mm.h 77 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468
  1. #ifndef _LINUX_MM_H
  2. #define _LINUX_MM_H
  3. #include <linux/errno.h>
  4. #ifdef __KERNEL__
  5. #include <linux/mmdebug.h>
  6. #include <linux/gfp.h>
  7. #include <linux/bug.h>
  8. #include <linux/list.h>
  9. #include <linux/mmzone.h>
  10. #include <linux/rbtree.h>
  11. #include <linux/atomic.h>
  12. #include <linux/debug_locks.h>
  13. #include <linux/mm_types.h>
  14. #include <linux/range.h>
  15. #include <linux/pfn.h>
  16. #include <linux/percpu-refcount.h>
  17. #include <linux/bit_spinlock.h>
  18. #include <linux/shrinker.h>
  19. #include <linux/resource.h>
  20. #include <linux/page_ext.h>
  21. #include <linux/err.h>
  22. #include <linux/page_ref.h>
  23. struct mempolicy;
  24. struct anon_vma;
  25. struct anon_vma_chain;
  26. struct file_ra_state;
  27. struct user_struct;
  28. struct writeback_control;
  29. struct bdi_writeback;
  30. #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
  31. extern unsigned long max_mapnr;
  32. static inline void set_max_mapnr(unsigned long limit)
  33. {
  34. max_mapnr = limit;
  35. }
  36. #else
  37. static inline void set_max_mapnr(unsigned long limit) { }
  38. #endif
  39. extern unsigned long totalram_pages;
  40. extern void * high_memory;
  41. extern int page_cluster;
  42. #ifdef CONFIG_SYSCTL
  43. extern int sysctl_legacy_va_layout;
  44. #else
  45. #define sysctl_legacy_va_layout 0
  46. #endif
  47. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  48. extern const int mmap_rnd_bits_min;
  49. extern const int mmap_rnd_bits_max;
  50. extern int mmap_rnd_bits __read_mostly;
  51. #endif
  52. #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  53. extern const int mmap_rnd_compat_bits_min;
  54. extern const int mmap_rnd_compat_bits_max;
  55. extern int mmap_rnd_compat_bits __read_mostly;
  56. #endif
  57. #include <asm/page.h>
  58. #include <asm/pgtable.h>
  59. #include <asm/processor.h>
  60. #ifndef __pa_symbol
  61. #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
  62. #endif
  63. /*
  64. * To prevent common memory management code establishing
  65. * a zero page mapping on a read fault.
  66. * This macro should be defined within <asm/pgtable.h>.
  67. * s390 does this to prevent multiplexing of hardware bits
  68. * related to the physical page in case of virtualization.
  69. */
  70. #ifndef mm_forbids_zeropage
  71. #define mm_forbids_zeropage(X) (0)
  72. #endif
  73. /*
  74. * Default maximum number of active map areas, this limits the number of vmas
  75. * per mm struct. Users can overwrite this number by sysctl but there is a
  76. * problem.
  77. *
  78. * When a program's coredump is generated as ELF format, a section is created
  79. * per a vma. In ELF, the number of sections is represented in unsigned short.
  80. * This means the number of sections should be smaller than 65535 at coredump.
  81. * Because the kernel adds some informative sections to a image of program at
  82. * generating coredump, we need some margin. The number of extra sections is
  83. * 1-3 now and depends on arch. We use "5" as safe margin, here.
  84. *
  85. * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
  86. * not a hard limit any more. Although some userspace tools can be surprised by
  87. * that.
  88. */
  89. #define MAPCOUNT_ELF_CORE_MARGIN (5)
  90. #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
  91. extern int sysctl_max_map_count;
  92. extern unsigned long sysctl_user_reserve_kbytes;
  93. extern unsigned long sysctl_admin_reserve_kbytes;
  94. extern int sysctl_overcommit_memory;
  95. extern int sysctl_overcommit_ratio;
  96. extern unsigned long sysctl_overcommit_kbytes;
  97. extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
  98. size_t *, loff_t *);
  99. extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
  100. size_t *, loff_t *);
  101. #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
  102. /* to align the pointer to the (next) page boundary */
  103. #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
  104. /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
  105. #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
  106. /*
  107. * Linux kernel virtual memory manager primitives.
  108. * The idea being to have a "virtual" mm in the same way
  109. * we have a virtual fs - giving a cleaner interface to the
  110. * mm details, and allowing different kinds of memory mappings
  111. * (from shared memory to executable loading to arbitrary
  112. * mmap() functions).
  113. */
  114. extern struct kmem_cache *vm_area_cachep;
  115. #ifndef CONFIG_MMU
  116. extern struct rb_root nommu_region_tree;
  117. extern struct rw_semaphore nommu_region_sem;
  118. extern unsigned int kobjsize(const void *objp);
  119. #endif
  120. /*
  121. * vm_flags in vm_area_struct, see mm_types.h.
  122. * When changing, update also include/trace/events/mmflags.h
  123. */
  124. #define VM_NONE 0x00000000
  125. #define VM_READ 0x00000001 /* currently active flags */
  126. #define VM_WRITE 0x00000002
  127. #define VM_EXEC 0x00000004
  128. #define VM_SHARED 0x00000008
  129. /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
  130. #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
  131. #define VM_MAYWRITE 0x00000020
  132. #define VM_MAYEXEC 0x00000040
  133. #define VM_MAYSHARE 0x00000080
  134. #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
  135. #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
  136. #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
  137. #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
  138. #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
  139. #define VM_LOCKED 0x00002000
  140. #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
  141. /* Used by sys_madvise() */
  142. #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
  143. #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
  144. #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
  145. #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
  146. #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
  147. #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
  148. #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
  149. #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
  150. #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
  151. #define VM_ARCH_2 0x02000000
  152. #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
  153. #ifdef CONFIG_MEM_SOFT_DIRTY
  154. # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
  155. #else
  156. # define VM_SOFTDIRTY 0
  157. #endif
  158. #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
  159. #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
  160. #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
  161. #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
  162. #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
  163. #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
  164. #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
  165. #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
  166. #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
  167. #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
  168. #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
  169. #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
  170. #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
  171. #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
  172. #if defined(CONFIG_X86)
  173. # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
  174. #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
  175. # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
  176. # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
  177. # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
  178. # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
  179. # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
  180. #endif
  181. #elif defined(CONFIG_PPC)
  182. # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
  183. #elif defined(CONFIG_PARISC)
  184. # define VM_GROWSUP VM_ARCH_1
  185. #elif defined(CONFIG_METAG)
  186. # define VM_GROWSUP VM_ARCH_1
  187. #elif defined(CONFIG_IA64)
  188. # define VM_GROWSUP VM_ARCH_1
  189. #elif !defined(CONFIG_MMU)
  190. # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
  191. #endif
  192. #if defined(CONFIG_X86)
  193. /* MPX specific bounds table or bounds directory */
  194. # define VM_MPX VM_ARCH_2
  195. #endif
  196. #ifndef VM_GROWSUP
  197. # define VM_GROWSUP VM_NONE
  198. #endif
  199. /* Bits set in the VMA until the stack is in its final location */
  200. #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
  201. #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
  202. #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
  203. #endif
  204. #ifdef CONFIG_STACK_GROWSUP
  205. #define VM_STACK VM_GROWSUP
  206. #else
  207. #define VM_STACK VM_GROWSDOWN
  208. #endif
  209. #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
  210. /*
  211. * Special vmas that are non-mergable, non-mlock()able.
