task_mmu.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531
  1. #include <linux/mm.h>
  2. #include <linux/vmacache.h>
  3. #include <linux/hugetlb.h>
  4. #include <linux/huge_mm.h>
  5. #include <linux/mount.h>
  6. #include <linux/seq_file.h>
  7. #include <linux/highmem.h>
  8. #include <linux/ptrace.h>
  9. #include <linux/slab.h>
  10. #include <linux/pagemap.h>
  11. #include <linux/mempolicy.h>
  12. #include <linux/rmap.h>
  13. #include <linux/swap.h>
  14. #include <linux/swapops.h>
  15. #include <linux/mmu_notifier.h>
  16. #include <asm/elf.h>
  17. #include <asm/uaccess.h>
  18. #include <asm/tlbflush.h>
  19. #include "internal.h"
  20. void task_mem(struct seq_file *m, struct mm_struct *mm)
  21. {
  22. unsigned long data, text, lib, swap;
  23. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  24. /*
  25. * Note: to minimize their overhead, mm maintains hiwater_vm and
  26. * hiwater_rss only when about to *lower* total_vm or rss. Any
  27. * collector of these hiwater stats must therefore get total_vm
  28. * and rss too, which will usually be the higher. Barriers? not
  29. * worth the effort, such snapshots can always be inconsistent.
  30. */
  31. hiwater_vm = total_vm = mm->total_vm;
  32. if (hiwater_vm < mm->hiwater_vm)
  33. hiwater_vm = mm->hiwater_vm;
  34. hiwater_rss = total_rss = get_mm_rss(mm);
  35. if (hiwater_rss < mm->hiwater_rss)
  36. hiwater_rss = mm->hiwater_rss;
  37. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  38. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  39. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  40. swap = get_mm_counter(mm, MM_SWAPENTS);
  41. seq_printf(m,
  42. "VmPeak:\t%8lu kB\n"
  43. "VmSize:\t%8lu kB\n"
  44. "VmLck:\t%8lu kB\n"
  45. "VmPin:\t%8lu kB\n"
  46. "VmHWM:\t%8lu kB\n"
  47. "VmRSS:\t%8lu kB\n"
  48. "VmData:\t%8lu kB\n"
  49. "VmStk:\t%8lu kB\n"
  50. "VmExe:\t%8lu kB\n"
  51. "VmLib:\t%8lu kB\n"
  52. "VmPTE:\t%8lu kB\n"
  53. "VmSwap:\t%8lu kB\n",
  54. hiwater_vm << (PAGE_SHIFT-10),
  55. total_vm << (PAGE_SHIFT-10),
  56. mm->locked_vm << (PAGE_SHIFT-10),
  57. mm->pinned_vm << (PAGE_SHIFT-10),
  58. hiwater_rss << (PAGE_SHIFT-10),
  59. total_rss << (PAGE_SHIFT-10),
  60. data << (PAGE_SHIFT-10),
  61. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  62. (PTRS_PER_PTE * sizeof(pte_t) *
  63. atomic_long_read(&mm->nr_ptes)) >> 10,
  64. swap << (PAGE_SHIFT-10));
  65. }
  66. unsigned long task_vsize(struct mm_struct *mm)
  67. {
  68. return PAGE_SIZE * mm->total_vm;
  69. }
  70. unsigned long task_statm(struct mm_struct *mm,
  71. unsigned long *shared, unsigned long *text,
  72. unsigned long *data, unsigned long *resident)
  73. {
  74. *shared = get_mm_counter(mm, MM_FILEPAGES);
  75. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  76. >> PAGE_SHIFT;
  77. *data = mm->total_vm - mm->shared_vm;
  78. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  79. return mm->total_vm;
  80. }
  81. #ifdef CONFIG_NUMA
  82. /*
  83. * These functions are for numa_maps but called in generic **maps seq_file
  84. * ->start(), ->stop() ops.
  85. *
  86. * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
  87. * Each mempolicy object is controlled by reference counting. The problem here
  88. * is how to avoid accessing dead mempolicy object.
  89. *
  90. * Because we're holding mmap_sem while reading seq_file, it's safe to access
  91. * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
  92. *
  93. * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
  94. * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
  95. * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
  96. * gurantee the task never exits under us. But taking task_lock() around
  97. * get_vma_plicy() causes lock order problem.
  98. *
  99. * To access task->mempolicy without lock, we hold a reference count of an
  100. * object pointed by task->mempolicy and remember it. This will guarantee
  101. * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
  102. */
  103. static void hold_task_mempolicy(struct proc_maps_private *priv)
  104. {
  105. struct task_struct *task = priv->task;
  106. task_lock(task);
  107. priv->task_mempolicy = task->mempolicy;
  108. mpol_get(priv->task_mempolicy);
  109. task_unlock(task);
  110. }
  111. static void release_task_mempolicy(struct proc_maps_private *priv)
  112. {
  113. mpol_put(priv->task_mempolicy);
  114. }
  115. #else
  116. static void hold_task_mempolicy(struct proc_maps_private *priv)
  117. {
  118. }
  119. static void release_task_mempolicy(struct proc_maps_private *priv)
  120. {
  121. }
  122. #endif
  123. static void vma_stop(struct proc_maps_private *priv)
  124. {
  125. struct mm_struct *mm = priv->mm;
  126. release_task_mempolicy(priv);
  127. up_read(&mm->mmap_sem);
  128. mmput(mm);
  129. }
  130. static struct vm_area_struct *
  131. m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
  132. {
  133. if (vma == priv->tail_vma)
  134. return NULL;
  135. return vma->vm_next ?: priv->tail_vma;
  136. }
  137. static void *m_start(struct seq_file *m, loff_t *ppos)
  138. {
  139. struct proc_maps_private *priv = m->private;
  140. struct mm_struct *mm;
  141. struct vm_area_struct *vma;
  142. unsigned int pos = *ppos;
  143. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  144. if (!priv->task)
  145. return ERR_PTR(-ESRCH);
  146. mm = priv->mm;
  147. if (!mm || !atomic_inc_not_zero(&mm->mm_users))
  148. return NULL;
  149. down_read(&mm->mmap_sem);
  150. hold_task_mempolicy(priv);
  151. priv->tail_vma = get_gate_vma(mm);
  152. if (pos < mm->map_count) {
  153. for (vma = mm->mmap; pos; pos--)
