007. if (ret) {
  1008. free_extent_buffer(buf);
  1009. return ret;
  1010. }
  1011. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  1012. free_extent_buffer(buf);
  1013. return -EIO;
  1014. } else if (extent_buffer_uptodate(buf)) {
  1015. *eb = buf;
  1016. } else {
  1017. free_extent_buffer(buf);
  1018. }
  1019. return 0;
  1020. }
  1021. struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
  1022. u64 bytenr)
  1023. {
  1024. return find_extent_buffer(fs_info, bytenr);
  1025. }
  1026. struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
  1027. u64 bytenr)
  1028. {
  1029. if (btrfs_is_testing(root->fs_info))
  1030. return alloc_test_extent_buffer(root->fs_info, bytenr,
  1031. root->nodesize);
  1032. return alloc_extent_buffer(root->fs_info, bytenr);
  1033. }
  1034. int btrfs_write_tree_block(struct extent_buffer *buf)
  1035. {
  1036. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1037. buf->start + buf->len - 1);
  1038. }
  1039. int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1040. {
  1041. return filemap_fdatawait_range(buf->pages[0]->mapping,
  1042. buf->start, buf->start + buf->len - 1);
  1043. }
  1044. struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
  1045. u64 parent_transid)
  1046. {
  1047. struct extent_buffer *buf = NULL;
  1048. int ret;
  1049. buf = btrfs_find_create_tree_block(root, bytenr);
  1050. if (IS_ERR(buf))
  1051. return buf;
  1052. ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  1053. if (ret) {
  1054. free_extent_buffer(buf);
  1055. return ERR_PTR(ret);
  1056. }
  1057. return buf;
  1058. }
  1059. void clean_tree_block(struct btrfs_trans_handle *trans,
  1060. struct btrfs_fs_info *fs_info,
  1061. struct extent_buffer *buf)
  1062. {
  1063. if (btrfs_header_generation(buf) ==
  1064. fs_info->running_transaction->transid) {
  1065. btrfs_assert_tree_locked(buf);
  1066. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1067. __percpu_counter_add(&fs_info->dirty_metadata_bytes,
  1068. -buf->len,
  1069. fs_info->dirty_metadata_batch);
  1070. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1071. btrfs_set_lock_blocking(buf);
  1072. clear_extent_buffer_dirty(buf);
  1073. }
  1074. }
  1075. }
  1076. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1077. {
  1078. struct btrfs_subvolume_writers *writers;
  1079. int ret;
  1080. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1081. if (!writers)
  1082. return ERR_PTR(-ENOMEM);
  1083. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1084. if (ret < 0) {
  1085. kfree(writers);
  1086. return ERR_PTR(ret);
  1087. }
  1088. init_waitqueue_head(&writers->wait);
  1089. return writers;
  1090. }
  1091. static void
  1092. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1093. {
  1094. percpu_counter_destroy(&writers->counter);
  1095. kfree(writers);
  1096. }
  1097. static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
  1098. struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1099. u64 objectid)
  1100. {
  1101. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1102. root->node = NULL;
  1103. root->commit_root = NULL;
  1104. root->sectorsize = sectorsize;
  1105. root->nodesize = nodesize;
  1106. root->stripesize = stripesize;
  1107. root->state = 0;
  1108. root->orphan_cleanup_state = 0;
  1109. root->objectid = objectid;
  1110. root->last_trans = 0;
  1111. root->highest_objectid = 0;
  1112. root->nr_delalloc_inodes = 0;
  1113. root->nr_ordered_extents = 0;
  1114. root->name = NULL;
  1115. root->inode_tree = RB_ROOT;
  1116. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1117. root->block_rsv = NULL;
  1118. root->orphan_block_rsv = NULL;
  1119. INIT_LIST_HEAD(&root->dirty_list);
  1120. INIT_LIST_HEAD(&root->root_list);
  1121. INIT_LIST_HEAD(&root->delalloc_inodes);
  1122. INIT_LIST_HEAD(&root->delalloc_root);
  1123. INIT_LIST_HEAD(&root->ordered_extents);
  1124. INIT_LIST_HEAD(&root->ordered_root);
  1125. INIT_LIST_HEAD(&root->logged_list[0]);
  1126. INIT_LIST_HEAD(&root->logged_list[1]);
  1127. spin_lock_init(&root->orphan_lock);
  1128. spin_lock_init(&root->inode_lock);
  1129. spin_lock_init(&root->delalloc_lock);
  1130. spin_lock_init(&root->ordered_extent_lock);
  1131. spin_lock_init(&root->accounting_lock);
  1132. spin_lock_init(&root->log_extents_lock[0]);
  1133. spin_lock_init(&root->log_extents_lock[1]);
  1134. mutex_init(&root->objectid_mutex);
  1135. mutex_init(&root->log_mutex);
  1136. mutex_init(&root->ordered_extent_mutex);
  1137. mutex_init(&root->delalloc_mutex);
  1138. init_waitqueue_head(&root->log_writer_wait);
  1139. init_waitqueue_head(&root->log_commit_wait[0]);
  1140. init_waitqueue_head(&root->log_commit_wait[1]);
  1141. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1142. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1143. atomic_set(&root->log_commit[0], 0);
  1144. atomic_set(&root->log_commit[1], 0);
  1145. atomic_set(&root->log_writers, 0);
  1146. atomic_set(&root->log_batch, 0);
  1147. atomic_set(&root->orphan_inodes, 0);
  1148. atomic_set(&root->refs, 1);
  1149. atomic_set(&root->will_be_snapshoted, 0);
  1150. atomic_set(&root->qgroup_meta_rsv, 0);
  1151. root->log_transid = 0;
  1152. root->log_transid_committed = -1;
  1153. root->last_log_commit = 0;
  1154. if (!dummy)
  1155. extent_io_tree_init(&root->dirty_log_pages,
  1156. fs_info->btree_inode->i_mapping);
  1157. memset(&root->root_key, 0, sizeof(root->root_key));
  1158. memset(&root->root_item, 0, sizeof(root->root_item));
  1159. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1160. if (!dummy)
  1161. root->defrag_trans_start = fs_info->generation;
  1162. else
  1163. root->defrag_trans_start = 0;
  1164. root->root_key.objectid = objectid;
  1165. root->anon_dev = 0;
  1166. spin_lock_init(&root->root_item_lock);
  1167. }
  1168. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1169. gfp_t flags)
  1170. {
  1171. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1172. if (root)
  1173. root->fs_info = fs_info;
  1174. return root;
  1175. }
  1176. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1177. /* Should only be used by the testing infrastructure */
  1178. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info,
  1179. u32 sectorsize, u32 nodesize)
  1180. {
  1181. struct btrfs_root *root;
  1182. if (!fs_info)
  1183. return ERR_PTR(-EINVAL);
  1184. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1185. if (!root)
  1186. return ERR_PTR(-ENOMEM);
  1187. /* We don't use the stripesize in selftest, set it as sectorsize */
  1188. __setup_root(nodesize, sectorsize, sectorsize, root, fs_info,
  1189. BTRFS_ROOT_TREE_OBJECTID);
  1190. root->alloc_bytenr = 0;
  1191. return root;
  1192. }
  1193. #endif
  1194. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1195. struct btrfs_fs_info *fs_info,
  1196. u64 objectid)
  1197. {
  1198. struct extent_buffer *leaf;
  1199. struct btrfs_root *tree_root = fs_info->tree_root;
  1200. struct btrfs_root *root;
  1201. struct btrfs_key key;
  1202. int ret = 0;
  1203. uuid_le uuid;
  1204. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1205. if (!root)
  1206. return ERR_PTR(-ENOMEM);
  1207. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1208. tree_root->stripesize, root, fs_info, objectid);
  1209. root->root_key.objectid = objectid;
  1210. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1211. root->root_key.offset = 0;
  1212. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1213. if (IS_ERR(leaf)) {
  1214. ret = PTR_ERR(leaf);
  1215. leaf = NULL;
  1216. goto fail;
  1217. }
  1218. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1219. btrfs_set_header_bytenr(leaf, leaf->start);
  1220. btrfs_set_header_generation(leaf, trans->transid);
  1221. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1222. btrfs_set_header_owner(leaf, objectid);
  1223. root->node = leaf;
  1224. write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
  1225. BTRFS_FSID_SIZE);
  1226. write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
  1227. btrfs_header_chunk_tree_uuid(leaf),
  1228. BTRFS_UUID_SIZE);
  1229. btrfs_mark_buffer_dirty(leaf);
  1230. root->commit_root = btrfs_root_node(root);
  1231. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1232. root->root_item.flags = 0;
  1233. root->root_item.byte_limit = 0;
  1234. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1235. btrfs_set_root_generation(&root->root_item, trans->transid);
  1236. btrfs_set_root_level(&root->root_item, 0);
  1237. btrfs_set_root_refs(&root->root_item, 1);
  1238. btrfs_set_root_used(&root->root_item, leaf->len);
  1239. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1240. btrfs_set_root_dirid(&root->root_item, 0);
  1241. uuid_le_gen(&uuid);
  1242. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1243. root->root_item.drop_level = 0;
  1244. key.objectid = objectid;
  1245. key.type = BTRFS_ROOT_ITEM_KEY;
  1246. key.offset = 0;
  1247. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1248. if (ret)
  1249. goto fail;
  1250. btrfs_tree_unlock(leaf);
  1251. return root;
  1252. fail:
  1253. if (leaf) {
  1254. btrfs_tree_unlock(leaf);
  1255. free_extent_buffer(root->commit_root);
  1256. free_extent_buffer(leaf);
  1257. }
  1258. kfree(root);
  1259. return ERR_PTR(ret);
  1260. }
  1261. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1262. struct btrfs_fs_info *fs_info)
  1263. {
  1264. struct btrfs_root *root;
  1265. struct btrfs_root *tree_root = fs_info->tree_root;
  1266. struct extent_buffer *leaf;
  1267. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1268. if (!root)
  1269. return ERR_PTR(-ENOMEM);
  1270. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1271. tree_root->stripesize, root, fs_info,
  1272. BTRFS_TREE_LOG_OBJECTID);
  1273. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1274. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1275. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1276. /*
  1277. * DON'T set REF_COWS for log trees
  1278. *
  1279. * log trees do not get reference counted because they go away
  1280. * before a real commit is actually done. They do store pointers
  1281. * to file data extents, and those reference counts still get
  1282. * updated (along with back refs to the log tree).
