cppi41.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210
  1. #include <linux/delay.h>
  2. #include <linux/dmaengine.h>
  3. #include <linux/dma-mapping.h>
  4. #include <linux/platform_device.h>
  5. #include <linux/module.h>
  6. #include <linux/of.h>
  7. #include <linux/slab.h>
  8. #include <linux/of_dma.h>
  9. #include <linux/of_irq.h>
  10. #include <linux/dmapool.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/of_address.h>
  13. #include <linux/pm_runtime.h>
  14. #include "dmaengine.h"
  15. #define DESC_TYPE 27
  16. #define DESC_TYPE_HOST 0x10
  17. #define DESC_TYPE_TEARD 0x13
  18. #define TD_DESC_IS_RX (1 << 16)
  19. #define TD_DESC_DMA_NUM 10
  20. #define DESC_LENGTH_BITS_NUM 21
  21. #define DESC_TYPE_USB (5 << 26)
  22. #define DESC_PD_COMPLETE (1 << 31)
  23. /* DMA engine */
  24. #define DMA_TDFDQ 4
  25. #define DMA_TXGCR(x) (0x800 + (x) * 0x20)
  26. #define DMA_RXGCR(x) (0x808 + (x) * 0x20)
  27. #define RXHPCRA0 4
  28. #define GCR_CHAN_ENABLE (1 << 31)
  29. #define GCR_TEARDOWN (1 << 30)
  30. #define GCR_STARV_RETRY (1 << 24)
  31. #define GCR_DESC_TYPE_HOST (1 << 14)
  32. /* DMA scheduler */
  33. #define DMA_SCHED_CTRL 0
  34. #define DMA_SCHED_CTRL_EN (1 << 31)
  35. #define DMA_SCHED_WORD(x) ((x) * 4 + 0x800)
  36. #define SCHED_ENTRY0_CHAN(x) ((x) << 0)
  37. #define SCHED_ENTRY0_IS_RX (1 << 7)
  38. #define SCHED_ENTRY1_CHAN(x) ((x) << 8)
  39. #define SCHED_ENTRY1_IS_RX (1 << 15)
  40. #define SCHED_ENTRY2_CHAN(x) ((x) << 16)
  41. #define SCHED_ENTRY2_IS_RX (1 << 23)
  42. #define SCHED_ENTRY3_CHAN(x) ((x) << 24)
  43. #define SCHED_ENTRY3_IS_RX (1 << 31)
  44. /* Queue manager */
  45. /* 4 KiB of memory for descriptors, 2 for each endpoint */
  46. #define ALLOC_DECS_NUM 128
  47. #define DESCS_AREAS 1
  48. #define TOTAL_DESCS_NUM (ALLOC_DECS_NUM * DESCS_AREAS)
  49. #define QMGR_SCRATCH_SIZE (TOTAL_DESCS_NUM * 4)
  50. #define QMGR_LRAM0_BASE 0x80
  51. #define QMGR_LRAM_SIZE 0x84
  52. #define QMGR_LRAM1_BASE 0x88
  53. #define QMGR_MEMBASE(x) (0x1000 + (x) * 0x10)
  54. #define QMGR_MEMCTRL(x) (0x1004 + (x) * 0x10)
  55. #define QMGR_MEMCTRL_IDX_SH 16
  56. #define QMGR_MEMCTRL_DESC_SH 8
  57. #define QMGR_NUM_PEND 5
  58. #define QMGR_PEND(x) (0x90 + (x) * 4)
  59. #define QMGR_PENDING_SLOT_Q(x) (x / 32)
  60. #define QMGR_PENDING_BIT_Q(x) (x % 32)
  61. #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
  62. #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
  63. #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
  64. #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
  65. /* Glue layer specific */
  66. /* USBSS / USB AM335x */
  67. #define USBSS_IRQ_STATUS 0x28
  68. #define USBSS_IRQ_ENABLER 0x2c
  69. #define USBSS_IRQ_CLEARR 0x30
  70. #define USBSS_IRQ_PD_COMP (1 << 2)
  71. /* Packet Descriptor */
  72. #define PD2_ZERO_LENGTH (1 << 19)
  73. struct cppi41_channel {
  74. struct dma_chan chan;
  75. struct dma_async_tx_descriptor txd;
  76. struct cppi41_dd *cdd;
  77. struct cppi41_desc *desc;
  78. dma_addr_t desc_phys;
  79. void __iomem *gcr_reg;
  80. int is_tx;
  81. u32 residue;
  82. unsigned int q_num;
  83. unsigned int q_comp_num;
  84. unsigned int port_num;
  85. unsigned td_retry;
  86. unsigned td_queued:1;
  87. unsigned td_seen:1;
  88. unsigned td_desc_seen:1;
  89. struct list_head node; /* Node for pending list */
  90. };
  91. struct cppi41_desc {
  92. u32 pd0;
  93. u32 pd1;
  94. u32 pd2;
  95. u32 pd3;
  96. u32 pd4;
  97. u32 pd5;
  98. u32 pd6;
  99. u32 pd7;
  100. } __aligned(32);
  101. struct chan_queues {
  102. u16 submit;
  103. u16 complete;
  104. };
  105. struct cppi41_dd {
  106. struct dma_device ddev;
  107. void *qmgr_scratch;
  108. dma_addr_t scratch_phys;
  109. struct cppi41_desc *cd;
  110. dma_addr_t descs_phys;
