fork.c 52 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178
  1. /*
  2. * linux/kernel/fork.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * 'fork.c' contains the help-routines for the 'fork' system call
  8. * (see also entry.S and others).
  9. * Fork is rather simple, once you get the hang of it, but the memory
  10. * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  11. */
  12. #include <linux/slab.h>
  13. #include <linux/init.h>
  14. #include <linux/unistd.h>
  15. #include <linux/module.h>
  16. #include <linux/vmalloc.h>
  17. #include <linux/completion.h>
  18. #include <linux/personality.h>
  19. #include <linux/mempolicy.h>
  20. #include <linux/sem.h>
  21. #include <linux/file.h>
  22. #include <linux/fdtable.h>
  23. #include <linux/iocontext.h>
  24. #include <linux/key.h>
  25. #include <linux/binfmts.h>
  26. #include <linux/mman.h>
  27. #include <linux/mmu_notifier.h>
  28. #include <linux/fs.h>
  29. #include <linux/mm.h>
  30. #include <linux/vmacache.h>
  31. #include <linux/nsproxy.h>
  32. #include <linux/capability.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cgroup.h>
  35. #include <linux/security.h>
  36. #include <linux/hugetlb.h>
  37. #include <linux/seccomp.h>
  38. #include <linux/swap.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/jiffies.h>
  41. #include <linux/futex.h>
  42. #include <linux/compat.h>
  43. #include <linux/kthread.h>
  44. #include <linux/task_io_accounting_ops.h>
  45. #include <linux/rcupdate.h>
  46. #include <linux/ptrace.h>
  47. #include <linux/mount.h>
  48. #include <linux/audit.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/ftrace.h>
  51. #include <linux/proc_fs.h>
  52. #include <linux/profile.h>
  53. #include <linux/rmap.h>
  54. #include <linux/ksm.h>
  55. #include <linux/acct.h>
  56. #include <linux/tsacct_kern.h>
  57. #include <linux/cn_proc.h>
  58. #include <linux/freezer.h>
  59. #include <linux/delayacct.h>
  60. #include <linux/taskstats_kern.h>
  61. #include <linux/random.h>
  62. #include <linux/tty.h>
  63. #include <linux/blkdev.h>
  64. #include <linux/fs_struct.h>
  65. #include <linux/magic.h>
  66. #include <linux/perf_event.h>
  67. #include <linux/posix-timers.h>
  68. #include <linux/user-return-notifier.h>
  69. #include <linux/oom.h>
  70. #include <linux/khugepaged.h>
  71. #include <linux/signalfd.h>
  72. #include <linux/uprobes.h>
  73. #include <linux/aio.h>
  74. #include <linux/compiler.h>
  75. #include <linux/sysctl.h>
  76. #include <linux/kcov.h>
  77. #include <asm/pgtable.h>
  78. #include <asm/pgalloc.h>
  79. #include <asm/uaccess.h>
  80. #include <asm/mmu_context.h>
  81. #include <asm/cacheflush.h>
  82. #include <asm/tlbflush.h>
  83. #include <trace/events/sched.h>
  84. #define CREATE_TRACE_POINTS
  85. #include <trace/events/task.h>
  86. /*
  87. * Minimum number of threads to boot the kernel
  88. */
  89. #define MIN_THREADS 20
  90. /*
  91. * Maximum number of threads
  92. */
  93. #define MAX_THREADS FUTEX_TID_MASK
  94. /*
  95. * Protected counters by write_lock_irq(&tasklist_lock)
  96. */
  97. unsigned long total_forks; /* Handle normal Linux uptimes. */
  98. int nr_threads; /* The idle threads do not count.. */
  99. int max_threads; /* tunable limit on nr_threads */
  100. DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  101. __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
  102. #ifdef CONFIG_PROVE_RCU
  103. int lockdep_tasklist_lock_is_held(void)
  104. {
  105. return lockdep_is_held(&tasklist_lock);
  106. }
  107. EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
  108. #endif /* #ifdef CONFIG_PROVE_RCU */
  109. int nr_processes(void)
  110. {
  111. int cpu;
  112. int total = 0;
  113. for_each_possible_cpu(cpu)
  114. total += per_cpu(process_counts, cpu);
  115. return total;
  116. }
  117. void __weak arch_release_task_struct(struct task_struct *tsk)
  118. {
  119. }
  120. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  121. static struct kmem_cache *task_struct_cachep;
  122. static inline struct task_struct *alloc_task_struct_node(int node)
  123. {
  124. return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
  125. }
  126. static inline void free_task_struct(struct task_struct *tsk)
  127. {
  128. kmem_cache_free(task_struct_cachep, tsk);
  129. }
  130. #endif
  131. void __weak arch_release_thread_stack(unsigned long *stack)
  132. {
  133. }
  134. #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
  135. /*
  136. * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
  137. * kmemcache based allocator.
  138. */
  139. # if THREAD_SIZE >= PAGE_SIZE
  140. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
  141. int node)
  142. {
  143. struct page *page = alloc_pages_node(node, THREADINFO_GFP,
  144. THREAD_SIZE_ORDER);
  145. return page ? page_address(page) : NULL;
  146. }
  147. static inline void free_thread_stack(unsigned long *stack)
  148. {
  149. __free_pages(virt_to_page(stack), THREAD_SIZE_ORDER);
  150. }
  151. # else
  152. static struct kmem_cache *thread_stack_cache;
  153. static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
  154. int node)
  155. {
  156. return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
  157. }
  158. static void free_thread_stack(unsigned long *stack)
  159. {
  160. kmem_cache_free(thread_stack_cache, stack);
  161. }
  162. void thread_stack_cache_init(void)
  163. {
  164. thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
  165. THREAD_SIZE, 0, NULL);
  166. BUG_ON(thread_stack_cache == NULL);
  167. }
  168. # endif
  169. #endif
  170. /* SLAB cache for signal_struct structures (tsk->signal) */
  171. static struct kmem_cache *signal_cachep;
  172. /* SLAB cache for sighand_struct structures (tsk->sighand) */
  173. struct kmem_cache *sighand_cachep;
  174. /* SLAB cache for files_struct structures (tsk->files) */
  175. struct kmem_cache *files_cachep;
  176. /* SLAB cache for fs_struct structures (tsk->fs) */
  177. struct kmem_cache *fs_cachep;
  178. /* SLAB cache for vm_area_struct structures */
  179. struct kmem_cache *vm_area_cachep;
  180. /* SLAB cache for mm_struct structures (tsk->mm) */
  181. static struct kmem_cache *mm_cachep;
  182. static void account_kernel_stack(unsigned long *stack, int account)
  183. {
  184. /* All stack pages are in the same zone and belong to the same memcg. */
  185. struct page *first_page = virt_to_page(stack);
  186. mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
  187. THREAD_SIZE / 1024 * account);
  188. memcg_kmem_update_page_stat(
  189. first_page, MEMCG_KERNEL_STACK_KB,
  190. account * (THREAD_SIZE / 1024));
  191. }
  192. void free_task(struct task_struct *tsk)
  193. {
  194. account_kernel_stack(tsk->stack, -1);
  195. arch_release_thread_stack(tsk->stack);
  196. free_thread_stack(tsk->stack);
  197. rt_mutex_debug_task_free(tsk);
  198. ftrace_graph_exit_task(tsk);
  199. put_seccomp_filter(tsk);
  200. arch_release_task_struct(tsk);
  201. free_task_struct(tsk);
  202. }
  203. EXPORT_SYMBOL(free_task);
  204. static inline void free_signal_struct(struct signal_struct *sig)
  205. {
  206. taskstats_tgid_free(sig);
  207. sched_autogroup_exit(sig);
  208. kmem_cache_free(signal_cachep, sig);
  209. }
  210. static inline void put_signal_struct(struct signal_struct *sig)
  211. {
  212. if (atomic_dec_and_test(&sig->sigcnt))
  213. free_signal_struct(sig);
  214. }
  215. void __put_task_struct(struct task_struct *tsk)
  216. {
  217. WARN_ON(!tsk->exit_state);
  218. WARN_ON(atomic_read(&tsk->usage));
  219. WARN_ON(tsk == current);
  220. cgroup_free(tsk);
  221. task_numa_free(tsk);
  222. security_task_free(tsk);
  223. exit_creds(tsk);
  224. delayacct_tsk_free(tsk);
  225. put_signal_struct(tsk->signal);
  226. if (!profile_handoff_task(tsk))
  227. free_task(tsk);
  228. }
  229. EXPORT_SYMBOL_GPL(__put_task_struct);
  230. void __init __weak arch_task_cache_init(void) { }
  231. /*
  232. * set_max_threads
  233. */
  234. static void set_max_threads(unsigned int max_threads_suggested)
  235. {
  236. u64 threads;
  237. /*
  238. * The number of threads shall be limited such that the thread
  239. * structures may only consume a small part of the available memory.