  154. vma = vma->vm_next;
  155. return vma;
  156. }
  157. if (pos == mm->map_count && priv->tail_vma)
  158. return priv->tail_vma;
  159. vma_stop(priv);
  160. return NULL;
  161. }
  162. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  163. {
  164. struct proc_maps_private *priv = m->private;
  165. struct vm_area_struct *next;
  166. (*pos)++;
  167. next = m_next_vma(priv, v);
  168. if (!next)
  169. vma_stop(priv);
  170. return next;
  171. }
  172. static void m_stop(struct seq_file *m, void *v)
  173. {
  174. struct proc_maps_private *priv = m->private;
  175. if (!IS_ERR_OR_NULL(v))
  176. vma_stop(priv);
  177. if (priv->task) {
  178. put_task_struct(priv->task);
  179. priv->task = NULL;
  180. }
  181. }
  182. static int proc_maps_open(struct inode *inode, struct file *file,
  183. const struct seq_operations *ops, int psize)
  184. {
  185. struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
  186. if (!priv)
  187. return -ENOMEM;
  188. priv->pid = proc_pid(inode);
  189. priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
  190. if (IS_ERR(priv->mm)) {
  191. int err = PTR_ERR(priv->mm);
  192. seq_release_private(inode, file);
  193. return err;
  194. }
  195. return 0;
  196. }
  197. static int proc_map_release(struct inode *inode, struct file *file)
  198. {
  199. struct seq_file *seq = file->private_data;
  200. struct proc_maps_private *priv = seq->private;
  201. if (priv->mm)
  202. mmdrop(priv->mm);
  203. return seq_release_private(inode, file);
  204. }
  205. static int do_maps_open(struct inode *inode, struct file *file,
  206. const struct seq_operations *ops)
  207. {
  208. return proc_maps_open(inode, file, ops,
  209. sizeof(struct proc_maps_private));
  210. }
  211. static void
  212. show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
  213. {
  214. struct mm_struct *mm = vma->vm_mm;
  215. struct file *file = vma->vm_file;
  216. struct proc_maps_private *priv = m->private;
  217. struct task_struct *task = priv->task;
  218. vm_flags_t flags = vma->vm_flags;
  219. unsigned long ino = 0;
  220. unsigned long long pgoff = 0;
  221. unsigned long start, end;
  222. dev_t dev = 0;
  223. const char *name = NULL;
  224. if (file) {
  225. struct inode *inode = file_inode(vma->vm_file);
  226. dev = inode->i_sb->s_dev;
  227. ino = inode->i_ino;
  228. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  229. }
  230. /* We don't show the stack guard page in /proc/maps */
  231. start = vma->vm_start;
  232. if (stack_guard_page_start(vma, start))
  233. start += PAGE_SIZE;
  234. end = vma->vm_end;
  235. if (stack_guard_page_end(vma, end))
  236. end -= PAGE_SIZE;
  237. seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
  238. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
  239. start,
  240. end,
  241. flags & VM_READ ? 'r' : '-',
  242. flags & VM_WRITE ? 'w' : '-',
  243. flags & VM_EXEC ? 'x' : '-',
  244. flags & VM_MAYSHARE ? 's' : 'p',
  245. pgoff,
  246. MAJOR(dev), MINOR(dev), ino);
  247. /*
  248. * Print the dentry name for named mappings, and a
  249. * special [heap] marker for the heap:
  250. */
  251. if (file) {
  252. seq_pad(m, ' ');
  253. seq_path(m, &file->f_path, "\n");
  254. goto done;
  255. }
  256. if (vma->vm_ops && vma->vm_ops->name) {
  257. name = vma->vm_ops->name(vma);
  258. if (name)
  259. goto done;
  260. }
  261. name = arch_vma_name(vma);
  262. if (!name) {
  263. pid_t tid;
  264. if (!mm) {
  265. name = "[vdso]";
  266. goto done;
  267. }
  268. if (vma->vm_start <= mm->brk &&
  269. vma->vm_end >= mm->start_brk) {
  270. name = "[heap]";
  271. goto done;
  272. }
  273. tid = vm_is_stack(task, vma, is_pid);
  274. if (tid != 0) {
  275. /*
  276. * Thread stack in /proc/PID/task/TID/maps or
  277. * the main process stack.
  278. */
  279. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  280. vma->vm_end >= mm->start_stack)) {
  281. name = "[stack]";
  282. } else {
  283. /* Thread stack in /proc/PID/maps */
  284. seq_pad(m, ' ');
  285. seq_printf(m, "[stack:%d]", tid);
  286. }
  287. }
  288. }
  289. done:
  290. if (name) {
  291. seq_pad(m, ' ');
  292. seq_puts(m, name);
  293. }
  294. seq_putc(m, '\n');
  295. }
  296. static int show_map(struct seq_file *m, void *v, int is_pid)
  297. {
  298. show_map_vma(m, v, is_pid);
  299. return 0;
  300. }
  301. static int show_pid_map(struct seq_file *m, void *v)
  302. {
  303. return show_map(m, v, 1);
  304. }
  305. static int show_tid_map(struct seq_file *m, void *v)
  306. {
  307. return show_map(m, v, 0);
  308. }
  309. static const struct seq_operations proc_pid_maps_op = {
  310. .start = m_start,
  311. .next = m_next,
  312. .stop = m_stop,
  313. .show = show_pid_map
  314. };
  315. static const struct seq_operations proc_tid_maps_op = {
  316. .start = m_start,
  317. .next = m_next,
  318. .stop = m_stop,
  319. .show = show_tid_map
  320. };
  321. static int pid_maps_open(struct inode *inode, struct file *file)
  322. {
  323. return do_maps_open(inode, file, &proc_pid_maps_op);
  324. }
  325. static int tid_maps_open(struct inode *inode, struct file *file)
  326. {
  327. return do_maps_open(inode, file, &proc_tid_maps_op);
  328. }
  329. const struct file_operations proc_pid_maps_operations = {
  330. .open = pid_maps_open,
  331. .read = seq_read,
  332. .llseek = seq_lseek,
  333. .release = proc_map_release,
  334. };
  335. const struct file_operations proc_tid_maps_operations = {
  336. .open = tid_maps_open,
  337. .read = seq_read,
  338. .llseek = seq_lseek,
  339. .release = proc_map_release,
  340. };
  341. /*
  342. * Proportional Set Size(PSS): my share of RSS.
