mcp251x.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164
  1. /*
  2. * CAN bus driver for Microchip 251x CAN Controller with SPI Interface
  3. *
  4. * MCP2510 support and bug fixes by Christian Pellegrin
  5. * <chripell@evolware.org>
  6. *
  7. * Copyright 2009 Christian Pellegrin EVOL S.r.l.
  8. *
  9. * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10. * Written under contract by:
  11. * Chris Elston, Katalix Systems, Ltd.
  12. *
  13. * Based on Microchip MCP251x CAN controller driver written by
  14. * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15. *
  16. * Based on CAN bus driver for the CCAN controller written by
  17. * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18. * - Simon Kallweit, intefo AG
  19. * Copyright 2007
  20. *
  21. * This program is free software; you can redistribute it and/or modify
  22. * it under the terms of the version 2 of the GNU General Public License
  23. * as published by the Free Software Foundation
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. *
  30. * You should have received a copy of the GNU General Public License
  31. * along with this program; if not, write to the Free Software
  32. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  33. *
  34. *
  35. *
  36. * Your platform definition file should specify something like:
  37. *
  38. * static struct mcp251x_platform_data mcp251x_info = {
  39. * .oscillator_frequency = 8000000,
  40. * .board_specific_setup = &mcp251x_setup,
  41. * .model = CAN_MCP251X_MCP2510,
  42. * .power_enable = mcp251x_power_enable,
  43. * .transceiver_enable = NULL,
  44. * };
  45. *
  46. * static struct spi_board_info spi_board_info[] = {
  47. * {
  48. * .modalias = "mcp251x",
  49. * .platform_data = &mcp251x_info,
  50. * .irq = IRQ_EINT13,
  51. * .max_speed_hz = 2*1000*1000,
  52. * .chip_select = 2,
  53. * },
  54. * };
  55. *
  56. * Please see mcp251x.h for a description of the fields in
  57. * struct mcp251x_platform_data.
  58. *
  59. */
  60. #include <linux/can.h>
  61. #include <linux/can/core.h>
  62. #include <linux/can/dev.h>
  63. #include <linux/can/platform/mcp251x.h>
  64. #include <linux/completion.h>
  65. #include <linux/delay.h>
  66. #include <linux/device.h>
  67. #include <linux/dma-mapping.h>
  68. #include <linux/freezer.h>
  69. #include <linux/interrupt.h>
  70. #include <linux/io.h>
  71. #include <linux/kernel.h>
  72. #include <linux/module.h>
  73. #include <linux/netdevice.h>
  74. #include <linux/platform_device.h>
  75. #include <linux/spi/spi.h>
  76. #include <linux/uaccess.h>
  77. /* SPI interface instruction set */
  78. #define INSTRUCTION_WRITE 0x02
  79. #define INSTRUCTION_READ 0x03
  80. #define INSTRUCTION_BIT_MODIFY 0x05
  81. #define INSTRUCTION_LOAD_TXB(n) (0x40 + 2 * (n))
  82. #define INSTRUCTION_READ_RXB(n) (((n) == 0) ? 0x90 : 0x94)
  83. #define INSTRUCTION_RESET 0xC0
  84. /* MPC251x registers */
  85. #define CANSTAT 0x0e
  86. #define CANCTRL 0x0f
  87. # define CANCTRL_REQOP_MASK 0xe0
  88. # define CANCTRL_REQOP_CONF 0x80
  89. # define CANCTRL_REQOP_LISTEN_ONLY 0x60
  90. # define CANCTRL_REQOP_LOOPBACK 0x40
  91. # define CANCTRL_REQOP_SLEEP 0x20
  92. # define CANCTRL_REQOP_NORMAL 0x00
  93. # define CANCTRL_OSM 0x08
  94. # define CANCTRL_ABAT 0x10
  95. #define TEC 0x1c
  96. #define REC 0x1d
  97. #define CNF1 0x2a
  98. # define CNF1_SJW_SHIFT 6
  99. #define CNF2 0x29
  100. # define CNF2_BTLMODE 0x80
  101. # define CNF2_SAM 0x40
  102. # define CNF2_PS1_SHIFT 3
  103. #define CNF3 0x28
  104. # define CNF3_SOF 0x08
  105. # define CNF3_WAKFIL 0x04
  106. # define CNF3_PHSEG2_MASK 0x07
  107. #define CANINTE 0x2b
  108. # define CANINTE_MERRE 0x80
  109. # define CANINTE_WAKIE 0x40
  110. # define CANINTE_ERRIE 0x20
  111. # define CANINTE_TX2IE 0x10
  112. # define CANINTE_TX1IE 0x08
  113. # define CANINTE_TX0IE 0x04
  114. # define CANINTE_RX1IE 0x02
  115. # define CANINTE_RX0IE 0x01
  116. #define CANINTF 0x2c
  117. # define CANINTF_MERRF 0x80
  118. # define CANINTF_WAKIF 0x40
  119. # define CANINTF_ERRIF 0x20
  120. # define CANINTF_TX2IF 0x10
  121. # define CANINTF_TX1IF 0x08
  122. # define CANINTF_TX0IF 0x04
  123. # define CANINTF_RX1IF 0x02
  124. # define CANINTF_RX0IF 0x01
  125. #define EFLG 0x2d
  126. # define EFLG_EWARN 0x01
  127. # define EFLG_RXWAR 0x02
  128. # define EFLG_TXWAR 0x04
  129. # define EFLG_RXEP 0x08
  130. # define EFLG_TXEP 0x10
  131. # define EFLG_TXBO 0x20
  132. # define EFLG_RX0OVR 0x40
  133. # define EFLG_RX1OVR 0x80
  134. #define TXBCTRL(n) (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
