hrtimer.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771
  1. /*
  2. * linux/kernel/hrtimer.c
  3. *
  4. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6. * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
  7. *
  8. * High-resolution kernel timers
  9. *
  10. * In contrast to the low-resolution timeout API implemented in
  11. * kernel/timer.c, hrtimers provide finer resolution and accuracy
  12. * depending on system configuration and capabilities.
  13. *
  14. * These timers are currently used for:
  15. * - itimers
  16. * - POSIX timers
  17. * - nanosleep
  18. * - precise in-kernel timing
  19. *
  20. * Started by: Thomas Gleixner and Ingo Molnar
  21. *
  22. * Credits:
  23. * based on kernel/timer.c
  24. *
  25. * Help, testing, suggestions, bugfixes, improvements were
  26. * provided by:
  27. *
  28. * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29. * et. al.
  30. *
  31. * For licencing details see kernel-base/COPYING
  32. */
  33. #include <linux/cpu.h>
  34. #include <linux/export.h>
  35. #include <linux/percpu.h>
  36. #include <linux/hrtimer.h>
  37. #include <linux/notifier.h>
  38. #include <linux/syscalls.h>
  39. #include <linux/kallsyms.h>
  40. #include <linux/interrupt.h>
  41. #include <linux/tick.h>
  42. #include <linux/seq_file.h>
  43. #include <linux/err.h>
  44. #include <linux/debugobjects.h>
  45. #include <linux/sched/signal.h>
  46. #include <linux/sched/sysctl.h>
  47. #include <linux/sched/rt.h>
  48. #include <linux/sched/deadline.h>
  49. #include <linux/sched/nohz.h>
  50. #include <linux/sched/debug.h>
  51. #include <linux/timer.h>
  52. #include <linux/freezer.h>
  53. #include <linux/uaccess.h>
  54. #include <trace/events/timer.h>
  55. #include "tick-internal.h"
  56. /*
  57. * The timer bases:
  58. *
  59. * There are more clockids than hrtimer bases. Thus, we index
  60. * into the timer bases by the hrtimer_base_type enum. When trying
  61. * to reach a base using a clockid, hrtimer_clockid_to_base()
  62. * is used to convert from clockid to the proper hrtimer_base_type.
  63. */
  64. DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  65. {
  66. .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  67. .seq = SEQCNT_ZERO(hrtimer_bases.seq),
  68. .clock_base =
  69. {
  70. {
  71. .index = HRTIMER_BASE_MONOTONIC,
  72. .clockid = CLOCK_MONOTONIC,
  73. .get_time = &ktime_get,
  74. },
  75. {
  76. .index = HRTIMER_BASE_REALTIME,
  77. .clockid = CLOCK_REALTIME,
  78. .get_time = &ktime_get_real,
  79. },
  80. {
  81. .index = HRTIMER_BASE_BOOTTIME,
  82. .clockid = CLOCK_BOOTTIME,
  83. .get_time = &ktime_get_boottime,
  84. },
  85. {
  86. .index = HRTIMER_BASE_TAI,
  87. .clockid = CLOCK_TAI,
  88. .get_time = &ktime_get_clocktai,
  89. },
  90. }
  91. };
  92. static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
  93. /* Make sure we catch unsupported clockids */
  94. [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
  95. [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
  96. [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
  97. [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
  98. [CLOCK_TAI] = HRTIMER_BASE_TAI,
  99. };
  100. /*
  101. * Functions and macros which are different for UP/SMP systems are kept in a
  102. * single place
  103. */
  104. #ifdef CONFIG_SMP
  105. /*
  106. * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
  107. * such that hrtimer_callback_running() can unconditionally dereference
  108. * timer->base->cpu_base
  109. */
  110. static struct hrtimer_cpu_base migration_cpu_base = {
  111. .seq = SEQCNT_ZERO(migration_cpu_base),
  112. .clock_base = { { .cpu_base = &migration_cpu_base, }, },
  113. };
  114. #define migration_base migration_cpu_base.clock_base[0]
  115. /*
  116. * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
  117. * means that all timers which are tied to this base via timer->base are
  118. * locked, and the base itself is locked too.
  119. *
  120. * So __run_timers/migrate_timers can safely modify all timers which could
  121. * be found on the lists/queues.
  122. *
  123. * When the timer's base is locked, and the timer removed from list, it is
  124. * possible to set timer->base = &migration_base and drop the lock: the timer
  125. * remains locked.
  126. */
  127. static
  128. struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
  129. unsigned long *flags)
  130. {
  131. struct hrtimer_clock_base *base;
  132. for (;;) {
  133. base = timer->base;
  134. if (likely(base != &migration_base)) {
  135. raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
  136. if (likely(base == timer->base))
  137. return base;
  138. /* The timer has migrated to another CPU: */
  139. raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
  140. }
  141. cpu_relax();
  142. }
  143. }
  144. /*
  145. * With HIGHRES=y we do not migrate the timer when it is expiring
  146. * before the next event on the target cpu because we cannot reprogram
  147. * the target cpu hardware and we would cause it to fire late.
  148. *
  149. * Called with cpu_base->lock of target cpu held.
  150. */
  151. static int
  152. hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
  153. {
  154. #ifdef CONFIG_HIGH_RES_TIMERS
  155. ktime_t expires;
  156. if (!new_base->cpu_base->hres_active)
  157. return 0;
  158. expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
  159. return expires <= new_base->cpu_base->expires_next;
  160. #else
  161. return 0;
  162. #endif
  163. }
  164. #ifdef CONFIG_NO_HZ_COMMON
  165. static inline
  166. struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
  167. int pinned)
  168. {
  169. if (pinned || !base->migration_enabled)
  170. return base;
  171. return &per_cpu(hrtimer_bases, get_nohz_timer_target());
  172. }
  173. #else
  174. static inline
  175. struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
  176. int pinned)
  177. {
  178. return base;
  179. }
  180. #endif
  181. /*
  182. * We switch the timer base to a power-optimized selected CPU target,
  183. * if:
  184. * - NO_HZ_COMMON is enabled
  185. * - timer migration is enabled
  186. * - the timer callback is not running
  187. * - the timer is not the first expiring timer on the new target
  188. *
  189. * If one of the above requirements is not fulfilled we move the timer
  190. * to the current CPU or leave it on the previously assigned CPU if
  191. * the timer callback is currently running.
  192. */
  193. static inline struct hrtimer_clock_base *
  194. switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
  195. int pinned)
  196. {
  197. struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
  198. struct hrtimer_clock_base *new_base;
  199. int basenum = base->index;
  200. this_cpu_base = this_cpu_ptr(&hrtimer_bases);
  201. new_cpu_base = get_target_base(this_cpu_base, pinned);
  202. again:
  203. new_base = &new_cpu_base->clock_base[basenum];
  204. if (base != new_base) {
  205. /*
  206. * We are trying to move timer to new_base.