  343. *
  344. * PSS of a process is the count of pages it has in memory, where each
  345. * page is divided by the number of processes sharing it. So if a
  346. * process has 1000 pages all to itself, and 1000 shared with one other
  347. * process, its PSS will be 1500.
  348. *
  349. * To keep (accumulated) division errors low, we adopt a 64bit
  350. * fixed-point pss counter to minimize division errors. So (pss >>
  351. * PSS_SHIFT) would be the real byte count.
  352. *
  353. * A shift of 12 before division means (assuming 4K page size):
  354. * - 1M 3-user-pages add up to 8KB errors;
  355. * - supports mapcount up to 2^24, or 16M;
  356. * - supports PSS up to 2^52 bytes, or 4PB.
  357. */
  358. #define PSS_SHIFT 12
  359. #ifdef CONFIG_PROC_PAGE_MONITOR
  360. struct mem_size_stats {
  361. struct vm_area_struct *vma;
  362. unsigned long resident;
  363. unsigned long shared_clean;
  364. unsigned long shared_dirty;
  365. unsigned long private_clean;
  366. unsigned long private_dirty;
  367. unsigned long referenced;
  368. unsigned long anonymous;
  369. unsigned long anonymous_thp;
  370. unsigned long swap;
  371. unsigned long nonlinear;
  372. u64 pss;
  373. };
  374. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  375. unsigned long ptent_size, struct mm_walk *walk)
  376. {
  377. struct mem_size_stats *mss = walk->private;
  378. struct vm_area_struct *vma = mss->vma;
  379. pgoff_t pgoff = linear_page_index(vma, addr);
  380. struct page *page = NULL;
  381. int mapcount;
  382. if (pte_present(ptent)) {
  383. page = vm_normal_page(vma, addr, ptent);
  384. } else if (is_swap_pte(ptent)) {
  385. swp_entry_t swpent = pte_to_swp_entry(ptent);
  386. if (!non_swap_entry(swpent))
  387. mss->swap += ptent_size;
  388. else if (is_migration_entry(swpent))
  389. page = migration_entry_to_page(swpent);
  390. } else if (pte_file(ptent)) {
  391. if (pte_to_pgoff(ptent) != pgoff)
  392. mss->nonlinear += ptent_size;
  393. }
  394. if (!page)
  395. return;
  396. if (PageAnon(page))
  397. mss->anonymous += ptent_size;
  398. if (page->index != pgoff)
  399. mss->nonlinear += ptent_size;
  400. mss->resident += ptent_size;
  401. /* Accumulate the size in pages that have been accessed. */
  402. if (pte_young(ptent) || PageReferenced(page))
  403. mss->referenced += ptent_size;
  404. mapcount = page_mapcount(page);
  405. if (mapcount >= 2) {
  406. if (pte_dirty(ptent) || PageDirty(page))
  407. mss->shared_dirty += ptent_size;
  408. else
  409. mss->shared_clean += ptent_size;
  410. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  411. } else {
  412. if (pte_dirty(ptent) || PageDirty(page))
  413. mss->private_dirty += ptent_size;
  414. else
  415. mss->private_clean += ptent_size;
  416. mss->pss += (ptent_size << PSS_SHIFT);
  417. }
  418. }
  419. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  420. struct mm_walk *walk)
  421. {
  422. struct mem_size_stats *mss = walk->private;
  423. struct vm_area_struct *vma = mss->vma;
  424. pte_t *pte;
  425. spinlock_t *ptl;
  426. if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  427. smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
  428. spin_unlock(ptl);
  429. mss->anonymous_thp += HPAGE_PMD_SIZE;
  430. return 0;
  431. }
  432. if (pmd_trans_unstable(pmd))
  433. return 0;
  434. /*
  435. * The mmap_sem held all the way back in m_start() is what
  436. * keeps khugepaged out of here and from collapsing things
  437. * in here.
  438. */
  439. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  440. for (; addr != end; pte++, addr += PAGE_SIZE)
  441. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  442. pte_unmap_unlock(pte - 1, ptl);
  443. cond_resched();
  444. return 0;
  445. }
  446. static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
  447. {
  448. /*
  449. * Don't forget to update Documentation/ on changes.
  450. */
  451. static const char mnemonics[BITS_PER_LONG][2] = {
  452. /*
  453. * In case if we meet a flag we don't know about.