  135. # define TXBCTRL_ABTF 0x40
  136. # define TXBCTRL_MLOA 0x20
  137. # define TXBCTRL_TXERR 0x10
  138. # define TXBCTRL_TXREQ 0x08
  139. #define TXBSIDH(n) (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
  140. # define SIDH_SHIFT 3
  141. #define TXBSIDL(n) (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
  142. # define SIDL_SID_MASK 7
  143. # define SIDL_SID_SHIFT 5
  144. # define SIDL_EXIDE_SHIFT 3
  145. # define SIDL_EID_SHIFT 16
  146. # define SIDL_EID_MASK 3
  147. #define TXBEID8(n) (((n) * 0x10) + 0x30 + TXBEID8_OFF)
  148. #define TXBEID0(n) (((n) * 0x10) + 0x30 + TXBEID0_OFF)
  149. #define TXBDLC(n) (((n) * 0x10) + 0x30 + TXBDLC_OFF)
  150. # define DLC_RTR_SHIFT 6
  151. #define TXBCTRL_OFF 0
  152. #define TXBSIDH_OFF 1
  153. #define TXBSIDL_OFF 2
  154. #define TXBEID8_OFF 3
  155. #define TXBEID0_OFF 4
  156. #define TXBDLC_OFF 5
  157. #define TXBDAT_OFF 6
  158. #define RXBCTRL(n) (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
  159. # define RXBCTRL_BUKT 0x04
  160. # define RXBCTRL_RXM0 0x20
  161. # define RXBCTRL_RXM1 0x40
  162. #define RXBSIDH(n) (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
  163. # define RXBSIDH_SHIFT 3
  164. #define RXBSIDL(n) (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
  165. # define RXBSIDL_IDE 0x08
  166. # define RXBSIDL_EID 3
  167. # define RXBSIDL_SHIFT 5
  168. #define RXBEID8(n) (((n) * 0x10) + 0x60 + RXBEID8_OFF)
  169. #define RXBEID0(n) (((n) * 0x10) + 0x60 + RXBEID0_OFF)
  170. #define RXBDLC(n) (((n) * 0x10) + 0x60 + RXBDLC_OFF)
  171. # define RXBDLC_LEN_MASK 0x0f
  172. # define RXBDLC_RTR 0x40
  173. #define RXBCTRL_OFF 0
  174. #define RXBSIDH_OFF 1
  175. #define RXBSIDL_OFF 2
  176. #define RXBEID8_OFF 3
  177. #define RXBEID0_OFF 4
  178. #define RXBDLC_OFF 5
  179. #define RXBDAT_OFF 6
  180. #define GET_BYTE(val, byte) \
  181. (((val) >> ((byte) * 8)) & 0xff)
  182. #define SET_BYTE(val, byte) \
  183. (((val) & 0xff) << ((byte) * 8))
  184. /*
  185. * Buffer size required for the largest SPI transfer (i.e., reading a
  186. * frame)
  187. */
  188. #define CAN_FRAME_MAX_DATA_LEN 8
  189. #define SPI_TRANSFER_BUF_LEN (6 + CAN_FRAME_MAX_DATA_LEN)
  190. #define CAN_FRAME_MAX_BITS 128
  191. #define TX_ECHO_SKB_MAX 1
  192. #define DEVICE_NAME "mcp251x"
  193. static int mcp251x_enable_dma; /* Enable SPI DMA. Default: 0 (Off) */
  194. module_param(mcp251x_enable_dma, int, S_IRUGO);
  195. MODULE_PARM_DESC(mcp251x_enable_dma, "Enable SPI DMA. Default: 0 (Off)");
  196. static struct can_bittiming_const mcp251x_bittiming_const = {
  197. .name = DEVICE_NAME,
  198. .tseg1_min = 3,
  199. .tseg1_max = 16,
  200. .tseg2_min = 2,
  201. .tseg2_max = 8,
  202. .sjw_max = 4,
  203. .brp_min = 1,
  204. .brp_max = 64,
  205. .brp_inc = 1,
  206. };
  207. struct mcp251x_priv {
  208. struct can_priv can;
  209. struct net_device *net;
  210. struct spi_device *spi;
  211. struct mutex spi_lock; /* SPI buffer lock */
  212. u8 *spi_tx_buf;
  213. u8 *spi_rx_buf;
  214. dma_addr_t spi_tx_dma;
  215. dma_addr_t spi_rx_dma;
  216. struct sk_buff *tx_skb;
  217. int tx_len;
  218. struct workqueue_struct *wq;
  219. struct work_struct tx_work;
  220. struct work_struct irq_work;
  221. struct completion awake;
  222. int wake;
  223. int force_quit;
  224. int after_suspend;
  225. #define AFTER_SUSPEND_UP 1
  226. #define AFTER_SUSPEND_DOWN 2
  227. #define AFTER_SUSPEND_POWER 4
  228. #define AFTER_SUSPEND_RESTART 8
  229. int restart_tx;
  230. };
  231. static void mcp251x_clean(struct net_device *net)
  232. {
  233. struct mcp251x_priv *priv = netdev_priv(net);
  234. net->stats.tx_errors++;
  235. if (priv->tx_skb)
  236. dev_kfree_skb(priv->tx_skb);
  237. if (priv->tx_len)
  238. can_free_echo_skb(priv->net, 0);
  239. priv->tx_skb = NULL;
  240. priv->tx_len = 0;
  241. }
  242. /*
  243. * Note about handling of error return of mcp251x_spi_trans: accessing
  244. * registers via SPI is not really different conceptually than using
  245. * normal I/O assembler instructions, although it's much more
  246. * complicated from a practical POV. So it's not advisable to always
  247. * check the return value of this function. Imagine that every
  248. * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
  249. * error();", it would be a great mess (well there are some situation
  250. * when exception handling C++ like could be useful after all). So we
  251. * just check that transfers are OK at the beginning of our
  252. * conversation with the chip and to avoid doing really nasty things
  253. * (like injecting bogus packets in the network stack).
