mmu.c 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "mmu.h"
  20. #include "kvm_cache_regs.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. #include <asm/vmx.h>
  34. /*
  35. * When setting this variable to true it enables Two-Dimensional-Paging
  36. * where the hardware walks 2 page tables:
  37. * 1. the guest-virtual to guest-physical
  38. * 2. while doing 1. it walks guest-physical to host-physical
  39. * If the hardware supports that we don't need to do shadow paging.
  40. */
  41. bool tdp_enabled = false;
  42. #undef MMU_DEBUG
  43. #undef AUDIT
  44. #ifdef AUDIT
  45. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  46. #else
  47. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  48. #endif
  49. #ifdef MMU_DEBUG
  50. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  51. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  52. #else
  53. #define pgprintk(x...) do { } while (0)
  54. #define rmap_printk(x...) do { } while (0)
  55. #endif
  56. #if defined(MMU_DEBUG) || defined(AUDIT)
  57. static int dbg = 0;
  58. module_param(dbg, bool, 0644);
  59. #endif
  60. static int oos_shadow = 1;
  61. module_param(oos_shadow, bool, 0644);
  62. #ifndef MMU_DEBUG
  63. #define ASSERT(x) do { } while (0)
  64. #else
  65. #define ASSERT(x) \
  66. if (!(x)) { \
  67. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  68. __FILE__, __LINE__, #x); \
  69. }
  70. #endif
  71. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  72. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  73. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  74. #define PT64_LEVEL_BITS 9
  75. #define PT64_LEVEL_SHIFT(level) \
  76. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  77. #define PT64_LEVEL_MASK(level) \
  78. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  79. #define PT64_INDEX(address, level)\
  80. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  81. #define PT32_LEVEL_BITS 10
  82. #define PT32_LEVEL_SHIFT(level) \
  83. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  84. #define PT32_LEVEL_MASK(level) \
  85. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  86. #define PT32_LVL_OFFSET_MASK(level) \
  87. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  88. * PT32_LEVEL_BITS))) - 1))
  89. #define PT32_INDEX(address, level)\
  90. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  91. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  92. #define PT64_DIR_BASE_ADDR_MASK \
  93. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  94. #define PT64_LVL_ADDR_MASK(level) \
  95. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  96. * PT64_LEVEL_BITS))) - 1))
  97. #define PT64_LVL_OFFSET_MASK(level) \
  98. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  99. * PT64_LEVEL_BITS))) - 1))
  100. #define PT32_BASE_ADDR_MASK PAGE_MASK
  101. #define PT32_DIR_BASE_ADDR_MASK \
  102. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  103. #define PT32_LVL_ADDR_MASK(level) \
  104. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  105. * PT32_LEVEL_BITS))) - 1))
  106. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  107. | PT64_NX_MASK)
  108. #define PFERR_PRESENT_MASK (1U << 0)
  109. #define PFERR_WRITE_MASK (1U << 1)
  110. #define PFERR_USER_MASK (1U << 2)
  111. #define PFERR_RSVD_MASK (1U << 3)
  112. #define PFERR_FETCH_MASK (1U << 4)
  113. #define PT_PDPE_LEVEL 3
  114. #define PT_DIRECTORY_LEVEL 2
  115. #define PT_PAGE_TABLE_LEVEL 1
  116. #define RMAP_EXT 4
  117. #define ACC_EXEC_MASK 1
  118. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  119. #define ACC_USER_MASK PT_USER_MASK
  120. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  121. #define CREATE_TRACE_POINTS
  122. #include "mmutrace.h"
  123. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  124. struct kvm_rmap_desc {
  125. u64 *sptes[RMAP_EXT];
  126. struct kvm_rmap_desc *more;
  127. };
  128. struct kvm_shadow_walk_iterator {
  129. u64 addr;
  130. hpa_t shadow_addr;
  131. int level;
  132. u64 *sptep;
  133. unsigned index;
  134. };
  135. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  136. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  137. shadow_walk_okay(&(_walker)); \
  138. shadow_walk_next(&(_walker)))
  139. struct kvm_unsync_walk {
  140. int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
  141. };
  142. typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
  143. static struct kmem_cache *pte_chain_cache;
  144. static struct kmem_cache *rmap_desc_cache;
  145. static struct kmem_cache *mmu_page_header_cache;
  146. static u64 __read_mostly shadow_trap_nonpresent_pte;
  147. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  148. static u64 __read_mostly shadow_base_present_pte;
  149. static u64 __read_mostly shadow_nx_mask;
  150. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  151. static u64 __read_mostly shadow_user_mask;
  152. static u64 __read_mostly shadow_accessed_mask;
  153. static u64 __read_mostly shadow_dirty_mask;
  154. static inline u64 rsvd_bits(int s, int e)
  155. {
  156. return ((1ULL << (e - s + 1)) - 1) << s;
  157. }
  158. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  159. {
  160. shadow_trap_nonpresent_pte = trap_pte;
  161. shadow_notrap_nonpresent_pte = notrap_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  164. void kvm_mmu_set_base_ptes(u64 base_pte)
  165. {
  166. shadow_base_present_pte = base_pte;
  167. }
  168. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  169. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  170. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  171. {
  172. shadow_user_mask = user_mask;
  173. shadow_accessed_mask = accessed_mask;
  174. shadow_dirty_mask = dirty_mask;
  175. shadow_nx_mask = nx_mask;
  176. shadow_x_mask = x_mask;
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  179. static int is_write_protection(struct kvm_vcpu *vcpu)
  180. {
  181. return vcpu->arch.cr0 & X86_CR0_WP;
  182. }
  183. static int is_cpuid_PSE36(void)
  184. {
  185. return 1;
  186. }
  187. static int is_nx(struct kvm_vcpu *vcpu)
  188. {
  189. return vcpu->arch.shadow_efer & EFER_NX;
  190. }
  191. static int is_shadow_present_pte(u64 pte)
  192. {
  193. return pte != shadow_trap_nonpresent_pte
  194. && pte != shadow_notrap_nonpresent_pte;
  195. }
  196. static int is_large_pte(u64 pte)
  197. {
  198. return pte & PT_PAGE_SIZE_MASK;
  199. }
  200. static int is_writeble_pte(unsigned long pte)
  201. {
  202. return pte & PT_WRITABLE_MASK;
  203. }
  204. static int is_dirty_gpte(unsigned long pte)
  205. {
  206. return pte & PT_DIRTY_MASK;
  207. }
  208. static int is_rmap_spte(u64 pte)
  209. {
  210. return is_shadow_present_pte(pte);
  211. }
  212. static int is_last_spte(u64 pte, int level)
  213. {
  214. if (level == PT_PAGE_TABLE_LEVEL)
  215. return 1;
  216. if (is_large_pte(pte))
  217. return 1;
  218. return 0;
  219. }
  220. static pfn_t spte_to_pfn(u64 pte)
  221. {
  222. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  223. }
  224. static gfn_t pse36_gfn_delta(u32 gpte)
  225. {
  226. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  227. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  228. }
  229. static void __set_spte(u64 *sptep, u64 spte)
  230. {
  231. #ifdef CONFIG_X86_64
  232. set_64bit((unsigned long *)sptep, spte);
  233. #else
  234. set_64bit((unsigned long long *)sptep, spte);
  235. #endif
  236. }
  237. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  238. struct kmem_cache *base_cache, int min)
  239. {
  240. void *obj;
  241. if (cache->nobjs >= min)
  242. return 0;
  243. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  244. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  245. if (!obj)
  246. return -ENOMEM;
  247. cache->objects[cache->nobjs++] = obj;
  248. }
  249. return 0;
  250. }
  251. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  252. {
  253. while (mc->nobjs)
  254. kfree(mc->objects[--mc->nobjs]);
  255. }
  256. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  257. int min)
  258. {
  259. struct page *page;
  260. if (cache->nobjs >= min)
  261. return 0;
  262. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  263. page = alloc_page(GFP_KERNEL);
  264. if (!page)
  265. return -ENOMEM;
  266. set_page_private(page, 0);
  267. cache->objects[cache->nobjs++] = page_address(page);
  268. }
  269. return 0;
  270. }
  271. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  272. {
  273. while (mc->nobjs)
  274. free_page((unsigned long)mc->objects[--mc->nobjs]);
  275. }
  276. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  277. {
  278. int r;
  279. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  280. pte_chain_cache, 4);
  281. if (r)
  282. goto out;
  283. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  284. rmap_desc_cache, 4);
  285. if (r)
  286. goto out;
  287. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  288. if (r)
  289. goto out;
  290. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  291. mmu_page_header_cache, 4);
  292. out:
  293. return r;
  294. }
  295. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  296. {
  297. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  298. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  299. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  300. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  301. }
  302. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  303. size_t size)
  304. {
  305. void *p;
  306. BUG_ON(!mc->nobjs);
  307. p = mc->objects[--mc->nobjs];
  308. return p;
  309. }
  310. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  311. {
  312. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  313. sizeof(struct kvm_pte_chain));
  314. }
  315. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  316. {
  317. kfree(pc);
  318. }
  319. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  320. {
  321. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  322. sizeof(struct kvm_rmap_desc));
  323. }
  324. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  325. {
  326. kfree(rd);
  327. }
  328. /*
  329. * Return the pointer to the largepage write count for a given
  330. * gfn, handling slots that are not large page aligned.
  331. */
  332. static int *slot_largepage_idx(gfn_t gfn,
  333. struct kvm_memory_slot *slot,
  334. int level)
  335. {
  336. unsigned long idx;
  337. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  338. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  339. return &slot->lpage_info[level - 2][idx].write_count;
  340. }
  341. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  342. {
  343. struct kvm_memory_slot *slot;
  344. int *write_count;
  345. int i;
  346. gfn = unalias_gfn(kvm, gfn);
  347. slot = gfn_to_memslot_unaliased(kvm, gfn);
  348. for (i = PT_DIRECTORY_LEVEL;
  349. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  350. write_count = slot_largepage_idx(gfn, slot, i);
  351. *write_count += 1;
  352. }
  353. }
  354. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  355. {
  356. struct kvm_memory_slot *slot;
  357. int *write_count;
  358. int i;
  359. gfn = unalias_gfn(kvm, gfn);
  360. for (i = PT_DIRECTORY_LEVEL;
  361. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  362. slot = gfn_to_memslot_unaliased(kvm, gfn);
  363. write_count = slot_largepage_idx(gfn, slot, i);
  364. *write_count -= 1;
  365. WARN_ON(*write_count < 0);
  366. }
  367. }
  368. static int has_wrprotected_page(struct kvm *kvm,
  369. gfn_t gfn,
  370. int level)
  371. {
  372. struct kvm_memory_slot *slot;
  373. int *largepage_idx;
  374. gfn = unalias_gfn(kvm, gfn);
  375. slot = gfn_to_memslot_unaliased(kvm, gfn);
  376. if (slot) {
  377. largepage_idx = slot_largepage_idx(gfn, slot, level);
  378. return *largepage_idx;
  379. }
  380. return 1;
  381. }
  382. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  383. {
  384. unsigned long page_size = PAGE_SIZE;
  385. struct vm_area_struct *vma;
  386. unsigned long addr;
  387. int i, ret = 0;
  388. addr = gfn_to_hva(kvm, gfn);
  389. if (kvm_is_error_hva(addr))
  390. return page_size;
  391. down_read(&current->mm->mmap_sem);
  392. vma = find_vma(current->mm, addr);
  393. if (!vma)
  394. goto out;
  395. page_size = vma_kernel_pagesize(vma);
  396. out:
  397. up_read(&current->mm->mmap_sem);
  398. for (i = PT_PAGE_TABLE_LEVEL;
  399. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  400. if (page_size >= KVM_HPAGE_SIZE(i))
  401. ret = i;
  402. else
  403. break;
  404. }
  405. return ret;
  406. }
  407. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  408. {
  409. struct kvm_memory_slot *slot;
  410. int host_level;
  411. int level = PT_PAGE_TABLE_LEVEL;
  412. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  413. if (slot && slot->dirty_bitmap)
  414. return PT_PAGE_TABLE_LEVEL;
  415. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  416. if (host_level == PT_PAGE_TABLE_LEVEL)
  417. return host_level;
  418. for (level = PT_DIRECTORY_LEVEL; level <= host_level; ++level) {
  419. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  420. break;
  421. }
  422. return level - 1;
  423. }
  424. /*
  425. * Take gfn and return the reverse mapping to it.