  454. */
  455. [0 ... (BITS_PER_LONG-1)] = "??",
  456. [ilog2(VM_READ)] = "rd",
  457. [ilog2(VM_WRITE)] = "wr",
  458. [ilog2(VM_EXEC)] = "ex",
  459. [ilog2(VM_SHARED)] = "sh",
  460. [ilog2(VM_MAYREAD)] = "mr",
  461. [ilog2(VM_MAYWRITE)] = "mw",
  462. [ilog2(VM_MAYEXEC)] = "me",
  463. [ilog2(VM_MAYSHARE)] = "ms",
  464. [ilog2(VM_GROWSDOWN)] = "gd",
  465. [ilog2(VM_PFNMAP)] = "pf",
  466. [ilog2(VM_DENYWRITE)] = "dw",
  467. [ilog2(VM_LOCKED)] = "lo",
  468. [ilog2(VM_IO)] = "io",
  469. [ilog2(VM_SEQ_READ)] = "sr",
  470. [ilog2(VM_RAND_READ)] = "rr",
  471. [ilog2(VM_DONTCOPY)] = "dc",
  472. [ilog2(VM_DONTEXPAND)] = "de",
  473. [ilog2(VM_ACCOUNT)] = "ac",
  474. [ilog2(VM_NORESERVE)] = "nr",
  475. [ilog2(VM_HUGETLB)] = "ht",
  476. [ilog2(VM_NONLINEAR)] = "nl",
  477. [ilog2(VM_ARCH_1)] = "ar",
  478. [ilog2(VM_DONTDUMP)] = "dd",
  479. #ifdef CONFIG_MEM_SOFT_DIRTY
  480. [ilog2(VM_SOFTDIRTY)] = "sd",
  481. #endif
  482. [ilog2(VM_MIXEDMAP)] = "mm",
  483. [ilog2(VM_HUGEPAGE)] = "hg",
  484. [ilog2(VM_NOHUGEPAGE)] = "nh",
  485. [ilog2(VM_MERGEABLE)] = "mg",
  486. };
  487. size_t i;
  488. seq_puts(m, "VmFlags: ");
  489. for (i = 0; i < BITS_PER_LONG; i++) {
  490. if (vma->vm_flags & (1UL << i)) {
  491. seq_printf(m, "%c%c ",
  492. mnemonics[i][0], mnemonics[i][1]);
  493. }
  494. }
  495. seq_putc(m, '\n');
  496. }
  497. static int show_smap(struct seq_file *m, void *v, int is_pid)
  498. {
  499. struct vm_area_struct *vma = v;
  500. struct mem_size_stats mss;
  501. struct mm_walk smaps_walk = {
  502. .pmd_entry = smaps_pte_range,
  503. .mm = vma->vm_mm,
  504. .private = &mss,
  505. };
  506. memset(&mss, 0, sizeof mss);
  507. mss.vma = vma;
  508. /* mmap_sem is held in m_start */
  509. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  510. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  511. show_map_vma(m, vma, is_pid);
  512. seq_printf(m,
  513. "Size: %8lu kB\n"
  514. "Rss: %8lu kB\n"
  515. "Pss: %8lu kB\n"
  516. "Shared_Clean: %8lu kB\n"
  517. "Shared_Dirty: %8lu kB\n"
  518. "Private_Clean: %8lu kB\n"
  519. "Private_Dirty: %8lu kB\n"
  520. "Referenced: %8lu kB\n"
  521. "Anonymous: %8lu kB\n"
  522. "AnonHugePages: %8lu kB\n"
  523. "Swap: %8lu kB\n"
  524. "KernelPageSize: %8lu kB\n"
  525. "MMUPageSize: %8lu kB\n"
  526. "Locked: %8lu kB\n",
  527. (vma->vm_end - vma->vm_start) >> 10,
  528. mss.resident >> 10,
  529. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  530. mss.shared_clean >> 10,
  531. mss.shared_dirty >> 10,
  532. mss.private_clean >> 10,
  533. mss.private_dirty >> 10,
  534. mss.referenced >> 10,
  535. mss.anonymous >> 10,
  536. mss.anonymous_thp >> 10,
  537. mss.swap >> 10,
  538. vma_kernel_pagesize(vma) >> 10,
  539. vma_mmu_pagesize(vma) >> 10,
  540. (vma->vm_flags & VM_LOCKED) ?
  541. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  542. if (vma->vm_flags & VM_NONLINEAR)
  543. seq_printf(m, "Nonlinear: %8lu kB\n",
  544. mss.nonlinear >> 10);
  545. show_smap_vma_flags(m, vma);
  546. return 0;
  547. }
  548. static int show_pid_smap(struct seq_file *m, void *v)
  549. {
  550. return show_smap(m, v, 1);
  551. }
  552. static int show_tid_smap(struct seq_file *m, void *v)
  553. {
  554. return show_smap(m, v, 0);
  555. }
  556. static const struct seq_operations proc_pid_smaps_op = {
  557. .start = m_start,
  558. .next = m_next,
  559. .stop = m_stop,
  560. .show = show_pid_smap
  561. };
  562. static const struct seq_operations proc_tid_smaps_op = {
  563. .start = m_start,
  564. .next = m_next,
  565. .stop = m_stop,
  566. .show = show_tid_smap
  567. };
  568. static int pid_smaps_open(struct inode *inode, struct file *file)
  569. {
  570. return do_maps_open(inode, file, &proc_pid_smaps_op);
  571. }
  572. static int tid_smaps_open(struct inode *inode, struct file *file)
  573. {
  574. return do_maps_open(inode, file, &proc_tid_smaps_op);
  575. }
  576. const struct file_operations proc_pid_smaps_operations = {
  577. .open = pid_smaps_open,
  578. .read = seq_read,
  579. .llseek = seq_lseek,
  580. .release = proc_map_release,
  581. };
  582. const struct file_operations proc_tid_smaps_operations = {
  583. .open = tid_smaps_open,
  584. .read = seq_read,
  585. .llseek = seq_lseek,
  586. .release = proc_map_release,
  587. };
  588. /*
  589. * We do not want to have constant page-shift bits sitting in
  590. * pagemap entries and are about to reuse them some time soon.
  591. *
  592. * Here's the "migration strategy":
  593. * 1. when the system boots these bits remain what they are,
  594. * but a warning about future change is printed in log;
  595. * 2. once anyone clears soft-dirty bits via clear_refs file,
  596. * these flag is set to denote, that user is aware of the
  597. * new API and those page-shift bits change their meaning.
  598. * The respective warning is printed in dmesg;
  599. * 3. In a couple of releases we will remove all the mentions
  600. * of page-shift in pagemap entries.
  601. */
  602. static bool soft_dirty_cleared __read_mostly;
  603. enum clear_refs_types {
  604. CLEAR_REFS_ALL = 1,
  605. CLEAR_REFS_ANON,
  606. CLEAR_REFS_MAPPED,
  607. CLEAR_REFS_SOFT_DIRTY,
  608. CLEAR_REFS_LAST,
  609. };
  610. struct clear_refs_private {
  611. struct vm_area_struct *vma;
  612. enum clear_refs_types type;
  613. };
  614. static inline void clear_soft_dirty(struct vm_area_struct *vma,
  615. unsigned long addr, pte_t *pte)
  616. {
  617. #ifdef CONFIG_MEM_SOFT_DIRTY
  618. /*
  619. * The soft-dirty tracker uses #PF-s to catch writes
  620. * to pages, so write-protect the pte as well. See the
  621. * Documentation/vm/soft-dirty.txt for full description
  622. * of how soft-dirty works.
