timer-atmel-st.c 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. /*
  2. * linux/arch/arm/mach-at91/at91rm9200_time.c
  3. *
  4. * Copyright (C) 2003 SAN People
  5. * Copyright (C) 2003 ATMEL
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. #include <linux/kernel.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/irq.h>
  24. #include <linux/clockchips.h>
  25. #include <linux/export.h>
  26. #include <linux/mfd/syscon.h>
  27. #include <linux/mfd/syscon/atmel-st.h>
  28. #include <linux/of_irq.h>
  29. #include <linux/regmap.h>
  30. #include <asm/mach/time.h>
  31. #include <mach/hardware.h>
  32. static unsigned long last_crtr;
  33. static u32 irqmask;
  34. static struct clock_event_device clkevt;
  35. static struct regmap *regmap_st;
  36. #define RM9200_TIMER_LATCH ((AT91_SLOW_CLOCK + HZ/2) / HZ)
  37. /*
  38. * The ST_CRTR is updated asynchronously to the master clock ... but
  39. * the updates as seen by the CPU don't seem to be strictly monotonic.
  40. * Waiting until we read the same value twice avoids glitching.
  41. */
  42. static inline unsigned long read_CRTR(void)
  43. {
  44. unsigned int x1, x2;
  45. regmap_read(regmap_st, AT91_ST_CRTR, &x1);
  46. do {
  47. regmap_read(regmap_st, AT91_ST_CRTR, &x2);
  48. if (x1 == x2)
  49. break;
  50. x1 = x2;
  51. } while (1);
  52. return x1;
  53. }
  54. /*
  55. * IRQ handler for the timer.
  56. */
  57. static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id)
  58. {
  59. u32 sr;
  60. regmap_read(regmap_st, AT91_ST_SR, &sr);
  61. sr &= irqmask;
  62. /*
  63. * irqs should be disabled here, but as the irq is shared they are only
  64. * guaranteed to be off if the timer irq is registered first.
  65. */
  66. WARN_ON_ONCE(!irqs_disabled());
  67. /* simulate "oneshot" timer with alarm */
  68. if (sr & AT91_ST_ALMS) {
  69. clkevt.event_handler(&clkevt);
  70. return IRQ_HANDLED;
  71. }
  72. /* periodic mode should handle delayed ticks */
  73. if (sr & AT91_ST_PITS) {
  74. u32 crtr = read_CRTR();
  75. while (((crtr - last_crtr) & AT91_ST_CRTV) >= RM9200_TIMER_LATCH) {
  76. last_crtr += RM9200_TIMER_LATCH;
  77. clkevt.event_handler(&clkevt);
  78. }
  79. return IRQ_HANDLED;
  80. }
  81. /* this irq is shared ... */
  82. return IRQ_NONE;
  83. }
  84. static struct irqaction at91rm9200_timer_irq = {
  85. .name = "at91_tick",
  86. .flags = IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL,
  87. .handler = at91rm9200_timer_interrupt,
  88. .irq = NR_IRQS_LEGACY + AT91_ID_SYS,
  89. };
  90. static cycle_t read_clk32k(struct clocksource *cs)
  91. {
  92. return read_CRTR();
  93. }
  94. static struct clocksource clk32k = {
  95. .name = "32k_counter",
  96. .rating = 150,
  97. .read = read_clk32k,
  98. .mask = CLOCKSOURCE_MASK(20),
  99. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  100. };
  101. static void
  102. clkevt32k_mode(enum clock_event_mode mode, struct clock_event_device *dev)
  103. {
  104. unsigned int val;
  105. /* Disable and flush pending timer interrupts */
  106. regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS);
  107. regmap_read(regmap_st, AT91_ST_SR, &val);
  108. last_crtr = read_CRTR();
  109. switch (mode) {
  110. case CLOCK_EVT_MODE_PERIODIC:
  111. /* PIT for periodic irqs; fixed rate of 1/HZ */
  112. irqmask = AT91_ST_PITS;