  111. u32 first_td_desc;
  112. struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
  113. void __iomem *usbss_mem;
  114. void __iomem *ctrl_mem;
  115. void __iomem *sched_mem;
  116. void __iomem *qmgr_mem;
  117. unsigned int irq;
  118. const struct chan_queues *queues_rx;
  119. const struct chan_queues *queues_tx;
  120. struct chan_queues td_queue;
  121. struct list_head pending; /* Pending queued transfers */
  122. spinlock_t lock; /* Lock for pending list */
  123. /* context for suspend/resume */
  124. unsigned int dma_tdfdq;
  125. };
  126. #define FIST_COMPLETION_QUEUE 93
  127. static struct chan_queues usb_queues_tx[] = {
  128. /* USB0 ENDP 1 */
  129. [ 0] = { .submit = 32, .complete = 93},
  130. [ 1] = { .submit = 34, .complete = 94},
  131. [ 2] = { .submit = 36, .complete = 95},
  132. [ 3] = { .submit = 38, .complete = 96},
  133. [ 4] = { .submit = 40, .complete = 97},
  134. [ 5] = { .submit = 42, .complete = 98},
  135. [ 6] = { .submit = 44, .complete = 99},
  136. [ 7] = { .submit = 46, .complete = 100},
  137. [ 8] = { .submit = 48, .complete = 101},
  138. [ 9] = { .submit = 50, .complete = 102},
  139. [10] = { .submit = 52, .complete = 103},
  140. [11] = { .submit = 54, .complete = 104},
  141. [12] = { .submit = 56, .complete = 105},
  142. [13] = { .submit = 58, .complete = 106},
  143. [14] = { .submit = 60, .complete = 107},
  144. /* USB1 ENDP1 */
  145. [15] = { .submit = 62, .complete = 125},
  146. [16] = { .submit = 64, .complete = 126},
  147. [17] = { .submit = 66, .complete = 127},
  148. [18] = { .submit = 68, .complete = 128},
  149. [19] = { .submit = 70, .complete = 129},
  150. [20] = { .submit = 72, .complete = 130},
  151. [21] = { .submit = 74, .complete = 131},
  152. [22] = { .submit = 76, .complete = 132},
  153. [23] = { .submit = 78, .complete = 133},
  154. [24] = { .submit = 80, .complete = 134},
  155. [25] = { .submit = 82, .complete = 135},
  156. [26] = { .submit = 84, .complete = 136},
  157. [27] = { .submit = 86, .complete = 137},
  158. [28] = { .submit = 88, .complete = 138},
  159. [29] = { .submit = 90, .complete = 139},
  160. };
  161. static const struct chan_queues usb_queues_rx[] = {
  162. /* USB0 ENDP 1 */
  163. [ 0] = { .submit = 1, .complete = 109},
  164. [ 1] = { .submit = 2, .complete = 110},
  165. [ 2] = { .submit = 3, .complete = 111},
  166. [ 3] = { .submit = 4, .complete = 112},
  167. [ 4] = { .submit = 5, .complete = 113},
  168. [ 5] = { .submit = 6, .complete = 114},
  169. [ 6] = { .submit = 7, .complete = 115},
  170. [ 7] = { .submit = 8, .complete = 116},
  171. [ 8] = { .submit = 9, .complete = 117},
  172. [ 9] = { .submit = 10, .complete = 118},
  173. [10] = { .submit = 11, .complete = 119},
  174. [11] = { .submit = 12, .complete = 120},
  175. [12] = { .submit = 13, .complete = 121},
  176. [13] = { .submit = 14, .complete = 122},
  177. [14] = { .submit = 15, .complete = 123},
  178. /* USB1 ENDP 1 */
  179. [15] = { .submit = 16, .complete = 141},
  180. [16] = { .submit = 17, .complete = 142},
  181. [17] = { .submit = 18, .complete = 143},
  182. [18] = { .submit = 19, .complete = 144},
  183. [19] = { .submit = 20, .complete = 145},
  184. [20] = { .submit = 21, .complete = 146},
  185. [21] = { .submit = 22, .complete = 147},
  186. [22] = { .submit = 23, .complete = 148},
  187. [23] = { .submit = 24, .complete = 149},
  188. [24] = { .submit = 25, .complete = 150},
  189. [25] = { .submit = 26, .complete = 151},
  190. [26] = { .submit = 27, .complete = 152},
  191. [27] = { .submit = 28, .complete = 153},
  192. [28] = { .submit = 29, .complete = 154},
  193. [29] = { .submit = 30, .complete = 155},
  194. };
  195. struct cppi_glue_infos {
  196. irqreturn_t (*isr)(int irq, void *data);
  197. const struct chan_queues *queues_rx;
