i915_debugfs.c 148 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Keith Packard <keithp@keithp.com>
  26. *
  27. */
  28. #include <linux/seq_file.h>
  29. #include <linux/circ_buf.h>
  30. #include <linux/ctype.h>
  31. #include <linux/debugfs.h>
  32. #include <linux/slab.h>
  33. #include <linux/export.h>
  34. #include <linux/list_sort.h>
  35. #include <asm/msr-index.h>
  36. #include <drm/drmP.h>
  37. #include "intel_drv.h"
  38. #include "intel_ringbuffer.h"
  39. #include <drm/i915_drm.h>
  40. #include "i915_drv.h"
  41. enum {
  42. ACTIVE_LIST,
  43. INACTIVE_LIST,
  44. PINNED_LIST,
  45. };
  46. /* As the drm_debugfs_init() routines are called before dev->dev_private is
  47. * allocated we need to hook into the minor for release. */
  48. static int
  49. drm_add_fake_info_node(struct drm_minor *minor,
  50. struct dentry *ent,
  51. const void *key)
  52. {
  53. struct drm_info_node *node;
  54. node = kmalloc(sizeof(*node), GFP_KERNEL);
  55. if (node == NULL) {
  56. debugfs_remove(ent);
  57. return -ENOMEM;
  58. }
  59. node->minor = minor;
  60. node->dent = ent;
  61. node->info_ent = (void *) key;
  62. mutex_lock(&minor->debugfs_lock);
  63. list_add(&node->list, &minor->debugfs_list);
  64. mutex_unlock(&minor->debugfs_lock);
  65. return 0;
  66. }
  67. static int i915_capabilities(struct seq_file *m, void *data)
  68. {
  69. struct drm_info_node *node = m->private;
  70. struct drm_device *dev = node->minor->dev;
  71. const struct intel_device_info *info = INTEL_INFO(dev);
  72. seq_printf(m, "gen: %d\n", info->gen);
  73. seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
  74. #define PRINT_FLAG(x) seq_printf(m, #x ": %s\n", yesno(info->x))
  75. #define SEP_SEMICOLON ;
  76. DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
  77. #undef PRINT_FLAG
  78. #undef SEP_SEMICOLON
  79. return 0;
  80. }
  81. static const char *get_pin_flag(struct drm_i915_gem_object *obj)
  82. {
  83. if (obj->pin_display)
  84. return "p";
  85. else
  86. return " ";
  87. }
  88. static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
  89. {
  90. switch (obj->tiling_mode) {
  91. default:
  92. case I915_TILING_NONE: return " ";
  93. case I915_TILING_X: return "X";
  94. case I915_TILING_Y: return "Y";
  95. }
  96. }
  97. static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
  98. {
  99. return i915_gem_obj_to_ggtt(obj) ? "g" : " ";
  100. }
  101. static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
  102. {
  103. u64 size = 0;
  104. struct i915_vma *vma;
  105. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  106. if (i915_is_ggtt(vma->vm) &&
  107. drm_mm_node_allocated(&vma->node))
  108. size += vma->node.size;
  109. }
  110. return size;
  111. }
  112. static void
  113. describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
  114. {
  115. struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
  116. struct intel_engine_cs *ring;
  117. struct i915_vma *vma;
  118. int pin_count = 0;
  119. int i;
  120. seq_printf(m, "%pK: %s%s%s%s %8zdKiB %02x %02x [ ",
  121. &obj->base,
  122. obj->active ? "*" : " ",
  123. get_pin_flag(obj),
  124. get_tiling_flag(obj),
  125. get_global_flag(obj),
  126. obj->base.size / 1024,
  127. obj->base.read_domains,
  128. obj->base.write_domain);
  129. for_each_ring(ring, dev_priv, i)
  130. seq_printf(m, "%x ",
  131. i915_gem_request_get_seqno(obj->last_read_req[i]));
  132. seq_printf(m, "] %x %x%s%s%s",
  133. i915_gem_request_get_seqno(obj->last_write_req),
  134. i915_gem_request_get_seqno(obj->last_fenced_req),
  135. i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
  136. obj->dirty ? " dirty" : "",
  137. obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
  138. if (obj->base.name)
  139. seq_printf(m, " (name: %d)", obj->base.name);
  140. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  141. if (vma->pin_count > 0)
  142. pin_count++;
  143. }
  144. seq_printf(m, " (pinned x %d)", pin_count);
  145. if (obj->pin_display)
  146. seq_printf(m, " (display)");
  147. if (obj->fence_reg != I915_FENCE_REG_NONE)
  148. seq_printf(m, " (fence: %d)", obj->fence_reg);
  149. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  150. seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
  151. i915_is_ggtt(vma->vm) ? "g" : "pp",
  152. vma->node.start, vma->node.size);
  153. if (i915_is_ggtt(vma->vm))
  154. seq_printf(m, ", type: %u)", vma->ggtt_view.type);
  155. else
  156. seq_puts(m, ")");
  157. }
  158. if (obj->stolen)
  159. seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
  160. if (obj->pin_display || obj->fault_mappable) {
  161. char s[3], *t = s;
  162. if (obj->pin_display)
  163. *t++ = 'p';
  164. if (obj->fault_mappable)
  165. *t++ = 'f';
  166. *t = '\0';
  167. seq_printf(m, " (%s mappable)", s);
  168. }
  169. if (obj->last_write_req != NULL)
  170. seq_printf(m, " (%s)",
  171. i915_gem_request_get_ring(obj->last_write_req)->name);
  172. if (obj->frontbuffer_bits)
  173. seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
  174. }
  175. static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
  176. {
  177. seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
  178. seq_putc(m, ctx->remap_slice ? 'R' : 'r');
  179. seq_putc(m, ' ');
  180. }
  181. static int i915_gem_object_list_info(struct seq_file *m, void *data)
  182. {
  183. struct drm_info_node *node = m->private;
  184. uintptr_t list = (uintptr_t) node->info_ent->data;
  185. struct list_head *head;
  186. struct drm_device *dev = node->minor->dev;
  187. struct drm_i915_private *dev_priv = dev->dev_private;
  188. struct i915_address_space *vm = &dev_priv->gtt.base;
  189. struct i915_vma *vma;
  190. u64 total_obj_size, total_gtt_size;
  191. int count, ret;
  192. ret = mutex_lock_interruptible(&dev->struct_mutex);
  193. if (ret)
  194. return ret;
  195. /* FIXME: the user of this interface might want more than just GGTT */
  196. switch (list) {
  197. case ACTIVE_LIST:
  198. seq_puts(m, "Active:\n");
  199. head = &vm->active_list;
  200. break;
  201. case INACTIVE_LIST:
  202. seq_puts(m, "Inactive:\n");
  203. head = &vm->inactive_list;
  204. break;
  205. default:
  206. mutex_unlock(&dev->struct_mutex);
  207. return -EINVAL;
  208. }
  209. total_obj_size = total_gtt_size = count = 0;
  210. list_for_each_entry(vma, head, mm_list) {
  211. seq_printf(m, " ");
  212. describe_obj(m, vma->obj);
  213. seq_printf(m, "\n");
  214. total_obj_size += vma->obj->base.size;
  215. total_gtt_size += vma->node.size;
  216. count++;
  217. }
  218. mutex_unlock(&dev->struct_mutex);
  219. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  220. count, total_obj_size, total_gtt_size);
  221. return 0;
  222. }
  223. static int obj_rank_by_stolen(void *priv,
  224. struct list_head *A, struct list_head *B)
  225. {
  226. struct drm_i915_gem_object *a =
  227. container_of(A, struct drm_i915_gem_object, obj_exec_link);
  228. struct drm_i915_gem_object *b =
  229. container_of(B, struct drm_i915_gem_object, obj_exec_link);
  230. if (a->stolen->start < b->stolen->start)
  231. return -1;
  232. if (a->stolen->start > b->stolen->start)
  233. return 1;
  234. return 0;
  235. }
  236. static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
  237. {
  238. struct drm_info_node *node = m->private;
  239. struct drm_device *dev = node->minor->dev;
  240. struct drm_i915_private *dev_priv = dev->dev_private;
  241. struct drm_i915_gem_object *obj;
  242. u64 total_obj_size, total_gtt_size;
  243. LIST_HEAD(stolen);
  244. int count, ret;
  245. ret = mutex_lock_interruptible(&dev->struct_mutex);
  246. if (ret)
  247. return ret;
  248. total_obj_size = total_gtt_size = count = 0;
  249. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  250. if (obj->stolen == NULL)
  251. continue;
  252. list_add(&obj->obj_exec_link, &stolen);
  253. total_obj_size += obj->base.size;
  254. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  255. count++;
  256. }
  257. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  258. if (obj->stolen == NULL)
  259. continue;
  260. list_add(&obj->obj_exec_link, &stolen);
  261. total_obj_size += obj->base.size;
  262. count++;
  263. }
  264. list_sort(NULL, &stolen, obj_rank_by_stolen);
  265. seq_puts(m, "Stolen:\n");
  266. while (!list_empty(&stolen)) {
  267. obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
  268. seq_puts(m, " ");
  269. describe_obj(m, obj);
  270. seq_putc(m, '\n');
  271. list_del_init(&obj->obj_exec_link);
  272. }
  273. mutex_unlock(&dev->struct_mutex);
  274. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  275. count, total_obj_size, total_gtt_size);
  276. return 0;
  277. }
  278. #define count_objects(list, member) do { \
  279. list_for_each_entry(obj, list, member) { \
  280. size += i915_gem_obj_total_ggtt_size(obj); \
  281. ++count; \
  282. if (obj->map_and_fenceable) { \
  283. mappable_size += i915_gem_obj_ggtt_size(obj); \
  284. ++mappable_count; \
  285. } \
  286. } \
  287. } while (0)
  288. struct file_stats {
  289. struct drm_i915_file_private *file_priv;
  290. unsigned long count;
  291. u64 total, unbound;
  292. u64 global, shared;
  293. u64 active, inactive;
  294. };
  295. static int per_file_stats(int id, void *ptr, void *data)
  296. {
  297. struct drm_i915_gem_object *obj = ptr;
  298. struct file_stats *stats = data;
  299. struct i915_vma *vma;
  300. stats->count++;
  301. stats->total += obj->base.size;
  302. if (obj->base.name || obj->base.dma_buf)
  303. stats->shared += obj->base.size;
  304. if (USES_FULL_PPGTT(obj->base.dev)) {
  305. list_for_each_entry(vma, &obj->vma_list, vma_link) {
  306. struct i915_hw_ppgtt *ppgtt;
  307. if (!drm_mm_node_allocated(&vma->node))
  308. continue;
  309. if (i915_is_ggtt(vma->vm)) {
  310. stats->global += obj->base.size;
  311. continue;
  312. }
  313. ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
  314. if (ppgtt->file_priv != stats->file_priv)
  315. continue;
  316. if (obj->active) /* XXX per-vma statistic */
  317. stats->active += obj->base.size;
  318. else
  319. stats->inactive += obj->base.size;
  320. return 0;
  321. }
  322. } else {
  323. if (i915_gem_obj_ggtt_bound(obj)) {
  324. stats->global += obj->base.size;
  325. if (obj->active)
  326. stats->active += obj->base.size;
  327. else
  328. stats->inactive += obj->base.size;
  329. return 0;
  330. }
  331. }
  332. if (!list_empty(&obj->global_list))
  333. stats->unbound += obj->base.size;
  334. return 0;
  335. }
  336. #define print_file_stats(m, name, stats) do { \
  337. if (stats.count) \
  338. seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
  339. name, \
  340. stats.count, \
  341. stats.total, \
  342. stats.active, \
  343. stats.inactive, \
  344. stats.global, \
  345. stats.shared, \
  346. stats.unbound); \
  347. } while (0)
  348. static void print_batch_pool_stats(struct seq_file *m,
  349. struct drm_i915_private *dev_priv)
  350. {
  351. struct drm_i915_gem_object *obj;
  352. struct file_stats stats;
  353. struct intel_engine_cs *ring;
  354. int i, j;
  355. memset(&stats, 0, sizeof(stats));
  356. for_each_ring(ring, dev_priv, i) {
  357. for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
  358. list_for_each_entry(obj,
  359. &ring->batch_pool.cache_list[j],
  360. batch_pool_link)
  361. per_file_stats(0, obj, &stats);
  362. }
  363. }
  364. print_file_stats(m, "[k]batch pool", stats);
  365. }
  366. #define count_vmas(list, member) do { \
  367. list_for_each_entry(vma, list, member) { \
  368. size += i915_gem_obj_total_ggtt_size(vma->obj); \
  369. ++count; \
  370. if (vma->obj->map_and_fenceable) { \
  371. mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
  372. ++mappable_count; \
  373. } \
  374. } \
  375. } while (0)
  376. static int i915_gem_object_info(struct seq_file *m, void* data)
  377. {
  378. struct drm_info_node *node = m->private;
  379. struct drm_device *dev = node->minor->dev;
  380. struct drm_i915_private *dev_priv = dev->dev_private;
  381. u32 count, mappable_count, purgeable_count;
  382. u64 size, mappable_size, purgeable_size;
  383. struct drm_i915_gem_object *obj;
  384. struct i915_address_space *vm = &dev_priv->gtt.base;
  385. struct drm_file *file;
  386. struct i915_vma *vma;
  387. int ret;
  388. ret = mutex_lock_interruptible(&dev->struct_mutex);
  389. if (ret)
  390. return ret;
  391. seq_printf(m, "%u objects, %zu bytes\n",
  392. dev_priv->mm.object_count,
  393. dev_priv->mm.object_memory);
  394. size = count = mappable_size = mappable_count = 0;
  395. count_objects(&dev_priv->mm.bound_list, global_list);
  396. seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
  397. count, mappable_count, size, mappable_size);
  398. size = count = mappable_size = mappable_count = 0;
  399. count_vmas(&vm->active_list, mm_list);
  400. seq_printf(m, " %u [%u] active objects, %llu [%llu] bytes\n",
  401. count, mappable_count, size, mappable_size);
  402. size = count = mappable_size = mappable_count = 0;
  403. count_vmas(&vm->inactive_list, mm_list);
  404. seq_printf(m, " %u [%u] inactive objects, %llu [%llu] bytes\n",
  405. count, mappable_count, size, mappable_size);
  406. size = count = purgeable_size = purgeable_count = 0;
  407. list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
  408. size += obj->base.size, ++count;
  409. if (obj->madv == I915_MADV_DONTNEED)
  410. purgeable_size += obj->base.size, ++purgeable_count;
  411. }
  412. seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
  413. size = count = mappable_size = mappable_count = 0;
  414. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  415. if (obj->fault_mappable) {
  416. size += i915_gem_obj_ggtt_size(obj);
  417. ++count;
  418. }
  419. if (obj->pin_display) {
  420. mappable_size += i915_gem_obj_ggtt_size(obj);
  421. ++mappable_count;
  422. }
  423. if (obj->madv == I915_MADV_DONTNEED) {
  424. purgeable_size += obj->base.size;
  425. ++purgeable_count;
  426. }
  427. }
  428. seq_printf(m, "%u purgeable objects, %llu bytes\n",
  429. purgeable_count, purgeable_size);
  430. seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
  431. mappable_count, mappable_size);
  432. seq_printf(m, "%u fault mappable objects, %llu bytes\n",
  433. count, size);
  434. seq_printf(m, "%llu [%llu] gtt total\n",
  435. dev_priv->gtt.base.total,
  436. (u64)dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
  437. seq_putc(m, '\n');
  438. print_batch_pool_stats(m, dev_priv);
  439. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  440. struct file_stats stats;
  441. struct task_struct *task;
  442. memset(&stats, 0, sizeof(stats));
  443. stats.file_priv = file->driver_priv;
  444. spin_lock(&file->table_lock);
  445. idr_for_each(&file->object_idr, per_file_stats, &stats);
  446. spin_unlock(&file->table_lock);
  447. /*
  448. * Although we have a valid reference on file->pid, that does
  449. * not guarantee that the task_struct who called get_pid() is
  450. * still alive (e.g. get_pid(current) => fork() => exit()).
  451. * Therefore, we need to protect this ->comm access using RCU.