  207. * However we can't change timer's base while it is running,
  208. * so we keep it on the same CPU. No hassle vs. reprogramming
  209. * the event source in the high resolution case. The softirq
  210. * code will take care of this when the timer function has
  211. * completed. There is no conflict as we hold the lock until
  212. * the timer is enqueued.
  213. */
  214. if (unlikely(hrtimer_callback_running(timer)))
  215. return base;
  216. /* See the comment in lock_hrtimer_base() */
  217. timer->base = &migration_base;
  218. raw_spin_unlock(&base->cpu_base->lock);
  219. raw_spin_lock(&new_base->cpu_base->lock);
  220. if (new_cpu_base != this_cpu_base &&
  221. hrtimer_check_target(timer, new_base)) {
  222. raw_spin_unlock(&new_base->cpu_base->lock);
  223. raw_spin_lock(&base->cpu_base->lock);
  224. new_cpu_base = this_cpu_base;
  225. timer->base = base;
  226. goto again;
  227. }
  228. timer->base = new_base;
  229. } else {
  230. if (new_cpu_base != this_cpu_base &&
  231. hrtimer_check_target(timer, new_base)) {
  232. new_cpu_base = this_cpu_base;
  233. goto again;
  234. }
  235. }
  236. return new_base;
  237. }
  238. #else /* CONFIG_SMP */
  239. static inline struct hrtimer_clock_base *
  240. lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  241. {
  242. struct hrtimer_clock_base *base = timer->base;
  243. raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
  244. return base;
  245. }
  246. # define switch_hrtimer_base(t, b, p) (b)
  247. #endif /* !CONFIG_SMP */
  248. /*
  249. * Functions for the union type storage format of ktime_t which are
  250. * too large for inlining:
  251. */
  252. #if BITS_PER_LONG < 64
  253. /*
  254. * Divide a ktime value by a nanosecond value
  255. */
  256. s64 __ktime_divns(const ktime_t kt, s64 div)
  257. {
  258. int sft = 0;
  259. s64 dclc;
  260. u64 tmp;
  261. dclc = ktime_to_ns(kt);
  262. tmp = dclc < 0 ? -dclc : dclc;
  263. /* Make sure the divisor is less than 2^32: */
  264. while (div >> 32) {
  265. sft++;
  266. div >>= 1;
  267. }
  268. tmp >>= sft;
  269. do_div(tmp, (unsigned long) div);
  270. return dclc < 0 ? -tmp : tmp;
  271. }
  272. EXPORT_SYMBOL_GPL(__ktime_divns);
  273. #endif /* BITS_PER_LONG >= 64 */
  274. /*
  275. * Add two ktime values and do a safety check for overflow:
  276. */
  277. ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
  278. {
  279. ktime_t res = ktime_add_unsafe(lhs, rhs);
  280. /*
  281. * We use KTIME_SEC_MAX here, the maximum timeout which we can
  282. * return to user space in a timespec:
  283. */
  284. if (res < 0 || res < lhs || res < rhs)
  285. res = ktime_set(KTIME_SEC_MAX, 0);
  286. return res;
  287. }
  288. EXPORT_SYMBOL_GPL(ktime_add_safe);
  289. #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
  290. static struct debug_obj_descr hrtimer_debug_descr;
  291. static void *hrtimer_debug_hint(void *addr)
  292. {
  293. return ((struct hrtimer *) addr)->function;
  294. }
  295. /*
  296. * fixup_init is called when:
  297. * - an active object is initialized
  298. */
  299. static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
  300. {
  301. struct hrtimer *timer = addr;
  302. switch (state) {
  303. case ODEBUG_STATE_ACTIVE:
  304. hrtimer_cancel(timer);
  305. debug_object_init(timer, &hrtimer_debug_descr);
  306. return true;
  307. default:
  308. return false;
  309. }
  310. }
  311. /*
  312. * fixup_activate is called when:
  313. * - an active object is activated
  314. * - an unknown non-static object is activated
  315. */
  316. static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
  317. {
  318. switch (state) {
  319. case ODEBUG_STATE_ACTIVE:
  320. WARN_ON(1);
  321. default:
  322. return false;
  323. }
  324. }
  325. /*
  326. * fixup_free is called when:
  327. * - an active object is freed
  328. */
  329. static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
  330. {
  331. struct hrtimer *timer = addr;
  332. switch (state) {
  333. case ODEBUG_STATE_ACTIVE:
  334. hrtimer_cancel(timer);
  335. debug_object_free(timer, &hrtimer_debug_descr);
  336. return true;
  337. default:
  338. return false;
  339. }
  340. }
  341. static struct debug_obj_descr hrtimer_debug_descr = {
  342. .name = "hrtimer",
  343. .debug_hint = hrtimer_debug_hint,
  344. .fixup_init = hrtimer_fixup_init,
  345. .fixup_activate = hrtimer_fixup_activate,
  346. .fixup_free = hrtimer_fixup_free,
  347. };
  348. static inline void debug_hrtimer_init(struct hrtimer *timer)
  349. {
  350. debug_object_init(timer, &hrtimer_debug_descr);
  351. }
  352. static inline void debug_hrtimer_activate(struct hrtimer *timer)
  353. {
  354. debug_object_activate(timer, &hrtimer_debug_descr);
  355. }
  356. static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
  357. {
  358. debug_object_deactivate(timer, &hrtimer_debug_descr);
  359. }
  360. static inline void debug_hrtimer_free(struct hrtimer *timer)
  361. {
  362. debug_object_free(timer, &hrtimer_debug_descr);
  363. }
  364. static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  365. enum hrtimer_mode mode);
  366. void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
  367. enum hrtimer_mode mode)
  368. {
  369. debug_object_init_on_stack(timer, &hrtimer_debug_descr);
  370. __hrtimer_init(timer, clock_id, mode);
  371. }
  372. EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
  373. void destroy_hrtimer_on_stack(struct hrtimer *timer)
  374. {
  375. debug_object_free(timer, &hrtimer_debug_descr);
  376. }
  377. EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
  378. #else
  379. static inline void debug_hrtimer_init(struct hrtimer *timer) { }
  380. static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
  381. static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
  382. #endif
  383. static inline void
  384. debug_init(struct hrtimer *timer, clockid_t clockid,
  385. enum hrtimer_mode mode)
  386. {
  387. debug_hrtimer_init(timer);
  388. trace_hrtimer_init(timer, clockid, mode);
  389. }
  390. static inline void debug_activate(struct hrtimer *timer)
  391. {
  392. debug_hrtimer_activate(timer);
  393. trace_hrtimer_start(timer);
  394. }
  395. static inline void debug_deactivate(struct hrtimer *timer)
  396. {
  397. debug_hrtimer_deactivate(timer);
  398. trace_hrtimer_cancel(timer);
  399. }
  400. #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  401. static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
  402. struct hrtimer *timer)
  403. {
  404. #ifdef CONFIG_HIGH_RES_TIMERS
  405. cpu_base->next_timer = timer;
  406. #endif
  407. }
  408. static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
  409. {
  410. struct hrtimer_clock_base *base = cpu_base->clock_base;
  411. unsigned int active = cpu_base->active_bases;
  412. ktime_t expires, expires_next = KTIME_MAX;
  413. hrtimer_update_next_timer(cpu_base, NULL);
  414. for (; active; base++, active >>= 1) {
  415. struct timerqueue_node *next;
  416. struct hrtimer *timer;
  417. if (!(active & 0x01))
  418. continue;
  419. next = timerqueue_getnext(&base->active);
  420. timer = container_of(next, struct hrtimer, node);
  421. expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
  422. if (expires < expires_next) {
  423. expires_next = expires;
  424. hrtimer_update_next_timer(cpu_base, timer);
  425. }
  426. }
  427. /*
  428. * clock_was_set() might have changed base->offset of any of
  429. * the clock bases so the result might be negative. Fix it up
  430. * to prevent a false positive in clockevents_program_event().