  212. * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
  213. */
  214. #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
  215. /* This mask defines which mm->def_flags a process can inherit its parent */
  216. #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
  217. /* This mask is used to clear all the VMA flags used by mlock */
  218. #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
  219. /*
  220. * mapping from the currently active vm_flags protection bits (the
  221. * low four bits) to a page protection mask..
  222. */
  223. extern pgprot_t protection_map[16];
  224. #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
  225. #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
  226. #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
  227. #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
  228. #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
  229. #define FAULT_FLAG_TRIED 0x20 /* Second try */
  230. #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
  231. #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
  232. #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
  233. /*
  234. * vm_fault is filled by the the pagefault handler and passed to the vma's
  235. * ->fault function. The vma's ->fault is responsible for returning a bitmask
  236. * of VM_FAULT_xxx flags that give details about how the fault was handled.
  237. *
  238. * MM layer fills up gfp_mask for page allocations but fault handler might
  239. * alter it if its implementation requires a different allocation context.
  240. *
  241. * pgoff should be used in favour of virtual_address, if possible.
  242. */
  243. struct vm_fault {
  244. unsigned int flags; /* FAULT_FLAG_xxx flags */
  245. gfp_t gfp_mask; /* gfp mask to be used for allocations */
  246. pgoff_t pgoff; /* Logical page offset based on vma */
  247. void __user *virtual_address; /* Faulting virtual address */
  248. struct page *cow_page; /* Handler may choose to COW */
  249. struct page *page; /* ->fault handlers should return a
  250. * page here, unless VM_FAULT_NOPAGE
  251. * is set (which is also implied by
  252. * VM_FAULT_ERROR).
  253. */
  254. /* for ->map_pages() only */
  255. pgoff_t max_pgoff; /* map pages for offset from pgoff till
  256. * max_pgoff inclusive */
  257. pte_t *pte; /* pte entry associated with ->pgoff */
  258. };
  259. /*
  260. * These are the virtual MM functions - opening of an area, closing and
  261. * unmapping it (needed to keep files on disk up-to-date etc), pointer
  262. * to the functions called when a no-page or a wp-page exception occurs.
  263. */
  264. struct vm_operations_struct {
  265. void (*open)(struct vm_area_struct * area);
  266. void (*close)(struct vm_area_struct * area);
  267. int (*mremap)(struct vm_area_struct * area);
  268. int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
  269. int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
  270. pmd_t *, unsigned int flags);
  271. void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
  272. /* notification that a previously read-only page is about to become
  273. * writable, if an error is returned it will cause a SIGBUS */
  274. int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  275. /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
  276. int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
  277. /* called by access_process_vm when get_user_pages() fails, typically
  278. * for use by special VMAs that can switch between memory and hardware
  279. */
  280. int (*access)(struct vm_area_struct *vma, unsigned long addr,
  281. void *buf, int len, int write);
  282. /* Called by the /proc/PID/maps code to ask the vma whether it
  283. * has a special name. Returning non-NULL will also cause this
  284. * vma to be dumped unconditionally. */
  285. const char *(*name)(struct vm_area_struct *vma);
  286. #ifdef CONFIG_NUMA
  287. /*
  288. * set_policy() op must add a reference to any non-NULL @new mempolicy
  289. * to hold the policy upon return. Caller should pass NULL @new to
  290. * remove a policy and fall back to surrounding context--i.e. do not
  291. * install a MPOL_DEFAULT policy, nor the task or system default
  292. * mempolicy.
  293. */
  294. int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
  295. /*
  296. * get_policy() op must add reference [mpol_get()] to any policy at
  297. * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
  298. * in mm/mempolicy.c will do this automatically.
  299. * get_policy() must NOT add a ref if the policy at (vma,addr) is not
  300. * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
  301. * If no [shared/vma] mempolicy exists at the addr, get_policy() op
  302. * must return NULL--i.e., do not "fallback" to task or system default
  303. * policy.
  304. */
  305. struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
  306. unsigned long addr);
  307. #endif
  308. /*
  309. * Called by vm_normal_page() for special PTEs to find the
  310. * page for @addr. This is useful if the default behavior
  311. * (using pte_page()) would not find the correct page.
  312. */
  313. struct page *(*find_special_page)(struct vm_area_struct *vma,
  314. unsigned long addr);
  315. };
  316. struct mmu_gather;
  317. struct inode;
  318. #define page_private(page) ((page)->private)
  319. #define set_page_private(page, v) ((page)->private = (v))
  320. #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
  321. static inline int pmd_devmap(pmd_t pmd)
  322. {
  323. return 0;
  324. }
  325. #endif
  326. /*
  327. * FIXME: take this include out, include page-flags.h in
  328. * files which need it (119 of them)
  329. */
  330. #include <linux/page-flags.h>
  331. #include <linux/huge_mm.h>
  332. /*
  333. * Methods to modify the page usage count.
  334. *
  335. * What counts for a page usage:
  336. * - cache mapping (page->mapping)
  337. * - private data (page->private)
  338. * - page mapped in a task's page tables, each mapping
  339. * is counted separately
  340. *
  341. * Also, many kernel routines increase the page count before a critical
  342. * routine so they can be sure the page doesn't go away from under them.
  343. */
  344. /*
  345. * Drop a ref, return true if the refcount fell to zero (the page has no users)
  346. */
  347. static inline int put_page_testzero(struct page *page)
  348. {
  349. VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
  350. return page_ref_dec_and_test(page);
  351. }
  352. /*
  353. * Try to grab a ref unless the page has a refcount of zero, return false if
  354. * that is the case.
  355. * This can be called when MMU is off so it must not access
  356. * any of the virtual mappings.
  357. */
  358. static inline int get_page_unless_zero(struct page *page)
  359. {
  360. return page_ref_add_unless(page, 1, 0);
  361. }
  362. extern int page_is_ram(unsigned long pfn);
  363. enum {
  364. REGION_INTERSECTS,
  365. REGION_DISJOINT,
  366. REGION_MIXED,
  367. };
  368. int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
  369. unsigned long desc);
  370. /* Support for virtually mapped pages */
  371. struct page *vmalloc_to_page(const void *addr);
  372. unsigned long vmalloc_to_pfn(const void *addr);
  373. /*
  374. * Determine if an address is within the vmalloc range
  375. *
  376. * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
  377. * is no special casing required.
  378. */
  379. static inline int is_vmalloc_addr(const void *x)
  380. {
  381. #ifdef CONFIG_MMU
  382. unsigned long addr = (unsigned long)x;
  383. return addr >= VMALLOC_START && addr < VMALLOC_END;
  384. #else
  385. return 0;
  386. #endif
  387. }
  388. #ifdef CONFIG_MMU
  389. extern int is_vmalloc_or_module_addr(const void *x);
  390. #else
  391. static inline int is_vmalloc_or_module_addr(const void *x)
  392. {
  393. return 0;
  394. }
  395. #endif
  396. extern void kvfree(const void *addr);
  397. static inline atomic_t *compound_mapcount_ptr(struct page *page)
  398. {
  399. return &page[1].compound_mapcount;
  400. }
  401. static inline int compound_mapcount(struct page *page)
  402. {
  403. if (!PageCompound(page))
  404. return 0;
  405. page = compound_head(page);
  406. return atomic_read(compound_mapcount_ptr(page)) + 1;
  407. }
  408. /*
  409. * The atomic page->_mapcount, starts from -1: so that transitions
  410. * both from it and to it can be tracked, using atomic_inc_and_test
  411. * and atomic_add_negative(-1).