  452. */
  453. rcu_read_lock();
  454. task = pid_task(file->pid, PIDTYPE_PID);
  455. print_file_stats(m, task ? task->comm : "<unknown>", stats);
  456. rcu_read_unlock();
  457. }
  458. mutex_unlock(&dev->struct_mutex);
  459. return 0;
  460. }
  461. static int i915_gem_gtt_info(struct seq_file *m, void *data)
  462. {
  463. struct drm_info_node *node = m->private;
  464. struct drm_device *dev = node->minor->dev;
  465. uintptr_t list = (uintptr_t) node->info_ent->data;
  466. struct drm_i915_private *dev_priv = dev->dev_private;
  467. struct drm_i915_gem_object *obj;
  468. u64 total_obj_size, total_gtt_size;
  469. int count, ret;
  470. ret = mutex_lock_interruptible(&dev->struct_mutex);
  471. if (ret)
  472. return ret;
  473. total_obj_size = total_gtt_size = count = 0;
  474. list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
  475. if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
  476. continue;
  477. seq_puts(m, " ");
  478. describe_obj(m, obj);
  479. seq_putc(m, '\n');
  480. total_obj_size += obj->base.size;
  481. total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
  482. count++;
  483. }
  484. mutex_unlock(&dev->struct_mutex);
  485. seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
  486. count, total_obj_size, total_gtt_size);
  487. return 0;
  488. }
  489. static int i915_gem_pageflip_info(struct seq_file *m, void *data)
  490. {
  491. struct drm_info_node *node = m->private;
  492. struct drm_device *dev = node->minor->dev;
  493. struct drm_i915_private *dev_priv = dev->dev_private;
  494. struct intel_crtc *crtc;
  495. int ret;
  496. ret = mutex_lock_interruptible(&dev->struct_mutex);
  497. if (ret)
  498. return ret;
  499. for_each_intel_crtc(dev, crtc) {
  500. const char pipe = pipe_name(crtc->pipe);
  501. const char plane = plane_name(crtc->plane);
  502. struct intel_unpin_work *work;
  503. spin_lock_irq(&dev->event_lock);
  504. work = crtc->unpin_work;
  505. if (work == NULL) {
  506. seq_printf(m, "No flip due on pipe %c (plane %c)\n",
  507. pipe, plane);
  508. } else {
  509. u32 addr;
  510. if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  511. seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
  512. pipe, plane);
  513. } else {
  514. seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
  515. pipe, plane);
  516. }
  517. if (work->flip_queued_req) {
  518. struct intel_engine_cs *ring =
  519. i915_gem_request_get_ring(work->flip_queued_req);
  520. seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
  521. ring->name,
  522. i915_gem_request_get_seqno(work->flip_queued_req),
  523. dev_priv->next_seqno,
  524. ring->get_seqno(ring, true),
  525. i915_gem_request_completed(work->flip_queued_req, true));
  526. } else
  527. seq_printf(m, "Flip not associated with any ring\n");
  528. seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
  529. work->flip_queued_vblank,
  530. work->flip_ready_vblank,
  531. drm_crtc_vblank_count(&crtc->base));
  532. if (work->enable_stall_check)
  533. seq_puts(m, "Stall check enabled, ");
  534. else
  535. seq_puts(m, "Stall check waiting for page flip ioctl, ");
  536. seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
  537. if (INTEL_INFO(dev)->gen >= 4)
  538. addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
  539. else
  540. addr = I915_READ(DSPADDR(crtc->plane));
  541. seq_printf(m, "Current scanout address 0x%08x\n", addr);
  542. if (work->pending_flip_obj) {
  543. seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
  544. seq_printf(m, "MMIO update completed? %d\n", addr == work->gtt_offset);
  545. }
  546. }
  547. spin_unlock_irq(&dev->event_lock);
  548. }
  549. mutex_unlock(&dev->struct_mutex);
  550. return 0;
  551. }
  552. static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
  553. {
  554. struct drm_info_node *node = m->private;
  555. struct drm_device *dev = node->minor->dev;
  556. struct drm_i915_private *dev_priv = dev->dev_private;
  557. struct drm_i915_gem_object *obj;
  558. struct intel_engine_cs *ring;
  559. int total = 0;
  560. int ret, i, j;
  561. ret = mutex_lock_interruptible(&dev->struct_mutex);
  562. if (ret)
  563. return ret;
  564. for_each_ring(ring, dev_priv, i) {
  565. for (j = 0; j < ARRAY_SIZE(ring->batch_pool.cache_list); j++) {
  566. int count;
  567. count = 0;
  568. list_for_each_entry(obj,
  569. &ring->batch_pool.cache_list[j],
  570. batch_pool_link)
  571. count++;
  572. seq_printf(m, "%s cache[%d]: %d objects\n",
  573. ring->name, j, count);
  574. list_for_each_entry(obj,
  575. &ring->batch_pool.cache_list[j],
  576. batch_pool_link) {
  577. seq_puts(m, " ");
  578. describe_obj(m, obj);
  579. seq_putc(m, '\n');
  580. }
  581. total += count;
  582. }
  583. }
  584. seq_printf(m, "total: %d\n", total);
  585. mutex_unlock(&dev->struct_mutex);
  586. return 0;
  587. }
  588. static int i915_gem_request_info(struct seq_file *m, void *data)
  589. {
  590. struct drm_info_node *node = m->private;
  591. struct drm_device *dev = node->minor->dev;
  592. struct drm_i915_private *dev_priv = dev->dev_private;
  593. struct intel_engine_cs *ring;
  594. struct drm_i915_gem_request *req;
  595. int ret, any, i;
  596. ret = mutex_lock_interruptible(&dev->struct_mutex);
  597. if (ret)
  598. return ret;
  599. any = 0;
  600. for_each_ring(ring, dev_priv, i) {
  601. int count;
  602. count = 0;
  603. list_for_each_entry(req, &ring->request_list, list)
  604. count++;
  605. if (count == 0)
  606. continue;
  607. seq_printf(m, "%s requests: %d\n", ring->name, count);
  608. list_for_each_entry(req, &ring->request_list, list) {
  609. struct task_struct *task;
  610. rcu_read_lock();
  611. task = NULL;
  612. if (req->pid)
  613. task = pid_task(req->pid, PIDTYPE_PID);
  614. seq_printf(m, " %x @ %d: %s [%d]\n",
  615. req->seqno,
  616. (int) (jiffies - req->emitted_jiffies),
  617. task ? task->comm : "<unknown>",
  618. task ? task->pid : -1);
  619. rcu_read_unlock();
  620. }
  621. any++;
  622. }
  623. mutex_unlock(&dev->struct_mutex);
  624. if (any == 0)
  625. seq_puts(m, "No requests\n");
  626. return 0;
  627. }
  628. static void i915_ring_seqno_info(struct seq_file *m,
  629. struct intel_engine_cs *ring)
  630. {
  631. if (ring->get_seqno) {
  632. seq_printf(m, "Current sequence (%s): %x\n",
  633. ring->name, ring->get_seqno(ring, false));
  634. }
  635. }
  636. static int i915_gem_seqno_info(struct seq_file *m, void *data)
  637. {
  638. struct drm_info_node *node = m->private;
  639. struct drm_device *dev = node->minor->dev;
  640. struct drm_i915_private *dev_priv = dev->dev_private;
  641. struct intel_engine_cs *ring;
  642. int ret, i;
  643. ret = mutex_lock_interruptible(&dev->struct_mutex);
  644. if (ret)
  645. return ret;
  646. intel_runtime_pm_get(dev_priv);
  647. for_each_ring(ring, dev_priv, i)
  648. i915_ring_seqno_info(m, ring);
  649. intel_runtime_pm_put(dev_priv);
  650. mutex_unlock(&dev->struct_mutex);
  651. return 0;
  652. }
  653. static int i915_interrupt_info(struct seq_file *m, void *data)
  654. {
  655. struct drm_info_node *node = m->private;
  656. struct drm_device *dev = node->minor->dev;
  657. struct drm_i915_private *dev_priv = dev->dev_private;
  658. struct intel_engine_cs *ring;
  659. int ret, i, pipe;
  660. ret = mutex_lock_interruptible(&dev->struct_mutex);
  661. if (ret)
  662. return ret;
  663. intel_runtime_pm_get(dev_priv);
  664. if (IS_CHERRYVIEW(dev)) {
  665. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  666. I915_READ(GEN8_MASTER_IRQ));
  667. seq_printf(m, "Display IER:\t%08x\n",
  668. I915_READ(VLV_IER));
  669. seq_printf(m, "Display IIR:\t%08x\n",
  670. I915_READ(VLV_IIR));
  671. seq_printf(m, "Display IIR_RW:\t%08x\n",
  672. I915_READ(VLV_IIR_RW));
  673. seq_printf(m, "Display IMR:\t%08x\n",
  674. I915_READ(VLV_IMR));
  675. for_each_pipe(dev_priv, pipe)
  676. seq_printf(m, "Pipe %c stat:\t%08x\n",
  677. pipe_name(pipe),
  678. I915_READ(PIPESTAT(pipe)));
  679. seq_printf(m, "Port hotplug:\t%08x\n",
  680. I915_READ(PORT_HOTPLUG_EN));
  681. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  682. I915_READ(VLV_DPFLIPSTAT));
  683. seq_printf(m, "DPINVGTT:\t%08x\n",
  684. I915_READ(DPINVGTT));
  685. for (i = 0; i < 4; i++) {
  686. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  687. i, I915_READ(GEN8_GT_IMR(i)));
  688. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  689. i, I915_READ(GEN8_GT_IIR(i)));
  690. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  691. i, I915_READ(GEN8_GT_IER(i)));
  692. }
  693. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  694. I915_READ(GEN8_PCU_IMR));
  695. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  696. I915_READ(GEN8_PCU_IIR));
  697. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  698. I915_READ(GEN8_PCU_IER));
  699. } else if (INTEL_INFO(dev)->gen >= 8) {
  700. seq_printf(m, "Master Interrupt Control:\t%08x\n",
  701. I915_READ(GEN8_MASTER_IRQ));
  702. for (i = 0; i < 4; i++) {
  703. seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
  704. i, I915_READ(GEN8_GT_IMR(i)));
  705. seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
  706. i, I915_READ(GEN8_GT_IIR(i)));
  707. seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
  708. i, I915_READ(GEN8_GT_IER(i)));
  709. }
  710. for_each_pipe(dev_priv, pipe) {
  711. if (!intel_display_power_is_enabled(dev_priv,
  712. POWER_DOMAIN_PIPE(pipe))) {
  713. seq_printf(m, "Pipe %c power disabled\n",
  714. pipe_name(pipe));
  715. continue;
  716. }
  717. seq_printf(m, "Pipe %c IMR:\t%08x\n",
  718. pipe_name(pipe),
  719. I915_READ(GEN8_DE_PIPE_IMR(pipe)));
  720. seq_printf(m, "Pipe %c IIR:\t%08x\n",
  721. pipe_name(pipe),
  722. I915_READ(GEN8_DE_PIPE_IIR(pipe)));
  723. seq_printf(m, "Pipe %c IER:\t%08x\n",
  724. pipe_name(pipe),
  725. I915_READ(GEN8_DE_PIPE_IER(pipe)));
  726. }
  727. seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
  728. I915_READ(GEN8_DE_PORT_IMR));
  729. seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
  730. I915_READ(GEN8_DE_PORT_IIR));
  731. seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
  732. I915_READ(GEN8_DE_PORT_IER));
  733. seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
  734. I915_READ(GEN8_DE_MISC_IMR));
  735. seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
  736. I915_READ(GEN8_DE_MISC_IIR));
  737. seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
  738. I915_READ(GEN8_DE_MISC_IER));
  739. seq_printf(m, "PCU interrupt mask:\t%08x\n",
  740. I915_READ(GEN8_PCU_IMR));
  741. seq_printf(m, "PCU interrupt identity:\t%08x\n",
  742. I915_READ(GEN8_PCU_IIR));
  743. seq_printf(m, "PCU interrupt enable:\t%08x\n",
  744. I915_READ(GEN8_PCU_IER));
  745. } else if (IS_VALLEYVIEW(dev)) {
  746. seq_printf(m, "Display IER:\t%08x\n",
  747. I915_READ(VLV_IER));
  748. seq_printf(m, "Display IIR:\t%08x\n",
  749. I915_READ(VLV_IIR));
  750. seq_printf(m, "Display IIR_RW:\t%08x\n",
  751. I915_READ(VLV_IIR_RW));
  752. seq_printf(m, "Display IMR:\t%08x\n",
  753. I915_READ(VLV_IMR));
  754. for_each_pipe(dev_priv, pipe)
  755. seq_printf(m, "Pipe %c stat:\t%08x\n",
  756. pipe_name(pipe),
  757. I915_READ(PIPESTAT(pipe)));
  758. seq_printf(m, "Master IER:\t%08x\n",
  759. I915_READ(VLV_MASTER_IER));
  760. seq_printf(m, "Render IER:\t%08x\n",
  761. I915_READ(GTIER));
  762. seq_printf(m, "Render IIR:\t%08x\n",
  763. I915_READ(GTIIR));
  764. seq_printf(m, "Render IMR:\t%08x\n",
  765. I915_READ(GTIMR));
  766. seq_printf(m, "PM IER:\t\t%08x\n",
  767. I915_READ(GEN6_PMIER));
  768. seq_printf(m, "PM IIR:\t\t%08x\n",
  769. I915_READ(GEN6_PMIIR));
  770. seq_printf(m, "PM IMR:\t\t%08x\n",
  771. I915_READ(GEN6_PMIMR));
  772. seq_printf(m, "Port hotplug:\t%08x\n",
  773. I915_READ(PORT_HOTPLUG_EN));
  774. seq_printf(m, "DPFLIPSTAT:\t%08x\n",
  775. I915_READ(VLV_DPFLIPSTAT));
  776. seq_printf(m, "DPINVGTT:\t%08x\n",
  777. I915_READ(DPINVGTT));
  778. } else if (!HAS_PCH_SPLIT(dev)) {
  779. seq_printf(m, "Interrupt enable: %08x\n",
  780. I915_READ(IER));
  781. seq_printf(m, "Interrupt identity: %08x\n",
  782. I915_READ(IIR));
  783. seq_printf(m, "Interrupt mask: %08x\n",
  784. I915_READ(IMR));
  785. for_each_pipe(dev_priv, pipe)
  786. seq_printf(m, "Pipe %c stat: %08x\n",
  787. pipe_name(pipe),
  788. I915_READ(PIPESTAT(pipe)));
  789. } else {
  790. seq_printf(m, "North Display Interrupt enable: %08x\n",
  791. I915_READ(DEIER));
  792. seq_printf(m, "North Display Interrupt identity: %08x\n",
  793. I915_READ(DEIIR));
  794. seq_printf(m, "North Display Interrupt mask: %08x\n",
  795. I915_READ(DEIMR));
  796. seq_printf(m, "South Display Interrupt enable: %08x\n",
  797. I915_READ(SDEIER));
  798. seq_printf(m, "South Display Interrupt identity: %08x\n",
  799. I915_READ(SDEIIR));
  800. seq_printf(m, "South Display Interrupt mask: %08x\n",
  801. I915_READ(SDEIMR));
  802. seq_printf(m, "Graphics Interrupt enable: %08x\n",
  803. I915_READ(GTIER));
  804. seq_printf(m, "Graphics Interrupt identity: %08x\n",
  805. I915_READ(GTIIR));
  806. seq_printf(m, "Graphics Interrupt mask: %08x\n",
  807. I915_READ(GTIMR));
  808. }
  809. for_each_ring(ring, dev_priv, i) {
  810. if (INTEL_INFO(dev)->gen >= 6) {
  811. seq_printf(m,
  812. "Graphics Interrupt mask (%s): %08x\n",
  813. ring->name, I915_READ_IMR(ring));
  814. }
  815. i915_ring_seqno_info(m, ring);
  816. }
  817. intel_runtime_pm_put(dev_priv);
  818. mutex_unlock(&dev->struct_mutex);
  819. return 0;
  820. }
  821. static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
  822. {
  823. struct drm_info_node *node = m->private;
  824. struct drm_device *dev = node->minor->dev;
  825. struct drm_i915_private *dev_priv = dev->dev_private;
  826. int i, ret;
  827. ret = mutex_lock_interruptible(&dev->struct_mutex);
  828. if (ret)
  829. return ret;
  830. seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
  831. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  832. struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
  833. seq_printf(m, "Fence %d, pin count = %d, object = ",
  834. i, dev_priv->fence_regs[i].pin_count);
  835. if (obj == NULL)
  836. seq_puts(m, "unused");
  837. else
  838. describe_obj(m, obj);
  839. seq_putc(m, '\n');
  840. }
  841. mutex_unlock(&dev->struct_mutex);
  842. return 0;
  843. }
  844. static int i915_hws_info(struct seq_file *m, void *data)
  845. {
  846. struct drm_info_node *node = m->private;
  847. struct drm_device *dev = node->minor->dev;
  848. struct drm_i915_private *dev_priv = dev->dev_private;
  849. struct intel_engine_cs *ring;
  850. const u32 *hws;
  851. int i;
  852. ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
  853. hws = ring->status_page.page_addr;
  854. if (hws == NULL)
  855. return 0;
  856. for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
  857. seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  858. i * 4,
  859. hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
  860. }
  861. return 0;
  862. }
  863. static ssize_t
  864. i915_error_state_write(struct file *filp,
  865. const char __user *ubuf,
  866. size_t cnt,
  867. loff_t *ppos)
  868. {
  869. struct i915_error_state_file_priv *error_priv = filp->private_data;
  870. struct drm_device *dev = error_priv->dev;
  871. int ret;
  872. DRM_DEBUG_DRIVER("Resetting error state\n");
  873. ret = mutex_lock_interruptible(&dev->struct_mutex);
  874. if (ret)
  875. return ret;
  876. i915_destroy_error_state(dev);
  877. mutex_unlock(&dev->struct_mutex);
  878. return cnt;
  879. }
  880. static int i915_error_state_open(struct inode *inode, struct file *file)
  881. {
  882. struct drm_device *dev = inode->i_private;
  883. struct i915_error_state_file_priv *error_priv;
  884. error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
  885. if (!error_priv)
  886. return -ENOMEM;
  887. error_priv->dev = dev;
  888. i915_error_state_get(dev, error_priv);
  889. file->private_data = error_priv;
  890. return 0;
  891. }
  892. static int i915_error_state_release(struct inode *inode, struct file *file)
  893. {
  894. struct i915_error_state_file_priv *error_priv = file->private_data;
  895. i915_error_state_put(error_priv);
  896. kfree(error_priv);
  897. return 0;
  898. }
  899. static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
  900. size_t count, loff_t *pos)
  901. {
  902. struct i915_error_state_file_priv *error_priv = file->private_data;
  903. struct drm_i915_error_state_buf error_str;
  904. loff_t tmp_pos = 0;
  905. ssize_t ret_count = 0;
  906. int ret;
  907. ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
  908. if (ret)
  909. return ret;
  910. ret = i915_error_state_to_str(&error_str, error_priv);
  911. if (ret)
  912. goto out;
  913. ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
  914. error_str.buf,
  915. error_str.bytes);
  916. if (ret_count < 0)
  917. ret = ret_count;
  918. else
  919. *pos = error_str.start + ret_count;
  920. out:
  921. i915_error_state_buf_release(&error_str);
  922. return ret ?: ret_count;
  923. }
  924. static const struct file_operations i915_error_state_fops = {
  925. .owner = THIS_MODULE,
  926. .open = i915_error_state_open,
  927. .read = i915_error_state_read,
  928. .write = i915_error_state_write,
  929. .llseek = default_llseek,
  930. .release = i915_error_state_release,
  931. };
  932. static int
  933. i915_next_seqno_get(void *data, u64 *val)
  934. {
  935. struct drm_device *dev = data;
  936. struct drm_i915_private *dev_priv = dev->dev_private;
  937. int ret;
  938. ret = mutex_lock_interruptible(&dev->struct_mutex);
  939. if (ret)
  940. return ret;
  941. *val = dev_priv->next_seqno;
  942. mutex_unlock(&dev->struct_mutex);
  943. return 0;
  944. }
  945. static int
  946. i915_next_seqno_set(void *data, u64 val)
  947. {
  948. struct drm_device *dev = data;
  949. int ret;
  950. ret = mutex_lock_interruptible(&dev->struct_mutex);
  951. if (ret)
  952. return ret;
  953. ret = i915_gem_set_seqno(dev, val);
  954. mutex_unlock(&dev->struct_mutex);
  955. return ret;
  956. }
  957. DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
  958. i915_next_seqno_get, i915_next_seqno_set,
  959. "0x%llx\n");
  960. static int i915_frequency_info(struct seq_file *m, void *unused)
  961. {
  962. struct drm_info_node *node = m->private;
  963. struct drm_device *dev = node->minor->dev;
  964. struct drm_i915_private *dev_priv = dev->dev_private;
  965. int ret = 0;
  966. intel_runtime_pm_get(dev_priv);
  967. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  968. if (IS_GEN5(dev)) {
  969. u16 rgvswctl = I915_READ16(MEMSWCTL);
  970. u16 rgvstat = I915_READ16(MEMSTAT_ILK);
  971. seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
  972. seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
  973. seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
  974. MEMSTAT_VID_SHIFT);
  975. seq_printf(m, "Current P-state: %d\n",
  976. (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
  977. } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
  978. u32 freq_sts;
  979. mutex_lock(&dev_priv->rps.hw_lock);
  980. freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
  981. seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
  982. seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
  983. seq_printf(m, "actual GPU freq: %d MHz\n",
  984. intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
  985. seq_printf(m, "current GPU freq: %d MHz\n",
  986. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  987. seq_printf(m, "max GPU freq: %d MHz\n",
  988. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  989. seq_printf(m, "min GPU freq: %d MHz\n",
  990. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  991. seq_printf(m, "idle GPU freq: %d MHz\n",
  992. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  993. seq_printf(m,
  994. "efficient (RPe) frequency: %d MHz\n",
  995. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  996. mutex_unlock(&dev_priv->rps.hw_lock);
  997. } else if (INTEL_INFO(dev)->gen >= 6) {
  998. u32 rp_state_limits;
  999. u32 gt_perf_status;
  1000. u32 rp_state_cap;
  1001. u32 rpmodectl, rpinclimit, rpdeclimit;
  1002. u32 rpstat, cagf, reqf;
  1003. u32 rpupei, rpcurup, rpprevup;
  1004. u32 rpdownei, rpcurdown, rpprevdown;
  1005. u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
  1006. int max_freq;
  1007. rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
  1008. if (IS_BROXTON(dev)) {
  1009. rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
  1010. gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
  1011. } else {
  1012. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  1013. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  1014. }
  1015. /* RPSTAT1 is in the GT power well */
  1016. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1017. if (ret)
  1018. goto out;
  1019. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  1020. reqf = I915_READ(GEN6_RPNSWREQ);
  1021. if (IS_GEN9(dev))
  1022. reqf >>= 23;
  1023. else {
  1024. reqf &= ~GEN6_TURBO_DISABLE;
  1025. if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1026. reqf >>= 24;
  1027. else
  1028. reqf >>= 25;
  1029. }
  1030. reqf = intel_gpu_freq(dev_priv, reqf);
  1031. rpmodectl = I915_READ(GEN6_RP_CONTROL);
  1032. rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
  1033. rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
  1034. rpstat = I915_READ(GEN6_RPSTAT1);
  1035. rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
  1036. rpcurup = I915_READ(GEN6_RP_CUR_UP);
  1037. rpprevup = I915_READ(GEN6_RP_PREV_UP);
  1038. rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
  1039. rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
  1040. rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
  1041. if (IS_GEN9(dev))
  1042. cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
  1043. else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
  1044. cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
  1045. else
  1046. cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
  1047. cagf = intel_gpu_freq(dev_priv, cagf);
  1048. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  1049. mutex_unlock(&dev->struct_mutex);
  1050. if (IS_GEN6(dev) || IS_GEN7(dev)) {
  1051. pm_ier = I915_READ(GEN6_PMIER);
  1052. pm_imr = I915_READ(GEN6_PMIMR);
  1053. pm_isr = I915_READ(GEN6_PMISR);
  1054. pm_iir = I915_READ(GEN6_PMIIR);
  1055. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1056. } else {
  1057. pm_ier = I915_READ(GEN8_GT_IER(2));
  1058. pm_imr = I915_READ(GEN8_GT_IMR(2));
  1059. pm_isr = I915_READ(GEN8_GT_ISR(2));
  1060. pm_iir = I915_READ(GEN8_GT_IIR(2));
  1061. pm_mask = I915_READ(GEN6_PMINTRMSK);
  1062. }
  1063. seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
  1064. pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
  1065. seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
  1066. seq_printf(m, "Render p-state ratio: %d\n",
  1067. (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
  1068. seq_printf(m, "Render p-state VID: %d\n",
  1069. gt_perf_status & 0xff);
  1070. seq_printf(m, "Render p-state limit: %d\n",
  1071. rp_state_limits & 0xff);
  1072. seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
  1073. seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
  1074. seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
  1075. seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
  1076. seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
  1077. seq_printf(m, "CAGF: %dMHz\n", cagf);
  1078. seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
  1079. GEN6_CURICONT_MASK);
  1080. seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
  1081. GEN6_CURBSYTAVG_MASK);
  1082. seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
  1083. GEN6_CURBSYTAVG_MASK);
  1084. seq_printf(m, "Up threshold: %d%%\n",
  1085. dev_priv->rps.up_threshold);
  1086. seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
  1087. GEN6_CURIAVG_MASK);
  1088. seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
  1089. GEN6_CURBSYTAVG_MASK);
  1090. seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