  623. */
  624. pte_t ptent = *pte;
  625. if (pte_present(ptent)) {
  626. ptent = pte_wrprotect(ptent);
  627. ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
  628. } else if (is_swap_pte(ptent)) {
  629. ptent = pte_swp_clear_soft_dirty(ptent);
  630. } else if (pte_file(ptent)) {
  631. ptent = pte_file_clear_soft_dirty(ptent);
  632. }
  633. set_pte_at(vma->vm_mm, addr, pte, ptent);
  634. #endif
  635. }
  636. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  637. unsigned long end, struct mm_walk *walk)
  638. {
  639. struct clear_refs_private *cp = walk->private;
  640. struct vm_area_struct *vma = cp->vma;
  641. pte_t *pte, ptent;
  642. spinlock_t *ptl;
  643. struct page *page;
  644. split_huge_page_pmd(vma, addr, pmd);
  645. if (pmd_trans_unstable(pmd))
  646. return 0;
  647. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  648. for (; addr != end; pte++, addr += PAGE_SIZE) {
  649. ptent = *pte;
  650. if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
  651. clear_soft_dirty(vma, addr, pte);
  652. continue;
  653. }
  654. if (!pte_present(ptent))
  655. continue;
  656. page = vm_normal_page(vma, addr, ptent);
  657. if (!page)
  658. continue;
  659. /* Clear accessed and referenced bits. */
  660. ptep_test_and_clear_young(vma, addr, pte);
  661. ClearPageReferenced(page);
  662. }
  663. pte_unmap_unlock(pte - 1, ptl);
  664. cond_resched();
  665. return 0;
  666. }
  667. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  668. size_t count, loff_t *ppos)
  669. {
  670. struct task_struct *task;
  671. char buffer[PROC_NUMBUF];
  672. struct mm_struct *mm;
  673. struct vm_area_struct *vma;
  674. enum clear_refs_types type;
  675. int itype;
  676. int rv;
  677. memset(buffer, 0, sizeof(buffer));
  678. if (count > sizeof(buffer) - 1)
  679. count = sizeof(buffer) - 1;
  680. if (copy_from_user(buffer, buf, count))
  681. return -EFAULT;
  682. rv = kstrtoint(strstrip(buffer), 10, &itype);
  683. if (rv < 0)
  684. return rv;
  685. type = (enum clear_refs_types)itype;
  686. if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
  687. return -EINVAL;
  688. if (type == CLEAR_REFS_SOFT_DIRTY) {
  689. soft_dirty_cleared = true;
  690. pr_warn_once("The pagemap bits 55-60 has changed their meaning!"
  691. " See the linux/Documentation/vm/pagemap.txt for "
  692. "details.\n");
  693. }
  694. task = get_proc_task(file_inode(file));
  695. if (!task)
  696. return -ESRCH;
  697. mm = get_task_mm(task);
  698. if (mm) {
  699. struct clear_refs_private cp = {
  700. .type = type,
  701. };
  702. struct mm_walk clear_refs_walk = {
  703. .pmd_entry = clear_refs_pte_range,
  704. .mm = mm,
  705. .private = &cp,
  706. };
  707. down_read(&mm->mmap_sem);
  708. if (type == CLEAR_REFS_SOFT_DIRTY)
  709. mmu_notifier_invalidate_range_start(mm, 0, -1);
  710. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  711. cp.vma = vma;
  712. if (is_vm_hugetlb_page(vma))
  713. continue;
  714. /*
  715. * Writing 1 to /proc/pid/clear_refs affects all pages.
  716. *
  717. * Writing 2 to /proc/pid/clear_refs only affects
  718. * Anonymous pages.
  719. *
  720. * Writing 3 to /proc/pid/clear_refs only affects file
  721. * mapped pages.
  722. *
  723. * Writing 4 to /proc/pid/clear_refs affects all pages.
  724. */
  725. if (type == CLEAR_REFS_ANON && vma->vm_file)
  726. continue;
  727. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  728. continue;
  729. if (type == CLEAR_REFS_SOFT_DIRTY) {
  730. if (vma->vm_flags & VM_SOFTDIRTY)
  731. vma->vm_flags &= ~VM_SOFTDIRTY;
  732. }
  733. walk_page_range(vma->vm_start, vma->vm_end,
  734. &clear_refs_walk);
  735. }
  736. if (type == CLEAR_REFS_SOFT_DIRTY)
  737. mmu_notifier_invalidate_range_end(mm, 0, -1);
  738. flush_tlb_mm(mm);
  739. up_read(&mm->mmap_sem);
  740. mmput(mm);
  741. }
  742. put_task_struct(task);
  743. return count;
  744. }
  745. const struct file_operations proc_clear_refs_operations = {
  746. .write = clear_refs_write,
  747. .llseek = noop_llseek,
  748. };
  749. typedef struct {
  750. u64 pme;
  751. } pagemap_entry_t;
  752. struct pagemapread {
  753. int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
  754. pagemap_entry_t *buffer;
  755. bool v2;
  756. };
  757. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  758. #define PAGEMAP_WALK_MASK (PMD_MASK)
  759. #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
  760. #define PM_STATUS_BITS 3
  761. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  762. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  763. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  764. #define PM_PSHIFT_BITS 6
  765. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  766. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  767. #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  768. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  769. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  770. /* in "new" pagemap pshift bits are occupied with more status bits */
  771. #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
  772. #define __PM_SOFT_DIRTY (1LL)
  773. #define PM_PRESENT PM_STATUS(4LL)
  774. #define PM_SWAP PM_STATUS(2LL)
  775. #define PM_FILE PM_STATUS(1LL)
  776. #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
  777. #define PM_END_OF_BUFFER 1
  778. static inline pagemap_entry_t make_pme(u64 val)
  779. {
  780. return (pagemap_entry_t) { .pme = val };
  781. }
  782. static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
  783. struct pagemapread *pm)
  784. {
  785. pm->buffer[pm->pos++] = *pme;
  786. if (pm->pos >= pm->len)
  787. return PM_END_OF_BUFFER;
  788. return 0;
  789. }
  790. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  791. struct mm_walk *walk)
  792. {
  793. struct pagemapread *pm = walk->private;
  794. unsigned long addr = start;
  795. int err = 0;
  796. while (addr < end) {
  797. struct vm_area_struct *vma = find_vma(walk->mm, addr);
  798. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  799. /* End of address space hole, which we mark as non-present. */
  800. unsigned long hole_end;
  801. if (vma)
  802. hole_end = min(end, vma->vm_start);
  803. else
  804. hole_end = end;
  805. for (; addr < hole_end; addr += PAGE_SIZE) {
  806. err = add_to_pagemap(addr, &pme, pm);
  807. if (err)
  808. goto out;
  809. }