  426. * Note: gfn must be unaliased before this function get called
  427. */
  428. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  429. {
  430. struct kvm_memory_slot *slot;
  431. unsigned long idx;
  432. slot = gfn_to_memslot(kvm, gfn);
  433. if (likely(level == PT_PAGE_TABLE_LEVEL))
  434. return &slot->rmap[gfn - slot->base_gfn];
  435. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  436. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  437. return &slot->lpage_info[level - 2][idx].rmap_pde;
  438. }
  439. /*
  440. * Reverse mapping data structures:
  441. *
  442. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  443. * that points to page_address(page).
  444. *
  445. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  446. * containing more mappings.
  447. *
  448. * Returns the number of rmap entries before the spte was added or zero if
  449. * the spte was not added.
  450. *
  451. */
  452. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  453. {
  454. struct kvm_mmu_page *sp;
  455. struct kvm_rmap_desc *desc;
  456. unsigned long *rmapp;
  457. int i, count = 0;
  458. if (!is_rmap_spte(*spte))
  459. return count;
  460. gfn = unalias_gfn(vcpu->kvm, gfn);
  461. sp = page_header(__pa(spte));
  462. sp->gfns[spte - sp->spt] = gfn;
  463. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  464. if (!*rmapp) {
  465. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  466. *rmapp = (unsigned long)spte;
  467. } else if (!(*rmapp & 1)) {
  468. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  469. desc = mmu_alloc_rmap_desc(vcpu);
  470. desc->sptes[0] = (u64 *)*rmapp;
  471. desc->sptes[1] = spte;
  472. *rmapp = (unsigned long)desc | 1;
  473. } else {
  474. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  475. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  476. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  477. desc = desc->more;
  478. count += RMAP_EXT;
  479. }
  480. if (desc->sptes[RMAP_EXT-1]) {
  481. desc->more = mmu_alloc_rmap_desc(vcpu);
  482. desc = desc->more;
  483. }
  484. for (i = 0; desc->sptes[i]; ++i)
  485. ;
  486. desc->sptes[i] = spte;
  487. }
  488. return count;
  489. }
  490. static void rmap_desc_remove_entry(unsigned long *rmapp,
  491. struct kvm_rmap_desc *desc,
  492. int i,
  493. struct kvm_rmap_desc *prev_desc)
  494. {
  495. int j;
  496. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  497. ;
  498. desc->sptes[i] = desc->sptes[j];
  499. desc->sptes[j] = NULL;
  500. if (j != 0)
  501. return;
  502. if (!prev_desc && !desc->more)
  503. *rmapp = (unsigned long)desc->sptes[0];
  504. else
  505. if (prev_desc)
  506. prev_desc->more = desc->more;
  507. else
  508. *rmapp = (unsigned long)desc->more | 1;
  509. mmu_free_rmap_desc(desc);
  510. }
  511. static void rmap_remove(struct kvm *kvm, u64 *spte)
  512. {
  513. struct kvm_rmap_desc *desc;
  514. struct kvm_rmap_desc *prev_desc;
  515. struct kvm_mmu_page *sp;
  516. pfn_t pfn;
  517. unsigned long *rmapp;
  518. int i;
  519. if (!is_rmap_spte(*spte))
  520. return;
  521. sp = page_header(__pa(spte));
  522. pfn = spte_to_pfn(*spte);
  523. if (*spte & shadow_accessed_mask)
  524. kvm_set_pfn_accessed(pfn);
  525. if (is_writeble_pte(*spte))
  526. kvm_set_pfn_dirty(pfn);
  527. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
  528. if (!*rmapp) {
  529. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  530. BUG();
  531. } else if (!(*rmapp & 1)) {
  532. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  533. if ((u64 *)*rmapp != spte) {
  534. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  535. spte, *spte);
  536. BUG();
  537. }
  538. *rmapp = 0;
  539. } else {
  540. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  541. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  542. prev_desc = NULL;
  543. while (desc) {
  544. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  545. if (desc->sptes[i] == spte) {
  546. rmap_desc_remove_entry(rmapp,
  547. desc, i,
  548. prev_desc);
  549. return;
  550. }
  551. prev_desc = desc;
  552. desc = desc->more;
  553. }
  554. BUG();
  555. }
  556. }
  557. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  558. {
  559. struct kvm_rmap_desc *desc;
  560. struct kvm_rmap_desc *prev_desc;
  561. u64 *prev_spte;
  562. int i;
  563. if (!*rmapp)
  564. return NULL;
  565. else if (!(*rmapp & 1)) {
  566. if (!spte)
  567. return (u64 *)*rmapp;
  568. return NULL;
  569. }
  570. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  571. prev_desc = NULL;
  572. prev_spte = NULL;
  573. while (desc) {
  574. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  575. if (prev_spte == spte)
  576. return desc->sptes[i];
  577. prev_spte = desc->sptes[i];
  578. }
  579. desc = desc->more;
  580. }
  581. return NULL;
  582. }
  583. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  584. {
  585. unsigned long *rmapp;
  586. u64 *spte;
  587. int i, write_protected = 0;
  588. gfn = unalias_gfn(kvm, gfn);
  589. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  590. spte = rmap_next(kvm, rmapp, NULL);
  591. while (spte) {
  592. BUG_ON(!spte);
  593. BUG_ON(!(*spte & PT_PRESENT_MASK));
  594. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  595. if (is_writeble_pte(*spte)) {
  596. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  597. write_protected = 1;
  598. }
  599. spte = rmap_next(kvm, rmapp, spte);
  600. }
  601. if (write_protected) {
  602. pfn_t pfn;
  603. spte = rmap_next(kvm, rmapp, NULL);
  604. pfn = spte_to_pfn(*spte);
  605. kvm_set_pfn_dirty(pfn);
  606. }
  607. /* check for huge page mappings */
  608. for (i = PT_DIRECTORY_LEVEL;
  609. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  610. rmapp = gfn_to_rmap(kvm, gfn, i);
  611. spte = rmap_next(kvm, rmapp, NULL);
  612. while (spte) {
  613. BUG_ON(!spte);
  614. BUG_ON(!(*spte & PT_PRESENT_MASK));
  615. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  616. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  617. if (is_writeble_pte(*spte)) {
  618. rmap_remove(kvm, spte);
  619. --kvm->stat.lpages;
  620. __set_spte(spte, shadow_trap_nonpresent_pte);
  621. spte = NULL;
  622. write_protected = 1;
  623. }
  624. spte = rmap_next(kvm, rmapp, spte);
  625. }
  626. }
  627. return write_protected;
  628. }
  629. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  630. {
  631. u64 *spte;
  632. int need_tlb_flush = 0;
  633. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  634. BUG_ON(!(*spte & PT_PRESENT_MASK));
  635. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  636. rmap_remove(kvm, spte);
  637. __set_spte(spte, shadow_trap_nonpresent_pte);
  638. need_tlb_flush = 1;
  639. }
  640. return need_tlb_flush;
  641. }
  642. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  643. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  644. {
  645. int i, j;
  646. int retval = 0;
  647. /*
  648. * If mmap_sem isn't taken, we can look the memslots with only
  649. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  650. */
  651. for (i = 0; i < kvm->nmemslots; i++) {
  652. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  653. unsigned long start = memslot->userspace_addr;
  654. unsigned long end;
  655. /* mmu_lock protects userspace_addr */
  656. if (!start)
  657. continue;
  658. end = start + (memslot->npages << PAGE_SHIFT);
  659. if (hva >= start && hva < end) {
  660. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  661. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  662. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  663. int idx = gfn_offset;
  664. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  665. retval |= handler(kvm,
  666. &memslot->lpage_info[j][idx].rmap_pde);
  667. }
  668. }
  669. }
  670. return retval;
  671. }
  672. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  673. {
  674. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  675. }
  676. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  677. {
  678. u64 *spte;
  679. int young = 0;
  680. /* always return old for EPT */
  681. if (!shadow_accessed_mask)
  682. return 0;
  683. spte = rmap_next(kvm, rmapp, NULL);
  684. while (spte) {
  685. int _young;
  686. u64 _spte = *spte;
  687. BUG_ON(!(_spte & PT_PRESENT_MASK));
  688. _young = _spte & PT_ACCESSED_MASK;
  689. if (_young) {
  690. young = 1;
  691. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  692. }
  693. spte = rmap_next(kvm, rmapp, spte);
  694. }
  695. return young;
  696. }
  697. #define RMAP_RECYCLE_THRESHOLD 1000
  698. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  699. {
  700. unsigned long *rmapp;
  701. struct kvm_mmu_page *sp;
  702. sp = page_header(__pa(spte));
  703. gfn = unalias_gfn(vcpu->kvm, gfn);
  704. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  705. kvm_unmap_rmapp(vcpu->kvm, rmapp);
  706. kvm_flush_remote_tlbs(vcpu->kvm);
  707. }
  708. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  709. {
  710. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  711. }
  712. #ifdef MMU_DEBUG
  713. static int is_empty_shadow_page(u64 *spt)
  714. {
  715. u64 *pos;
  716. u64 *end;
  717. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  718. if (is_shadow_present_pte(*pos)) {
  719. printk(KERN_ERR "%s: %p %llx\n", __func__,
  720. pos, *pos);
  721. return 0;
  722. }
  723. return 1;
  724. }
  725. #endif
  726. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  727. {
  728. ASSERT(is_empty_shadow_page(sp->spt));
  729. list_del(&sp->link);
  730. __free_page(virt_to_page(sp->spt));
  731. __free_page(virt_to_page(sp->gfns));
  732. kfree(sp);
  733. ++kvm->arch.n_free_mmu_pages;
  734. }
  735. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  736. {
  737. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  738. }
  739. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  740. u64 *parent_pte)
  741. {
  742. struct kvm_mmu_page *sp;
  743. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  744. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  745. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  746. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  747. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  748. INIT_LIST_HEAD(&sp->oos_link);
  749. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  750. sp->multimapped = 0;
  751. sp->parent_pte = parent_pte;
  752. --vcpu->kvm->arch.n_free_mmu_pages;
  753. return sp;
  754. }
  755. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  756. struct kvm_mmu_page *sp, u64 *parent_pte)
  757. {
  758. struct kvm_pte_chain *pte_chain;
  759. struct hlist_node *node;
  760. int i;
  761. if (!parent_pte)
  762. return;
  763. if (!sp->multimapped) {
  764. u64 *old = sp->parent_pte;
  765. if (!old) {
  766. sp->parent_pte = parent_pte;
  767. return;
  768. }
  769. sp->multimapped = 1;
  770. pte_chain = mmu_alloc_pte_chain(vcpu);
  771. INIT_HLIST_HEAD(&sp->parent_ptes);
  772. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  773. pte_chain->parent_ptes[0] = old;
  774. }
  775. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  776. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  777. continue;
  778. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  779. if (!pte_chain->parent_ptes[i]) {
  780. pte_chain->parent_ptes[i] = parent_pte;
  781. return;
  782. }
  783. }
  784. pte_chain = mmu_alloc_pte_chain(vcpu);
  785. BUG_ON(!pte_chain);
  786. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  787. pte_chain->parent_ptes[0] = parent_pte;
  788. }