  1091. GEN6_CURBSYTAVG_MASK);
  1092. seq_printf(m, "Down threshold: %d%%\n",
  1093. dev_priv->rps.down_threshold);
  1094. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
  1095. rp_state_cap >> 16) & 0xff;
  1096. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1097. GEN9_FREQ_SCALER : 1);
  1098. seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
  1099. intel_gpu_freq(dev_priv, max_freq));
  1100. max_freq = (rp_state_cap & 0xff00) >> 8;
  1101. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1102. GEN9_FREQ_SCALER : 1);
  1103. seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
  1104. intel_gpu_freq(dev_priv, max_freq));
  1105. max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
  1106. rp_state_cap >> 0) & 0xff;
  1107. max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1108. GEN9_FREQ_SCALER : 1);
  1109. seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
  1110. intel_gpu_freq(dev_priv, max_freq));
  1111. seq_printf(m, "Max overclocked frequency: %dMHz\n",
  1112. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1113. seq_printf(m, "Current freq: %d MHz\n",
  1114. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
  1115. seq_printf(m, "Actual freq: %d MHz\n", cagf);
  1116. seq_printf(m, "Idle freq: %d MHz\n",
  1117. intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
  1118. seq_printf(m, "Min freq: %d MHz\n",
  1119. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
  1120. seq_printf(m, "Max freq: %d MHz\n",
  1121. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1122. seq_printf(m,
  1123. "efficient (RPe) frequency: %d MHz\n",
  1124. intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
  1125. } else {
  1126. seq_puts(m, "no P-state info available\n");
  1127. }
  1128. seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
  1129. seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
  1130. seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
  1131. out:
  1132. intel_runtime_pm_put(dev_priv);
  1133. return ret;
  1134. }
  1135. static int i915_hangcheck_info(struct seq_file *m, void *unused)
  1136. {
  1137. struct drm_info_node *node = m->private;
  1138. struct drm_device *dev = node->minor->dev;
  1139. struct drm_i915_private *dev_priv = dev->dev_private;
  1140. struct intel_engine_cs *ring;
  1141. u64 acthd[I915_NUM_RINGS];
  1142. u32 seqno[I915_NUM_RINGS];
  1143. int i;
  1144. if (!i915.enable_hangcheck) {
  1145. seq_printf(m, "Hangcheck disabled\n");
  1146. return 0;
  1147. }
  1148. intel_runtime_pm_get(dev_priv);
  1149. for_each_ring(ring, dev_priv, i) {
  1150. seqno[i] = ring->get_seqno(ring, false);
  1151. acthd[i] = intel_ring_get_active_head(ring);
  1152. }
  1153. intel_runtime_pm_put(dev_priv);
  1154. if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
  1155. seq_printf(m, "Hangcheck active, fires in %dms\n",
  1156. jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
  1157. jiffies));
  1158. } else
  1159. seq_printf(m, "Hangcheck inactive\n");
  1160. for_each_ring(ring, dev_priv, i) {
  1161. seq_printf(m, "%s:\n", ring->name);
  1162. seq_printf(m, "\tseqno = %x [current %x]\n",
  1163. ring->hangcheck.seqno, seqno[i]);
  1164. seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
  1165. (long long)ring->hangcheck.acthd,
  1166. (long long)acthd[i]);
  1167. seq_printf(m, "\tmax ACTHD = 0x%08llx\n",
  1168. (long long)ring->hangcheck.max_acthd);
  1169. seq_printf(m, "\tscore = %d\n", ring->hangcheck.score);
  1170. seq_printf(m, "\taction = %d\n", ring->hangcheck.action);
  1171. }
  1172. return 0;
  1173. }
  1174. static int ironlake_drpc_info(struct seq_file *m)
  1175. {
  1176. struct drm_info_node *node = m->private;
  1177. struct drm_device *dev = node->minor->dev;
  1178. struct drm_i915_private *dev_priv = dev->dev_private;
  1179. u32 rgvmodectl, rstdbyctl;
  1180. u16 crstandvid;
  1181. int ret;
  1182. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1183. if (ret)
  1184. return ret;
  1185. intel_runtime_pm_get(dev_priv);
  1186. rgvmodectl = I915_READ(MEMMODECTL);
  1187. rstdbyctl = I915_READ(RSTDBYCTL);
  1188. crstandvid = I915_READ16(CRSTANDVID);
  1189. intel_runtime_pm_put(dev_priv);
  1190. mutex_unlock(&dev->struct_mutex);
  1191. seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
  1192. seq_printf(m, "Boost freq: %d\n",
  1193. (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
  1194. MEMMODE_BOOST_FREQ_SHIFT);
  1195. seq_printf(m, "HW control enabled: %s\n",
  1196. yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
  1197. seq_printf(m, "SW control enabled: %s\n",
  1198. yesno(rgvmodectl & MEMMODE_SWMODE_EN));
  1199. seq_printf(m, "Gated voltage change: %s\n",
  1200. yesno(rgvmodectl & MEMMODE_RCLK_GATE));
  1201. seq_printf(m, "Starting frequency: P%d\n",
  1202. (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
  1203. seq_printf(m, "Max P-state: P%d\n",
  1204. (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
  1205. seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
  1206. seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
  1207. seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
  1208. seq_printf(m, "Render standby enabled: %s\n",
  1209. yesno(!(rstdbyctl & RCX_SW_EXIT)));
  1210. seq_puts(m, "Current RS state: ");
  1211. switch (rstdbyctl & RSX_STATUS_MASK) {
  1212. case RSX_STATUS_ON:
  1213. seq_puts(m, "on\n");
  1214. break;
  1215. case RSX_STATUS_RC1:
  1216. seq_puts(m, "RC1\n");
  1217. break;
  1218. case RSX_STATUS_RC1E:
  1219. seq_puts(m, "RC1E\n");
  1220. break;
  1221. case RSX_STATUS_RS1:
  1222. seq_puts(m, "RS1\n");
  1223. break;
  1224. case RSX_STATUS_RS2:
  1225. seq_puts(m, "RS2 (RC6)\n");
  1226. break;
  1227. case RSX_STATUS_RS3:
  1228. seq_puts(m, "RC3 (RC6+)\n");
  1229. break;
  1230. default:
  1231. seq_puts(m, "unknown\n");
  1232. break;
  1233. }
  1234. return 0;
  1235. }
  1236. static int i915_forcewake_domains(struct seq_file *m, void *data)
  1237. {
  1238. struct drm_info_node *node = m->private;
  1239. struct drm_device *dev = node->minor->dev;
  1240. struct drm_i915_private *dev_priv = dev->dev_private;
  1241. struct intel_uncore_forcewake_domain *fw_domain;
  1242. int i;
  1243. spin_lock_irq(&dev_priv->uncore.lock);
  1244. for_each_fw_domain(fw_domain, dev_priv, i) {
  1245. seq_printf(m, "%s.wake_count = %u\n",
  1246. intel_uncore_forcewake_domain_to_str(i),
  1247. fw_domain->wake_count);
  1248. }
  1249. spin_unlock_irq(&dev_priv->uncore.lock);
  1250. return 0;
  1251. }
  1252. static int vlv_drpc_info(struct seq_file *m)
  1253. {
  1254. struct drm_info_node *node = m->private;
  1255. struct drm_device *dev = node->minor->dev;
  1256. struct drm_i915_private *dev_priv = dev->dev_private;
  1257. u32 rpmodectl1, rcctl1, pw_status;
  1258. intel_runtime_pm_get(dev_priv);
  1259. pw_status = I915_READ(VLV_GTLC_PW_STATUS);
  1260. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1261. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1262. intel_runtime_pm_put(dev_priv);
  1263. seq_printf(m, "Video Turbo Mode: %s\n",
  1264. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1265. seq_printf(m, "Turbo enabled: %s\n",
  1266. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1267. seq_printf(m, "HW control enabled: %s\n",
  1268. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1269. seq_printf(m, "SW control enabled: %s\n",
  1270. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1271. GEN6_RP_MEDIA_SW_MODE));
  1272. seq_printf(m, "RC6 Enabled: %s\n",
  1273. yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
  1274. GEN6_RC_CTL_EI_MODE(1))));
  1275. seq_printf(m, "Render Power Well: %s\n",
  1276. (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
  1277. seq_printf(m, "Media Power Well: %s\n",
  1278. (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
  1279. seq_printf(m, "Render RC6 residency since boot: %u\n",
  1280. I915_READ(VLV_GT_RENDER_RC6));
  1281. seq_printf(m, "Media RC6 residency since boot: %u\n",
  1282. I915_READ(VLV_GT_MEDIA_RC6));
  1283. return i915_forcewake_domains(m, NULL);
  1284. }
  1285. static int gen6_drpc_info(struct seq_file *m)
  1286. {
  1287. struct drm_info_node *node = m->private;
  1288. struct drm_device *dev = node->minor->dev;
  1289. struct drm_i915_private *dev_priv = dev->dev_private;
  1290. u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
  1291. unsigned forcewake_count;
  1292. int count = 0, ret;
  1293. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1294. if (ret)
  1295. return ret;
  1296. intel_runtime_pm_get(dev_priv);
  1297. spin_lock_irq(&dev_priv->uncore.lock);
  1298. forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
  1299. spin_unlock_irq(&dev_priv->uncore.lock);
  1300. if (forcewake_count) {
  1301. seq_puts(m, "RC information inaccurate because somebody "
  1302. "holds a forcewake reference \n");
  1303. } else {
  1304. /* NB: we cannot use forcewake, else we read the wrong values */
  1305. while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
  1306. udelay(10);
  1307. seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
  1308. }
  1309. gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
  1310. trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
  1311. rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
  1312. rcctl1 = I915_READ(GEN6_RC_CONTROL);
  1313. mutex_unlock(&dev->struct_mutex);
  1314. mutex_lock(&dev_priv->rps.hw_lock);
  1315. sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  1316. mutex_unlock(&dev_priv->rps.hw_lock);
  1317. intel_runtime_pm_put(dev_priv);
  1318. seq_printf(m, "Video Turbo Mode: %s\n",
  1319. yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
  1320. seq_printf(m, "HW control enabled: %s\n",
  1321. yesno(rpmodectl1 & GEN6_RP_ENABLE));
  1322. seq_printf(m, "SW control enabled: %s\n",
  1323. yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
  1324. GEN6_RP_MEDIA_SW_MODE));
  1325. seq_printf(m, "RC1e Enabled: %s\n",
  1326. yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
  1327. seq_printf(m, "RC6 Enabled: %s\n",
  1328. yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
  1329. seq_printf(m, "Deep RC6 Enabled: %s\n",
  1330. yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
  1331. seq_printf(m, "Deepest RC6 Enabled: %s\n",
  1332. yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
  1333. seq_puts(m, "Current RC state: ");
  1334. switch (gt_core_status & GEN6_RCn_MASK) {
  1335. case GEN6_RC0:
  1336. if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
  1337. seq_puts(m, "Core Power Down\n");
  1338. else
  1339. seq_puts(m, "on\n");
  1340. break;
  1341. case GEN6_RC3:
  1342. seq_puts(m, "RC3\n");
  1343. break;
  1344. case GEN6_RC6:
  1345. seq_puts(m, "RC6\n");
  1346. break;
  1347. case GEN6_RC7:
  1348. seq_puts(m, "RC7\n");
  1349. break;
  1350. default:
  1351. seq_puts(m, "Unknown\n");
  1352. break;
  1353. }
  1354. seq_printf(m, "Core Power Down: %s\n",
  1355. yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
  1356. /* Not exactly sure what this is */
  1357. seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
  1358. I915_READ(GEN6_GT_GFX_RC6_LOCKED));
  1359. seq_printf(m, "RC6 residency since boot: %u\n",
  1360. I915_READ(GEN6_GT_GFX_RC6));
  1361. seq_printf(m, "RC6+ residency since boot: %u\n",
  1362. I915_READ(GEN6_GT_GFX_RC6p));
  1363. seq_printf(m, "RC6++ residency since boot: %u\n",
  1364. I915_READ(GEN6_GT_GFX_RC6pp));
  1365. seq_printf(m, "RC6 voltage: %dmV\n",
  1366. GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
  1367. seq_printf(m, "RC6+ voltage: %dmV\n",
  1368. GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
  1369. seq_printf(m, "RC6++ voltage: %dmV\n",
  1370. GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
  1371. return 0;
  1372. }
  1373. static int i915_drpc_info(struct seq_file *m, void *unused)
  1374. {
  1375. struct drm_info_node *node = m->private;
  1376. struct drm_device *dev = node->minor->dev;
  1377. if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1378. return vlv_drpc_info(m);
  1379. else if (INTEL_INFO(dev)->gen >= 6)
  1380. return gen6_drpc_info(m);
  1381. else
  1382. return ironlake_drpc_info(m);
  1383. }
  1384. static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
  1385. {
  1386. struct drm_info_node *node = m->private;
  1387. struct drm_device *dev = node->minor->dev;
  1388. struct drm_i915_private *dev_priv = dev->dev_private;
  1389. seq_printf(m, "FB tracking busy bits: 0x%08x\n",
  1390. dev_priv->fb_tracking.busy_bits);
  1391. seq_printf(m, "FB tracking flip bits: 0x%08x\n",
  1392. dev_priv->fb_tracking.flip_bits);
  1393. return 0;
  1394. }
  1395. static int i915_fbc_status(struct seq_file *m, void *unused)
  1396. {
  1397. struct drm_info_node *node = m->private;
  1398. struct drm_device *dev = node->minor->dev;
  1399. struct drm_i915_private *dev_priv = dev->dev_private;
  1400. if (!HAS_FBC(dev)) {
  1401. seq_puts(m, "FBC unsupported on this chipset\n");
  1402. return 0;
  1403. }
  1404. intel_runtime_pm_get(dev_priv);
  1405. mutex_lock(&dev_priv->fbc.lock);
  1406. if (intel_fbc_is_active(dev_priv))
  1407. seq_puts(m, "FBC enabled\n");
  1408. else
  1409. seq_printf(m, "FBC disabled: %s\n",
  1410. dev_priv->fbc.no_fbc_reason);
  1411. if (INTEL_INFO(dev_priv)->gen >= 7)
  1412. seq_printf(m, "Compressing: %s\n",
  1413. yesno(I915_READ(FBC_STATUS2) &
  1414. FBC_COMPRESSION_MASK));
  1415. mutex_unlock(&dev_priv->fbc.lock);
  1416. intel_runtime_pm_put(dev_priv);
  1417. return 0;
  1418. }
  1419. static int i915_fbc_fc_get(void *data, u64 *val)
  1420. {
  1421. struct drm_device *dev = data;
  1422. struct drm_i915_private *dev_priv = dev->dev_private;
  1423. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1424. return -ENODEV;
  1425. *val = dev_priv->fbc.false_color;
  1426. return 0;
  1427. }
  1428. static int i915_fbc_fc_set(void *data, u64 val)
  1429. {
  1430. struct drm_device *dev = data;
  1431. struct drm_i915_private *dev_priv = dev->dev_private;
  1432. u32 reg;
  1433. if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
  1434. return -ENODEV;
  1435. mutex_lock(&dev_priv->fbc.lock);
  1436. reg = I915_READ(ILK_DPFC_CONTROL);
  1437. dev_priv->fbc.false_color = val;
  1438. I915_WRITE(ILK_DPFC_CONTROL, val ?
  1439. (reg | FBC_CTL_FALSE_COLOR) :
  1440. (reg & ~FBC_CTL_FALSE_COLOR));
  1441. mutex_unlock(&dev_priv->fbc.lock);
  1442. return 0;
  1443. }
  1444. DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
  1445. i915_fbc_fc_get, i915_fbc_fc_set,
  1446. "%llu\n");
  1447. static int i915_ips_status(struct seq_file *m, void *unused)
  1448. {
  1449. struct drm_info_node *node = m->private;
  1450. struct drm_device *dev = node->minor->dev;
  1451. struct drm_i915_private *dev_priv = dev->dev_private;
  1452. if (!HAS_IPS(dev)) {
  1453. seq_puts(m, "not supported\n");
  1454. return 0;
  1455. }
  1456. intel_runtime_pm_get(dev_priv);
  1457. seq_printf(m, "Enabled by kernel parameter: %s\n",
  1458. yesno(i915.enable_ips));
  1459. if (INTEL_INFO(dev)->gen >= 8) {
  1460. seq_puts(m, "Currently: unknown\n");
  1461. } else {
  1462. if (I915_READ(IPS_CTL) & IPS_ENABLE)
  1463. seq_puts(m, "Currently: enabled\n");
  1464. else
  1465. seq_puts(m, "Currently: disabled\n");
  1466. }
  1467. intel_runtime_pm_put(dev_priv);
  1468. return 0;
  1469. }
  1470. static int i915_sr_status(struct seq_file *m, void *unused)
  1471. {
  1472. struct drm_info_node *node = m->private;
  1473. struct drm_device *dev = node->minor->dev;
  1474. struct drm_i915_private *dev_priv = dev->dev_private;
  1475. bool sr_enabled = false;
  1476. intel_runtime_pm_get(dev_priv);
  1477. if (HAS_PCH_SPLIT(dev))
  1478. sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
  1479. else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
  1480. IS_I945G(dev) || IS_I945GM(dev))
  1481. sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
  1482. else if (IS_I915GM(dev))
  1483. sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
  1484. else if (IS_PINEVIEW(dev))
  1485. sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
  1486. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  1487. sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
  1488. intel_runtime_pm_put(dev_priv);
  1489. seq_printf(m, "self-refresh: %s\n",
  1490. sr_enabled ? "enabled" : "disabled");
  1491. return 0;
  1492. }
  1493. static int i915_emon_status(struct seq_file *m, void *unused)
  1494. {
  1495. struct drm_info_node *node = m->private;
  1496. struct drm_device *dev = node->minor->dev;
  1497. struct drm_i915_private *dev_priv = dev->dev_private;
  1498. unsigned long temp, chipset, gfx;
  1499. int ret;
  1500. if (!IS_GEN5(dev))
  1501. return -ENODEV;
  1502. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1503. if (ret)
  1504. return ret;
  1505. temp = i915_mch_val(dev_priv);
  1506. chipset = i915_chipset_val(dev_priv);
  1507. gfx = i915_gfx_val(dev_priv);
  1508. mutex_unlock(&dev->struct_mutex);
  1509. seq_printf(m, "GMCH temp: %ld\n", temp);
  1510. seq_printf(m, "Chipset power: %ld\n", chipset);
  1511. seq_printf(m, "GFX power: %ld\n", gfx);
  1512. seq_printf(m, "Total power: %ld\n", chipset + gfx);
  1513. return 0;
  1514. }
  1515. static int i915_ring_freq_table(struct seq_file *m, void *unused)
  1516. {
  1517. struct drm_info_node *node = m->private;
  1518. struct drm_device *dev = node->minor->dev;
  1519. struct drm_i915_private *dev_priv = dev->dev_private;
  1520. int ret = 0;
  1521. int gpu_freq, ia_freq;
  1522. unsigned int max_gpu_freq, min_gpu_freq;
  1523. if (!HAS_CORE_RING_FREQ(dev)) {
  1524. seq_puts(m, "unsupported on this chipset\n");
  1525. return 0;
  1526. }
  1527. intel_runtime_pm_get(dev_priv);
  1528. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  1529. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  1530. if (ret)
  1531. goto out;
  1532. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
  1533. /* Convert GT frequency to 50 HZ units */
  1534. min_gpu_freq =
  1535. dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
  1536. max_gpu_freq =
  1537. dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
  1538. } else {
  1539. min_gpu_freq = dev_priv->rps.min_freq_softlimit;
  1540. max_gpu_freq = dev_priv->rps.max_freq_softlimit;
  1541. }
  1542. seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
  1543. for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
  1544. ia_freq = gpu_freq;
  1545. sandybridge_pcode_read(dev_priv,
  1546. GEN6_PCODE_READ_MIN_FREQ_TABLE,
  1547. &ia_freq);
  1548. seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
  1549. intel_gpu_freq(dev_priv, (gpu_freq *
  1550. (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
  1551. GEN9_FREQ_SCALER : 1))),
  1552. ((ia_freq >> 0) & 0xff) * 100,
  1553. ((ia_freq >> 8) & 0xff) * 100);
  1554. }
  1555. mutex_unlock(&dev_priv->rps.hw_lock);
  1556. out:
  1557. intel_runtime_pm_put(dev_priv);
  1558. return ret;
  1559. }
  1560. static int i915_opregion(struct seq_file *m, void *unused)
  1561. {
  1562. struct drm_info_node *node = m->private;
  1563. struct drm_device *dev = node->minor->dev;
  1564. struct drm_i915_private *dev_priv = dev->dev_private;
  1565. struct intel_opregion *opregion = &dev_priv->opregion;
  1566. int ret;
  1567. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1568. if (ret)
  1569. goto out;
  1570. if (opregion->header)
  1571. seq_write(m, opregion->header, OPREGION_SIZE);
  1572. mutex_unlock(&dev->struct_mutex);
  1573. out:
  1574. return 0;
  1575. }
  1576. static int i915_vbt(struct seq_file *m, void *unused)
  1577. {
  1578. struct drm_info_node *node = m->private;
  1579. struct drm_device *dev = node->minor->dev;
  1580. struct drm_i915_private *dev_priv = dev->dev_private;
  1581. struct intel_opregion *opregion = &dev_priv->opregion;
  1582. if (opregion->vbt)
  1583. seq_write(m, opregion->vbt, opregion->vbt_size);
  1584. return 0;
  1585. }
  1586. static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
  1587. {
  1588. struct drm_info_node *node = m->private;
  1589. struct drm_device *dev = node->minor->dev;
  1590. struct intel_framebuffer *fbdev_fb = NULL;
  1591. struct drm_framebuffer *drm_fb;
  1592. #ifdef CONFIG_DRM_FBDEV_EMULATION
  1593. if (to_i915(dev)->fbdev) {
  1594. fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
  1595. seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1596. fbdev_fb->base.width,
  1597. fbdev_fb->base.height,
  1598. fbdev_fb->base.depth,
  1599. fbdev_fb->base.bits_per_pixel,
  1600. fbdev_fb->base.modifier[0],
  1601. atomic_read(&fbdev_fb->base.refcount.refcount));
  1602. describe_obj(m, fbdev_fb->obj);
  1603. seq_putc(m, '\n');
  1604. }
  1605. #endif
  1606. mutex_lock(&dev->mode_config.fb_lock);
  1607. drm_for_each_fb(drm_fb, dev) {
  1608. struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
  1609. if (fb == fbdev_fb)
  1610. continue;
  1611. seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
  1612. fb->base.width,
  1613. fb->base.height,
  1614. fb->base.depth,
  1615. fb->base.bits_per_pixel,
  1616. fb->base.modifier[0],
  1617. atomic_read(&fb->base.refcount.refcount));
  1618. describe_obj(m, fb->obj);
  1619. seq_putc(m, '\n');
  1620. }
  1621. mutex_unlock(&dev->mode_config.fb_lock);
  1622. return 0;
  1623. }
  1624. static void describe_ctx_ringbuf(struct seq_file *m,
  1625. struct intel_ringbuffer *ringbuf)
  1626. {
  1627. seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
  1628. ringbuf->space, ringbuf->head, ringbuf->tail,
  1629. ringbuf->last_retired_head);
  1630. }
  1631. static int i915_context_status(struct seq_file *m, void *unused)
  1632. {
  1633. struct drm_info_node *node = m->private;
  1634. struct drm_device *dev = node->minor->dev;
  1635. struct drm_i915_private *dev_priv = dev->dev_private;
  1636. struct intel_engine_cs *ring;
  1637. struct intel_context *ctx;
  1638. int ret, i;
  1639. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1640. if (ret)
  1641. return ret;
  1642. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1643. if (!i915.enable_execlists &&
  1644. ctx->legacy_hw_ctx.rcs_state == NULL)
  1645. continue;
  1646. seq_puts(m, "HW context ");
  1647. describe_ctx(m, ctx);
  1648. for_each_ring(ring, dev_priv, i) {
  1649. if (ring->default_context == ctx)
  1650. seq_printf(m, "(default context %s) ",
  1651. ring->name);
  1652. }
  1653. if (i915.enable_execlists) {
  1654. seq_putc(m, '\n');
  1655. for_each_ring(ring, dev_priv, i) {
  1656. struct drm_i915_gem_object *ctx_obj =
  1657. ctx->engine[i].state;
  1658. struct intel_ringbuffer *ringbuf =
  1659. ctx->engine[i].ringbuf;
  1660. seq_printf(m, "%s: ", ring->name);
  1661. if (ctx_obj)
  1662. describe_obj(m, ctx_obj);
  1663. if (ringbuf)
  1664. describe_ctx_ringbuf(m, ringbuf);
  1665. seq_putc(m, '\n');
  1666. }
  1667. } else {
  1668. describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
  1669. }
  1670. seq_putc(m, '\n');
  1671. }
  1672. mutex_unlock(&dev->struct_mutex);
  1673. return 0;
  1674. }
  1675. static void i915_dump_lrc_obj(struct seq_file *m,
  1676. struct intel_engine_cs *ring,
  1677. struct drm_i915_gem_object *ctx_obj)
  1678. {
  1679. struct page *page;
  1680. uint32_t *reg_state;
  1681. int j;
  1682. unsigned long ggtt_offset = 0;
  1683. if (ctx_obj == NULL) {
  1684. seq_printf(m, "Context on %s with no gem object\n",
  1685. ring->name);
  1686. return;
  1687. }
  1688. seq_printf(m, "CONTEXT: %s %u\n", ring->name,
  1689. intel_execlists_ctx_id(ctx_obj));
  1690. if (!i915_gem_obj_ggtt_bound(ctx_obj))
  1691. seq_puts(m, "\tNot bound in GGTT\n");
  1692. else
  1693. ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
  1694. if (i915_gem_object_get_pages(ctx_obj)) {
  1695. seq_puts(m, "\tFailed to get pages for context object\n");
  1696. return;
  1697. }
  1698. page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
  1699. if (!WARN_ON(page == NULL)) {
  1700. reg_state = kmap_atomic(page);
  1701. for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
  1702. seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