  810. if (!vma)
  811. break;
  812. /* Addresses in the VMA. */
  813. if (vma->vm_flags & VM_SOFTDIRTY)
  814. pme.pme |= PM_STATUS2(pm->v2, __PM_SOFT_DIRTY);
  815. for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
  816. err = add_to_pagemap(addr, &pme, pm);
  817. if (err)
  818. goto out;
  819. }
  820. }
  821. out:
  822. return err;
  823. }
  824. static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  825. struct vm_area_struct *vma, unsigned long addr, pte_t pte)
  826. {
  827. u64 frame, flags;
  828. struct page *page = NULL;
  829. int flags2 = 0;
  830. if (pte_present(pte)) {
  831. frame = pte_pfn(pte);
  832. flags = PM_PRESENT;
  833. page = vm_normal_page(vma, addr, pte);
  834. if (pte_soft_dirty(pte))
  835. flags2 |= __PM_SOFT_DIRTY;
  836. } else if (is_swap_pte(pte)) {
  837. swp_entry_t entry;
  838. if (pte_swp_soft_dirty(pte))
  839. flags2 |= __PM_SOFT_DIRTY;
  840. entry = pte_to_swp_entry(pte);
  841. frame = swp_type(entry) |
  842. (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
  843. flags = PM_SWAP;
  844. if (is_migration_entry(entry))
  845. page = migration_entry_to_page(entry);
  846. } else {
  847. if (vma->vm_flags & VM_SOFTDIRTY)
  848. flags2 |= __PM_SOFT_DIRTY;
  849. *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
  850. return;
  851. }
  852. if (page && !PageAnon(page))
  853. flags |= PM_FILE;
  854. if ((vma->vm_flags & VM_SOFTDIRTY))
  855. flags2 |= __PM_SOFT_DIRTY;
  856. *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
  857. }
  858. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  859. static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  860. pmd_t pmd, int offset, int pmd_flags2)
  861. {
  862. /*
  863. * Currently pmd for thp is always present because thp can not be
  864. * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
  865. * This if-check is just to prepare for future implementation.
  866. */
  867. if (pmd_present(pmd))
  868. *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
  869. | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
  870. else
  871. *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
  872. }
  873. #else
  874. static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  875. pmd_t pmd, int offset, int pmd_flags2)
  876. {
  877. }
  878. #endif
  879. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  880. struct mm_walk *walk)
  881. {
  882. struct vm_area_struct *vma;
  883. struct pagemapread *pm = walk->private;
  884. spinlock_t *ptl;
  885. pte_t *pte;
  886. int err = 0;
  887. pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
  888. /* find the first VMA at or above 'addr' */
  889. vma = find_vma(walk->mm, addr);
  890. if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
  891. int pmd_flags2;
  892. if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
  893. pmd_flags2 = __PM_SOFT_DIRTY;
  894. else
  895. pmd_flags2 = 0;
  896. for (; addr != end; addr += PAGE_SIZE) {
  897. unsigned long offset;
  898. offset = (addr & ~PAGEMAP_WALK_MASK) >>
  899. PAGE_SHIFT;
  900. thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
  901. err = add_to_pagemap(addr, &pme, pm);
  902. if (err)
  903. break;
  904. }
  905. spin_unlock(ptl);
  906. return err;
  907. }
  908. if (pmd_trans_unstable(pmd))
  909. return 0;
  910. for (; addr != end; addr += PAGE_SIZE) {
  911. int flags2;
  912. /* check to see if we've left 'vma' behind
  913. * and need a new, higher one */
  914. if (vma && (addr >= vma->vm_end)) {
  915. vma = find_vma(walk->mm, addr);
  916. if (vma && (vma->vm_flags & VM_SOFTDIRTY))
  917. flags2 = __PM_SOFT_DIRTY;
  918. else
  919. flags2 = 0;
  920. pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
  921. }
  922. /* check that 'vma' actually covers this address,
  923. * and that it isn't a huge page vma */
  924. if (vma && (vma->vm_start <= addr) &&
  925. !is_vm_hugetlb_page(vma)) {
  926. pte = pte_offset_map(pmd, addr);
  927. pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
  928. /* unmap before userspace copy */
  929. pte_unmap(pte);
  930. }
  931. err = add_to_pagemap(addr, &pme, pm);
  932. if (err)
  933. return err;
  934. }
  935. cond_resched();
  936. return err;
  937. }
  938. #ifdef CONFIG_HUGETLB_PAGE
  939. static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
  940. pte_t pte, int offset, int flags2)
  941. {
  942. if (pte_present(pte))
  943. *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
  944. PM_STATUS2(pm->v2, flags2) |
  945. PM_PRESENT);
  946. else
  947. *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
  948. PM_STATUS2(pm->v2, flags2));
  949. }
  950. /* This function walks within one hugetlb entry in the single call */
  951. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  952. unsigned long addr, unsigned long end,
  953. struct mm_walk *walk)
  954. {
  955. struct pagemapread *pm = walk->private;
  956. struct vm_area_struct *vma;
  957. int err = 0;
  958. int flags2;
  959. pagemap_entry_t pme;
  960. vma = find_vma(walk->mm, addr);
  961. WARN_ON_ONCE(!vma);
  962. if (vma && (vma->vm_flags & VM_SOFTDIRTY))
  963. flags2 = __PM_SOFT_DIRTY;
  964. else
  965. flags2 = 0;
  966. for (; addr != end; addr += PAGE_SIZE) {
  967. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  968. huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
  969. err = add_to_pagemap(addr, &pme, pm);
  970. if (err)
  971. return err;
  972. }
  973. cond_resched();
  974. return err;
  975. }
  976. #endif /* HUGETLB_PAGE */
  977. /*
  978. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  979. *
  980. * For each page in the address space, this file contains one 64-bit entry
  981. * consisting of the following:
  982. *
  983. * Bits 0-54 page frame number (PFN) if present
  984. * Bits 0-4 swap type if swapped
  985. * Bits 5-54 swap offset if swapped
  986. * Bits 55-60 page shift (page size = 1<<page shift)
  987. * Bit 61 page is file-page or shared-anon
  988. * Bit 62 page swapped
  989. * Bit 63 page present
  990. *
  991. * If the page is not present but in swap, then the PFN contains an
  992. * encoding of the swap file number and the page's offset into the
  993. * swap. Unmapped pages return a null PFN. This allows determining
  994. * precisely which pages are mapped (or in swap) and comparing mapped
  995. * pages between processes.