  431. */
  432. if (expires_next < 0)
  433. expires_next = 0;
  434. return expires_next;
  435. }
  436. #endif
  437. static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
  438. {
  439. ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
  440. ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
  441. ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
  442. return ktime_get_update_offsets_now(&base->clock_was_set_seq,
  443. offs_real, offs_boot, offs_tai);
  444. }
  445. /* High resolution timer related functions */
  446. #ifdef CONFIG_HIGH_RES_TIMERS
  447. /*
  448. * High resolution timer enabled ?
  449. */
  450. static bool hrtimer_hres_enabled __read_mostly = true;
  451. unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
  452. EXPORT_SYMBOL_GPL(hrtimer_resolution);
  453. /*
  454. * Enable / Disable high resolution mode
  455. */
  456. static int __init setup_hrtimer_hres(char *str)
  457. {
  458. return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
  459. }
  460. __setup("highres=", setup_hrtimer_hres);
  461. /*
  462. * hrtimer_high_res_enabled - query, if the highres mode is enabled
  463. */
  464. static inline int hrtimer_is_hres_enabled(void)
  465. {
  466. return hrtimer_hres_enabled;
  467. }
  468. /*
  469. * Is the high resolution mode active ?
  470. */
  471. static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
  472. {
  473. return cpu_base->hres_active;
  474. }
  475. static inline int hrtimer_hres_active(void)
  476. {
  477. return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
  478. }
  479. /*
  480. * Reprogram the event source with checking both queues for the
  481. * next event
  482. * Called with interrupts disabled and base->lock held
  483. */
  484. static void
  485. hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
  486. {
  487. ktime_t expires_next;
  488. if (!cpu_base->hres_active)
  489. return;
  490. expires_next = __hrtimer_get_next_event(cpu_base);
  491. if (skip_equal && expires_next == cpu_base->expires_next)
  492. return;
  493. cpu_base->expires_next = expires_next;
  494. /*
  495. * If a hang was detected in the last timer interrupt then we
  496. * leave the hang delay active in the hardware. We want the
  497. * system to make progress. That also prevents the following
  498. * scenario:
  499. * T1 expires 50ms from now
  500. * T2 expires 5s from now
  501. *
  502. * T1 is removed, so this code is called and would reprogram
  503. * the hardware to 5s from now. Any hrtimer_start after that
  504. * will not reprogram the hardware due to hang_detected being
  505. * set. So we'd effectivly block all timers until the T2 event
  506. * fires.
  507. */
  508. if (cpu_base->hang_detected)
  509. return;
  510. tick_program_event(cpu_base->expires_next, 1);
  511. }
  512. /*
  513. * When a timer is enqueued and expires earlier than the already enqueued
  514. * timers, we have to check, whether it expires earlier than the timer for
  515. * which the clock event device was armed.
  516. *
  517. * Called with interrupts disabled and base->cpu_base.lock held
  518. */
  519. static void hrtimer_reprogram(struct hrtimer *timer,
  520. struct hrtimer_clock_base *base)
  521. {
  522. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  523. ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
  524. WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
  525. /*
  526. * If the timer is not on the current cpu, we cannot reprogram
  527. * the other cpus clock event device.
  528. */
  529. if (base->cpu_base != cpu_base)
  530. return;
  531. /*
  532. * If the hrtimer interrupt is running, then it will
  533. * reevaluate the clock bases and reprogram the clock event
  534. * device. The callbacks are always executed in hard interrupt
  535. * context so we don't need an extra check for a running
  536. * callback.
  537. */
  538. if (cpu_base->in_hrtirq)
  539. return;
  540. /*
  541. * CLOCK_REALTIME timer might be requested with an absolute
  542. * expiry time which is less than base->offset. Set it to 0.
  543. */
  544. if (expires < 0)
  545. expires = 0;
  546. if (expires >= cpu_base->expires_next)
  547. return;
  548. /* Update the pointer to the next expiring timer */
  549. cpu_base->next_timer = timer;
  550. /*
  551. * If a hang was detected in the last timer interrupt then we
  552. * do not schedule a timer which is earlier than the expiry
  553. * which we enforced in the hang detection. We want the system
  554. * to make progress.
  555. */
  556. if (cpu_base->hang_detected)
  557. return;
  558. /*
  559. * Program the timer hardware. We enforce the expiry for
  560. * events which are already in the past.
  561. */
  562. cpu_base->expires_next = expires;
  563. tick_program_event(expires, 1);
  564. }
  565. /*
  566. * Initialize the high resolution related parts of cpu_base
  567. */
  568. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
  569. {
  570. base->expires_next = KTIME_MAX;
  571. base->hres_active = 0;
  572. }
  573. /*
  574. * Retrigger next event is called after clock was set
  575. *
  576. * Called with interrupts disabled via on_each_cpu()
  577. */
  578. static void retrigger_next_event(void *arg)
  579. {
  580. struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
  581. if (!base->hres_active)
  582. return;
  583. raw_spin_lock(&base->lock);
  584. hrtimer_update_base(base);
  585. hrtimer_force_reprogram(base, 0);
  586. raw_spin_unlock(&base->lock);
  587. }
  588. /*
  589. * Switch to high resolution mode
  590. */
  591. static void hrtimer_switch_to_hres(void)
  592. {
  593. struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
  594. if (tick_init_highres()) {
  595. printk(KERN_WARNING "Could not switch to high resolution "
  596. "mode on CPU %d\n", base->cpu);
  597. return;
  598. }
  599. base->hres_active = 1;
  600. hrtimer_resolution = HIGH_RES_NSEC;
  601. tick_setup_sched_timer();
  602. /* "Retrigger" the interrupt to get things going */
  603. retrigger_next_event(NULL);
  604. }
  605. static void clock_was_set_work(struct work_struct *work)
  606. {
  607. clock_was_set();
  608. }
  609. static DECLARE_WORK(hrtimer_work, clock_was_set_work);
  610. /*
  611. * Called from timekeeping and resume code to reprogram the hrtimer
  612. * interrupt device on all cpus.