  198. const struct chan_queues *queues_tx;
  199. struct chan_queues td_queue;
  200. };
  201. static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
  202. {
  203. return container_of(c, struct cppi41_channel, chan);
  204. }
  205. static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
  206. {
  207. struct cppi41_channel *c;
  208. u32 descs_size;
  209. u32 desc_num;
  210. descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
  211. if (!((desc >= cdd->descs_phys) &&
  212. (desc < (cdd->descs_phys + descs_size)))) {
  213. return NULL;
  214. }
  215. desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
  216. BUG_ON(desc_num >= ALLOC_DECS_NUM);
  217. c = cdd->chan_busy[desc_num];
  218. cdd->chan_busy[desc_num] = NULL;
  219. /* Usecount for chan_busy[], paired with push_desc_queue() */
  220. pm_runtime_put(cdd->ddev.dev);
  221. return c;
  222. }
  223. static void cppi_writel(u32 val, void *__iomem *mem)
  224. {
  225. __raw_writel(val, mem);
  226. }
  227. static u32 cppi_readl(void *__iomem *mem)
  228. {
  229. return __raw_readl(mem);
  230. }
  231. static u32 pd_trans_len(u32 val)
  232. {
  233. return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
  234. }
  235. static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
  236. {
  237. u32 desc;
  238. desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
  239. desc &= ~0x1f;
  240. return desc;
  241. }
  242. static irqreturn_t cppi41_irq(int irq, void *data)
  243. {
  244. struct cppi41_dd *cdd = data;
  245. struct cppi41_channel *c;
  246. u32 status;
  247. int i;
  248. status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
  249. if (!(status & USBSS_IRQ_PD_COMP))
  250. return IRQ_NONE;
  251. cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
  252. for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
  253. i++) {
  254. u32 val;
  255. u32 q_num;
  256. val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
  257. if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
  258. u32 mask;
  259. /* set corresponding bit for completetion Q 93 */
  260. mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
  261. /* not set all bits for queues less than Q 93 */
  262. mask--;
  263. /* now invert and keep only Q 93+ set */
  264. val &= ~mask;
  265. }
  266. if (val)
  267. __iormb();
  268. while (val) {
  269. u32 desc, len;
  270. int error;
  271. error = pm_runtime_get(cdd->ddev.dev);
  272. if (error < 0)
  273. dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
  274. __func__, error);
  275. q_num = __fls(val);
  276. val &= ~(1 << q_num);
  277. q_num += 32 * i;
  278. desc = cppi41_pop_desc(cdd, q_num);
  279. c = desc_to_chan(cdd, desc);
  280. if (WARN_ON(!c)) {
  281. pr_err("%s() q %d desc %08x\n", __func__,
  282. q_num, desc);
  283. continue;
  284. }
  285. if (c->desc->pd2 & PD2_ZERO_LENGTH)
  286. len = 0;
  287. else
  288. len = pd_trans_len(c->desc->pd0);
  289. c->residue = pd_trans_len(c->desc->pd6) - len;
  290. dma_cookie_complete(&c->txd);
  291. dmaengine_desc_get_callback_invoke(&c->txd, NULL);
  292. pm_runtime_mark_last_busy(cdd->ddev.dev);
  293. pm_runtime_put_autosuspend(cdd->ddev.dev);
  294. }
  295. }
  296. return IRQ_HANDLED;
  297. }
  298. static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
  299. {
  300. dma_cookie_t cookie;
  301. cookie = dma_cookie_assign(tx);
  302. return cookie;
  303. }
  304. static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
  305. {
  306. struct cppi41_channel *c = to_cpp41_chan(chan);
  307. struct cppi41_dd *cdd = c->cdd;
  308. int error;
  309. error = pm_runtime_get_sync(cdd->ddev.dev);
  310. if (error < 0) {
  311. dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
  312. __func__, error);
  313. pm_runtime_put_noidle(cdd->ddev.dev);