  789. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  790. u64 *parent_pte)
  791. {
  792. struct kvm_pte_chain *pte_chain;
  793. struct hlist_node *node;
  794. int i;
  795. if (!sp->multimapped) {
  796. BUG_ON(sp->parent_pte != parent_pte);
  797. sp->parent_pte = NULL;
  798. return;
  799. }
  800. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  801. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  802. if (!pte_chain->parent_ptes[i])
  803. break;
  804. if (pte_chain->parent_ptes[i] != parent_pte)
  805. continue;
  806. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  807. && pte_chain->parent_ptes[i + 1]) {
  808. pte_chain->parent_ptes[i]
  809. = pte_chain->parent_ptes[i + 1];
  810. ++i;
  811. }
  812. pte_chain->parent_ptes[i] = NULL;
  813. if (i == 0) {
  814. hlist_del(&pte_chain->link);
  815. mmu_free_pte_chain(pte_chain);
  816. if (hlist_empty(&sp->parent_ptes)) {
  817. sp->multimapped = 0;
  818. sp->parent_pte = NULL;
  819. }
  820. }
  821. return;
  822. }
  823. BUG();
  824. }
  825. static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  826. mmu_parent_walk_fn fn)
  827. {
  828. struct kvm_pte_chain *pte_chain;
  829. struct hlist_node *node;
  830. struct kvm_mmu_page *parent_sp;
  831. int i;
  832. if (!sp->multimapped && sp->parent_pte) {
  833. parent_sp = page_header(__pa(sp->parent_pte));
  834. fn(vcpu, parent_sp);
  835. mmu_parent_walk(vcpu, parent_sp, fn);
  836. return;
  837. }
  838. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  839. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  840. if (!pte_chain->parent_ptes[i])
  841. break;
  842. parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
  843. fn(vcpu, parent_sp);
  844. mmu_parent_walk(vcpu, parent_sp, fn);
  845. }
  846. }
  847. static void kvm_mmu_update_unsync_bitmap(u64 *spte)
  848. {
  849. unsigned int index;
  850. struct kvm_mmu_page *sp = page_header(__pa(spte));
  851. index = spte - sp->spt;
  852. if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
  853. sp->unsync_children++;
  854. WARN_ON(!sp->unsync_children);
  855. }
  856. static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
  857. {
  858. struct kvm_pte_chain *pte_chain;
  859. struct hlist_node *node;
  860. int i;
  861. if (!sp->parent_pte)
  862. return;
  863. if (!sp->multimapped) {
  864. kvm_mmu_update_unsync_bitmap(sp->parent_pte);
  865. return;
  866. }
  867. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  868. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  869. if (!pte_chain->parent_ptes[i])
  870. break;
  871. kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
  872. }
  873. }
  874. static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  875. {
  876. kvm_mmu_update_parents_unsync(sp);
  877. return 1;
  878. }
  879. static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
  880. struct kvm_mmu_page *sp)
  881. {
  882. mmu_parent_walk(vcpu, sp, unsync_walk_fn);
  883. kvm_mmu_update_parents_unsync(sp);
  884. }
  885. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  886. struct kvm_mmu_page *sp)
  887. {
  888. int i;
  889. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  890. sp->spt[i] = shadow_trap_nonpresent_pte;
  891. }
  892. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  893. struct kvm_mmu_page *sp)
  894. {
  895. return 1;
  896. }
  897. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  898. {
  899. }
  900. #define KVM_PAGE_ARRAY_NR 16
  901. struct kvm_mmu_pages {
  902. struct mmu_page_and_offset {
  903. struct kvm_mmu_page *sp;
  904. unsigned int idx;
  905. } page[KVM_PAGE_ARRAY_NR];
  906. unsigned int nr;
  907. };
  908. #define for_each_unsync_children(bitmap, idx) \
  909. for (idx = find_first_bit(bitmap, 512); \
  910. idx < 512; \
  911. idx = find_next_bit(bitmap, 512, idx+1))
  912. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  913. int idx)
  914. {
  915. int i;
  916. if (sp->unsync)
  917. for (i=0; i < pvec->nr; i++)
  918. if (pvec->page[i].sp == sp)
  919. return 0;
  920. pvec->page[pvec->nr].sp = sp;
  921. pvec->page[pvec->nr].idx = idx;
  922. pvec->nr++;
  923. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  924. }
  925. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  926. struct kvm_mmu_pages *pvec)
  927. {
  928. int i, ret, nr_unsync_leaf = 0;
  929. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  930. u64 ent = sp->spt[i];
  931. if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
  932. struct kvm_mmu_page *child;
  933. child = page_header(ent & PT64_BASE_ADDR_MASK);
  934. if (child->unsync_children) {
  935. if (mmu_pages_add(pvec, child, i))
  936. return -ENOSPC;
  937. ret = __mmu_unsync_walk(child, pvec);
  938. if (!ret)
  939. __clear_bit(i, sp->unsync_child_bitmap);
  940. else if (ret > 0)
  941. nr_unsync_leaf += ret;
  942. else
  943. return ret;
  944. }
  945. if (child->unsync) {
  946. nr_unsync_leaf++;
  947. if (mmu_pages_add(pvec, child, i))
  948. return -ENOSPC;
  949. }
  950. }
  951. }
  952. if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
  953. sp->unsync_children = 0;
  954. return nr_unsync_leaf;
  955. }
  956. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  957. struct kvm_mmu_pages *pvec)
  958. {
  959. if (!sp->unsync_children)
  960. return 0;
  961. mmu_pages_add(pvec, sp, 0);
  962. return __mmu_unsync_walk(sp, pvec);
  963. }
  964. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  965. {
  966. unsigned index;
  967. struct hlist_head *bucket;
  968. struct kvm_mmu_page *sp;
  969. struct hlist_node *node;
  970. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  971. index = kvm_page_table_hashfn(gfn);
  972. bucket = &kvm->arch.mmu_page_hash[index];
  973. hlist_for_each_entry(sp, node, bucket, hash_link)
  974. if (sp->gfn == gfn && !sp->role.direct
  975. && !sp->role.invalid) {
  976. pgprintk("%s: found role %x\n",
  977. __func__, sp->role.word);
  978. return sp;
  979. }
  980. return NULL;
  981. }
  982. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  983. {
  984. WARN_ON(!sp->unsync);
  985. sp->unsync = 0;
  986. --kvm->stat.mmu_unsync;
  987. }
  988. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
  989. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  990. {
  991. if (sp->role.glevels != vcpu->arch.mmu.root_level) {
  992. kvm_mmu_zap_page(vcpu->kvm, sp);
  993. return 1;
  994. }
  995. trace_kvm_mmu_sync_page(sp);
  996. if (rmap_write_protect(vcpu->kvm, sp->gfn))
  997. kvm_flush_remote_tlbs(vcpu->kvm);
  998. kvm_unlink_unsync_page(vcpu->kvm, sp);
  999. if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
  1000. kvm_mmu_zap_page(vcpu->kvm, sp);
  1001. return 1;
  1002. }
  1003. kvm_mmu_flush_tlb(vcpu);
  1004. return 0;
  1005. }
  1006. struct mmu_page_path {
  1007. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1008. unsigned int idx[PT64_ROOT_LEVEL-1];
  1009. };
  1010. #define for_each_sp(pvec, sp, parents, i) \
  1011. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1012. sp = pvec.page[i].sp; \
  1013. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1014. i = mmu_pages_next(&pvec, &parents, i))
  1015. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1016. struct mmu_page_path *parents,
  1017. int i)
  1018. {
  1019. int n;
  1020. for (n = i+1; n < pvec->nr; n++) {
  1021. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1022. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1023. parents->idx[0] = pvec->page[n].idx;
  1024. return n;
  1025. }
  1026. parents->parent[sp->role.level-2] = sp;
  1027. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1028. }
  1029. return n;
  1030. }
  1031. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1032. {
  1033. struct kvm_mmu_page *sp;
  1034. unsigned int level = 0;
  1035. do {
  1036. unsigned int idx = parents->idx[level];
  1037. sp = parents->parent[level];
  1038. if (!sp)
  1039. return;
  1040. --sp->unsync_children;
  1041. WARN_ON((int)sp->unsync_children < 0);
  1042. __clear_bit(idx, sp->unsync_child_bitmap);
  1043. level++;
  1044. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1045. }
  1046. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1047. struct mmu_page_path *parents,
  1048. struct kvm_mmu_pages *pvec)
  1049. {
  1050. parents->parent[parent->role.level-1] = NULL;
  1051. pvec->nr = 0;
  1052. }
  1053. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1054. struct kvm_mmu_page *parent)
  1055. {
  1056. int i;
  1057. struct kvm_mmu_page *sp;
  1058. struct mmu_page_path parents;
  1059. struct kvm_mmu_pages pages;
  1060. kvm_mmu_pages_init(parent, &parents, &pages);
  1061. while (mmu_unsync_walk(parent, &pages)) {
  1062. int protected = 0;
  1063. for_each_sp(pages, sp, parents, i)
  1064. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1065. if (protected)
  1066. kvm_flush_remote_tlbs(vcpu->kvm);
  1067. for_each_sp(pages, sp, parents, i) {
  1068. kvm_sync_page(vcpu, sp);
  1069. mmu_pages_clear_parents(&parents);
  1070. }
  1071. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1072. kvm_mmu_pages_init(parent, &parents, &pages);
  1073. }
  1074. }
  1075. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1076. gfn_t gfn,
  1077. gva_t gaddr,
  1078. unsigned level,
  1079. int direct,
  1080. unsigned access,
  1081. u64 *parent_pte)
  1082. {
  1083. union kvm_mmu_page_role role;
  1084. unsigned index;
  1085. unsigned quadrant;
  1086. struct hlist_head *bucket;
  1087. struct kvm_mmu_page *sp;
  1088. struct hlist_node *node, *tmp;
  1089. role = vcpu->arch.mmu.base_role;
  1090. role.level = level;
  1091. role.direct = direct;
  1092. role.access = access;
  1093. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1094. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1095. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1096. role.quadrant = quadrant;
  1097. }
  1098. index = kvm_page_table_hashfn(gfn);
  1099. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1100. hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
  1101. if (sp->gfn == gfn) {
  1102. if (sp->unsync)
  1103. if (kvm_sync_page(vcpu, sp))
  1104. continue;
  1105. if (sp->role.word != role.word)
  1106. continue;
  1107. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1108. if (sp->unsync_children) {
  1109. set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
  1110. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1111. }
  1112. trace_kvm_mmu_get_page(sp, false);
  1113. return sp;
  1114. }
  1115. ++vcpu->kvm->stat.mmu_cache_miss;
  1116. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  1117. if (!sp)
  1118. return sp;
  1119. sp->gfn = gfn;
  1120. sp->role = role;
  1121. hlist_add_head(&sp->hash_link, bucket);
  1122. if (!direct) {
  1123. if (rmap_write_protect(vcpu->kvm, gfn))
  1124. kvm_flush_remote_tlbs(vcpu->kvm);
  1125. account_shadowed(vcpu->kvm, gfn);
  1126. }
  1127. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1128. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1129. else
  1130. nonpaging_prefetch_page(vcpu, sp);
  1131. trace_kvm_mmu_get_page(sp, true);
  1132. return sp;
  1133. }
  1134. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1135. struct kvm_vcpu *vcpu, u64 addr)
  1136. {
  1137. iterator->addr = addr;
  1138. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1139. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1140. if (iterator->level == PT32E_ROOT_LEVEL) {
  1141. iterator->shadow_addr
  1142. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1143. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1144. --iterator->level;
  1145. if (!iterator->shadow_addr)