  240. */
  241. if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
  242. threads = MAX_THREADS;
  243. else
  244. threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
  245. (u64) THREAD_SIZE * 8UL);
  246. if (threads > max_threads_suggested)
  247. threads = max_threads_suggested;
  248. max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
  249. }
  250. #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
  251. /* Initialized by the architecture: */
  252. int arch_task_struct_size __read_mostly;
  253. #endif
  254. void __init fork_init(void)
  255. {
  256. #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
  257. #ifndef ARCH_MIN_TASKALIGN
  258. #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
  259. #endif
  260. /* create a slab on which task_structs can be allocated */
  261. task_struct_cachep = kmem_cache_create("task_struct",
  262. arch_task_struct_size, ARCH_MIN_TASKALIGN,
  263. SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
  264. #endif
  265. /* do the arch specific task caches init */
  266. arch_task_cache_init();
  267. set_max_threads(MAX_THREADS);
  268. init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
  269. init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
  270. init_task.signal->rlim[RLIMIT_SIGPENDING] =
  271. init_task.signal->rlim[RLIMIT_NPROC];
  272. }
  273. int __weak arch_dup_task_struct(struct task_struct *dst,
  274. struct task_struct *src)
  275. {
  276. *dst = *src;
  277. return 0;
  278. }
  279. void set_task_stack_end_magic(struct task_struct *tsk)
  280. {
  281. unsigned long *stackend;
  282. stackend = end_of_stack(tsk);
  283. *stackend = STACK_END_MAGIC; /* for overflow detection */
  284. }
  285. static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
  286. {
  287. struct task_struct *tsk;
  288. unsigned long *stack;
  289. int err;
  290. if (node == NUMA_NO_NODE)
  291. node = tsk_fork_get_node(orig);
  292. tsk = alloc_task_struct_node(node);
  293. if (!tsk)
  294. return NULL;
  295. stack = alloc_thread_stack_node(tsk, node);
  296. if (!stack)
  297. goto free_tsk;
  298. err = arch_dup_task_struct(tsk, orig);
  299. if (err)
  300. goto free_stack;
  301. tsk->stack = stack;
  302. #ifdef CONFIG_SECCOMP
  303. /*
  304. * We must handle setting up seccomp filters once we're under
  305. * the sighand lock in case orig has changed between now and
  306. * then. Until then, filter must be NULL to avoid messing up
  307. * the usage counts on the error path calling free_task.
  308. */
  309. tsk->seccomp.filter = NULL;
  310. #endif
  311. setup_thread_stack(tsk, orig);
  312. clear_user_return_notifier(tsk);
  313. clear_tsk_need_resched(tsk);
  314. set_task_stack_end_magic(tsk);
  315. #ifdef CONFIG_CC_STACKPROTECTOR
  316. tsk->stack_canary = get_random_int();
  317. #endif
  318. /*
  319. * One for us, one for whoever does the "release_task()" (usually
  320. * parent)
  321. */
  322. atomic_set(&tsk->usage, 2);
  323. #ifdef CONFIG_BLK_DEV_IO_TRACE
  324. tsk->btrace_seq = 0;
  325. #endif
  326. tsk->splice_pipe = NULL;
  327. tsk->task_frag.page = NULL;
  328. tsk->wake_q.next = NULL;
  329. account_kernel_stack(stack, 1);
  330. kcov_task_init(tsk);
  331. return tsk;
  332. free_stack:
  333. free_thread_stack(stack);
  334. free_tsk:
  335. free_task_struct(tsk);
  336. return NULL;
  337. }
  338. #ifdef CONFIG_MMU
  339. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  340. {
  341. struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
  342. struct rb_node **rb_link, *rb_parent;
  343. int retval;
  344. unsigned long charge;
  345. uprobe_start_dup_mmap();
  346. if (down_write_killable(&oldmm->mmap_sem)) {
  347. retval = -EINTR;
  348. goto fail_uprobe_end;
  349. }
  350. flush_cache_dup_mm(oldmm);
  351. uprobe_dup_mmap(oldmm, mm);
  352. /*
  353. * Not linked in yet - no deadlock potential:
  354. */
  355. down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
  356. /* No ordering required: file already has been exposed. */
  357. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  358. mm->total_vm = oldmm->total_vm;
  359. mm->data_vm = oldmm->data_vm;
  360. mm->exec_vm = oldmm->exec_vm;
  361. mm->stack_vm = oldmm->stack_vm;
  362. rb_link = &mm->mm_rb.rb_node;
  363. rb_parent = NULL;
  364. pprev = &mm->mmap;
  365. retval = ksm_fork(mm, oldmm);
  366. if (retval)
  367. goto out;
  368. retval = khugepaged_fork(mm, oldmm);
  369. if (retval)
  370. goto out;
  371. prev = NULL;
  372. for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
  373. struct file *file;
  374. if (mpnt->vm_flags & VM_DONTCOPY) {
  375. vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
  376. continue;
  377. }
  378. charge = 0;
  379. if (mpnt->vm_flags & VM_ACCOUNT) {
  380. unsigned long len = vma_pages(mpnt);
  381. if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
  382. goto fail_nomem;
  383. charge = len;
  384. }
  385. tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
  386. if (!tmp)
  387. goto fail_nomem;
  388. *tmp = *mpnt;
  389. INIT_LIST_HEAD(&tmp->anon_vma_chain);
  390. retval = vma_dup_policy(mpnt, tmp);
  391. if (retval)
  392. goto fail_nomem_policy;
  393. tmp->vm_mm = mm;
  394. if (anon_vma_fork(tmp, mpnt))
  395. goto fail_nomem_anon_vma_fork;
  396. tmp->vm_flags &=
  397. ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
  398. tmp->vm_next = tmp->vm_prev = NULL;
  399. tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
  400. file = tmp->vm_file;
  401. if (file) {
  402. struct inode *inode = file_inode(file);
  403. struct address_space *mapping = file->f_mapping;
  404. get_file(file);
  405. if (tmp->vm_flags & VM_DENYWRITE)
  406. atomic_dec(&inode->i_writecount);
  407. i_mmap_lock_write(mapping);
  408. if (tmp->vm_flags & VM_SHARED)
  409. atomic_inc(&mapping->i_mmap_writable);
  410. flush_dcache_mmap_lock(mapping);
  411. /* insert tmp into the share list, just after mpnt */
  412. vma_interval_tree_insert_after(tmp, mpnt,
  413. &mapping->i_mmap);
  414. flush_dcache_mmap_unlock(mapping);
  415. i_mmap_unlock_write(mapping);
  416. }
  417. /*
  418. * Clear hugetlb-related page reserves for children. This only
  419. * affects MAP_PRIVATE mappings. Faults generated by the child
  420. * are not guaranteed to succeed, even if read-only
  421. */
  422. if (is_vm_hugetlb_page(tmp))
  423. reset_vma_resv_huge_pages(tmp);
  424. /*
  425. * Link in the new vma and copy the page table entries.