  412. */
  413. static inline void page_mapcount_reset(struct page *page)
  414. {
  415. atomic_set(&(page)->_mapcount, -1);
  416. }
  417. int __page_mapcount(struct page *page);
  418. static inline int page_mapcount(struct page *page)
  419. {
  420. VM_BUG_ON_PAGE(PageSlab(page), page);
  421. if (unlikely(PageCompound(page)))
  422. return __page_mapcount(page);
  423. return atomic_read(&page->_mapcount) + 1;
  424. }
  425. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  426. int total_mapcount(struct page *page);
  427. #else
  428. static inline int total_mapcount(struct page *page)
  429. {
  430. return page_mapcount(page);
  431. }
  432. #endif
  433. static inline struct page *virt_to_head_page(const void *x)
  434. {
  435. struct page *page = virt_to_page(x);
  436. return compound_head(page);
  437. }
  438. void __put_page(struct page *page);
  439. void put_pages_list(struct list_head *pages);
  440. void split_page(struct page *page, unsigned int order);
  441. int split_free_page(struct page *page);
  442. /*
  443. * Compound pages have a destructor function. Provide a
  444. * prototype for that function and accessor functions.
  445. * These are _only_ valid on the head of a compound page.
  446. */
  447. typedef void compound_page_dtor(struct page *);
  448. /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
  449. enum compound_dtor_id {
  450. NULL_COMPOUND_DTOR,
  451. COMPOUND_PAGE_DTOR,
  452. #ifdef CONFIG_HUGETLB_PAGE
  453. HUGETLB_PAGE_DTOR,
  454. #endif
  455. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  456. TRANSHUGE_PAGE_DTOR,
  457. #endif
  458. NR_COMPOUND_DTORS,
  459. };
  460. extern compound_page_dtor * const compound_page_dtors[];
  461. static inline void set_compound_page_dtor(struct page *page,
  462. enum compound_dtor_id compound_dtor)
  463. {
  464. VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
  465. page[1].compound_dtor = compound_dtor;
  466. }
  467. static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
  468. {
  469. VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
  470. return compound_page_dtors[page[1].compound_dtor];
  471. }
  472. static inline unsigned int compound_order(struct page *page)
  473. {
  474. if (!PageHead(page))
  475. return 0;
  476. return page[1].compound_order;
  477. }
  478. static inline void set_compound_order(struct page *page, unsigned int order)
  479. {
  480. page[1].compound_order = order;
  481. }
  482. void free_compound_page(struct page *page);
  483. #ifdef CONFIG_MMU
  484. /*
  485. * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
  486. * servicing faults for write access. In the normal case, do always want
  487. * pte_mkwrite. But get_user_pages can cause write faults for mappings
  488. * that do not have writing enabled, when used by access_process_vm.
  489. */
  490. static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
  491. {
  492. if (likely(vma->vm_flags & VM_WRITE))
  493. pte = pte_mkwrite(pte);
  494. return pte;
  495. }
  496. void do_set_pte(struct vm_area_struct *vma, unsigned long address,
  497. struct page *page, pte_t *pte, bool write, bool anon);
  498. #endif
  499. /*
  500. * Multiple processes may "see" the same page. E.g. for untouched
  501. * mappings of /dev/null, all processes see the same page full of
  502. * zeroes, and text pages of executables and shared libraries have
  503. * only one copy in memory, at most, normally.
  504. *
  505. * For the non-reserved pages, page_count(page) denotes a reference count.
  506. * page_count() == 0 means the page is free. page->lru is then used for
  507. * freelist management in the buddy allocator.
  508. * page_count() > 0 means the page has been allocated.
  509. *
  510. * Pages are allocated by the slab allocator in order to provide memory
  511. * to kmalloc and kmem_cache_alloc. In this case, the management of the
  512. * page, and the fields in 'struct page' are the responsibility of mm/slab.c
  513. * unless a particular usage is carefully commented. (the responsibility of
  514. * freeing the kmalloc memory is the caller's, of course).
  515. *
  516. * A page may be used by anyone else who does a __get_free_page().
  517. * In this case, page_count still tracks the references, and should only
  518. * be used through the normal accessor functions. The top bits of page->flags
  519. * and page->virtual store page management information, but all other fields
  520. * are unused and could be used privately, carefully. The management of this
  521. * page is the responsibility of the one who allocated it, and those who have
  522. * subsequently been given references to it.
  523. *
  524. * The other pages (we may call them "pagecache pages") are completely
  525. * managed by the Linux memory manager: I/O, buffers, swapping etc.
  526. * The following discussion applies only to them.
  527. *
  528. * A pagecache page contains an opaque `private' member, which belongs to the
  529. * page's address_space. Usually, this is the address of a circular list of
  530. * the page's disk buffers. PG_private must be set to tell the VM to call
  531. * into the filesystem to release these pages.
  532. *
  533. * A page may belong to an inode's memory mapping. In this case, page->mapping
  534. * is the pointer to the inode, and page->index is the file offset of the page,
  535. * in units of PAGE_CACHE_SIZE.
  536. *
  537. * If pagecache pages are not associated with an inode, they are said to be
  538. * anonymous pages. These may become associated with the swapcache, and in that
  539. * case PG_swapcache is set, and page->private is an offset into the swapcache.
  540. *
  541. * In either case (swapcache or inode backed), the pagecache itself holds one
  542. * reference to the page. Setting PG_private should also increment the
  543. * refcount. The each user mapping also has a reference to the page.
  544. *
  545. * The pagecache pages are stored in a per-mapping radix tree, which is
  546. * rooted at mapping->page_tree, and indexed by offset.
  547. * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
  548. * lists, we instead now tag pages as dirty/writeback in the radix tree.
  549. *
  550. * All pagecache pages may be subject to I/O:
  551. * - inode pages may need to be read from disk,
  552. * - inode pages which have been modified and are MAP_SHARED may need
  553. * to be written back to the inode on disk,
  554. * - anonymous pages (including MAP_PRIVATE file mappings) which have been
  555. * modified may need to be swapped out to swap space and (later) to be read
  556. * back into memory.
  557. */
  558. /*
  559. * The zone field is never updated after free_area_init_core()
  560. * sets it, so none of the operations on it need to be atomic.
  561. */
  562. /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
  563. #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
  564. #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
  565. #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
  566. #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
  567. /*
  568. * Define the bit shifts to access each section. For non-existent
  569. * sections we define the shift as 0; that plus a 0 mask ensures
  570. * the compiler will optimise away reference to them.
  571. */
  572. #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
  573. #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
  574. #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
  575. #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
  576. /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
  577. #ifdef NODE_NOT_IN_PAGE_FLAGS
  578. #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
  579. #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
  580. SECTIONS_PGOFF : ZONES_PGOFF)
  581. #else
  582. #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
  583. #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
  584. NODES_PGOFF : ZONES_PGOFF)
  585. #endif
  586. #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
  587. #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  588. #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
  589. #endif
  590. #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
  591. #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
  592. #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
  593. #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
  594. #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
  595. static inline enum zone_type page_zonenum(const struct page *page)
  596. {
  597. return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
  598. }
  599. #ifdef CONFIG_ZONE_DEVICE
  600. void get_zone_device_page(struct page *page);
  601. void put_zone_device_page(struct page *page);
  602. static inline bool is_zone_device_page(const struct page *page)
  603. {
  604. return page_zonenum(page) == ZONE_DEVICE;
  605. }
  606. #else
  607. static inline void get_zone_device_page(struct page *page)
  608. {
  609. }
  610. static inline void put_zone_device_page(struct page *page)
  611. {
  612. }
  613. static inline bool is_zone_device_page(const struct page *page)
  614. {
  615. return false;
  616. }
  617. #endif
  618. static inline void get_page(struct page *page)
  619. {
  620. page = compound_head(page);
  621. /*
  622. * Getting a normal page or the head of a compound page
  623. * requires to already have an elevated page->_count.