  1146. iterator->level = 0;
  1147. }
  1148. }
  1149. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1150. {
  1151. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1152. return false;
  1153. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1154. if (is_large_pte(*iterator->sptep))
  1155. return false;
  1156. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1157. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1158. return true;
  1159. }
  1160. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1161. {
  1162. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1163. --iterator->level;
  1164. }
  1165. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1166. struct kvm_mmu_page *sp)
  1167. {
  1168. unsigned i;
  1169. u64 *pt;
  1170. u64 ent;
  1171. pt = sp->spt;
  1172. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1173. ent = pt[i];
  1174. if (is_shadow_present_pte(ent)) {
  1175. if (!is_last_spte(ent, sp->role.level)) {
  1176. ent &= PT64_BASE_ADDR_MASK;
  1177. mmu_page_remove_parent_pte(page_header(ent),
  1178. &pt[i]);
  1179. } else {
  1180. if (is_large_pte(ent))
  1181. --kvm->stat.lpages;
  1182. rmap_remove(kvm, &pt[i]);
  1183. }
  1184. }
  1185. pt[i] = shadow_trap_nonpresent_pte;
  1186. }
  1187. }
  1188. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1189. {
  1190. mmu_page_remove_parent_pte(sp, parent_pte);
  1191. }
  1192. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1193. {
  1194. int i;
  1195. struct kvm_vcpu *vcpu;
  1196. kvm_for_each_vcpu(i, vcpu, kvm)
  1197. vcpu->arch.last_pte_updated = NULL;
  1198. }
  1199. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1200. {
  1201. u64 *parent_pte;
  1202. while (sp->multimapped || sp->parent_pte) {
  1203. if (!sp->multimapped)
  1204. parent_pte = sp->parent_pte;
  1205. else {
  1206. struct kvm_pte_chain *chain;
  1207. chain = container_of(sp->parent_ptes.first,
  1208. struct kvm_pte_chain, link);
  1209. parent_pte = chain->parent_ptes[0];
  1210. }
  1211. BUG_ON(!parent_pte);
  1212. kvm_mmu_put_page(sp, parent_pte);
  1213. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1214. }
  1215. }
  1216. static int mmu_zap_unsync_children(struct kvm *kvm,
  1217. struct kvm_mmu_page *parent)
  1218. {
  1219. int i, zapped = 0;
  1220. struct mmu_page_path parents;
  1221. struct kvm_mmu_pages pages;
  1222. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1223. return 0;
  1224. kvm_mmu_pages_init(parent, &parents, &pages);
  1225. while (mmu_unsync_walk(parent, &pages)) {
  1226. struct kvm_mmu_page *sp;
  1227. for_each_sp(pages, sp, parents, i) {
  1228. kvm_mmu_zap_page(kvm, sp);
  1229. mmu_pages_clear_parents(&parents);
  1230. }
  1231. zapped += pages.nr;
  1232. kvm_mmu_pages_init(parent, &parents, &pages);
  1233. }
  1234. return zapped;
  1235. }
  1236. static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1237. {
  1238. int ret;
  1239. trace_kvm_mmu_zap_page(sp);
  1240. ++kvm->stat.mmu_shadow_zapped;
  1241. ret = mmu_zap_unsync_children(kvm, sp);
  1242. kvm_mmu_page_unlink_children(kvm, sp);
  1243. kvm_mmu_unlink_parents(kvm, sp);
  1244. kvm_flush_remote_tlbs(kvm);
  1245. if (!sp->role.invalid && !sp->role.direct)
  1246. unaccount_shadowed(kvm, sp->gfn);
  1247. if (sp->unsync)
  1248. kvm_unlink_unsync_page(kvm, sp);
  1249. if (!sp->root_count) {
  1250. hlist_del(&sp->hash_link);
  1251. kvm_mmu_free_page(kvm, sp);
  1252. } else {
  1253. sp->role.invalid = 1;
  1254. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1255. kvm_reload_remote_mmus(kvm);
  1256. }
  1257. kvm_mmu_reset_last_pte_updated(kvm);
  1258. return ret;
  1259. }
  1260. /*
  1261. * Changing the number of mmu pages allocated to the vm
  1262. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1263. */
  1264. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1265. {
  1266. int used_pages;
  1267. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1268. used_pages = max(0, used_pages);
  1269. /*
  1270. * If we set the number of mmu pages to be smaller be than the
  1271. * number of actived pages , we must to free some mmu pages before we
  1272. * change the value
  1273. */
  1274. if (used_pages > kvm_nr_mmu_pages) {
  1275. while (used_pages > kvm_nr_mmu_pages) {
  1276. struct kvm_mmu_page *page;
  1277. page = container_of(kvm->arch.active_mmu_pages.prev,
  1278. struct kvm_mmu_page, link);
  1279. kvm_mmu_zap_page(kvm, page);
  1280. used_pages--;
  1281. }
  1282. kvm->arch.n_free_mmu_pages = 0;
  1283. }
  1284. else
  1285. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1286. - kvm->arch.n_alloc_mmu_pages;
  1287. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1288. }
  1289. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1290. {
  1291. unsigned index;
  1292. struct hlist_head *bucket;
  1293. struct kvm_mmu_page *sp;
  1294. struct hlist_node *node, *n;
  1295. int r;
  1296. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1297. r = 0;
  1298. index = kvm_page_table_hashfn(gfn);
  1299. bucket = &kvm->arch.mmu_page_hash[index];
  1300. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  1301. if (sp->gfn == gfn && !sp->role.direct) {
  1302. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1303. sp->role.word);
  1304. r = 1;
  1305. if (kvm_mmu_zap_page(kvm, sp))
  1306. n = bucket->first;
  1307. }
  1308. return r;
  1309. }
  1310. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1311. {
  1312. unsigned index;
  1313. struct hlist_head *bucket;
  1314. struct kvm_mmu_page *sp;
  1315. struct hlist_node *node, *nn;
  1316. index = kvm_page_table_hashfn(gfn);
  1317. bucket = &kvm->arch.mmu_page_hash[index];
  1318. hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
  1319. if (sp->gfn == gfn && !sp->role.direct
  1320. && !sp->role.invalid) {
  1321. pgprintk("%s: zap %lx %x\n",
  1322. __func__, gfn, sp->role.word);
  1323. kvm_mmu_zap_page(kvm, sp);
  1324. }
  1325. }
  1326. }
  1327. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1328. {
  1329. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  1330. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1331. __set_bit(slot, sp->slot_bitmap);
  1332. }
  1333. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1334. {
  1335. int i;
  1336. u64 *pt = sp->spt;
  1337. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1338. return;
  1339. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1340. if (pt[i] == shadow_notrap_nonpresent_pte)
  1341. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1342. }
  1343. }
  1344. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  1345. {
  1346. struct page *page;
  1347. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1348. if (gpa == UNMAPPED_GVA)
  1349. return NULL;
  1350. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1351. return page;
  1352. }
  1353. /*
  1354. * The function is based on mtrr_type_lookup() in
  1355. * arch/x86/kernel/cpu/mtrr/generic.c
  1356. */
  1357. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1358. u64 start, u64 end)
  1359. {
  1360. int i;
  1361. u64 base, mask;
  1362. u8 prev_match, curr_match;
  1363. int num_var_ranges = KVM_NR_VAR_MTRR;
  1364. if (!mtrr_state->enabled)
  1365. return 0xFF;
  1366. /* Make end inclusive end, instead of exclusive */
  1367. end--;
  1368. /* Look in fixed ranges. Just return the type as per start */
  1369. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1370. int idx;
  1371. if (start < 0x80000) {
  1372. idx = 0;
  1373. idx += (start >> 16);
  1374. return mtrr_state->fixed_ranges[idx];
  1375. } else if (start < 0xC0000) {
  1376. idx = 1 * 8;
  1377. idx += ((start - 0x80000) >> 14);
  1378. return mtrr_state->fixed_ranges[idx];
  1379. } else if (start < 0x1000000) {
  1380. idx = 3 * 8;
  1381. idx += ((start - 0xC0000) >> 12);
  1382. return mtrr_state->fixed_ranges[idx];
  1383. }
  1384. }
  1385. /*
  1386. * Look in variable ranges
  1387. * Look of multiple ranges matching this address and pick type
  1388. * as per MTRR precedence
  1389. */
  1390. if (!(mtrr_state->enabled & 2))
  1391. return mtrr_state->def_type;
  1392. prev_match = 0xFF;
  1393. for (i = 0; i < num_var_ranges; ++i) {
  1394. unsigned short start_state, end_state;
  1395. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1396. continue;
  1397. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1398. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1399. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1400. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1401. start_state = ((start & mask) == (base & mask));
  1402. end_state = ((end & mask) == (base & mask));
  1403. if (start_state != end_state)
  1404. return 0xFE;
  1405. if ((start & mask) != (base & mask))
  1406. continue;
  1407. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1408. if (prev_match == 0xFF) {
  1409. prev_match = curr_match;
  1410. continue;
  1411. }
  1412. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1413. curr_match == MTRR_TYPE_UNCACHABLE)
  1414. return MTRR_TYPE_UNCACHABLE;
  1415. if ((prev_match == MTRR_TYPE_WRBACK &&
  1416. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1417. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1418. curr_match == MTRR_TYPE_WRBACK)) {
  1419. prev_match = MTRR_TYPE_WRTHROUGH;
  1420. curr_match = MTRR_TYPE_WRTHROUGH;
  1421. }
  1422. if (prev_match != curr_match)
  1423. return MTRR_TYPE_UNCACHABLE;
  1424. }
  1425. if (prev_match != 0xFF)
  1426. return prev_match;
  1427. return mtrr_state->def_type;
  1428. }
  1429. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1430. {
  1431. u8 mtrr;
  1432. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1433. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1434. if (mtrr == 0xfe || mtrr == 0xff)
  1435. mtrr = MTRR_TYPE_WRBACK;
  1436. return mtrr;
  1437. }
  1438. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1439. static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1440. {
  1441. unsigned index;
  1442. struct hlist_head *bucket;
  1443. struct kvm_mmu_page *s;
  1444. struct hlist_node *node, *n;
  1445. trace_kvm_mmu_unsync_page(sp);
  1446. index = kvm_page_table_hashfn(sp->gfn);
  1447. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1448. /* don't unsync if pagetable is shadowed with multiple roles */
  1449. hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
  1450. if (s->gfn != sp->gfn || s->role.direct)
  1451. continue;
  1452. if (s->role.word != sp->role.word)
  1453. return 1;
  1454. }
  1455. ++vcpu->kvm->stat.mmu_unsync;
  1456. sp->unsync = 1;
  1457. kvm_mmu_mark_parents_unsync(vcpu, sp);
  1458. mmu_convert_notrap(sp);
  1459. return 0;
  1460. }
  1461. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1462. bool can_unsync)
  1463. {
  1464. struct kvm_mmu_page *shadow;
  1465. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1466. if (shadow) {
  1467. if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
  1468. return 1;
  1469. if (shadow->unsync)
  1470. return 0;
  1471. if (can_unsync && oos_shadow)
  1472. return kvm_unsync_page(vcpu, shadow);
  1473. return 1;
  1474. }
  1475. return 0;
  1476. }
  1477. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1478. unsigned pte_access, int user_fault,
  1479. int write_fault, int dirty, int level,
  1480. gfn_t gfn, pfn_t pfn, bool speculative,
  1481. bool can_unsync)
  1482. {
  1483. u64 spte;
  1484. int ret = 0;
  1485. /*
  1486. * We don't set the accessed bit, since we sometimes want to see
  1487. * whether the guest actually used the pte (in order to detect
  1488. * demand paging).