  113. regmap_write(regmap_st, AT91_ST_PIMR, RM9200_TIMER_LATCH);
  114. break;
  115. case CLOCK_EVT_MODE_ONESHOT:
  116. /* ALM for oneshot irqs, set by next_event()
  117. * before 32 seconds have passed
  118. */
  119. irqmask = AT91_ST_ALMS;
  120. regmap_write(regmap_st, AT91_ST_RTAR, last_crtr);
  121. break;
  122. case CLOCK_EVT_MODE_SHUTDOWN:
  123. case CLOCK_EVT_MODE_UNUSED:
  124. case CLOCK_EVT_MODE_RESUME:
  125. irqmask = 0;
  126. break;
  127. }
  128. regmap_write(regmap_st, AT91_ST_IER, irqmask);
  129. }
  130. static int
  131. clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev)
  132. {
  133. u32 alm;
  134. int status = 0;
  135. unsigned int val;
  136. BUG_ON(delta < 2);
  137. /* The alarm IRQ uses absolute time (now+delta), not the relative
  138. * time (delta) in our calling convention. Like all clockevents
  139. * using such "match" hardware, we have a race to defend against.
  140. *
  141. * Our defense here is to have set up the clockevent device so the
  142. * delta is at least two. That way we never end up writing RTAR
  143. * with the value then held in CRTR ... which would mean the match
  144. * wouldn't trigger until 32 seconds later, after CRTR wraps.
  145. */
  146. alm = read_CRTR();
  147. /* Cancel any pending alarm; flush any pending IRQ */
  148. regmap_write(regmap_st, AT91_ST_RTAR, alm);
  149. regmap_read(regmap_st, AT91_ST_SR, &val);
  150. /* Schedule alarm by writing RTAR. */
  151. alm += delta;
  152. regmap_write(regmap_st, AT91_ST_RTAR, alm);
  153. return status;
  154. }
  155. static struct clock_event_device clkevt = {
  156. .name = "at91_tick",
  157. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  158. .rating = 150,
  159. .set_next_event = clkevt32k_next_event,
  160. .set_mode = clkevt32k_mode,
  161. };
  162. /*
  163. * ST (system timer) module supports both clockevents and clocksource.
  164. */
  165. static void __init atmel_st_timer_init(struct device_node *node)
  166. {
  167. unsigned int val;
  168. regmap_st = syscon_node_to_regmap(node);
  169. if (IS_ERR(regmap_st))
  170. panic(pr_fmt("Unable to get regmap\n"));
  171. /* Disable all timer interrupts, and clear any pending ones */
  172. regmap_write(regmap_st, AT91_ST_IDR,
  173. AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS);
  174. regmap_read(regmap_st, AT91_ST_SR, &val);
  175. /* Get the interrupts property */
  176. at91rm9200_timer_irq.irq = irq_of_parse_and_map(node, 0);
  177. if (!at91rm9200_timer_irq.irq)
  178. panic(pr_fmt("Unable to get IRQ from DT\n"));
  179. /* Make IRQs happen for the system timer */
  180. setup_irq(at91rm9200_timer_irq.irq, &at91rm9200_timer_irq);
  181. /* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used
  182. * directly for the clocksource and all clockevents, after adjusting
  183. * its prescaler from the 1 Hz default.
  184. */
  185. regmap_write(regmap_st, AT91_ST_RTMR, 1);
  186. /* Setup timer clockevent, with minimum of two ticks (important!!) */
  187. clkevt.cpumask = cpumask_of(0);
  188. clockevents_config_and_register(&clkevt, AT91_SLOW_CLOCK,
  189. 2, AT91_ST_ALMV);
  190. /* register clocksource */
  191. clocksource_register_hz(&clk32k, AT91_SLOW_CLOCK);
  192. }
  193. CLOCKSOURCE_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st",
  194. atmel_st_timer_init);