  1703. ggtt_offset + 4096 + (j * 4),
  1704. reg_state[j], reg_state[j + 1],
  1705. reg_state[j + 2], reg_state[j + 3]);
  1706. }
  1707. kunmap_atomic(reg_state);
  1708. }
  1709. seq_putc(m, '\n');
  1710. }
  1711. static int i915_dump_lrc(struct seq_file *m, void *unused)
  1712. {
  1713. struct drm_info_node *node = (struct drm_info_node *) m->private;
  1714. struct drm_device *dev = node->minor->dev;
  1715. struct drm_i915_private *dev_priv = dev->dev_private;
  1716. struct intel_engine_cs *ring;
  1717. struct intel_context *ctx;
  1718. int ret, i;
  1719. if (!i915.enable_execlists) {
  1720. seq_printf(m, "Logical Ring Contexts are disabled\n");
  1721. return 0;
  1722. }
  1723. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1724. if (ret)
  1725. return ret;
  1726. list_for_each_entry(ctx, &dev_priv->context_list, link) {
  1727. for_each_ring(ring, dev_priv, i) {
  1728. if (ring->default_context != ctx)
  1729. i915_dump_lrc_obj(m, ring,
  1730. ctx->engine[i].state);
  1731. }
  1732. }
  1733. mutex_unlock(&dev->struct_mutex);
  1734. return 0;
  1735. }
  1736. static int i915_execlists(struct seq_file *m, void *data)
  1737. {
  1738. struct drm_info_node *node = (struct drm_info_node *)m->private;
  1739. struct drm_device *dev = node->minor->dev;
  1740. struct drm_i915_private *dev_priv = dev->dev_private;
  1741. struct intel_engine_cs *ring;
  1742. u32 status_pointer;
  1743. u8 read_pointer;
  1744. u8 write_pointer;
  1745. u32 status;
  1746. u32 ctx_id;
  1747. struct list_head *cursor;
  1748. int ring_id, i;
  1749. int ret;
  1750. if (!i915.enable_execlists) {
  1751. seq_puts(m, "Logical Ring Contexts are disabled\n");
  1752. return 0;
  1753. }
  1754. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1755. if (ret)
  1756. return ret;
  1757. intel_runtime_pm_get(dev_priv);
  1758. for_each_ring(ring, dev_priv, ring_id) {
  1759. struct drm_i915_gem_request *head_req = NULL;
  1760. int count = 0;
  1761. unsigned long flags;
  1762. seq_printf(m, "%s\n", ring->name);
  1763. status = I915_READ(RING_EXECLIST_STATUS_LO(ring));
  1764. ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(ring));
  1765. seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
  1766. status, ctx_id);
  1767. status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
  1768. seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
  1769. read_pointer = ring->next_context_status_buffer;
  1770. write_pointer = status_pointer & 0x07;
  1771. if (read_pointer > write_pointer)
  1772. write_pointer += 6;
  1773. seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
  1774. read_pointer, write_pointer);
  1775. for (i = 0; i < 6; i++) {
  1776. status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(ring, i));
  1777. ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(ring, i));
  1778. seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
  1779. i, status, ctx_id);
  1780. }
  1781. spin_lock_irqsave(&ring->execlist_lock, flags);
  1782. list_for_each(cursor, &ring->execlist_queue)
  1783. count++;
  1784. head_req = list_first_entry_or_null(&ring->execlist_queue,
  1785. struct drm_i915_gem_request, execlist_link);
  1786. spin_unlock_irqrestore(&ring->execlist_lock, flags);
  1787. seq_printf(m, "\t%d requests in queue\n", count);
  1788. if (head_req) {
  1789. struct drm_i915_gem_object *ctx_obj;
  1790. ctx_obj = head_req->ctx->engine[ring_id].state;
  1791. seq_printf(m, "\tHead request id: %u\n",
  1792. intel_execlists_ctx_id(ctx_obj));
  1793. seq_printf(m, "\tHead request tail: %u\n",
  1794. head_req->tail);
  1795. }
  1796. seq_putc(m, '\n');
  1797. }
  1798. intel_runtime_pm_put(dev_priv);
  1799. mutex_unlock(&dev->struct_mutex);
  1800. return 0;
  1801. }
  1802. static const char *swizzle_string(unsigned swizzle)
  1803. {
  1804. switch (swizzle) {
  1805. case I915_BIT_6_SWIZZLE_NONE:
  1806. return "none";
  1807. case I915_BIT_6_SWIZZLE_9:
  1808. return "bit9";
  1809. case I915_BIT_6_SWIZZLE_9_10:
  1810. return "bit9/bit10";
  1811. case I915_BIT_6_SWIZZLE_9_11:
  1812. return "bit9/bit11";
  1813. case I915_BIT_6_SWIZZLE_9_10_11:
  1814. return "bit9/bit10/bit11";
  1815. case I915_BIT_6_SWIZZLE_9_17:
  1816. return "bit9/bit17";
  1817. case I915_BIT_6_SWIZZLE_9_10_17:
  1818. return "bit9/bit10/bit17";
  1819. case I915_BIT_6_SWIZZLE_UNKNOWN:
  1820. return "unknown";
  1821. }
  1822. return "bug";
  1823. }
  1824. static int i915_swizzle_info(struct seq_file *m, void *data)
  1825. {
  1826. struct drm_info_node *node = m->private;
  1827. struct drm_device *dev = node->minor->dev;
  1828. struct drm_i915_private *dev_priv = dev->dev_private;
  1829. int ret;
  1830. ret = mutex_lock_interruptible(&dev->struct_mutex);
  1831. if (ret)
  1832. return ret;
  1833. intel_runtime_pm_get(dev_priv);
  1834. seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
  1835. swizzle_string(dev_priv->mm.bit_6_swizzle_x));
  1836. seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
  1837. swizzle_string(dev_priv->mm.bit_6_swizzle_y));
  1838. if (IS_GEN3(dev) || IS_GEN4(dev)) {
  1839. seq_printf(m, "DDC = 0x%08x\n",
  1840. I915_READ(DCC));
  1841. seq_printf(m, "DDC2 = 0x%08x\n",
  1842. I915_READ(DCC2));
  1843. seq_printf(m, "C0DRB3 = 0x%04x\n",
  1844. I915_READ16(C0DRB3));
  1845. seq_printf(m, "C1DRB3 = 0x%04x\n",
  1846. I915_READ16(C1DRB3));
  1847. } else if (INTEL_INFO(dev)->gen >= 6) {
  1848. seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
  1849. I915_READ(MAD_DIMM_C0));
  1850. seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
  1851. I915_READ(MAD_DIMM_C1));
  1852. seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
  1853. I915_READ(MAD_DIMM_C2));
  1854. seq_printf(m, "TILECTL = 0x%08x\n",
  1855. I915_READ(TILECTL));
  1856. if (INTEL_INFO(dev)->gen >= 8)
  1857. seq_printf(m, "GAMTARBMODE = 0x%08x\n",
  1858. I915_READ(GAMTARBMODE));
  1859. else
  1860. seq_printf(m, "ARB_MODE = 0x%08x\n",
  1861. I915_READ(ARB_MODE));
  1862. seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
  1863. I915_READ(DISP_ARB_CTL));
  1864. }
  1865. if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
  1866. seq_puts(m, "L-shaped memory detected\n");
  1867. intel_runtime_pm_put(dev_priv);
  1868. mutex_unlock(&dev->struct_mutex);
  1869. return 0;
  1870. }
  1871. static int per_file_ctx(int id, void *ptr, void *data)
  1872. {
  1873. struct intel_context *ctx = ptr;
  1874. struct seq_file *m = data;
  1875. struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
  1876. if (!ppgtt) {
  1877. seq_printf(m, " no ppgtt for context %d\n",
  1878. ctx->user_handle);
  1879. return 0;
  1880. }
  1881. if (i915_gem_context_is_default(ctx))
  1882. seq_puts(m, " default context:\n");
  1883. else
  1884. seq_printf(m, " context %d:\n", ctx->user_handle);
  1885. ppgtt->debug_dump(ppgtt, m);
  1886. return 0;
  1887. }
  1888. static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1889. {
  1890. struct drm_i915_private *dev_priv = dev->dev_private;
  1891. struct intel_engine_cs *ring;
  1892. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1893. int unused, i;
  1894. if (!ppgtt)
  1895. return;
  1896. for_each_ring(ring, dev_priv, unused) {
  1897. seq_printf(m, "%s\n", ring->name);
  1898. for (i = 0; i < 4; i++) {
  1899. u64 pdp = I915_READ(GEN8_RING_PDP_UDW(ring, i));
  1900. pdp <<= 32;
  1901. pdp |= I915_READ(GEN8_RING_PDP_LDW(ring, i));
  1902. seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
  1903. }
  1904. }
  1905. }
  1906. static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
  1907. {
  1908. struct drm_i915_private *dev_priv = dev->dev_private;
  1909. struct intel_engine_cs *ring;
  1910. int i;
  1911. if (INTEL_INFO(dev)->gen == 6)
  1912. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
  1913. for_each_ring(ring, dev_priv, i) {
  1914. seq_printf(m, "%s\n", ring->name);
  1915. if (INTEL_INFO(dev)->gen == 7)
  1916. seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
  1917. seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
  1918. seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
  1919. seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
  1920. }
  1921. if (dev_priv->mm.aliasing_ppgtt) {
  1922. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  1923. seq_puts(m, "aliasing PPGTT:\n");
  1924. seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
  1925. ppgtt->debug_dump(ppgtt, m);
  1926. }
  1927. seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
  1928. }
  1929. static int i915_ppgtt_info(struct seq_file *m, void *data)
  1930. {
  1931. struct drm_info_node *node = m->private;
  1932. struct drm_device *dev = node->minor->dev;
  1933. struct drm_i915_private *dev_priv = dev->dev_private;
  1934. struct drm_file *file;
  1935. int ret = mutex_lock_interruptible(&dev->struct_mutex);
  1936. if (ret)
  1937. return ret;
  1938. intel_runtime_pm_get(dev_priv);
  1939. if (INTEL_INFO(dev)->gen >= 8)
  1940. gen8_ppgtt_info(m, dev);
  1941. else if (INTEL_INFO(dev)->gen >= 6)
  1942. gen6_ppgtt_info(m, dev);
  1943. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1944. struct drm_i915_file_private *file_priv = file->driver_priv;
  1945. struct task_struct *task;
  1946. task = get_pid_task(file->pid, PIDTYPE_PID);
  1947. if (!task) {
  1948. ret = -ESRCH;
  1949. goto out_put;
  1950. }
  1951. seq_printf(m, "\nproc: %s\n", task->comm);
  1952. put_task_struct(task);
  1953. idr_for_each(&file_priv->context_idr, per_file_ctx,
  1954. (void *)(unsigned long)m);
  1955. }
  1956. out_put:
  1957. intel_runtime_pm_put(dev_priv);
  1958. mutex_unlock(&dev->struct_mutex);
  1959. return ret;
  1960. }
  1961. static int count_irq_waiters(struct drm_i915_private *i915)
  1962. {
  1963. struct intel_engine_cs *ring;
  1964. int count = 0;
  1965. int i;
  1966. for_each_ring(ring, i915, i)
  1967. count += ring->irq_refcount;
  1968. return count;
  1969. }
  1970. static int i915_rps_boost_info(struct seq_file *m, void *data)
  1971. {
  1972. struct drm_info_node *node = m->private;
  1973. struct drm_device *dev = node->minor->dev;
  1974. struct drm_i915_private *dev_priv = dev->dev_private;
  1975. struct drm_file *file;
  1976. seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
  1977. seq_printf(m, "GPU busy? %d\n", dev_priv->mm.busy);
  1978. seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
  1979. seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
  1980. intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
  1981. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
  1982. intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
  1983. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
  1984. intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
  1985. spin_lock(&dev_priv->rps.client_lock);
  1986. list_for_each_entry_reverse(file, &dev->filelist, lhead) {
  1987. struct drm_i915_file_private *file_priv = file->driver_priv;
  1988. struct task_struct *task;
  1989. rcu_read_lock();
  1990. task = pid_task(file->pid, PIDTYPE_PID);
  1991. seq_printf(m, "%s [%d]: %d boosts%s\n",
  1992. task ? task->comm : "<unknown>",
  1993. task ? task->pid : -1,
  1994. file_priv->rps.boosts,
  1995. list_empty(&file_priv->rps.link) ? "" : ", active");
  1996. rcu_read_unlock();
  1997. }
  1998. seq_printf(m, "Semaphore boosts: %d%s\n",
  1999. dev_priv->rps.semaphores.boosts,
  2000. list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
  2001. seq_printf(m, "MMIO flip boosts: %d%s\n",
  2002. dev_priv->rps.mmioflips.boosts,
  2003. list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
  2004. seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
  2005. spin_unlock(&dev_priv->rps.client_lock);
  2006. return 0;
  2007. }
  2008. static int i915_llc(struct seq_file *m, void *data)
  2009. {
  2010. struct drm_info_node *node = m->private;
  2011. struct drm_device *dev = node->minor->dev;
  2012. struct drm_i915_private *dev_priv = dev->dev_private;
  2013. /* Size calculation for LLC is a bit of a pain. Ignore for now. */
  2014. seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
  2015. seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
  2016. return 0;
  2017. }
  2018. static int i915_guc_load_status_info(struct seq_file *m, void *data)
  2019. {
  2020. struct drm_info_node *node = m->private;
  2021. struct drm_i915_private *dev_priv = node->minor->dev->dev_private;
  2022. struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
  2023. u32 tmp, i;
  2024. if (!HAS_GUC_UCODE(dev_priv->dev))
  2025. return 0;
  2026. seq_printf(m, "GuC firmware status:\n");
  2027. seq_printf(m, "\tpath: %s\n",
  2028. guc_fw->guc_fw_path);
  2029. seq_printf(m, "\tfetch: %s\n",
  2030. intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
  2031. seq_printf(m, "\tload: %s\n",
  2032. intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
  2033. seq_printf(m, "\tversion wanted: %d.%d\n",
  2034. guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
  2035. seq_printf(m, "\tversion found: %d.%d\n",
  2036. guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
  2037. seq_printf(m, "\theader: offset is %d; size = %d\n",
  2038. guc_fw->header_offset, guc_fw->header_size);
  2039. seq_printf(m, "\tuCode: offset is %d; size = %d\n",
  2040. guc_fw->ucode_offset, guc_fw->ucode_size);
  2041. seq_printf(m, "\tRSA: offset is %d; size = %d\n",
  2042. guc_fw->rsa_offset, guc_fw->rsa_size);
  2043. tmp = I915_READ(GUC_STATUS);
  2044. seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
  2045. seq_printf(m, "\tBootrom status = 0x%x\n",
  2046. (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
  2047. seq_printf(m, "\tuKernel status = 0x%x\n",
  2048. (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
  2049. seq_printf(m, "\tMIA Core status = 0x%x\n",
  2050. (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
  2051. seq_puts(m, "\nScratch registers:\n");
  2052. for (i = 0; i < 16; i++)
  2053. seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
  2054. return 0;
  2055. }
  2056. static void i915_guc_client_info(struct seq_file *m,
  2057. struct drm_i915_private *dev_priv,
  2058. struct i915_guc_client *client)
  2059. {
  2060. struct intel_engine_cs *ring;
  2061. uint64_t tot = 0;
  2062. uint32_t i;
  2063. seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
  2064. client->priority, client->ctx_index, client->proc_desc_offset);
  2065. seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
  2066. client->doorbell_id, client->doorbell_offset, client->cookie);
  2067. seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
  2068. client->wq_size, client->wq_offset, client->wq_tail);
  2069. seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
  2070. seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
  2071. seq_printf(m, "\tLast submission result: %d\n", client->retcode);
  2072. for_each_ring(ring, dev_priv, i) {
  2073. seq_printf(m, "\tSubmissions: %llu %s\n",
  2074. client->submissions[i],
  2075. ring->name);
  2076. tot += client->submissions[i];
  2077. }
  2078. seq_printf(m, "\tTotal: %llu\n", tot);
  2079. }
  2080. static int i915_guc_info(struct seq_file *m, void *data)
  2081. {
  2082. struct drm_info_node *node = m->private;
  2083. struct drm_device *dev = node->minor->dev;
  2084. struct drm_i915_private *dev_priv = dev->dev_private;
  2085. struct intel_guc guc;
  2086. struct i915_guc_client client = {};
  2087. struct intel_engine_cs *ring;
  2088. enum intel_ring_id i;
  2089. u64 total = 0;
  2090. if (!HAS_GUC_SCHED(dev_priv->dev))
  2091. return 0;
  2092. if (mutex_lock_interruptible(&dev->struct_mutex))
  2093. return 0;
  2094. /* Take a local copy of the GuC data, so we can dump it at leisure */
  2095. guc = dev_priv->guc;
  2096. if (guc.execbuf_client)
  2097. client = *guc.execbuf_client;
  2098. mutex_unlock(&dev->struct_mutex);
  2099. seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
  2100. seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
  2101. seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
  2102. seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
  2103. seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
  2104. seq_printf(m, "\nGuC submissions:\n");
  2105. for_each_ring(ring, dev_priv, i) {
  2106. seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x %9d\n",
  2107. ring->name, guc.submissions[i],
  2108. guc.last_seqno[i], guc.last_seqno[i]);
  2109. total += guc.submissions[i];
  2110. }
  2111. seq_printf(m, "\t%s: %llu\n", "Total", total);
  2112. seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
  2113. i915_guc_client_info(m, dev_priv, &client);
  2114. /* Add more as required ... */
  2115. return 0;
  2116. }
  2117. static int i915_guc_log_dump(struct seq_file *m, void *data)
  2118. {
  2119. struct drm_info_node *node = m->private;
  2120. struct drm_device *dev = node->minor->dev;
  2121. struct drm_i915_private *dev_priv = dev->dev_private;
  2122. struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
  2123. u32 *log;
  2124. int i = 0, pg;
  2125. if (!log_obj)
  2126. return 0;
  2127. for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
  2128. log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
  2129. for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
  2130. seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
  2131. *(log + i), *(log + i + 1),
  2132. *(log + i + 2), *(log + i + 3));
  2133. kunmap_atomic(log);
  2134. }
  2135. seq_putc(m, '\n');
  2136. return 0;
  2137. }
  2138. static int i915_edp_psr_status(struct seq_file *m, void *data)
  2139. {
  2140. struct drm_info_node *node = m->private;
  2141. struct drm_device *dev = node->minor->dev;
  2142. struct drm_i915_private *dev_priv = dev->dev_private;
  2143. u32 psrperf = 0;
  2144. u32 stat[3];
  2145. enum pipe pipe;
  2146. bool enabled = false;
  2147. if (!HAS_PSR(dev)) {
  2148. seq_puts(m, "PSR not supported\n");
  2149. return 0;
  2150. }
  2151. intel_runtime_pm_get(dev_priv);
  2152. mutex_lock(&dev_priv->psr.lock);
  2153. seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
  2154. seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
  2155. seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
  2156. seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
  2157. seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
  2158. dev_priv->psr.busy_frontbuffer_bits);
  2159. seq_printf(m, "Re-enable work scheduled: %s\n",
  2160. yesno(work_busy(&dev_priv->psr.work.work)));
  2161. if (HAS_DDI(dev))
  2162. enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
  2163. else {
  2164. for_each_pipe(dev_priv, pipe) {
  2165. stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
  2166. VLV_EDP_PSR_CURR_STATE_MASK;
  2167. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2168. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2169. enabled = true;
  2170. }
  2171. }
  2172. seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
  2173. if (!HAS_DDI(dev))
  2174. for_each_pipe(dev_priv, pipe) {
  2175. if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
  2176. (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
  2177. seq_printf(m, " pipe %c", pipe_name(pipe));
  2178. }
  2179. seq_puts(m, "\n");
  2180. /*
  2181. * VLV/CHV PSR has no kind of performance counter
  2182. * SKL+ Perf counter is reset to 0 everytime DC state is entered
  2183. */
  2184. if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
  2185. psrperf = I915_READ(EDP_PSR_PERF_CNT) &
  2186. EDP_PSR_PERF_CNT_MASK;
  2187. seq_printf(m, "Performance_Counter: %u\n", psrperf);
  2188. }
  2189. mutex_unlock(&dev_priv->psr.lock);
  2190. intel_runtime_pm_put(dev_priv);
  2191. return 0;
  2192. }
  2193. static int i915_sink_crc(struct seq_file *m, void *data)
  2194. {
  2195. struct drm_info_node *node = m->private;
  2196. struct drm_device *dev = node->minor->dev;
  2197. struct intel_encoder *encoder;
  2198. struct intel_connector *connector;
  2199. struct intel_dp *intel_dp = NULL;
  2200. int ret;
  2201. u8 crc[6];
  2202. drm_modeset_lock_all(dev);
  2203. for_each_intel_connector(dev, connector) {
  2204. if (connector->base.dpms != DRM_MODE_DPMS_ON)
  2205. continue;
  2206. if (!connector->base.encoder)
  2207. continue;
  2208. encoder = to_intel_encoder(connector->base.encoder);
  2209. if (encoder->type != INTEL_OUTPUT_EDP)
  2210. continue;
  2211. intel_dp = enc_to_intel_dp(&encoder->base);
  2212. ret = intel_dp_sink_crc(intel_dp, crc);
  2213. if (ret)
  2214. goto out;
  2215. seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
  2216. crc[0], crc[1], crc[2],
  2217. crc[3], crc[4], crc[5]);
  2218. goto out;
  2219. }
  2220. ret = -ENODEV;
  2221. out:
  2222. drm_modeset_unlock_all(dev);
  2223. return ret;
  2224. }
  2225. static int i915_energy_uJ(struct seq_file *m, void *data)
  2226. {
  2227. struct drm_info_node *node = m->private;
  2228. struct drm_device *dev = node->minor->dev;
  2229. struct drm_i915_private *dev_priv = dev->dev_private;
  2230. u64 power;
  2231. u32 units;
  2232. if (INTEL_INFO(dev)->gen < 6)
  2233. return -ENODEV;
  2234. intel_runtime_pm_get(dev_priv);
  2235. rdmsrl(MSR_RAPL_POWER_UNIT, power);
  2236. power = (power & 0x1f00) >> 8;
  2237. units = 1000000 / (1 << power); /* convert to uJ */
  2238. power = I915_READ(MCH_SECP_NRG_STTS);
  2239. power *= units;
  2240. intel_runtime_pm_put(dev_priv);
  2241. seq_printf(m, "%llu", (long long unsigned)power);
  2242. return 0;
  2243. }
  2244. static int i915_runtime_pm_status(struct seq_file *m, void *unused)
  2245. {
  2246. struct drm_info_node *node = m->private;
  2247. struct drm_device *dev = node->minor->dev;
  2248. struct drm_i915_private *dev_priv = dev->dev_private;
  2249. if (!HAS_RUNTIME_PM(dev)) {
  2250. seq_puts(m, "not supported\n");
  2251. return 0;
  2252. }
  2253. seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
  2254. seq_printf(m, "IRQs disabled: %s\n",
  2255. yesno(!intel_irqs_enabled(dev_priv)));
  2256. #ifdef CONFIG_PM
  2257. seq_printf(m, "Usage count: %d\n",
  2258. atomic_read(&dev->dev->power.usage_count));
  2259. #else
  2260. seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
  2261. #endif
  2262. return 0;
  2263. }
  2264. static int i915_power_domain_info(struct seq_file *m, void *unused)
  2265. {
  2266. struct drm_info_node *node = m->private;
  2267. struct drm_device *dev = node->minor->dev;
  2268. struct drm_i915_private *dev_priv = dev->dev_private;
  2269. struct i915_power_domains *power_domains = &dev_priv->power_domains;
  2270. int i;
  2271. mutex_lock(&power_domains->lock);
  2272. seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
  2273. for (i = 0; i < power_domains->power_well_count; i++) {
  2274. struct i915_power_well *power_well;
  2275. enum intel_display_power_domain power_domain;
  2276. power_well = &power_domains->power_wells[i];
  2277. seq_printf(m, "%-25s %d\n", power_well->name,
  2278. power_well->count);
  2279. for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
  2280. power_domain++) {
  2281. if (!(BIT(power_domain) & power_well->domains))
  2282. continue;
  2283. seq_printf(m, " %-23s %d\n",
  2284. intel_display_power_domain_str(power_domain),
  2285. power_domains->domain_use_count[power_domain]);
  2286. }
  2287. }
  2288. mutex_unlock(&power_domains->lock);
  2289. return 0;
  2290. }
  2291. static int i915_dmc_info(struct seq_file *m, void *unused)
  2292. {
  2293. struct drm_info_node *node = m->private;
  2294. struct drm_device *dev = node->minor->dev;
  2295. struct drm_i915_private *dev_priv = dev->dev_private;
  2296. struct intel_csr *csr;
  2297. if (!HAS_CSR(dev)) {
  2298. seq_puts(m, "not supported\n");
  2299. return 0;
  2300. }
  2301. csr = &dev_priv->csr;
  2302. intel_runtime_pm_get(dev_priv);
  2303. seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
  2304. seq_printf(m, "path: %s\n", csr->fw_path);
  2305. if (!csr->dmc_payload)
  2306. goto out;
  2307. seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
  2308. CSR_VERSION_MINOR(csr->version));
  2309. if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