  613. */
  614. void clock_was_set_delayed(void)
  615. {
  616. schedule_work(&hrtimer_work);
  617. }
  618. #else
  619. static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
  620. static inline int hrtimer_hres_active(void) { return 0; }
  621. static inline int hrtimer_is_hres_enabled(void) { return 0; }
  622. static inline void hrtimer_switch_to_hres(void) { }
  623. static inline void
  624. hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
  625. static inline int hrtimer_reprogram(struct hrtimer *timer,
  626. struct hrtimer_clock_base *base)
  627. {
  628. return 0;
  629. }
  630. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
  631. static inline void retrigger_next_event(void *arg) { }
  632. #endif /* CONFIG_HIGH_RES_TIMERS */
  633. /*
  634. * Clock realtime was set
  635. *
  636. * Change the offset of the realtime clock vs. the monotonic
  637. * clock.
  638. *
  639. * We might have to reprogram the high resolution timer interrupt. On
  640. * SMP we call the architecture specific code to retrigger _all_ high
  641. * resolution timer interrupts. On UP we just disable interrupts and
  642. * call the high resolution interrupt code.
  643. */
  644. void clock_was_set(void)
  645. {
  646. #ifdef CONFIG_HIGH_RES_TIMERS
  647. /* Retrigger the CPU local events everywhere */
  648. on_each_cpu(retrigger_next_event, NULL, 1);
  649. #endif
  650. timerfd_clock_was_set();
  651. }
  652. /*
  653. * During resume we might have to reprogram the high resolution timer
  654. * interrupt on all online CPUs. However, all other CPUs will be
  655. * stopped with IRQs interrupts disabled so the clock_was_set() call
  656. * must be deferred.
  657. */
  658. void hrtimers_resume(void)
  659. {
  660. WARN_ONCE(!irqs_disabled(),
  661. KERN_INFO "hrtimers_resume() called with IRQs enabled!");
  662. /* Retrigger on the local CPU */
  663. retrigger_next_event(NULL);
  664. /* And schedule a retrigger for all others */
  665. clock_was_set_delayed();
  666. }
  667. /*
  668. * Counterpart to lock_hrtimer_base above:
  669. */
  670. static inline
  671. void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  672. {
  673. raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
  674. }
  675. /**
  676. * hrtimer_forward - forward the timer expiry
  677. * @timer: hrtimer to forward
  678. * @now: forward past this time
  679. * @interval: the interval to forward
  680. *
  681. * Forward the timer expiry so it will expire in the future.
  682. * Returns the number of overruns.
  683. *
  684. * Can be safely called from the callback function of @timer. If
  685. * called from other contexts @timer must neither be enqueued nor
  686. * running the callback and the caller needs to take care of
  687. * serialization.
  688. *
  689. * Note: This only updates the timer expiry value and does not requeue
  690. * the timer.
  691. */
  692. u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
  693. {
  694. u64 orun = 1;
  695. ktime_t delta;
  696. delta = ktime_sub(now, hrtimer_get_expires(timer));
  697. if (delta < 0)
  698. return 0;
  699. if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
  700. return 0;
  701. if (interval < hrtimer_resolution)
  702. interval = hrtimer_resolution;
  703. if (unlikely(delta >= interval)) {
  704. s64 incr = ktime_to_ns(interval);
  705. orun = ktime_divns(delta, incr);
  706. hrtimer_add_expires_ns(timer, incr * orun);
  707. if (hrtimer_get_expires_tv64(timer) > now)
  708. return orun;
  709. /*
  710. * This (and the ktime_add() below) is the
  711. * correction for exact:
  712. */
  713. orun++;
  714. }
  715. hrtimer_add_expires(timer, interval);
  716. return orun;
  717. }
  718. EXPORT_SYMBOL_GPL(hrtimer_forward);
  719. /*
  720. * enqueue_hrtimer - internal function to (re)start a timer
  721. *
  722. * The timer is inserted in expiry order. Insertion into the
  723. * red black tree is O(log(n)). Must hold the base lock.
  724. *
  725. * Returns 1 when the new timer is the leftmost timer in the tree.
  726. */
  727. static int enqueue_hrtimer(struct hrtimer *timer,
  728. struct hrtimer_clock_base *base)
  729. {
  730. debug_activate(timer);
  731. base->cpu_base->active_bases |= 1 << base->index;
  732. timer->state = HRTIMER_STATE_ENQUEUED;
  733. return timerqueue_add(&base->active, &timer->node);
  734. }
  735. /*
  736. * __remove_hrtimer - internal function to remove a timer
  737. *
  738. * Caller must hold the base lock.
  739. *
  740. * High resolution timer mode reprograms the clock event device when the
  741. * timer is the one which expires next. The caller can disable this by setting
  742. * reprogram to zero. This is useful, when the context does a reprogramming
  743. * anyway (e.g. timer interrupt)
  744. */
  745. static void __remove_hrtimer(struct hrtimer *timer,
  746. struct hrtimer_clock_base *base,
  747. u8 newstate, int reprogram)
  748. {
  749. struct hrtimer_cpu_base *cpu_base = base->cpu_base;
  750. u8 state = timer->state;
  751. timer->state = newstate;
  752. if (!(state & HRTIMER_STATE_ENQUEUED))
  753. return;
  754. if (!timerqueue_del(&base->active, &timer->node))
  755. cpu_base->active_bases &= ~(1 << base->index);
  756. #ifdef CONFIG_HIGH_RES_TIMERS
  757. /*
  758. * Note: If reprogram is false we do not update
  759. * cpu_base->next_timer. This happens when we remove the first
  760. * timer on a remote cpu. No harm as we never dereference
  761. * cpu_base->next_timer. So the worst thing what can happen is
  762. * an superflous call to hrtimer_force_reprogram() on the
  763. * remote cpu later on if the same timer gets enqueued again.
  764. */
  765. if (reprogram && timer == cpu_base->next_timer)
  766. hrtimer_force_reprogram(cpu_base, 1);
  767. #endif
  768. }
  769. /*
  770. * remove hrtimer, called with base lock held
  771. */
  772. static inline int
  773. remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
  774. {
  775. if (hrtimer_is_queued(timer)) {
  776. u8 state = timer->state;
  777. int reprogram;
  778. /*
  779. * Remove the timer and force reprogramming when high
  780. * resolution mode is active and the timer is on the current
  781. * CPU. If we remove a timer on another CPU, reprogramming is
  782. * skipped. The interrupt event on this CPU is fired and
  783. * reprogramming happens in the interrupt handler. This is a
  784. * rare case and less expensive than a smp call.
  785. */
  786. debug_deactivate(timer);
  787. reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
  788. if (!restart)
  789. state = HRTIMER_STATE_INACTIVE;
  790. __remove_hrtimer(timer, base, state, reprogram);
  791. return 1;
  792. }
  793. return 0;
  794. }
  795. static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
  796. const enum hrtimer_mode mode)
  797. {
  798. #ifdef CONFIG_TIME_LOW_RES
  799. /*
  800. * CONFIG_TIME_LOW_RES indicates that the system has no way to return
  801. * granular time values. For relative timers we add hrtimer_resolution
  802. * (i.e. one jiffie) to prevent short timeouts.