  1283. */
  1284. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1285. NULL, 0, 0, 0);
  1286. if (IS_ERR(leaf)) {
  1287. kfree(root);
  1288. return ERR_CAST(leaf);
  1289. }
  1290. memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
  1291. btrfs_set_header_bytenr(leaf, leaf->start);
  1292. btrfs_set_header_generation(leaf, trans->transid);
  1293. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1294. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1295. root->node = leaf;
  1296. write_extent_buffer(root->node, root->fs_info->fsid,
  1297. btrfs_header_fsid(), BTRFS_FSID_SIZE);
  1298. btrfs_mark_buffer_dirty(root->node);
  1299. btrfs_tree_unlock(root->node);
  1300. return root;
  1301. }
  1302. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1303. struct btrfs_fs_info *fs_info)
  1304. {
  1305. struct btrfs_root *log_root;
  1306. log_root = alloc_log_tree(trans, fs_info);
  1307. if (IS_ERR(log_root))
  1308. return PTR_ERR(log_root);
  1309. WARN_ON(fs_info->log_root_tree);
  1310. fs_info->log_root_tree = log_root;
  1311. return 0;
  1312. }
  1313. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1314. struct btrfs_root *root)
  1315. {
  1316. struct btrfs_root *log_root;
  1317. struct btrfs_inode_item *inode_item;
  1318. log_root = alloc_log_tree(trans, root->fs_info);
  1319. if (IS_ERR(log_root))
  1320. return PTR_ERR(log_root);
  1321. log_root->last_trans = trans->transid;
  1322. log_root->root_key.offset = root->root_key.objectid;
  1323. inode_item = &log_root->root_item.inode;
  1324. btrfs_set_stack_inode_generation(inode_item, 1);
  1325. btrfs_set_stack_inode_size(inode_item, 3);
  1326. btrfs_set_stack_inode_nlink(inode_item, 1);
  1327. btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
  1328. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1329. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1330. WARN_ON(root->log_root);
  1331. root->log_root = log_root;
  1332. root->log_transid = 0;
  1333. root->log_transid_committed = -1;
  1334. root->last_log_commit = 0;
  1335. return 0;
  1336. }
  1337. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1338. struct btrfs_key *key)
  1339. {
  1340. struct btrfs_root *root;
  1341. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1342. struct btrfs_path *path;
  1343. u64 generation;
  1344. int ret;
  1345. path = btrfs_alloc_path();
  1346. if (!path)
  1347. return ERR_PTR(-ENOMEM);
  1348. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1349. if (!root) {
  1350. ret = -ENOMEM;
  1351. goto alloc_fail;
  1352. }
  1353. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  1354. tree_root->stripesize, root, fs_info, key->objectid);
  1355. ret = btrfs_find_root(tree_root, key, path,
  1356. &root->root_item, &root->root_key);
  1357. if (ret) {
  1358. if (ret > 0)
  1359. ret = -ENOENT;
  1360. goto find_fail;
  1361. }
  1362. generation = btrfs_root_generation(&root->root_item);
  1363. root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
  1364. generation);
  1365. if (IS_ERR(root->node)) {
  1366. ret = PTR_ERR(root->node);
  1367. goto find_fail;
  1368. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1369. ret = -EIO;
  1370. free_extent_buffer(root->node);
  1371. goto find_fail;
  1372. }
  1373. root->commit_root = btrfs_root_node(root);
  1374. out:
  1375. btrfs_free_path(path);
  1376. return root;
  1377. find_fail:
  1378. kfree(root);
  1379. alloc_fail:
  1380. root = ERR_PTR(ret);
  1381. goto out;
  1382. }
  1383. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1384. struct btrfs_key *location)
  1385. {
  1386. struct btrfs_root *root;
  1387. root = btrfs_read_tree_root(tree_root, location);
  1388. if (IS_ERR(root))
  1389. return root;
  1390. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1391. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1392. btrfs_check_and_init_root_item(&root->root_item);
  1393. }
  1394. return root;
  1395. }
  1396. int btrfs_init_fs_root(struct btrfs_root *root)
  1397. {
  1398. int ret;
  1399. struct btrfs_subvolume_writers *writers;
  1400. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1401. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1402. GFP_NOFS);
  1403. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1404. ret = -ENOMEM;
  1405. goto fail;
  1406. }
  1407. writers = btrfs_alloc_subvolume_writers();
  1408. if (IS_ERR(writers)) {
  1409. ret = PTR_ERR(writers);
  1410. goto fail;
  1411. }
  1412. root->subv_writers = writers;
  1413. btrfs_init_free_ino_ctl(root);
  1414. spin_lock_init(&root->ino_cache_lock);
  1415. init_waitqueue_head(&root->ino_cache_wait);
  1416. ret = get_anon_bdev(&root->anon_dev);
  1417. if (ret)
  1418. goto fail;
  1419. mutex_lock(&root->objectid_mutex);
  1420. ret = btrfs_find_highest_objectid(root,
  1421. &root->highest_objectid);
  1422. if (ret) {
  1423. mutex_unlock(&root->objectid_mutex);
  1424. goto fail;
  1425. }
  1426. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1427. mutex_unlock(&root->objectid_mutex);
  1428. return 0;
  1429. fail:
  1430. /* the caller is responsible to call free_fs_root */
  1431. return ret;
  1432. }
  1433. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1434. u64 root_id)
  1435. {
  1436. struct btrfs_root *root;
  1437. spin_lock(&fs_info->fs_roots_radix_lock);
  1438. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1439. (unsigned long)root_id);
  1440. spin_unlock(&fs_info->fs_roots_radix_lock);
  1441. return root;
  1442. }
  1443. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1444. struct btrfs_root *root)
  1445. {
  1446. int ret;
  1447. ret = radix_tree_preload(GFP_NOFS);
  1448. if (ret)
  1449. return ret;
  1450. spin_lock(&fs_info->fs_roots_radix_lock);
  1451. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1452. (unsigned long)root->root_key.objectid,
  1453. root);
  1454. if (ret == 0)
  1455. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1456. spin_unlock(&fs_info->fs_roots_radix_lock);
  1457. radix_tree_preload_end();
  1458. return ret;
  1459. }
  1460. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1461. struct btrfs_key *location,
  1462. bool check_ref)
  1463. {
  1464. struct btrfs_root *root;
  1465. struct btrfs_path *path;
  1466. struct btrfs_key key;
  1467. int ret;
  1468. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1469. return fs_info->tree_root;
  1470. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1471. return fs_info->extent_root;
  1472. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1473. return fs_info->chunk_root;
  1474. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1475. return fs_info->dev_root;
  1476. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1477. return fs_info->csum_root;
  1478. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1479. return fs_info->quota_root ? fs_info->quota_root :
  1480. ERR_PTR(-ENOENT);
  1481. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1482. return fs_info->uuid_root ? fs_info->uuid_root :
  1483. ERR_PTR(-ENOENT);
  1484. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1485. return fs_info->free_space_root ? fs_info->free_space_root :
  1486. ERR_PTR(-ENOENT);
  1487. again:
  1488. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1489. if (root) {
  1490. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1491. return ERR_PTR(-ENOENT);
  1492. return root;
  1493. }
  1494. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1495. if (IS_ERR(root))
  1496. return root;
  1497. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1498. ret = -ENOENT;
  1499. goto fail;
  1500. }
  1501. ret = btrfs_init_fs_root(root);
  1502. if (ret)
  1503. goto fail;
  1504. path = btrfs_alloc_path();
  1505. if (!path) {
  1506. ret = -ENOMEM;
  1507. goto fail;
  1508. }
  1509. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1510. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1511. key.offset = location->objectid;
  1512. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1513. btrfs_free_path(path);
  1514. if (ret < 0)
  1515. goto fail;
  1516. if (ret == 0)
  1517. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1518. ret = btrfs_insert_fs_root(fs_info, root);
  1519. if (ret) {
  1520. if (ret == -EEXIST) {
  1521. free_fs_root(root);
  1522. goto again;
  1523. }
  1524. goto fail;
  1525. }
  1526. return root;
  1527. fail:
  1528. free_fs_root(root);
  1529. return ERR_PTR(ret);
  1530. }
  1531. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1532. {
  1533. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1534. int ret = 0;
  1535. struct btrfs_device *device;
  1536. struct backing_dev_info *bdi;
  1537. rcu_read_lock();
  1538. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1539. if (!device->bdev)
  1540. continue;
  1541. bdi = blk_get_backing_dev_info(device->bdev);
  1542. if (bdi_congested(bdi, bdi_bits)) {
  1543. ret = 1;
  1544. break;
  1545. }
  1546. }
  1547. rcu_read_unlock();
  1548. return ret;
  1549. }
  1550. static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
  1551. {
  1552. int err;
  1553. err = bdi_setup_and_register(bdi, "btrfs");
  1554. if (err)
  1555. return err;
  1556. bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  1557. bdi->congested_fn = btrfs_congested_fn;
  1558. bdi->congested_data = info;
  1559. bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  1560. return 0;
  1561. }
  1562. /*
  1563. * called by the kthread helper functions to finally call the bio end_io
  1564. * functions. This is where read checksum verification actually happens
  1565. */
  1566. static void end_workqueue_fn(struct btrfs_work *work)
  1567. {
  1568. struct bio *bio;
  1569. struct btrfs_end_io_wq *end_io_wq;
  1570. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1571. bio = end_io_wq->bio;
  1572. bio->bi_error = end_io_wq->error;
  1573. bio->bi_private = end_io_wq->private;
  1574. bio->bi_end_io = end_io_wq->end_io;
  1575. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1576. bio_endio(bio);
  1577. }
  1578. static int cleaner_kthread(void *arg)
  1579. {
  1580. struct btrfs_root *root = arg;
  1581. int again;
  1582. struct btrfs_trans_handle *trans;
  1583. do {
  1584. again = 0;
  1585. /* Make the cleaner go to sleep early. */
  1586. if (btrfs_need_cleaner_sleep(root))
  1587. goto sleep;
  1588. /*
  1589. * Do not do anything if we might cause open_ctree() to block
  1590. * before we have finished mounting the filesystem.
  1591. */
  1592. if (!test_bit(BTRFS_FS_OPEN, &root->fs_info->flags))
  1593. goto sleep;
  1594. if (!mutex_trylock(&root->fs_info->cleaner_mutex))
  1595. goto sleep;
  1596. /*
  1597. * Avoid the problem that we change the status of the fs
  1598. * during the above check and trylock.
  1599. */
  1600. if (btrfs_need_cleaner_sleep(root)) {
  1601. mutex_unlock(&root->fs_info->cleaner_mutex);
  1602. goto sleep;
  1603. }
  1604. mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
  1605. btrfs_run_delayed_iputs(root);
  1606. mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
  1607. again = btrfs_clean_one_deleted_snapshot(root);
  1608. mutex_unlock(&root->fs_info->cleaner_mutex);
  1609. /*
  1610. * The defragger has dealt with the R/O remount and umount,
  1611. * needn't do anything special here.
  1612. */
  1613. btrfs_run_defrag_inodes(root->fs_info);
  1614. /*
  1615. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1616. * with relocation (btrfs_relocate_chunk) and relocation
  1617. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1618. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1619. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1620. * unused block groups.
  1621. */
  1622. btrfs_delete_unused_bgs(root->fs_info);
  1623. sleep:
  1624. if (!again) {
  1625. set_current_state(TASK_INTERRUPTIBLE);
  1626. if (!kthread_should_stop())
  1627. schedule();
  1628. __set_current_state(TASK_RUNNING);
  1629. }
  1630. } while (!kthread_should_stop());
  1631. /*
  1632. * Transaction kthread is stopped before us and wakes us up.
  1633. * However we might have started a new transaction and COWed some
  1634. * tree blocks when deleting unused block groups for example. So
  1635. * make sure we commit the transaction we started to have a clean
  1636. * shutdown when evicting the btree inode - if it has dirty pages
  1637. * when we do the final iput() on it, eviction will trigger a
  1638. * writeback for it which will fail with null pointer dereferences
  1639. * since work queues and other resources were already released and
  1640. * destroyed by the time the iput/eviction/writeback is made.
  1641. */
  1642. trans = btrfs_attach_transaction(root);
  1643. if (IS_ERR(trans)) {
  1644. if (PTR_ERR(trans) != -ENOENT)
  1645. btrfs_err(root->fs_info,
  1646. "cleaner transaction attach returned %ld",
  1647. PTR_ERR(trans));
  1648. } else {
  1649. int ret;
  1650. ret = btrfs_commit_transaction(trans, root);
  1651. if (ret)
  1652. btrfs_err(root->fs_info,
  1653. "cleaner open transaction commit returned %d",
  1654. ret);
  1655. }
  1656. return 0;
  1657. }
  1658. static int transaction_kthread(void *arg)
  1659. {
  1660. struct btrfs_root *root = arg;
  1661. struct btrfs_trans_handle *trans;
  1662. struct btrfs_transaction *cur;
  1663. u64 transid;
  1664. unsigned long now;
  1665. unsigned long delay;
  1666. bool cannot_commit;
  1667. do {
  1668. cannot_commit = false;
  1669. delay = HZ * root->fs_info->commit_interval;
  1670. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  1671. spin_lock(&root->fs_info->trans_lock);
  1672. cur = root->fs_info->running_transaction;
  1673. if (!cur) {
  1674. spin_unlock(&root->fs_info->trans_lock);
  1675. goto sleep;
  1676. }
  1677. now = get_seconds();
  1678. if (cur->state < TRANS_STATE_BLOCKED &&
  1679. (now < cur->start_time ||
  1680. now - cur->start_time < root->fs_info->commit_interval)) {
  1681. spin_unlock(&root->fs_info->trans_lock);
  1682. delay = HZ * 5;
  1683. goto sleep;
  1684. }
  1685. transid = cur->transid;
  1686. spin_unlock(&root->fs_info->trans_lock);
  1687. /* If the file system is aborted, this will always fail. */
  1688. trans = btrfs_attach_transaction(root);
  1689. if (IS_ERR(trans)) {
  1690. if (PTR_ERR(trans) != -ENOENT)
  1691. cannot_commit = true;
  1692. goto sleep;
  1693. }
  1694. if (transid == trans->transid) {
  1695. btrfs_commit_transaction(trans, root);
  1696. } else {
  1697. btrfs_end_transaction(trans, root);
  1698. }
  1699. sleep:
  1700. wake_up_process(root->fs_info->cleaner_kthread);
  1701. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  1702. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1703. &root->fs_info->fs_state)))
  1704. btrfs_cleanup_transaction(root);
  1705. set_current_state(TASK_INTERRUPTIBLE);
  1706. if (!kthread_should_stop() &&
  1707. (!btrfs_transaction_blocked(root->fs_info) ||
  1708. cannot_commit))
  1709. schedule_timeout(delay);
  1710. __set_current_state(TASK_RUNNING);
  1711. } while (!kthread_should_stop());
  1712. return 0;
  1713. }
  1714. /*
  1715. * this will find the highest generation in the array of
  1716. * root backups. The index of the highest array is returned,
  1717. * or -1 if we can't find anything.
  1718. *
  1719. * We check to make sure the array is valid by comparing the
  1720. * generation of the latest root in the array with the generation
  1721. * in the super block. If they don't match we pitch it.
  1722. */
  1723. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1724. {
  1725. u64 cur;
  1726. int newest_index = -1;
  1727. struct btrfs_root_backup *root_backup;
  1728. int i;
  1729. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1730. root_backup = info->super_copy->super_roots + i;
  1731. cur = btrfs_backup_tree_root_gen(root_backup);
  1732. if (cur == newest_gen)
  1733. newest_index = i;
  1734. }
  1735. /* check to see if we actually wrapped around */
  1736. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1737. root_backup = info->super_copy->super_roots;
  1738. cur = btrfs_backup_tree_root_gen(root_backup);
  1739. if (cur == newest_gen)
  1740. newest_index = 0;
  1741. }
  1742. return newest_index;
  1743. }
  1744. /*
  1745. * find the oldest backup so we know where to store new entries
  1746. * in the backup array. This will set the backup_root_index
  1747. * field in the fs_info struct
  1748. */
  1749. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1750. u64 newest_gen)
  1751. {
  1752. int newest_index = -1;
  1753. newest_index = find_newest_super_backup(info, newest_gen);
  1754. /* if there was garbage in there, just move along */
  1755. if (newest_index == -1) {
  1756. info->backup_root_index = 0;
  1757. } else {
  1758. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1759. }
  1760. }
  1761. /*
  1762. * copy all the root pointers into the super backup array.
