intel_ringbuffer.h 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626
  1. #ifndef _INTEL_RINGBUFFER_H_
  2. #define _INTEL_RINGBUFFER_H_
  3. #include <linux/hashtable.h>
  4. #include "i915_gem_batch_pool.h"
  5. #include "i915_gem_request.h"
  6. #define I915_CMD_HASH_ORDER 9
  7. /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  8. * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  9. * to give some inclination as to some of the magic values used in the various
  10. * workarounds!
  11. */
  12. #define CACHELINE_BYTES 64
  13. #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  14. /*
  15. * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  16. * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  17. * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  18. *
  19. * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  20. * cacheline, the Head Pointer must not be greater than the Tail
  21. * Pointer."
  22. */
  23. #define I915_RING_FREE_SPACE 64
  24. struct intel_hw_status_page {
  25. struct i915_vma *vma;
  26. u32 *page_addr;
  27. u32 ggtt_offset;
  28. };
  29. #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
  30. #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
  31. #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
  32. #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
  33. #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
  34. #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
  35. #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
  36. #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
  37. #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
  38. #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
  39. #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
  40. #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
  41. /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  42. * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  43. */
  44. #define gen8_semaphore_seqno_size sizeof(uint64_t)
  45. #define GEN8_SEMAPHORE_OFFSET(__from, __to) \
  46. (((__from) * I915_NUM_ENGINES + (__to)) * gen8_semaphore_seqno_size)
  47. #define GEN8_SIGNAL_OFFSET(__ring, to) \
  48. (dev_priv->semaphore->node.start + \
  49. GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  50. #define GEN8_WAIT_OFFSET(__ring, from) \
  51. (dev_priv->semaphore->node.start + \
  52. GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  53. enum intel_engine_hangcheck_action {
  54. HANGCHECK_IDLE = 0,
  55. HANGCHECK_WAIT,
  56. HANGCHECK_ACTIVE,
  57. HANGCHECK_KICK,
  58. HANGCHECK_HUNG,
  59. };
  60. #define HANGCHECK_SCORE_RING_HUNG 31
  61. #define I915_MAX_SLICES 3
  62. #define I915_MAX_SUBSLICES 3
  63. #define instdone_slice_mask(dev_priv__) \
  64. (INTEL_GEN(dev_priv__) == 7 ? \
  65. 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
  66. #define instdone_subslice_mask(dev_priv__) \
  67. (INTEL_GEN(dev_priv__) == 7 ? \
  68. 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
  69. #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
  70. for ((slice__) = 0, (subslice__) = 0; \
  71. (slice__) < I915_MAX_SLICES; \
  72. (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
  73. (slice__) += ((subslice__) == 0)) \
  74. for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
  75. (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
  76. struct intel_instdone {
  77. u32 instdone;
  78. /* The following exist only in the RCS engine */
  79. u32 slice_common;
  80. u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  81. u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
  82. };
  83. struct intel_engine_hangcheck {
  84. u64 acthd;
  85. u32 seqno;
  86. int score;
  87. enum intel_engine_hangcheck_action action;
  88. int deadlock;
  89. struct intel_instdone instdone;
  90. };
  91. struct intel_ring {
  92. struct i915_vma *vma;
  93. void *vaddr;
  94. struct intel_engine_cs *engine;
  95. struct list_head request_list;
  96. u32 head;
  97. u32 tail;
  98. int space;
  99. int size;
  100. int effective_size;
  101. /** We track the position of the requests in the ring buffer, and
  102. * when each is retired we increment last_retired_head as the GPU
  103. * must have finished processing the request and so we know we
  104. * can advance the ringbuffer up to that position.
  105. *
  106. * last_retired_head is set to -1 after the value is consumed so
  107. * we can detect new retirements.
  108. */
  109. u32 last_retired_head;
  110. };
  111. struct i915_gem_context;
  112. struct drm_i915_reg_table;
  113. /*
  114. * we use a single page to load ctx workarounds so all of these
  115. * values are referred in terms of dwords
  116. *
  117. * struct i915_wa_ctx_bb:
  118. * offset: specifies batch starting position, also helpful in case
  119. * if we want to have multiple batches at different offsets based on
  120. * some criteria. It is not a requirement at the moment but provides
  121. * an option for future use.