  254. */
  255. static int mcp251x_spi_trans(struct spi_device *spi, int len)
  256. {
  257. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  258. struct spi_transfer t = {
  259. .tx_buf = priv->spi_tx_buf,
  260. .rx_buf = priv->spi_rx_buf,
  261. .len = len,
  262. .cs_change = 0,
  263. };
  264. struct spi_message m;
  265. int ret;
  266. spi_message_init(&m);
  267. if (mcp251x_enable_dma) {
  268. t.tx_dma = priv->spi_tx_dma;
  269. t.rx_dma = priv->spi_rx_dma;
  270. m.is_dma_mapped = 1;
  271. }
  272. spi_message_add_tail(&t, &m);
  273. ret = spi_sync(spi, &m);
  274. if (ret)
  275. dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
  276. return ret;
  277. }
  278. static u8 mcp251x_read_reg(struct spi_device *spi, uint8_t reg)
  279. {
  280. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  281. u8 val = 0;
  282. mutex_lock(&priv->spi_lock);
  283. priv->spi_tx_buf[0] = INSTRUCTION_READ;
  284. priv->spi_tx_buf[1] = reg;
  285. mcp251x_spi_trans(spi, 3);
  286. val = priv->spi_rx_buf[2];
  287. mutex_unlock(&priv->spi_lock);
  288. return val;
  289. }
  290. static void mcp251x_write_reg(struct spi_device *spi, u8 reg, uint8_t val)
  291. {
  292. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  293. mutex_lock(&priv->spi_lock);
  294. priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
  295. priv->spi_tx_buf[1] = reg;
  296. priv->spi_tx_buf[2] = val;
  297. mcp251x_spi_trans(spi, 3);
  298. mutex_unlock(&priv->spi_lock);
  299. }
  300. static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
  301. u8 mask, uint8_t val)
  302. {
  303. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  304. mutex_lock(&priv->spi_lock);
  305. priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
  306. priv->spi_tx_buf[1] = reg;
  307. priv->spi_tx_buf[2] = mask;
  308. priv->spi_tx_buf[3] = val;
  309. mcp251x_spi_trans(spi, 4);
  310. mutex_unlock(&priv->spi_lock);
  311. }
  312. static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
  313. int len, int tx_buf_idx)
  314. {
  315. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  316. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  317. if (pdata->model == CAN_MCP251X_MCP2510) {
  318. int i;
  319. for (i = 1; i < TXBDAT_OFF + len; i++)
  320. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
  321. buf[i]);
  322. } else {
  323. mutex_lock(&priv->spi_lock);
  324. memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
  325. mcp251x_spi_trans(spi, TXBDAT_OFF + len);
  326. mutex_unlock(&priv->spi_lock);
  327. }
  328. }
  329. static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
  330. int tx_buf_idx)
  331. {
  332. u32 sid, eid, exide, rtr;
  333. u8 buf[SPI_TRANSFER_BUF_LEN];
  334. exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
  335. if (exide)
  336. sid = (frame->can_id & CAN_EFF_MASK) >> 18;
  337. else
  338. sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
  339. eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
  340. rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
  341. buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
  342. buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
  343. buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
  344. (exide << SIDL_EXIDE_SHIFT) |
  345. ((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
  346. buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
  347. buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
  348. buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
  349. memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
  350. mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
  351. mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx), TXBCTRL_TXREQ);
  352. }
  353. static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
  354. int buf_idx)
  355. {
  356. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  357. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  358. if (pdata->model == CAN_MCP251X_MCP2510) {
  359. int i, len;
  360. for (i = 1; i < RXBDAT_OFF; i++)
  361. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  362. len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  363. for (; i < (RXBDAT_OFF + len); i++)
  364. buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
  365. } else {
  366. mutex_lock(&priv->spi_lock);
  367. priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