  1763. * this will bump the backup pointer by one when it is
  1764. * done
  1765. */
  1766. static void backup_super_roots(struct btrfs_fs_info *info)
  1767. {
  1768. int next_backup;
  1769. struct btrfs_root_backup *root_backup;
  1770. int last_backup;
  1771. next_backup = info->backup_root_index;
  1772. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1773. BTRFS_NUM_BACKUP_ROOTS;
  1774. /*
  1775. * just overwrite the last backup if we're at the same generation
  1776. * this happens only at umount
  1777. */
  1778. root_backup = info->super_for_commit->super_roots + last_backup;
  1779. if (btrfs_backup_tree_root_gen(root_backup) ==
  1780. btrfs_header_generation(info->tree_root->node))
  1781. next_backup = last_backup;
  1782. root_backup = info->super_for_commit->super_roots + next_backup;
  1783. /*
  1784. * make sure all of our padding and empty slots get zero filled
  1785. * regardless of which ones we use today
  1786. */
  1787. memset(root_backup, 0, sizeof(*root_backup));
  1788. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1789. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1790. btrfs_set_backup_tree_root_gen(root_backup,
  1791. btrfs_header_generation(info->tree_root->node));
  1792. btrfs_set_backup_tree_root_level(root_backup,
  1793. btrfs_header_level(info->tree_root->node));
  1794. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1795. btrfs_set_backup_chunk_root_gen(root_backup,
  1796. btrfs_header_generation(info->chunk_root->node));
  1797. btrfs_set_backup_chunk_root_level(root_backup,
  1798. btrfs_header_level(info->chunk_root->node));
  1799. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1800. btrfs_set_backup_extent_root_gen(root_backup,
  1801. btrfs_header_generation(info->extent_root->node));
  1802. btrfs_set_backup_extent_root_level(root_backup,
  1803. btrfs_header_level(info->extent_root->node));
  1804. /*
  1805. * we might commit during log recovery, which happens before we set
  1806. * the fs_root. Make sure it is valid before we fill it in.
  1807. */
  1808. if (info->fs_root && info->fs_root->node) {
  1809. btrfs_set_backup_fs_root(root_backup,
  1810. info->fs_root->node->start);
  1811. btrfs_set_backup_fs_root_gen(root_backup,
  1812. btrfs_header_generation(info->fs_root->node));
  1813. btrfs_set_backup_fs_root_level(root_backup,
  1814. btrfs_header_level(info->fs_root->node));
  1815. }
  1816. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1817. btrfs_set_backup_dev_root_gen(root_backup,
  1818. btrfs_header_generation(info->dev_root->node));
  1819. btrfs_set_backup_dev_root_level(root_backup,
  1820. btrfs_header_level(info->dev_root->node));
  1821. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1822. btrfs_set_backup_csum_root_gen(root_backup,
  1823. btrfs_header_generation(info->csum_root->node));
  1824. btrfs_set_backup_csum_root_level(root_backup,
  1825. btrfs_header_level(info->csum_root->node));
  1826. btrfs_set_backup_total_bytes(root_backup,
  1827. btrfs_super_total_bytes(info->super_copy));
  1828. btrfs_set_backup_bytes_used(root_backup,
  1829. btrfs_super_bytes_used(info->super_copy));
  1830. btrfs_set_backup_num_devices(root_backup,
  1831. btrfs_super_num_devices(info->super_copy));
  1832. /*
  1833. * if we don't copy this out to the super_copy, it won't get remembered
  1834. * for the next commit
  1835. */
  1836. memcpy(&info->super_copy->super_roots,
  1837. &info->super_for_commit->super_roots,
  1838. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1839. }
  1840. /*
  1841. * this copies info out of the root backup array and back into
  1842. * the in-memory super block. It is meant to help iterate through
  1843. * the array, so you send it the number of backups you've already
  1844. * tried and the last backup index you used.
  1845. *
  1846. * this returns -1 when it has tried all the backups
  1847. */
  1848. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1849. struct btrfs_super_block *super,
  1850. int *num_backups_tried, int *backup_index)
  1851. {
  1852. struct btrfs_root_backup *root_backup;
  1853. int newest = *backup_index;
  1854. if (*num_backups_tried == 0) {
  1855. u64 gen = btrfs_super_generation(super);
  1856. newest = find_newest_super_backup(info, gen);
  1857. if (newest == -1)
  1858. return -1;
  1859. *backup_index = newest;
  1860. *num_backups_tried = 1;
  1861. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1862. /* we've tried all the backups, all done */
  1863. return -1;
  1864. } else {
  1865. /* jump to the next oldest backup */
  1866. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1867. BTRFS_NUM_BACKUP_ROOTS;
  1868. *backup_index = newest;
  1869. *num_backups_tried += 1;
  1870. }
  1871. root_backup = super->super_roots + newest;
  1872. btrfs_set_super_generation(super,
  1873. btrfs_backup_tree_root_gen(root_backup));
  1874. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1875. btrfs_set_super_root_level(super,
  1876. btrfs_backup_tree_root_level(root_backup));
  1877. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1878. /*
  1879. * fixme: the total bytes and num_devices need to match or we should
  1880. * need a fsck
  1881. */
  1882. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1883. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1884. return 0;
  1885. }
  1886. /* helper to cleanup workers */
  1887. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1888. {
  1889. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1890. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1891. btrfs_destroy_workqueue(fs_info->workers);
  1892. btrfs_destroy_workqueue(fs_info->endio_workers);
  1893. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1894. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1895. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1896. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1897. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1898. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1899. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1900. btrfs_destroy_workqueue(fs_info->submit_workers);
  1901. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1902. btrfs_destroy_workqueue(fs_info->caching_workers);
  1903. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1904. btrfs_destroy_workqueue(fs_info->flush_workers);
  1905. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1906. btrfs_destroy_workqueue(fs_info->extent_workers);
  1907. }
  1908. static void free_root_extent_buffers(struct btrfs_root *root)
  1909. {
  1910. if (root) {
  1911. free_extent_buffer(root->node);
  1912. free_extent_buffer(root->commit_root);
  1913. root->node = NULL;
  1914. root->commit_root = NULL;
  1915. }
  1916. }
  1917. /* helper to cleanup tree roots */
  1918. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1919. {
  1920. free_root_extent_buffers(info->tree_root);
  1921. free_root_extent_buffers(info->dev_root);
  1922. free_root_extent_buffers(info->extent_root);
  1923. free_root_extent_buffers(info->csum_root);
  1924. free_root_extent_buffers(info->quota_root);
  1925. free_root_extent_buffers(info->uuid_root);
  1926. if (chunk_root)
  1927. free_root_extent_buffers(info->chunk_root);
  1928. free_root_extent_buffers(info->free_space_root);
  1929. }
  1930. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1931. {
  1932. int ret;
  1933. struct btrfs_root *gang[8];
  1934. int i;
  1935. while (!list_empty(&fs_info->dead_roots)) {
  1936. gang[0] = list_entry(fs_info->dead_roots.next,
  1937. struct btrfs_root, root_list);
  1938. list_del(&gang[0]->root_list);
  1939. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1940. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1941. } else {
  1942. free_extent_buffer(gang[0]->node);
  1943. free_extent_buffer(gang[0]->commit_root);
  1944. btrfs_put_fs_root(gang[0]);
  1945. }
  1946. }
  1947. while (1) {
  1948. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1949. (void **)gang, 0,
  1950. ARRAY_SIZE(gang));
  1951. if (!ret)
  1952. break;
  1953. for (i = 0; i < ret; i++)
  1954. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1955. }
  1956. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1957. btrfs_free_log_root_tree(NULL, fs_info);
  1958. btrfs_destroy_pinned_extent(fs_info->tree_root,
  1959. fs_info->pinned_extents);
  1960. }
  1961. }
  1962. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1963. {
  1964. mutex_init(&fs_info->scrub_lock);
  1965. atomic_set(&fs_info->scrubs_running, 0);
  1966. atomic_set(&fs_info->scrub_pause_req, 0);
  1967. atomic_set(&fs_info->scrubs_paused, 0);
  1968. atomic_set(&fs_info->scrub_cancel_req, 0);
  1969. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1970. fs_info->scrub_workers_refcnt = 0;
  1971. }
  1972. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1973. {
  1974. spin_lock_init(&fs_info->balance_lock);
  1975. mutex_init(&fs_info->balance_mutex);
  1976. atomic_set(&fs_info->balance_running, 0);
  1977. atomic_set(&fs_info->balance_pause_req, 0);
  1978. atomic_set(&fs_info->balance_cancel_req, 0);
  1979. fs_info->balance_ctl = NULL;
  1980. init_waitqueue_head(&fs_info->balance_wait_q);
  1981. }
  1982. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
  1983. struct btrfs_root *tree_root)
  1984. {
  1985. fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1986. set_nlink(fs_info->btree_inode, 1);
  1987. /*
  1988. * we set the i_size on the btree inode to the max possible int.
  1989. * the real end of the address space is determined by all of
  1990. * the devices in the system
  1991. */
  1992. fs_info->btree_inode->i_size = OFFSET_MAX;
  1993. fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
  1994. RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
  1995. extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
  1996. fs_info->btree_inode->i_mapping);
  1997. BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
  1998. extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
  1999. BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
  2000. BTRFS_I(fs_info->btree_inode)->root = tree_root;
  2001. memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
  2002. sizeof(struct btrfs_key));
  2003. set_bit(BTRFS_INODE_DUMMY,
  2004. &BTRFS_I(fs_info->btree_inode)->runtime_flags);
  2005. btrfs_insert_inode_hash(fs_info->btree_inode);
  2006. }
  2007. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  2008. {
  2009. fs_info->dev_replace.lock_owner = 0;
  2010. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2011. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2012. rwlock_init(&fs_info->dev_replace.lock);
  2013. atomic_set(&fs_info->dev_replace.read_locks, 0);
  2014. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  2015. init_waitqueue_head(&fs_info->replace_wait);
  2016. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  2017. }
  2018. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  2019. {
  2020. spin_lock_init(&fs_info->qgroup_lock);
  2021. mutex_init(&fs_info->qgroup_ioctl_lock);
  2022. fs_info->qgroup_tree = RB_ROOT;
  2023. fs_info->qgroup_op_tree = RB_ROOT;
  2024. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2025. fs_info->qgroup_seq = 1;
  2026. fs_info->qgroup_ulist = NULL;
  2027. fs_info->qgroup_rescan_running = false;
  2028. mutex_init(&fs_info->qgroup_rescan_lock);
  2029. }
  2030. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2031. struct btrfs_fs_devices *fs_devices)
  2032. {
  2033. int max_active = fs_info->thread_pool_size;
  2034. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2035. fs_info->workers =
  2036. btrfs_alloc_workqueue(fs_info, "worker",
  2037. flags | WQ_HIGHPRI, max_active, 16);
  2038. fs_info->delalloc_workers =
  2039. btrfs_alloc_workqueue(fs_info, "delalloc",
  2040. flags, max_active, 2);
  2041. fs_info->flush_workers =
  2042. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2043. flags, max_active, 0);
  2044. fs_info->caching_workers =
  2045. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2046. /*
  2047. * a higher idle thresh on the submit workers makes it much more
  2048. * likely that bios will be send down in a sane order to the
  2049. * devices
  2050. */
  2051. fs_info->submit_workers =
  2052. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2053. min_t(u64, fs_devices->num_devices,
  2054. max_active), 64);
  2055. fs_info->fixup_workers =
  2056. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2057. /*
  2058. * endios are largely parallel and should have a very
  2059. * low idle thresh
  2060. */
  2061. fs_info->endio_workers =
  2062. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2063. fs_info->endio_meta_workers =
  2064. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2065. max_active, 4);
  2066. fs_info->endio_meta_write_workers =
  2067. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2068. max_active, 2);
  2069. fs_info->endio_raid56_workers =
  2070. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2071. max_active, 4);
  2072. fs_info->endio_repair_workers =
  2073. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2074. fs_info->rmw_workers =
  2075. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2076. fs_info->endio_write_workers =
  2077. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2078. max_active, 2);
  2079. fs_info->endio_freespace_worker =
  2080. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2081. max_active, 0);
  2082. fs_info->delayed_workers =
  2083. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2084. max_active, 0);
  2085. fs_info->readahead_workers =
  2086. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2087. max_active, 2);
  2088. fs_info->qgroup_rescan_workers =
  2089. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2090. fs_info->extent_workers =
  2091. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2092. min_t(u64, fs_devices->num_devices,
  2093. max_active), 8);
  2094. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2095. fs_info->submit_workers && fs_info->flush_workers &&
  2096. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2097. fs_info->endio_meta_write_workers &&
  2098. fs_info->endio_repair_workers &&
  2099. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2100. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2101. fs_info->caching_workers && fs_info->readahead_workers &&
  2102. fs_info->fixup_workers && fs_info->delayed_workers &&
  2103. fs_info->extent_workers &&
  2104. fs_info->qgroup_rescan_workers)) {
  2105. return -ENOMEM;
  2106. }
  2107. return 0;
  2108. }
  2109. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2110. struct btrfs_fs_devices *fs_devices)
  2111. {
  2112. int ret;
  2113. struct btrfs_root *tree_root = fs_info->tree_root;
  2114. struct btrfs_root *log_tree_root;