  122. * size: size of the batch in DWORDS
  123. */
  124. struct i915_ctx_workarounds {
  125. struct i915_wa_ctx_bb {
  126. u32 offset;
  127. u32 size;
  128. } indirect_ctx, per_ctx;
  129. struct i915_vma *vma;
  130. };
  131. struct drm_i915_gem_request;
  132. struct intel_engine_cs {
  133. struct drm_i915_private *i915;
  134. const char *name;
  135. enum intel_engine_id {
  136. RCS = 0,
  137. BCS,
  138. VCS,
  139. VCS2, /* Keep instances of the same type engine together. */
  140. VECS
  141. } id;
  142. #define I915_NUM_ENGINES 5
  143. #define _VCS(n) (VCS + (n))
  144. unsigned int exec_id;
  145. enum intel_engine_hw_id {
  146. RCS_HW = 0,
  147. VCS_HW,
  148. BCS_HW,
  149. VECS_HW,
  150. VCS2_HW
  151. } hw_id;
  152. enum intel_engine_hw_id guc_id; /* XXX same as hw_id? */
  153. u64 fence_context;
  154. u32 mmio_base;
  155. unsigned int irq_shift;
  156. struct intel_ring *buffer;
  157. /* Rather than have every client wait upon all user interrupts,
  158. * with the herd waking after every interrupt and each doing the
  159. * heavyweight seqno dance, we delegate the task (of being the
  160. * bottom-half of the user interrupt) to the first client. After
  161. * every interrupt, we wake up one client, who does the heavyweight
  162. * coherent seqno read and either goes back to sleep (if incomplete),
  163. * or wakes up all the completed clients in parallel, before then
  164. * transferring the bottom-half status to the next client in the queue.
  165. *
  166. * Compared to walking the entire list of waiters in a single dedicated
  167. * bottom-half, we reduce the latency of the first waiter by avoiding
  168. * a context switch, but incur additional coherent seqno reads when
  169. * following the chain of request breadcrumbs. Since it is most likely
  170. * that we have a single client waiting on each seqno, then reducing
  171. * the overhead of waking that client is much preferred.
  172. */
  173. struct intel_breadcrumbs {
  174. struct task_struct __rcu *irq_seqno_bh; /* bh for interrupts */
  175. bool irq_posted;
  176. spinlock_t lock; /* protects the lists of requests */
  177. struct rb_root waiters; /* sorted by retirement, priority */
  178. struct rb_root signals; /* sorted by retirement */
  179. struct intel_wait *first_wait; /* oldest waiter by retirement */
  180. struct task_struct *signaler; /* used for fence signalling */
  181. struct drm_i915_gem_request *first_signal;
  182. struct timer_list fake_irq; /* used after a missed interrupt */
  183. struct timer_list hangcheck; /* detect missed interrupts */
  184. unsigned long timeout;
  185. bool irq_enabled : 1;
  186. bool rpm_wakelock : 1;
  187. } breadcrumbs;
  188. /*
  189. * A pool of objects to use as shadow copies of client batch buffers
  190. * when the command parser is enabled. Prevents the client from
  191. * modifying the batch contents after software parsing.
  192. */
  193. struct i915_gem_batch_pool batch_pool;
  194. struct intel_hw_status_page status_page;
  195. struct i915_ctx_workarounds wa_ctx;
  196. struct i915_vma *scratch;
  197. u32 irq_keep_mask; /* always keep these interrupts */
  198. u32 irq_enable_mask; /* bitmask to enable ring interrupt */
  199. void (*irq_enable)(struct intel_engine_cs *engine);
  200. void (*irq_disable)(struct intel_engine_cs *engine);
  201. int (*init_hw)(struct intel_engine_cs *engine);
  202. void (*reset_hw)(struct intel_engine_cs *engine,
  203. struct drm_i915_gem_request *req);
  204. int (*init_context)(struct drm_i915_gem_request *req);
  205. int (*emit_flush)(struct drm_i915_gem_request *request,
  206. u32 mode);
  207. #define EMIT_INVALIDATE BIT(0)
  208. #define EMIT_FLUSH BIT(1)
  209. #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
  210. int (*emit_bb_start)(struct drm_i915_gem_request *req,
  211. u64 offset, u32 length,
  212. unsigned int dispatch_flags);
  213. #define I915_DISPATCH_SECURE BIT(0)
  214. #define I915_DISPATCH_PINNED BIT(1)
  215. #define I915_DISPATCH_RS BIT(2)
  216. int (*emit_request)(struct drm_i915_gem_request *req);
  217. /* Pass the request to the hardware queue (e.g. directly into
  218. * the legacy ringbuffer or to the end of an execlist).