  426. */
  427. *pprev = tmp;
  428. pprev = &tmp->vm_next;
  429. tmp->vm_prev = prev;
  430. prev = tmp;
  431. __vma_link_rb(mm, tmp, rb_link, rb_parent);
  432. rb_link = &tmp->vm_rb.rb_right;
  433. rb_parent = &tmp->vm_rb;
  434. mm->map_count++;
  435. retval = copy_page_range(mm, oldmm, mpnt);
  436. if (tmp->vm_ops && tmp->vm_ops->open)
  437. tmp->vm_ops->open(tmp);
  438. if (retval)
  439. goto out;
  440. }
  441. /* a new mm has just been created */
  442. arch_dup_mmap(oldmm, mm);
  443. retval = 0;
  444. out:
  445. up_write(&mm->mmap_sem);
  446. flush_tlb_mm(oldmm);
  447. up_write(&oldmm->mmap_sem);
  448. fail_uprobe_end:
  449. uprobe_end_dup_mmap();
  450. return retval;
  451. fail_nomem_anon_vma_fork:
  452. mpol_put(vma_policy(tmp));
  453. fail_nomem_policy:
  454. kmem_cache_free(vm_area_cachep, tmp);
  455. fail_nomem:
  456. retval = -ENOMEM;
  457. vm_unacct_memory(charge);
  458. goto out;
  459. }
  460. static inline int mm_alloc_pgd(struct mm_struct *mm)
  461. {
  462. mm->pgd = pgd_alloc(mm);
  463. if (unlikely(!mm->pgd))
  464. return -ENOMEM;
  465. return 0;
  466. }
  467. static inline void mm_free_pgd(struct mm_struct *mm)
  468. {
  469. pgd_free(mm, mm->pgd);
  470. }
  471. #else
  472. static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
  473. {
  474. down_write(&oldmm->mmap_sem);
  475. RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
  476. up_write(&oldmm->mmap_sem);
  477. return 0;
  478. }
  479. #define mm_alloc_pgd(mm) (0)
  480. #define mm_free_pgd(mm)
  481. #endif /* CONFIG_MMU */
  482. __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
  483. #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
  484. #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
  485. static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
  486. static int __init coredump_filter_setup(char *s)
  487. {
  488. default_dump_filter =
  489. (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
  490. MMF_DUMP_FILTER_MASK;
  491. return 1;
  492. }
  493. __setup("coredump_filter=", coredump_filter_setup);
  494. #include <linux/init_task.h>
  495. static void mm_init_aio(struct mm_struct *mm)
  496. {
  497. #ifdef CONFIG_AIO
  498. spin_lock_init(&mm->ioctx_lock);
  499. mm->ioctx_table = NULL;
  500. #endif
  501. }
  502. static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
  503. {
  504. #ifdef CONFIG_MEMCG
  505. mm->owner = p;
  506. #endif
  507. }
  508. static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
  509. {
  510. mm->mmap = NULL;
  511. mm->mm_rb = RB_ROOT;
  512. mm->vmacache_seqnum = 0;
  513. atomic_set(&mm->mm_users, 1);
  514. atomic_set(&mm->mm_count, 1);
  515. init_rwsem(&mm->mmap_sem);
  516. INIT_LIST_HEAD(&mm->mmlist);
  517. mm->core_state = NULL;
  518. atomic_long_set(&mm->nr_ptes, 0);
  519. mm_nr_pmds_init(mm);
  520. mm->map_count = 0;
  521. mm->locked_vm = 0;
  522. mm->pinned_vm = 0;
  523. memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
  524. spin_lock_init(&mm->page_table_lock);
  525. mm_init_cpumask(mm);
  526. mm_init_aio(mm);
  527. mm_init_owner(mm, p);
  528. mmu_notifier_mm_init(mm);
  529. clear_tlb_flush_pending(mm);
  530. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  531. mm->pmd_huge_pte = NULL;
  532. #endif
  533. if (current->mm) {
  534. mm->flags = current->mm->flags & MMF_INIT_MASK;
  535. mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
  536. } else {
  537. mm->flags = default_dump_filter;
  538. mm->def_flags = 0;
  539. }
  540. if (mm_alloc_pgd(mm))
  541. goto fail_nopgd;
  542. if (init_new_context(p, mm))
  543. goto fail_nocontext;
  544. return mm;
  545. fail_nocontext:
  546. mm_free_pgd(mm);
  547. fail_nopgd:
  548. free_mm(mm);
  549. return NULL;
  550. }
  551. static void check_mm(struct mm_struct *mm)
  552. {
  553. int i;
  554. for (i = 0; i < NR_MM_COUNTERS; i++) {
  555. long x = atomic_long_read(&mm->rss_stat.count[i]);
  556. if (unlikely(x))
  557. printk(KERN_ALERT "BUG: Bad rss-counter state "
  558. "mm:%p idx:%d val:%ld\n", mm, i, x);
  559. }
  560. if (atomic_long_read(&mm->nr_ptes))
  561. pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
  562. atomic_long_read(&mm->nr_ptes));
  563. if (mm_nr_pmds(mm))
  564. pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
  565. mm_nr_pmds(mm));
  566. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
  567. VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
  568. #endif
  569. }
  570. /*
  571. * Allocate and initialize an mm_struct.
  572. */
  573. struct mm_struct *mm_alloc(void)
  574. {
  575. struct mm_struct *mm;
  576. mm = allocate_mm();
  577. if (!mm)
  578. return NULL;
  579. memset(mm, 0, sizeof(*mm));
  580. return mm_init(mm, current);
  581. }
  582. /*
  583. * Called when the last reference to the mm
  584. * is dropped: either by a lazy thread or by
  585. * mmput. Free the page directory and the mm.
  586. */
  587. void __mmdrop(struct mm_struct *mm)
  588. {
  589. BUG_ON(mm == &init_mm);
  590. mm_free_pgd(mm);
  591. destroy_context(mm);
  592. mmu_notifier_mm_destroy(mm);
  593. check_mm(mm);
  594. free_mm(mm);
  595. }
  596. EXPORT_SYMBOL_GPL(__mmdrop);
  597. static inline void __mmput(struct mm_struct *mm)
  598. {
  599. VM_BUG_ON(atomic_read(&mm->mm_users));
  600. uprobe_clear_state(mm);
  601. exit_aio(mm);
  602. ksm_exit(mm);
  603. khugepaged_exit(mm); /* must run before exit_mmap */
  604. exit_mmap(mm);
  605. set_mm_exe_file(mm, NULL);
  606. if (!list_empty(&mm->mmlist)) {
  607. spin_lock(&mmlist_lock);
  608. list_del(&mm->mmlist);
  609. spin_unlock(&mmlist_lock);
  610. }
  611. if (mm->binfmt)
  612. module_put(mm->binfmt->module);
  613. mmdrop(mm);
  614. }
  615. /*
  616. * Decrement the use count and release all resources for an mm.
  617. */
  618. void mmput(struct mm_struct *mm)
  619. {
  620. might_sleep();
  621. if (atomic_dec_and_test(&mm->mm_users))
  622. __mmput(mm);
  623. }
  624. EXPORT_SYMBOL_GPL(mmput);
  625. #ifdef CONFIG_MMU
  626. static void mmput_async_fn(struct work_struct *work)
  627. {
  628. struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
  629. __mmput(mm);
  630. }
  631. void mmput_async(struct mm_struct *mm)
  632. {
  633. if (atomic_dec_and_test(&mm->mm_users)) {
  634. INIT_WORK(&mm->async_put_work, mmput_async_fn);
  635. schedule_work(&mm->async_put_work);
  636. }
  637. }
  638. #endif
  639. /**
  640. * set_mm_exe_file - change a reference to the mm's executable file
  641. *
  642. * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
  643. *
  644. * Main users are mmput() and sys_execve(). Callers prevent concurrent
  645. * invocations: in mmput() nobody alive left, in execve task is single
  646. * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
  647. * mm->exe_file, but does so without using set_mm_exe_file() in order
  648. * to do avoid the need for any locks.
  649. */
  650. void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
  651. {
  652. struct file *old_exe_file;
  653. /*
  654. * It is safe to dereference the exe_file without RCU as
  655. * this function is only called if nobody else can access
  656. * this mm -- see comment above for justification.
  657. */
  658. old_exe_file = rcu_dereference_raw(mm->exe_file);
  659. if (new_exe_file)
  660. get_file(new_exe_file);
  661. rcu_assign_pointer(mm->exe_file, new_exe_file);
  662. if (old_exe_file)
  663. fput(old_exe_file);
  664. }
  665. /**
  666. * get_mm_exe_file - acquire a reference to the mm's executable file
  667. *
  668. * Returns %NULL if mm has no associated executable file.
  669. * User must release file via fput().
  670. */
  671. struct file *get_mm_exe_file(struct mm_struct *mm)
  672. {
  673. struct file *exe_file;
  674. rcu_read_lock();
  675. exe_file = rcu_dereference(mm->exe_file);
  676. if (exe_file && !get_file_rcu(exe_file))
  677. exe_file = NULL;
  678. rcu_read_unlock();
  679. return exe_file;
  680. }
  681. EXPORT_SYMBOL(get_mm_exe_file);
  682. /**
  683. * get_task_exe_file - acquire a reference to the task's executable file
  684. *
  685. * Returns %NULL if task's mm (if any) has no associated executable file or
  686. * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
  687. * User must release file via fput().
  688. */
  689. struct file *get_task_exe_file(struct task_struct *task)
  690. {
  691. struct file *exe_file = NULL;
  692. struct mm_struct *mm;
  693. task_lock(task);
  694. mm = task->mm;
  695. if (mm) {
  696. if (!(task->flags & PF_KTHREAD))
  697. exe_file = get_mm_exe_file(mm);
  698. }
  699. task_unlock(task);
  700. return exe_file;
  701. }
  702. EXPORT_SYMBOL(get_task_exe_file);
  703. /**
  704. * get_task_mm - acquire a reference to the task's mm
  705. *
  706. * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
  707. * this kernel workthread has transiently adopted a user mm with use_mm,
  708. * to do its AIO) is not set and if so returns a reference to it, after
  709. * bumping up the use count. User must release the mm via mmput()
  710. * after use. Typically used by /proc and ptrace.