  368. mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
  369. memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
  370. mutex_unlock(&priv->spi_lock);
  371. }
  372. }
  373. static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
  374. {
  375. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  376. struct sk_buff *skb;
  377. struct can_frame *frame;
  378. u8 buf[SPI_TRANSFER_BUF_LEN];
  379. skb = alloc_can_skb(priv->net, &frame);
  380. if (!skb) {
  381. dev_err(&spi->dev, "cannot allocate RX skb\n");
  382. priv->net->stats.rx_dropped++;
  383. return;
  384. }
  385. mcp251x_hw_rx_frame(spi, buf, buf_idx);
  386. if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
  387. /* Extended ID format */
  388. frame->can_id = CAN_EFF_FLAG;
  389. frame->can_id |=
  390. /* Extended ID part */
  391. SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
  392. SET_BYTE(buf[RXBEID8_OFF], 1) |
  393. SET_BYTE(buf[RXBEID0_OFF], 0) |
  394. /* Standard ID part */
  395. (((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  396. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
  397. /* Remote transmission request */
  398. if (buf[RXBDLC_OFF] & RXBDLC_RTR)
  399. frame->can_id |= CAN_RTR_FLAG;
  400. } else {
  401. /* Standard ID format */
  402. frame->can_id =
  403. (buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
  404. (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
  405. }
  406. /* Data length */
  407. frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
  408. memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
  409. priv->net->stats.rx_packets++;
  410. priv->net->stats.rx_bytes += frame->can_dlc;
  411. netif_rx(skb);
  412. }
  413. static void mcp251x_hw_sleep(struct spi_device *spi)
  414. {
  415. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
  416. }
  417. static void mcp251x_hw_wakeup(struct spi_device *spi)
  418. {
  419. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  420. priv->wake = 1;
  421. /* Can only wake up by generating a wake-up interrupt. */
  422. mcp251x_write_bits(spi, CANINTE, CANINTE_WAKIE, CANINTE_WAKIE);
  423. mcp251x_write_bits(spi, CANINTF, CANINTF_WAKIF, CANINTF_WAKIF);
  424. /* Wait until the device is awake */
  425. if (!wait_for_completion_timeout(&priv->awake, HZ))
  426. dev_err(&spi->dev, "MCP251x didn't wake-up\n");
  427. }
  428. static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
  429. struct net_device *net)
  430. {
  431. struct mcp251x_priv *priv = netdev_priv(net);
  432. struct spi_device *spi = priv->spi;
  433. if (priv->tx_skb || priv->tx_len) {
  434. dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
  435. netif_stop_queue(net);
  436. return NETDEV_TX_BUSY;
  437. }
  438. if (can_dropped_invalid_skb(net, skb))
  439. return NETDEV_TX_OK;
  440. netif_stop_queue(net);
  441. priv->tx_skb = skb;
  442. net->trans_start = jiffies;
  443. queue_work(priv->wq, &priv->tx_work);
  444. return NETDEV_TX_OK;
  445. }
  446. static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
  447. {
  448. struct mcp251x_priv *priv = netdev_priv(net);
  449. switch (mode) {
  450. case CAN_MODE_START:
  451. /* We have to delay work since SPI I/O may sleep */
  452. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  453. priv->restart_tx = 1;
  454. if (priv->can.restart_ms == 0)
  455. priv->after_suspend = AFTER_SUSPEND_RESTART;
  456. queue_work(priv->wq, &priv->irq_work);
  457. break;
  458. default:
  459. return -EOPNOTSUPP;
  460. }
  461. return 0;
  462. }
  463. static void mcp251x_set_normal_mode(struct spi_device *spi)
  464. {
  465. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  466. unsigned long timeout;
  467. /* Enable interrupts */
  468. mcp251x_write_reg(spi, CANINTE,
  469. CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
  470. CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE |
  471. CANINTF_MERRF);
  472. if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
  473. /* Put device into loopback mode */
  474. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
  475. } else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
  476. /* Put device into listen-only mode */
  477. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
  478. } else {
  479. /* Put device into normal mode */
  480. mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL |
  481. (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT ?