  624. */
  625. VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
  626. page_ref_inc(page);
  627. if (unlikely(is_zone_device_page(page)))
  628. get_zone_device_page(page);
  629. }
  630. static inline void put_page(struct page *page)
  631. {
  632. page = compound_head(page);
  633. if (put_page_testzero(page))
  634. __put_page(page);
  635. if (unlikely(is_zone_device_page(page)))
  636. put_zone_device_page(page);
  637. }
  638. #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
  639. #define SECTION_IN_PAGE_FLAGS
  640. #endif
  641. /*
  642. * The identification function is mainly used by the buddy allocator for
  643. * determining if two pages could be buddies. We are not really identifying
  644. * the zone since we could be using the section number id if we do not have
  645. * node id available in page flags.
  646. * We only guarantee that it will return the same value for two combinable
  647. * pages in a zone.
  648. */
  649. static inline int page_zone_id(struct page *page)
  650. {
  651. return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
  652. }
  653. static inline int zone_to_nid(struct zone *zone)
  654. {
  655. #ifdef CONFIG_NUMA
  656. return zone->node;
  657. #else
  658. return 0;
  659. #endif
  660. }
  661. #ifdef NODE_NOT_IN_PAGE_FLAGS
  662. extern int page_to_nid(const struct page *page);
  663. #else
  664. static inline int page_to_nid(const struct page *page)
  665. {
  666. return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
  667. }
  668. #endif
  669. #ifdef CONFIG_NUMA_BALANCING
  670. static inline int cpu_pid_to_cpupid(int cpu, int pid)
  671. {
  672. return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
  673. }
  674. static inline int cpupid_to_pid(int cpupid)
  675. {
  676. return cpupid & LAST__PID_MASK;
  677. }
  678. static inline int cpupid_to_cpu(int cpupid)
  679. {
  680. return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
  681. }
  682. static inline int cpupid_to_nid(int cpupid)
  683. {
  684. return cpu_to_node(cpupid_to_cpu(cpupid));
  685. }
  686. static inline bool cpupid_pid_unset(int cpupid)
  687. {
  688. return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
  689. }
  690. static inline bool cpupid_cpu_unset(int cpupid)
  691. {
  692. return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
  693. }
  694. static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
  695. {
  696. return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
  697. }
  698. #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
  699. #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
  700. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  701. {
  702. return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
  703. }
  704. static inline int page_cpupid_last(struct page *page)
  705. {
  706. return page->_last_cpupid;
  707. }
  708. static inline void page_cpupid_reset_last(struct page *page)
  709. {
  710. page->_last_cpupid = -1 & LAST_CPUPID_MASK;
  711. }
  712. #else
  713. static inline int page_cpupid_last(struct page *page)
  714. {
  715. return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
  716. }
  717. extern int page_cpupid_xchg_last(struct page *page, int cpupid);
  718. static inline void page_cpupid_reset_last(struct page *page)
  719. {
  720. int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
  721. page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
  722. page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
  723. }
  724. #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
  725. #else /* !CONFIG_NUMA_BALANCING */
  726. static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
  727. {
  728. return page_to_nid(page); /* XXX */
  729. }
  730. static inline int page_cpupid_last(struct page *page)
  731. {
  732. return page_to_nid(page); /* XXX */
  733. }
  734. static inline int cpupid_to_nid(int cpupid)
  735. {
  736. return -1;
  737. }
  738. static inline int cpupid_to_pid(int cpupid)
  739. {
  740. return -1;
  741. }
  742. static inline int cpupid_to_cpu(int cpupid)
  743. {
  744. return -1;
  745. }
  746. static inline int cpu_pid_to_cpupid(int nid, int pid)
  747. {
  748. return -1;
  749. }
  750. static inline bool cpupid_pid_unset(int cpupid)
  751. {
  752. return 1;
  753. }
  754. static inline void page_cpupid_reset_last(struct page *page)
  755. {
  756. }
  757. static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
  758. {
  759. return false;
  760. }
  761. #endif /* CONFIG_NUMA_BALANCING */
  762. static inline struct zone *page_zone(const struct page *page)
  763. {
  764. return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
  765. }
  766. #ifdef SECTION_IN_PAGE_FLAGS
  767. static inline void set_page_section(struct page *page, unsigned long section)
  768. {
  769. page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
  770. page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
  771. }
  772. static inline unsigned long page_to_section(const struct page *page)
  773. {
  774. return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
  775. }
  776. #endif
  777. static inline void set_page_zone(struct page *page, enum zone_type zone)
  778. {
  779. page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
  780. page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
  781. }
  782. static inline void set_page_node(struct page *page, unsigned long node)
  783. {
  784. page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
  785. page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
  786. }
  787. static inline void set_page_links(struct page *page, enum zone_type zone,
  788. unsigned long node, unsigned long pfn)
  789. {
  790. set_page_zone(page, zone);
  791. set_page_node(page, node);
  792. #ifdef SECTION_IN_PAGE_FLAGS
  793. set_page_section(page, pfn_to_section_nr(pfn));
  794. #endif
  795. }
  796. #ifdef CONFIG_MEMCG
  797. static inline struct mem_cgroup *page_memcg(struct page *page)
  798. {
  799. return page->mem_cgroup;
  800. }
  801. #else
  802. static inline struct mem_cgroup *page_memcg(struct page *page)
  803. {
  804. return NULL;
  805. }
  806. #endif
  807. /*
  808. * Some inline functions in vmstat.h depend on page_zone()
  809. */
  810. #include <linux/vmstat.h>
  811. static __always_inline void *lowmem_page_address(const struct page *page)
  812. {
  813. return __va(PFN_PHYS(page_to_pfn(page)));
  814. }
  815. #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
  816. #define HASHED_PAGE_VIRTUAL
  817. #endif
  818. #if defined(WANT_PAGE_VIRTUAL)
  819. static inline void *page_address(const struct page *page)
  820. {
  821. return page->virtual;
  822. }
  823. static inline void set_page_address(struct page *page, void *address)
  824. {
  825. page->virtual = address;
  826. }
  827. #define page_address_init() do { } while(0)
  828. #endif
  829. #if defined(HASHED_PAGE_VIRTUAL)
  830. void *page_address(const struct page *page);
  831. void set_page_address(struct page *page, void *virtual);
  832. void page_address_init(void);
  833. #endif
  834. #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
  835. #define page_address(page) lowmem_page_address(page)
  836. #define set_page_address(page, address) do { } while(0)
  837. #define page_address_init() do { } while(0)
  838. #endif
  839. extern void *page_rmapping(struct page *page);
  840. extern struct anon_vma *page_anon_vma(struct page *page);
  841. extern struct address_space *page_mapping(struct page *page);
  842. extern struct address_space *__page_file_mapping(struct page *);
  843. static inline
  844. struct address_space *page_file_mapping(struct page *page)
  845. {
  846. if (unlikely(PageSwapCache(page)))
  847. return __page_file_mapping(page);
  848. return page->mapping;
  849. }
  850. /*
  851. * Return the pagecache index of the passed page. Regular pagecache pages
  852. * use ->index whereas swapcache pages use ->private
  853. */
  854. static inline pgoff_t page_index(struct page *page)
  855. {
  856. if (unlikely(PageSwapCache(page)))
  857. return page_private(page);
  858. return page->index;
  859. }
  860. extern pgoff_t __page_file_index(struct page *page);
  861. /*
  862. * Return the file index of the page. Regular pagecache pages use ->index
  863. * whereas swapcache pages use swp_offset(->private)
  864. */
  865. static inline pgoff_t page_file_index(struct page *page)
  866. {
  867. if (unlikely(PageSwapCache(page)))
  868. return __page_file_index(page);
  869. return page->index;
  870. }
  871. /*
  872. * Return true if this page is mapped into pagetables.