  219. *
  220. * This is called from an atomic context with irqs disabled; must
  221. * be irq safe.
  222. */
  223. void (*submit_request)(struct drm_i915_gem_request *req);
  224. /* Some chipsets are not quite as coherent as advertised and need
  225. * an expensive kick to force a true read of the up-to-date seqno.
  226. * However, the up-to-date seqno is not always required and the last
  227. * seen value is good enough. Note that the seqno will always be
  228. * monotonic, even if not coherent.
  229. */
  230. void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
  231. void (*cleanup)(struct intel_engine_cs *engine);
  232. /* GEN8 signal/wait table - never trust comments!
  233. * signal to signal to signal to signal to signal to
  234. * RCS VCS BCS VECS VCS2
  235. * --------------------------------------------------------------------
  236. * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
  237. * |-------------------------------------------------------------------
  238. * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
  239. * |-------------------------------------------------------------------
  240. * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
  241. * |-------------------------------------------------------------------
  242. * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
  243. * |-------------------------------------------------------------------
  244. * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
  245. * |-------------------------------------------------------------------
  246. *
  247. * Generalization:
  248. * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
  249. * ie. transpose of g(x, y)
  250. *
  251. * sync from sync from sync from sync from sync from
  252. * RCS VCS BCS VECS VCS2
  253. * --------------------------------------------------------------------
  254. * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
  255. * |-------------------------------------------------------------------
  256. * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
  257. * |-------------------------------------------------------------------
  258. * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
  259. * |-------------------------------------------------------------------
  260. * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
  261. * |-------------------------------------------------------------------
  262. * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
  263. * |-------------------------------------------------------------------
  264. *
  265. * Generalization:
  266. * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
  267. * ie. transpose of f(x, y)
  268. */
  269. struct {
  270. u32 sync_seqno[I915_NUM_ENGINES-1];
  271. union {
  272. #define GEN6_SEMAPHORE_LAST VECS_HW
  273. #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
  274. #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
  275. struct {
  276. /* our mbox written by others */
  277. u32 wait[GEN6_NUM_SEMAPHORES];
  278. /* mboxes this ring signals to */
  279. i915_reg_t signal[GEN6_NUM_SEMAPHORES];
  280. } mbox;
  281. u64 signal_ggtt[I915_NUM_ENGINES];
  282. };
  283. /* AKA wait() */
  284. int (*sync_to)(struct drm_i915_gem_request *req,
  285. struct drm_i915_gem_request *signal);
  286. int (*signal)(struct drm_i915_gem_request *req);
  287. } semaphore;
  288. /* Execlists */
  289. struct tasklet_struct irq_tasklet;
  290. spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
  291. struct execlist_port {
  292. struct drm_i915_gem_request *request;
  293. unsigned int count;
  294. } execlist_port[2];
  295. struct list_head execlist_queue;
  296. unsigned int fw_domains;
  297. bool disable_lite_restore_wa;
  298. bool preempt_wa;
  299. u32 ctx_desc_template;
  300. /**
  301. * List of breadcrumbs associated with GPU requests currently
  302. * outstanding.
  303. */
  304. struct list_head request_list;
  305. /**
  306. * Seqno of request most recently submitted to request_list.
  307. * Used exclusively by hang checker to avoid grabbing lock while
  308. * inspecting request list.
  309. */
  310. u32 last_submitted_seqno;
  311. u32 last_pending_seqno;
  312. /* An RCU guarded pointer to the last request. No reference is
  313. * held to the request, users must carefully acquire a reference to
  314. * the request using i915_gem_active_get_rcu(), or hold the
  315. * struct_mutex.