  803. */
  804. timer->is_rel = mode & HRTIMER_MODE_REL;
  805. if (timer->is_rel)
  806. tim = ktime_add_safe(tim, hrtimer_resolution);
  807. #endif
  808. return tim;
  809. }
  810. /**
  811. * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
  812. * @timer: the timer to be added
  813. * @tim: expiry time
  814. * @delta_ns: "slack" range for the timer
  815. * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
  816. * relative (HRTIMER_MODE_REL)
  817. */
  818. void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
  819. u64 delta_ns, const enum hrtimer_mode mode)
  820. {
  821. struct hrtimer_clock_base *base, *new_base;
  822. unsigned long flags;
  823. int leftmost;
  824. base = lock_hrtimer_base(timer, &flags);
  825. /* Remove an active timer from the queue: */
  826. remove_hrtimer(timer, base, true);
  827. if (mode & HRTIMER_MODE_REL)
  828. tim = ktime_add_safe(tim, base->get_time());
  829. tim = hrtimer_update_lowres(timer, tim, mode);
  830. hrtimer_set_expires_range_ns(timer, tim, delta_ns);
  831. /* Switch the timer base, if necessary: */
  832. new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
  833. leftmost = enqueue_hrtimer(timer, new_base);
  834. if (!leftmost)
  835. goto unlock;
  836. if (!hrtimer_is_hres_active(timer)) {
  837. /*
  838. * Kick to reschedule the next tick to handle the new timer
  839. * on dynticks target.
  840. */
  841. if (new_base->cpu_base->nohz_active)
  842. wake_up_nohz_cpu(new_base->cpu_base->cpu);
  843. } else {
  844. hrtimer_reprogram(timer, new_base);
  845. }
  846. unlock:
  847. unlock_hrtimer_base(timer, &flags);
  848. }
  849. EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
  850. /**
  851. * hrtimer_try_to_cancel - try to deactivate a timer
  852. * @timer: hrtimer to stop
  853. *
  854. * Returns:
  855. * 0 when the timer was not active
  856. * 1 when the timer was active
  857. * -1 when the timer is currently executing the callback function and
  858. * cannot be stopped
  859. */
  860. int hrtimer_try_to_cancel(struct hrtimer *timer)
  861. {
  862. struct hrtimer_clock_base *base;
  863. unsigned long flags;
  864. int ret = -1;
  865. /*
  866. * Check lockless first. If the timer is not active (neither
  867. * enqueued nor running the callback, nothing to do here. The
  868. * base lock does not serialize against a concurrent enqueue,
  869. * so we can avoid taking it.
  870. */
  871. if (!hrtimer_active(timer))
  872. return 0;
  873. base = lock_hrtimer_base(timer, &flags);
  874. if (!hrtimer_callback_running(timer))
  875. ret = remove_hrtimer(timer, base, false);
  876. unlock_hrtimer_base(timer, &flags);
  877. return ret;
  878. }
  879. EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
  880. /**
  881. * hrtimer_cancel - cancel a timer and wait for the handler to finish.
  882. * @timer: the timer to be cancelled
  883. *
  884. * Returns:
  885. * 0 when the timer was not active
  886. * 1 when the timer was active
  887. */
  888. int hrtimer_cancel(struct hrtimer *timer)
  889. {
  890. for (;;) {
  891. int ret = hrtimer_try_to_cancel(timer);
  892. if (ret >= 0)
  893. return ret;
  894. cpu_relax();
  895. }
  896. }
  897. EXPORT_SYMBOL_GPL(hrtimer_cancel);
  898. /**
  899. * hrtimer_get_remaining - get remaining time for the timer
  900. * @timer: the timer to read
  901. * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
  902. */
  903. ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
  904. {
  905. unsigned long flags;
  906. ktime_t rem;
  907. lock_hrtimer_base(timer, &flags);
  908. if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
  909. rem = hrtimer_expires_remaining_adjusted(timer);
  910. else
  911. rem = hrtimer_expires_remaining(timer);
  912. unlock_hrtimer_base(timer, &flags);
  913. return rem;
  914. }
  915. EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
  916. #ifdef CONFIG_NO_HZ_COMMON
  917. /**
  918. * hrtimer_get_next_event - get the time until next expiry event
  919. *
  920. * Returns the next expiry time or KTIME_MAX if no timer is pending.
  921. */
  922. u64 hrtimer_get_next_event(void)
  923. {
  924. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  925. u64 expires = KTIME_MAX;
  926. unsigned long flags;
  927. raw_spin_lock_irqsave(&cpu_base->lock, flags);
  928. if (!__hrtimer_hres_active(cpu_base))
  929. expires = __hrtimer_get_next_event(cpu_base);
  930. raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
  931. return expires;
  932. }
  933. #endif
  934. static inline int hrtimer_clockid_to_base(clockid_t clock_id)
  935. {
  936. if (likely(clock_id < MAX_CLOCKS)) {
  937. int base = hrtimer_clock_to_base_table[clock_id];
  938. if (likely(base != HRTIMER_MAX_CLOCK_BASES))
  939. return base;
  940. }
  941. WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
  942. return HRTIMER_BASE_MONOTONIC;
  943. }
  944. static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  945. enum hrtimer_mode mode)
  946. {
  947. struct hrtimer_cpu_base *cpu_base;
  948. int base;
  949. memset(timer, 0, sizeof(struct hrtimer));
  950. cpu_base = raw_cpu_ptr(&hrtimer_bases);
  951. if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
  952. clock_id = CLOCK_MONOTONIC;
  953. base = hrtimer_clockid_to_base(clock_id);
  954. timer->base = &cpu_base->clock_base[base];
  955. timerqueue_init(&timer->node);
  956. }
  957. /**
  958. * hrtimer_init - initialize a timer to the given clock
  959. * @timer: the timer to be initialized
  960. * @clock_id: the clock to be used
  961. * @mode: timer mode abs/rel
  962. */
  963. void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  964. enum hrtimer_mode mode)
  965. {
  966. debug_init(timer, clock_id, mode);
  967. __hrtimer_init(timer, clock_id, mode);
  968. }
  969. EXPORT_SYMBOL_GPL(hrtimer_init);
  970. /*
  971. * A timer is active, when it is enqueued into the rbtree or the
  972. * callback function is running or it's in the state of being migrated
  973. * to another cpu.
  974. *
  975. * It is important for this function to not return a false negative.
  976. */
  977. bool hrtimer_active(const struct hrtimer *timer)
  978. {
  979. struct hrtimer_cpu_base *cpu_base;
  980. unsigned int seq;
  981. do {
  982. cpu_base = READ_ONCE(timer->base->cpu_base);
  983. seq = raw_read_seqcount_begin(&cpu_base->seq);
  984. if (timer->state != HRTIMER_STATE_INACTIVE ||
  985. cpu_base->running == timer)
  986. return true;
  987. } while (read_seqcount_retry(&cpu_base->seq, seq) ||
  988. cpu_base != READ_ONCE(timer->base->cpu_base));
  989. return false;
  990. }
  991. EXPORT_SYMBOL_GPL(hrtimer_active);
  992. /*
  993. * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
  994. * distinct sections:
  995. *
  996. * - queued: the timer is queued
  997. * - callback: the timer is being ran
  998. * - post: the timer is inactive or (re)queued
  999. *
  1000. * On the read side we ensure we observe timer->state and cpu_base->running
  1001. * from the same section, if anything changed while we looked at it, we retry.