  873. * For compound page it returns true if any subpage of compound page is mapped.
  874. */
  875. static inline bool page_mapped(struct page *page)
  876. {
  877. int i;
  878. if (likely(!PageCompound(page)))
  879. return atomic_read(&page->_mapcount) >= 0;
  880. page = compound_head(page);
  881. if (atomic_read(compound_mapcount_ptr(page)) >= 0)
  882. return true;
  883. for (i = 0; i < hpage_nr_pages(page); i++) {
  884. if (atomic_read(&page[i]._mapcount) >= 0)
  885. return true;
  886. }
  887. return false;
  888. }
  889. /*
  890. * Return true only if the page has been allocated with
  891. * ALLOC_NO_WATERMARKS and the low watermark was not
  892. * met implying that the system is under some pressure.
  893. */
  894. static inline bool page_is_pfmemalloc(struct page *page)
  895. {
  896. /*
  897. * Page index cannot be this large so this must be
  898. * a pfmemalloc page.
  899. */
  900. return page->index == -1UL;
  901. }
  902. /*
  903. * Only to be called by the page allocator on a freshly allocated
  904. * page.
  905. */
  906. static inline void set_page_pfmemalloc(struct page *page)
  907. {
  908. page->index = -1UL;
  909. }
  910. static inline void clear_page_pfmemalloc(struct page *page)
  911. {
  912. page->index = 0;
  913. }
  914. /*
  915. * Different kinds of faults, as returned by handle_mm_fault().
  916. * Used to decide whether a process gets delivered SIGBUS or
  917. * just gets major/minor fault counters bumped up.
  918. */
  919. #define VM_FAULT_OOM 0x0001
  920. #define VM_FAULT_SIGBUS 0x0002
  921. #define VM_FAULT_MAJOR 0x0004
  922. #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
  923. #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
  924. #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
  925. #define VM_FAULT_SIGSEGV 0x0040
  926. #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
  927. #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
  928. #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
  929. #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
  930. #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
  931. #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
  932. VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
  933. VM_FAULT_FALLBACK)
  934. /* Encode hstate index for a hwpoisoned large page */
  935. #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
  936. #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
  937. /*
  938. * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
  939. */
  940. extern void pagefault_out_of_memory(void);
  941. #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
  942. /*
  943. * Flags passed to show_mem() and show_free_areas() to suppress output in
  944. * various contexts.
  945. */
  946. #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
  947. extern void show_free_areas(unsigned int flags);
  948. extern bool skip_free_areas_node(unsigned int flags, int nid);
  949. int shmem_zero_setup(struct vm_area_struct *);
  950. #ifdef CONFIG_SHMEM
  951. bool shmem_mapping(struct address_space *mapping);
  952. #else
  953. static inline bool shmem_mapping(struct address_space *mapping)
  954. {
  955. return false;
  956. }
  957. #endif
  958. extern bool can_do_mlock(void);
  959. extern int user_shm_lock(size_t, struct user_struct *);
  960. extern void user_shm_unlock(size_t, struct user_struct *);
  961. /*
  962. * Parameter block passed down to zap_pte_range in exceptional cases.
  963. */
  964. struct zap_details {
  965. struct address_space *check_mapping; /* Check page->mapping if set */
  966. pgoff_t first_index; /* Lowest page->index to unmap */
  967. pgoff_t last_index; /* Highest page->index to unmap */
  968. bool ignore_dirty; /* Ignore dirty pages */
  969. bool check_swap_entries; /* Check also swap entries */
  970. };
  971. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  972. pte_t pte);
  973. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  974. unsigned long size);
  975. void zap_page_range(struct vm_area_struct *vma, unsigned long address,
  976. unsigned long size, struct zap_details *);
  977. void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
  978. unsigned long start, unsigned long end);
  979. /**
  980. * mm_walk - callbacks for walk_page_range
  981. * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
  982. * this handler is required to be able to handle
  983. * pmd_trans_huge() pmds. They may simply choose to
  984. * split_huge_page() instead of handling it explicitly.
  985. * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
  986. * @pte_hole: if set, called for each hole at all levels
  987. * @hugetlb_entry: if set, called for each hugetlb entry
  988. * @test_walk: caller specific callback function to determine whether
  989. * we walk over the current vma or not. A positive returned
  990. * value means "do page table walk over the current vma,"
  991. * and a negative one means "abort current page table walk
  992. * right now." 0 means "skip the current vma."
  993. * @mm: mm_struct representing the target process of page table walk
  994. * @vma: vma currently walked (NULL if walking outside vmas)
  995. * @private: private data for callbacks' usage
  996. *
  997. * (see the comment on walk_page_range() for more details)
  998. */
  999. struct mm_walk {
  1000. int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
  1001. unsigned long next, struct mm_walk *walk);
  1002. int (*pte_entry)(pte_t *pte, unsigned long addr,
  1003. unsigned long next, struct mm_walk *walk);
  1004. int (*pte_hole)(unsigned long addr, unsigned long next,
  1005. struct mm_walk *walk);
  1006. int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
  1007. unsigned long addr, unsigned long next,
  1008. struct mm_walk *walk);
  1009. int (*test_walk)(unsigned long addr, unsigned long next,
  1010. struct mm_walk *walk);
  1011. struct mm_struct *mm;
  1012. struct vm_area_struct *vma;
  1013. void *private;
  1014. };
  1015. int walk_page_range(unsigned long addr, unsigned long end,
  1016. struct mm_walk *walk);
  1017. int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
  1018. void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
  1019. unsigned long end, unsigned long floor, unsigned long ceiling);
  1020. int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
  1021. struct vm_area_struct *vma);
  1022. void unmap_mapping_range(struct address_space *mapping,
  1023. loff_t const holebegin, loff_t const holelen, int even_cows);
  1024. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  1025. unsigned long *pfn);
  1026. int follow_phys(struct vm_area_struct *vma, unsigned long address,
  1027. unsigned int flags, unsigned long *prot, resource_size_t *phys);
  1028. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  1029. void *buf, int len, int write);
  1030. static inline void unmap_shared_mapping_range(struct address_space *mapping,
  1031. loff_t const holebegin, loff_t const holelen)
  1032. {
  1033. unmap_mapping_range(mapping, holebegin, holelen, 0);
  1034. }
  1035. extern void truncate_pagecache(struct inode *inode, loff_t new);
  1036. extern void truncate_setsize(struct inode *inode, loff_t newsize);
  1037. void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
  1038. void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
  1039. int truncate_inode_page(struct address_space *mapping, struct page *page);
  1040. int generic_error_remove_page(struct address_space *mapping, struct page *page);
  1041. int invalidate_inode_page(struct page *page);
  1042. #ifdef CONFIG_MMU
  1043. extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  1044. unsigned long address, unsigned int flags);
  1045. extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1046. unsigned long address, unsigned int fault_flags,
  1047. bool *unlocked);
  1048. #else
  1049. static inline int handle_mm_fault(struct mm_struct *mm,
  1050. struct vm_area_struct *vma, unsigned long address,
  1051. unsigned int flags)
  1052. {
  1053. /* should never happen if there's no MMU */
  1054. BUG();
  1055. return VM_FAULT_SIGBUS;
  1056. }
  1057. static inline int fixup_user_fault(struct task_struct *tsk,
  1058. struct mm_struct *mm, unsigned long address,
  1059. unsigned int fault_flags, bool *unlocked)
  1060. {
  1061. /* should never happen if there's no MMU */
  1062. BUG();
  1063. return -EFAULT;
  1064. }
  1065. #endif
  1066. extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
  1067. extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  1068. void *buf, int len, int write);
  1069. long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1070. unsigned long start, unsigned long nr_pages,
  1071. unsigned int foll_flags, struct page **pages,
  1072. struct vm_area_struct **vmas, int *nonblocking);
  1073. long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
  1074. unsigned long start, unsigned long nr_pages,
  1075. int write, int force, struct page **pages,
  1076. struct vm_area_struct **vmas);
  1077. long get_user_pages6(unsigned long start, unsigned long nr_pages,
  1078. int write, int force, struct page **pages,
  1079. struct vm_area_struct **vmas);
  1080. long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
  1081. int write, int force, struct page **pages, int *locked);
  1082. long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
  1083. unsigned long start, unsigned long nr_pages,
  1084. int write, int force, struct page **pages,
  1085. unsigned int gup_flags);
  1086. long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
  1087. int write, int force, struct page **pages);
  1088. int get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1089. struct page **pages);
  1090. /* suppress warnings from use in EXPORT_SYMBOL() */
  1091. #ifndef __DISABLE_GUP_DEPRECATED
  1092. #define __gup_deprecated __deprecated
  1093. #else
  1094. #define __gup_deprecated
  1095. #endif
  1096. /*
  1097. * These macros provide backward-compatibility with the old
  1098. * get_user_pages() variants which took tsk/mm. These
  1099. * functions/macros provide both compile-time __deprecated so we
  1100. * can catch old-style use and not break the build. The actual
  1101. * functions also have WARN_ON()s to let us know at runtime if
  1102. * the get_user_pages() should have been the "remote" variant.