  2115. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2116. u64 bytenr = btrfs_super_log_root(disk_super);
  2117. if (fs_devices->rw_devices == 0) {
  2118. btrfs_warn(fs_info, "log replay required on RO media");
  2119. return -EIO;
  2120. }
  2121. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2122. if (!log_tree_root)
  2123. return -ENOMEM;
  2124. __setup_root(tree_root->nodesize, tree_root->sectorsize,
  2125. tree_root->stripesize, log_tree_root, fs_info,
  2126. BTRFS_TREE_LOG_OBJECTID);
  2127. log_tree_root->node = read_tree_block(tree_root, bytenr,
  2128. fs_info->generation + 1);
  2129. if (IS_ERR(log_tree_root->node)) {
  2130. btrfs_warn(fs_info, "failed to read log tree");
  2131. ret = PTR_ERR(log_tree_root->node);
  2132. kfree(log_tree_root);
  2133. return ret;
  2134. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2135. btrfs_err(fs_info, "failed to read log tree");
  2136. free_extent_buffer(log_tree_root->node);
  2137. kfree(log_tree_root);
  2138. return -EIO;
  2139. }
  2140. /* returns with log_tree_root freed on success */
  2141. ret = btrfs_recover_log_trees(log_tree_root);
  2142. if (ret) {
  2143. btrfs_handle_fs_error(tree_root->fs_info, ret,
  2144. "Failed to recover log tree");
  2145. free_extent_buffer(log_tree_root->node);
  2146. kfree(log_tree_root);
  2147. return ret;
  2148. }
  2149. if (fs_info->sb->s_flags & MS_RDONLY) {
  2150. ret = btrfs_commit_super(tree_root);
  2151. if (ret)
  2152. return ret;
  2153. }
  2154. return 0;
  2155. }
  2156. static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
  2157. struct btrfs_root *tree_root)
  2158. {
  2159. struct btrfs_root *root;
  2160. struct btrfs_key location;
  2161. int ret;
  2162. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2163. location.type = BTRFS_ROOT_ITEM_KEY;
  2164. location.offset = 0;
  2165. root = btrfs_read_tree_root(tree_root, &location);
  2166. if (IS_ERR(root))
  2167. return PTR_ERR(root);
  2168. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2169. fs_info->extent_root = root;
  2170. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2171. root = btrfs_read_tree_root(tree_root, &location);
  2172. if (IS_ERR(root))
  2173. return PTR_ERR(root);
  2174. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2175. fs_info->dev_root = root;
  2176. btrfs_init_devices_late(fs_info);
  2177. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2178. root = btrfs_read_tree_root(tree_root, &location);
  2179. if (IS_ERR(root))
  2180. return PTR_ERR(root);
  2181. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2182. fs_info->csum_root = root;
  2183. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2184. root = btrfs_read_tree_root(tree_root, &location);
  2185. if (!IS_ERR(root)) {
  2186. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2187. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2188. fs_info->quota_root = root;
  2189. }
  2190. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2191. root = btrfs_read_tree_root(tree_root, &location);
  2192. if (IS_ERR(root)) {
  2193. ret = PTR_ERR(root);
  2194. if (ret != -ENOENT)
  2195. return ret;
  2196. } else {
  2197. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2198. fs_info->uuid_root = root;
  2199. }
  2200. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2201. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2202. root = btrfs_read_tree_root(tree_root, &location);
  2203. if (IS_ERR(root))
  2204. return PTR_ERR(root);
  2205. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2206. fs_info->free_space_root = root;
  2207. }
  2208. return 0;
  2209. }
  2210. int open_ctree(struct super_block *sb,
  2211. struct btrfs_fs_devices *fs_devices,
  2212. char *options)
  2213. {
  2214. u32 sectorsize;
  2215. u32 nodesize;
  2216. u32 stripesize;
  2217. u64 generation;
  2218. u64 features;
  2219. struct btrfs_key location;
  2220. struct buffer_head *bh;
  2221. struct btrfs_super_block *disk_super;
  2222. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2223. struct btrfs_root *tree_root;
  2224. struct btrfs_root *chunk_root;
  2225. int ret;
  2226. int err = -EINVAL;
  2227. int num_backups_tried = 0;
  2228. int backup_index = 0;
  2229. int max_active;
  2230. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2231. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2232. if (!tree_root || !chunk_root) {
  2233. err = -ENOMEM;
  2234. goto fail;
  2235. }
  2236. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2237. if (ret) {
  2238. err = ret;
  2239. goto fail;
  2240. }
  2241. ret = setup_bdi(fs_info, &fs_info->bdi);
  2242. if (ret) {
  2243. err = ret;
  2244. goto fail_srcu;
  2245. }
  2246. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2247. if (ret) {
  2248. err = ret;
  2249. goto fail_bdi;
  2250. }
  2251. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2252. (1 + ilog2(nr_cpu_ids));
  2253. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2254. if (ret) {
  2255. err = ret;
  2256. goto fail_dirty_metadata_bytes;
  2257. }
  2258. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2259. if (ret) {
  2260. err = ret;
  2261. goto fail_delalloc_bytes;
  2262. }
  2263. fs_info->btree_inode = new_inode(sb);
  2264. if (!fs_info->btree_inode) {
  2265. err = -ENOMEM;
  2266. goto fail_bio_counter;
  2267. }
  2268. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2269. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2270. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2271. INIT_LIST_HEAD(&fs_info->trans_list);
  2272. INIT_LIST_HEAD(&fs_info->dead_roots);
  2273. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2274. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2275. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2276. spin_lock_init(&fs_info->delalloc_root_lock);
  2277. spin_lock_init(&fs_info->trans_lock);
  2278. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2279. spin_lock_init(&fs_info->delayed_iput_lock);
  2280. spin_lock_init(&fs_info->defrag_inodes_lock);
  2281. spin_lock_init(&fs_info->free_chunk_lock);
  2282. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2283. spin_lock_init(&fs_info->super_lock);
  2284. spin_lock_init(&fs_info->qgroup_op_lock);
  2285. spin_lock_init(&fs_info->buffer_lock);
  2286. spin_lock_init(&fs_info->unused_bgs_lock);
  2287. rwlock_init(&fs_info->tree_mod_log_lock);
  2288. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2289. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2290. mutex_init(&fs_info->reloc_mutex);
  2291. mutex_init(&fs_info->delalloc_root_mutex);
  2292. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2293. seqlock_init(&fs_info->profiles_lock);
  2294. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2295. INIT_LIST_HEAD(&fs_info->space_info);
  2296. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2297. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2298. btrfs_mapping_init(&fs_info->mapping_tree);
  2299. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2300. BTRFS_BLOCK_RSV_GLOBAL);
  2301. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2302. BTRFS_BLOCK_RSV_DELALLOC);
  2303. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2304. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2305. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2306. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2307. BTRFS_BLOCK_RSV_DELOPS);
  2308. atomic_set(&fs_info->nr_async_submits, 0);
  2309. atomic_set(&fs_info->async_delalloc_pages, 0);
  2310. atomic_set(&fs_info->async_submit_draining, 0);
  2311. atomic_set(&fs_info->nr_async_bios, 0);
  2312. atomic_set(&fs_info->defrag_running, 0);
  2313. atomic_set(&fs_info->qgroup_op_seq, 0);
  2314. atomic_set(&fs_info->reada_works_cnt, 0);
  2315. atomic64_set(&fs_info->tree_mod_seq, 0);
  2316. fs_info->fs_frozen = 0;
  2317. fs_info->sb = sb;
  2318. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2319. fs_info->metadata_ratio = 0;
  2320. fs_info->defrag_inodes = RB_ROOT;
  2321. fs_info->free_chunk_space = 0;
  2322. fs_info->tree_mod_log = RB_ROOT;
  2323. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2324. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2325. /* readahead state */
  2326. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2327. spin_lock_init(&fs_info->reada_lock);
  2328. fs_info->thread_pool_size = min_t(unsigned long,
  2329. num_online_cpus() + 2, 8);
  2330. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2331. spin_lock_init(&fs_info->ordered_root_lock);
  2332. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2333. GFP_KERNEL);
  2334. if (!fs_info->delayed_root) {
  2335. err = -ENOMEM;
  2336. goto fail_iput;
  2337. }
  2338. btrfs_init_delayed_root(fs_info->delayed_root);
  2339. btrfs_init_scrub(fs_info);
  2340. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2341. fs_info->check_integrity_print_mask = 0;
  2342. #endif
  2343. btrfs_init_balance(fs_info);
  2344. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2345. sb->s_blocksize = 4096;
  2346. sb->s_blocksize_bits = blksize_bits(4096);
  2347. sb->s_bdi = &fs_info->bdi;
  2348. btrfs_init_btree_inode(fs_info, tree_root);
  2349. spin_lock_init(&fs_info->block_group_cache_lock);
  2350. fs_info->block_group_cache_tree = RB_ROOT;
  2351. fs_info->first_logical_byte = (u64)-1;
  2352. extent_io_tree_init(&fs_info->freed_extents[0],
  2353. fs_info->btree_inode->i_mapping);
  2354. extent_io_tree_init(&fs_info->freed_extents[1],
  2355. fs_info->btree_inode->i_mapping);
  2356. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2357. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2358. mutex_init(&fs_info->ordered_operations_mutex);
  2359. mutex_init(&fs_info->tree_log_mutex);
  2360. mutex_init(&fs_info->chunk_mutex);
  2361. mutex_init(&fs_info->transaction_kthread_mutex);
  2362. mutex_init(&fs_info->cleaner_mutex);
  2363. mutex_init(&fs_info->volume_mutex);
  2364. mutex_init(&fs_info->ro_block_group_mutex);
  2365. init_rwsem(&fs_info->commit_root_sem);
  2366. init_rwsem(&fs_info->cleanup_work_sem);
  2367. init_rwsem(&fs_info->subvol_sem);
  2368. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2369. btrfs_init_dev_replace_locks(fs_info);
  2370. btrfs_init_qgroup(fs_info);
  2371. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2372. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2373. init_waitqueue_head(&fs_info->transaction_throttle);
  2374. init_waitqueue_head(&fs_info->transaction_wait);
  2375. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2376. init_waitqueue_head(&fs_info->async_submit_wait);
  2377. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2378. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2379. if (ret) {
  2380. err = ret;
  2381. goto fail_alloc;
  2382. }
  2383. __setup_root(4096, 4096, 4096, tree_root,
  2384. fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2385. invalidate_bdev(fs_devices->latest_bdev);
  2386. /*
  2387. * Read super block and check the signature bytes only
  2388. */
  2389. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2390. if (IS_ERR(bh)) {
  2391. err = PTR_ERR(bh);
  2392. goto fail_alloc;
  2393. }
  2394. /*
  2395. * We want to check superblock checksum, the type is stored inside.
  2396. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2397. */
  2398. if (btrfs_check_super_csum(bh->b_data)) {
  2399. btrfs_err(fs_info, "superblock checksum mismatch");
  2400. err = -EINVAL;
  2401. brelse(bh);
  2402. goto fail_alloc;
  2403. }
  2404. /*
  2405. * super_copy is zeroed at allocation time and we never touch the
  2406. * following bytes up to INFO_SIZE, the checksum is calculated from
  2407. * the whole block of INFO_SIZE
  2408. */
  2409. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2410. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2411. sizeof(*fs_info->super_for_commit));
  2412. brelse(bh);
  2413. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2414. ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
  2415. if (ret) {
  2416. btrfs_err(fs_info, "superblock contains fatal errors");
  2417. err = -EINVAL;
  2418. goto fail_alloc;
  2419. }
  2420. disk_super = fs_info->super_copy;
  2421. if (!btrfs_super_root(disk_super))
  2422. goto fail_alloc;
  2423. /* check FS state, whether FS is broken. */
  2424. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2425. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2426. /*
  2427. * run through our array of backup supers and setup
  2428. * our ring pointer to the oldest one
  2429. */
  2430. generation = btrfs_super_generation(disk_super);
  2431. find_oldest_super_backup(fs_info, generation);
  2432. /*
  2433. * In the long term, we'll store the compression type in the super
  2434. * block, and it'll be used for per file compression control.
  2435. */
  2436. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2437. ret = btrfs_parse_options(tree_root, options, sb->s_flags);
  2438. if (ret) {
  2439. err = ret;
  2440. goto fail_alloc;
  2441. }
  2442. features = btrfs_super_incompat_flags(disk_super) &
  2443. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2444. if (features) {
  2445. btrfs_err(fs_info,
  2446. "cannot mount because of unsupported optional features (%llx)",
  2447. features);
  2448. err = -EINVAL;
  2449. goto fail_alloc;
  2450. }
  2451. features = btrfs_super_incompat_flags(disk_super);
  2452. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2453. if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2454. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2455. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2456. btrfs_info(fs_info, "has skinny extents");
  2457. /*
  2458. * flag our filesystem as having big metadata blocks if
  2459. * they are bigger than the page size
  2460. */
  2461. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2462. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2463. btrfs_info(fs_info,
  2464. "flagging fs with big metadata feature");
  2465. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2466. }
  2467. nodesize = btrfs_super_nodesize(disk_super);
  2468. sectorsize = btrfs_super_sectorsize(disk_super);
  2469. stripesize = sectorsize;
  2470. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2471. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2472. /*
  2473. * mixed block groups end up with duplicate but slightly offset
  2474. * extent buffers for the same range. It leads to corruptions
  2475. */
  2476. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2477. (sectorsize != nodesize)) {
  2478. btrfs_err(fs_info,
  2479. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2480. nodesize, sectorsize);
  2481. goto fail_alloc;
  2482. }
  2483. /*
  2484. * Needn't use the lock because there is no other task which will
  2485. * update the flag.