  314. return error;
  315. }
  316. dma_cookie_init(chan);
  317. dma_async_tx_descriptor_init(&c->txd, chan);
  318. c->txd.tx_submit = cppi41_tx_submit;
  319. if (!c->is_tx)
  320. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  321. pm_runtime_mark_last_busy(cdd->ddev.dev);
  322. pm_runtime_put_autosuspend(cdd->ddev.dev);
  323. return 0;
  324. }
  325. static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
  326. {
  327. struct cppi41_channel *c = to_cpp41_chan(chan);
  328. struct cppi41_dd *cdd = c->cdd;
  329. int error;
  330. error = pm_runtime_get_sync(cdd->ddev.dev);
  331. if (error < 0) {
  332. pm_runtime_put_noidle(cdd->ddev.dev);
  333. return;
  334. }
  335. WARN_ON(!list_empty(&cdd->pending));
  336. pm_runtime_mark_last_busy(cdd->ddev.dev);
  337. pm_runtime_put_autosuspend(cdd->ddev.dev);
  338. }
  339. static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
  340. dma_cookie_t cookie, struct dma_tx_state *txstate)
  341. {
  342. struct cppi41_channel *c = to_cpp41_chan(chan);
  343. enum dma_status ret;
  344. /* lock */
  345. ret = dma_cookie_status(chan, cookie, txstate);
  346. if (txstate && ret == DMA_COMPLETE)
  347. txstate->residue = c->residue;
  348. /* unlock */
  349. return ret;
  350. }
  351. static void push_desc_queue(struct cppi41_channel *c)
  352. {
  353. struct cppi41_dd *cdd = c->cdd;
  354. u32 desc_num;
  355. u32 desc_phys;
  356. u32 reg;
  357. c->residue = 0;
  358. reg = GCR_CHAN_ENABLE;
  359. if (!c->is_tx) {
  360. reg |= GCR_STARV_RETRY;
  361. reg |= GCR_DESC_TYPE_HOST;
  362. reg |= c->q_comp_num;
  363. }
  364. cppi_writel(reg, c->gcr_reg);
  365. /*
  366. * We don't use writel() but __raw_writel() so we have to make sure
  367. * that the DMA descriptor in coherent memory made to the main memory
  368. * before starting the dma engine.
  369. */
  370. __iowmb();
  371. /*
  372. * DMA transfers can take at least 200ms to complete with USB mass
  373. * storage connected. To prevent autosuspend timeouts, we must use
  374. * pm_runtime_get/put() when chan_busy[] is modified. This will get
  375. * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
  376. * outcome of the transfer.
  377. */
  378. pm_runtime_get(cdd->ddev.dev);
  379. desc_phys = lower_32_bits(c->desc_phys);
  380. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  381. WARN_ON(cdd->chan_busy[desc_num]);
  382. cdd->chan_busy[desc_num] = c;
  383. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  384. reg |= desc_phys;
  385. cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
  386. }
  387. static void pending_desc(struct cppi41_channel *c)
  388. {
  389. struct cppi41_dd *cdd = c->cdd;
  390. unsigned long flags;
  391. spin_lock_irqsave(&cdd->lock, flags);
  392. list_add_tail(&c->node, &cdd->pending);
  393. spin_unlock_irqrestore(&cdd->lock, flags);
  394. }
  395. static void cppi41_dma_issue_pending(struct dma_chan *chan)
  396. {
  397. struct cppi41_channel *c = to_cpp41_chan(chan);
  398. struct cppi41_dd *cdd = c->cdd;
  399. int error;
  400. error = pm_runtime_get(cdd->ddev.dev);
  401. if ((error != -EINPROGRESS) && error < 0) {
  402. pm_runtime_put_noidle(cdd->ddev.dev);
  403. dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
  404. error);
  405. return;
  406. }
  407. if (likely(pm_runtime_active(cdd->ddev.dev)))
  408. push_desc_queue(c);
  409. else
  410. pending_desc(c);
  411. pm_runtime_mark_last_busy(cdd->ddev.dev);
  412. pm_runtime_put_autosuspend(cdd->ddev.dev);
  413. }
  414. static u32 get_host_pd0(u32 length)
  415. {
  416. u32 reg;
  417. reg = DESC_TYPE_HOST << DESC_TYPE;
  418. reg |= length;
  419. return reg;
  420. }
  421. static u32 get_host_pd1(struct cppi41_channel *c)
  422. {
  423. u32 reg;
  424. reg = 0;
  425. return reg;
  426. }