  1103. *
  1104. * These are hideous, but temporary.
  1105. *
  1106. * If you run into one of these __deprecated warnings, look
  1107. * at how you are calling get_user_pages(). If you are calling
  1108. * it with current/current->mm as the first two arguments,
  1109. * simply remove those arguments. The behavior will be the same
  1110. * as it is now. If you are calling it on another task, use
  1111. * get_user_pages_remote() instead.
  1112. *
  1113. * Any questions? Ask Dave Hansen <dave@sr71.net>
  1114. */
  1115. long
  1116. __gup_deprecated
  1117. get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
  1118. unsigned long start, unsigned long nr_pages,
  1119. int write, int force, struct page **pages,
  1120. struct vm_area_struct **vmas);
  1121. #define GUP_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages, ...) \
  1122. get_user_pages
  1123. #define get_user_pages(...) GUP_MACRO(__VA_ARGS__, \
  1124. get_user_pages8, x, \
  1125. get_user_pages6, x, x, x, x, x)(__VA_ARGS__)
  1126. __gup_deprecated
  1127. long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
  1128. unsigned long start, unsigned long nr_pages,
  1129. int write, int force, struct page **pages,
  1130. int *locked);
  1131. #define GUPL_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages_locked, ...) \
  1132. get_user_pages_locked
  1133. #define get_user_pages_locked(...) GUPL_MACRO(__VA_ARGS__, \
  1134. get_user_pages_locked8, x, \
  1135. get_user_pages_locked6, x, x, x, x)(__VA_ARGS__)
  1136. __gup_deprecated
  1137. long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
  1138. unsigned long start, unsigned long nr_pages,
  1139. int write, int force, struct page **pages);
  1140. #define GUPU_MACRO(_1, _2, _3, _4, _5, _6, _7, get_user_pages_unlocked, ...) \
  1141. get_user_pages_unlocked
  1142. #define get_user_pages_unlocked(...) GUPU_MACRO(__VA_ARGS__, \
  1143. get_user_pages_unlocked7, x, \
  1144. get_user_pages_unlocked5, x, x, x, x)(__VA_ARGS__)
  1145. /* Container for pinned pfns / pages */
  1146. struct frame_vector {
  1147. unsigned int nr_allocated; /* Number of frames we have space for */
  1148. unsigned int nr_frames; /* Number of frames stored in ptrs array */
  1149. bool got_ref; /* Did we pin pages by getting page ref? */
  1150. bool is_pfns; /* Does array contain pages or pfns? */
  1151. void *ptrs[0]; /* Array of pinned pfns / pages. Use
  1152. * pfns_vector_pages() or pfns_vector_pfns()
  1153. * for access */
  1154. };
  1155. struct frame_vector *frame_vector_create(unsigned int nr_frames);
  1156. void frame_vector_destroy(struct frame_vector *vec);
  1157. int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
  1158. bool write, bool force, struct frame_vector *vec);
  1159. void put_vaddr_frames(struct frame_vector *vec);
  1160. int frame_vector_to_pages(struct frame_vector *vec);
  1161. void frame_vector_to_pfns(struct frame_vector *vec);
  1162. static inline unsigned int frame_vector_count(struct frame_vector *vec)
  1163. {
  1164. return vec->nr_frames;
  1165. }
  1166. static inline struct page **frame_vector_pages(struct frame_vector *vec)
  1167. {
  1168. if (vec->is_pfns) {
  1169. int err = frame_vector_to_pages(vec);
  1170. if (err)
  1171. return ERR_PTR(err);
  1172. }
  1173. return (struct page **)(vec->ptrs);
  1174. }
  1175. static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
  1176. {
  1177. if (!vec->is_pfns)
  1178. frame_vector_to_pfns(vec);
  1179. return (unsigned long *)(vec->ptrs);
  1180. }
  1181. struct kvec;
  1182. int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
  1183. struct page **pages);
  1184. int get_kernel_page(unsigned long start, int write, struct page **pages);
  1185. struct page *get_dump_page(unsigned long addr);
  1186. extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
  1187. extern void do_invalidatepage(struct page *page, unsigned int offset,
  1188. unsigned int length);
  1189. int __set_page_dirty_nobuffers(struct page *page);
  1190. int __set_page_dirty_no_writeback(struct page *page);
  1191. int redirty_page_for_writepage(struct writeback_control *wbc,
  1192. struct page *page);
  1193. void account_page_dirtied(struct page *page, struct address_space *mapping);
  1194. void account_page_cleaned(struct page *page, struct address_space *mapping,
  1195. struct bdi_writeback *wb);
  1196. int set_page_dirty(struct page *page);
  1197. int set_page_dirty_lock(struct page *page);
  1198. void cancel_dirty_page(struct page *page);
  1199. int clear_page_dirty_for_io(struct page *page);
  1200. int get_cmdline(struct task_struct *task, char *buffer, int buflen);
  1201. /* Is the vma a continuation of the stack vma above it? */
  1202. static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
  1203. {
  1204. return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
  1205. }
  1206. static inline bool vma_is_anonymous(struct vm_area_struct *vma)
  1207. {
  1208. return !vma->vm_ops;
  1209. }
  1210. static inline int stack_guard_page_start(struct vm_area_struct *vma,
  1211. unsigned long addr)
  1212. {
  1213. return (vma->vm_flags & VM_GROWSDOWN) &&
  1214. (vma->vm_start == addr) &&
  1215. !vma_growsdown(vma->vm_prev, addr);
  1216. }
  1217. /* Is the vma a continuation of the stack vma below it? */
  1218. static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
  1219. {
  1220. return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
  1221. }
  1222. static inline int stack_guard_page_end(struct vm_area_struct *vma,
  1223. unsigned long addr)
  1224. {
  1225. return (vma->vm_flags & VM_GROWSUP) &&
  1226. (vma->vm_end == addr) &&
  1227. !vma_growsup(vma->vm_next, addr);
  1228. }
  1229. int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
  1230. extern unsigned long move_page_tables(struct vm_area_struct *vma,
  1231. unsigned long old_addr, struct vm_area_struct *new_vma,
  1232. unsigned long new_addr, unsigned long len,
  1233. bool need_rmap_locks);
  1234. extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
  1235. unsigned long end, pgprot_t newprot,
  1236. int dirty_accountable, int prot_numa);
  1237. extern int mprotect_fixup(struct vm_area_struct *vma,
  1238. struct vm_area_struct **pprev, unsigned long start,
  1239. unsigned long end, unsigned long newflags);
  1240. /*
  1241. * doesn't attempt to fault and will return short.