  316. */
  317. struct i915_gem_active last_request;
  318. struct i915_gem_context *last_context;
  319. struct intel_engine_hangcheck hangcheck;
  320. bool needs_cmd_parser;
  321. /*
  322. * Table of commands the command parser needs to know about
  323. * for this engine.
  324. */
  325. DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
  326. /*
  327. * Table of registers allowed in commands that read/write registers.
  328. */
  329. const struct drm_i915_reg_table *reg_tables;
  330. int reg_table_count;
  331. /*
  332. * Returns the bitmask for the length field of the specified command.
  333. * Return 0 for an unrecognized/invalid command.
  334. *
  335. * If the command parser finds an entry for a command in the engine's
  336. * cmd_tables, it gets the command's length based on the table entry.
  337. * If not, it calls this function to determine the per-engine length
  338. * field encoding for the command (i.e. different opcode ranges use
  339. * certain bits to encode the command length in the header).
  340. */
  341. u32 (*get_cmd_length_mask)(u32 cmd_header);
  342. };
  343. static inline bool
  344. intel_engine_initialized(const struct intel_engine_cs *engine)
  345. {
  346. return engine->i915 != NULL;
  347. }
  348. static inline unsigned
  349. intel_engine_flag(const struct intel_engine_cs *engine)
  350. {
  351. return 1 << engine->id;
  352. }
  353. static inline u32
  354. intel_engine_sync_index(struct intel_engine_cs *engine,
  355. struct intel_engine_cs *other)
  356. {
  357. int idx;
  358. /*
  359. * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
  360. * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
  361. * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
  362. * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
  363. * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
  364. */
  365. idx = (other - engine) - 1;
  366. if (idx < 0)
  367. idx += I915_NUM_ENGINES;
  368. return idx;
  369. }
  370. static inline void
  371. intel_flush_status_page(struct intel_engine_cs *engine, int reg)
  372. {
  373. mb();
  374. clflush(&engine->status_page.page_addr[reg]);
  375. mb();
  376. }
  377. static inline u32
  378. intel_read_status_page(struct intel_engine_cs *engine, int reg)
  379. {
  380. /* Ensure that the compiler doesn't optimize away the load. */
  381. return READ_ONCE(engine->status_page.page_addr[reg]);
  382. }
  383. static inline void
  384. intel_write_status_page(struct intel_engine_cs *engine,
  385. int reg, u32 value)
  386. {
  387. engine->status_page.page_addr[reg] = value;
  388. }
  389. /*
  390. * Reads a dword out of the status page, which is written to from the command
  391. * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
  392. * MI_STORE_DATA_IMM.
  393. *
  394. * The following dwords have a reserved meaning:
  395. * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
  396. * 0x04: ring 0 head pointer
  397. * 0x05: ring 1 head pointer (915-class)
  398. * 0x06: ring 2 head pointer (915-class)
  399. * 0x10-0x1b: Context status DWords (GM45)
  400. * 0x1f: Last written status offset. (GM45)
  401. * 0x20-0x2f: Reserved (Gen6+)
  402. *
  403. * The area from dword 0x30 to 0x3ff is available for driver usage.
  404. */
  405. #define I915_GEM_HWS_INDEX 0x30
  406. #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  407. #define I915_GEM_HWS_SCRATCH_INDEX 0x40
  408. #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
  409. struct intel_ring *
  410. intel_engine_create_ring(struct intel_engine_cs *engine, int size);
  411. int intel_ring_pin(struct intel_ring *ring);
  412. void intel_ring_unpin(struct intel_ring *ring);
  413. void intel_ring_free(struct intel_ring *ring);
  414. void intel_engine_stop(struct intel_engine_cs *engine);
  415. void intel_engine_cleanup(struct intel_engine_cs *engine);
  416. void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
  417. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
  418. int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
  419. int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
  420. static inline void intel_ring_emit(struct intel_ring *ring, u32 data)
  421. {
  422. *(uint32_t *)(ring->vaddr + ring->tail) = data;
  423. ring->tail += 4;
  424. }
  425. static inline void intel_ring_emit_reg(struct intel_ring *ring, i915_reg_t reg)
  426. {
  427. intel_ring_emit(ring, i915_mmio_reg_offset(reg));
  428. }
  429. static inline void intel_ring_advance(struct intel_ring *ring)
  430. {
  431. /* Dummy function.