  1489. */
  1490. spte = shadow_base_present_pte | shadow_dirty_mask;
  1491. if (!speculative)
  1492. spte |= shadow_accessed_mask;
  1493. if (!dirty)
  1494. pte_access &= ~ACC_WRITE_MASK;
  1495. if (pte_access & ACC_EXEC_MASK)
  1496. spte |= shadow_x_mask;
  1497. else
  1498. spte |= shadow_nx_mask;
  1499. if (pte_access & ACC_USER_MASK)
  1500. spte |= shadow_user_mask;
  1501. if (level > PT_PAGE_TABLE_LEVEL)
  1502. spte |= PT_PAGE_SIZE_MASK;
  1503. if (tdp_enabled)
  1504. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1505. kvm_is_mmio_pfn(pfn));
  1506. spte |= (u64)pfn << PAGE_SHIFT;
  1507. if ((pte_access & ACC_WRITE_MASK)
  1508. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1509. if (level > PT_PAGE_TABLE_LEVEL &&
  1510. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1511. ret = 1;
  1512. spte = shadow_trap_nonpresent_pte;
  1513. goto set_pte;
  1514. }
  1515. spte |= PT_WRITABLE_MASK;
  1516. /*
  1517. * Optimization: for pte sync, if spte was writable the hash
  1518. * lookup is unnecessary (and expensive). Write protection
  1519. * is responsibility of mmu_get_page / kvm_sync_page.
  1520. * Same reasoning can be applied to dirty page accounting.
  1521. */
  1522. if (!can_unsync && is_writeble_pte(*sptep))
  1523. goto set_pte;
  1524. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1525. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1526. __func__, gfn);
  1527. ret = 1;
  1528. pte_access &= ~ACC_WRITE_MASK;
  1529. if (is_writeble_pte(spte))
  1530. spte &= ~PT_WRITABLE_MASK;
  1531. }
  1532. }
  1533. if (pte_access & ACC_WRITE_MASK)
  1534. mark_page_dirty(vcpu->kvm, gfn);
  1535. set_pte:
  1536. __set_spte(sptep, spte);
  1537. return ret;
  1538. }
  1539. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1540. unsigned pt_access, unsigned pte_access,
  1541. int user_fault, int write_fault, int dirty,
  1542. int *ptwrite, int level, gfn_t gfn,
  1543. pfn_t pfn, bool speculative)
  1544. {
  1545. int was_rmapped = 0;
  1546. int was_writeble = is_writeble_pte(*sptep);
  1547. int rmap_count;
  1548. pgprintk("%s: spte %llx access %x write_fault %d"
  1549. " user_fault %d gfn %lx\n",
  1550. __func__, *sptep, pt_access,
  1551. write_fault, user_fault, gfn);
  1552. if (is_rmap_spte(*sptep)) {
  1553. /*
  1554. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1555. * the parent of the now unreachable PTE.
  1556. */
  1557. if (level > PT_PAGE_TABLE_LEVEL &&
  1558. !is_large_pte(*sptep)) {
  1559. struct kvm_mmu_page *child;
  1560. u64 pte = *sptep;
  1561. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1562. mmu_page_remove_parent_pte(child, sptep);
  1563. } else if (pfn != spte_to_pfn(*sptep)) {
  1564. pgprintk("hfn old %lx new %lx\n",
  1565. spte_to_pfn(*sptep), pfn);
  1566. rmap_remove(vcpu->kvm, sptep);
  1567. } else
  1568. was_rmapped = 1;
  1569. }
  1570. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1571. dirty, level, gfn, pfn, speculative, true)) {
  1572. if (write_fault)
  1573. *ptwrite = 1;
  1574. kvm_x86_ops->tlb_flush(vcpu);
  1575. }
  1576. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1577. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1578. is_large_pte(*sptep)? "2MB" : "4kB",
  1579. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1580. *sptep, sptep);
  1581. if (!was_rmapped && is_large_pte(*sptep))
  1582. ++vcpu->kvm->stat.lpages;
  1583. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1584. if (!was_rmapped) {
  1585. rmap_count = rmap_add(vcpu, sptep, gfn);
  1586. kvm_release_pfn_clean(pfn);
  1587. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1588. rmap_recycle(vcpu, sptep, gfn);
  1589. } else {
  1590. if (was_writeble)
  1591. kvm_release_pfn_dirty(pfn);
  1592. else
  1593. kvm_release_pfn_clean(pfn);
  1594. }
  1595. if (speculative) {
  1596. vcpu->arch.last_pte_updated = sptep;
  1597. vcpu->arch.last_pte_gfn = gfn;
  1598. }
  1599. }
  1600. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1601. {
  1602. }
  1603. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1604. int level, gfn_t gfn, pfn_t pfn)
  1605. {
  1606. struct kvm_shadow_walk_iterator iterator;
  1607. struct kvm_mmu_page *sp;
  1608. int pt_write = 0;
  1609. gfn_t pseudo_gfn;
  1610. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1611. if (iterator.level == level) {
  1612. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1613. 0, write, 1, &pt_write,
  1614. level, gfn, pfn, false);
  1615. ++vcpu->stat.pf_fixed;
  1616. break;
  1617. }
  1618. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1619. pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1620. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1621. iterator.level - 1,
  1622. 1, ACC_ALL, iterator.sptep);
  1623. if (!sp) {
  1624. pgprintk("nonpaging_map: ENOMEM\n");
  1625. kvm_release_pfn_clean(pfn);
  1626. return -ENOMEM;
  1627. }
  1628. __set_spte(iterator.sptep,
  1629. __pa(sp->spt)
  1630. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1631. | shadow_user_mask | shadow_x_mask);
  1632. }
  1633. }
  1634. return pt_write;
  1635. }
  1636. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1637. {
  1638. int r;
  1639. int level;
  1640. pfn_t pfn;
  1641. unsigned long mmu_seq;
  1642. level = mapping_level(vcpu, gfn);
  1643. /*
  1644. * This path builds a PAE pagetable - so we can map 2mb pages at
  1645. * maximum. Therefore check if the level is larger than that.
  1646. */
  1647. if (level > PT_DIRECTORY_LEVEL)
  1648. level = PT_DIRECTORY_LEVEL;
  1649. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1650. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1651. smp_rmb();
  1652. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1653. /* mmio */
  1654. if (is_error_pfn(pfn)) {
  1655. kvm_release_pfn_clean(pfn);
  1656. return 1;
  1657. }
  1658. spin_lock(&vcpu->kvm->mmu_lock);
  1659. if (mmu_notifier_retry(vcpu, mmu_seq))
  1660. goto out_unlock;
  1661. kvm_mmu_free_some_pages(vcpu);
  1662. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1663. spin_unlock(&vcpu->kvm->mmu_lock);
  1664. return r;
  1665. out_unlock:
  1666. spin_unlock(&vcpu->kvm->mmu_lock);
  1667. kvm_release_pfn_clean(pfn);
  1668. return 0;
  1669. }
  1670. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1671. {
  1672. int i;
  1673. struct kvm_mmu_page *sp;
  1674. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1675. return;
  1676. spin_lock(&vcpu->kvm->mmu_lock);
  1677. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1678. hpa_t root = vcpu->arch.mmu.root_hpa;
  1679. sp = page_header(root);
  1680. --sp->root_count;
  1681. if (!sp->root_count && sp->role.invalid)
  1682. kvm_mmu_zap_page(vcpu->kvm, sp);
  1683. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1684. spin_unlock(&vcpu->kvm->mmu_lock);
  1685. return;
  1686. }
  1687. for (i = 0; i < 4; ++i) {
  1688. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1689. if (root) {
  1690. root &= PT64_BASE_ADDR_MASK;
  1691. sp = page_header(root);
  1692. --sp->root_count;
  1693. if (!sp->root_count && sp->role.invalid)
  1694. kvm_mmu_zap_page(vcpu->kvm, sp);
  1695. }
  1696. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1697. }
  1698. spin_unlock(&vcpu->kvm->mmu_lock);
  1699. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1700. }
  1701. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1702. {
  1703. int ret = 0;
  1704. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1705. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1706. ret = 1;
  1707. }
  1708. return ret;
  1709. }
  1710. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1711. {
  1712. int i;
  1713. gfn_t root_gfn;
  1714. struct kvm_mmu_page *sp;
  1715. int direct = 0;
  1716. u64 pdptr;
  1717. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1718. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1719. hpa_t root = vcpu->arch.mmu.root_hpa;
  1720. ASSERT(!VALID_PAGE(root));
  1721. if (tdp_enabled)
  1722. direct = 1;
  1723. if (mmu_check_root(vcpu, root_gfn))
  1724. return 1;
  1725. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1726. PT64_ROOT_LEVEL, direct,
  1727. ACC_ALL, NULL);
  1728. root = __pa(sp->spt);
  1729. ++sp->root_count;
  1730. vcpu->arch.mmu.root_hpa = root;
  1731. return 0;
  1732. }
  1733. direct = !is_paging(vcpu);
  1734. if (tdp_enabled)
  1735. direct = 1;
  1736. for (i = 0; i < 4; ++i) {
  1737. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1738. ASSERT(!VALID_PAGE(root));
  1739. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1740. pdptr = kvm_pdptr_read(vcpu, i);
  1741. if (!is_present_gpte(pdptr)) {
  1742. vcpu->arch.mmu.pae_root[i] = 0;
  1743. continue;
  1744. }
  1745. root_gfn = pdptr >> PAGE_SHIFT;
  1746. } else if (vcpu->arch.mmu.root_level == 0)
  1747. root_gfn = 0;
  1748. if (mmu_check_root(vcpu, root_gfn))
  1749. return 1;
  1750. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1751. PT32_ROOT_LEVEL, direct,
  1752. ACC_ALL, NULL);
  1753. root = __pa(sp->spt);
  1754. ++sp->root_count;
  1755. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1756. }
  1757. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1758. return 0;
  1759. }
  1760. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1761. {
  1762. int i;
  1763. struct kvm_mmu_page *sp;
  1764. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1765. return;
  1766. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1767. hpa_t root = vcpu->arch.mmu.root_hpa;
  1768. sp = page_header(root);
  1769. mmu_sync_children(vcpu, sp);
  1770. return;
  1771. }
  1772. for (i = 0; i < 4; ++i) {
  1773. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1774. if (root && VALID_PAGE(root)) {
  1775. root &= PT64_BASE_ADDR_MASK;
  1776. sp = page_header(root);
  1777. mmu_sync_children(vcpu, sp);
  1778. }
  1779. }
  1780. }
  1781. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1782. {
  1783. spin_lock(&vcpu->kvm->mmu_lock);
  1784. mmu_sync_roots(vcpu);
  1785. spin_unlock(&vcpu->kvm->mmu_lock);
  1786. }
  1787. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1788. {
  1789. return vaddr;
  1790. }
  1791. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1792. u32 error_code)
  1793. {
  1794. gfn_t gfn;
  1795. int r;
  1796. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1797. r = mmu_topup_memory_caches(vcpu);
  1798. if (r)
  1799. return r;
  1800. ASSERT(vcpu);
  1801. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1802. gfn = gva >> PAGE_SHIFT;
  1803. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1804. error_code & PFERR_WRITE_MASK, gfn);
  1805. }
  1806. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1807. u32 error_code)
  1808. {
  1809. pfn_t pfn;
  1810. int r;
  1811. int level;
  1812. gfn_t gfn = gpa >> PAGE_SHIFT;
  1813. unsigned long mmu_seq;
  1814. ASSERT(vcpu);
  1815. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1816. r = mmu_topup_memory_caches(vcpu);
  1817. if (r)
  1818. return r;
  1819. level = mapping_level(vcpu, gfn);
  1820. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1821. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1822. smp_rmb();
  1823. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1824. if (is_error_pfn(pfn)) {
  1825. kvm_release_pfn_clean(pfn);
  1826. return 1;
  1827. }
  1828. spin_lock(&vcpu->kvm->mmu_lock);
  1829. if (mmu_notifier_retry(vcpu, mmu_seq))