  2310. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2311. I915_READ(SKL_CSR_DC3_DC5_COUNT));
  2312. seq_printf(m, "DC5 -> DC6 count: %d\n",
  2313. I915_READ(SKL_CSR_DC5_DC6_COUNT));
  2314. } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
  2315. seq_printf(m, "DC3 -> DC5 count: %d\n",
  2316. I915_READ(BXT_CSR_DC3_DC5_COUNT));
  2317. }
  2318. out:
  2319. seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
  2320. seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
  2321. seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
  2322. intel_runtime_pm_put(dev_priv);
  2323. return 0;
  2324. }
  2325. static void intel_seq_print_mode(struct seq_file *m, int tabs,
  2326. struct drm_display_mode *mode)
  2327. {
  2328. int i;
  2329. for (i = 0; i < tabs; i++)
  2330. seq_putc(m, '\t');
  2331. seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
  2332. mode->base.id, mode->name,
  2333. mode->vrefresh, mode->clock,
  2334. mode->hdisplay, mode->hsync_start,
  2335. mode->hsync_end, mode->htotal,
  2336. mode->vdisplay, mode->vsync_start,
  2337. mode->vsync_end, mode->vtotal,
  2338. mode->type, mode->flags);
  2339. }
  2340. static void intel_encoder_info(struct seq_file *m,
  2341. struct intel_crtc *intel_crtc,
  2342. struct intel_encoder *intel_encoder)
  2343. {
  2344. struct drm_info_node *node = m->private;
  2345. struct drm_device *dev = node->minor->dev;
  2346. struct drm_crtc *crtc = &intel_crtc->base;
  2347. struct intel_connector *intel_connector;
  2348. struct drm_encoder *encoder;
  2349. encoder = &intel_encoder->base;
  2350. seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
  2351. encoder->base.id, encoder->name);
  2352. for_each_connector_on_encoder(dev, encoder, intel_connector) {
  2353. struct drm_connector *connector = &intel_connector->base;
  2354. seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
  2355. connector->base.id,
  2356. connector->name,
  2357. drm_get_connector_status_name(connector->status));
  2358. if (connector->status == connector_status_connected) {
  2359. struct drm_display_mode *mode = &crtc->mode;
  2360. seq_printf(m, ", mode:\n");
  2361. intel_seq_print_mode(m, 2, mode);
  2362. } else {
  2363. seq_putc(m, '\n');
  2364. }
  2365. }
  2366. }
  2367. static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2368. {
  2369. struct drm_info_node *node = m->private;
  2370. struct drm_device *dev = node->minor->dev;
  2371. struct drm_crtc *crtc = &intel_crtc->base;
  2372. struct intel_encoder *intel_encoder;
  2373. struct drm_plane_state *plane_state = crtc->primary->state;
  2374. struct drm_framebuffer *fb = plane_state->fb;
  2375. if (fb)
  2376. seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
  2377. fb->base.id, plane_state->src_x >> 16,
  2378. plane_state->src_y >> 16, fb->width, fb->height);
  2379. else
  2380. seq_puts(m, "\tprimary plane disabled\n");
  2381. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2382. intel_encoder_info(m, intel_crtc, intel_encoder);
  2383. }
  2384. static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
  2385. {
  2386. struct drm_display_mode *mode = panel->fixed_mode;
  2387. seq_printf(m, "\tfixed mode:\n");
  2388. intel_seq_print_mode(m, 2, mode);
  2389. }
  2390. static void intel_dp_info(struct seq_file *m,
  2391. struct intel_connector *intel_connector)
  2392. {
  2393. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2394. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  2395. seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
  2396. seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
  2397. if (intel_encoder->type == INTEL_OUTPUT_EDP)
  2398. intel_panel_info(m, &intel_connector->panel);
  2399. }
  2400. static void intel_dp_mst_info(struct seq_file *m,
  2401. struct intel_connector *intel_connector)
  2402. {
  2403. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2404. struct intel_dp_mst_encoder *intel_mst =
  2405. enc_to_mst(&intel_encoder->base);
  2406. struct intel_digital_port *intel_dig_port = intel_mst->primary;
  2407. struct intel_dp *intel_dp = &intel_dig_port->dp;
  2408. bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
  2409. intel_connector->port);
  2410. seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
  2411. }
  2412. static void intel_hdmi_info(struct seq_file *m,
  2413. struct intel_connector *intel_connector)
  2414. {
  2415. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2416. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
  2417. seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
  2418. }
  2419. static void intel_lvds_info(struct seq_file *m,
  2420. struct intel_connector *intel_connector)
  2421. {
  2422. intel_panel_info(m, &intel_connector->panel);
  2423. }
  2424. static void intel_connector_info(struct seq_file *m,
  2425. struct drm_connector *connector)
  2426. {
  2427. struct intel_connector *intel_connector = to_intel_connector(connector);
  2428. struct intel_encoder *intel_encoder = intel_connector->encoder;
  2429. struct drm_display_mode *mode;
  2430. seq_printf(m, "connector %d: type %s, status: %s\n",
  2431. connector->base.id, connector->name,
  2432. drm_get_connector_status_name(connector->status));
  2433. if (connector->status == connector_status_connected) {
  2434. seq_printf(m, "\tname: %s\n", connector->display_info.name);
  2435. seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
  2436. connector->display_info.width_mm,
  2437. connector->display_info.height_mm);
  2438. seq_printf(m, "\tsubpixel order: %s\n",
  2439. drm_get_subpixel_order_name(connector->display_info.subpixel_order));
  2440. seq_printf(m, "\tCEA rev: %d\n",
  2441. connector->display_info.cea_rev);
  2442. }
  2443. if (intel_encoder) {
  2444. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
  2445. intel_encoder->type == INTEL_OUTPUT_EDP)
  2446. intel_dp_info(m, intel_connector);
  2447. else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
  2448. intel_hdmi_info(m, intel_connector);
  2449. else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
  2450. intel_lvds_info(m, intel_connector);
  2451. else if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
  2452. intel_dp_mst_info(m, intel_connector);
  2453. }
  2454. seq_printf(m, "\tmodes:\n");
  2455. list_for_each_entry(mode, &connector->modes, head)
  2456. intel_seq_print_mode(m, 2, mode);
  2457. }
  2458. static bool cursor_active(struct drm_device *dev, int pipe)
  2459. {
  2460. struct drm_i915_private *dev_priv = dev->dev_private;
  2461. u32 state;
  2462. if (IS_845G(dev) || IS_I865G(dev))
  2463. state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
  2464. else
  2465. state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  2466. return state;
  2467. }
  2468. static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
  2469. {
  2470. struct drm_i915_private *dev_priv = dev->dev_private;
  2471. u32 pos;
  2472. pos = I915_READ(CURPOS(pipe));
  2473. *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
  2474. if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
  2475. *x = -*x;
  2476. *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
  2477. if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
  2478. *y = -*y;
  2479. return cursor_active(dev, pipe);
  2480. }
  2481. static const char *plane_type(enum drm_plane_type type)
  2482. {
  2483. switch (type) {
  2484. case DRM_PLANE_TYPE_OVERLAY:
  2485. return "OVL";
  2486. case DRM_PLANE_TYPE_PRIMARY:
  2487. return "PRI";
  2488. case DRM_PLANE_TYPE_CURSOR:
  2489. return "CUR";
  2490. /*
  2491. * Deliberately omitting default: to generate compiler warnings
  2492. * when a new drm_plane_type gets added.
  2493. */
  2494. }
  2495. return "unknown";
  2496. }
  2497. static const char *plane_rotation(unsigned int rotation)
  2498. {
  2499. static char buf[48];
  2500. /*
  2501. * According to doc only one DRM_ROTATE_ is allowed but this
  2502. * will print them all to visualize if the values are misused
  2503. */
  2504. snprintf(buf, sizeof(buf),
  2505. "%s%s%s%s%s%s(0x%08x)",
  2506. (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
  2507. (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
  2508. (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
  2509. (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
  2510. (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
  2511. (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
  2512. rotation);
  2513. return buf;
  2514. }
  2515. static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2516. {
  2517. struct drm_info_node *node = m->private;
  2518. struct drm_device *dev = node->minor->dev;
  2519. struct intel_plane *intel_plane;
  2520. for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
  2521. struct drm_plane_state *state;
  2522. struct drm_plane *plane = &intel_plane->base;
  2523. if (!plane->state) {
  2524. seq_puts(m, "plane->state is NULL!\n");
  2525. continue;
  2526. }
  2527. state = plane->state;
  2528. seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
  2529. plane->base.id,
  2530. plane_type(intel_plane->base.type),
  2531. state->crtc_x, state->crtc_y,
  2532. state->crtc_w, state->crtc_h,
  2533. (state->src_x >> 16),
  2534. ((state->src_x & 0xffff) * 15625) >> 10,
  2535. (state->src_y >> 16),
  2536. ((state->src_y & 0xffff) * 15625) >> 10,
  2537. (state->src_w >> 16),
  2538. ((state->src_w & 0xffff) * 15625) >> 10,
  2539. (state->src_h >> 16),
  2540. ((state->src_h & 0xffff) * 15625) >> 10,
  2541. state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
  2542. plane_rotation(state->rotation));
  2543. }
  2544. }
  2545. static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
  2546. {
  2547. struct intel_crtc_state *pipe_config;
  2548. int num_scalers = intel_crtc->num_scalers;
  2549. int i;
  2550. pipe_config = to_intel_crtc_state(intel_crtc->base.state);
  2551. /* Not all platformas have a scaler */
  2552. if (num_scalers) {
  2553. seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
  2554. num_scalers,
  2555. pipe_config->scaler_state.scaler_users,
  2556. pipe_config->scaler_state.scaler_id);
  2557. for (i = 0; i < SKL_NUM_SCALERS; i++) {
  2558. struct intel_scaler *sc =
  2559. &pipe_config->scaler_state.scalers[i];
  2560. seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
  2561. i, yesno(sc->in_use), sc->mode);
  2562. }
  2563. seq_puts(m, "\n");
  2564. } else {
  2565. seq_puts(m, "\tNo scalers available on this platform\n");
  2566. }
  2567. }
  2568. static int i915_display_info(struct seq_file *m, void *unused)
  2569. {
  2570. struct drm_info_node *node = m->private;
  2571. struct drm_device *dev = node->minor->dev;
  2572. struct drm_i915_private *dev_priv = dev->dev_private;
  2573. struct intel_crtc *crtc;
  2574. struct drm_connector *connector;
  2575. intel_runtime_pm_get(dev_priv);
  2576. drm_modeset_lock_all(dev);
  2577. seq_printf(m, "CRTC info\n");
  2578. seq_printf(m, "---------\n");
  2579. for_each_intel_crtc(dev, crtc) {
  2580. bool active;
  2581. struct intel_crtc_state *pipe_config;
  2582. int x, y;
  2583. pipe_config = to_intel_crtc_state(crtc->base.state);
  2584. seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
  2585. crtc->base.base.id, pipe_name(crtc->pipe),
  2586. yesno(pipe_config->base.active),
  2587. pipe_config->pipe_src_w, pipe_config->pipe_src_h,
  2588. yesno(pipe_config->dither), pipe_config->pipe_bpp);
  2589. if (pipe_config->base.active) {
  2590. intel_crtc_info(m, crtc);
  2591. active = cursor_position(dev, crtc->pipe, &x, &y);
  2592. seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
  2593. yesno(crtc->cursor_base),
  2594. x, y, crtc->base.cursor->state->crtc_w,
  2595. crtc->base.cursor->state->crtc_h,
  2596. crtc->cursor_addr, yesno(active));
  2597. intel_scaler_info(m, crtc);
  2598. intel_plane_info(m, crtc);
  2599. }
  2600. seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
  2601. yesno(!crtc->cpu_fifo_underrun_disabled),
  2602. yesno(!crtc->pch_fifo_underrun_disabled));
  2603. }
  2604. seq_printf(m, "\n");
  2605. seq_printf(m, "Connector info\n");
  2606. seq_printf(m, "--------------\n");
  2607. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  2608. intel_connector_info(m, connector);
  2609. }
  2610. drm_modeset_unlock_all(dev);
  2611. intel_runtime_pm_put(dev_priv);
  2612. return 0;
  2613. }
  2614. static int i915_semaphore_status(struct seq_file *m, void *unused)
  2615. {
  2616. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2617. struct drm_device *dev = node->minor->dev;
  2618. struct drm_i915_private *dev_priv = dev->dev_private;
  2619. struct intel_engine_cs *ring;
  2620. int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  2621. int i, j, ret;
  2622. if (!i915_semaphore_is_enabled(dev)) {
  2623. seq_puts(m, "Semaphores are disabled\n");
  2624. return 0;
  2625. }
  2626. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2627. if (ret)
  2628. return ret;
  2629. intel_runtime_pm_get(dev_priv);
  2630. if (IS_BROADWELL(dev)) {
  2631. struct page *page;
  2632. uint64_t *seqno;
  2633. page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
  2634. seqno = (uint64_t *)kmap_atomic(page);
  2635. for_each_ring(ring, dev_priv, i) {
  2636. uint64_t offset;
  2637. seq_printf(m, "%s\n", ring->name);
  2638. seq_puts(m, " Last signal:");
  2639. for (j = 0; j < num_rings; j++) {
  2640. offset = i * I915_NUM_RINGS + j;
  2641. seq_printf(m, "0x%08llx (0x%02llx) ",
  2642. seqno[offset], offset * 8);
  2643. }
  2644. seq_putc(m, '\n');
  2645. seq_puts(m, " Last wait: ");
  2646. for (j = 0; j < num_rings; j++) {
  2647. offset = i + (j * I915_NUM_RINGS);
  2648. seq_printf(m, "0x%08llx (0x%02llx) ",
  2649. seqno[offset], offset * 8);
  2650. }
  2651. seq_putc(m, '\n');
  2652. }
  2653. kunmap_atomic(seqno);
  2654. } else {
  2655. seq_puts(m, " Last signal:");
  2656. for_each_ring(ring, dev_priv, i)
  2657. for (j = 0; j < num_rings; j++)
  2658. seq_printf(m, "0x%08x\n",
  2659. I915_READ(ring->semaphore.mbox.signal[j]));
  2660. seq_putc(m, '\n');
  2661. }
  2662. seq_puts(m, "\nSync seqno:\n");
  2663. for_each_ring(ring, dev_priv, i) {
  2664. for (j = 0; j < num_rings; j++) {
  2665. seq_printf(m, " 0x%08x ", ring->semaphore.sync_seqno[j]);
  2666. }
  2667. seq_putc(m, '\n');
  2668. }
  2669. seq_putc(m, '\n');
  2670. intel_runtime_pm_put(dev_priv);
  2671. mutex_unlock(&dev->struct_mutex);
  2672. return 0;
  2673. }
  2674. static int i915_shared_dplls_info(struct seq_file *m, void *unused)
  2675. {
  2676. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2677. struct drm_device *dev = node->minor->dev;
  2678. struct drm_i915_private *dev_priv = dev->dev_private;
  2679. int i;
  2680. drm_modeset_lock_all(dev);
  2681. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2682. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  2683. seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
  2684. seq_printf(m, " crtc_mask: 0x%08x, active: %d, on: %s\n",
  2685. pll->config.crtc_mask, pll->active, yesno(pll->on));
  2686. seq_printf(m, " tracked hardware state:\n");
  2687. seq_printf(m, " dpll: 0x%08x\n", pll->config.hw_state.dpll);
  2688. seq_printf(m, " dpll_md: 0x%08x\n",
  2689. pll->config.hw_state.dpll_md);
  2690. seq_printf(m, " fp0: 0x%08x\n", pll->config.hw_state.fp0);
  2691. seq_printf(m, " fp1: 0x%08x\n", pll->config.hw_state.fp1);
  2692. seq_printf(m, " wrpll: 0x%08x\n", pll->config.hw_state.wrpll);
  2693. }
  2694. drm_modeset_unlock_all(dev);
  2695. return 0;
  2696. }
  2697. static int i915_wa_registers(struct seq_file *m, void *unused)
  2698. {
  2699. int i;
  2700. int ret;
  2701. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2702. struct drm_device *dev = node->minor->dev;
  2703. struct drm_i915_private *dev_priv = dev->dev_private;
  2704. ret = mutex_lock_interruptible(&dev->struct_mutex);
  2705. if (ret)
  2706. return ret;
  2707. intel_runtime_pm_get(dev_priv);
  2708. seq_printf(m, "Workarounds applied: %d\n", dev_priv->workarounds.count);
  2709. for (i = 0; i < dev_priv->workarounds.count; ++i) {
  2710. i915_reg_t addr;
  2711. u32 mask, value, read;
  2712. bool ok;
  2713. addr = dev_priv->workarounds.reg[i].addr;
  2714. mask = dev_priv->workarounds.reg[i].mask;
  2715. value = dev_priv->workarounds.reg[i].value;
  2716. read = I915_READ(addr);
  2717. ok = (value & mask) == (read & mask);
  2718. seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
  2719. i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
  2720. }
  2721. intel_runtime_pm_put(dev_priv);
  2722. mutex_unlock(&dev->struct_mutex);
  2723. return 0;
  2724. }
  2725. static int i915_ddb_info(struct seq_file *m, void *unused)
  2726. {
  2727. struct drm_info_node *node = m->private;
  2728. struct drm_device *dev = node->minor->dev;
  2729. struct drm_i915_private *dev_priv = dev->dev_private;
  2730. struct skl_ddb_allocation *ddb;
  2731. struct skl_ddb_entry *entry;
  2732. enum pipe pipe;
  2733. int plane;
  2734. if (INTEL_INFO(dev)->gen < 9)
  2735. return 0;
  2736. drm_modeset_lock_all(dev);
  2737. ddb = &dev_priv->wm.skl_hw.ddb;
  2738. seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
  2739. for_each_pipe(dev_priv, pipe) {
  2740. seq_printf(m, "Pipe %c\n", pipe_name(pipe));
  2741. for_each_plane(dev_priv, pipe, plane) {
  2742. entry = &ddb->plane[pipe][plane];
  2743. seq_printf(m, " Plane%-8d%8u%8u%8u\n", plane + 1,
  2744. entry->start, entry->end,
  2745. skl_ddb_entry_size(entry));
  2746. }
  2747. entry = &ddb->plane[pipe][PLANE_CURSOR];
  2748. seq_printf(m, " %-13s%8u%8u%8u\n", "Cursor", entry->start,
  2749. entry->end, skl_ddb_entry_size(entry));
  2750. }
  2751. drm_modeset_unlock_all(dev);
  2752. return 0;
  2753. }
  2754. static void drrs_status_per_crtc(struct seq_file *m,
  2755. struct drm_device *dev, struct intel_crtc *intel_crtc)
  2756. {
  2757. struct intel_encoder *intel_encoder;
  2758. struct drm_i915_private *dev_priv = dev->dev_private;
  2759. struct i915_drrs *drrs = &dev_priv->drrs;
  2760. int vrefresh = 0;
  2761. for_each_encoder_on_crtc(dev, &intel_crtc->base, intel_encoder) {
  2762. /* Encoder connected on this CRTC */
  2763. switch (intel_encoder->type) {
  2764. case INTEL_OUTPUT_EDP:
  2765. seq_puts(m, "eDP:\n");
  2766. break;
  2767. case INTEL_OUTPUT_DSI:
  2768. seq_puts(m, "DSI:\n");
  2769. break;
  2770. case INTEL_OUTPUT_HDMI:
  2771. seq_puts(m, "HDMI:\n");
  2772. break;
  2773. case INTEL_OUTPUT_DISPLAYPORT:
  2774. seq_puts(m, "DP:\n");
  2775. break;
  2776. default:
  2777. seq_printf(m, "Other encoder (id=%d).\n",
  2778. intel_encoder->type);
  2779. return;
  2780. }
  2781. }
  2782. if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
  2783. seq_puts(m, "\tVBT: DRRS_type: Static");
  2784. else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
  2785. seq_puts(m, "\tVBT: DRRS_type: Seamless");
  2786. else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
  2787. seq_puts(m, "\tVBT: DRRS_type: None");
  2788. else
  2789. seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
  2790. seq_puts(m, "\n\n");
  2791. if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
  2792. struct intel_panel *panel;
  2793. mutex_lock(&drrs->mutex);
  2794. /* DRRS Supported */
  2795. seq_puts(m, "\tDRRS Supported: Yes\n");
  2796. /* disable_drrs() will make drrs->dp NULL */
  2797. if (!drrs->dp) {
  2798. seq_puts(m, "Idleness DRRS: Disabled");
  2799. mutex_unlock(&drrs->mutex);
  2800. return;
  2801. }
  2802. panel = &drrs->dp->attached_connector->panel;
  2803. seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
  2804. drrs->busy_frontbuffer_bits);
  2805. seq_puts(m, "\n\t\t");
  2806. if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
  2807. seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
  2808. vrefresh = panel->fixed_mode->vrefresh;
  2809. } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
  2810. seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
  2811. vrefresh = panel->downclock_mode->vrefresh;
  2812. } else {
  2813. seq_printf(m, "DRRS_State: Unknown(%d)\n",
  2814. drrs->refresh_rate_type);
  2815. mutex_unlock(&drrs->mutex);
  2816. return;
  2817. }
  2818. seq_printf(m, "\t\tVrefresh: %d", vrefresh);
  2819. seq_puts(m, "\n\t\t");
  2820. mutex_unlock(&drrs->mutex);
  2821. } else {
  2822. /* DRRS not supported. Print the VBT parameter*/
  2823. seq_puts(m, "\tDRRS Supported : No");
  2824. }
  2825. seq_puts(m, "\n");
  2826. }
  2827. static int i915_drrs_status(struct seq_file *m, void *unused)
  2828. {
  2829. struct drm_info_node *node = m->private;
  2830. struct drm_device *dev = node->minor->dev;
  2831. struct intel_crtc *intel_crtc;
  2832. int active_crtc_cnt = 0;
  2833. for_each_intel_crtc(dev, intel_crtc) {
  2834. drm_modeset_lock(&intel_crtc->base.mutex, NULL);
  2835. if (intel_crtc->base.state->active) {
  2836. active_crtc_cnt++;
  2837. seq_printf(m, "\nCRTC %d: ", active_crtc_cnt);
  2838. drrs_status_per_crtc(m, dev, intel_crtc);
  2839. }
  2840. drm_modeset_unlock(&intel_crtc->base.mutex);
  2841. }
  2842. if (!active_crtc_cnt)
  2843. seq_puts(m, "No active crtc found\n");
  2844. return 0;
  2845. }
  2846. struct pipe_crc_info {
  2847. const char *name;
  2848. struct drm_device *dev;
  2849. enum pipe pipe;
  2850. };
  2851. static int i915_dp_mst_info(struct seq_file *m, void *unused)
  2852. {
  2853. struct drm_info_node *node = (struct drm_info_node *) m->private;
  2854. struct drm_device *dev = node->minor->dev;
  2855. struct drm_encoder *encoder;
  2856. struct intel_encoder *intel_encoder;
  2857. struct intel_digital_port *intel_dig_port;
  2858. drm_modeset_lock_all(dev);
  2859. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  2860. intel_encoder = to_intel_encoder(encoder);
  2861. if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
  2862. continue;
  2863. intel_dig_port = enc_to_dig_port(encoder);
  2864. if (!intel_dig_port->dp.can_mst)
  2865. continue;
  2866. drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
  2867. }
  2868. drm_modeset_unlock_all(dev);
  2869. return 0;
  2870. }
  2871. static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
  2872. {
  2873. struct pipe_crc_info *info = inode->i_private;
  2874. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2875. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2876. if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
  2877. return -ENODEV;
  2878. spin_lock_irq(&pipe_crc->lock);
  2879. if (pipe_crc->opened) {
  2880. spin_unlock_irq(&pipe_crc->lock);
  2881. return -EBUSY; /* already open */
  2882. }
  2883. pipe_crc->opened = true;
  2884. filep->private_data = inode->i_private;
  2885. spin_unlock_irq(&pipe_crc->lock);
  2886. return 0;
  2887. }
  2888. static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
  2889. {
  2890. struct pipe_crc_info *info = inode->i_private;
  2891. struct drm_i915_private *dev_priv = info->dev->dev_private;
  2892. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2893. spin_lock_irq(&pipe_crc->lock);
  2894. pipe_crc->opened = false;
  2895. spin_unlock_irq(&pipe_crc->lock);
  2896. return 0;
  2897. }
  2898. /* (6 fields, 8 chars each, space separated (5) + '\n') */
  2899. #define PIPE_CRC_LINE_LEN (6 * 8 + 5 + 1)
  2900. /* account for \'0' */
  2901. #define PIPE_CRC_BUFFER_LEN (PIPE_CRC_LINE_LEN + 1)
  2902. static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
  2903. {
  2904. assert_spin_locked(&pipe_crc->lock);
  2905. return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2906. INTEL_PIPE_CRC_ENTRIES_NR);
  2907. }
  2908. static ssize_t
  2909. i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
  2910. loff_t *pos)
  2911. {
  2912. struct pipe_crc_info *info = filep->private_data;
  2913. struct drm_device *dev = info->dev;
  2914. struct drm_i915_private *dev_priv = dev->dev_private;
  2915. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
  2916. char buf[PIPE_CRC_BUFFER_LEN];
  2917. int n_entries;
  2918. ssize_t bytes_read;
  2919. /*
  2920. * Don't allow user space to provide buffers not big enough to hold
  2921. * a line of data.