  482. CANCTRL_OSM : 0));
  483. /* Wait for the device to enter normal mode */
  484. timeout = jiffies + HZ;
  485. while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
  486. schedule();
  487. if (time_after(jiffies, timeout)) {
  488. dev_err(&spi->dev, "MCP251x didn't"
  489. " enter in normal mode\n");
  490. return;
  491. }
  492. }
  493. }
  494. priv->can.state = CAN_STATE_ERROR_ACTIVE;
  495. }
  496. static int mcp251x_do_set_bittiming(struct net_device *net)
  497. {
  498. struct mcp251x_priv *priv = netdev_priv(net);
  499. struct can_bittiming *bt = &priv->can.bittiming;
  500. struct spi_device *spi = priv->spi;
  501. mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
  502. (bt->brp - 1));
  503. mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
  504. (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
  505. CNF2_SAM : 0) |
  506. ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
  507. (bt->prop_seg - 1));
  508. mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
  509. (bt->phase_seg2 - 1));
  510. dev_info(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
  511. mcp251x_read_reg(spi, CNF1),
  512. mcp251x_read_reg(spi, CNF2),
  513. mcp251x_read_reg(spi, CNF3));
  514. return 0;
  515. }
  516. static int mcp251x_setup(struct net_device *net, struct mcp251x_priv *priv,
  517. struct spi_device *spi)
  518. {
  519. mcp251x_do_set_bittiming(net);
  520. /* Enable RX0->RX1 buffer roll over and disable filters */
  521. mcp251x_write_bits(spi, RXBCTRL(0),
  522. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1,
  523. RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
  524. mcp251x_write_bits(spi, RXBCTRL(1),
  525. RXBCTRL_RXM0 | RXBCTRL_RXM1,
  526. RXBCTRL_RXM0 | RXBCTRL_RXM1);
  527. return 0;
  528. }
  529. static void mcp251x_hw_reset(struct spi_device *spi)
  530. {
  531. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  532. int ret;
  533. mutex_lock(&priv->spi_lock);
  534. priv->spi_tx_buf[0] = INSTRUCTION_RESET;
  535. ret = spi_write(spi, priv->spi_tx_buf, 1);
  536. mutex_unlock(&priv->spi_lock);
  537. if (ret)
  538. dev_err(&spi->dev, "reset failed: ret = %d\n", ret);
  539. /* Wait for reset to finish */
  540. mdelay(10);
  541. }
  542. static int mcp251x_hw_probe(struct spi_device *spi)
  543. {
  544. int st1, st2;
  545. mcp251x_hw_reset(spi);
  546. /*
  547. * Please note that these are "magic values" based on after
  548. * reset defaults taken from data sheet which allows us to see
  549. * if we really have a chip on the bus (we avoid common all
  550. * zeroes or all ones situations)
  551. */
  552. st1 = mcp251x_read_reg(spi, CANSTAT) & 0xEE;
  553. st2 = mcp251x_read_reg(spi, CANCTRL) & 0x17;
  554. dev_dbg(&spi->dev, "CANSTAT 0x%02x CANCTRL 0x%02x\n", st1, st2);
  555. /* Check for power up default values */
  556. return (st1 == 0x80 && st2 == 0x07) ? 1 : 0;
  557. }
  558. static irqreturn_t mcp251x_can_isr(int irq, void *dev_id)
  559. {
  560. struct net_device *net = (struct net_device *)dev_id;
  561. struct mcp251x_priv *priv = netdev_priv(net);
  562. /* Schedule bottom half */
  563. if (!work_pending(&priv->irq_work))
  564. queue_work(priv->wq, &priv->irq_work);
  565. return IRQ_HANDLED;
  566. }
  567. static int mcp251x_open(struct net_device *net)
  568. {
  569. struct mcp251x_priv *priv = netdev_priv(net);
  570. struct spi_device *spi = priv->spi;
  571. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  572. int ret;
  573. ret = open_candev(net);
  574. if (ret) {
  575. dev_err(&spi->dev, "unable to set initial baudrate!\n");
  576. return ret;
  577. }
  578. if (pdata->transceiver_enable)
  579. pdata->transceiver_enable(1);
  580. priv->force_quit = 0;
  581. priv->tx_skb = NULL;
  582. priv->tx_len = 0;
  583. ret = request_irq(spi->irq, mcp251x_can_isr,
  584. IRQF_TRIGGER_FALLING, DEVICE_NAME, net);
  585. if (ret) {
  586. dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
  587. if (pdata->transceiver_enable)
  588. pdata->transceiver_enable(0);
  589. close_candev(net);
  590. return ret;
  591. }
  592. mcp251x_hw_wakeup(spi);
  593. mcp251x_hw_reset(spi);