  1830. goto out_unlock;
  1831. kvm_mmu_free_some_pages(vcpu);
  1832. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1833. level, gfn, pfn);
  1834. spin_unlock(&vcpu->kvm->mmu_lock);
  1835. return r;
  1836. out_unlock:
  1837. spin_unlock(&vcpu->kvm->mmu_lock);
  1838. kvm_release_pfn_clean(pfn);
  1839. return 0;
  1840. }
  1841. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1842. {
  1843. mmu_free_roots(vcpu);
  1844. }
  1845. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1846. {
  1847. struct kvm_mmu *context = &vcpu->arch.mmu;
  1848. context->new_cr3 = nonpaging_new_cr3;
  1849. context->page_fault = nonpaging_page_fault;
  1850. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1851. context->free = nonpaging_free;
  1852. context->prefetch_page = nonpaging_prefetch_page;
  1853. context->sync_page = nonpaging_sync_page;
  1854. context->invlpg = nonpaging_invlpg;
  1855. context->root_level = 0;
  1856. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1857. context->root_hpa = INVALID_PAGE;
  1858. return 0;
  1859. }
  1860. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1861. {
  1862. ++vcpu->stat.tlb_flush;
  1863. kvm_x86_ops->tlb_flush(vcpu);
  1864. }
  1865. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1866. {
  1867. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1868. mmu_free_roots(vcpu);
  1869. }
  1870. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1871. u64 addr,
  1872. u32 err_code)
  1873. {
  1874. kvm_inject_page_fault(vcpu, addr, err_code);
  1875. }
  1876. static void paging_free(struct kvm_vcpu *vcpu)
  1877. {
  1878. nonpaging_free(vcpu);
  1879. }
  1880. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1881. {
  1882. int bit7;
  1883. bit7 = (gpte >> 7) & 1;
  1884. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1885. }
  1886. #define PTTYPE 64
  1887. #include "paging_tmpl.h"
  1888. #undef PTTYPE
  1889. #define PTTYPE 32
  1890. #include "paging_tmpl.h"
  1891. #undef PTTYPE
  1892. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  1893. {
  1894. struct kvm_mmu *context = &vcpu->arch.mmu;
  1895. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  1896. u64 exb_bit_rsvd = 0;
  1897. if (!is_nx(vcpu))
  1898. exb_bit_rsvd = rsvd_bits(63, 63);
  1899. switch (level) {
  1900. case PT32_ROOT_LEVEL:
  1901. /* no rsvd bits for 2 level 4K page table entries */
  1902. context->rsvd_bits_mask[0][1] = 0;
  1903. context->rsvd_bits_mask[0][0] = 0;
  1904. if (is_cpuid_PSE36())
  1905. /* 36bits PSE 4MB page */
  1906. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  1907. else
  1908. /* 32 bits PSE 4MB page */
  1909. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  1910. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1911. break;
  1912. case PT32E_ROOT_LEVEL:
  1913. context->rsvd_bits_mask[0][2] =
  1914. rsvd_bits(maxphyaddr, 63) |
  1915. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  1916. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1917. rsvd_bits(maxphyaddr, 62); /* PDE */
  1918. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1919. rsvd_bits(maxphyaddr, 62); /* PTE */
  1920. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1921. rsvd_bits(maxphyaddr, 62) |
  1922. rsvd_bits(13, 20); /* large page */
  1923. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1924. break;
  1925. case PT64_ROOT_LEVEL:
  1926. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  1927. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1928. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  1929. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  1930. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  1931. rsvd_bits(maxphyaddr, 51);
  1932. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  1933. rsvd_bits(maxphyaddr, 51);
  1934. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  1935. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  1936. rsvd_bits(maxphyaddr, 51) |
  1937. rsvd_bits(13, 29);
  1938. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  1939. rsvd_bits(maxphyaddr, 51) |
  1940. rsvd_bits(13, 20); /* large page */
  1941. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
  1942. break;
  1943. }
  1944. }
  1945. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1946. {
  1947. struct kvm_mmu *context = &vcpu->arch.mmu;
  1948. ASSERT(is_pae(vcpu));
  1949. context->new_cr3 = paging_new_cr3;
  1950. context->page_fault = paging64_page_fault;
  1951. context->gva_to_gpa = paging64_gva_to_gpa;
  1952. context->prefetch_page = paging64_prefetch_page;
  1953. context->sync_page = paging64_sync_page;
  1954. context->invlpg = paging64_invlpg;
  1955. context->free = paging_free;
  1956. context->root_level = level;
  1957. context->shadow_root_level = level;
  1958. context->root_hpa = INVALID_PAGE;
  1959. return 0;
  1960. }
  1961. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1962. {
  1963. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  1964. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1965. }
  1966. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1967. {
  1968. struct kvm_mmu *context = &vcpu->arch.mmu;
  1969. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  1970. context->new_cr3 = paging_new_cr3;
  1971. context->page_fault = paging32_page_fault;
  1972. context->gva_to_gpa = paging32_gva_to_gpa;
  1973. context->free = paging_free;
  1974. context->prefetch_page = paging32_prefetch_page;
  1975. context->sync_page = paging32_sync_page;
  1976. context->invlpg = paging32_invlpg;
  1977. context->root_level = PT32_ROOT_LEVEL;
  1978. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1979. context->root_hpa = INVALID_PAGE;
  1980. return 0;
  1981. }
  1982. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1983. {
  1984. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  1985. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1986. }
  1987. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1988. {
  1989. struct kvm_mmu *context = &vcpu->arch.mmu;
  1990. context->new_cr3 = nonpaging_new_cr3;
  1991. context->page_fault = tdp_page_fault;
  1992. context->free = nonpaging_free;
  1993. context->prefetch_page = nonpaging_prefetch_page;
  1994. context->sync_page = nonpaging_sync_page;
  1995. context->invlpg = nonpaging_invlpg;
  1996. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1997. context->root_hpa = INVALID_PAGE;
  1998. if (!is_paging(vcpu)) {
  1999. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2000. context->root_level = 0;
  2001. } else if (is_long_mode(vcpu)) {
  2002. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2003. context->gva_to_gpa = paging64_gva_to_gpa;
  2004. context->root_level = PT64_ROOT_LEVEL;
  2005. } else if (is_pae(vcpu)) {
  2006. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2007. context->gva_to_gpa = paging64_gva_to_gpa;
  2008. context->root_level = PT32E_ROOT_LEVEL;
  2009. } else {
  2010. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2011. context->gva_to_gpa = paging32_gva_to_gpa;
  2012. context->root_level = PT32_ROOT_LEVEL;
  2013. }
  2014. return 0;
  2015. }
  2016. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2017. {
  2018. int r;
  2019. ASSERT(vcpu);
  2020. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2021. if (!is_paging(vcpu))
  2022. r = nonpaging_init_context(vcpu);
  2023. else if (is_long_mode(vcpu))
  2024. r = paging64_init_context(vcpu);
  2025. else if (is_pae(vcpu))
  2026. r = paging32E_init_context(vcpu);
  2027. else
  2028. r = paging32_init_context(vcpu);
  2029. vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
  2030. return r;
  2031. }
  2032. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2033. {
  2034. vcpu->arch.update_pte.pfn = bad_pfn;
  2035. if (tdp_enabled)
  2036. return init_kvm_tdp_mmu(vcpu);
  2037. else
  2038. return init_kvm_softmmu(vcpu);
  2039. }
  2040. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2041. {
  2042. ASSERT(vcpu);
  2043. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  2044. vcpu->arch.mmu.free(vcpu);
  2045. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  2046. }
  2047. }
  2048. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2049. {
  2050. destroy_kvm_mmu(vcpu);
  2051. return init_kvm_mmu(vcpu);
  2052. }
  2053. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2054. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2055. {
  2056. int r;
  2057. r = mmu_topup_memory_caches(vcpu);
  2058. if (r)
  2059. goto out;
  2060. spin_lock(&vcpu->kvm->mmu_lock);
  2061. kvm_mmu_free_some_pages(vcpu);
  2062. r = mmu_alloc_roots(vcpu);
  2063. mmu_sync_roots(vcpu);
  2064. spin_unlock(&vcpu->kvm->mmu_lock);
  2065. if (r)
  2066. goto out;
  2067. /* set_cr3() should ensure TLB has been flushed */
  2068. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2069. out:
  2070. return r;
  2071. }
  2072. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2073. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2074. {
  2075. mmu_free_roots(vcpu);
  2076. }
  2077. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2078. struct kvm_mmu_page *sp,
  2079. u64 *spte)
  2080. {
  2081. u64 pte;
  2082. struct kvm_mmu_page *child;
  2083. pte = *spte;
  2084. if (is_shadow_present_pte(pte)) {
  2085. if (is_last_spte(pte, sp->role.level))
  2086. rmap_remove(vcpu->kvm, spte);
  2087. else {
  2088. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2089. mmu_page_remove_parent_pte(child, spte);
  2090. }
  2091. }
  2092. __set_spte(spte, shadow_trap_nonpresent_pte);
  2093. if (is_large_pte(pte))
  2094. --vcpu->kvm->stat.lpages;
  2095. }
  2096. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2097. struct kvm_mmu_page *sp,
  2098. u64 *spte,
  2099. const void *new)
  2100. {
  2101. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2102. ++vcpu->kvm->stat.mmu_pde_zapped;
  2103. return;
  2104. }
  2105. ++vcpu->kvm->stat.mmu_pte_updated;
  2106. if (sp->role.glevels == PT32_ROOT_LEVEL)
  2107. paging32_update_pte(vcpu, sp, spte, new);
  2108. else
  2109. paging64_update_pte(vcpu, sp, spte, new);
  2110. }
  2111. static bool need_remote_flush(u64 old, u64 new)
  2112. {
  2113. if (!is_shadow_present_pte(old))
  2114. return false;
  2115. if (!is_shadow_present_pte(new))
  2116. return true;
  2117. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2118. return true;
  2119. old ^= PT64_NX_MASK;
  2120. new ^= PT64_NX_MASK;
  2121. return (old & ~new & PT64_PERM_MASK) != 0;
  2122. }
  2123. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  2124. {
  2125. if (need_remote_flush(old, new))
  2126. kvm_flush_remote_tlbs(vcpu->kvm);
  2127. else
  2128. kvm_mmu_flush_tlb(vcpu);
  2129. }
  2130. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2131. {
  2132. u64 *spte = vcpu->arch.last_pte_updated;
  2133. return !!(spte && (*spte & shadow_accessed_mask));
  2134. }
  2135. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2136. const u8 *new, int bytes)
  2137. {
  2138. gfn_t gfn;
  2139. int r;
  2140. u64 gpte = 0;
  2141. pfn_t pfn;
  2142. if (bytes != 4 && bytes != 8)
  2143. return;
  2144. /*
  2145. * Assume that the pte write on a page table of the same type
  2146. * as the current vcpu paging mode. This is nearly always true
  2147. * (might be false while changing modes). Note it is verified later
  2148. * by update_pte().