  2486. */
  2487. btrfs_set_super_incompat_flags(disk_super, features);
  2488. features = btrfs_super_compat_ro_flags(disk_super) &
  2489. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2490. if (!(sb->s_flags & MS_RDONLY) && features) {
  2491. btrfs_err(fs_info,
  2492. "cannot mount read-write because of unsupported optional features (%llx)",
  2493. features);
  2494. err = -EINVAL;
  2495. goto fail_alloc;
  2496. }
  2497. max_active = fs_info->thread_pool_size;
  2498. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2499. if (ret) {
  2500. err = ret;
  2501. goto fail_sb_buffer;
  2502. }
  2503. fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
  2504. fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
  2505. SZ_4M / PAGE_SIZE);
  2506. tree_root->nodesize = nodesize;
  2507. tree_root->sectorsize = sectorsize;
  2508. tree_root->stripesize = stripesize;
  2509. sb->s_blocksize = sectorsize;
  2510. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2511. mutex_lock(&fs_info->chunk_mutex);
  2512. ret = btrfs_read_sys_array(tree_root);
  2513. mutex_unlock(&fs_info->chunk_mutex);
  2514. if (ret) {
  2515. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2516. goto fail_sb_buffer;
  2517. }
  2518. generation = btrfs_super_chunk_root_generation(disk_super);
  2519. __setup_root(nodesize, sectorsize, stripesize, chunk_root,
  2520. fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2521. chunk_root->node = read_tree_block(chunk_root,
  2522. btrfs_super_chunk_root(disk_super),
  2523. generation);
  2524. if (IS_ERR(chunk_root->node) ||
  2525. !extent_buffer_uptodate(chunk_root->node)) {
  2526. btrfs_err(fs_info, "failed to read chunk root");
  2527. if (!IS_ERR(chunk_root->node))
  2528. free_extent_buffer(chunk_root->node);
  2529. chunk_root->node = NULL;
  2530. goto fail_tree_roots;
  2531. }
  2532. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2533. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2534. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2535. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2536. ret = btrfs_read_chunk_tree(chunk_root);
  2537. if (ret) {
  2538. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2539. goto fail_tree_roots;
  2540. }
  2541. /*
  2542. * keep the device that is marked to be the target device for the
  2543. * dev_replace procedure
  2544. */
  2545. btrfs_close_extra_devices(fs_devices, 0);
  2546. if (!fs_devices->latest_bdev) {
  2547. btrfs_err(fs_info, "failed to read devices");
  2548. goto fail_tree_roots;
  2549. }
  2550. retry_root_backup:
  2551. generation = btrfs_super_generation(disk_super);
  2552. tree_root->node = read_tree_block(tree_root,
  2553. btrfs_super_root(disk_super),
  2554. generation);
  2555. if (IS_ERR(tree_root->node) ||
  2556. !extent_buffer_uptodate(tree_root->node)) {
  2557. btrfs_warn(fs_info, "failed to read tree root");
  2558. if (!IS_ERR(tree_root->node))
  2559. free_extent_buffer(tree_root->node);
  2560. tree_root->node = NULL;
  2561. goto recovery_tree_root;
  2562. }
  2563. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2564. tree_root->commit_root = btrfs_root_node(tree_root);
  2565. btrfs_set_root_refs(&tree_root->root_item, 1);
  2566. mutex_lock(&tree_root->objectid_mutex);
  2567. ret = btrfs_find_highest_objectid(tree_root,
  2568. &tree_root->highest_objectid);
  2569. if (ret) {
  2570. mutex_unlock(&tree_root->objectid_mutex);
  2571. goto recovery_tree_root;
  2572. }
  2573. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2574. mutex_unlock(&tree_root->objectid_mutex);
  2575. ret = btrfs_read_roots(fs_info, tree_root);
  2576. if (ret)
  2577. goto recovery_tree_root;
  2578. fs_info->generation = generation;
  2579. fs_info->last_trans_committed = generation;
  2580. ret = btrfs_recover_balance(fs_info);
  2581. if (ret) {
  2582. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2583. goto fail_block_groups;
  2584. }
  2585. ret = btrfs_init_dev_stats(fs_info);
  2586. if (ret) {
  2587. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2588. goto fail_block_groups;
  2589. }
  2590. ret = btrfs_init_dev_replace(fs_info);
  2591. if (ret) {
  2592. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2593. goto fail_block_groups;
  2594. }
  2595. btrfs_close_extra_devices(fs_devices, 1);
  2596. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2597. if (ret) {
  2598. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2599. ret);
  2600. goto fail_block_groups;
  2601. }
  2602. ret = btrfs_sysfs_add_device(fs_devices);
  2603. if (ret) {
  2604. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2605. ret);
  2606. goto fail_fsdev_sysfs;
  2607. }
  2608. ret = btrfs_sysfs_add_mounted(fs_info);
  2609. if (ret) {
  2610. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2611. goto fail_fsdev_sysfs;
  2612. }
  2613. ret = btrfs_init_space_info(fs_info);
  2614. if (ret) {
  2615. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2616. goto fail_sysfs;
  2617. }
  2618. ret = btrfs_read_block_groups(fs_info->extent_root);
  2619. if (ret) {
  2620. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2621. goto fail_sysfs;
  2622. }
  2623. fs_info->num_tolerated_disk_barrier_failures =
  2624. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2625. if (fs_info->fs_devices->missing_devices >
  2626. fs_info->num_tolerated_disk_barrier_failures &&
  2627. !(sb->s_flags & MS_RDONLY)) {
  2628. btrfs_warn(fs_info,
  2629. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2630. fs_info->fs_devices->missing_devices,
  2631. fs_info->num_tolerated_disk_barrier_failures);
  2632. goto fail_sysfs;
  2633. }
  2634. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2635. "btrfs-cleaner");
  2636. if (IS_ERR(fs_info->cleaner_kthread))
  2637. goto fail_sysfs;
  2638. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2639. tree_root,
  2640. "btrfs-transaction");
  2641. if (IS_ERR(fs_info->transaction_kthread))
  2642. goto fail_cleaner;
  2643. if (!btrfs_test_opt(tree_root->fs_info, SSD) &&
  2644. !btrfs_test_opt(tree_root->fs_info, NOSSD) &&
  2645. !fs_info->fs_devices->rotating) {
  2646. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2647. btrfs_set_opt(fs_info->mount_opt, SSD);
  2648. }
  2649. /*
  2650. * Mount does not set all options immediately, we can do it now and do
  2651. * not have to wait for transaction commit
  2652. */
  2653. btrfs_apply_pending_changes(fs_info);
  2654. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2655. if (btrfs_test_opt(tree_root->fs_info, CHECK_INTEGRITY)) {
  2656. ret = btrfsic_mount(tree_root, fs_devices,
  2657. btrfs_test_opt(tree_root->fs_info,
  2658. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2659. 1 : 0,
  2660. fs_info->check_integrity_print_mask);
  2661. if (ret)
  2662. btrfs_warn(fs_info,
  2663. "failed to initialize integrity check module: %d",
  2664. ret);
  2665. }
  2666. #endif
  2667. ret = btrfs_read_qgroup_config(fs_info);
  2668. if (ret)
  2669. goto fail_trans_kthread;
  2670. /* do not make disk changes in broken FS or nologreplay is given */
  2671. if (btrfs_super_log_root(disk_super) != 0 &&
  2672. !btrfs_test_opt(tree_root->fs_info, NOLOGREPLAY)) {
  2673. ret = btrfs_replay_log(fs_info, fs_devices);
  2674. if (ret) {
  2675. err = ret;
  2676. goto fail_qgroup;
  2677. }
  2678. }
  2679. ret = btrfs_find_orphan_roots(tree_root);
  2680. if (ret)
  2681. goto fail_qgroup;
  2682. if (!(sb->s_flags & MS_RDONLY)) {
  2683. ret = btrfs_cleanup_fs_roots(fs_info);
  2684. if (ret)
  2685. goto fail_qgroup;
  2686. mutex_lock(&fs_info->cleaner_mutex);
  2687. ret = btrfs_recover_relocation(tree_root);
  2688. mutex_unlock(&fs_info->cleaner_mutex);
  2689. if (ret < 0) {
  2690. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2691. ret);
  2692. err = -EINVAL;
  2693. goto fail_qgroup;
  2694. }
  2695. }
  2696. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2697. location.type = BTRFS_ROOT_ITEM_KEY;
  2698. location.offset = 0;
  2699. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2700. if (IS_ERR(fs_info->fs_root)) {
  2701. err = PTR_ERR(fs_info->fs_root);
  2702. goto fail_qgroup;
  2703. }
  2704. if (sb->s_flags & MS_RDONLY)
  2705. return 0;
  2706. if (btrfs_test_opt(tree_root->fs_info, FREE_SPACE_TREE) &&
  2707. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2708. btrfs_info(fs_info, "creating free space tree");
  2709. ret = btrfs_create_free_space_tree(fs_info);
  2710. if (ret) {
  2711. btrfs_warn(fs_info,
  2712. "failed to create free space tree: %d", ret);
  2713. close_ctree(tree_root);
  2714. return ret;
  2715. }
  2716. }
  2717. down_read(&fs_info->cleanup_work_sem);
  2718. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2719. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2720. up_read(&fs_info->cleanup_work_sem);
  2721. close_ctree(tree_root);
  2722. return ret;
  2723. }
  2724. up_read(&fs_info->cleanup_work_sem);
  2725. ret = btrfs_resume_balance_async(fs_info);
  2726. if (ret) {
  2727. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2728. close_ctree(tree_root);
  2729. return ret;
  2730. }
  2731. ret = btrfs_resume_dev_replace_async(fs_info);
  2732. if (ret) {
  2733. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2734. close_ctree(tree_root);
  2735. return ret;
  2736. }
  2737. btrfs_qgroup_rescan_resume(fs_info);
  2738. if (btrfs_test_opt(tree_root->fs_info, CLEAR_CACHE) &&
  2739. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2740. btrfs_info(fs_info, "clearing free space tree");
  2741. ret = btrfs_clear_free_space_tree(fs_info);
  2742. if (ret) {
  2743. btrfs_warn(fs_info,
  2744. "failed to clear free space tree: %d", ret);
  2745. close_ctree(tree_root);
  2746. return ret;
  2747. }
  2748. }
  2749. if (!fs_info->uuid_root) {
  2750. btrfs_info(fs_info, "creating UUID tree");
  2751. ret = btrfs_create_uuid_tree(fs_info);
  2752. if (ret) {
  2753. btrfs_warn(fs_info,
  2754. "failed to create the UUID tree: %d", ret);
  2755. close_ctree(tree_root);
  2756. return ret;
  2757. }
  2758. } else if (btrfs_test_opt(tree_root->fs_info, RESCAN_UUID_TREE) ||
  2759. fs_info->generation !=
  2760. btrfs_super_uuid_tree_generation(disk_super)) {
  2761. btrfs_info(fs_info, "checking UUID tree");
  2762. ret = btrfs_check_uuid_tree(fs_info);
  2763. if (ret) {
  2764. btrfs_warn(fs_info,
  2765. "failed to check the UUID tree: %d", ret);
  2766. close_ctree(tree_root);
  2767. return ret;
  2768. }
  2769. } else {
  2770. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2771. }
  2772. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2773. /*
  2774. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2775. * no need to keep the flag
  2776. */
  2777. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2778. return 0;
  2779. fail_qgroup:
  2780. btrfs_free_qgroup_config(fs_info);
  2781. fail_trans_kthread:
  2782. kthread_stop(fs_info->transaction_kthread);
  2783. btrfs_cleanup_transaction(fs_info->tree_root);
  2784. btrfs_free_fs_roots(fs_info);
  2785. fail_cleaner:
  2786. kthread_stop(fs_info->cleaner_kthread);
  2787. /*
  2788. * make sure we're done with the btree inode before we stop our
  2789. * kthreads
  2790. */
  2791. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2792. fail_sysfs:
  2793. btrfs_sysfs_remove_mounted(fs_info);
  2794. fail_fsdev_sysfs:
  2795. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2796. fail_block_groups:
  2797. btrfs_put_block_group_cache(fs_info);
  2798. btrfs_free_block_groups(fs_info);
  2799. fail_tree_roots:
  2800. free_root_pointers(fs_info, 1);
  2801. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2802. fail_sb_buffer:
  2803. btrfs_stop_all_workers(fs_info);
  2804. fail_alloc:
  2805. fail_iput:
  2806. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2807. iput(fs_info->btree_inode);
  2808. fail_bio_counter:
  2809. percpu_counter_destroy(&fs_info->bio_counter);
  2810. fail_delalloc_bytes:
  2811. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2812. fail_dirty_metadata_bytes:
  2813. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2814. fail_bdi:
  2815. bdi_destroy(&fs_info->bdi);
  2816. fail_srcu:
  2817. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2818. fail:
  2819. btrfs_free_stripe_hash_table(fs_info);
  2820. btrfs_close_devices(fs_info->fs_devices);
  2821. return err;
  2822. recovery_tree_root:
  2823. if (!btrfs_test_opt(tree_root->fs_info, USEBACKUPROOT))
  2824. goto fail_tree_roots;
  2825. free_root_pointers(fs_info, 0);
  2826. /* don't use the log in recovery mode, it won't be valid */
  2827. btrfs_set_super_log_root(disk_super, 0);
  2828. /* we can't trust the free space cache either */
  2829. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2830. ret = next_root_backup(fs_info, fs_info->super_copy,
  2831. &num_backups_tried, &backup_index);
  2832. if (ret == -1)
  2833. goto fail_block_groups;
  2834. goto retry_root_backup;
  2835. }
  2836. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2837. {
  2838. if (uptodate) {
  2839. set_buffer_uptodate(bh);
  2840. } else {
  2841. struct btrfs_device *device = (struct btrfs_device *)
  2842. bh->b_private;
  2843. btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
  2844. "lost page write due to IO error on %s",
  2845. rcu_str_deref(device->name));
  2846. /* note, we don't set_buffer_write_io_error because we have
  2847. * our own ways of dealing with the IO errors
  2848. */
  2849. clear_buffer_uptodate(bh);
  2850. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2851. }
  2852. unlock_buffer(bh);
  2853. put_bh(bh);
  2854. }
  2855. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2856. struct buffer_head **bh_ret)
  2857. {
  2858. struct buffer_head *bh;
  2859. struct btrfs_super_block *super;
  2860. u64 bytenr;
  2861. bytenr = btrfs_sb_offset(copy_num);
  2862. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2863. return -EINVAL;
  2864. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2865. /*
  2866. * If we fail to read from the underlying devices, as of now
  2867. * the best option we have is to mark it EIO.