  594. ret = mcp251x_setup(net, priv, spi);
  595. if (ret) {
  596. free_irq(spi->irq, net);
  597. mcp251x_hw_sleep(spi);
  598. if (pdata->transceiver_enable)
  599. pdata->transceiver_enable(0);
  600. close_candev(net);
  601. return ret;
  602. }
  603. mcp251x_set_normal_mode(spi);
  604. netif_wake_queue(net);
  605. return 0;
  606. }
  607. static int mcp251x_stop(struct net_device *net)
  608. {
  609. struct mcp251x_priv *priv = netdev_priv(net);
  610. struct spi_device *spi = priv->spi;
  611. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  612. close_candev(net);
  613. /* Disable and clear pending interrupts */
  614. mcp251x_write_reg(spi, CANINTE, 0x00);
  615. mcp251x_write_reg(spi, CANINTF, 0x00);
  616. priv->force_quit = 1;
  617. free_irq(spi->irq, net);
  618. flush_workqueue(priv->wq);
  619. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  620. if (priv->tx_skb || priv->tx_len)
  621. mcp251x_clean(net);
  622. mcp251x_hw_sleep(spi);
  623. if (pdata->transceiver_enable)
  624. pdata->transceiver_enable(0);
  625. priv->can.state = CAN_STATE_STOPPED;
  626. return 0;
  627. }
  628. static void mcp251x_tx_work_handler(struct work_struct *ws)
  629. {
  630. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  631. tx_work);
  632. struct spi_device *spi = priv->spi;
  633. struct net_device *net = priv->net;
  634. struct can_frame *frame;
  635. if (priv->tx_skb) {
  636. frame = (struct can_frame *)priv->tx_skb->data;
  637. if (priv->can.state == CAN_STATE_BUS_OFF) {
  638. mcp251x_clean(net);
  639. netif_wake_queue(net);
  640. return;
  641. }
  642. if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
  643. frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
  644. mcp251x_hw_tx(spi, frame, 0);
  645. priv->tx_len = 1 + frame->can_dlc;
  646. can_put_echo_skb(priv->tx_skb, net, 0);
  647. priv->tx_skb = NULL;
  648. }
  649. }
  650. static void mcp251x_irq_work_handler(struct work_struct *ws)
  651. {
  652. struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
  653. irq_work);
  654. struct spi_device *spi = priv->spi;
  655. struct net_device *net = priv->net;
  656. u8 txbnctrl;
  657. u8 intf;
  658. enum can_state new_state;
  659. if (priv->after_suspend) {
  660. mdelay(10);
  661. mcp251x_hw_reset(spi);
  662. mcp251x_setup(net, priv, spi);
  663. if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
  664. mcp251x_set_normal_mode(spi);
  665. } else if (priv->after_suspend & AFTER_SUSPEND_UP) {
  666. netif_device_attach(net);
  667. /* Clean since we lost tx buffer */
  668. if (priv->tx_skb || priv->tx_len) {
  669. mcp251x_clean(net);
  670. netif_wake_queue(net);
  671. }
  672. mcp251x_set_normal_mode(spi);
  673. } else {
  674. mcp251x_hw_sleep(spi);
  675. }
  676. priv->after_suspend = 0;
  677. }
  678. if (priv->can.restart_ms == 0 && priv->can.state == CAN_STATE_BUS_OFF)
  679. return;
  680. while (!priv->force_quit && !freezing(current)) {
  681. u8 eflag = mcp251x_read_reg(spi, EFLG);
  682. int can_id = 0, data1 = 0;
  683. mcp251x_write_reg(spi, EFLG, 0x00);
  684. if (priv->restart_tx) {
  685. priv->restart_tx = 0;
  686. mcp251x_write_reg(spi, TXBCTRL(0), 0);
  687. if (priv->tx_skb || priv->tx_len)
  688. mcp251x_clean(net);
  689. netif_wake_queue(net);
  690. can_id |= CAN_ERR_RESTARTED;
  691. }
  692. if (priv->wake) {
  693. /* Wait whilst the device wakes up */
  694. mdelay(10);
  695. priv->wake = 0;
  696. }
  697. intf = mcp251x_read_reg(spi, CANINTF);
  698. mcp251x_write_bits(spi, CANINTF, intf, 0x00);
  699. /* Update can state */
  700. if (eflag & EFLG_TXBO) {
  701. new_state = CAN_STATE_BUS_OFF;
  702. can_id |= CAN_ERR_BUSOFF;
  703. } else if (eflag & EFLG_TXEP) {
  704. new_state = CAN_STATE_ERROR_PASSIVE;
  705. can_id |= CAN_ERR_CRTL;
  706. data1 |= CAN_ERR_CRTL_TX_PASSIVE;
  707. } else if (eflag & EFLG_RXEP) {
  708. new_state = CAN_STATE_ERROR_PASSIVE;
  709. can_id |= CAN_ERR_CRTL;
  710. data1 |= CAN_ERR_CRTL_RX_PASSIVE;
  711. } else if (eflag & EFLG_TXWAR) {
  712. new_state = CAN_STATE_ERROR_WARNING;
  713. can_id |= CAN_ERR_CRTL;
  714. data1 |= CAN_ERR_CRTL_TX_WARNING;