  2922. */
  2923. if (count < PIPE_CRC_LINE_LEN)
  2924. return -EINVAL;
  2925. if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
  2926. return 0;
  2927. /* nothing to read */
  2928. spin_lock_irq(&pipe_crc->lock);
  2929. while (pipe_crc_data_count(pipe_crc) == 0) {
  2930. int ret;
  2931. if (filep->f_flags & O_NONBLOCK) {
  2932. spin_unlock_irq(&pipe_crc->lock);
  2933. return -EAGAIN;
  2934. }
  2935. ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
  2936. pipe_crc_data_count(pipe_crc), pipe_crc->lock);
  2937. if (ret) {
  2938. spin_unlock_irq(&pipe_crc->lock);
  2939. return ret;
  2940. }
  2941. }
  2942. /* We now have one or more entries to read */
  2943. n_entries = count / PIPE_CRC_LINE_LEN;
  2944. bytes_read = 0;
  2945. while (n_entries > 0) {
  2946. struct intel_pipe_crc_entry *entry =
  2947. &pipe_crc->entries[pipe_crc->tail];
  2948. int ret;
  2949. if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
  2950. INTEL_PIPE_CRC_ENTRIES_NR) < 1)
  2951. break;
  2952. BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
  2953. pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
  2954. bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
  2955. "%8u %8x %8x %8x %8x %8x\n",
  2956. entry->frame, entry->crc[0],
  2957. entry->crc[1], entry->crc[2],
  2958. entry->crc[3], entry->crc[4]);
  2959. spin_unlock_irq(&pipe_crc->lock);
  2960. ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
  2961. if (ret == PIPE_CRC_LINE_LEN)
  2962. return -EFAULT;
  2963. user_buf += PIPE_CRC_LINE_LEN;
  2964. n_entries--;
  2965. spin_lock_irq(&pipe_crc->lock);
  2966. }
  2967. spin_unlock_irq(&pipe_crc->lock);
  2968. return bytes_read;
  2969. }
  2970. static const struct file_operations i915_pipe_crc_fops = {
  2971. .owner = THIS_MODULE,
  2972. .open = i915_pipe_crc_open,
  2973. .read = i915_pipe_crc_read,
  2974. .release = i915_pipe_crc_release,
  2975. };
  2976. static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
  2977. {
  2978. .name = "i915_pipe_A_crc",
  2979. .pipe = PIPE_A,
  2980. },
  2981. {
  2982. .name = "i915_pipe_B_crc",
  2983. .pipe = PIPE_B,
  2984. },
  2985. {
  2986. .name = "i915_pipe_C_crc",
  2987. .pipe = PIPE_C,
  2988. },
  2989. };
  2990. static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
  2991. enum pipe pipe)
  2992. {
  2993. struct drm_device *dev = minor->dev;
  2994. struct dentry *ent;
  2995. struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
  2996. info->dev = dev;
  2997. ent = debugfs_create_file(info->name, S_IRUGO, root, info,
  2998. &i915_pipe_crc_fops);
  2999. if (!ent)
  3000. return -ENOMEM;
  3001. return drm_add_fake_info_node(minor, ent, info);
  3002. }
  3003. static const char * const pipe_crc_sources[] = {
  3004. "none",
  3005. "plane1",
  3006. "plane2",
  3007. "pf",
  3008. "pipe",
  3009. "TV",
  3010. "DP-B",
  3011. "DP-C",
  3012. "DP-D",
  3013. "auto",
  3014. };
  3015. static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
  3016. {
  3017. BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
  3018. return pipe_crc_sources[source];
  3019. }
  3020. static int display_crc_ctl_show(struct seq_file *m, void *data)
  3021. {
  3022. struct drm_device *dev = m->private;
  3023. struct drm_i915_private *dev_priv = dev->dev_private;
  3024. int i;
  3025. for (i = 0; i < I915_MAX_PIPES; i++)
  3026. seq_printf(m, "%c %s\n", pipe_name(i),
  3027. pipe_crc_source_name(dev_priv->pipe_crc[i].source));
  3028. return 0;
  3029. }
  3030. static int display_crc_ctl_open(struct inode *inode, struct file *file)
  3031. {
  3032. struct drm_device *dev = inode->i_private;
  3033. return single_open(file, display_crc_ctl_show, dev);
  3034. }
  3035. static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3036. uint32_t *val)
  3037. {
  3038. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3039. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3040. switch (*source) {
  3041. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3042. *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
  3043. break;
  3044. case INTEL_PIPE_CRC_SOURCE_NONE:
  3045. *val = 0;
  3046. break;
  3047. default:
  3048. return -EINVAL;
  3049. }
  3050. return 0;
  3051. }
  3052. static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
  3053. enum intel_pipe_crc_source *source)
  3054. {
  3055. struct intel_encoder *encoder;
  3056. struct intel_crtc *crtc;
  3057. struct intel_digital_port *dig_port;
  3058. int ret = 0;
  3059. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3060. drm_modeset_lock_all(dev);
  3061. for_each_intel_encoder(dev, encoder) {
  3062. if (!encoder->base.crtc)
  3063. continue;
  3064. crtc = to_intel_crtc(encoder->base.crtc);
  3065. if (crtc->pipe != pipe)
  3066. continue;
  3067. switch (encoder->type) {
  3068. case INTEL_OUTPUT_TVOUT:
  3069. *source = INTEL_PIPE_CRC_SOURCE_TV;
  3070. break;
  3071. case INTEL_OUTPUT_DISPLAYPORT:
  3072. case INTEL_OUTPUT_EDP:
  3073. dig_port = enc_to_dig_port(&encoder->base);
  3074. switch (dig_port->port) {
  3075. case PORT_B:
  3076. *source = INTEL_PIPE_CRC_SOURCE_DP_B;
  3077. break;
  3078. case PORT_C:
  3079. *source = INTEL_PIPE_CRC_SOURCE_DP_C;
  3080. break;
  3081. case PORT_D:
  3082. *source = INTEL_PIPE_CRC_SOURCE_DP_D;
  3083. break;
  3084. default:
  3085. WARN(1, "nonexisting DP port %c\n",
  3086. port_name(dig_port->port));
  3087. break;
  3088. }
  3089. break;
  3090. default:
  3091. break;
  3092. }
  3093. }
  3094. drm_modeset_unlock_all(dev);
  3095. return ret;
  3096. }
  3097. static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
  3098. enum pipe pipe,
  3099. enum intel_pipe_crc_source *source,
  3100. uint32_t *val)
  3101. {
  3102. struct drm_i915_private *dev_priv = dev->dev_private;
  3103. bool need_stable_symbols = false;
  3104. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3105. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3106. if (ret)
  3107. return ret;
  3108. }
  3109. switch (*source) {
  3110. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3111. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
  3112. break;
  3113. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3114. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
  3115. need_stable_symbols = true;
  3116. break;
  3117. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3118. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
  3119. need_stable_symbols = true;
  3120. break;
  3121. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3122. if (!IS_CHERRYVIEW(dev))
  3123. return -EINVAL;
  3124. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
  3125. need_stable_symbols = true;
  3126. break;
  3127. case INTEL_PIPE_CRC_SOURCE_NONE:
  3128. *val = 0;
  3129. break;
  3130. default:
  3131. return -EINVAL;
  3132. }
  3133. /*
  3134. * When the pipe CRC tap point is after the transcoders we need
  3135. * to tweak symbol-level features to produce a deterministic series of
  3136. * symbols for a given frame. We need to reset those features only once
  3137. * a frame (instead of every nth symbol):
  3138. * - DC-balance: used to ensure a better clock recovery from the data
  3139. * link (SDVO)
  3140. * - DisplayPort scrambling: used for EMI reduction
  3141. */
  3142. if (need_stable_symbols) {
  3143. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3144. tmp |= DC_BALANCE_RESET_VLV;
  3145. switch (pipe) {
  3146. case PIPE_A:
  3147. tmp |= PIPE_A_SCRAMBLE_RESET;
  3148. break;
  3149. case PIPE_B:
  3150. tmp |= PIPE_B_SCRAMBLE_RESET;
  3151. break;
  3152. case PIPE_C:
  3153. tmp |= PIPE_C_SCRAMBLE_RESET;
  3154. break;
  3155. default:
  3156. return -EINVAL;
  3157. }
  3158. I915_WRITE(PORT_DFT2_G4X, tmp);
  3159. }
  3160. return 0;
  3161. }
  3162. static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
  3163. enum pipe pipe,
  3164. enum intel_pipe_crc_source *source,
  3165. uint32_t *val)
  3166. {
  3167. struct drm_i915_private *dev_priv = dev->dev_private;
  3168. bool need_stable_symbols = false;
  3169. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
  3170. int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
  3171. if (ret)
  3172. return ret;
  3173. }
  3174. switch (*source) {
  3175. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3176. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
  3177. break;
  3178. case INTEL_PIPE_CRC_SOURCE_TV:
  3179. if (!SUPPORTS_TV(dev))
  3180. return -EINVAL;
  3181. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
  3182. break;
  3183. case INTEL_PIPE_CRC_SOURCE_DP_B:
  3184. if (!IS_G4X(dev))
  3185. return -EINVAL;
  3186. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
  3187. need_stable_symbols = true;
  3188. break;
  3189. case INTEL_PIPE_CRC_SOURCE_DP_C:
  3190. if (!IS_G4X(dev))
  3191. return -EINVAL;
  3192. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
  3193. need_stable_symbols = true;
  3194. break;
  3195. case INTEL_PIPE_CRC_SOURCE_DP_D:
  3196. if (!IS_G4X(dev))
  3197. return -EINVAL;
  3198. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
  3199. need_stable_symbols = true;
  3200. break;
  3201. case INTEL_PIPE_CRC_SOURCE_NONE:
  3202. *val = 0;
  3203. break;
  3204. default:
  3205. return -EINVAL;
  3206. }
  3207. /*
  3208. * When the pipe CRC tap point is after the transcoders we need
  3209. * to tweak symbol-level features to produce a deterministic series of
  3210. * symbols for a given frame. We need to reset those features only once
  3211. * a frame (instead of every nth symbol):
  3212. * - DC-balance: used to ensure a better clock recovery from the data
  3213. * link (SDVO)
  3214. * - DisplayPort scrambling: used for EMI reduction
  3215. */
  3216. if (need_stable_symbols) {
  3217. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3218. WARN_ON(!IS_G4X(dev));
  3219. I915_WRITE(PORT_DFT_I9XX,
  3220. I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
  3221. if (pipe == PIPE_A)
  3222. tmp |= PIPE_A_SCRAMBLE_RESET;
  3223. else
  3224. tmp |= PIPE_B_SCRAMBLE_RESET;
  3225. I915_WRITE(PORT_DFT2_G4X, tmp);
  3226. }
  3227. return 0;
  3228. }
  3229. static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
  3230. enum pipe pipe)
  3231. {
  3232. struct drm_i915_private *dev_priv = dev->dev_private;
  3233. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3234. switch (pipe) {
  3235. case PIPE_A:
  3236. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3237. break;
  3238. case PIPE_B:
  3239. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3240. break;
  3241. case PIPE_C:
  3242. tmp &= ~PIPE_C_SCRAMBLE_RESET;
  3243. break;
  3244. default:
  3245. return;
  3246. }
  3247. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
  3248. tmp &= ~DC_BALANCE_RESET_VLV;
  3249. I915_WRITE(PORT_DFT2_G4X, tmp);
  3250. }
  3251. static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
  3252. enum pipe pipe)
  3253. {
  3254. struct drm_i915_private *dev_priv = dev->dev_private;
  3255. uint32_t tmp = I915_READ(PORT_DFT2_G4X);
  3256. if (pipe == PIPE_A)
  3257. tmp &= ~PIPE_A_SCRAMBLE_RESET;
  3258. else
  3259. tmp &= ~PIPE_B_SCRAMBLE_RESET;
  3260. I915_WRITE(PORT_DFT2_G4X, tmp);
  3261. if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
  3262. I915_WRITE(PORT_DFT_I9XX,
  3263. I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
  3264. }
  3265. }
  3266. static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
  3267. uint32_t *val)
  3268. {
  3269. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3270. *source = INTEL_PIPE_CRC_SOURCE_PIPE;
  3271. switch (*source) {
  3272. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3273. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
  3274. break;
  3275. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3276. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
  3277. break;
  3278. case INTEL_PIPE_CRC_SOURCE_PIPE:
  3279. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
  3280. break;
  3281. case INTEL_PIPE_CRC_SOURCE_NONE:
  3282. *val = 0;
  3283. break;
  3284. default:
  3285. return -EINVAL;
  3286. }
  3287. return 0;
  3288. }
  3289. static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
  3290. {
  3291. struct drm_i915_private *dev_priv = dev->dev_private;
  3292. struct intel_crtc *crtc =
  3293. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
  3294. struct intel_crtc_state *pipe_config;
  3295. struct drm_atomic_state *state;
  3296. int ret = 0;
  3297. drm_modeset_lock_all(dev);
  3298. state = drm_atomic_state_alloc(dev);
  3299. if (!state) {
  3300. ret = -ENOMEM;
  3301. goto out;
  3302. }
  3303. state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
  3304. pipe_config = intel_atomic_get_crtc_state(state, crtc);
  3305. if (IS_ERR(pipe_config)) {
  3306. ret = PTR_ERR(pipe_config);
  3307. goto out;
  3308. }
  3309. pipe_config->pch_pfit.force_thru = enable;
  3310. if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
  3311. pipe_config->pch_pfit.enabled != enable)
  3312. pipe_config->base.connectors_changed = true;
  3313. ret = drm_atomic_commit(state);
  3314. out:
  3315. drm_modeset_unlock_all(dev);
  3316. WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
  3317. if (ret)
  3318. drm_atomic_state_free(state);
  3319. }
  3320. static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
  3321. enum pipe pipe,
  3322. enum intel_pipe_crc_source *source,
  3323. uint32_t *val)
  3324. {
  3325. if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
  3326. *source = INTEL_PIPE_CRC_SOURCE_PF;
  3327. switch (*source) {
  3328. case INTEL_PIPE_CRC_SOURCE_PLANE1:
  3329. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
  3330. break;
  3331. case INTEL_PIPE_CRC_SOURCE_PLANE2:
  3332. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
  3333. break;
  3334. case INTEL_PIPE_CRC_SOURCE_PF:
  3335. if (IS_HASWELL(dev) && pipe == PIPE_A)
  3336. hsw_trans_edp_pipe_A_crc_wa(dev, true);
  3337. *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
  3338. break;
  3339. case INTEL_PIPE_CRC_SOURCE_NONE:
  3340. *val = 0;
  3341. break;
  3342. default:
  3343. return -EINVAL;
  3344. }
  3345. return 0;
  3346. }
  3347. static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
  3348. enum intel_pipe_crc_source source)
  3349. {
  3350. struct drm_i915_private *dev_priv = dev->dev_private;
  3351. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  3352. struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
  3353. pipe));
  3354. u32 val = 0; /* shut up gcc */
  3355. int ret;
  3356. if (pipe_crc->source == source)
  3357. return 0;
  3358. /* forbid changing the source without going back to 'none' */
  3359. if (pipe_crc->source && source)
  3360. return -EINVAL;
  3361. if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PIPE(pipe))) {
  3362. DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
  3363. return -EIO;
  3364. }
  3365. if (IS_GEN2(dev))
  3366. ret = i8xx_pipe_crc_ctl_reg(&source, &val);
  3367. else if (INTEL_INFO(dev)->gen < 5)
  3368. ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3369. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3370. ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3371. else if (IS_GEN5(dev) || IS_GEN6(dev))
  3372. ret = ilk_pipe_crc_ctl_reg(&source, &val);
  3373. else
  3374. ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
  3375. if (ret != 0)
  3376. return ret;
  3377. /* none -> real source transition */
  3378. if (source) {
  3379. struct intel_pipe_crc_entry *entries;
  3380. DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
  3381. pipe_name(pipe), pipe_crc_source_name(source));
  3382. entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
  3383. sizeof(pipe_crc->entries[0]),
  3384. GFP_KERNEL);
  3385. if (!entries)
  3386. return -ENOMEM;
  3387. /*
  3388. * When IPS gets enabled, the pipe CRC changes. Since IPS gets
  3389. * enabled and disabled dynamically based on package C states,
  3390. * user space can't make reliable use of the CRCs, so let's just
  3391. * completely disable it.