  2868. */
  2869. if (!bh)
  2870. return -EIO;
  2871. super = (struct btrfs_super_block *)bh->b_data;
  2872. if (btrfs_super_bytenr(super) != bytenr ||
  2873. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2874. brelse(bh);
  2875. return -EINVAL;
  2876. }
  2877. *bh_ret = bh;
  2878. return 0;
  2879. }
  2880. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2881. {
  2882. struct buffer_head *bh;
  2883. struct buffer_head *latest = NULL;
  2884. struct btrfs_super_block *super;
  2885. int i;
  2886. u64 transid = 0;
  2887. int ret = -EINVAL;
  2888. /* we would like to check all the supers, but that would make
  2889. * a btrfs mount succeed after a mkfs from a different FS.
  2890. * So, we need to add a special mount option to scan for
  2891. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2892. */
  2893. for (i = 0; i < 1; i++) {
  2894. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2895. if (ret)
  2896. continue;
  2897. super = (struct btrfs_super_block *)bh->b_data;
  2898. if (!latest || btrfs_super_generation(super) > transid) {
  2899. brelse(latest);
  2900. latest = bh;
  2901. transid = btrfs_super_generation(super);
  2902. } else {
  2903. brelse(bh);
  2904. }
  2905. }
  2906. if (!latest)
  2907. return ERR_PTR(ret);
  2908. return latest;
  2909. }
  2910. /*
  2911. * this should be called twice, once with wait == 0 and
  2912. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2913. * we write are pinned.
  2914. *
  2915. * They are released when wait == 1 is done.
  2916. * max_mirrors must be the same for both runs, and it indicates how
  2917. * many supers on this one device should be written.
  2918. *
  2919. * max_mirrors == 0 means to write them all.
  2920. */
  2921. static int write_dev_supers(struct btrfs_device *device,
  2922. struct btrfs_super_block *sb,
  2923. int do_barriers, int wait, int max_mirrors)
  2924. {
  2925. struct buffer_head *bh;
  2926. int i;
  2927. int ret;
  2928. int errors = 0;
  2929. u32 crc;
  2930. u64 bytenr;
  2931. if (max_mirrors == 0)
  2932. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2933. for (i = 0; i < max_mirrors; i++) {
  2934. bytenr = btrfs_sb_offset(i);
  2935. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2936. device->commit_total_bytes)
  2937. break;
  2938. if (wait) {
  2939. bh = __find_get_block(device->bdev, bytenr / 4096,
  2940. BTRFS_SUPER_INFO_SIZE);
  2941. if (!bh) {
  2942. errors++;
  2943. continue;
  2944. }
  2945. wait_on_buffer(bh);
  2946. if (!buffer_uptodate(bh))
  2947. errors++;
  2948. /* drop our reference */
  2949. brelse(bh);
  2950. /* drop the reference from the wait == 0 run */
  2951. brelse(bh);
  2952. continue;
  2953. } else {
  2954. btrfs_set_super_bytenr(sb, bytenr);
  2955. crc = ~(u32)0;
  2956. crc = btrfs_csum_data((char *)sb +
  2957. BTRFS_CSUM_SIZE, crc,
  2958. BTRFS_SUPER_INFO_SIZE -
  2959. BTRFS_CSUM_SIZE);
  2960. btrfs_csum_final(crc, sb->csum);
  2961. /*
  2962. * one reference for us, and we leave it for the
  2963. * caller
  2964. */
  2965. bh = __getblk(device->bdev, bytenr / 4096,
  2966. BTRFS_SUPER_INFO_SIZE);
  2967. if (!bh) {
  2968. btrfs_err(device->dev_root->fs_info,
  2969. "couldn't get super buffer head for bytenr %llu",
  2970. bytenr);
  2971. errors++;
  2972. continue;
  2973. }
  2974. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2975. /* one reference for submit_bh */
  2976. get_bh(bh);
  2977. set_buffer_uptodate(bh);
  2978. lock_buffer(bh);
  2979. bh->b_end_io = btrfs_end_buffer_write_sync;
  2980. bh->b_private = device;
  2981. }
  2982. /*
  2983. * we fua the first super. The others we allow
  2984. * to go down lazy.
  2985. */
  2986. if (i == 0)
  2987. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_FUA, bh);
  2988. else
  2989. ret = btrfsic_submit_bh(REQ_OP_WRITE, WRITE_SYNC, bh);
  2990. if (ret)
  2991. errors++;
  2992. }
  2993. return errors < i ? 0 : -1;
  2994. }
  2995. /*
  2996. * endio for the write_dev_flush, this will wake anyone waiting
  2997. * for the barrier when it is done
  2998. */
  2999. static void btrfs_end_empty_barrier(struct bio *bio)
  3000. {
  3001. if (bio->bi_private)
  3002. complete(bio->bi_private);
  3003. bio_put(bio);
  3004. }
  3005. /*
  3006. * trigger flushes for one the devices. If you pass wait == 0, the flushes are
  3007. * sent down. With wait == 1, it waits for the previous flush.
  3008. *
  3009. * any device where the flush fails with eopnotsupp are flagged as not-barrier
  3010. * capable
  3011. */
  3012. static int write_dev_flush(struct btrfs_device *device, int wait)
  3013. {
  3014. struct bio *bio;
  3015. int ret = 0;
  3016. if (device->nobarriers)
  3017. return 0;
  3018. if (wait) {
  3019. bio = device->flush_bio;
  3020. if (!bio)
  3021. return 0;
  3022. wait_for_completion(&device->flush_wait);
  3023. if (bio->bi_error) {
  3024. ret = bio->bi_error;
  3025. btrfs_dev_stat_inc_and_print(device,
  3026. BTRFS_DEV_STAT_FLUSH_ERRS);
  3027. }
  3028. /* drop the reference from the wait == 0 run */
  3029. bio_put(bio);
  3030. device->flush_bio = NULL;
  3031. return ret;
  3032. }
  3033. /*
  3034. * one reference for us, and we leave it for the
  3035. * caller
  3036. */
  3037. device->flush_bio = NULL;
  3038. bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
  3039. if (!bio)
  3040. return -ENOMEM;
  3041. bio->bi_end_io = btrfs_end_empty_barrier;
  3042. bio->bi_bdev = device->bdev;
  3043. bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
  3044. init_completion(&device->flush_wait);
  3045. bio->bi_private = &device->flush_wait;
  3046. device->flush_bio = bio;
  3047. bio_get(bio);
  3048. btrfsic_submit_bio(bio);
  3049. return 0;
  3050. }
  3051. /*
  3052. * send an empty flush down to each device in parallel,
  3053. * then wait for them
  3054. */
  3055. static int barrier_all_devices(struct btrfs_fs_info *info)
  3056. {
  3057. struct list_head *head;
  3058. struct btrfs_device *dev;
  3059. int errors_send = 0;
  3060. int errors_wait = 0;
  3061. int ret;
  3062. /* send down all the barriers */
  3063. head = &info->fs_devices->devices;
  3064. list_for_each_entry_rcu(dev, head, dev_list) {
  3065. if (dev->missing)
  3066. continue;
  3067. if (!dev->bdev) {
  3068. errors_send++;
  3069. continue;
  3070. }
  3071. if (!dev->in_fs_metadata || !dev->writeable)
  3072. continue;
  3073. ret = write_dev_flush(dev, 0);
  3074. if (ret)
  3075. errors_send++;
  3076. }
  3077. /* wait for all the barriers */
  3078. list_for_each_entry_rcu(dev, head, dev_list) {
  3079. if (dev->missing)
  3080. continue;
  3081. if (!dev->bdev) {
  3082. errors_wait++;
  3083. continue;
  3084. }
  3085. if (!dev->in_fs_metadata || !dev->writeable)
  3086. continue;
  3087. ret = write_dev_flush(dev, 1);
  3088. if (ret)
  3089. errors_wait++;
  3090. }
  3091. if (errors_send > info->num_tolerated_disk_barrier_failures ||
  3092. errors_wait > info->num_tolerated_disk_barrier_failures)
  3093. return -EIO;
  3094. return 0;
  3095. }
  3096. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3097. {
  3098. int raid_type;
  3099. int min_tolerated = INT_MAX;
  3100. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3101. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3102. min_tolerated = min(min_tolerated,
  3103. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3104. tolerated_failures);
  3105. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3106. if (raid_type == BTRFS_RAID_SINGLE)
  3107. continue;
  3108. if (!(flags & btrfs_raid_group[raid_type]))
  3109. continue;
  3110. min_tolerated = min(min_tolerated,
  3111. btrfs_raid_array[raid_type].
  3112. tolerated_failures);
  3113. }
  3114. if (min_tolerated == INT_MAX) {
  3115. pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
  3116. min_tolerated = 0;
  3117. }
  3118. return min_tolerated;
  3119. }
  3120. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3121. struct btrfs_fs_info *fs_info)
  3122. {
  3123. struct btrfs_ioctl_space_info space;
  3124. struct btrfs_space_info *sinfo;
  3125. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3126. BTRFS_BLOCK_GROUP_SYSTEM,
  3127. BTRFS_BLOCK_GROUP_METADATA,
  3128. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3129. int i;
  3130. int c;
  3131. int num_tolerated_disk_barrier_failures =
  3132. (int)fs_info->fs_devices->num_devices;
  3133. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3134. struct btrfs_space_info *tmp;
  3135. sinfo = NULL;
  3136. rcu_read_lock();
  3137. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3138. if (tmp->flags == types[i]) {
  3139. sinfo = tmp;
  3140. break;
  3141. }
  3142. }
  3143. rcu_read_unlock();
  3144. if (!sinfo)
  3145. continue;
  3146. down_read(&sinfo->groups_sem);
  3147. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3148. u64 flags;
  3149. if (list_empty(&sinfo->block_groups[c]))
  3150. continue;
  3151. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3152. &space);
  3153. if (space.total_bytes == 0 || space.used_bytes == 0)
  3154. continue;
  3155. flags = space.flags;
  3156. num_tolerated_disk_barrier_failures = min(
  3157. num_tolerated_disk_barrier_failures,
  3158. btrfs_get_num_tolerated_disk_barrier_failures(
  3159. flags));
  3160. }
  3161. up_read(&sinfo->groups_sem);
  3162. }
  3163. return num_tolerated_disk_barrier_failures;
  3164. }
  3165. static int write_all_supers(struct btrfs_root *root, int max_mirrors)
  3166. {
  3167. struct list_head *head;
  3168. struct btrfs_device *dev;
  3169. struct btrfs_super_block *sb;
  3170. struct btrfs_dev_item *dev_item;
  3171. int ret;
  3172. int do_barriers;
  3173. int max_errors;
  3174. int total_errors = 0;
  3175. u64 flags;
  3176. do_barriers = !btrfs_test_opt(root->fs_info, NOBARRIER);
  3177. backup_super_roots(root->fs_info);
  3178. sb = root->fs_info->super_for_commit;
  3179. dev_item = &sb->dev_item;
  3180. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  3181. head = &root->fs_info->fs_devices->devices;
  3182. max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
  3183. if (do_barriers) {
  3184. ret = barrier_all_devices(root->fs_info);
  3185. if (ret) {
  3186. mutex_unlock(
  3187. &root->fs_info->fs_devices->device_list_mutex);
  3188. btrfs_handle_fs_error(root->fs_info, ret,
  3189. "errors while submitting device barriers.");
  3190. return ret;
  3191. }
  3192. }
  3193. list_for_each_entry_rcu(dev, head, dev_list) {
  3194. if (!dev->bdev) {
  3195. total_errors++;
  3196. continue;
  3197. }
  3198. if (!dev->in_fs_metadata || !dev->writeable)
  3199. continue;
  3200. btrfs_set_stack_device_generation(dev_item, 0);
  3201. btrfs_set_stack_device_type(dev_item, dev->type);
  3202. btrfs_set_stack_device_id(dev_item, dev->devid);
  3203. btrfs_set_stack_device_total_bytes(dev_item,
  3204. dev->commit_total_bytes);
  3205. btrfs_set_stack_device_bytes_used(dev_item,
  3206. dev->commit_bytes_used);
  3207. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3208. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3209. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3210. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3211. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3212. flags = btrfs_super_flags(sb);
  3213. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3214. ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
  3215. if (ret)
  3216. total_errors++;
  3217. }
  3218. if (total_errors > max_errors) {
  3219. btrfs_err(root->fs_info, "%d errors while writing supers",
  3220. total_errors);
  3221. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3222. /* FUA is masked off if unsupported and can't be the reason */
  3223. btrfs_handle_fs_error(root->fs_info, -EIO,
  3224. "%d errors while writing supers", total_errors);
  3225. return -EIO;
  3226. }
  3227. total_errors = 0;
  3228. list_for_each_entry_rcu(dev, head, dev_list) {
  3229. if (!dev->bdev)
  3230. continue;
  3231. if (!dev->in_fs_metadata || !dev->writeable)
  3232. continue;
  3233. ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
  3234. if (ret)
  3235. total_errors++;
  3236. }
  3237. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  3238. if (total_errors > max_errors) {
  3239. btrfs_handle_fs_error(root->fs_info, -EIO,
  3240. "%d errors while writing supers", total_errors);
  3241. return -EIO;
  3242. }
  3243. return 0;
  3244. }
  3245. int write_ctree_super(struct btrfs_trans_handle *trans,
  3246. struct btrfs_root *root, int max_mirrors)
  3247. {
  3248. return write_all_supers(root, max_mirrors);
  3249. }
  3250. /* Drop a fs root from the radix tree and free it. */
  3251. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3252. struct btrfs_root *root)
  3253. {
  3254. spin_lock(&fs_info->fs_roots_radix_lock);
  3255. radix_tree_delete(&fs_info->fs_roots_radix,
  3256. (unsigned long)root->root_key.objectid);
  3257. spin_unlock(&fs_info->fs_roots_radix_lock);
  3258. if (btrfs_root_refs(&root->root_item) == 0)
  3259. synchronize_srcu(&fs_info->subvol_srcu);
  3260. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3261. btrfs_free_log(NULL, root);
  3262. if (root->reloc_root) {
  3263. free_extent_buffer(root->reloc_root->node);
  3264. free_extent_buffer(root->reloc_root->commit_root);
  3265. btrfs_put_fs_root(root->reloc_root);
  3266. root->reloc_root = NULL;
  3267. }
  3268. }
  3269. if (root->free_ino_pinned)
  3270. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3271. if (root->free_ino_ctl)
  3272. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3273. free_fs_root(root);
  3274. }
  3275. static void free_fs_root(struct btrfs_root *root)
  3276. {
  3277. iput(root->ino_cache_inode);
  3278. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3279. btrfs_free_block_rsv(root, root->orphan_block_rsv);
  3280. root->orphan_block_rsv = NULL;
  3281. if (root->anon_dev)
  3282. free_anon_bdev(root->anon_dev);
  3283. if (root->subv_writers)
  3284. btrfs_free_subvolume_writers(root->subv_writers);
  3285. free_extent_buffer(root->node);
  3286. free_extent_buffer(root->commit_root);
  3287. kfree(root->free_ino_ctl);
  3288. kfree(root->free_ino_pinned);
  3289. kfree(root->name);
  3290. btrfs_put_fs_root(root);
  3291. }
  3292. void btrfs_free_fs_root(struct btrfs_root *root)
  3293. {
  3294. free_fs_root(root);
  3295. }