  711. */
  712. struct mm_struct *get_task_mm(struct task_struct *task)
  713. {
  714. struct mm_struct *mm;
  715. task_lock(task);
  716. mm = task->mm;
  717. if (mm) {
  718. if (task->flags & PF_KTHREAD)
  719. mm = NULL;
  720. else
  721. atomic_inc(&mm->mm_users);
  722. }
  723. task_unlock(task);
  724. return mm;
  725. }
  726. EXPORT_SYMBOL_GPL(get_task_mm);
  727. struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
  728. {
  729. struct mm_struct *mm;
  730. int err;
  731. err = mutex_lock_killable(&task->signal->cred_guard_mutex);
  732. if (err)
  733. return ERR_PTR(err);
  734. mm = get_task_mm(task);
  735. if (mm && mm != current->mm &&
  736. !ptrace_may_access(task, mode)) {
  737. mmput(mm);
  738. mm = ERR_PTR(-EACCES);
  739. }
  740. mutex_unlock(&task->signal->cred_guard_mutex);
  741. return mm;
  742. }
  743. static void complete_vfork_done(struct task_struct *tsk)
  744. {
  745. struct completion *vfork;
  746. task_lock(tsk);
  747. vfork = tsk->vfork_done;
  748. if (likely(vfork)) {
  749. tsk->vfork_done = NULL;
  750. complete(vfork);
  751. }
  752. task_unlock(tsk);
  753. }
  754. static int wait_for_vfork_done(struct task_struct *child,
  755. struct completion *vfork)
  756. {
  757. int killed;
  758. freezer_do_not_count();
  759. killed = wait_for_completion_killable(vfork);
  760. freezer_count();
  761. if (killed) {
  762. task_lock(child);
  763. child->vfork_done = NULL;
  764. task_unlock(child);
  765. }
  766. put_task_struct(child);
  767. return killed;
  768. }
  769. /* Please note the differences between mmput and mm_release.
  770. * mmput is called whenever we stop holding onto a mm_struct,
  771. * error success whatever.
  772. *
  773. * mm_release is called after a mm_struct has been removed
  774. * from the current process.
  775. *
  776. * This difference is important for error handling, when we
  777. * only half set up a mm_struct for a new process and need to restore
  778. * the old one. Because we mmput the new mm_struct before
  779. * restoring the old one. . .
  780. * Eric Biederman 10 January 1998
  781. */
  782. void mm_release(struct task_struct *tsk, struct mm_struct *mm)
  783. {
  784. /* Get rid of any futexes when releasing the mm */
  785. #ifdef CONFIG_FUTEX
  786. if (unlikely(tsk->robust_list)) {
  787. exit_robust_list(tsk);
  788. tsk->robust_list = NULL;
  789. }
  790. #ifdef CONFIG_COMPAT
  791. if (unlikely(tsk->compat_robust_list)) {
  792. compat_exit_robust_list(tsk);
  793. tsk->compat_robust_list = NULL;
  794. }
  795. #endif
  796. if (unlikely(!list_empty(&tsk->pi_state_list)))
  797. exit_pi_state_list(tsk);
  798. #endif
  799. uprobe_free_utask(tsk);
  800. /* Get rid of any cached register state */
  801. deactivate_mm(tsk, mm);
  802. /*
  803. * Signal userspace if we're not exiting with a core dump
  804. * because we want to leave the value intact for debugging
  805. * purposes.
  806. */
  807. if (tsk->clear_child_tid) {
  808. if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
  809. atomic_read(&mm->mm_users) > 1) {
  810. /*
  811. * We don't check the error code - if userspace has
  812. * not set up a proper pointer then tough luck.
  813. */
  814. put_user(0, tsk->clear_child_tid);
  815. sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
  816. 1, NULL, NULL, 0);
  817. }
  818. tsk->clear_child_tid = NULL;
  819. }
  820. /*
  821. * All done, finally we can wake up parent and return this mm to him.
  822. * Also kthread_stop() uses this completion for synchronization.
  823. */
  824. if (tsk->vfork_done)
  825. complete_vfork_done(tsk);
  826. }
  827. /*
  828. * Allocate a new mm structure and copy contents from the
  829. * mm structure of the passed in task structure.
  830. */
  831. static struct mm_struct *dup_mm(struct task_struct *tsk)
  832. {
  833. struct mm_struct *mm, *oldmm = current->mm;
  834. int err;
  835. mm = allocate_mm();
  836. if (!mm)
  837. goto fail_nomem;
  838. memcpy(mm, oldmm, sizeof(*mm));
  839. if (!mm_init(mm, tsk))
  840. goto fail_nomem;
  841. err = dup_mmap(mm, oldmm);
  842. if (err)
  843. goto free_pt;
  844. mm->hiwater_rss = get_mm_rss(mm);
  845. mm->hiwater_vm = mm->total_vm;
  846. if (mm->binfmt && !try_module_get(mm->binfmt->module))
  847. goto free_pt;
  848. return mm;
  849. free_pt:
  850. /* don't put binfmt in mmput, we haven't got module yet */
  851. mm->binfmt = NULL;
  852. mmput(mm);
  853. fail_nomem:
  854. return NULL;
  855. }
  856. static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
  857. {
  858. struct mm_struct *mm, *oldmm;
  859. int retval;
  860. tsk->min_flt = tsk->maj_flt = 0;
  861. tsk->nvcsw = tsk->nivcsw = 0;
  862. #ifdef CONFIG_DETECT_HUNG_TASK
  863. tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
  864. #endif
  865. tsk->mm = NULL;
  866. tsk->active_mm = NULL;
  867. /*
  868. * Are we cloning a kernel thread?
  869. *
  870. * We need to steal a active VM for that..
  871. */
  872. oldmm = current->mm;
  873. if (!oldmm)
  874. return 0;
  875. /* initialize the new vmacache entries */
  876. vmacache_flush(tsk);
  877. if (clone_flags & CLONE_VM) {
  878. atomic_inc(&oldmm->mm_users);
  879. mm = oldmm;
  880. goto good_mm;
  881. }
  882. retval = -ENOMEM;
  883. mm = dup_mm(tsk);
  884. if (!mm)
  885. goto fail_nomem;
  886. good_mm:
  887. tsk->mm = mm;
  888. tsk->active_mm = mm;
  889. return 0;
  890. fail_nomem:
  891. return retval;
  892. }
  893. static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
  894. {
  895. struct fs_struct *fs = current->fs;
  896. if (clone_flags & CLONE_FS) {
  897. /* tsk->fs is already what we want */
  898. spin_lock(&fs->lock);
  899. if (fs->in_exec) {
  900. spin_unlock(&fs->lock);
  901. return -EAGAIN;
  902. }
  903. fs->users++;
  904. spin_unlock(&fs->lock);
  905. return 0;
  906. }
  907. tsk->fs = copy_fs_struct(fs);
  908. if (!tsk->fs)
  909. return -ENOMEM;
  910. return 0;
  911. }
  912. static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
  913. {
  914. struct files_struct *oldf, *newf;
  915. int error = 0;
  916. /*
  917. * A background process may not have any files ...
  918. */
  919. oldf = current->files;
  920. if (!oldf)
  921. goto out;
  922. if (clone_flags & CLONE_FILES) {
  923. atomic_inc(&oldf->count);
  924. goto out;
  925. }
  926. newf = dup_fd(oldf, &error);
  927. if (!newf)
  928. goto out;
  929. tsk->files = newf;
  930. error = 0;
  931. out:
  932. return error;
  933. }
  934. static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
  935. {
  936. #ifdef CONFIG_BLOCK
  937. struct io_context *ioc = current->io_context;
  938. struct io_context *new_ioc;
  939. if (!ioc)
  940. return 0;
  941. /*
  942. * Share io context with parent, if CLONE_IO is set
  943. */
  944. if (clone_flags & CLONE_IO) {
  945. ioc_task_link(ioc);
  946. tsk->io_context = ioc;
  947. } else if (ioprio_valid(ioc->ioprio)) {
  948. new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
  949. if (unlikely(!new_ioc))
  950. return -ENOMEM;
  951. new_ioc->ioprio = ioc->ioprio;
  952. put_io_context(new_ioc);
  953. }
  954. #endif
  955. return 0;
  956. }
  957. static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
  958. {
  959. struct sighand_struct *sig;
  960. if (clone_flags & CLONE_SIGHAND) {
  961. atomic_inc(&current->sighand->count);
  962. return 0;
  963. }
  964. sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  965. rcu_assign_pointer(tsk->sighand, sig);
  966. if (!sig)
  967. return -ENOMEM;
  968. atomic_set(&sig->count, 1);
  969. memcpy(sig->action, current->sighand->action, sizeof(sig->action));
  970. return 0;
  971. }
  972. void __cleanup_sighand(struct sighand_struct *sighand)
  973. {
  974. if (atomic_dec_and_test(&sighand->count)) {
  975. signalfd_cleanup(sighand);
  976. /*
  977. * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
  978. * without an RCU grace period, see __lock_task_sighand().
  979. */
  980. kmem_cache_free(sighand_cachep, sighand);
  981. }
  982. }
  983. /*
  984. * Initialize POSIX timer handling for a thread group.