  1002. * This includes timer->base changing because sequence numbers alone are
  1003. * insufficient for that.
  1004. *
  1005. * The sequence numbers are required because otherwise we could still observe
  1006. * a false negative if the read side got smeared over multiple consequtive
  1007. * __run_hrtimer() invocations.
  1008. */
  1009. static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
  1010. struct hrtimer_clock_base *base,
  1011. struct hrtimer *timer, ktime_t *now)
  1012. {
  1013. enum hrtimer_restart (*fn)(struct hrtimer *);
  1014. int restart;
  1015. lockdep_assert_held(&cpu_base->lock);
  1016. debug_deactivate(timer);
  1017. cpu_base->running = timer;
  1018. /*
  1019. * Separate the ->running assignment from the ->state assignment.
  1020. *
  1021. * As with a regular write barrier, this ensures the read side in
  1022. * hrtimer_active() cannot observe cpu_base->running == NULL &&
  1023. * timer->state == INACTIVE.
  1024. */
  1025. raw_write_seqcount_barrier(&cpu_base->seq);
  1026. __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
  1027. fn = timer->function;
  1028. /*
  1029. * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
  1030. * timer is restarted with a period then it becomes an absolute
  1031. * timer. If its not restarted it does not matter.
  1032. */
  1033. if (IS_ENABLED(CONFIG_TIME_LOW_RES))
  1034. timer->is_rel = false;
  1035. /*
  1036. * Because we run timers from hardirq context, there is no chance
  1037. * they get migrated to another cpu, therefore its safe to unlock
  1038. * the timer base.
  1039. */
  1040. raw_spin_unlock(&cpu_base->lock);
  1041. trace_hrtimer_expire_entry(timer, now);
  1042. restart = fn(timer);
  1043. trace_hrtimer_expire_exit(timer);
  1044. raw_spin_lock(&cpu_base->lock);
  1045. /*
  1046. * Note: We clear the running state after enqueue_hrtimer and
  1047. * we do not reprogram the event hardware. Happens either in
  1048. * hrtimer_start_range_ns() or in hrtimer_interrupt()
  1049. *
  1050. * Note: Because we dropped the cpu_base->lock above,
  1051. * hrtimer_start_range_ns() can have popped in and enqueued the timer
  1052. * for us already.
  1053. */
  1054. if (restart != HRTIMER_NORESTART &&
  1055. !(timer->state & HRTIMER_STATE_ENQUEUED))
  1056. enqueue_hrtimer(timer, base);
  1057. /*
  1058. * Separate the ->running assignment from the ->state assignment.
  1059. *
  1060. * As with a regular write barrier, this ensures the read side in
  1061. * hrtimer_active() cannot observe cpu_base->running == NULL &&
  1062. * timer->state == INACTIVE.
  1063. */
  1064. raw_write_seqcount_barrier(&cpu_base->seq);
  1065. WARN_ON_ONCE(cpu_base->running != timer);
  1066. cpu_base->running = NULL;
  1067. }
  1068. static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
  1069. {
  1070. struct hrtimer_clock_base *base = cpu_base->clock_base;
  1071. unsigned int active = cpu_base->active_bases;
  1072. for (; active; base++, active >>= 1) {
  1073. struct timerqueue_node *node;
  1074. ktime_t basenow;
  1075. if (!(active & 0x01))
  1076. continue;
  1077. basenow = ktime_add(now, base->offset);
  1078. while ((node = timerqueue_getnext(&base->active))) {
  1079. struct hrtimer *timer;
  1080. timer = container_of(node, struct hrtimer, node);
  1081. /*
  1082. * The immediate goal for using the softexpires is
  1083. * minimizing wakeups, not running timers at the
  1084. * earliest interrupt after their soft expiration.
  1085. * This allows us to avoid using a Priority Search
  1086. * Tree, which can answer a stabbing querry for
  1087. * overlapping intervals and instead use the simple
  1088. * BST we already have.
  1089. * We don't add extra wakeups by delaying timers that
  1090. * are right-of a not yet expired timer, because that
  1091. * timer will have to trigger a wakeup anyway.
  1092. */
  1093. if (basenow < hrtimer_get_softexpires_tv64(timer))
  1094. break;
  1095. __run_hrtimer(cpu_base, base, timer, &basenow);
  1096. }
  1097. }
  1098. }
  1099. #ifdef CONFIG_HIGH_RES_TIMERS
  1100. /*
  1101. * High resolution timer interrupt
  1102. * Called with interrupts disabled
  1103. */
  1104. void hrtimer_interrupt(struct clock_event_device *dev)
  1105. {
  1106. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  1107. ktime_t expires_next, now, entry_time, delta;
  1108. int retries = 0;
  1109. BUG_ON(!cpu_base->hres_active);
  1110. cpu_base->nr_events++;
  1111. dev->next_event = KTIME_MAX;
  1112. raw_spin_lock(&cpu_base->lock);
  1113. entry_time = now = hrtimer_update_base(cpu_base);
  1114. retry:
  1115. cpu_base->in_hrtirq = 1;
  1116. /*
  1117. * We set expires_next to KTIME_MAX here with cpu_base->lock
  1118. * held to prevent that a timer is enqueued in our queue via
  1119. * the migration code. This does not affect enqueueing of
  1120. * timers which run their callback and need to be requeued on
  1121. * this CPU.
  1122. */
  1123. cpu_base->expires_next = KTIME_MAX;
  1124. __hrtimer_run_queues(cpu_base, now);
  1125. /* Reevaluate the clock bases for the next expiry */
  1126. expires_next = __hrtimer_get_next_event(cpu_base);
  1127. /*
  1128. * Store the new expiry value so the migration code can verify
  1129. * against it.
  1130. */
  1131. cpu_base->expires_next = expires_next;
  1132. cpu_base->in_hrtirq = 0;
  1133. raw_spin_unlock(&cpu_base->lock);
  1134. /* Reprogramming necessary ? */
  1135. if (!tick_program_event(expires_next, 0)) {
  1136. cpu_base->hang_detected = 0;
  1137. return;
  1138. }
  1139. /*
  1140. * The next timer was already expired due to:
  1141. * - tracing
  1142. * - long lasting callbacks
  1143. * - being scheduled away when running in a VM
  1144. *
  1145. * We need to prevent that we loop forever in the hrtimer
  1146. * interrupt routine. We give it 3 attempts to avoid
  1147. * overreacting on some spurious event.
  1148. *
  1149. * Acquire base lock for updating the offsets and retrieving
  1150. * the current time.