  715. } else if (eflag & EFLG_RXWAR) {
  716. new_state = CAN_STATE_ERROR_WARNING;
  717. can_id |= CAN_ERR_CRTL;
  718. data1 |= CAN_ERR_CRTL_RX_WARNING;
  719. } else {
  720. new_state = CAN_STATE_ERROR_ACTIVE;
  721. }
  722. /* Update can state statistics */
  723. switch (priv->can.state) {
  724. case CAN_STATE_ERROR_ACTIVE:
  725. if (new_state >= CAN_STATE_ERROR_WARNING &&
  726. new_state <= CAN_STATE_BUS_OFF)
  727. priv->can.can_stats.error_warning++;
  728. case CAN_STATE_ERROR_WARNING: /* fallthrough */
  729. if (new_state >= CAN_STATE_ERROR_PASSIVE &&
  730. new_state <= CAN_STATE_BUS_OFF)
  731. priv->can.can_stats.error_passive++;
  732. break;
  733. default:
  734. break;
  735. }
  736. priv->can.state = new_state;
  737. if ((intf & CANINTF_ERRIF) || (can_id & CAN_ERR_RESTARTED)) {
  738. struct sk_buff *skb;
  739. struct can_frame *frame;
  740. /* Create error frame */
  741. skb = alloc_can_err_skb(net, &frame);
  742. if (skb) {
  743. /* Set error frame flags based on bus state */
  744. frame->can_id = can_id;
  745. frame->data[1] = data1;
  746. /* Update net stats for overflows */
  747. if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
  748. if (eflag & EFLG_RX0OVR)
  749. net->stats.rx_over_errors++;
  750. if (eflag & EFLG_RX1OVR)
  751. net->stats.rx_over_errors++;
  752. frame->can_id |= CAN_ERR_CRTL;
  753. frame->data[1] |=
  754. CAN_ERR_CRTL_RX_OVERFLOW;
  755. }
  756. netif_rx(skb);
  757. } else {
  758. dev_info(&spi->dev,
  759. "cannot allocate error skb\n");
  760. }
  761. }
  762. if (priv->can.state == CAN_STATE_BUS_OFF) {
  763. if (priv->can.restart_ms == 0) {
  764. can_bus_off(net);
  765. mcp251x_hw_sleep(spi);
  766. return;
  767. }
  768. }
  769. if (intf == 0)
  770. break;
  771. if (intf & CANINTF_WAKIF)
  772. complete(&priv->awake);
  773. if (intf & CANINTF_MERRF) {
  774. /* If there are pending Tx buffers, restart queue */
  775. txbnctrl = mcp251x_read_reg(spi, TXBCTRL(0));
  776. if (!(txbnctrl & TXBCTRL_TXREQ)) {
  777. if (priv->tx_skb || priv->tx_len)
  778. mcp251x_clean(net);
  779. netif_wake_queue(net);
  780. }
  781. }
  782. if (intf & (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)) {
  783. net->stats.tx_packets++;
  784. net->stats.tx_bytes += priv->tx_len - 1;
  785. if (priv->tx_len) {
  786. can_get_echo_skb(net, 0);
  787. priv->tx_len = 0;
  788. }
  789. netif_wake_queue(net);
  790. }
  791. if (intf & CANINTF_RX0IF)
  792. mcp251x_hw_rx(spi, 0);
  793. if (intf & CANINTF_RX1IF)
  794. mcp251x_hw_rx(spi, 1);
  795. }
  796. }
  797. static const struct net_device_ops mcp251x_netdev_ops = {
  798. .ndo_open = mcp251x_open,
  799. .ndo_stop = mcp251x_stop,
  800. .ndo_start_xmit = mcp251x_hard_start_xmit,
  801. };
  802. static int __devinit mcp251x_can_probe(struct spi_device *spi)
  803. {
  804. struct net_device *net;
  805. struct mcp251x_priv *priv;
  806. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  807. int ret = -ENODEV;
  808. if (!pdata)
  809. /* Platform data is required for osc freq */
  810. goto error_out;
  811. /* Allocate can/net device */
  812. net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
  813. if (!net) {
  814. ret = -ENOMEM;
  815. goto error_alloc;
  816. }
  817. net->netdev_ops = &mcp251x_netdev_ops;
  818. net->flags |= IFF_ECHO;
  819. priv = netdev_priv(net);
  820. priv->can.bittiming_const = &mcp251x_bittiming_const;
  821. priv->can.do_set_mode = mcp251x_do_set_mode;
  822. priv->can.clock.freq = pdata->oscillator_frequency / 2;
  823. priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
  824. CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
  825. if (pdata->model == CAN_MCP251X_MCP2515)
  826. priv->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT;
  827. priv->net = net;
  828. dev_set_drvdata(&spi->dev, priv);
  829. priv->spi = spi;
  830. mutex_init(&priv->spi_lock);
  831. /* If requested, allocate DMA buffers */
  832. if (mcp251x_enable_dma) {
  833. spi->dev.coherent_dma_mask = ~0;
  834. /*
  835. * Minimum coherent DMA allocation is PAGE_SIZE, so allocate
  836. * that much and share it between Tx and Rx DMA buffers.