  985. */
  986. static void posix_cpu_timers_init_group(struct signal_struct *sig)
  987. {
  988. unsigned long cpu_limit;
  989. cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
  990. if (cpu_limit != RLIM_INFINITY) {
  991. sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
  992. sig->cputimer.running = true;
  993. }
  994. /* The timer lists. */
  995. INIT_LIST_HEAD(&sig->cpu_timers[0]);
  996. INIT_LIST_HEAD(&sig->cpu_timers[1]);
  997. INIT_LIST_HEAD(&sig->cpu_timers[2]);
  998. }
  999. static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
  1000. {
  1001. struct signal_struct *sig;
  1002. if (clone_flags & CLONE_THREAD)
  1003. return 0;
  1004. sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
  1005. tsk->signal = sig;
  1006. if (!sig)
  1007. return -ENOMEM;
  1008. sig->nr_threads = 1;
  1009. atomic_set(&sig->live, 1);
  1010. atomic_set(&sig->sigcnt, 1);
  1011. /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
  1012. sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
  1013. tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
  1014. init_waitqueue_head(&sig->wait_chldexit);
  1015. sig->curr_target = tsk;
  1016. init_sigpending(&sig->shared_pending);
  1017. INIT_LIST_HEAD(&sig->posix_timers);
  1018. seqlock_init(&sig->stats_lock);
  1019. prev_cputime_init(&sig->prev_cputime);
  1020. hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1021. sig->real_timer.function = it_real_fn;
  1022. task_lock(current->group_leader);
  1023. memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
  1024. task_unlock(current->group_leader);
  1025. posix_cpu_timers_init_group(sig);
  1026. tty_audit_fork(sig);
  1027. sched_autogroup_fork(sig);
  1028. sig->oom_score_adj = current->signal->oom_score_adj;
  1029. sig->oom_score_adj_min = current->signal->oom_score_adj_min;
  1030. sig->has_child_subreaper = current->signal->has_child_subreaper ||
  1031. current->signal->is_child_subreaper;
  1032. mutex_init(&sig->cred_guard_mutex);
  1033. return 0;
  1034. }
  1035. static void copy_seccomp(struct task_struct *p)
  1036. {
  1037. #ifdef CONFIG_SECCOMP
  1038. /*
  1039. * Must be called with sighand->lock held, which is common to
  1040. * all threads in the group. Holding cred_guard_mutex is not
  1041. * needed because this new task is not yet running and cannot
  1042. * be racing exec.
  1043. */
  1044. assert_spin_locked(&current->sighand->siglock);
  1045. /* Ref-count the new filter user, and assign it. */
  1046. get_seccomp_filter(current);
  1047. p->seccomp = current->seccomp;
  1048. /*
  1049. * Explicitly enable no_new_privs here in case it got set
  1050. * between the task_struct being duplicated and holding the
  1051. * sighand lock. The seccomp state and nnp must be in sync.
  1052. */
  1053. if (task_no_new_privs(current))
  1054. task_set_no_new_privs(p);
  1055. /*
  1056. * If the parent gained a seccomp mode after copying thread
  1057. * flags and between before we held the sighand lock, we have
  1058. * to manually enable the seccomp thread flag here.
  1059. */
  1060. if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
  1061. set_tsk_thread_flag(p, TIF_SECCOMP);
  1062. #endif
  1063. }
  1064. SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
  1065. {
  1066. current->clear_child_tid = tidptr;
  1067. return task_pid_vnr(current);
  1068. }
  1069. static void rt_mutex_init_task(struct task_struct *p)
  1070. {
  1071. raw_spin_lock_init(&p->pi_lock);
  1072. #ifdef CONFIG_RT_MUTEXES
  1073. p->pi_waiters = RB_ROOT;
  1074. p->pi_waiters_leftmost = NULL;
  1075. p->pi_blocked_on = NULL;
  1076. #endif
  1077. }
  1078. /*
  1079. * Initialize POSIX timer handling for a single task.
  1080. */
  1081. static void posix_cpu_timers_init(struct task_struct *tsk)
  1082. {
  1083. tsk->cputime_expires.prof_exp = 0;
  1084. tsk->cputime_expires.virt_exp = 0;
  1085. tsk->cputime_expires.sched_exp = 0;
  1086. INIT_LIST_HEAD(&tsk->cpu_timers[0]);
  1087. INIT_LIST_HEAD(&tsk->cpu_timers[1]);
  1088. INIT_LIST_HEAD(&tsk->cpu_timers[2]);
  1089. }
  1090. static inline void
  1091. init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
  1092. {
  1093. task->pids[type].pid = pid;
  1094. }
  1095. /*
  1096. * This creates a new process as a copy of the old one,
  1097. * but does not actually start it yet.
  1098. *
  1099. * It copies the registers, and all the appropriate
  1100. * parts of the process environment (as per the clone
  1101. * flags). The actual kick-off is left to the caller.
  1102. */
  1103. static struct task_struct *copy_process(unsigned long clone_flags,
  1104. unsigned long stack_start,
  1105. unsigned long stack_size,
  1106. int __user *child_tidptr,
  1107. struct pid *pid,
  1108. int trace,
  1109. unsigned long tls,
  1110. int node)
  1111. {
  1112. int retval;
  1113. struct task_struct *p;
  1114. if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
  1115. return ERR_PTR(-EINVAL);
  1116. if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
  1117. return ERR_PTR(-EINVAL);
  1118. /*
  1119. * Thread groups must share signals as well, and detached threads
  1120. * can only be started up within the thread group.
  1121. */
  1122. if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
  1123. return ERR_PTR(-EINVAL);
  1124. /*
  1125. * Shared signal handlers imply shared VM. By way of the above,
  1126. * thread groups also imply shared VM. Blocking this case allows
  1127. * for various simplifications in other code.
  1128. */
  1129. if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
  1130. return ERR_PTR(-EINVAL);
  1131. /*
  1132. * Siblings of global init remain as zombies on exit since they are
  1133. * not reaped by their parent (swapper). To solve this and to avoid
  1134. * multi-rooted process trees, prevent global and container-inits
  1135. * from creating siblings.
  1136. */
  1137. if ((clone_flags & CLONE_PARENT) &&
  1138. current->signal->flags & SIGNAL_UNKILLABLE)
  1139. return ERR_PTR(-EINVAL);
  1140. /*
  1141. * If the new process will be in a different pid or user namespace
  1142. * do not allow it to share a thread group with the forking task.
  1143. */
  1144. if (clone_flags & CLONE_THREAD) {
  1145. if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
  1146. (task_active_pid_ns(current) !=
  1147. current->nsproxy->pid_ns_for_children))
  1148. return ERR_PTR(-EINVAL);
  1149. }
  1150. retval = security_task_create(clone_flags);
  1151. if (retval)
  1152. goto fork_out;
  1153. retval = -ENOMEM;
  1154. p = dup_task_struct(current, node);
  1155. if (!p)
  1156. goto fork_out;
  1157. ftrace_graph_init_task(p);
  1158. rt_mutex_init_task(p);
  1159. #ifdef CONFIG_PROVE_LOCKING
  1160. DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
  1161. DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
  1162. #endif
  1163. retval = -EAGAIN;
  1164. if (atomic_read(&p->real_cred->user->processes) >=
  1165. task_rlimit(p, RLIMIT_NPROC)) {
  1166. if (p->real_cred->user != INIT_USER &&
  1167. !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
  1168. goto bad_fork_free;
  1169. }
  1170. current->flags &= ~PF_NPROC_EXCEEDED;
  1171. retval = copy_creds(p, clone_flags);
  1172. if (retval < 0)
  1173. goto bad_fork_free;
  1174. /*
  1175. * If multiple threads are within copy_process(), then this check
  1176. * triggers too late. This doesn't hurt, the check is only there
  1177. * to stop root fork bombs.