  2149. */
  2150. if (is_pae(vcpu)) {
  2151. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2152. if ((bytes == 4) && (gpa % 4 == 0)) {
  2153. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  2154. if (r)
  2155. return;
  2156. memcpy((void *)&gpte + (gpa % 8), new, 4);
  2157. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  2158. memcpy((void *)&gpte, new, 8);
  2159. }
  2160. } else {
  2161. if ((bytes == 4) && (gpa % 4 == 0))
  2162. memcpy((void *)&gpte, new, 4);
  2163. }
  2164. if (!is_present_gpte(gpte))
  2165. return;
  2166. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2167. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2168. smp_rmb();
  2169. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2170. if (is_error_pfn(pfn)) {
  2171. kvm_release_pfn_clean(pfn);
  2172. return;
  2173. }
  2174. vcpu->arch.update_pte.gfn = gfn;
  2175. vcpu->arch.update_pte.pfn = pfn;
  2176. }
  2177. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2178. {
  2179. u64 *spte = vcpu->arch.last_pte_updated;
  2180. if (spte
  2181. && vcpu->arch.last_pte_gfn == gfn
  2182. && shadow_accessed_mask
  2183. && !(*spte & shadow_accessed_mask)
  2184. && is_shadow_present_pte(*spte))
  2185. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2186. }
  2187. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2188. const u8 *new, int bytes,
  2189. bool guest_initiated)
  2190. {
  2191. gfn_t gfn = gpa >> PAGE_SHIFT;
  2192. struct kvm_mmu_page *sp;
  2193. struct hlist_node *node, *n;
  2194. struct hlist_head *bucket;
  2195. unsigned index;
  2196. u64 entry, gentry;
  2197. u64 *spte;
  2198. unsigned offset = offset_in_page(gpa);
  2199. unsigned pte_size;
  2200. unsigned page_offset;
  2201. unsigned misaligned;
  2202. unsigned quadrant;
  2203. int level;
  2204. int flooded = 0;
  2205. int npte;
  2206. int r;
  2207. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2208. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  2209. spin_lock(&vcpu->kvm->mmu_lock);
  2210. kvm_mmu_access_page(vcpu, gfn);
  2211. kvm_mmu_free_some_pages(vcpu);
  2212. ++vcpu->kvm->stat.mmu_pte_write;
  2213. kvm_mmu_audit(vcpu, "pre pte write");
  2214. if (guest_initiated) {
  2215. if (gfn == vcpu->arch.last_pt_write_gfn
  2216. && !last_updated_pte_accessed(vcpu)) {
  2217. ++vcpu->arch.last_pt_write_count;
  2218. if (vcpu->arch.last_pt_write_count >= 3)
  2219. flooded = 1;
  2220. } else {
  2221. vcpu->arch.last_pt_write_gfn = gfn;
  2222. vcpu->arch.last_pt_write_count = 1;
  2223. vcpu->arch.last_pte_updated = NULL;
  2224. }
  2225. }
  2226. index = kvm_page_table_hashfn(gfn);
  2227. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  2228. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  2229. if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
  2230. continue;
  2231. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  2232. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2233. misaligned |= bytes < 4;
  2234. if (misaligned || flooded) {
  2235. /*
  2236. * Misaligned accesses are too much trouble to fix
  2237. * up; also, they usually indicate a page is not used
  2238. * as a page table.
  2239. *
  2240. * If we're seeing too many writes to a page,
  2241. * it may no longer be a page table, or we may be
  2242. * forking, in which case it is better to unmap the
  2243. * page.
  2244. */
  2245. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2246. gpa, bytes, sp->role.word);
  2247. if (kvm_mmu_zap_page(vcpu->kvm, sp))
  2248. n = bucket->first;
  2249. ++vcpu->kvm->stat.mmu_flooded;
  2250. continue;
  2251. }
  2252. page_offset = offset;
  2253. level = sp->role.level;
  2254. npte = 1;
  2255. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  2256. page_offset <<= 1; /* 32->64 */
  2257. /*
  2258. * A 32-bit pde maps 4MB while the shadow pdes map
  2259. * only 2MB. So we need to double the offset again
  2260. * and zap two pdes instead of one.
  2261. */
  2262. if (level == PT32_ROOT_LEVEL) {
  2263. page_offset &= ~7; /* kill rounding error */
  2264. page_offset <<= 1;
  2265. npte = 2;
  2266. }
  2267. quadrant = page_offset >> PAGE_SHIFT;
  2268. page_offset &= ~PAGE_MASK;
  2269. if (quadrant != sp->role.quadrant)
  2270. continue;
  2271. }
  2272. spte = &sp->spt[page_offset / sizeof(*spte)];
  2273. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  2274. gentry = 0;
  2275. r = kvm_read_guest_atomic(vcpu->kvm,
  2276. gpa & ~(u64)(pte_size - 1),
  2277. &gentry, pte_size);
  2278. new = (const void *)&gentry;
  2279. if (r < 0)
  2280. new = NULL;
  2281. }
  2282. while (npte--) {
  2283. entry = *spte;
  2284. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2285. if (new)
  2286. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  2287. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  2288. ++spte;
  2289. }
  2290. }
  2291. kvm_mmu_audit(vcpu, "post pte write");
  2292. spin_unlock(&vcpu->kvm->mmu_lock);
  2293. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2294. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2295. vcpu->arch.update_pte.pfn = bad_pfn;
  2296. }
  2297. }
  2298. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2299. {
  2300. gpa_t gpa;
  2301. int r;
  2302. if (tdp_enabled)
  2303. return 0;
  2304. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  2305. spin_lock(&vcpu->kvm->mmu_lock);
  2306. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2307. spin_unlock(&vcpu->kvm->mmu_lock);
  2308. return r;
  2309. }
  2310. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2311. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2312. {
  2313. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
  2314. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2315. struct kvm_mmu_page *sp;
  2316. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2317. struct kvm_mmu_page, link);
  2318. kvm_mmu_zap_page(vcpu->kvm, sp);
  2319. ++vcpu->kvm->stat.mmu_recycled;
  2320. }
  2321. }
  2322. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2323. {
  2324. int r;
  2325. enum emulation_result er;
  2326. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2327. if (r < 0)
  2328. goto out;
  2329. if (!r) {
  2330. r = 1;
  2331. goto out;
  2332. }
  2333. r = mmu_topup_memory_caches(vcpu);
  2334. if (r)
  2335. goto out;
  2336. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  2337. switch (er) {
  2338. case EMULATE_DONE:
  2339. return 1;
  2340. case EMULATE_DO_MMIO:
  2341. ++vcpu->stat.mmio_exits;
  2342. return 0;
  2343. case EMULATE_FAIL:
  2344. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  2345. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  2346. return 0;
  2347. default:
  2348. BUG();
  2349. }
  2350. out:
  2351. return r;
  2352. }
  2353. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2354. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2355. {
  2356. vcpu->arch.mmu.invlpg(vcpu, gva);
  2357. kvm_mmu_flush_tlb(vcpu);
  2358. ++vcpu->stat.invlpg;
  2359. }
  2360. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2361. void kvm_enable_tdp(void)
  2362. {
  2363. tdp_enabled = true;
  2364. }
  2365. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2366. void kvm_disable_tdp(void)
  2367. {
  2368. tdp_enabled = false;
  2369. }
  2370. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2371. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2372. {
  2373. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2374. }
  2375. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2376. {
  2377. struct page *page;
  2378. int i;
  2379. ASSERT(vcpu);
  2380. /*
  2381. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2382. * Therefore we need to allocate shadow page tables in the first
  2383. * 4GB of memory, which happens to fit the DMA32 zone.
  2384. */
  2385. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2386. if (!page)
  2387. goto error_1;
  2388. vcpu->arch.mmu.pae_root = page_address(page);
  2389. for (i = 0; i < 4; ++i)
  2390. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2391. return 0;
  2392. error_1:
  2393. free_mmu_pages(vcpu);
  2394. return -ENOMEM;
  2395. }
  2396. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2397. {
  2398. ASSERT(vcpu);
  2399. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2400. return alloc_mmu_pages(vcpu);
  2401. }
  2402. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2403. {
  2404. ASSERT(vcpu);
  2405. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2406. return init_kvm_mmu(vcpu);
  2407. }
  2408. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2409. {
  2410. ASSERT(vcpu);
  2411. destroy_kvm_mmu(vcpu);
  2412. free_mmu_pages(vcpu);
  2413. mmu_free_memory_caches(vcpu);
  2414. }
  2415. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2416. {
  2417. struct kvm_mmu_page *sp;
  2418. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2419. int i;
  2420. u64 *pt;
  2421. if (!test_bit(slot, sp->slot_bitmap))
  2422. continue;
  2423. pt = sp->spt;
  2424. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2425. /* avoid RMW */
  2426. if (pt[i] & PT_WRITABLE_MASK)
  2427. pt[i] &= ~PT_WRITABLE_MASK;
  2428. }
  2429. kvm_flush_remote_tlbs(kvm);
  2430. }
  2431. void kvm_mmu_zap_all(struct kvm *kvm)
  2432. {
  2433. struct kvm_mmu_page *sp, *node;
  2434. spin_lock(&kvm->mmu_lock);
  2435. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2436. if (kvm_mmu_zap_page(kvm, sp))
  2437. node = container_of(kvm->arch.active_mmu_pages.next,
  2438. struct kvm_mmu_page, link);
  2439. spin_unlock(&kvm->mmu_lock);
  2440. kvm_flush_remote_tlbs(kvm);
  2441. }
  2442. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  2443. {
  2444. struct kvm_mmu_page *page;
  2445. page = container_of(kvm->arch.active_mmu_pages.prev,
  2446. struct kvm_mmu_page, link);
  2447. kvm_mmu_zap_page(kvm, page);
  2448. }
  2449. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  2450. {
  2451. struct kvm *kvm;
  2452. struct kvm *kvm_freed = NULL;
  2453. int cache_count = 0;
  2454. spin_lock(&kvm_lock);
  2455. list_for_each_entry(kvm, &vm_list, vm_list) {
  2456. int npages;
  2457. if (!down_read_trylock(&kvm->slots_lock))
  2458. continue;
  2459. spin_lock(&kvm->mmu_lock);
  2460. npages = kvm->arch.n_alloc_mmu_pages -
  2461. kvm->arch.n_free_mmu_pages;
  2462. cache_count += npages;
  2463. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2464. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  2465. cache_count--;
  2466. kvm_freed = kvm;
  2467. }
  2468. nr_to_scan--;
  2469. spin_unlock(&kvm->mmu_lock);
  2470. up_read(&kvm->slots_lock);
  2471. }
  2472. if (kvm_freed)
  2473. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2474. spin_unlock(&kvm_lock);
  2475. return cache_count;
  2476. }
  2477. static struct shrinker mmu_shrinker = {
  2478. .shrink = mmu_shrink,
  2479. .seeks = DEFAULT_SEEKS * 10,
  2480. };
  2481. static void mmu_destroy_caches(void)
  2482. {
  2483. if (pte_chain_cache)
  2484. kmem_cache_destroy(pte_chain_cache);
  2485. if (rmap_desc_cache)
  2486. kmem_cache_destroy(rmap_desc_cache);
  2487. if (mmu_page_header_cache)
  2488. kmem_cache_destroy(mmu_page_header_cache);
  2489. }
  2490. void kvm_mmu_module_exit(void)
  2491. {
  2492. mmu_destroy_caches();
  2493. unregister_shrinker(&mmu_shrinker);
  2494. }
  2495. int kvm_mmu_module_init(void)
  2496. {
  2497. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2498. sizeof(struct kvm_pte_chain),
  2499. 0, 0, NULL);
  2500. if (!pte_chain_cache)
  2501. goto nomem;
  2502. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2503. sizeof(struct kvm_rmap_desc),
  2504. 0, 0, NULL);
  2505. if (!rmap_desc_cache)
  2506. goto nomem;
  2507. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2508. sizeof(struct kvm_mmu_page),
  2509. 0, 0, NULL);
  2510. if (!mmu_page_header_cache)
  2511. goto nomem;
  2512. register_shrinker(&mmu_shrinker);
  2513. return 0;
  2514. nomem:
  2515. mmu_destroy_caches();
  2516. return -ENOMEM;
  2517. }
  2518. /*
  2519. * Caculate mmu pages needed for kvm.