  432. *
  433. * This serves as a placeholder in the code so that the reader
  434. * can compare against the preceding intel_ring_begin() and
  435. * check that the number of dwords emitted matches the space
  436. * reserved for the command packet (i.e. the value passed to
  437. * intel_ring_begin()).
  438. */
  439. }
  440. static inline u32 intel_ring_offset(struct intel_ring *ring, u32 value)
  441. {
  442. /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
  443. return value & (ring->size - 1);
  444. }
  445. int __intel_ring_space(int head, int tail, int size);
  446. void intel_ring_update_space(struct intel_ring *ring);
  447. void intel_engine_init_seqno(struct intel_engine_cs *engine, u32 seqno);
  448. void intel_engine_setup_common(struct intel_engine_cs *engine);
  449. int intel_engine_init_common(struct intel_engine_cs *engine);
  450. int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
  451. void intel_engine_cleanup_common(struct intel_engine_cs *engine);
  452. static inline int intel_engine_idle(struct intel_engine_cs *engine,
  453. unsigned int flags)
  454. {
  455. /* Wait upon the last request to be completed */
  456. return i915_gem_active_wait_unlocked(&engine->last_request,
  457. flags, NULL, NULL);
  458. }
  459. int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
  460. int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
  461. int intel_init_bsd2_ring_buffer(struct intel_engine_cs *engine);
  462. int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
  463. int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
  464. u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
  465. u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
  466. static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
  467. {
  468. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  469. }
  470. int init_workarounds_ring(struct intel_engine_cs *engine);
  471. /*
  472. * Arbitrary size for largest possible 'add request' sequence. The code paths
  473. * are complex and variable. Empirical measurement shows that the worst case
  474. * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
  475. * we need to allocate double the largest single packet within that emission
  476. * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
  477. */
  478. #define MIN_SPACE_FOR_ADD_REQUEST 336
  479. static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
  480. {
  481. return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
  482. }
  483. /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
  484. int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
  485. static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
  486. {
  487. wait->tsk = current;
  488. wait->seqno = seqno;
  489. }
  490. static inline bool intel_wait_complete(const struct intel_wait *wait)
  491. {
  492. return RB_EMPTY_NODE(&wait->node);
  493. }
  494. bool intel_engine_add_wait(struct intel_engine_cs *engine,
  495. struct intel_wait *wait);
  496. void intel_engine_remove_wait(struct intel_engine_cs *engine,
  497. struct intel_wait *wait);
  498. void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
  499. static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
  500. {
  501. return rcu_access_pointer(engine->breadcrumbs.irq_seqno_bh);
  502. }
  503. static inline bool intel_engine_wakeup(const struct intel_engine_cs *engine)
  504. {
  505. bool wakeup = false;
  506. /* Note that for this not to dangerously chase a dangling pointer,
  507. * we must hold the rcu_read_lock here.
  508. *
  509. * Also note that tsk is likely to be in !TASK_RUNNING state so an
  510. * early test for tsk->state != TASK_RUNNING before wake_up_process()
  511. * is unlikely to be beneficial.
  512. */
  513. if (intel_engine_has_waiter(engine)) {
  514. struct task_struct *tsk;
  515. rcu_read_lock();
  516. tsk = rcu_dereference(engine->breadcrumbs.irq_seqno_bh);
  517. if (tsk)
  518. wakeup = wake_up_process(tsk);
  519. rcu_read_unlock();
  520. }
  521. return wakeup;
  522. }
  523. void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
  524. void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
  525. unsigned int intel_kick_waiters(struct drm_i915_private *i915);
  526. unsigned int intel_kick_signalers(struct drm_i915_private *i915);
  527. static inline bool intel_engine_is_active(struct intel_engine_cs *engine)
  528. {
  529. return i915_gem_active_isset(&engine->last_request);
  530. }
  531. #endif /* _INTEL_RINGBUFFER_H_ */