  427. static u32 get_host_pd2(struct cppi41_channel *c)
  428. {
  429. u32 reg;
  430. reg = DESC_TYPE_USB;
  431. reg |= c->q_comp_num;
  432. return reg;
  433. }
  434. static u32 get_host_pd3(u32 length)
  435. {
  436. u32 reg;
  437. /* PD3 = packet size */
  438. reg = length;
  439. return reg;
  440. }
  441. static u32 get_host_pd6(u32 length)
  442. {
  443. u32 reg;
  444. /* PD6 buffer size */
  445. reg = DESC_PD_COMPLETE;
  446. reg |= length;
  447. return reg;
  448. }
  449. static u32 get_host_pd4_or_7(u32 addr)
  450. {
  451. u32 reg;
  452. reg = addr;
  453. return reg;
  454. }
  455. static u32 get_host_pd5(void)
  456. {
  457. u32 reg;
  458. reg = 0;
  459. return reg;
  460. }
  461. static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
  462. struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
  463. enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
  464. {
  465. struct cppi41_channel *c = to_cpp41_chan(chan);
  466. struct cppi41_desc *d;
  467. struct scatterlist *sg;
  468. unsigned int i;
  469. d = c->desc;
  470. for_each_sg(sgl, sg, sg_len, i) {
  471. u32 addr;
  472. u32 len;
  473. /* We need to use more than one desc once musb supports sg */
  474. addr = lower_32_bits(sg_dma_address(sg));
  475. len = sg_dma_len(sg);
  476. d->pd0 = get_host_pd0(len);
  477. d->pd1 = get_host_pd1(c);
  478. d->pd2 = get_host_pd2(c);
  479. d->pd3 = get_host_pd3(len);
  480. d->pd4 = get_host_pd4_or_7(addr);
  481. d->pd5 = get_host_pd5();
  482. d->pd6 = get_host_pd6(len);
  483. d->pd7 = get_host_pd4_or_7(addr);
  484. d++;
  485. }
  486. return &c->txd;
  487. }
  488. static void cppi41_compute_td_desc(struct cppi41_desc *d)
  489. {
  490. d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
  491. }
  492. static int cppi41_tear_down_chan(struct cppi41_channel *c)
  493. {
  494. struct cppi41_dd *cdd = c->cdd;
  495. struct cppi41_desc *td;
  496. u32 reg;
  497. u32 desc_phys;
  498. u32 td_desc_phys;
  499. td = cdd->cd;
  500. td += cdd->first_td_desc;
  501. td_desc_phys = cdd->descs_phys;
  502. td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
  503. if (!c->td_queued) {
  504. cppi41_compute_td_desc(td);
  505. __iowmb();
  506. reg = (sizeof(struct cppi41_desc) - 24) / 4;
  507. reg |= td_desc_phys;
  508. cppi_writel(reg, cdd->qmgr_mem +
  509. QMGR_QUEUE_D(cdd->td_queue.submit));
  510. reg = GCR_CHAN_ENABLE;
  511. if (!c->is_tx) {
  512. reg |= GCR_STARV_RETRY;
  513. reg |= GCR_DESC_TYPE_HOST;
  514. reg |= c->q_comp_num;
  515. }
  516. reg |= GCR_TEARDOWN;
  517. cppi_writel(reg, c->gcr_reg);
  518. c->td_queued = 1;
  519. c->td_retry = 500;
  520. }
  521. if (!c->td_seen || !c->td_desc_seen) {
  522. desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
  523. if (!desc_phys)
  524. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  525. if (desc_phys == c->desc_phys) {
  526. c->td_desc_seen = 1;
  527. } else if (desc_phys == td_desc_phys) {
  528. u32 pd0;
  529. __iormb();
  530. pd0 = td->pd0;
  531. WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
  532. WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
  533. WARN_ON((pd0 & 0x1f) != c->port_num);
  534. c->td_seen = 1;
  535. } else if (desc_phys) {
  536. WARN_ON_ONCE(1);
  537. }
  538. }
  539. c->td_retry--;
  540. /*
  541. * If the TX descriptor / channel is in use, the caller needs to poke
  542. * his TD bit multiple times. After that he hardware releases the
  543. * transfer descriptor followed by TD descriptor. Waiting seems not to
  544. * cause any difference.
  545. * RX seems to be thrown out right away. However once the TearDown
  546. * descriptor gets through we are done. If we have seens the transfer
  547. * descriptor before the TD we fetch it from enqueue, it has to be
  548. * there waiting for us.