  837. */
  838. priv->spi_tx_buf = dma_alloc_coherent(&spi->dev,
  839. PAGE_SIZE,
  840. &priv->spi_tx_dma,
  841. GFP_DMA);
  842. if (priv->spi_tx_buf) {
  843. priv->spi_rx_buf = (u8 *)(priv->spi_tx_buf +
  844. (PAGE_SIZE / 2));
  845. priv->spi_rx_dma = (dma_addr_t)(priv->spi_tx_dma +
  846. (PAGE_SIZE / 2));
  847. } else {
  848. /* Fall back to non-DMA */
  849. mcp251x_enable_dma = 0;
  850. }
  851. }
  852. /* Allocate non-DMA buffers */
  853. if (!mcp251x_enable_dma) {
  854. priv->spi_tx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  855. if (!priv->spi_tx_buf) {
  856. ret = -ENOMEM;
  857. goto error_tx_buf;
  858. }
  859. priv->spi_rx_buf = kmalloc(SPI_TRANSFER_BUF_LEN, GFP_KERNEL);
  860. if (!priv->spi_rx_buf) {
  861. ret = -ENOMEM;
  862. goto error_rx_buf;
  863. }
  864. }
  865. if (pdata->power_enable)
  866. pdata->power_enable(1);
  867. /* Call out to platform specific setup */
  868. if (pdata->board_specific_setup)
  869. pdata->board_specific_setup(spi);
  870. SET_NETDEV_DEV(net, &spi->dev);
  871. priv->wq = create_freezeable_workqueue("mcp251x_wq");
  872. INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
  873. INIT_WORK(&priv->irq_work, mcp251x_irq_work_handler);
  874. init_completion(&priv->awake);
  875. /* Configure the SPI bus */
  876. spi->mode = SPI_MODE_0;
  877. spi->bits_per_word = 8;
  878. spi_setup(spi);
  879. if (!mcp251x_hw_probe(spi)) {
  880. dev_info(&spi->dev, "Probe failed\n");
  881. goto error_probe;
  882. }
  883. mcp251x_hw_sleep(spi);
  884. if (pdata->transceiver_enable)
  885. pdata->transceiver_enable(0);
  886. ret = register_candev(net);
  887. if (!ret) {
  888. dev_info(&spi->dev, "probed\n");
  889. return ret;
  890. }
  891. error_probe:
  892. if (!mcp251x_enable_dma)
  893. kfree(priv->spi_rx_buf);
  894. error_rx_buf:
  895. if (!mcp251x_enable_dma)
  896. kfree(priv->spi_tx_buf);
  897. error_tx_buf:
  898. free_candev(net);
  899. if (mcp251x_enable_dma)
  900. dma_free_coherent(&spi->dev, PAGE_SIZE,
  901. priv->spi_tx_buf, priv->spi_tx_dma);
  902. error_alloc:
  903. if (pdata->power_enable)
  904. pdata->power_enable(0);
  905. dev_err(&spi->dev, "probe failed\n");
  906. error_out:
  907. return ret;
  908. }
  909. static int __devexit mcp251x_can_remove(struct spi_device *spi)
  910. {
  911. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  912. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  913. struct net_device *net = priv->net;
  914. unregister_candev(net);
  915. free_candev(net);
  916. priv->force_quit = 1;
  917. flush_workqueue(priv->wq);
  918. destroy_workqueue(priv->wq);
  919. if (mcp251x_enable_dma) {
  920. dma_free_coherent(&spi->dev, PAGE_SIZE,
  921. priv->spi_tx_buf, priv->spi_tx_dma);
  922. } else {
  923. kfree(priv->spi_tx_buf);
  924. kfree(priv->spi_rx_buf);
  925. }
  926. if (pdata->power_enable)
  927. pdata->power_enable(0);
  928. return 0;
  929. }
  930. #ifdef CONFIG_PM
  931. static int mcp251x_can_suspend(struct spi_device *spi, pm_message_t state)
  932. {
  933. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  934. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  935. struct net_device *net = priv->net;
  936. if (netif_running(net)) {
  937. netif_device_detach(net);
  938. mcp251x_hw_sleep(spi);
  939. if (pdata->transceiver_enable)
  940. pdata->transceiver_enable(0);
  941. priv->after_suspend = AFTER_SUSPEND_UP;
  942. } else {
  943. priv->after_suspend = AFTER_SUSPEND_DOWN;
  944. }
  945. if (pdata->power_enable) {
  946. pdata->power_enable(0);
  947. priv->after_suspend |= AFTER_SUSPEND_POWER;
  948. }
  949. return 0;
  950. }
  951. static int mcp251x_can_resume(struct spi_device *spi)
  952. {
  953. struct mcp251x_platform_data *pdata = spi->dev.platform_data;
  954. struct mcp251x_priv *priv = dev_get_drvdata(&spi->dev);
  955. if (priv->after_suspend & AFTER_SUSPEND_POWER) {
  956. pdata->power_enable(1);
  957. queue_work(priv->wq, &priv->irq_work);
  958. } else {
  959. if (priv->after_suspend & AFTER_SUSPEND_UP) {
  960. if (pdata->transceiver_enable)
  961. pdata->transceiver_enable(1);
  962. queue_work(priv->wq, &priv->irq_work);
  963. } else {
  964. priv->after_suspend = 0;
  965. }
  966. }
  967. return 0;
  968. }
  969. #else
  970. #define mcp251x_can_suspend NULL
  971. #define mcp251x_can_resume NULL
  972. #endif
  973. static struct spi_driver mcp251x_can_driver = {
  974. .driver = {
  975. .name = DEVICE_NAME,
  976. .bus = &spi_bus_type,
  977. .owner = THIS_MODULE,
  978. },
  979. .probe = mcp251x_can_probe,
  980. .remove = __devexit_p(mcp251x_can_remove),
  981. .suspend = mcp251x_can_suspend,
  982. .resume = mcp251x_can_resume,
  983. };
  984. static int __init mcp251x_can_init(void)
  985. {
  986. return spi_register_driver(&mcp251x_can_driver);
  987. }
  988. static void __exit mcp251x_can_exit(void)
  989. {
  990. spi_unregister_driver(&mcp251x_can_driver);
  991. }
  992. module_init(mcp251x_can_init);
  993. module_exit(mcp251x_can_exit);
  994. MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
  995. "Christian Pellegrin <chripell@evolware.org>");
  996. MODULE_DESCRIPTION("Microchip 251x CAN driver");
  997. MODULE_LICENSE("GPL v2");