  3392. */
  3393. hsw_disable_ips(crtc);
  3394. spin_lock_irq(&pipe_crc->lock);
  3395. kfree(pipe_crc->entries);
  3396. pipe_crc->entries = entries;
  3397. pipe_crc->head = 0;
  3398. pipe_crc->tail = 0;
  3399. spin_unlock_irq(&pipe_crc->lock);
  3400. }
  3401. pipe_crc->source = source;
  3402. I915_WRITE(PIPE_CRC_CTL(pipe), val);
  3403. POSTING_READ(PIPE_CRC_CTL(pipe));
  3404. /* real source -> none transition */
  3405. if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
  3406. struct intel_pipe_crc_entry *entries;
  3407. struct intel_crtc *crtc =
  3408. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  3409. DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
  3410. pipe_name(pipe));
  3411. drm_modeset_lock(&crtc->base.mutex, NULL);
  3412. if (crtc->base.state->active)
  3413. intel_wait_for_vblank(dev, pipe);
  3414. drm_modeset_unlock(&crtc->base.mutex);
  3415. spin_lock_irq(&pipe_crc->lock);
  3416. entries = pipe_crc->entries;
  3417. pipe_crc->entries = NULL;
  3418. pipe_crc->head = 0;
  3419. pipe_crc->tail = 0;
  3420. spin_unlock_irq(&pipe_crc->lock);
  3421. kfree(entries);
  3422. if (IS_G4X(dev))
  3423. g4x_undo_pipe_scramble_reset(dev, pipe);
  3424. else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
  3425. vlv_undo_pipe_scramble_reset(dev, pipe);
  3426. else if (IS_HASWELL(dev) && pipe == PIPE_A)
  3427. hsw_trans_edp_pipe_A_crc_wa(dev, false);
  3428. hsw_enable_ips(crtc);
  3429. }
  3430. return 0;
  3431. }
  3432. /*
  3433. * Parse pipe CRC command strings:
  3434. * command: wsp* object wsp+ name wsp+ source wsp*
  3435. * object: 'pipe'
  3436. * name: (A | B | C)
  3437. * source: (none | plane1 | plane2 | pf)
  3438. * wsp: (#0x20 | #0x9 | #0xA)+
  3439. *
  3440. * eg.:
  3441. * "pipe A plane1" -> Start CRC computations on plane1 of pipe A
  3442. * "pipe A none" -> Stop CRC
  3443. */
  3444. static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
  3445. {
  3446. int n_words = 0;
  3447. while (*buf) {
  3448. char *end;
  3449. /* skip leading white space */
  3450. buf = skip_spaces(buf);
  3451. if (!*buf)
  3452. break; /* end of buffer */
  3453. /* find end of word */
  3454. for (end = buf; *end && !isspace(*end); end++)
  3455. ;
  3456. if (n_words == max_words) {
  3457. DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
  3458. max_words);
  3459. return -EINVAL; /* ran out of words[] before bytes */
  3460. }
  3461. if (*end)
  3462. *end++ = '\0';
  3463. words[n_words++] = buf;
  3464. buf = end;
  3465. }
  3466. return n_words;
  3467. }
  3468. enum intel_pipe_crc_object {
  3469. PIPE_CRC_OBJECT_PIPE,
  3470. };
  3471. static const char * const pipe_crc_objects[] = {
  3472. "pipe",
  3473. };
  3474. static int
  3475. display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
  3476. {
  3477. int i;
  3478. for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
  3479. if (!strcmp(buf, pipe_crc_objects[i])) {
  3480. *o = i;
  3481. return 0;
  3482. }
  3483. return -EINVAL;
  3484. }
  3485. static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
  3486. {
  3487. const char name = buf[0];
  3488. if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
  3489. return -EINVAL;
  3490. *pipe = name - 'A';
  3491. return 0;
  3492. }
  3493. static int
  3494. display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
  3495. {
  3496. int i;
  3497. for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
  3498. if (!strcmp(buf, pipe_crc_sources[i])) {
  3499. *s = i;
  3500. return 0;
  3501. }
  3502. return -EINVAL;
  3503. }
  3504. static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
  3505. {
  3506. #define N_WORDS 3
  3507. int n_words;
  3508. char *words[N_WORDS];
  3509. enum pipe pipe;
  3510. enum intel_pipe_crc_object object;
  3511. enum intel_pipe_crc_source source;
  3512. n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
  3513. if (n_words != N_WORDS) {
  3514. DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
  3515. N_WORDS);
  3516. return -EINVAL;
  3517. }
  3518. if (display_crc_ctl_parse_object(words[0], &object) < 0) {
  3519. DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
  3520. return -EINVAL;
  3521. }
  3522. if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
  3523. DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
  3524. return -EINVAL;
  3525. }
  3526. if (display_crc_ctl_parse_source(words[2], &source) < 0) {
  3527. DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
  3528. return -EINVAL;
  3529. }
  3530. return pipe_crc_set_source(dev, pipe, source);
  3531. }
  3532. static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
  3533. size_t len, loff_t *offp)
  3534. {
  3535. struct seq_file *m = file->private_data;
  3536. struct drm_device *dev = m->private;
  3537. char *tmpbuf;
  3538. int ret;
  3539. if (len == 0)
  3540. return 0;
  3541. if (len > PAGE_SIZE - 1) {
  3542. DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
  3543. PAGE_SIZE);
  3544. return -E2BIG;
  3545. }
  3546. tmpbuf = kmalloc(len + 1, GFP_KERNEL);
  3547. if (!tmpbuf)
  3548. return -ENOMEM;
  3549. if (copy_from_user(tmpbuf, ubuf, len)) {
  3550. ret = -EFAULT;
  3551. goto out;
  3552. }
  3553. tmpbuf[len] = '\0';
  3554. ret = display_crc_ctl_parse(dev, tmpbuf, len);
  3555. out:
  3556. kfree(tmpbuf);
  3557. if (ret < 0)
  3558. return ret;
  3559. *offp += len;
  3560. return len;
  3561. }
  3562. static const struct file_operations i915_display_crc_ctl_fops = {
  3563. .owner = THIS_MODULE,
  3564. .open = display_crc_ctl_open,
  3565. .read = seq_read,
  3566. .llseek = seq_lseek,
  3567. .release = single_release,
  3568. .write = display_crc_ctl_write
  3569. };
  3570. static ssize_t i915_displayport_test_active_write(struct file *file,
  3571. const char __user *ubuf,
  3572. size_t len, loff_t *offp)
  3573. {
  3574. char *input_buffer;
  3575. int status = 0;
  3576. struct drm_device *dev;
  3577. struct drm_connector *connector;
  3578. struct list_head *connector_list;
  3579. struct intel_dp *intel_dp;
  3580. int val = 0;
  3581. dev = ((struct seq_file *)file->private_data)->private;
  3582. connector_list = &dev->mode_config.connector_list;
  3583. if (len == 0)
  3584. return 0;
  3585. input_buffer = kmalloc(len + 1, GFP_KERNEL);
  3586. if (!input_buffer)
  3587. return -ENOMEM;
  3588. if (copy_from_user(input_buffer, ubuf, len)) {
  3589. status = -EFAULT;
  3590. goto out;
  3591. }
  3592. input_buffer[len] = '\0';
  3593. DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
  3594. list_for_each_entry(connector, connector_list, head) {
  3595. if (connector->connector_type !=
  3596. DRM_MODE_CONNECTOR_DisplayPort)
  3597. continue;
  3598. if (connector->status == connector_status_connected &&
  3599. connector->encoder != NULL) {
  3600. intel_dp = enc_to_intel_dp(connector->encoder);
  3601. status = kstrtoint(input_buffer, 10, &val);
  3602. if (status < 0)
  3603. goto out;
  3604. DRM_DEBUG_DRIVER("Got %d for test active\n", val);
  3605. /* To prevent erroneous activation of the compliance
  3606. * testing code, only accept an actual value of 1 here
  3607. */
  3608. if (val == 1)
  3609. intel_dp->compliance_test_active = 1;
  3610. else
  3611. intel_dp->compliance_test_active = 0;
  3612. }
  3613. }
  3614. out:
  3615. kfree(input_buffer);
  3616. if (status < 0)
  3617. return status;
  3618. *offp += len;
  3619. return len;
  3620. }
  3621. static int i915_displayport_test_active_show(struct seq_file *m, void *data)
  3622. {
  3623. struct drm_device *dev = m->private;
  3624. struct drm_connector *connector;
  3625. struct list_head *connector_list = &dev->mode_config.connector_list;
  3626. struct intel_dp *intel_dp;
  3627. list_for_each_entry(connector, connector_list, head) {
  3628. if (connector->connector_type !=
  3629. DRM_MODE_CONNECTOR_DisplayPort)
  3630. continue;
  3631. if (connector->status == connector_status_connected &&
  3632. connector->encoder != NULL) {
  3633. intel_dp = enc_to_intel_dp(connector->encoder);
  3634. if (intel_dp->compliance_test_active)
  3635. seq_puts(m, "1");
  3636. else
  3637. seq_puts(m, "0");
  3638. } else
  3639. seq_puts(m, "0");
  3640. }
  3641. return 0;
  3642. }
  3643. static int i915_displayport_test_active_open(struct inode *inode,
  3644. struct file *file)
  3645. {
  3646. struct drm_device *dev = inode->i_private;
  3647. return single_open(file, i915_displayport_test_active_show, dev);
  3648. }
  3649. static const struct file_operations i915_displayport_test_active_fops = {
  3650. .owner = THIS_MODULE,
  3651. .open = i915_displayport_test_active_open,
  3652. .read = seq_read,
  3653. .llseek = seq_lseek,
  3654. .release = single_release,
  3655. .write = i915_displayport_test_active_write
  3656. };
  3657. static int i915_displayport_test_data_show(struct seq_file *m, void *data)
  3658. {
  3659. struct drm_device *dev = m->private;
  3660. struct drm_connector *connector;
  3661. struct list_head *connector_list = &dev->mode_config.connector_list;
  3662. struct intel_dp *intel_dp;
  3663. list_for_each_entry(connector, connector_list, head) {
  3664. if (connector->connector_type !=
  3665. DRM_MODE_CONNECTOR_DisplayPort)
  3666. continue;
  3667. if (connector->status == connector_status_connected &&
  3668. connector->encoder != NULL) {
  3669. intel_dp = enc_to_intel_dp(connector->encoder);
  3670. seq_printf(m, "%lx", intel_dp->compliance_test_data);
  3671. } else
  3672. seq_puts(m, "0");
  3673. }
  3674. return 0;
  3675. }
  3676. static int i915_displayport_test_data_open(struct inode *inode,
  3677. struct file *file)
  3678. {
  3679. struct drm_device *dev = inode->i_private;
  3680. return single_open(file, i915_displayport_test_data_show, dev);
  3681. }
  3682. static const struct file_operations i915_displayport_test_data_fops = {
  3683. .owner = THIS_MODULE,
  3684. .open = i915_displayport_test_data_open,
  3685. .read = seq_read,
  3686. .llseek = seq_lseek,
  3687. .release = single_release
  3688. };
  3689. static int i915_displayport_test_type_show(struct seq_file *m, void *data)
  3690. {
  3691. struct drm_device *dev = m->private;
  3692. struct drm_connector *connector;
  3693. struct list_head *connector_list = &dev->mode_config.connector_list;
  3694. struct intel_dp *intel_dp;
  3695. list_for_each_entry(connector, connector_list, head) {
  3696. if (connector->connector_type !=
  3697. DRM_MODE_CONNECTOR_DisplayPort)
  3698. continue;
  3699. if (connector->status == connector_status_connected &&
  3700. connector->encoder != NULL) {
  3701. intel_dp = enc_to_intel_dp(connector->encoder);
  3702. seq_printf(m, "%02lx", intel_dp->compliance_test_type);
  3703. } else
  3704. seq_puts(m, "0");
  3705. }
  3706. return 0;
  3707. }
  3708. static int i915_displayport_test_type_open(struct inode *inode,
  3709. struct file *file)
  3710. {
  3711. struct drm_device *dev = inode->i_private;
  3712. return single_open(file, i915_displayport_test_type_show, dev);
  3713. }
  3714. static const struct file_operations i915_displayport_test_type_fops = {
  3715. .owner = THIS_MODULE,
  3716. .open = i915_displayport_test_type_open,
  3717. .read = seq_read,
  3718. .llseek = seq_lseek,
  3719. .release = single_release
  3720. };
  3721. static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
  3722. {
  3723. struct drm_device *dev = m->private;
  3724. int level;
  3725. int num_levels;
  3726. if (IS_CHERRYVIEW(dev))
  3727. num_levels = 3;
  3728. else if (IS_VALLEYVIEW(dev))
  3729. num_levels = 1;
  3730. else
  3731. num_levels = ilk_wm_max_level(dev) + 1;
  3732. drm_modeset_lock_all(dev);
  3733. for (level = 0; level < num_levels; level++) {
  3734. unsigned int latency = wm[level];
  3735. /*
  3736. * - WM1+ latency values in 0.5us units
  3737. * - latencies are in us on gen9/vlv/chv
  3738. */
  3739. if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
  3740. IS_CHERRYVIEW(dev))
  3741. latency *= 10;
  3742. else if (level > 0)
  3743. latency *= 5;
  3744. seq_printf(m, "WM%d %u (%u.%u usec)\n",
  3745. level, wm[level], latency / 10, latency % 10);
  3746. }
  3747. drm_modeset_unlock_all(dev);
  3748. }
  3749. static int pri_wm_latency_show(struct seq_file *m, void *data)
  3750. {
  3751. struct drm_device *dev = m->private;
  3752. struct drm_i915_private *dev_priv = dev->dev_private;
  3753. const uint16_t *latencies;
  3754. if (INTEL_INFO(dev)->gen >= 9)
  3755. latencies = dev_priv->wm.skl_latency;
  3756. else
  3757. latencies = to_i915(dev)->wm.pri_latency;
  3758. wm_latency_show(m, latencies);
  3759. return 0;
  3760. }
  3761. static int spr_wm_latency_show(struct seq_file *m, void *data)
  3762. {
  3763. struct drm_device *dev = m->private;
  3764. struct drm_i915_private *dev_priv = dev->dev_private;
  3765. const uint16_t *latencies;
  3766. if (INTEL_INFO(dev)->gen >= 9)
  3767. latencies = dev_priv->wm.skl_latency;
  3768. else
  3769. latencies = to_i915(dev)->wm.spr_latency;
  3770. wm_latency_show(m, latencies);
  3771. return 0;
  3772. }
  3773. static int cur_wm_latency_show(struct seq_file *m, void *data)
  3774. {
  3775. struct drm_device *dev = m->private;
  3776. struct drm_i915_private *dev_priv = dev->dev_private;
  3777. const uint16_t *latencies;
  3778. if (INTEL_INFO(dev)->gen >= 9)
  3779. latencies = dev_priv->wm.skl_latency;
  3780. else
  3781. latencies = to_i915(dev)->wm.cur_latency;
  3782. wm_latency_show(m, latencies);
  3783. return 0;
  3784. }
  3785. static int pri_wm_latency_open(struct inode *inode, struct file *file)
  3786. {
  3787. struct drm_device *dev = inode->i_private;
  3788. if (INTEL_INFO(dev)->gen < 5)
  3789. return -ENODEV;
  3790. return single_open(file, pri_wm_latency_show, dev);
  3791. }
  3792. static int spr_wm_latency_open(struct inode *inode, struct file *file)
  3793. {
  3794. struct drm_device *dev = inode->i_private;
  3795. if (HAS_GMCH_DISPLAY(dev))
  3796. return -ENODEV;
  3797. return single_open(file, spr_wm_latency_show, dev);
  3798. }
  3799. static int cur_wm_latency_open(struct inode *inode, struct file *file)
  3800. {
  3801. struct drm_device *dev = inode->i_private;
  3802. if (HAS_GMCH_DISPLAY(dev))
  3803. return -ENODEV;
  3804. return single_open(file, cur_wm_latency_show, dev);
  3805. }
  3806. static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
  3807. size_t len, loff_t *offp, uint16_t wm[8])
  3808. {
  3809. struct seq_file *m = file->private_data;
  3810. struct drm_device *dev = m->private;
  3811. uint16_t new[8] = { 0 };
  3812. int num_levels;
  3813. int level;
  3814. int ret;
  3815. char tmp[32];
  3816. if (IS_CHERRYVIEW(dev))
  3817. num_levels = 3;
  3818. else if (IS_VALLEYVIEW(dev))
  3819. num_levels = 1;
  3820. else
  3821. num_levels = ilk_wm_max_level(dev) + 1;
  3822. if (len >= sizeof(tmp))
  3823. return -EINVAL;
  3824. if (copy_from_user(tmp, ubuf, len))
  3825. return -EFAULT;
  3826. tmp[len] = '\0';
  3827. ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
  3828. &new[0], &new[1], &new[2], &new[3],
  3829. &new[4], &new[5], &new[6], &new[7]);
  3830. if (ret != num_levels)
  3831. return -EINVAL;
  3832. drm_modeset_lock_all(dev);
  3833. for (level = 0; level < num_levels; level++)
  3834. wm[level] = new[level];
  3835. drm_modeset_unlock_all(dev);
  3836. return len;
  3837. }
  3838. static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
  3839. size_t len, loff_t *offp)
  3840. {
  3841. struct seq_file *m = file->private_data;
  3842. struct drm_device *dev = m->private;
  3843. struct drm_i915_private *dev_priv = dev->dev_private;
  3844. uint16_t *latencies;
  3845. if (INTEL_INFO(dev)->gen >= 9)
  3846. latencies = dev_priv->wm.skl_latency;
  3847. else
  3848. latencies = to_i915(dev)->wm.pri_latency;
  3849. return wm_latency_write(file, ubuf, len, offp, latencies);
  3850. }
  3851. static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
  3852. size_t len, loff_t *offp)
  3853. {
  3854. struct seq_file *m = file->private_data;
  3855. struct drm_device *dev = m->private;
  3856. struct drm_i915_private *dev_priv = dev->dev_private;
  3857. uint16_t *latencies;
  3858. if (INTEL_INFO(dev)->gen >= 9)
  3859. latencies = dev_priv->wm.skl_latency;
  3860. else
  3861. latencies = to_i915(dev)->wm.spr_latency;
  3862. return wm_latency_write(file, ubuf, len, offp, latencies);
  3863. }
  3864. static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
  3865. size_t len, loff_t *offp)
  3866. {
  3867. struct seq_file *m = file->private_data;
  3868. struct drm_device *dev = m->private;
  3869. struct drm_i915_private *dev_priv = dev->dev_private;
  3870. uint16_t *latencies;
  3871. if (INTEL_INFO(dev)->gen >= 9)
  3872. latencies = dev_priv->wm.skl_latency;
  3873. else
  3874. latencies = to_i915(dev)->wm.cur_latency;
  3875. return wm_latency_write(file, ubuf, len, offp, latencies);
  3876. }
  3877. static const struct file_operations i915_pri_wm_latency_fops = {
  3878. .owner = THIS_MODULE,
  3879. .open = pri_wm_latency_open,
  3880. .read = seq_read,
  3881. .llseek = seq_lseek,
  3882. .release = single_release,
  3883. .write = pri_wm_latency_write
  3884. };
  3885. static const struct file_operations i915_spr_wm_latency_fops = {
  3886. .owner = THIS_MODULE,
  3887. .open = spr_wm_latency_open,
  3888. .read = seq_read,
  3889. .llseek = seq_lseek,
  3890. .release = single_release,
  3891. .write = spr_wm_latency_write
  3892. };
  3893. static const struct file_operations i915_cur_wm_latency_fops = {
  3894. .owner = THIS_MODULE,
  3895. .open = cur_wm_latency_open,
  3896. .read = seq_read,
  3897. .llseek = seq_lseek,
  3898. .release = single_release,
  3899. .write = cur_wm_latency_write
  3900. };
  3901. static int
  3902. i915_wedged_get(void *data, u64 *val)
  3903. {
  3904. struct drm_device *dev = data;
  3905. struct drm_i915_private *dev_priv = dev->dev_private;
  3906. *val = atomic_read(&dev_priv->gpu_error.reset_counter);
  3907. return 0;
  3908. }
  3909. static int
  3910. i915_wedged_set(void *data, u64 val)
  3911. {
  3912. struct drm_device *dev = data;
  3913. struct drm_i915_private *dev_priv = dev->dev_private;
  3914. /*
  3915. * There is no safeguard against this debugfs entry colliding
  3916. * with the hangcheck calling same i915_handle_error() in
  3917. * parallel, causing an explosion. For now we assume that the
  3918. * test harness is responsible enough not to inject gpu hangs
  3919. * while it is writing to 'i915_wedged'
  3920. */
  3921. if (i915_reset_in_progress(&dev_priv->gpu_error))
  3922. return -EAGAIN;
  3923. intel_runtime_pm_get(dev_priv);
  3924. i915_handle_error(dev, val,
  3925. "Manually setting wedged to %llu", val);
  3926. intel_runtime_pm_put(dev_priv);
  3927. return 0;
  3928. }
  3929. DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
  3930. i915_wedged_get, i915_wedged_set,
  3931. "%llu\n");
  3932. static int
  3933. i915_ring_stop_get(void *data, u64 *val)
  3934. {
  3935. struct drm_device *dev = data;
  3936. struct drm_i915_private *dev_priv = dev->dev_private;
  3937. *val = dev_priv->gpu_error.stop_rings;
  3938. return 0;
  3939. }
  3940. static int
  3941. i915_ring_stop_set(void *data, u64 val)
  3942. {
  3943. struct drm_device *dev = data;
  3944. struct drm_i915_private *dev_priv = dev->dev_private;
  3945. int ret;
  3946. DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
  3947. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3948. if (ret)
  3949. return ret;
  3950. dev_priv->gpu_error.stop_rings = val;
  3951. mutex_unlock(&dev->struct_mutex);
  3952. return 0;
  3953. }
  3954. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
  3955. i915_ring_stop_get, i915_ring_stop_set,
  3956. "0x%08llx\n");
  3957. static int
  3958. i915_ring_missed_irq_get(void *data, u64 *val)
  3959. {
  3960. struct drm_device *dev = data;
  3961. struct drm_i915_private *dev_priv = dev->dev_private;
  3962. *val = dev_priv->gpu_error.missed_irq_rings;
  3963. return 0;
  3964. }
  3965. static int
  3966. i915_ring_missed_irq_set(void *data, u64 val)
  3967. {
  3968. struct drm_device *dev = data;
  3969. struct drm_i915_private *dev_priv = dev->dev_private;
  3970. int ret;
  3971. /* Lock against concurrent debugfs callers */
  3972. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3973. if (ret)
  3974. return ret;
  3975. dev_priv->gpu_error.missed_irq_rings = val;
  3976. mutex_unlock(&dev->struct_mutex);
  3977. return 0;
  3978. }
  3979. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
  3980. i915_ring_missed_irq_get, i915_ring_missed_irq_set,
  3981. "0x%08llx\n");
  3982. static int
  3983. i915_ring_test_irq_get(void *data, u64 *val)
  3984. {
  3985. struct drm_device *dev = data;
  3986. struct drm_i915_private *dev_priv = dev->dev_private;
  3987. *val = dev_priv->gpu_error.test_irq_rings;
  3988. return 0;
  3989. }
  3990. static int
  3991. i915_ring_test_irq_set(void *data, u64 val)
  3992. {
  3993. struct drm_device *dev = data;
  3994. struct drm_i915_private *dev_priv = dev->dev_private;
  3995. int ret;
  3996. DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
  3997. /* Lock against concurrent debugfs callers */
  3998. ret = mutex_lock_interruptible(&dev->struct_mutex);
  3999. if (ret)
  4000. return ret;
  4001. dev_priv->gpu_error.test_irq_rings = val;
  4002. mutex_unlock(&dev->struct_mutex);
  4003. return 0;
  4004. }
  4005. DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
  4006. i915_ring_test_irq_get, i915_ring_test_irq_set,
  4007. "0x%08llx\n");
  4008. #define DROP_UNBOUND 0x1
  4009. #define DROP_BOUND 0x2
  4010. #define DROP_RETIRE 0x4
  4011. #define DROP_ACTIVE 0x8
  4012. #define DROP_ALL (DROP_UNBOUND | \
  4013. DROP_BOUND | \
  4014. DROP_RETIRE | \
  4015. DROP_ACTIVE)
  4016. static int
  4017. i915_drop_caches_get(void *data, u64 *val)
  4018. {
  4019. *val = DROP_ALL;
  4020. return 0;
  4021. }
  4022. static int
  4023. i915_drop_caches_set(void *data, u64 val)
  4024. {
  4025. struct drm_device *dev = data;
  4026. struct drm_i915_private *dev_priv = dev->dev_private;
  4027. int ret;
  4028. DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
  4029. /* No need to check and wait for gpu resets, only libdrm auto-restarts
  4030. * on ioctls on -EAGAIN. */
  4031. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4032. if (ret)
  4033. return ret;
  4034. if (val & DROP_ACTIVE) {
  4035. ret = i915_gpu_idle(dev);
  4036. if (ret)
  4037. goto unlock;
  4038. }
  4039. if (val & (DROP_RETIRE | DROP_ACTIVE))
  4040. i915_gem_retire_requests(dev);
  4041. if (val & DROP_BOUND)
  4042. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
  4043. if (val & DROP_UNBOUND)
  4044. i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
  4045. unlock:
  4046. mutex_unlock(&dev->struct_mutex);
  4047. return ret;
  4048. }
  4049. DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
  4050. i915_drop_caches_get, i915_drop_caches_set,
  4051. "0x%08llx\n");
  4052. static int
  4053. i915_max_freq_get(void *data, u64 *val)
  4054. {
  4055. struct drm_device *dev = data;
  4056. struct drm_i915_private *dev_priv = dev->dev_private;
  4057. int ret;
  4058. if (INTEL_INFO(dev)->gen < 6)
  4059. return -ENODEV;
  4060. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4061. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4062. if (ret)
  4063. return ret;
  4064. *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
  4065. mutex_unlock(&dev_priv->rps.hw_lock);
  4066. return 0;
  4067. }
  4068. static int
  4069. i915_max_freq_set(void *data, u64 val)
  4070. {
  4071. struct drm_device *dev = data;
  4072. struct drm_i915_private *dev_priv = dev->dev_private;
  4073. u32 hw_max, hw_min;
  4074. int ret;
  4075. if (INTEL_INFO(dev)->gen < 6)
  4076. return -ENODEV;
  4077. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4078. DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
  4079. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4080. if (ret)
  4081. return ret;
  4082. /*
  4083. * Turbo will still be enabled, but won't go above the set value.