  1178. */
  1179. retval = -EAGAIN;
  1180. if (nr_threads >= max_threads)
  1181. goto bad_fork_cleanup_count;
  1182. delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
  1183. p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
  1184. p->flags |= PF_FORKNOEXEC;
  1185. INIT_LIST_HEAD(&p->children);
  1186. INIT_LIST_HEAD(&p->sibling);
  1187. rcu_copy_process(p);
  1188. p->vfork_done = NULL;
  1189. spin_lock_init(&p->alloc_lock);
  1190. init_sigpending(&p->pending);
  1191. p->utime = p->stime = p->gtime = 0;
  1192. p->utimescaled = p->stimescaled = 0;
  1193. prev_cputime_init(&p->prev_cputime);
  1194. #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
  1195. seqcount_init(&p->vtime_seqcount);
  1196. p->vtime_snap = 0;
  1197. p->vtime_snap_whence = VTIME_INACTIVE;
  1198. #endif
  1199. #if defined(SPLIT_RSS_COUNTING)
  1200. memset(&p->rss_stat, 0, sizeof(p->rss_stat));
  1201. #endif
  1202. p->default_timer_slack_ns = current->timer_slack_ns;
  1203. task_io_accounting_init(&p->ioac);
  1204. acct_clear_integrals(p);
  1205. posix_cpu_timers_init(p);
  1206. p->start_time = ktime_get_ns();
  1207. p->real_start_time = ktime_get_boot_ns();
  1208. p->io_context = NULL;
  1209. p->audit_context = NULL;
  1210. cgroup_fork(p);
  1211. #ifdef CONFIG_NUMA
  1212. p->mempolicy = mpol_dup(p->mempolicy);
  1213. if (IS_ERR(p->mempolicy)) {
  1214. retval = PTR_ERR(p->mempolicy);
  1215. p->mempolicy = NULL;
  1216. goto bad_fork_cleanup_threadgroup_lock;
  1217. }
  1218. #endif
  1219. #ifdef CONFIG_CPUSETS
  1220. p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
  1221. p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
  1222. seqcount_init(&p->mems_allowed_seq);
  1223. #endif
  1224. #ifdef CONFIG_TRACE_IRQFLAGS
  1225. p->irq_events = 0;
  1226. p->hardirqs_enabled = 0;
  1227. p->hardirq_enable_ip = 0;
  1228. p->hardirq_enable_event = 0;
  1229. p->hardirq_disable_ip = _THIS_IP_;
  1230. p->hardirq_disable_event = 0;
  1231. p->softirqs_enabled = 1;
  1232. p->softirq_enable_ip = _THIS_IP_;
  1233. p->softirq_enable_event = 0;
  1234. p->softirq_disable_ip = 0;
  1235. p->softirq_disable_event = 0;
  1236. p->hardirq_context = 0;
  1237. p->softirq_context = 0;
  1238. #endif
  1239. p->pagefault_disabled = 0;
  1240. #ifdef CONFIG_LOCKDEP
  1241. p->lockdep_depth = 0; /* no locks held yet */
  1242. p->curr_chain_key = 0;
  1243. p->lockdep_recursion = 0;
  1244. #endif
  1245. #ifdef CONFIG_DEBUG_MUTEXES
  1246. p->blocked_on = NULL; /* not blocked yet */
  1247. #endif
  1248. #ifdef CONFIG_BCACHE
  1249. p->sequential_io = 0;
  1250. p->sequential_io_avg = 0;
  1251. #endif
  1252. /* Perform scheduler related setup. Assign this task to a CPU. */
  1253. retval = sched_fork(clone_flags, p);
  1254. if (retval)
  1255. goto bad_fork_cleanup_policy;
  1256. retval = perf_event_init_task(p);
  1257. if (retval)
  1258. goto bad_fork_cleanup_policy;
  1259. retval = audit_alloc(p);
  1260. if (retval)
  1261. goto bad_fork_cleanup_perf;
  1262. /* copy all the process information */
  1263. shm_init_task(p);
  1264. retval = copy_semundo(clone_flags, p);
  1265. if (retval)
  1266. goto bad_fork_cleanup_audit;
  1267. retval = copy_files(clone_flags, p);
  1268. if (retval)
  1269. goto bad_fork_cleanup_semundo;
  1270. retval = copy_fs(clone_flags, p);
  1271. if (retval)
  1272. goto bad_fork_cleanup_files;
  1273. retval = copy_sighand(clone_flags, p);
  1274. if (retval)
  1275. goto bad_fork_cleanup_fs;
  1276. retval = copy_signal(clone_flags, p);
  1277. if (retval)
  1278. goto bad_fork_cleanup_sighand;
  1279. retval = copy_mm(clone_flags, p);
  1280. if (retval)
  1281. goto bad_fork_cleanup_signal;
  1282. retval = copy_namespaces(clone_flags, p);
  1283. if (retval)
  1284. goto bad_fork_cleanup_mm;
  1285. retval = copy_io(clone_flags, p);
  1286. if (retval)
  1287. goto bad_fork_cleanup_namespaces;
  1288. retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
  1289. if (retval)
  1290. goto bad_fork_cleanup_io;
  1291. if (pid != &init_struct_pid) {
  1292. pid = alloc_pid(p->nsproxy->pid_ns_for_children);
  1293. if (IS_ERR(pid)) {
  1294. retval = PTR_ERR(pid);
  1295. goto bad_fork_cleanup_thread;
  1296. }
  1297. }
  1298. p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
  1299. /*
  1300. * Clear TID on mm_release()?
  1301. */
  1302. p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
  1303. #ifdef CONFIG_BLOCK
  1304. p->plug = NULL;
  1305. #endif
  1306. #ifdef CONFIG_FUTEX
  1307. p->robust_list = NULL;
  1308. #ifdef CONFIG_COMPAT
  1309. p->compat_robust_list = NULL;
  1310. #endif
  1311. INIT_LIST_HEAD(&p->pi_state_list);
  1312. p->pi_state_cache = NULL;
  1313. #endif
  1314. /*
  1315. * sigaltstack should be cleared when sharing the same VM
  1316. */
  1317. if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
  1318. sas_ss_reset(p);
  1319. /*
  1320. * Syscall tracing and stepping should be turned off in the
  1321. * child regardless of CLONE_PTRACE.
  1322. */
  1323. user_disable_single_step(p);
  1324. clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
  1325. #ifdef TIF_SYSCALL_EMU
  1326. clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
  1327. #endif
  1328. clear_all_latency_tracing(p);
  1329. /* ok, now we should be set up.. */
  1330. p->pid = pid_nr(pid);
  1331. if (clone_flags & CLONE_THREAD) {
  1332. p->exit_signal = -1;
  1333. p->group_leader = current->group_leader;
  1334. p->tgid = current->tgid;
  1335. } else {
  1336. if (clone_flags & CLONE_PARENT)
  1337. p->exit_signal = current->group_leader->exit_signal;
  1338. else
  1339. p->exit_signal = (clone_flags & CSIGNAL);
  1340. p->group_leader = p;
  1341. p->tgid = p->pid;
  1342. }
  1343. p->nr_dirtied = 0;
  1344. p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
  1345. p->dirty_paused_when = 0;
  1346. p->pdeath_signal = 0;
  1347. INIT_LIST_HEAD(&p->thread_group);
  1348. p->task_works = NULL;
  1349. threadgroup_change_begin(current);
  1350. /*
  1351. * Ensure that the cgroup subsystem policies allow the new process to be
  1352. * forked. It should be noted the the new process's css_set can be changed
  1353. * between here and cgroup_post_fork() if an organisation operation is in
  1354. * progress.
  1355. */
  1356. retval = cgroup_can_fork(p);
  1357. if (retval)
  1358. goto bad_fork_free_pid;
  1359. /*
  1360. * Make it visible to the rest of the system, but dont wake it up yet.
  1361. * Need tasklist lock for parent etc handling!
  1362. */
  1363. write_lock_irq(&tasklist_lock);
  1364. /* CLONE_PARENT re-uses the old parent */
  1365. if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
  1366. p->real_parent = current->real_parent;
  1367. p->parent_exec_id = current->parent_exec_id;
  1368. } else {
  1369. p->real_parent = current;
  1370. p->parent_exec_id = current->self_exec_id;
  1371. }
  1372. spin_lock(&current->sighand->siglock);
  1373. /*
  1374. * Copy seccomp details explicitly here, in case they were changed
  1375. * before holding sighand lock.
  1376. */
  1377. copy_seccomp(p);
  1378. /*
  1379. * Process group and session signals need to be delivered to just the
  1380. * parent before the fork or both the parent and the child after the
  1381. * fork. Restart if a signal comes in before we add the new process to
  1382. * it's process group.
  1383. * A fatal signal pending means that current will exit, so the new
  1384. * thread can't slip out of an OOM kill (or normal SIGKILL).