  549. */
  550. if (!c->td_seen && c->td_retry) {
  551. udelay(1);
  552. return -EAGAIN;
  553. }
  554. WARN_ON(!c->td_retry);
  555. if (!c->td_desc_seen) {
  556. desc_phys = cppi41_pop_desc(cdd, c->q_num);
  557. if (!desc_phys)
  558. desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
  559. WARN_ON(!desc_phys);
  560. }
  561. c->td_queued = 0;
  562. c->td_seen = 0;
  563. c->td_desc_seen = 0;
  564. cppi_writel(0, c->gcr_reg);
  565. return 0;
  566. }
  567. static int cppi41_stop_chan(struct dma_chan *chan)
  568. {
  569. struct cppi41_channel *c = to_cpp41_chan(chan);
  570. struct cppi41_dd *cdd = c->cdd;
  571. u32 desc_num;
  572. u32 desc_phys;
  573. int ret;
  574. desc_phys = lower_32_bits(c->desc_phys);
  575. desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
  576. if (!cdd->chan_busy[desc_num])
  577. return 0;
  578. ret = cppi41_tear_down_chan(c);
  579. if (ret)
  580. return ret;
  581. WARN_ON(!cdd->chan_busy[desc_num]);
  582. cdd->chan_busy[desc_num] = NULL;
  583. /* Usecount for chan_busy[], paired with push_desc_queue() */
  584. pm_runtime_put(cdd->ddev.dev);
  585. return 0;
  586. }
  587. static void cleanup_chans(struct cppi41_dd *cdd)
  588. {
  589. while (!list_empty(&cdd->ddev.channels)) {
  590. struct cppi41_channel *cchan;
  591. cchan = list_first_entry(&cdd->ddev.channels,
  592. struct cppi41_channel, chan.device_node);
  593. list_del(&cchan->chan.device_node);
  594. kfree(cchan);
  595. }
  596. }
  597. static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
  598. {
  599. struct cppi41_channel *cchan;
  600. int i;
  601. int ret;
  602. u32 n_chans;
  603. ret = of_property_read_u32(dev->of_node, "#dma-channels",
  604. &n_chans);
  605. if (ret)
  606. return ret;
  607. /*
  608. * The channels can only be used as TX or as RX. So we add twice
  609. * that much dma channels because USB can only do RX or TX.
  610. */
  611. n_chans *= 2;
  612. for (i = 0; i < n_chans; i++) {
  613. cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
  614. if (!cchan)
  615. goto err;
  616. cchan->cdd = cdd;
  617. if (i & 1) {
  618. cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
  619. cchan->is_tx = 1;
  620. } else {
  621. cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
  622. cchan->is_tx = 0;
  623. }
  624. cchan->port_num = i >> 1;
  625. cchan->desc = &cdd->cd[i];
  626. cchan->desc_phys = cdd->descs_phys;
  627. cchan->desc_phys += i * sizeof(struct cppi41_desc);
  628. cchan->chan.device = &cdd->ddev;
  629. list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
  630. }
  631. cdd->first_td_desc = n_chans;
  632. return 0;
  633. err:
  634. cleanup_chans(cdd);
  635. return -ENOMEM;
  636. }
  637. static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
  638. {
  639. unsigned int mem_decs;
  640. int i;
  641. mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
  642. for (i = 0; i < DESCS_AREAS; i++) {
  643. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
  644. cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  645. dma_free_coherent(dev, mem_decs, cdd->cd,
  646. cdd->descs_phys);
  647. }
  648. }
  649. static void disable_sched(struct cppi41_dd *cdd)
  650. {
  651. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  652. }
  653. static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
  654. {
  655. disable_sched(cdd);
  656. purge_descs(dev, cdd);
  657. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  658. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  659. dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
  660. cdd->scratch_phys);
  661. }
  662. static int init_descs(struct device *dev, struct cppi41_dd *cdd)
  663. {
  664. unsigned int desc_size;
  665. unsigned int mem_decs;
  666. int i;
  667. u32 reg;
  668. u32 idx;
  669. BUILD_BUG_ON(sizeof(struct cppi41_desc) &
  670. (sizeof(struct cppi41_desc) - 1));
  671. BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
  672. BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
  673. desc_size = sizeof(struct cppi41_desc);
  674. mem_decs = ALLOC_DECS_NUM * desc_size;
  675. idx = 0;
  676. for (i = 0; i < DESCS_AREAS; i++) {
  677. reg = idx << QMGR_MEMCTRL_IDX_SH;
  678. reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
  679. reg |= ilog2(ALLOC_DECS_NUM) - 5;
  680. BUILD_BUG_ON(DESCS_AREAS != 1);
  681. cdd->cd = dma_alloc_coherent(dev, mem_decs,
  682. &cdd->descs_phys, GFP_KERNEL);
  683. if (!cdd->cd)
  684. return -ENOMEM;
  685. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  686. cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
  687. idx += ALLOC_DECS_NUM;
  688. }
  689. return 0;
  690. }
  691. static void init_sched(struct cppi41_dd *cdd)
  692. {
  693. unsigned ch;
  694. unsigned word;
  695. u32 reg;
  696. word = 0;
  697. cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
  698. for (ch = 0; ch < 15 * 2; ch += 2) {
  699. reg = SCHED_ENTRY0_CHAN(ch);
  700. reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
  701. reg |= SCHED_ENTRY2_CHAN(ch + 1);