  3296. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3297. {
  3298. u64 root_objectid = 0;
  3299. struct btrfs_root *gang[8];
  3300. int i = 0;
  3301. int err = 0;
  3302. unsigned int ret = 0;
  3303. int index;
  3304. while (1) {
  3305. index = srcu_read_lock(&fs_info->subvol_srcu);
  3306. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3307. (void **)gang, root_objectid,
  3308. ARRAY_SIZE(gang));
  3309. if (!ret) {
  3310. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3311. break;
  3312. }
  3313. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3314. for (i = 0; i < ret; i++) {
  3315. /* Avoid to grab roots in dead_roots */
  3316. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3317. gang[i] = NULL;
  3318. continue;
  3319. }
  3320. /* grab all the search result for later use */
  3321. gang[i] = btrfs_grab_fs_root(gang[i]);
  3322. }
  3323. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3324. for (i = 0; i < ret; i++) {
  3325. if (!gang[i])
  3326. continue;
  3327. root_objectid = gang[i]->root_key.objectid;
  3328. err = btrfs_orphan_cleanup(gang[i]);
  3329. if (err)
  3330. break;
  3331. btrfs_put_fs_root(gang[i]);
  3332. }
  3333. root_objectid++;
  3334. }
  3335. /* release the uncleaned roots due to error */
  3336. for (; i < ret; i++) {
  3337. if (gang[i])
  3338. btrfs_put_fs_root(gang[i]);
  3339. }
  3340. return err;
  3341. }
  3342. int btrfs_commit_super(struct btrfs_root *root)
  3343. {
  3344. struct btrfs_trans_handle *trans;
  3345. mutex_lock(&root->fs_info->cleaner_mutex);
  3346. btrfs_run_delayed_iputs(root);
  3347. mutex_unlock(&root->fs_info->cleaner_mutex);
  3348. wake_up_process(root->fs_info->cleaner_kthread);
  3349. /* wait until ongoing cleanup work done */
  3350. down_write(&root->fs_info->cleanup_work_sem);
  3351. up_write(&root->fs_info->cleanup_work_sem);
  3352. trans = btrfs_join_transaction(root);
  3353. if (IS_ERR(trans))
  3354. return PTR_ERR(trans);
  3355. return btrfs_commit_transaction(trans, root);
  3356. }
  3357. void close_ctree(struct btrfs_root *root)
  3358. {
  3359. struct btrfs_fs_info *fs_info = root->fs_info;
  3360. int ret;
  3361. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3362. /* wait for the qgroup rescan worker to stop */
  3363. btrfs_qgroup_wait_for_completion(fs_info, false);
  3364. /* wait for the uuid_scan task to finish */
  3365. down(&fs_info->uuid_tree_rescan_sem);
  3366. /* avoid complains from lockdep et al., set sem back to initial state */
  3367. up(&fs_info->uuid_tree_rescan_sem);
  3368. /* pause restriper - we want to resume on mount */
  3369. btrfs_pause_balance(fs_info);
  3370. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3371. btrfs_scrub_cancel(fs_info);
  3372. /* wait for any defraggers to finish */
  3373. wait_event(fs_info->transaction_wait,
  3374. (atomic_read(&fs_info->defrag_running) == 0));
  3375. /* clear out the rbtree of defraggable inodes */
  3376. btrfs_cleanup_defrag_inodes(fs_info);
  3377. cancel_work_sync(&fs_info->async_reclaim_work);
  3378. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3379. /*
  3380. * If the cleaner thread is stopped and there are
  3381. * block groups queued for removal, the deletion will be
  3382. * skipped when we quit the cleaner thread.
  3383. */
  3384. btrfs_delete_unused_bgs(root->fs_info);
  3385. ret = btrfs_commit_super(root);
  3386. if (ret)
  3387. btrfs_err(fs_info, "commit super ret %d", ret);
  3388. }
  3389. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3390. btrfs_error_commit_super(root);
  3391. kthread_stop(fs_info->transaction_kthread);
  3392. kthread_stop(fs_info->cleaner_kthread);
  3393. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3394. btrfs_free_qgroup_config(fs_info);
  3395. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3396. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3397. percpu_counter_sum(&fs_info->delalloc_bytes));
  3398. }
  3399. btrfs_sysfs_remove_mounted(fs_info);
  3400. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3401. btrfs_free_fs_roots(fs_info);
  3402. btrfs_put_block_group_cache(fs_info);
  3403. btrfs_free_block_groups(fs_info);
  3404. /*
  3405. * we must make sure there is not any read request to
  3406. * submit after we stopping all workers.
  3407. */
  3408. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3409. btrfs_stop_all_workers(fs_info);
  3410. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3411. free_root_pointers(fs_info, 1);
  3412. iput(fs_info->btree_inode);
  3413. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3414. if (btrfs_test_opt(root->fs_info, CHECK_INTEGRITY))
  3415. btrfsic_unmount(root, fs_info->fs_devices);
  3416. #endif
  3417. btrfs_close_devices(fs_info->fs_devices);
  3418. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3419. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3420. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3421. percpu_counter_destroy(&fs_info->bio_counter);
  3422. bdi_destroy(&fs_info->bdi);
  3423. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3424. btrfs_free_stripe_hash_table(fs_info);
  3425. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3426. root->orphan_block_rsv = NULL;
  3427. lock_chunks(root);
  3428. while (!list_empty(&fs_info->pinned_chunks)) {
  3429. struct extent_map *em;
  3430. em = list_first_entry(&fs_info->pinned_chunks,
  3431. struct extent_map, list);
  3432. list_del_init(&em->list);
  3433. free_extent_map(em);
  3434. }
  3435. unlock_chunks(root);
  3436. }
  3437. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3438. int atomic)
  3439. {
  3440. int ret;
  3441. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3442. ret = extent_buffer_uptodate(buf);
  3443. if (!ret)
  3444. return ret;
  3445. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3446. parent_transid, atomic);
  3447. if (ret == -EAGAIN)
  3448. return ret;
  3449. return !ret;
  3450. }
  3451. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3452. {
  3453. struct btrfs_root *root;
  3454. u64 transid = btrfs_header_generation(buf);
  3455. int was_dirty;
  3456. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3457. /*
  3458. * This is a fast path so only do this check if we have sanity tests
  3459. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3460. * outside of the sanity tests.
  3461. */
  3462. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3463. return;
  3464. #endif
  3465. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3466. btrfs_assert_tree_locked(buf);
  3467. if (transid != root->fs_info->generation)
  3468. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
  3469. "found %llu running %llu\n",
  3470. buf->start, transid, root->fs_info->generation);
  3471. was_dirty = set_extent_buffer_dirty(buf);
  3472. if (!was_dirty)
  3473. __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
  3474. buf->len,
  3475. root->fs_info->dirty_metadata_batch);
  3476. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3477. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3478. btrfs_print_leaf(root, buf);
  3479. ASSERT(0);
  3480. }
  3481. #endif
  3482. }
  3483. static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
  3484. int flush_delayed)
  3485. {
  3486. /*
  3487. * looks as though older kernels can get into trouble with
  3488. * this code, they end up stuck in balance_dirty_pages forever
  3489. */
  3490. int ret;
  3491. if (current->flags & PF_MEMALLOC)
  3492. return;
  3493. if (flush_delayed)
  3494. btrfs_balance_delayed_items(root);
  3495. ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
  3496. BTRFS_DIRTY_METADATA_THRESH);
  3497. if (ret > 0) {
  3498. balance_dirty_pages_ratelimited(
  3499. root->fs_info->btree_inode->i_mapping);
  3500. }
  3501. }
  3502. void btrfs_btree_balance_dirty(struct btrfs_root *root)
  3503. {
  3504. __btrfs_btree_balance_dirty(root, 1);
  3505. }
  3506. void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
  3507. {
  3508. __btrfs_btree_balance_dirty(root, 0);
  3509. }
  3510. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3511. {
  3512. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3513. return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
  3514. }
  3515. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  3516. int read_only)
  3517. {
  3518. struct btrfs_super_block *sb = fs_info->super_copy;
  3519. u64 nodesize = btrfs_super_nodesize(sb);
  3520. u64 sectorsize = btrfs_super_sectorsize(sb);
  3521. int ret = 0;
  3522. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3523. printk(KERN_ERR "BTRFS: no valid FS found\n");
  3524. ret = -EINVAL;
  3525. }
  3526. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3527. printk(KERN_WARNING "BTRFS: unrecognized super flag: %llu\n",
  3528. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3529. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3530. printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
  3531. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3532. ret = -EINVAL;
  3533. }
  3534. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3535. printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
  3536. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3537. ret = -EINVAL;
  3538. }
  3539. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3540. printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
  3541. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3542. ret = -EINVAL;
  3543. }
  3544. /*
  3545. * Check sectorsize and nodesize first, other check will need it.
  3546. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3547. */
  3548. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3549. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3550. printk(KERN_ERR "BTRFS: invalid sectorsize %llu\n", sectorsize);
  3551. ret = -EINVAL;
  3552. }
  3553. /* Only PAGE SIZE is supported yet */
  3554. if (sectorsize != PAGE_SIZE) {
  3555. printk(KERN_ERR "BTRFS: sectorsize %llu not supported yet, only support %lu\n",
  3556. sectorsize, PAGE_SIZE);
  3557. ret = -EINVAL;
  3558. }
  3559. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3560. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3561. printk(KERN_ERR "BTRFS: invalid nodesize %llu\n", nodesize);
  3562. ret = -EINVAL;
  3563. }
  3564. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3565. printk(KERN_ERR "BTRFS: invalid leafsize %u, should be %llu\n",
  3566. le32_to_cpu(sb->__unused_leafsize),
  3567. nodesize);
  3568. ret = -EINVAL;
  3569. }
  3570. /* Root alignment check */
  3571. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3572. printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
  3573. btrfs_super_root(sb));
  3574. ret = -EINVAL;
  3575. }
  3576. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3577. printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
  3578. btrfs_super_chunk_root(sb));
  3579. ret = -EINVAL;
  3580. }
  3581. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3582. printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
  3583. btrfs_super_log_root(sb));
  3584. ret = -EINVAL;
  3585. }
  3586. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3587. printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
  3588. fs_info->fsid, sb->dev_item.fsid);
  3589. ret = -EINVAL;
  3590. }
  3591. /*
  3592. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3593. * done later
  3594. */
  3595. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3596. btrfs_err(fs_info, "bytes_used is too small %llu",
  3597. btrfs_super_bytes_used(sb));
  3598. ret = -EINVAL;
  3599. }
  3600. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3601. btrfs_err(fs_info, "invalid stripesize %u",
  3602. btrfs_super_stripesize(sb));
  3603. ret = -EINVAL;
  3604. }
  3605. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3606. printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
  3607. btrfs_super_num_devices(sb));
  3608. if (btrfs_super_num_devices(sb) == 0) {
  3609. printk(KERN_ERR "BTRFS: number of devices is 0\n");
  3610. ret = -EINVAL;
  3611. }
  3612. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3613. printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
  3614. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3615. ret = -EINVAL;
  3616. }
  3617. /*
  3618. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3619. * and one chunk
  3620. */
  3621. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3622. printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
  3623. btrfs_super_sys_array_size(sb),
  3624. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3625. ret = -EINVAL;
  3626. }
  3627. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3628. + sizeof(struct btrfs_chunk)) {
  3629. printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
  3630. btrfs_super_sys_array_size(sb),
  3631. sizeof(struct btrfs_disk_key)
  3632. + sizeof(struct btrfs_chunk));
  3633. ret = -EINVAL;
  3634. }
  3635. /*
  3636. * The generation is a global counter, we'll trust it more than the others
  3637. * but it's still possible that it's the one that's wrong.
  3638. */
  3639. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3640. printk(KERN_WARNING
  3641. "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
  3642. btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
  3643. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3644. && btrfs_super_cache_generation(sb) != (u64)-1)
  3645. printk(KERN_WARNING
  3646. "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
  3647. btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
  3648. return ret;
  3649. }
  3650. static void btrfs_error_commit_super(struct btrfs_root *root)
  3651. {
  3652. mutex_lock(&root->fs_info->cleaner_mutex);
  3653. btrfs_run_delayed_iputs(root);
  3654. mutex_unlock(&root->fs_info->cleaner_mutex);
  3655. down_write(&root->fs_info->cleanup_work_sem);
  3656. up_write(&root->fs_info->cleanup_work_sem);
  3657. /* cleanup FS via transaction */
  3658. btrfs_cleanup_transaction(root);
  3659. }
  3660. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3661. {
  3662. struct btrfs_ordered_extent *ordered;
  3663. spin_lock(&root->ordered_extent_lock);
  3664. /*
  3665. * This will just short circuit the ordered completion stuff which will
  3666. * make sure the ordered extent gets properly cleaned up.