  1242. */
  1243. int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
  1244. struct page **pages);
  1245. /*
  1246. * per-process(per-mm_struct) statistics.
  1247. */
  1248. static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
  1249. {
  1250. long val = atomic_long_read(&mm->rss_stat.count[member]);
  1251. #ifdef SPLIT_RSS_COUNTING
  1252. /*
  1253. * counter is updated in asynchronous manner and may go to minus.
  1254. * But it's never be expected number for users.
  1255. */
  1256. if (val < 0)
  1257. val = 0;
  1258. #endif
  1259. return (unsigned long)val;
  1260. }
  1261. static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
  1262. {
  1263. atomic_long_add(value, &mm->rss_stat.count[member]);
  1264. }
  1265. static inline void inc_mm_counter(struct mm_struct *mm, int member)
  1266. {
  1267. atomic_long_inc(&mm->rss_stat.count[member]);
  1268. }
  1269. static inline void dec_mm_counter(struct mm_struct *mm, int member)
  1270. {
  1271. atomic_long_dec(&mm->rss_stat.count[member]);
  1272. }
  1273. /* Optimized variant when page is already known not to be PageAnon */
  1274. static inline int mm_counter_file(struct page *page)
  1275. {
  1276. if (PageSwapBacked(page))
  1277. return MM_SHMEMPAGES;
  1278. return MM_FILEPAGES;
  1279. }
  1280. static inline int mm_counter(struct page *page)
  1281. {
  1282. if (PageAnon(page))
  1283. return MM_ANONPAGES;
  1284. return mm_counter_file(page);
  1285. }
  1286. static inline unsigned long get_mm_rss(struct mm_struct *mm)
  1287. {
  1288. return get_mm_counter(mm, MM_FILEPAGES) +
  1289. get_mm_counter(mm, MM_ANONPAGES) +
  1290. get_mm_counter(mm, MM_SHMEMPAGES);
  1291. }
  1292. static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
  1293. {
  1294. return max(mm->hiwater_rss, get_mm_rss(mm));
  1295. }
  1296. static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
  1297. {
  1298. return max(mm->hiwater_vm, mm->total_vm);
  1299. }
  1300. static inline void update_hiwater_rss(struct mm_struct *mm)
  1301. {
  1302. unsigned long _rss = get_mm_rss(mm);
  1303. if ((mm)->hiwater_rss < _rss)
  1304. (mm)->hiwater_rss = _rss;
  1305. }
  1306. static inline void update_hiwater_vm(struct mm_struct *mm)
  1307. {
  1308. if (mm->hiwater_vm < mm->total_vm)
  1309. mm->hiwater_vm = mm->total_vm;
  1310. }
  1311. static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
  1312. {
  1313. mm->hiwater_rss = get_mm_rss(mm);
  1314. }
  1315. static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
  1316. struct mm_struct *mm)
  1317. {
  1318. unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
  1319. if (*maxrss < hiwater_rss)
  1320. *maxrss = hiwater_rss;
  1321. }
  1322. #if defined(SPLIT_RSS_COUNTING)
  1323. void sync_mm_rss(struct mm_struct *mm);
  1324. #else
  1325. static inline void sync_mm_rss(struct mm_struct *mm)
  1326. {
  1327. }
  1328. #endif
  1329. #ifndef __HAVE_ARCH_PTE_DEVMAP
  1330. static inline int pte_devmap(pte_t pte)
  1331. {
  1332. return 0;
  1333. }
  1334. #endif
  1335. int vma_wants_writenotify(struct vm_area_struct *vma);
  1336. extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1337. spinlock_t **ptl);
  1338. static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1339. spinlock_t **ptl)
  1340. {
  1341. pte_t *ptep;
  1342. __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
  1343. return ptep;
  1344. }
  1345. #ifdef __PAGETABLE_PUD_FOLDED
  1346. static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
  1347. unsigned long address)
  1348. {
  1349. return 0;
  1350. }
  1351. #else
  1352. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
  1353. #endif
  1354. #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
  1355. static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
  1356. unsigned long address)
  1357. {
  1358. return 0;
  1359. }
  1360. static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
  1361. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1362. {
  1363. return 0;
  1364. }
  1365. static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
  1366. static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
  1367. #else
  1368. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
  1369. static inline void mm_nr_pmds_init(struct mm_struct *mm)
  1370. {
  1371. atomic_long_set(&mm->nr_pmds, 0);
  1372. }
  1373. static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
  1374. {
  1375. return atomic_long_read(&mm->nr_pmds);
  1376. }
  1377. static inline void mm_inc_nr_pmds(struct mm_struct *mm)
  1378. {
  1379. atomic_long_inc(&mm->nr_pmds);
  1380. }
  1381. static inline void mm_dec_nr_pmds(struct mm_struct *mm)
  1382. {
  1383. atomic_long_dec(&mm->nr_pmds);
  1384. }
  1385. #endif
  1386. int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
  1387. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
  1388. /*
  1389. * The following ifdef needed to get the 4level-fixup.h header to work.
  1390. * Remove it when 4level-fixup.h has been removed.
  1391. */
  1392. #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
  1393. static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  1394. {
  1395. return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
  1396. NULL: pud_offset(pgd, address);
  1397. }
  1398. static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  1399. {
  1400. return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
  1401. NULL: pmd_offset(pud, address);
  1402. }
  1403. #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
  1404. #if USE_SPLIT_PTE_PTLOCKS
  1405. #if ALLOC_SPLIT_PTLOCKS
  1406. void __init ptlock_cache_init(void);
  1407. extern bool ptlock_alloc(struct page *page);
  1408. extern void ptlock_free(struct page *page);
  1409. static inline spinlock_t *ptlock_ptr(struct page *page)
  1410. {
  1411. return page->ptl;
  1412. }
  1413. #else /* ALLOC_SPLIT_PTLOCKS */
  1414. static inline void ptlock_cache_init(void)
  1415. {
  1416. }
  1417. static inline bool ptlock_alloc(struct page *page)
  1418. {
  1419. return true;
  1420. }
  1421. static inline void ptlock_free(struct page *page)
  1422. {
  1423. }
  1424. static inline spinlock_t *ptlock_ptr(struct page *page)
  1425. {
  1426. return &page->ptl;
  1427. }
  1428. #endif /* ALLOC_SPLIT_PTLOCKS */
  1429. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1430. {
  1431. return ptlock_ptr(pmd_page(*pmd));
  1432. }
  1433. static inline bool ptlock_init(struct page *page)
  1434. {
  1435. /*
  1436. * prep_new_page() initialize page->private (and therefore page->ptl)
  1437. * with 0. Make sure nobody took it in use in between.