  702. reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
  703. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
  704. word++;
  705. }
  706. reg = 15 * 2 * 2 - 1;
  707. reg |= DMA_SCHED_CTRL_EN;
  708. cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
  709. }
  710. static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
  711. {
  712. int ret;
  713. BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
  714. cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
  715. &cdd->scratch_phys, GFP_KERNEL);
  716. if (!cdd->qmgr_scratch)
  717. return -ENOMEM;
  718. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  719. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  720. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  721. ret = init_descs(dev, cdd);
  722. if (ret)
  723. goto err_td;
  724. cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
  725. init_sched(cdd);
  726. return 0;
  727. err_td:
  728. deinit_cppi41(dev, cdd);
  729. return ret;
  730. }
  731. static struct platform_driver cpp41_dma_driver;
  732. /*
  733. * The param format is:
  734. * X Y
  735. * X: Port
  736. * Y: 0 = RX else TX
  737. */
  738. #define INFO_PORT 0
  739. #define INFO_IS_TX 1
  740. static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
  741. {
  742. struct cppi41_channel *cchan;
  743. struct cppi41_dd *cdd;
  744. const struct chan_queues *queues;
  745. u32 *num = param;
  746. if (chan->device->dev->driver != &cpp41_dma_driver.driver)
  747. return false;
  748. cchan = to_cpp41_chan(chan);
  749. if (cchan->port_num != num[INFO_PORT])
  750. return false;
  751. if (cchan->is_tx && !num[INFO_IS_TX])
  752. return false;
  753. cdd = cchan->cdd;
  754. if (cchan->is_tx)
  755. queues = cdd->queues_tx;
  756. else
  757. queues = cdd->queues_rx;
  758. BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
  759. if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
  760. return false;
  761. cchan->q_num = queues[cchan->port_num].submit;
  762. cchan->q_comp_num = queues[cchan->port_num].complete;
  763. return true;
  764. }
  765. static struct of_dma_filter_info cpp41_dma_info = {
  766. .filter_fn = cpp41_dma_filter_fn,
  767. };
  768. static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
  769. struct of_dma *ofdma)
  770. {
  771. int count = dma_spec->args_count;
  772. struct of_dma_filter_info *info = ofdma->of_dma_data;
  773. if (!info || !info->filter_fn)
  774. return NULL;
  775. if (count != 2)
  776. return NULL;
  777. return dma_request_channel(info->dma_cap, info->filter_fn,
  778. &dma_spec->args[0]);
  779. }
  780. static const struct cppi_glue_infos usb_infos = {
  781. .isr = cppi41_irq,
  782. .queues_rx = usb_queues_rx,
  783. .queues_tx = usb_queues_tx,
  784. .td_queue = { .submit = 31, .complete = 0 },
  785. };
  786. static const struct of_device_id cppi41_dma_ids[] = {
  787. { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
  788. {},
  789. };
  790. MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
  791. static const struct cppi_glue_infos *get_glue_info(struct device *dev)
  792. {
  793. const struct of_device_id *of_id;
  794. of_id = of_match_node(cppi41_dma_ids, dev->of_node);
  795. if (!of_id)
  796. return NULL;
  797. return of_id->data;
  798. }
  799. #define CPPI41_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
  800. BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
  801. BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
  802. BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  803. static int cppi41_dma_probe(struct platform_device *pdev)
  804. {
  805. struct cppi41_dd *cdd;
  806. struct device *dev = &pdev->dev;
  807. const struct cppi_glue_infos *glue_info;
  808. int irq;
  809. int ret;
  810. glue_info = get_glue_info(dev);
  811. if (!glue_info)
  812. return -EINVAL;
  813. cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
  814. if (!cdd)
  815. return -ENOMEM;
  816. dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
  817. cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
  818. cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
  819. cdd->ddev.device_tx_status = cppi41_dma_tx_status;
  820. cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
  821. cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
  822. cdd->ddev.device_terminate_all = cppi41_stop_chan;
  823. cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
  824. cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
  825. cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
  826. cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
  827. cdd->ddev.dev = dev;
  828. INIT_LIST_HEAD(&cdd->ddev.channels);
  829. cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
  830. cdd->usbss_mem = of_iomap(dev->of_node, 0);
  831. cdd->ctrl_mem = of_iomap(dev->of_node, 1);
  832. cdd->sched_mem = of_iomap(dev->of_node, 2);
  833. cdd->qmgr_mem = of_iomap(dev->of_node, 3);
  834. spin_lock_init(&cdd->lock);
  835. INIT_LIST_HEAD(&cdd->pending);
  836. platform_set_drvdata(pdev, cdd);