  2520. */
  2521. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2522. {
  2523. int i;
  2524. unsigned int nr_mmu_pages;
  2525. unsigned int nr_pages = 0;
  2526. for (i = 0; i < kvm->nmemslots; i++)
  2527. nr_pages += kvm->memslots[i].npages;
  2528. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2529. nr_mmu_pages = max(nr_mmu_pages,
  2530. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2531. return nr_mmu_pages;
  2532. }
  2533. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2534. unsigned len)
  2535. {
  2536. if (len > buffer->len)
  2537. return NULL;
  2538. return buffer->ptr;
  2539. }
  2540. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2541. unsigned len)
  2542. {
  2543. void *ret;
  2544. ret = pv_mmu_peek_buffer(buffer, len);
  2545. if (!ret)
  2546. return ret;
  2547. buffer->ptr += len;
  2548. buffer->len -= len;
  2549. buffer->processed += len;
  2550. return ret;
  2551. }
  2552. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2553. gpa_t addr, gpa_t value)
  2554. {
  2555. int bytes = 8;
  2556. int r;
  2557. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2558. bytes = 4;
  2559. r = mmu_topup_memory_caches(vcpu);
  2560. if (r)
  2561. return r;
  2562. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2563. return -EFAULT;
  2564. return 1;
  2565. }
  2566. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2567. {
  2568. kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2569. return 1;
  2570. }
  2571. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2572. {
  2573. spin_lock(&vcpu->kvm->mmu_lock);
  2574. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2575. spin_unlock(&vcpu->kvm->mmu_lock);
  2576. return 1;
  2577. }
  2578. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2579. struct kvm_pv_mmu_op_buffer *buffer)
  2580. {
  2581. struct kvm_mmu_op_header *header;
  2582. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2583. if (!header)
  2584. return 0;
  2585. switch (header->op) {
  2586. case KVM_MMU_OP_WRITE_PTE: {
  2587. struct kvm_mmu_op_write_pte *wpte;
  2588. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2589. if (!wpte)
  2590. return 0;
  2591. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2592. wpte->pte_val);
  2593. }
  2594. case KVM_MMU_OP_FLUSH_TLB: {
  2595. struct kvm_mmu_op_flush_tlb *ftlb;
  2596. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2597. if (!ftlb)
  2598. return 0;
  2599. return kvm_pv_mmu_flush_tlb(vcpu);
  2600. }
  2601. case KVM_MMU_OP_RELEASE_PT: {
  2602. struct kvm_mmu_op_release_pt *rpt;
  2603. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2604. if (!rpt)
  2605. return 0;
  2606. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2607. }
  2608. default: return 0;
  2609. }
  2610. }
  2611. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2612. gpa_t addr, unsigned long *ret)
  2613. {
  2614. int r;
  2615. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2616. buffer->ptr = buffer->buf;
  2617. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2618. buffer->processed = 0;
  2619. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2620. if (r)
  2621. goto out;
  2622. while (buffer->len) {
  2623. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2624. if (r < 0)
  2625. goto out;
  2626. if (r == 0)
  2627. break;
  2628. }
  2629. r = 1;
  2630. out:
  2631. *ret = buffer->processed;
  2632. return r;
  2633. }
  2634. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2635. {
  2636. struct kvm_shadow_walk_iterator iterator;
  2637. int nr_sptes = 0;
  2638. spin_lock(&vcpu->kvm->mmu_lock);
  2639. for_each_shadow_entry(vcpu, addr, iterator) {
  2640. sptes[iterator.level-1] = *iterator.sptep;
  2641. nr_sptes++;
  2642. if (!is_shadow_present_pte(*iterator.sptep))
  2643. break;
  2644. }
  2645. spin_unlock(&vcpu->kvm->mmu_lock);
  2646. return nr_sptes;
  2647. }
  2648. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2649. #ifdef AUDIT
  2650. static const char *audit_msg;
  2651. static gva_t canonicalize(gva_t gva)
  2652. {
  2653. #ifdef CONFIG_X86_64
  2654. gva = (long long)(gva << 16) >> 16;
  2655. #endif
  2656. return gva;
  2657. }
  2658. typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
  2659. u64 *sptep);
  2660. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2661. inspect_spte_fn fn)
  2662. {
  2663. int i;
  2664. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2665. u64 ent = sp->spt[i];
  2666. if (is_shadow_present_pte(ent)) {
  2667. if (!is_last_spte(ent, sp->role.level)) {
  2668. struct kvm_mmu_page *child;
  2669. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2670. __mmu_spte_walk(kvm, child, fn);
  2671. } else
  2672. fn(kvm, sp, &sp->spt[i]);
  2673. }
  2674. }
  2675. }
  2676. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2677. {
  2678. int i;
  2679. struct kvm_mmu_page *sp;
  2680. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2681. return;
  2682. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2683. hpa_t root = vcpu->arch.mmu.root_hpa;
  2684. sp = page_header(root);
  2685. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2686. return;
  2687. }
  2688. for (i = 0; i < 4; ++i) {
  2689. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2690. if (root && VALID_PAGE(root)) {
  2691. root &= PT64_BASE_ADDR_MASK;
  2692. sp = page_header(root);
  2693. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2694. }
  2695. }
  2696. return;
  2697. }
  2698. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2699. gva_t va, int level)
  2700. {
  2701. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2702. int i;
  2703. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2704. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2705. u64 ent = pt[i];
  2706. if (ent == shadow_trap_nonpresent_pte)
  2707. continue;
  2708. va = canonicalize(va);
  2709. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2710. audit_mappings_page(vcpu, ent, va, level - 1);
  2711. else {
  2712. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2713. gfn_t gfn = gpa >> PAGE_SHIFT;
  2714. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2715. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2716. if (is_error_pfn(pfn)) {
  2717. kvm_release_pfn_clean(pfn);
  2718. continue;
  2719. }
  2720. if (is_shadow_present_pte(ent)
  2721. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2722. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2723. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2724. audit_msg, vcpu->arch.mmu.root_level,
  2725. va, gpa, hpa, ent,
  2726. is_shadow_present_pte(ent));
  2727. else if (ent == shadow_notrap_nonpresent_pte
  2728. && !is_error_hpa(hpa))
  2729. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2730. " valid guest gva %lx\n", audit_msg, va);
  2731. kvm_release_pfn_clean(pfn);
  2732. }
  2733. }
  2734. }
  2735. static void audit_mappings(struct kvm_vcpu *vcpu)
  2736. {
  2737. unsigned i;
  2738. if (vcpu->arch.mmu.root_level == 4)
  2739. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2740. else
  2741. for (i = 0; i < 4; ++i)
  2742. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2743. audit_mappings_page(vcpu,
  2744. vcpu->arch.mmu.pae_root[i],
  2745. i << 30,
  2746. 2);
  2747. }
  2748. static int count_rmaps(struct kvm_vcpu *vcpu)
  2749. {
  2750. int nmaps = 0;
  2751. int i, j, k;
  2752. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2753. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2754. struct kvm_rmap_desc *d;
  2755. for (j = 0; j < m->npages; ++j) {
  2756. unsigned long *rmapp = &m->rmap[j];
  2757. if (!*rmapp)
  2758. continue;
  2759. if (!(*rmapp & 1)) {
  2760. ++nmaps;
  2761. continue;
  2762. }
  2763. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2764. while (d) {
  2765. for (k = 0; k < RMAP_EXT; ++k)
  2766. if (d->sptes[k])
  2767. ++nmaps;
  2768. else
  2769. break;
  2770. d = d->more;
  2771. }
  2772. }
  2773. }
  2774. return nmaps;
  2775. }
  2776. void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
  2777. {
  2778. unsigned long *rmapp;
  2779. struct kvm_mmu_page *rev_sp;
  2780. gfn_t gfn;
  2781. if (*sptep & PT_WRITABLE_MASK) {
  2782. rev_sp = page_header(__pa(sptep));
  2783. gfn = rev_sp->gfns[sptep - rev_sp->spt];
  2784. if (!gfn_to_memslot(kvm, gfn)) {
  2785. if (!printk_ratelimit())
  2786. return;
  2787. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2788. audit_msg, gfn);
  2789. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2790. audit_msg, sptep - rev_sp->spt,
  2791. rev_sp->gfn);
  2792. dump_stack();
  2793. return;
  2794. }
  2795. rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
  2796. is_large_pte(*sptep));
  2797. if (!*rmapp) {
  2798. if (!printk_ratelimit())
  2799. return;
  2800. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2801. audit_msg, *sptep);
  2802. dump_stack();
  2803. }
  2804. }
  2805. }
  2806. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2807. {
  2808. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2809. }
  2810. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2811. {
  2812. struct kvm_mmu_page *sp;
  2813. int i;
  2814. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2815. u64 *pt = sp->spt;
  2816. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2817. continue;
  2818. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2819. u64 ent = pt[i];
  2820. if (!(ent & PT_PRESENT_MASK))
  2821. continue;
  2822. if (!(ent & PT_WRITABLE_MASK))
  2823. continue;
  2824. inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
  2825. }
  2826. }
  2827. return;
  2828. }
  2829. static void audit_rmap(struct kvm_vcpu *vcpu)
  2830. {
  2831. check_writable_mappings_rmap(vcpu);
  2832. count_rmaps(vcpu);
  2833. }
  2834. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2835. {
  2836. struct kvm_mmu_page *sp;
  2837. struct kvm_memory_slot *slot;
  2838. unsigned long *rmapp;
  2839. u64 *spte;
  2840. gfn_t gfn;
  2841. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2842. if (sp->role.direct)
  2843. continue;
  2844. if (sp->unsync)
  2845. continue;
  2846. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2847. slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
  2848. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2849. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2850. while (spte) {
  2851. if (*spte & PT_WRITABLE_MASK)
  2852. printk(KERN_ERR "%s: (%s) shadow page has "
  2853. "writable mappings: gfn %lx role %x\n",
  2854. __func__, audit_msg, sp->gfn,
  2855. sp->role.word);
  2856. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2857. }
  2858. }
  2859. }
  2860. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2861. {
  2862. int olddbg = dbg;
  2863. dbg = 0;
  2864. audit_msg = msg;
  2865. audit_rmap(vcpu);
  2866. audit_write_protection(vcpu);
  2867. if (strcmp("pre pte write", audit_msg) != 0)
  2868. audit_mappings(vcpu);
  2869. audit_writable_sptes_have_rmaps(vcpu);
  2870. dbg = olddbg;
  2871. }
  2872. #endif