  996. *
  997. * Efficient users of this interface will use /proc/pid/maps to
  998. * determine which areas of memory are actually mapped and llseek to
  999. * skip over unmapped regions.
  1000. */
  1001. static ssize_t pagemap_read(struct file *file, char __user *buf,
  1002. size_t count, loff_t *ppos)
  1003. {
  1004. struct task_struct *task = get_proc_task(file_inode(file));
  1005. struct mm_struct *mm;
  1006. struct pagemapread pm;
  1007. int ret = -ESRCH;
  1008. struct mm_walk pagemap_walk = {};
  1009. unsigned long src;
  1010. unsigned long svpfn;
  1011. unsigned long start_vaddr;
  1012. unsigned long end_vaddr;
  1013. int copied = 0;
  1014. if (!task)
  1015. goto out;
  1016. ret = -EINVAL;
  1017. /* file position must be aligned */
  1018. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  1019. goto out_task;
  1020. ret = 0;
  1021. if (!count)
  1022. goto out_task;
  1023. pm.v2 = soft_dirty_cleared;
  1024. pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  1025. pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
  1026. ret = -ENOMEM;
  1027. if (!pm.buffer)
  1028. goto out_task;
  1029. mm = mm_access(task, PTRACE_MODE_READ);
  1030. ret = PTR_ERR(mm);
  1031. if (!mm || IS_ERR(mm))
  1032. goto out_free;
  1033. pagemap_walk.pmd_entry = pagemap_pte_range;
  1034. pagemap_walk.pte_hole = pagemap_pte_hole;
  1035. #ifdef CONFIG_HUGETLB_PAGE
  1036. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  1037. #endif
  1038. pagemap_walk.mm = mm;
  1039. pagemap_walk.private = &pm;
  1040. src = *ppos;
  1041. svpfn = src / PM_ENTRY_BYTES;
  1042. start_vaddr = svpfn << PAGE_SHIFT;
  1043. end_vaddr = TASK_SIZE_OF(task);
  1044. /* watch out for wraparound */
  1045. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  1046. start_vaddr = end_vaddr;
  1047. /*
  1048. * The odds are that this will stop walking way
  1049. * before end_vaddr, because the length of the
  1050. * user buffer is tracked in "pm", and the walk
  1051. * will stop when we hit the end of the buffer.
  1052. */
  1053. ret = 0;
  1054. while (count && (start_vaddr < end_vaddr)) {
  1055. int len;
  1056. unsigned long end;
  1057. pm.pos = 0;
  1058. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  1059. /* overflow ? */
  1060. if (end < start_vaddr || end > end_vaddr)
  1061. end = end_vaddr;
  1062. down_read(&mm->mmap_sem);
  1063. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  1064. up_read(&mm->mmap_sem);
  1065. start_vaddr = end;
  1066. len = min(count, PM_ENTRY_BYTES * pm.pos);
  1067. if (copy_to_user(buf, pm.buffer, len)) {
  1068. ret = -EFAULT;
  1069. goto out_mm;
  1070. }
  1071. copied += len;
  1072. buf += len;
  1073. count -= len;
  1074. }
  1075. *ppos += copied;
  1076. if (!ret || ret == PM_END_OF_BUFFER)
  1077. ret = copied;
  1078. out_mm:
  1079. mmput(mm);
  1080. out_free:
  1081. kfree(pm.buffer);
  1082. out_task:
  1083. put_task_struct(task);
  1084. out:
  1085. return ret;
  1086. }
  1087. static int pagemap_open(struct inode *inode, struct file *file)
  1088. {
  1089. pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
  1090. "to stop being page-shift some time soon. See the "
  1091. "linux/Documentation/vm/pagemap.txt for details.\n");
  1092. return 0;
  1093. }
  1094. const struct file_operations proc_pagemap_operations = {
  1095. .llseek = mem_lseek, /* borrow this */
  1096. .read = pagemap_read,
  1097. .open = pagemap_open,
  1098. };
  1099. #endif /* CONFIG_PROC_PAGE_MONITOR */
  1100. #ifdef CONFIG_NUMA
  1101. struct numa_maps {
  1102. struct vm_area_struct *vma;
  1103. unsigned long pages;
  1104. unsigned long anon;
  1105. unsigned long active;
  1106. unsigned long writeback;
  1107. unsigned long mapcount_max;
  1108. unsigned long dirty;
  1109. unsigned long swapcache;
  1110. unsigned long node[MAX_NUMNODES];
  1111. };
  1112. struct numa_maps_private {
  1113. struct proc_maps_private proc_maps;
  1114. struct numa_maps md;
  1115. };
  1116. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  1117. unsigned long nr_pages)
  1118. {
  1119. int count = page_mapcount(page);
  1120. md->pages += nr_pages;
  1121. if (pte_dirty || PageDirty(page))
  1122. md->dirty += nr_pages;
  1123. if (PageSwapCache(page))
  1124. md->swapcache += nr_pages;
  1125. if (PageActive(page) || PageUnevictable(page))
  1126. md->active += nr_pages;
  1127. if (PageWriteback(page))
  1128. md->writeback += nr_pages;
  1129. if (PageAnon(page))
  1130. md->anon += nr_pages;
  1131. if (count > md->mapcount_max)
  1132. md->mapcount_max = count;
  1133. md->node[page_to_nid(page)] += nr_pages;
  1134. }
  1135. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  1136. unsigned long addr)
  1137. {
  1138. struct page *page;
  1139. int nid;
  1140. if (!pte_present(pte))
  1141. return NULL;
  1142. page = vm_normal_page(vma, addr, pte);
  1143. if (!page)
  1144. return NULL;
  1145. if (PageReserved(page))
  1146. return NULL;
  1147. nid = page_to_nid(page);
  1148. if (!node_isset(nid, node_states[N_MEMORY]))
  1149. return NULL;
  1150. return page;
  1151. }
  1152. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  1153. unsigned long end, struct mm_walk *walk)
  1154. {
  1155. struct numa_maps *md;
  1156. spinlock_t *ptl;
  1157. pte_t *orig_pte;
  1158. pte_t *pte;
  1159. md = walk->private;
  1160. if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
  1161. pte_t huge_pte = *(pte_t *)pmd;
  1162. struct page *page;
  1163. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  1164. if (page)
  1165. gather_stats(page, md, pte_dirty(huge_pte),
  1166. HPAGE_PMD_SIZE/PAGE_SIZE);
  1167. spin_unlock(ptl);
  1168. return 0;
  1169. }
  1170. if (pmd_trans_unstable(pmd))
  1171. return 0;
  1172. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  1173. do {
  1174. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  1175. if (!page)
  1176. continue;
  1177. gather_stats(page, md, pte_dirty(*pte), 1);
  1178. } while (pte++, addr += PAGE_SIZE, addr != end);
  1179. pte_unmap_unlock(orig_pte, ptl);
  1180. return 0;
  1181. }
  1182. #ifdef CONFIG_HUGETLB_PAGE
  1183. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1184. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1185. {
  1186. struct numa_maps *md;
  1187. struct page *page;
  1188. if (!pte_present(*pte))
  1189. return 0;
  1190. page = pte_page(*pte);
  1191. if (!page)
  1192. return 0;
  1193. md = walk->private;
  1194. gather_stats(page, md, pte_dirty(*pte), 1);
  1195. return 0;
  1196. }
  1197. #else
  1198. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  1199. unsigned long addr, unsigned long end, struct mm_walk *walk)
  1200. {
  1201. return 0;
  1202. }
  1203. #endif
  1204. /*
  1205. * Display pages allocated per node and memory policy via /proc.