  837. if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
  838. !cdd->qmgr_mem)
  839. return -ENXIO;
  840. pm_runtime_enable(dev);
  841. pm_runtime_set_autosuspend_delay(dev, 100);
  842. pm_runtime_use_autosuspend(dev);
  843. ret = pm_runtime_get_sync(dev);
  844. if (ret < 0)
  845. goto err_get_sync;
  846. cdd->queues_rx = glue_info->queues_rx;
  847. cdd->queues_tx = glue_info->queues_tx;
  848. cdd->td_queue = glue_info->td_queue;
  849. ret = init_cppi41(dev, cdd);
  850. if (ret)
  851. goto err_init_cppi;
  852. ret = cppi41_add_chans(dev, cdd);
  853. if (ret)
  854. goto err_chans;
  855. irq = irq_of_parse_and_map(dev->of_node, 0);
  856. if (!irq) {
  857. ret = -EINVAL;
  858. goto err_irq;
  859. }
  860. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  861. ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
  862. dev_name(dev), cdd);
  863. if (ret)
  864. goto err_irq;
  865. cdd->irq = irq;
  866. ret = dma_async_device_register(&cdd->ddev);
  867. if (ret)
  868. goto err_dma_reg;
  869. ret = of_dma_controller_register(dev->of_node,
  870. cppi41_dma_xlate, &cpp41_dma_info);
  871. if (ret)
  872. goto err_of;
  873. pm_runtime_mark_last_busy(dev);
  874. pm_runtime_put_autosuspend(dev);
  875. return 0;
  876. err_of:
  877. dma_async_device_unregister(&cdd->ddev);
  878. err_dma_reg:
  879. err_irq:
  880. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  881. cleanup_chans(cdd);
  882. err_chans:
  883. deinit_cppi41(dev, cdd);
  884. err_init_cppi:
  885. pm_runtime_dont_use_autosuspend(dev);
  886. err_get_sync:
  887. pm_runtime_put_sync(dev);
  888. pm_runtime_disable(dev);
  889. iounmap(cdd->usbss_mem);
  890. iounmap(cdd->ctrl_mem);
  891. iounmap(cdd->sched_mem);
  892. iounmap(cdd->qmgr_mem);
  893. return ret;
  894. }
  895. static int cppi41_dma_remove(struct platform_device *pdev)
  896. {
  897. struct cppi41_dd *cdd = platform_get_drvdata(pdev);
  898. int error;
  899. error = pm_runtime_get_sync(&pdev->dev);
  900. if (error < 0)
  901. dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
  902. __func__, error);
  903. of_dma_controller_free(pdev->dev.of_node);
  904. dma_async_device_unregister(&cdd->ddev);
  905. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  906. devm_free_irq(&pdev->dev, cdd->irq, cdd);
  907. cleanup_chans(cdd);
  908. deinit_cppi41(&pdev->dev, cdd);
  909. iounmap(cdd->usbss_mem);
  910. iounmap(cdd->ctrl_mem);
  911. iounmap(cdd->sched_mem);
  912. iounmap(cdd->qmgr_mem);
  913. pm_runtime_dont_use_autosuspend(&pdev->dev);
  914. pm_runtime_put_sync(&pdev->dev);
  915. pm_runtime_disable(&pdev->dev);
  916. return 0;
  917. }
  918. static int __maybe_unused cppi41_suspend(struct device *dev)
  919. {
  920. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  921. cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
  922. cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
  923. disable_sched(cdd);
  924. return 0;
  925. }
  926. static int __maybe_unused cppi41_resume(struct device *dev)
  927. {
  928. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  929. struct cppi41_channel *c;
  930. int i;
  931. for (i = 0; i < DESCS_AREAS; i++)
  932. cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
  933. list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
  934. if (!c->is_tx)
  935. cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
  936. init_sched(cdd);
  937. cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
  938. cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
  939. cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
  940. cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
  941. cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
  942. return 0;
  943. }
  944. static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
  945. {
  946. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  947. WARN_ON(!list_empty(&cdd->pending));
  948. return 0;
  949. }
  950. static int __maybe_unused cppi41_runtime_resume(struct device *dev)
  951. {
  952. struct cppi41_dd *cdd = dev_get_drvdata(dev);
  953. struct cppi41_channel *c, *_c;
  954. unsigned long flags;
  955. spin_lock_irqsave(&cdd->lock, flags);
  956. list_for_each_entry_safe(c, _c, &cdd->pending, node) {
  957. push_desc_queue(c);
  958. list_del(&c->node);
  959. }
  960. spin_unlock_irqrestore(&cdd->lock, flags);
  961. return 0;
  962. }
  963. static const struct dev_pm_ops cppi41_pm_ops = {
  964. SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
  965. SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
  966. cppi41_runtime_resume,
  967. NULL)
  968. };
  969. static struct platform_driver cpp41_dma_driver = {
  970. .probe = cppi41_dma_probe,
  971. .remove = cppi41_dma_remove,
  972. .driver = {
  973. .name = "cppi41-dma-engine",
  974. .pm = &cppi41_pm_ops,
  975. .of_match_table = of_match_ptr(cppi41_dma_ids),
  976. },
  977. };
  978. module_platform_driver(cpp41_dma_driver);
  979. MODULE_LICENSE("GPL");
  980. MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");