  1385. */
  1386. recalc_sigpending();
  1387. if (signal_pending(current)) {
  1388. spin_unlock(&current->sighand->siglock);
  1389. write_unlock_irq(&tasklist_lock);
  1390. retval = -ERESTARTNOINTR;
  1391. goto bad_fork_cancel_cgroup;
  1392. }
  1393. if (likely(p->pid)) {
  1394. ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
  1395. init_task_pid(p, PIDTYPE_PID, pid);
  1396. if (thread_group_leader(p)) {
  1397. init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
  1398. init_task_pid(p, PIDTYPE_SID, task_session(current));
  1399. if (is_child_reaper(pid)) {
  1400. ns_of_pid(pid)->child_reaper = p;
  1401. p->signal->flags |= SIGNAL_UNKILLABLE;
  1402. }
  1403. p->signal->leader_pid = pid;
  1404. p->signal->tty = tty_kref_get(current->signal->tty);
  1405. list_add_tail(&p->sibling, &p->real_parent->children);
  1406. list_add_tail_rcu(&p->tasks, &init_task.tasks);
  1407. attach_pid(p, PIDTYPE_PGID);
  1408. attach_pid(p, PIDTYPE_SID);
  1409. __this_cpu_inc(process_counts);
  1410. } else {
  1411. current->signal->nr_threads++;
  1412. atomic_inc(&current->signal->live);
  1413. atomic_inc(&current->signal->sigcnt);
  1414. list_add_tail_rcu(&p->thread_group,
  1415. &p->group_leader->thread_group);
  1416. list_add_tail_rcu(&p->thread_node,
  1417. &p->signal->thread_head);
  1418. }
  1419. attach_pid(p, PIDTYPE_PID);
  1420. nr_threads++;
  1421. }
  1422. total_forks++;
  1423. spin_unlock(&current->sighand->siglock);
  1424. syscall_tracepoint_update(p);
  1425. write_unlock_irq(&tasklist_lock);
  1426. proc_fork_connector(p);
  1427. cgroup_post_fork(p);
  1428. threadgroup_change_end(current);
  1429. perf_event_fork(p);
  1430. trace_task_newtask(p, clone_flags);
  1431. uprobe_copy_process(p, clone_flags);
  1432. return p;
  1433. bad_fork_cancel_cgroup:
  1434. cgroup_cancel_fork(p);
  1435. bad_fork_free_pid:
  1436. threadgroup_change_end(current);
  1437. if (pid != &init_struct_pid)
  1438. free_pid(pid);
  1439. bad_fork_cleanup_thread:
  1440. exit_thread(p);
  1441. bad_fork_cleanup_io:
  1442. if (p->io_context)
  1443. exit_io_context(p);
  1444. bad_fork_cleanup_namespaces:
  1445. exit_task_namespaces(p);
  1446. bad_fork_cleanup_mm:
  1447. if (p->mm)
  1448. mmput(p->mm);
  1449. bad_fork_cleanup_signal:
  1450. if (!(clone_flags & CLONE_THREAD))
  1451. free_signal_struct(p->signal);
  1452. bad_fork_cleanup_sighand:
  1453. __cleanup_sighand(p->sighand);
  1454. bad_fork_cleanup_fs:
  1455. exit_fs(p); /* blocking */
  1456. bad_fork_cleanup_files:
  1457. exit_files(p); /* blocking */
  1458. bad_fork_cleanup_semundo:
  1459. exit_sem(p);
  1460. bad_fork_cleanup_audit:
  1461. audit_free(p);
  1462. bad_fork_cleanup_perf:
  1463. perf_event_free_task(p);
  1464. bad_fork_cleanup_policy:
  1465. #ifdef CONFIG_NUMA
  1466. mpol_put(p->mempolicy);
  1467. bad_fork_cleanup_threadgroup_lock:
  1468. #endif
  1469. delayacct_tsk_free(p);
  1470. bad_fork_cleanup_count:
  1471. atomic_dec(&p->cred->user->processes);
  1472. exit_creds(p);
  1473. bad_fork_free:
  1474. free_task(p);
  1475. fork_out:
  1476. return ERR_PTR(retval);
  1477. }
  1478. static inline void init_idle_pids(struct pid_link *links)
  1479. {
  1480. enum pid_type type;
  1481. for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
  1482. INIT_HLIST_NODE(&links[type].node); /* not really needed */
  1483. links[type].pid = &init_struct_pid;
  1484. }
  1485. }
  1486. struct task_struct *fork_idle(int cpu)
  1487. {
  1488. struct task_struct *task;
  1489. task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
  1490. cpu_to_node(cpu));
  1491. if (!IS_ERR(task)) {
  1492. init_idle_pids(task->pids);
  1493. init_idle(task, cpu);
  1494. }
  1495. return task;
  1496. }
  1497. /*
  1498. * Ok, this is the main fork-routine.
  1499. *
  1500. * It copies the process, and if successful kick-starts
  1501. * it and waits for it to finish using the VM if required.
  1502. */
  1503. long _do_fork(unsigned long clone_flags,
  1504. unsigned long stack_start,
  1505. unsigned long stack_size,
  1506. int __user *parent_tidptr,
  1507. int __user *child_tidptr,
  1508. unsigned long tls)
  1509. {
  1510. struct task_struct *p;
  1511. int trace = 0;
  1512. long nr;
  1513. /*
  1514. * Determine whether and which event to report to ptracer. When
  1515. * called from kernel_thread or CLONE_UNTRACED is explicitly
  1516. * requested, no event is reported; otherwise, report if the event
  1517. * for the type of forking is enabled.
  1518. */
  1519. if (!(clone_flags & CLONE_UNTRACED)) {
  1520. if (clone_flags & CLONE_VFORK)
  1521. trace = PTRACE_EVENT_VFORK;
  1522. else if ((clone_flags & CSIGNAL) != SIGCHLD)
  1523. trace = PTRACE_EVENT_CLONE;
  1524. else
  1525. trace = PTRACE_EVENT_FORK;
  1526. if (likely(!ptrace_event_enabled(current, trace)))
  1527. trace = 0;
  1528. }
  1529. p = copy_process(clone_flags, stack_start, stack_size,
  1530. child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
  1531. /*
  1532. * Do this prior waking up the new thread - the thread pointer
  1533. * might get invalid after that point, if the thread exits quickly.
  1534. */
  1535. if (!IS_ERR(p)) {
  1536. struct completion vfork;
  1537. struct pid *pid;
  1538. trace_sched_process_fork(current, p);
  1539. pid = get_task_pid(p, PIDTYPE_PID);
  1540. nr = pid_vnr(pid);
  1541. if (clone_flags & CLONE_PARENT_SETTID)
  1542. put_user(nr, parent_tidptr);
  1543. if (clone_flags & CLONE_VFORK) {
  1544. p->vfork_done = &vfork;
  1545. init_completion(&vfork);
  1546. get_task_struct(p);
  1547. }
  1548. wake_up_new_task(p);
  1549. /* forking complete and child started to run, tell ptracer */
  1550. if (unlikely(trace))
  1551. ptrace_event_pid(trace, pid);
  1552. if (clone_flags & CLONE_VFORK) {
  1553. if (!wait_for_vfork_done(p, &vfork))
  1554. ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
  1555. }
  1556. put_pid(pid);
  1557. } else {
  1558. nr = PTR_ERR(p);
  1559. }
  1560. return nr;
  1561. }
  1562. #ifndef CONFIG_HAVE_COPY_THREAD_TLS
  1563. /* For compatibility with architectures that call do_fork directly rather than
  1564. * using the syscall entry points below. */
  1565. long do_fork(unsigned long clone_flags,
  1566. unsigned long stack_start,
  1567. unsigned long stack_size,
  1568. int __user *parent_tidptr,
  1569. int __user *child_tidptr)
  1570. {
  1571. return _do_fork(clone_flags, stack_start, stack_size,
  1572. parent_tidptr, child_tidptr, 0);
  1573. }
  1574. #endif
  1575. /*
  1576. * Create a kernel thread.
  1577. */
  1578. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  1579. {
  1580. return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
  1581. (unsigned long)arg, NULL, NULL, 0);
  1582. }
  1583. #ifdef __ARCH_WANT_SYS_FORK
  1584. SYSCALL_DEFINE0(fork)
  1585. {
  1586. #ifdef CONFIG_MMU
  1587. return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
  1588. #else
  1589. /* can not support in nommu mode */
  1590. return -EINVAL;
  1591. #endif
  1592. }
  1593. #endif
  1594. #ifdef __ARCH_WANT_SYS_VFORK
  1595. SYSCALL_DEFINE0(vfork)
  1596. {
  1597. return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
  1598. 0, NULL, NULL, 0);
  1599. }
  1600. #endif
  1601. #ifdef __ARCH_WANT_SYS_CLONE
  1602. #ifdef CONFIG_CLONE_BACKWARDS
  1603. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1604. int __user *, parent_tidptr,
  1605. unsigned long, tls,
  1606. int __user *, child_tidptr)
  1607. #elif defined(CONFIG_CLONE_BACKWARDS2)
  1608. SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
  1609. int __user *, parent_tidptr,
  1610. int __user *, child_tidptr,
  1611. unsigned long, tls)
  1612. #elif defined(CONFIG_CLONE_BACKWARDS3)
  1613. SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
  1614. int, stack_size,
  1615. int __user *, parent_tidptr,
  1616. int __user *, child_tidptr,
  1617. unsigned long, tls)
  1618. #else
  1619. SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
  1620. int __user *, parent_tidptr,
  1621. int __user *, child_tidptr,
  1622. unsigned long, tls)
  1623. #endif
  1624. {
  1625. return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
  1626. }
  1627. #endif
  1628. #ifndef ARCH_MIN_MMSTRUCT_ALIGN
  1629. #define ARCH_MIN_MMSTRUCT_ALIGN 0
  1630. #endif
  1631. static void sighand_ctor(void *data)
  1632. {
  1633. struct sighand_struct *sighand = data;
  1634. spin_lock_init(&sighand->siglock);
  1635. init_waitqueue_head(&sighand->signalfd_wqh);
  1636. }
  1637. void __init proc_caches_init(void)
  1638. {
  1639. sighand_cachep = kmem_cache_create("sighand_cache",
  1640. sizeof(struct sighand_struct), 0,
  1641. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
  1642. SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
  1643. signal_cachep = kmem_cache_create("signal_cache",
  1644. sizeof(struct signal_struct), 0,
  1645. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1646. NULL);
  1647. files_cachep = kmem_cache_create("files_cache",
  1648. sizeof(struct files_struct), 0,
  1649. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1650. NULL);
  1651. fs_cachep = kmem_cache_create("fs_cache",
  1652. sizeof(struct fs_struct), 0,
  1653. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1654. NULL);
  1655. /*
  1656. * FIXME! The "sizeof(struct mm_struct)" currently includes the
  1657. * whole struct cpumask for the OFFSTACK case. We could change
  1658. * this to *only* allocate as much of it as required by the
  1659. * maximum number of CPU's we can ever have. The cpumask_allocation
  1660. * is at the end of the structure, exactly for that reason.