  1206. */
  1207. static int show_numa_map(struct seq_file *m, void *v, int is_pid)
  1208. {
  1209. struct numa_maps_private *numa_priv = m->private;
  1210. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  1211. struct vm_area_struct *vma = v;
  1212. struct numa_maps *md = &numa_priv->md;
  1213. struct file *file = vma->vm_file;
  1214. struct task_struct *task = proc_priv->task;
  1215. struct mm_struct *mm = vma->vm_mm;
  1216. struct mm_walk walk = {};
  1217. struct mempolicy *pol;
  1218. char buffer[64];
  1219. int nid;
  1220. if (!mm)
  1221. return 0;
  1222. /* Ensure we start with an empty set of numa_maps statistics. */
  1223. memset(md, 0, sizeof(*md));
  1224. md->vma = vma;
  1225. walk.hugetlb_entry = gather_hugetbl_stats;
  1226. walk.pmd_entry = gather_pte_stats;
  1227. walk.private = md;
  1228. walk.mm = mm;
  1229. pol = get_vma_policy(task, vma, vma->vm_start);
  1230. mpol_to_str(buffer, sizeof(buffer), pol);
  1231. mpol_cond_put(pol);
  1232. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  1233. if (file) {
  1234. seq_puts(m, " file=");
  1235. seq_path(m, &file->f_path, "\n\t= ");
  1236. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  1237. seq_puts(m, " heap");
  1238. } else {
  1239. pid_t tid = vm_is_stack(task, vma, is_pid);
  1240. if (tid != 0) {
  1241. /*
  1242. * Thread stack in /proc/PID/task/TID/maps or
  1243. * the main process stack.
  1244. */
  1245. if (!is_pid || (vma->vm_start <= mm->start_stack &&
  1246. vma->vm_end >= mm->start_stack))
  1247. seq_puts(m, " stack");
  1248. else
  1249. seq_printf(m, " stack:%d", tid);
  1250. }
  1251. }
  1252. if (is_vm_hugetlb_page(vma))
  1253. seq_puts(m, " huge");
  1254. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  1255. if (!md->pages)
  1256. goto out;
  1257. if (md->anon)
  1258. seq_printf(m, " anon=%lu", md->anon);
  1259. if (md->dirty)
  1260. seq_printf(m, " dirty=%lu", md->dirty);
  1261. if (md->pages != md->anon && md->pages != md->dirty)
  1262. seq_printf(m, " mapped=%lu", md->pages);
  1263. if (md->mapcount_max > 1)
  1264. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  1265. if (md->swapcache)
  1266. seq_printf(m, " swapcache=%lu", md->swapcache);
  1267. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  1268. seq_printf(m, " active=%lu", md->active);
  1269. if (md->writeback)
  1270. seq_printf(m, " writeback=%lu", md->writeback);
  1271. for_each_node_state(nid, N_MEMORY)
  1272. if (md->node[nid])
  1273. seq_printf(m, " N%d=%lu", nid, md->node[nid]);
  1274. out:
  1275. seq_putc(m, '\n');
  1276. return 0;
  1277. }
  1278. static int show_pid_numa_map(struct seq_file *m, void *v)
  1279. {
  1280. return show_numa_map(m, v, 1);
  1281. }
  1282. static int show_tid_numa_map(struct seq_file *m, void *v)
  1283. {
  1284. return show_numa_map(m, v, 0);
  1285. }
  1286. static const struct seq_operations proc_pid_numa_maps_op = {
  1287. .start = m_start,
  1288. .next = m_next,
  1289. .stop = m_stop,
  1290. .show = show_pid_numa_map,
  1291. };
  1292. static const struct seq_operations proc_tid_numa_maps_op = {
  1293. .start = m_start,
  1294. .next = m_next,
  1295. .stop = m_stop,
  1296. .show = show_tid_numa_map,
  1297. };
  1298. static int numa_maps_open(struct inode *inode, struct file *file,
  1299. const struct seq_operations *ops)
  1300. {
  1301. return proc_maps_open(inode, file, ops,
  1302. sizeof(struct numa_maps_private));
  1303. }
  1304. static int pid_numa_maps_open(struct inode *inode, struct file *file)
  1305. {
  1306. return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
  1307. }
  1308. static int tid_numa_maps_open(struct inode *inode, struct file *file)
  1309. {
  1310. return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
  1311. }
  1312. const struct file_operations proc_pid_numa_maps_operations = {
  1313. .open = pid_numa_maps_open,
  1314. .read = seq_read,
  1315. .llseek = seq_lseek,
  1316. .release = proc_map_release,
  1317. };
  1318. const struct file_operations proc_tid_numa_maps_operations = {
  1319. .open = tid_numa_maps_open,
  1320. .read = seq_read,
  1321. .llseek = seq_lseek,
  1322. .release = proc_map_release,
  1323. };
  1324. #endif /* CONFIG_NUMA */