  1151. */
  1152. raw_spin_lock(&cpu_base->lock);
  1153. now = hrtimer_update_base(cpu_base);
  1154. cpu_base->nr_retries++;
  1155. if (++retries < 3)
  1156. goto retry;
  1157. /*
  1158. * Give the system a chance to do something else than looping
  1159. * here. We stored the entry time, so we know exactly how long
  1160. * we spent here. We schedule the next event this amount of
  1161. * time away.
  1162. */
  1163. cpu_base->nr_hangs++;
  1164. cpu_base->hang_detected = 1;
  1165. raw_spin_unlock(&cpu_base->lock);
  1166. delta = ktime_sub(now, entry_time);
  1167. if ((unsigned int)delta > cpu_base->max_hang_time)
  1168. cpu_base->max_hang_time = (unsigned int) delta;
  1169. /*
  1170. * Limit it to a sensible value as we enforce a longer
  1171. * delay. Give the CPU at least 100ms to catch up.
  1172. */
  1173. if (delta > 100 * NSEC_PER_MSEC)
  1174. expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
  1175. else
  1176. expires_next = ktime_add(now, delta);
  1177. tick_program_event(expires_next, 1);
  1178. printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
  1179. ktime_to_ns(delta));
  1180. }
  1181. /* called with interrupts disabled */
  1182. static inline void __hrtimer_peek_ahead_timers(void)
  1183. {
  1184. struct tick_device *td;
  1185. if (!hrtimer_hres_active())
  1186. return;
  1187. td = this_cpu_ptr(&tick_cpu_device);
  1188. if (td && td->evtdev)
  1189. hrtimer_interrupt(td->evtdev);
  1190. }
  1191. #else /* CONFIG_HIGH_RES_TIMERS */
  1192. static inline void __hrtimer_peek_ahead_timers(void) { }
  1193. #endif /* !CONFIG_HIGH_RES_TIMERS */
  1194. /*
  1195. * Called from run_local_timers in hardirq context every jiffy
  1196. */
  1197. void hrtimer_run_queues(void)
  1198. {
  1199. struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
  1200. ktime_t now;
  1201. if (__hrtimer_hres_active(cpu_base))
  1202. return;
  1203. /*
  1204. * This _is_ ugly: We have to check periodically, whether we
  1205. * can switch to highres and / or nohz mode. The clocksource
  1206. * switch happens with xtime_lock held. Notification from
  1207. * there only sets the check bit in the tick_oneshot code,
  1208. * otherwise we might deadlock vs. xtime_lock.
  1209. */
  1210. if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
  1211. hrtimer_switch_to_hres();
  1212. return;
  1213. }
  1214. raw_spin_lock(&cpu_base->lock);
  1215. now = hrtimer_update_base(cpu_base);
  1216. __hrtimer_run_queues(cpu_base, now);
  1217. raw_spin_unlock(&cpu_base->lock);
  1218. }
  1219. /*
  1220. * Sleep related functions:
  1221. */
  1222. static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
  1223. {
  1224. struct hrtimer_sleeper *t =
  1225. container_of(timer, struct hrtimer_sleeper, timer);
  1226. struct task_struct *task = t->task;
  1227. t->task = NULL;
  1228. if (task)
  1229. wake_up_process(task);
  1230. return HRTIMER_NORESTART;
  1231. }
  1232. void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
  1233. {
  1234. sl->timer.function = hrtimer_wakeup;
  1235. sl->task = task;
  1236. }
  1237. EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
  1238. static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
  1239. {
  1240. hrtimer_init_sleeper(t, current);
  1241. do {
  1242. set_current_state(TASK_INTERRUPTIBLE);
  1243. hrtimer_start_expires(&t->timer, mode);
  1244. if (likely(t->task))
  1245. freezable_schedule();
  1246. hrtimer_cancel(&t->timer);
  1247. mode = HRTIMER_MODE_ABS;
  1248. } while (t->task && !signal_pending(current));
  1249. __set_current_state(TASK_RUNNING);
  1250. return t->task == NULL;
  1251. }
  1252. static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
  1253. {
  1254. struct timespec rmt;
  1255. ktime_t rem;
  1256. rem = hrtimer_expires_remaining(timer);
  1257. if (rem <= 0)
  1258. return 0;
  1259. rmt = ktime_to_timespec(rem);
  1260. if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
  1261. return -EFAULT;
  1262. return 1;
  1263. }
  1264. long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
  1265. {
  1266. struct hrtimer_sleeper t;
  1267. struct timespec __user *rmtp;
  1268. int ret = 0;
  1269. hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
  1270. HRTIMER_MODE_ABS);
  1271. hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
  1272. if (do_nanosleep(&t, HRTIMER_MODE_ABS))
  1273. goto out;
  1274. rmtp = restart->nanosleep.rmtp;
  1275. if (rmtp) {
  1276. ret = update_rmtp(&t.timer, rmtp);
  1277. if (ret <= 0)
  1278. goto out;
  1279. }
  1280. /* The other values in restart are already filled in */
  1281. ret = -ERESTART_RESTARTBLOCK;
  1282. out:
  1283. destroy_hrtimer_on_stack(&t.timer);
  1284. return ret;
  1285. }
  1286. long hrtimer_nanosleep(struct timespec64 *rqtp, struct timespec __user *rmtp,
  1287. const enum hrtimer_mode mode, const clockid_t clockid)
  1288. {
  1289. struct restart_block *restart;
  1290. struct hrtimer_sleeper t;
  1291. int ret = 0;
  1292. u64 slack;
  1293. slack = current->timer_slack_ns;
  1294. if (dl_task(current) || rt_task(current))
  1295. slack = 0;
  1296. hrtimer_init_on_stack(&t.timer, clockid, mode);
  1297. hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
  1298. if (do_nanosleep(&t, mode))
  1299. goto out;
  1300. /* Absolute timers do not update the rmtp value and restart: */
  1301. if (mode == HRTIMER_MODE_ABS) {
  1302. ret = -ERESTARTNOHAND;
  1303. goto out;
  1304. }
  1305. if (rmtp) {
  1306. ret = update_rmtp(&t.timer, rmtp);
  1307. if (ret <= 0)
  1308. goto out;
  1309. }
  1310. restart = &current->restart_block;
  1311. restart->fn = hrtimer_nanosleep_restart;
  1312. restart->nanosleep.clockid = t.timer.base->clockid;
  1313. restart->nanosleep.rmtp = rmtp;
  1314. restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
  1315. ret = -ERESTART_RESTARTBLOCK;
  1316. out:
  1317. destroy_hrtimer_on_stack(&t.timer);
  1318. return ret;
  1319. }
  1320. SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
  1321. struct timespec __user *, rmtp)
  1322. {
  1323. struct timespec64 tu64;
  1324. struct timespec tu;
  1325. if (copy_from_user(&tu, rqtp, sizeof(tu)))
  1326. return -EFAULT;
  1327. tu64 = timespec_to_timespec64(tu);
  1328. if (!timespec64_valid(&tu64))
  1329. return -EINVAL;
  1330. return hrtimer_nanosleep(&tu64, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
  1331. }
  1332. /*
  1333. * Functions related to boot-time initialization:
  1334. */
  1335. int hrtimers_prepare_cpu(unsigned int cpu)
  1336. {
  1337. struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
  1338. int i;
  1339. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  1340. cpu_base->clock_base[i].cpu_base = cpu_base;
  1341. timerqueue_init_head(&cpu_base->clock_base[i].active);
  1342. }
  1343. cpu_base->cpu = cpu;
  1344. hrtimer_init_hres(cpu_base);
  1345. return 0;
  1346. }
  1347. #ifdef CONFIG_HOTPLUG_CPU
  1348. static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
  1349. struct hrtimer_clock_base *new_base)
  1350. {
  1351. struct hrtimer *timer;
  1352. struct timerqueue_node *node;
  1353. while ((node = timerqueue_getnext(&old_base->active))) {
  1354. timer = container_of(node, struct hrtimer, node);
  1355. BUG_ON(hrtimer_callback_running(timer));
  1356. debug_deactivate(timer);
  1357. /*
  1358. * Mark it as ENQUEUED not INACTIVE otherwise the
  1359. * timer could be seen as !active and just vanish away
  1360. * under us on another CPU
  1361. */
  1362. __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
  1363. timer->base = new_base;
  1364. /*
  1365. * Enqueue the timers on the new cpu. This does not
  1366. * reprogram the event device in case the timer
  1367. * expires before the earliest on this CPU, but we run
  1368. * hrtimer_interrupt after we migrated everything to
  1369. * sort out already expired timers and reprogram the
  1370. * event device.