  3667. */
  3668. list_for_each_entry(ordered, &root->ordered_extents,
  3669. root_extent_list)
  3670. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3671. spin_unlock(&root->ordered_extent_lock);
  3672. }
  3673. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3674. {
  3675. struct btrfs_root *root;
  3676. struct list_head splice;
  3677. INIT_LIST_HEAD(&splice);
  3678. spin_lock(&fs_info->ordered_root_lock);
  3679. list_splice_init(&fs_info->ordered_roots, &splice);
  3680. while (!list_empty(&splice)) {
  3681. root = list_first_entry(&splice, struct btrfs_root,
  3682. ordered_root);
  3683. list_move_tail(&root->ordered_root,
  3684. &fs_info->ordered_roots);
  3685. spin_unlock(&fs_info->ordered_root_lock);
  3686. btrfs_destroy_ordered_extents(root);
  3687. cond_resched();
  3688. spin_lock(&fs_info->ordered_root_lock);
  3689. }
  3690. spin_unlock(&fs_info->ordered_root_lock);
  3691. }
  3692. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3693. struct btrfs_root *root)
  3694. {
  3695. struct rb_node *node;
  3696. struct btrfs_delayed_ref_root *delayed_refs;
  3697. struct btrfs_delayed_ref_node *ref;
  3698. int ret = 0;
  3699. delayed_refs = &trans->delayed_refs;
  3700. spin_lock(&delayed_refs->lock);
  3701. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3702. spin_unlock(&delayed_refs->lock);
  3703. btrfs_info(root->fs_info, "delayed_refs has NO entry");
  3704. return ret;
  3705. }
  3706. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3707. struct btrfs_delayed_ref_head *head;
  3708. struct btrfs_delayed_ref_node *tmp;
  3709. bool pin_bytes = false;
  3710. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3711. href_node);
  3712. if (!mutex_trylock(&head->mutex)) {
  3713. atomic_inc(&head->node.refs);
  3714. spin_unlock(&delayed_refs->lock);
  3715. mutex_lock(&head->mutex);
  3716. mutex_unlock(&head->mutex);
  3717. btrfs_put_delayed_ref(&head->node);
  3718. spin_lock(&delayed_refs->lock);
  3719. continue;
  3720. }
  3721. spin_lock(&head->lock);
  3722. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3723. list) {
  3724. ref->in_tree = 0;
  3725. list_del(&ref->list);
  3726. atomic_dec(&delayed_refs->num_entries);
  3727. btrfs_put_delayed_ref(ref);
  3728. }
  3729. if (head->must_insert_reserved)
  3730. pin_bytes = true;
  3731. btrfs_free_delayed_extent_op(head->extent_op);
  3732. delayed_refs->num_heads--;
  3733. if (head->processing == 0)
  3734. delayed_refs->num_heads_ready--;
  3735. atomic_dec(&delayed_refs->num_entries);
  3736. head->node.in_tree = 0;
  3737. rb_erase(&head->href_node, &delayed_refs->href_root);
  3738. spin_unlock(&head->lock);
  3739. spin_unlock(&delayed_refs->lock);
  3740. mutex_unlock(&head->mutex);
  3741. if (pin_bytes)
  3742. btrfs_pin_extent(root, head->node.bytenr,
  3743. head->node.num_bytes, 1);
  3744. btrfs_put_delayed_ref(&head->node);
  3745. cond_resched();
  3746. spin_lock(&delayed_refs->lock);
  3747. }
  3748. spin_unlock(&delayed_refs->lock);
  3749. return ret;
  3750. }
  3751. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3752. {
  3753. struct btrfs_inode *btrfs_inode;
  3754. struct list_head splice;
  3755. INIT_LIST_HEAD(&splice);
  3756. spin_lock(&root->delalloc_lock);
  3757. list_splice_init(&root->delalloc_inodes, &splice);
  3758. while (!list_empty(&splice)) {
  3759. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3760. delalloc_inodes);
  3761. list_del_init(&btrfs_inode->delalloc_inodes);
  3762. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3763. &btrfs_inode->runtime_flags);
  3764. spin_unlock(&root->delalloc_lock);
  3765. btrfs_invalidate_inodes(btrfs_inode->root);
  3766. spin_lock(&root->delalloc_lock);
  3767. }
  3768. spin_unlock(&root->delalloc_lock);
  3769. }
  3770. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3771. {
  3772. struct btrfs_root *root;
  3773. struct list_head splice;
  3774. INIT_LIST_HEAD(&splice);
  3775. spin_lock(&fs_info->delalloc_root_lock);
  3776. list_splice_init(&fs_info->delalloc_roots, &splice);
  3777. while (!list_empty(&splice)) {
  3778. root = list_first_entry(&splice, struct btrfs_root,
  3779. delalloc_root);
  3780. list_del_init(&root->delalloc_root);
  3781. root = btrfs_grab_fs_root(root);
  3782. BUG_ON(!root);
  3783. spin_unlock(&fs_info->delalloc_root_lock);
  3784. btrfs_destroy_delalloc_inodes(root);
  3785. btrfs_put_fs_root(root);
  3786. spin_lock(&fs_info->delalloc_root_lock);
  3787. }
  3788. spin_unlock(&fs_info->delalloc_root_lock);
  3789. }
  3790. static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  3791. struct extent_io_tree *dirty_pages,
  3792. int mark)
  3793. {
  3794. int ret;
  3795. struct extent_buffer *eb;
  3796. u64 start = 0;
  3797. u64 end;
  3798. while (1) {
  3799. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3800. mark, NULL);
  3801. if (ret)
  3802. break;
  3803. clear_extent_bits(dirty_pages, start, end, mark);
  3804. while (start <= end) {
  3805. eb = btrfs_find_tree_block(root->fs_info, start);
  3806. start += root->nodesize;
  3807. if (!eb)
  3808. continue;
  3809. wait_on_extent_buffer_writeback(eb);
  3810. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3811. &eb->bflags))
  3812. clear_extent_buffer_dirty(eb);
  3813. free_extent_buffer_stale(eb);
  3814. }
  3815. }
  3816. return ret;
  3817. }
  3818. static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  3819. struct extent_io_tree *pinned_extents)
  3820. {
  3821. struct extent_io_tree *unpin;
  3822. u64 start;
  3823. u64 end;
  3824. int ret;
  3825. bool loop = true;
  3826. unpin = pinned_extents;
  3827. again:
  3828. while (1) {
  3829. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3830. EXTENT_DIRTY, NULL);
  3831. if (ret)
  3832. break;
  3833. clear_extent_dirty(unpin, start, end);
  3834. btrfs_error_unpin_extent_range(root, start, end);
  3835. cond_resched();
  3836. }
  3837. if (loop) {
  3838. if (unpin == &root->fs_info->freed_extents[0])
  3839. unpin = &root->fs_info->freed_extents[1];
  3840. else
  3841. unpin = &root->fs_info->freed_extents[0];
  3842. loop = false;
  3843. goto again;
  3844. }
  3845. return 0;
  3846. }
  3847. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3848. {
  3849. struct inode *inode;
  3850. inode = cache->io_ctl.inode;
  3851. if (inode) {
  3852. invalidate_inode_pages2(inode->i_mapping);
  3853. BTRFS_I(inode)->generation = 0;
  3854. cache->io_ctl.inode = NULL;
  3855. iput(inode);
  3856. }
  3857. btrfs_put_block_group(cache);
  3858. }
  3859. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3860. struct btrfs_root *root)
  3861. {
  3862. struct btrfs_block_group_cache *cache;
  3863. spin_lock(&cur_trans->dirty_bgs_lock);
  3864. while (!list_empty(&cur_trans->dirty_bgs)) {
  3865. cache = list_first_entry(&cur_trans->dirty_bgs,
  3866. struct btrfs_block_group_cache,
  3867. dirty_list);
  3868. if (!cache) {
  3869. btrfs_err(root->fs_info,
  3870. "orphan block group dirty_bgs list");
  3871. spin_unlock(&cur_trans->dirty_bgs_lock);
  3872. return;
  3873. }
  3874. if (!list_empty(&cache->io_list)) {
  3875. spin_unlock(&cur_trans->dirty_bgs_lock);
  3876. list_del_init(&cache->io_list);
  3877. btrfs_cleanup_bg_io(cache);
  3878. spin_lock(&cur_trans->dirty_bgs_lock);
  3879. }
  3880. list_del_init(&cache->dirty_list);
  3881. spin_lock(&cache->lock);
  3882. cache->disk_cache_state = BTRFS_DC_ERROR;
  3883. spin_unlock(&cache->lock);
  3884. spin_unlock(&cur_trans->dirty_bgs_lock);
  3885. btrfs_put_block_group(cache);
  3886. spin_lock(&cur_trans->dirty_bgs_lock);
  3887. }
  3888. spin_unlock(&cur_trans->dirty_bgs_lock);
  3889. while (!list_empty(&cur_trans->io_bgs)) {
  3890. cache = list_first_entry(&cur_trans->io_bgs,
  3891. struct btrfs_block_group_cache,
  3892. io_list);
  3893. if (!cache) {
  3894. btrfs_err(root->fs_info,
  3895. "orphan block group on io_bgs list");
  3896. return;
  3897. }
  3898. list_del_init(&cache->io_list);
  3899. spin_lock(&cache->lock);
  3900. cache->disk_cache_state = BTRFS_DC_ERROR;
  3901. spin_unlock(&cache->lock);
  3902. btrfs_cleanup_bg_io(cache);
  3903. }
  3904. }
  3905. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3906. struct btrfs_root *root)
  3907. {
  3908. btrfs_cleanup_dirty_bgs(cur_trans, root);
  3909. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3910. ASSERT(list_empty(&cur_trans->io_bgs));
  3911. btrfs_destroy_delayed_refs(cur_trans, root);
  3912. cur_trans->state = TRANS_STATE_COMMIT_START;
  3913. wake_up(&root->fs_info->transaction_blocked_wait);
  3914. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3915. wake_up(&root->fs_info->transaction_wait);
  3916. btrfs_destroy_delayed_inodes(root);
  3917. btrfs_assert_delayed_root_empty(root);
  3918. btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
  3919. EXTENT_DIRTY);
  3920. btrfs_destroy_pinned_extent(root,
  3921. root->fs_info->pinned_extents);
  3922. cur_trans->state =TRANS_STATE_COMPLETED;
  3923. wake_up(&cur_trans->commit_wait);
  3924. /*
  3925. memset(cur_trans, 0, sizeof(*cur_trans));
  3926. kmem_cache_free(btrfs_transaction_cachep, cur_trans);
  3927. */
  3928. }
  3929. static int btrfs_cleanup_transaction(struct btrfs_root *root)
  3930. {
  3931. struct btrfs_transaction *t;
  3932. mutex_lock(&root->fs_info->transaction_kthread_mutex);
  3933. spin_lock(&root->fs_info->trans_lock);
  3934. while (!list_empty(&root->fs_info->trans_list)) {
  3935. t = list_first_entry(&root->fs_info->trans_list,
  3936. struct btrfs_transaction, list);
  3937. if (t->state >= TRANS_STATE_COMMIT_START) {
  3938. atomic_inc(&t->use_count);
  3939. spin_unlock(&root->fs_info->trans_lock);
  3940. btrfs_wait_for_commit(root, t->transid);
  3941. btrfs_put_transaction(t);
  3942. spin_lock(&root->fs_info->trans_lock);
  3943. continue;
  3944. }
  3945. if (t == root->fs_info->running_transaction) {
  3946. t->state = TRANS_STATE_COMMIT_DOING;
  3947. spin_unlock(&root->fs_info->trans_lock);
  3948. /*
  3949. * We wait for 0 num_writers since we don't hold a trans
  3950. * handle open currently for this transaction.
  3951. */
  3952. wait_event(t->writer_wait,
  3953. atomic_read(&t->num_writers) == 0);
  3954. } else {
  3955. spin_unlock(&root->fs_info->trans_lock);
  3956. }
  3957. btrfs_cleanup_one_transaction(t, root);
  3958. spin_lock(&root->fs_info->trans_lock);
  3959. if (t == root->fs_info->running_transaction)
  3960. root->fs_info->running_transaction = NULL;
  3961. list_del_init(&t->list);
  3962. spin_unlock(&root->fs_info->trans_lock);
  3963. btrfs_put_transaction(t);
  3964. trace_btrfs_transaction_commit(root);
  3965. spin_lock(&root->fs_info->trans_lock);
  3966. }
  3967. spin_unlock(&root->fs_info->trans_lock);
  3968. btrfs_destroy_all_ordered_extents(root->fs_info);
  3969. btrfs_destroy_delayed_inodes(root);
  3970. btrfs_assert_delayed_root_empty(root);
  3971. btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
  3972. btrfs_destroy_all_delalloc_inodes(root->fs_info);
  3973. mutex_unlock(&root->fs_info->transaction_kthread_mutex);
  3974. return 0;
  3975. }
  3976. static const struct extent_io_ops btree_extent_io_ops = {
  3977. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3978. .readpage_io_failed_hook = btree_io_failed_hook,
  3979. .submit_bio_hook = btree_submit_bio_hook,
  3980. /* note we're sharing with inode.c for the merge bio hook */
  3981. .merge_bio_hook = btrfs_merge_bio_hook,
  3982. };