  1661. */
  1662. mm_cachep = kmem_cache_create("mm_struct",
  1663. sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
  1664. SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
  1665. NULL);
  1666. vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
  1667. mmap_init();
  1668. nsproxy_cache_init();
  1669. }
  1670. /*
  1671. * Check constraints on flags passed to the unshare system call.
  1672. */
  1673. static int check_unshare_flags(unsigned long unshare_flags)
  1674. {
  1675. if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
  1676. CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
  1677. CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
  1678. CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
  1679. return -EINVAL;
  1680. /*
  1681. * Not implemented, but pretend it works if there is nothing
  1682. * to unshare. Note that unsharing the address space or the
  1683. * signal handlers also need to unshare the signal queues (aka
  1684. * CLONE_THREAD).
  1685. */
  1686. if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
  1687. if (!thread_group_empty(current))
  1688. return -EINVAL;
  1689. }
  1690. if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
  1691. if (atomic_read(&current->sighand->count) > 1)
  1692. return -EINVAL;
  1693. }
  1694. if (unshare_flags & CLONE_VM) {
  1695. if (!current_is_single_threaded())
  1696. return -EINVAL;
  1697. }
  1698. return 0;
  1699. }
  1700. /*
  1701. * Unshare the filesystem structure if it is being shared
  1702. */
  1703. static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
  1704. {
  1705. struct fs_struct *fs = current->fs;
  1706. if (!(unshare_flags & CLONE_FS) || !fs)
  1707. return 0;
  1708. /* don't need lock here; in the worst case we'll do useless copy */
  1709. if (fs->users == 1)
  1710. return 0;
  1711. *new_fsp = copy_fs_struct(fs);
  1712. if (!*new_fsp)
  1713. return -ENOMEM;
  1714. return 0;
  1715. }
  1716. /*
  1717. * Unshare file descriptor table if it is being shared
  1718. */
  1719. static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
  1720. {
  1721. struct files_struct *fd = current->files;
  1722. int error = 0;
  1723. if ((unshare_flags & CLONE_FILES) &&
  1724. (fd && atomic_read(&fd->count) > 1)) {
  1725. *new_fdp = dup_fd(fd, &error);
  1726. if (!*new_fdp)
  1727. return error;
  1728. }
  1729. return 0;
  1730. }
  1731. /*
  1732. * unshare allows a process to 'unshare' part of the process
  1733. * context which was originally shared using clone. copy_*
  1734. * functions used by do_fork() cannot be used here directly
  1735. * because they modify an inactive task_struct that is being
  1736. * constructed. Here we are modifying the current, active,
  1737. * task_struct.
  1738. */
  1739. SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
  1740. {
  1741. struct fs_struct *fs, *new_fs = NULL;
  1742. struct files_struct *fd, *new_fd = NULL;
  1743. struct cred *new_cred = NULL;
  1744. struct nsproxy *new_nsproxy = NULL;
  1745. int do_sysvsem = 0;
  1746. int err;
  1747. /*
  1748. * If unsharing a user namespace must also unshare the thread group
  1749. * and unshare the filesystem root and working directories.
  1750. */
  1751. if (unshare_flags & CLONE_NEWUSER)
  1752. unshare_flags |= CLONE_THREAD | CLONE_FS;
  1753. /*
  1754. * If unsharing vm, must also unshare signal handlers.
  1755. */
  1756. if (unshare_flags & CLONE_VM)
  1757. unshare_flags |= CLONE_SIGHAND;
  1758. /*
  1759. * If unsharing a signal handlers, must also unshare the signal queues.
  1760. */
  1761. if (unshare_flags & CLONE_SIGHAND)
  1762. unshare_flags |= CLONE_THREAD;
  1763. /*
  1764. * If unsharing namespace, must also unshare filesystem information.
  1765. */
  1766. if (unshare_flags & CLONE_NEWNS)
  1767. unshare_flags |= CLONE_FS;
  1768. err = check_unshare_flags(unshare_flags);
  1769. if (err)
  1770. goto bad_unshare_out;
  1771. /*
  1772. * CLONE_NEWIPC must also detach from the undolist: after switching
  1773. * to a new ipc namespace, the semaphore arrays from the old
  1774. * namespace are unreachable.
  1775. */
  1776. if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
  1777. do_sysvsem = 1;
  1778. err = unshare_fs(unshare_flags, &new_fs);
  1779. if (err)
  1780. goto bad_unshare_out;
  1781. err = unshare_fd(unshare_flags, &new_fd);
  1782. if (err)
  1783. goto bad_unshare_cleanup_fs;
  1784. err = unshare_userns(unshare_flags, &new_cred);
  1785. if (err)
  1786. goto bad_unshare_cleanup_fd;
  1787. err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
  1788. new_cred, new_fs);
  1789. if (err)
  1790. goto bad_unshare_cleanup_cred;
  1791. if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
  1792. if (do_sysvsem) {
  1793. /*
  1794. * CLONE_SYSVSEM is equivalent to sys_exit().
  1795. */
  1796. exit_sem(current);
  1797. }
  1798. if (unshare_flags & CLONE_NEWIPC) {
  1799. /* Orphan segments in old ns (see sem above). */
  1800. exit_shm(current);
  1801. shm_init_task(current);
  1802. }
  1803. if (new_nsproxy)
  1804. switch_task_namespaces(current, new_nsproxy);
  1805. task_lock(current);
  1806. if (new_fs) {
  1807. fs = current->fs;
  1808. spin_lock(&fs->lock);
  1809. current->fs = new_fs;
  1810. if (--fs->users)
  1811. new_fs = NULL;
  1812. else
  1813. new_fs = fs;
  1814. spin_unlock(&fs->lock);
  1815. }
  1816. if (new_fd) {
  1817. fd = current->files;
  1818. current->files = new_fd;
  1819. new_fd = fd;
  1820. }
  1821. task_unlock(current);
  1822. if (new_cred) {
  1823. /* Install the new user namespace */
  1824. commit_creds(new_cred);
  1825. new_cred = NULL;
  1826. }
  1827. }
  1828. bad_unshare_cleanup_cred:
  1829. if (new_cred)
  1830. put_cred(new_cred);
  1831. bad_unshare_cleanup_fd:
  1832. if (new_fd)
  1833. put_files_struct(new_fd);
  1834. bad_unshare_cleanup_fs:
  1835. if (new_fs)
  1836. free_fs_struct(new_fs);
  1837. bad_unshare_out:
  1838. return err;
  1839. }
  1840. /*
  1841. * Helper to unshare the files of the current task.
  1842. * We don't want to expose copy_files internals to
  1843. * the exec layer of the kernel.
  1844. */
  1845. int unshare_files(struct files_struct **displaced)
  1846. {
  1847. struct task_struct *task = current;
  1848. struct files_struct *copy = NULL;
  1849. int error;
  1850. error = unshare_fd(CLONE_FILES, &copy);
  1851. if (error || !copy) {
  1852. *displaced = NULL;
  1853. return error;
  1854. }
  1855. *displaced = task->files;
  1856. task_lock(task);
  1857. task->files = copy;
  1858. task_unlock(task);
  1859. return 0;
  1860. }
  1861. int sysctl_max_threads(struct ctl_table *table, int write,
  1862. void __user *buffer, size_t *lenp, loff_t *ppos)
  1863. {
  1864. struct ctl_table t;
  1865. int ret;
  1866. int threads = max_threads;
  1867. int min = MIN_THREADS;
  1868. int max = MAX_THREADS;
  1869. t = *table;
  1870. t.data = &threads;
  1871. t.extra1 = &min;
  1872. t.extra2 = &max;
  1873. ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1874. if (ret || !write)
  1875. return ret;
  1876. set_max_threads(threads);
  1877. return 0;
  1878. }