  1371. */
  1372. enqueue_hrtimer(timer, new_base);
  1373. }
  1374. }
  1375. int hrtimers_dead_cpu(unsigned int scpu)
  1376. {
  1377. struct hrtimer_cpu_base *old_base, *new_base;
  1378. int i;
  1379. BUG_ON(cpu_online(scpu));
  1380. tick_cancel_sched_timer(scpu);
  1381. local_irq_disable();
  1382. old_base = &per_cpu(hrtimer_bases, scpu);
  1383. new_base = this_cpu_ptr(&hrtimer_bases);
  1384. /*
  1385. * The caller is globally serialized and nobody else
  1386. * takes two locks at once, deadlock is not possible.
  1387. */
  1388. raw_spin_lock(&new_base->lock);
  1389. raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
  1390. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  1391. migrate_hrtimer_list(&old_base->clock_base[i],
  1392. &new_base->clock_base[i]);
  1393. }
  1394. raw_spin_unlock(&old_base->lock);
  1395. raw_spin_unlock(&new_base->lock);
  1396. /* Check, if we got expired work to do */
  1397. __hrtimer_peek_ahead_timers();
  1398. local_irq_enable();
  1399. return 0;
  1400. }
  1401. #endif /* CONFIG_HOTPLUG_CPU */
  1402. void __init hrtimers_init(void)
  1403. {
  1404. hrtimers_prepare_cpu(smp_processor_id());
  1405. }
  1406. /**
  1407. * schedule_hrtimeout_range_clock - sleep until timeout
  1408. * @expires: timeout value (ktime_t)
  1409. * @delta: slack in expires timeout (ktime_t)
  1410. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1411. * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
  1412. */
  1413. int __sched
  1414. schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
  1415. const enum hrtimer_mode mode, int clock)
  1416. {
  1417. struct hrtimer_sleeper t;
  1418. /*
  1419. * Optimize when a zero timeout value is given. It does not
  1420. * matter whether this is an absolute or a relative time.
  1421. */
  1422. if (expires && *expires == 0) {
  1423. __set_current_state(TASK_RUNNING);
  1424. return 0;
  1425. }
  1426. /*
  1427. * A NULL parameter means "infinite"
  1428. */
  1429. if (!expires) {
  1430. schedule();
  1431. return -EINTR;
  1432. }
  1433. hrtimer_init_on_stack(&t.timer, clock, mode);
  1434. hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
  1435. hrtimer_init_sleeper(&t, current);
  1436. hrtimer_start_expires(&t.timer, mode);
  1437. if (likely(t.task))
  1438. schedule();
  1439. hrtimer_cancel(&t.timer);
  1440. destroy_hrtimer_on_stack(&t.timer);
  1441. __set_current_state(TASK_RUNNING);
  1442. return !t.task ? 0 : -EINTR;
  1443. }
  1444. /**
  1445. * schedule_hrtimeout_range - sleep until timeout
  1446. * @expires: timeout value (ktime_t)
  1447. * @delta: slack in expires timeout (ktime_t)
  1448. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1449. *
  1450. * Make the current task sleep until the given expiry time has
  1451. * elapsed. The routine will return immediately unless
  1452. * the current task state has been set (see set_current_state()).
  1453. *
  1454. * The @delta argument gives the kernel the freedom to schedule the
  1455. * actual wakeup to a time that is both power and performance friendly.
  1456. * The kernel give the normal best effort behavior for "@expires+@delta",
  1457. * but may decide to fire the timer earlier, but no earlier than @expires.
  1458. *
  1459. * You can set the task state as follows -
  1460. *
  1461. * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
  1462. * pass before the routine returns unless the current task is explicitly
  1463. * woken up, (e.g. by wake_up_process()).
  1464. *
  1465. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1466. * delivered to the current task or the current task is explicitly woken
  1467. * up.
  1468. *
  1469. * The current task state is guaranteed to be TASK_RUNNING when this
  1470. * routine returns.
  1471. *
  1472. * Returns 0 when the timer has expired. If the task was woken before the
  1473. * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
  1474. * by an explicit wakeup, it returns -EINTR.
  1475. */
  1476. int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
  1477. const enum hrtimer_mode mode)
  1478. {
  1479. return schedule_hrtimeout_range_clock(expires, delta, mode,
  1480. CLOCK_MONOTONIC);
  1481. }
  1482. EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
  1483. /**
  1484. * schedule_hrtimeout - sleep until timeout
  1485. * @expires: timeout value (ktime_t)
  1486. * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
  1487. *
  1488. * Make the current task sleep until the given expiry time has
  1489. * elapsed. The routine will return immediately unless
  1490. * the current task state has been set (see set_current_state()).
  1491. *
  1492. * You can set the task state as follows -
  1493. *
  1494. * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
  1495. * pass before the routine returns unless the current task is explicitly
  1496. * woken up, (e.g. by wake_up_process()).
  1497. *
  1498. * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
  1499. * delivered to the current task or the current task is explicitly woken
  1500. * up.
  1501. *
  1502. * The current task state is guaranteed to be TASK_RUNNING when this
  1503. * routine returns.
  1504. *
  1505. * Returns 0 when the timer has expired. If the task was woken before the
  1506. * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
  1507. * by an explicit wakeup, it returns -EINTR.
  1508. */
  1509. int __sched schedule_hrtimeout(ktime_t *expires,
  1510. const enum hrtimer_mode mode)
  1511. {
  1512. return schedule_hrtimeout_range(expires, 0, mode);
  1513. }
  1514. EXPORT_SYMBOL_GPL(schedule_hrtimeout);