  4084. */
  4085. val = intel_freq_opcode(dev_priv, val);
  4086. hw_max = dev_priv->rps.max_freq;
  4087. hw_min = dev_priv->rps.min_freq;
  4088. if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
  4089. mutex_unlock(&dev_priv->rps.hw_lock);
  4090. return -EINVAL;
  4091. }
  4092. dev_priv->rps.max_freq_softlimit = val;
  4093. intel_set_rps(dev, val);
  4094. mutex_unlock(&dev_priv->rps.hw_lock);
  4095. return 0;
  4096. }
  4097. DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
  4098. i915_max_freq_get, i915_max_freq_set,
  4099. "%llu\n");
  4100. static int
  4101. i915_min_freq_get(void *data, u64 *val)
  4102. {
  4103. struct drm_device *dev = data;
  4104. struct drm_i915_private *dev_priv = dev->dev_private;
  4105. int ret;
  4106. if (INTEL_INFO(dev)->gen < 6)
  4107. return -ENODEV;
  4108. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4109. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4110. if (ret)
  4111. return ret;
  4112. *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
  4113. mutex_unlock(&dev_priv->rps.hw_lock);
  4114. return 0;
  4115. }
  4116. static int
  4117. i915_min_freq_set(void *data, u64 val)
  4118. {
  4119. struct drm_device *dev = data;
  4120. struct drm_i915_private *dev_priv = dev->dev_private;
  4121. u32 hw_max, hw_min;
  4122. int ret;
  4123. if (INTEL_INFO(dev)->gen < 6)
  4124. return -ENODEV;
  4125. flush_delayed_work(&dev_priv->rps.delayed_resume_work);
  4126. DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
  4127. ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
  4128. if (ret)
  4129. return ret;
  4130. /*
  4131. * Turbo will still be enabled, but won't go below the set value.
  4132. */
  4133. val = intel_freq_opcode(dev_priv, val);
  4134. hw_max = dev_priv->rps.max_freq;
  4135. hw_min = dev_priv->rps.min_freq;
  4136. if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
  4137. mutex_unlock(&dev_priv->rps.hw_lock);
  4138. return -EINVAL;
  4139. }
  4140. dev_priv->rps.min_freq_softlimit = val;
  4141. intel_set_rps(dev, val);
  4142. mutex_unlock(&dev_priv->rps.hw_lock);
  4143. return 0;
  4144. }
  4145. DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
  4146. i915_min_freq_get, i915_min_freq_set,
  4147. "%llu\n");
  4148. static int
  4149. i915_cache_sharing_get(void *data, u64 *val)
  4150. {
  4151. struct drm_device *dev = data;
  4152. struct drm_i915_private *dev_priv = dev->dev_private;
  4153. u32 snpcr;
  4154. int ret;
  4155. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4156. return -ENODEV;
  4157. ret = mutex_lock_interruptible(&dev->struct_mutex);
  4158. if (ret)
  4159. return ret;
  4160. intel_runtime_pm_get(dev_priv);
  4161. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4162. intel_runtime_pm_put(dev_priv);
  4163. mutex_unlock(&dev_priv->dev->struct_mutex);
  4164. *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
  4165. return 0;
  4166. }
  4167. static int
  4168. i915_cache_sharing_set(void *data, u64 val)
  4169. {
  4170. struct drm_device *dev = data;
  4171. struct drm_i915_private *dev_priv = dev->dev_private;
  4172. u32 snpcr;
  4173. if (!(IS_GEN6(dev) || IS_GEN7(dev)))
  4174. return -ENODEV;
  4175. if (val > 3)
  4176. return -EINVAL;
  4177. intel_runtime_pm_get(dev_priv);
  4178. DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
  4179. /* Update the cache sharing policy here as well */
  4180. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  4181. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  4182. snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
  4183. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  4184. intel_runtime_pm_put(dev_priv);
  4185. return 0;
  4186. }
  4187. DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
  4188. i915_cache_sharing_get, i915_cache_sharing_set,
  4189. "%llu\n");
  4190. struct sseu_dev_status {
  4191. unsigned int slice_total;
  4192. unsigned int subslice_total;
  4193. unsigned int subslice_per_slice;
  4194. unsigned int eu_total;
  4195. unsigned int eu_per_subslice;
  4196. };
  4197. static void cherryview_sseu_device_status(struct drm_device *dev,
  4198. struct sseu_dev_status *stat)
  4199. {
  4200. struct drm_i915_private *dev_priv = dev->dev_private;
  4201. int ss_max = 2;
  4202. int ss;
  4203. u32 sig1[ss_max], sig2[ss_max];
  4204. sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
  4205. sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
  4206. sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
  4207. sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
  4208. for (ss = 0; ss < ss_max; ss++) {
  4209. unsigned int eu_cnt;
  4210. if (sig1[ss] & CHV_SS_PG_ENABLE)
  4211. /* skip disabled subslice */
  4212. continue;
  4213. stat->slice_total = 1;
  4214. stat->subslice_per_slice++;
  4215. eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
  4216. ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
  4217. ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
  4218. ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
  4219. stat->eu_total += eu_cnt;
  4220. stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
  4221. }
  4222. stat->subslice_total = stat->subslice_per_slice;
  4223. }
  4224. static void gen9_sseu_device_status(struct drm_device *dev,
  4225. struct sseu_dev_status *stat)
  4226. {
  4227. struct drm_i915_private *dev_priv = dev->dev_private;
  4228. int s_max = 3, ss_max = 4;
  4229. int s, ss;
  4230. u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
  4231. /* BXT has a single slice and at most 3 subslices. */
  4232. if (IS_BROXTON(dev)) {
  4233. s_max = 1;
  4234. ss_max = 3;
  4235. }
  4236. for (s = 0; s < s_max; s++) {
  4237. s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
  4238. eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
  4239. eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
  4240. }
  4241. eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
  4242. GEN9_PGCTL_SSA_EU19_ACK |
  4243. GEN9_PGCTL_SSA_EU210_ACK |
  4244. GEN9_PGCTL_SSA_EU311_ACK;
  4245. eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
  4246. GEN9_PGCTL_SSB_EU19_ACK |
  4247. GEN9_PGCTL_SSB_EU210_ACK |
  4248. GEN9_PGCTL_SSB_EU311_ACK;
  4249. for (s = 0; s < s_max; s++) {
  4250. unsigned int ss_cnt = 0;
  4251. if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
  4252. /* skip disabled slice */
  4253. continue;
  4254. stat->slice_total++;
  4255. if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
  4256. ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
  4257. for (ss = 0; ss < ss_max; ss++) {
  4258. unsigned int eu_cnt;
  4259. if (IS_BROXTON(dev) &&
  4260. !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
  4261. /* skip disabled subslice */
  4262. continue;
  4263. if (IS_BROXTON(dev))
  4264. ss_cnt++;
  4265. eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
  4266. eu_mask[ss%2]);
  4267. stat->eu_total += eu_cnt;
  4268. stat->eu_per_subslice = max(stat->eu_per_subslice,
  4269. eu_cnt);
  4270. }
  4271. stat->subslice_total += ss_cnt;
  4272. stat->subslice_per_slice = max(stat->subslice_per_slice,
  4273. ss_cnt);
  4274. }
  4275. }
  4276. static void broadwell_sseu_device_status(struct drm_device *dev,
  4277. struct sseu_dev_status *stat)
  4278. {
  4279. struct drm_i915_private *dev_priv = dev->dev_private;
  4280. int s;
  4281. u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
  4282. stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
  4283. if (stat->slice_total) {
  4284. stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
  4285. stat->subslice_total = stat->slice_total *
  4286. stat->subslice_per_slice;
  4287. stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
  4288. stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
  4289. /* subtract fused off EU(s) from enabled slice(s) */
  4290. for (s = 0; s < stat->slice_total; s++) {
  4291. u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
  4292. stat->eu_total -= hweight8(subslice_7eu);
  4293. }
  4294. }
  4295. }
  4296. static int i915_sseu_status(struct seq_file *m, void *unused)
  4297. {
  4298. struct drm_info_node *node = (struct drm_info_node *) m->private;
  4299. struct drm_device *dev = node->minor->dev;
  4300. struct sseu_dev_status stat;
  4301. if (INTEL_INFO(dev)->gen < 8)
  4302. return -ENODEV;
  4303. seq_puts(m, "SSEU Device Info\n");
  4304. seq_printf(m, " Available Slice Total: %u\n",
  4305. INTEL_INFO(dev)->slice_total);
  4306. seq_printf(m, " Available Subslice Total: %u\n",
  4307. INTEL_INFO(dev)->subslice_total);
  4308. seq_printf(m, " Available Subslice Per Slice: %u\n",
  4309. INTEL_INFO(dev)->subslice_per_slice);
  4310. seq_printf(m, " Available EU Total: %u\n",
  4311. INTEL_INFO(dev)->eu_total);
  4312. seq_printf(m, " Available EU Per Subslice: %u\n",
  4313. INTEL_INFO(dev)->eu_per_subslice);
  4314. seq_printf(m, " Has Slice Power Gating: %s\n",
  4315. yesno(INTEL_INFO(dev)->has_slice_pg));
  4316. seq_printf(m, " Has Subslice Power Gating: %s\n",
  4317. yesno(INTEL_INFO(dev)->has_subslice_pg));
  4318. seq_printf(m, " Has EU Power Gating: %s\n",
  4319. yesno(INTEL_INFO(dev)->has_eu_pg));
  4320. seq_puts(m, "SSEU Device Status\n");
  4321. memset(&stat, 0, sizeof(stat));
  4322. if (IS_CHERRYVIEW(dev)) {
  4323. cherryview_sseu_device_status(dev, &stat);
  4324. } else if (IS_BROADWELL(dev)) {
  4325. broadwell_sseu_device_status(dev, &stat);
  4326. } else if (INTEL_INFO(dev)->gen >= 9) {
  4327. gen9_sseu_device_status(dev, &stat);
  4328. }
  4329. seq_printf(m, " Enabled Slice Total: %u\n",
  4330. stat.slice_total);
  4331. seq_printf(m, " Enabled Subslice Total: %u\n",
  4332. stat.subslice_total);
  4333. seq_printf(m, " Enabled Subslice Per Slice: %u\n",
  4334. stat.subslice_per_slice);
  4335. seq_printf(m, " Enabled EU Total: %u\n",
  4336. stat.eu_total);
  4337. seq_printf(m, " Enabled EU Per Subslice: %u\n",
  4338. stat.eu_per_subslice);
  4339. return 0;
  4340. }
  4341. static int i915_forcewake_open(struct inode *inode, struct file *file)
  4342. {
  4343. struct drm_device *dev = inode->i_private;
  4344. struct drm_i915_private *dev_priv = dev->dev_private;
  4345. if (INTEL_INFO(dev)->gen < 6)
  4346. return 0;
  4347. intel_runtime_pm_get(dev_priv);
  4348. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  4349. return 0;
  4350. }
  4351. static int i915_forcewake_release(struct inode *inode, struct file *file)
  4352. {
  4353. struct drm_device *dev = inode->i_private;
  4354. struct drm_i915_private *dev_priv = dev->dev_private;
  4355. if (INTEL_INFO(dev)->gen < 6)
  4356. return 0;
  4357. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  4358. intel_runtime_pm_put(dev_priv);
  4359. return 0;
  4360. }
  4361. static const struct file_operations i915_forcewake_fops = {
  4362. .owner = THIS_MODULE,
  4363. .open = i915_forcewake_open,
  4364. .release = i915_forcewake_release,
  4365. };
  4366. static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
  4367. {
  4368. struct drm_device *dev = minor->dev;
  4369. struct dentry *ent;
  4370. ent = debugfs_create_file("i915_forcewake_user",
  4371. S_IRUSR,
  4372. root, dev,
  4373. &i915_forcewake_fops);
  4374. if (!ent)
  4375. return -ENOMEM;
  4376. return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
  4377. }
  4378. static int i915_debugfs_create(struct dentry *root,
  4379. struct drm_minor *minor,
  4380. const char *name,
  4381. const struct file_operations *fops)
  4382. {
  4383. struct drm_device *dev = minor->dev;
  4384. struct dentry *ent;
  4385. ent = debugfs_create_file(name,
  4386. S_IRUGO | S_IWUSR,
  4387. root, dev,
  4388. fops);
  4389. if (!ent)
  4390. return -ENOMEM;
  4391. return drm_add_fake_info_node(minor, ent, fops);
  4392. }
  4393. static const struct drm_info_list i915_debugfs_list[] = {
  4394. {"i915_capabilities", i915_capabilities, 0},
  4395. {"i915_gem_objects", i915_gem_object_info, 0},
  4396. {"i915_gem_gtt", i915_gem_gtt_info, 0},
  4397. {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
  4398. {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
  4399. {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
  4400. {"i915_gem_stolen", i915_gem_stolen_list_info },
  4401. {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
  4402. {"i915_gem_request", i915_gem_request_info, 0},
  4403. {"i915_gem_seqno", i915_gem_seqno_info, 0},
  4404. {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
  4405. {"i915_gem_interrupt", i915_interrupt_info, 0},
  4406. {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
  4407. {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
  4408. {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
  4409. {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
  4410. {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
  4411. {"i915_guc_info", i915_guc_info, 0},
  4412. {"i915_guc_load_status", i915_guc_load_status_info, 0},
  4413. {"i915_guc_log_dump", i915_guc_log_dump, 0},
  4414. {"i915_frequency_info", i915_frequency_info, 0},
  4415. {"i915_hangcheck_info", i915_hangcheck_info, 0},
  4416. {"i915_drpc_info", i915_drpc_info, 0},
  4417. {"i915_emon_status", i915_emon_status, 0},
  4418. {"i915_ring_freq_table", i915_ring_freq_table, 0},
  4419. {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
  4420. {"i915_fbc_status", i915_fbc_status, 0},
  4421. {"i915_ips_status", i915_ips_status, 0},
  4422. {"i915_sr_status", i915_sr_status, 0},
  4423. {"i915_opregion", i915_opregion, 0},
  4424. {"i915_vbt", i915_vbt, 0},
  4425. {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
  4426. {"i915_context_status", i915_context_status, 0},
  4427. {"i915_dump_lrc", i915_dump_lrc, 0},
  4428. {"i915_execlists", i915_execlists, 0},
  4429. {"i915_forcewake_domains", i915_forcewake_domains, 0},
  4430. {"i915_swizzle_info", i915_swizzle_info, 0},
  4431. {"i915_ppgtt_info", i915_ppgtt_info, 0},
  4432. {"i915_llc", i915_llc, 0},
  4433. {"i915_edp_psr_status", i915_edp_psr_status, 0},
  4434. {"i915_sink_crc_eDP1", i915_sink_crc, 0},
  4435. {"i915_energy_uJ", i915_energy_uJ, 0},
  4436. {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
  4437. {"i915_power_domain_info", i915_power_domain_info, 0},
  4438. {"i915_dmc_info", i915_dmc_info, 0},
  4439. {"i915_display_info", i915_display_info, 0},
  4440. {"i915_semaphore_status", i915_semaphore_status, 0},
  4441. {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
  4442. {"i915_dp_mst_info", i915_dp_mst_info, 0},
  4443. {"i915_wa_registers", i915_wa_registers, 0},
  4444. {"i915_ddb_info", i915_ddb_info, 0},
  4445. {"i915_sseu_status", i915_sseu_status, 0},
  4446. {"i915_drrs_status", i915_drrs_status, 0},
  4447. {"i915_rps_boost_info", i915_rps_boost_info, 0},
  4448. };
  4449. #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
  4450. static const struct i915_debugfs_files {
  4451. const char *name;
  4452. const struct file_operations *fops;
  4453. } i915_debugfs_files[] = {
  4454. {"i915_wedged", &i915_wedged_fops},
  4455. {"i915_max_freq", &i915_max_freq_fops},
  4456. {"i915_min_freq", &i915_min_freq_fops},
  4457. {"i915_cache_sharing", &i915_cache_sharing_fops},
  4458. {"i915_ring_stop", &i915_ring_stop_fops},
  4459. {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
  4460. {"i915_ring_test_irq", &i915_ring_test_irq_fops},
  4461. {"i915_gem_drop_caches", &i915_drop_caches_fops},
  4462. {"i915_error_state", &i915_error_state_fops},
  4463. {"i915_next_seqno", &i915_next_seqno_fops},
  4464. {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
  4465. {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
  4466. {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
  4467. {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
  4468. {"i915_fbc_false_color", &i915_fbc_fc_fops},
  4469. {"i915_dp_test_data", &i915_displayport_test_data_fops},
  4470. {"i915_dp_test_type", &i915_displayport_test_type_fops},
  4471. {"i915_dp_test_active", &i915_displayport_test_active_fops}
  4472. };
  4473. void intel_display_crc_init(struct drm_device *dev)
  4474. {
  4475. struct drm_i915_private *dev_priv = dev->dev_private;
  4476. enum pipe pipe;
  4477. for_each_pipe(dev_priv, pipe) {
  4478. struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
  4479. pipe_crc->opened = false;
  4480. spin_lock_init(&pipe_crc->lock);
  4481. init_waitqueue_head(&pipe_crc->wq);
  4482. }
  4483. }
  4484. int i915_debugfs_init(struct drm_minor *minor)
  4485. {
  4486. int ret, i;
  4487. ret = i915_forcewake_create(minor->debugfs_root, minor);
  4488. if (ret)
  4489. return ret;
  4490. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4491. ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
  4492. if (ret)
  4493. return ret;
  4494. }
  4495. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4496. ret = i915_debugfs_create(minor->debugfs_root, minor,
  4497. i915_debugfs_files[i].name,
  4498. i915_debugfs_files[i].fops);
  4499. if (ret)
  4500. return ret;
  4501. }
  4502. return drm_debugfs_create_files(i915_debugfs_list,
  4503. I915_DEBUGFS_ENTRIES,
  4504. minor->debugfs_root, minor);
  4505. }
  4506. void i915_debugfs_cleanup(struct drm_minor *minor)
  4507. {
  4508. int i;
  4509. drm_debugfs_remove_files(i915_debugfs_list,
  4510. I915_DEBUGFS_ENTRIES, minor);
  4511. drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
  4512. 1, minor);
  4513. for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
  4514. struct drm_info_list *info_list =
  4515. (struct drm_info_list *)&i915_pipe_crc_data[i];
  4516. drm_debugfs_remove_files(info_list, 1, minor);
  4517. }
  4518. for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
  4519. struct drm_info_list *info_list =
  4520. (struct drm_info_list *) i915_debugfs_files[i].fops;
  4521. drm_debugfs_remove_files(info_list, 1, minor);
  4522. }
  4523. }
  4524. struct dpcd_block {
  4525. /* DPCD dump start address. */
  4526. unsigned int offset;
  4527. /* DPCD dump end address, inclusive. If unset, .size will be used. */
  4528. unsigned int end;
  4529. /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
  4530. size_t size;
  4531. /* Only valid for eDP. */
  4532. bool edp;
  4533. };
  4534. static const struct dpcd_block i915_dpcd_debug[] = {
  4535. { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
  4536. { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
  4537. { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
  4538. { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
  4539. { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
  4540. { .offset = DP_SET_POWER },
  4541. { .offset = DP_EDP_DPCD_REV },
  4542. { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
  4543. { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
  4544. { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
  4545. };
  4546. static int i915_dpcd_show(struct seq_file *m, void *data)
  4547. {
  4548. struct drm_connector *connector = m->private;
  4549. struct intel_dp *intel_dp =
  4550. enc_to_intel_dp(&intel_attached_encoder(connector)->base);
  4551. uint8_t buf[16];
  4552. ssize_t err;
  4553. int i;
  4554. if (connector->status != connector_status_connected)
  4555. return -ENODEV;
  4556. for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
  4557. const struct dpcd_block *b = &i915_dpcd_debug[i];
  4558. size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
  4559. if (b->edp &&
  4560. connector->connector_type != DRM_MODE_CONNECTOR_eDP)
  4561. continue;
  4562. /* low tech for now */
  4563. if (WARN_ON(size > sizeof(buf)))
  4564. continue;
  4565. err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
  4566. if (err <= 0) {
  4567. DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
  4568. size, b->offset, err);
  4569. continue;
  4570. }
  4571. seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
  4572. }
  4573. return 0;
  4574. }
  4575. static int i915_dpcd_open(struct inode *inode, struct file *file)
  4576. {
  4577. return single_open(file, i915_dpcd_show, inode->i_private);
  4578. }
  4579. static const struct file_operations i915_dpcd_fops = {
  4580. .owner = THIS_MODULE,
  4581. .open = i915_dpcd_open,
  4582. .read = seq_read,
  4583. .llseek = seq_lseek,
  4584. .release = single_release,
  4585. };
  4586. /**
  4587. * i915_debugfs_connector_add - add i915 specific connector debugfs files
  4588. * @connector: pointer to a registered drm_connector
  4589. *
  4590. * Cleanup will be done by drm_connector_unregister() through a call to
  4591. * drm_debugfs_connector_remove().
  4592. *
  4593. * Returns 0 on success, negative error codes on error.
  4594. */
  4595. int i915_debugfs_connector_add(struct drm_connector *connector)
  4596. {
  4597. struct dentry *root = connector->debugfs_entry;
  4598. /* The connector must have been registered beforehands. */
  4599. if (!root)
  4600. return -ENODEV;
  4601. if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
  4602. connector->connector_type == DRM_MODE_CONNECTOR_eDP)
  4603. debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
  4604. &i915_dpcd_fops);
  4605. return 0;
  4606. }