  1438. *
  1439. * It can happen if arch try to use slab for page table allocation:
  1440. * slab code uses page->slab_cache, which share storage with page->ptl.
  1441. */
  1442. VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
  1443. if (!ptlock_alloc(page))
  1444. return false;
  1445. spin_lock_init(ptlock_ptr(page));
  1446. return true;
  1447. }
  1448. /* Reset page->mapping so free_pages_check won't complain. */
  1449. static inline void pte_lock_deinit(struct page *page)
  1450. {
  1451. page->mapping = NULL;
  1452. ptlock_free(page);
  1453. }
  1454. #else /* !USE_SPLIT_PTE_PTLOCKS */
  1455. /*
  1456. * We use mm->page_table_lock to guard all pagetable pages of the mm.
  1457. */
  1458. static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1459. {
  1460. return &mm->page_table_lock;
  1461. }
  1462. static inline void ptlock_cache_init(void) {}
  1463. static inline bool ptlock_init(struct page *page) { return true; }
  1464. static inline void pte_lock_deinit(struct page *page) {}
  1465. #endif /* USE_SPLIT_PTE_PTLOCKS */
  1466. static inline void pgtable_init(void)
  1467. {
  1468. ptlock_cache_init();
  1469. pgtable_cache_init();
  1470. }
  1471. static inline bool pgtable_page_ctor(struct page *page)
  1472. {
  1473. if (!ptlock_init(page))
  1474. return false;
  1475. inc_zone_page_state(page, NR_PAGETABLE);
  1476. return true;
  1477. }
  1478. static inline void pgtable_page_dtor(struct page *page)
  1479. {
  1480. pte_lock_deinit(page);
  1481. dec_zone_page_state(page, NR_PAGETABLE);
  1482. }
  1483. #define pte_offset_map_lock(mm, pmd, address, ptlp) \
  1484. ({ \
  1485. spinlock_t *__ptl = pte_lockptr(mm, pmd); \
  1486. pte_t *__pte = pte_offset_map(pmd, address); \
  1487. *(ptlp) = __ptl; \
  1488. spin_lock(__ptl); \
  1489. __pte; \
  1490. })
  1491. #define pte_unmap_unlock(pte, ptl) do { \
  1492. spin_unlock(ptl); \
  1493. pte_unmap(pte); \
  1494. } while (0)
  1495. #define pte_alloc(mm, pmd, address) \
  1496. (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
  1497. #define pte_alloc_map(mm, pmd, address) \
  1498. (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
  1499. #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
  1500. (pte_alloc(mm, pmd, address) ? \
  1501. NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
  1502. #define pte_alloc_kernel(pmd, address) \
  1503. ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
  1504. NULL: pte_offset_kernel(pmd, address))
  1505. #if USE_SPLIT_PMD_PTLOCKS
  1506. static struct page *pmd_to_page(pmd_t *pmd)
  1507. {
  1508. unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
  1509. return virt_to_page((void *)((unsigned long) pmd & mask));
  1510. }
  1511. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1512. {
  1513. return ptlock_ptr(pmd_to_page(pmd));
  1514. }
  1515. static inline bool pgtable_pmd_page_ctor(struct page *page)
  1516. {
  1517. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1518. page->pmd_huge_pte = NULL;
  1519. #endif
  1520. return ptlock_init(page);
  1521. }
  1522. static inline void pgtable_pmd_page_dtor(struct page *page)
  1523. {
  1524. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  1525. VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
  1526. #endif
  1527. ptlock_free(page);
  1528. }
  1529. #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
  1530. #else
  1531. static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
  1532. {
  1533. return &mm->page_table_lock;
  1534. }
  1535. static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
  1536. static inline void pgtable_pmd_page_dtor(struct page *page) {}
  1537. #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
  1538. #endif
  1539. static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
  1540. {
  1541. spinlock_t *ptl = pmd_lockptr(mm, pmd);
  1542. spin_lock(ptl);
  1543. return ptl;
  1544. }
  1545. extern void free_area_init(unsigned long * zones_size);
  1546. extern void free_area_init_node(int nid, unsigned long * zones_size,
  1547. unsigned long zone_start_pfn, unsigned long *zholes_size);
  1548. extern void free_initmem(void);
  1549. /*
  1550. * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
  1551. * into the buddy system. The freed pages will be poisoned with pattern
  1552. * "poison" if it's within range [0, UCHAR_MAX].
  1553. * Return pages freed into the buddy system.
  1554. */
  1555. extern unsigned long free_reserved_area(void *start, void *end,
  1556. int poison, char *s);
  1557. #ifdef CONFIG_HIGHMEM
  1558. /*
  1559. * Free a highmem page into the buddy system, adjusting totalhigh_pages
  1560. * and totalram_pages.
  1561. */
  1562. extern void free_highmem_page(struct page *page);
  1563. #endif
  1564. extern void adjust_managed_page_count(struct page *page, long count);
  1565. extern void mem_init_print_info(const char *str);
  1566. extern void reserve_bootmem_region(unsigned long start, unsigned long end);
  1567. /* Free the reserved page into the buddy system, so it gets managed. */
  1568. static inline void __free_reserved_page(struct page *page)
  1569. {
  1570. ClearPageReserved(page);
  1571. init_page_count(page);
  1572. __free_page(page);
  1573. }
  1574. static inline void free_reserved_page(struct page *page)
  1575. {
  1576. __free_reserved_page(page);
  1577. adjust_managed_page_count(page, 1);
  1578. }
  1579. static inline void mark_page_reserved(struct page *page)
  1580. {
  1581. SetPageReserved(page);
  1582. adjust_managed_page_count(page, -1);
  1583. }
  1584. /*
  1585. * Default method to free all the __init memory into the buddy system.
  1586. * The freed pages will be poisoned with pattern "poison" if it's within
  1587. * range [0, UCHAR_MAX].
  1588. * Return pages freed into the buddy system.
  1589. */
  1590. static inline unsigned long free_initmem_default(int poison)
  1591. {
  1592. extern char __init_begin[], __init_end[];
  1593. return free_reserved_area(&__init_begin, &__init_end,
  1594. poison, "unused kernel");
  1595. }
  1596. static inline unsigned long get_num_physpages(void)
  1597. {
  1598. int nid;
  1599. unsigned long phys_pages = 0;
  1600. for_each_online_node(nid)
  1601. phys_pages += node_present_pages(nid);
  1602. return phys_pages;
  1603. }
  1604. #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
  1605. /*
  1606. * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
  1607. * zones, allocate the backing mem_map and account for memory holes in a more
  1608. * architecture independent manner. This is a substitute for creating the
  1609. * zone_sizes[] and zholes_size[] arrays and passing them to
  1610. * free_area_init_node()
  1611. *
  1612. * An architecture is expected to register range of page frames backed by
  1613. * physical memory with memblock_add[_node]() before calling
  1614. * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
  1615. * usage, an architecture is expected to do something like
  1616. *
  1617. * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
  1618. * max_highmem_pfn};
  1619. * for_each_valid_physical_page_range()
  1620. * memblock_add_node(base, size, nid)
  1621. * free_area_init_nodes(max_zone_pfns);
  1622. *
  1623. * free_bootmem_with_active_regions() calls free_bootmem_node() for each
  1624. * registered physical page range. Similarly
  1625. * sparse_memory_present_with_active_regions() calls memory_present() for
  1626. * each range when SPARSEMEM is enabled.
  1627. *
  1628. * See mm/page_alloc.c for more information on each function exposed by
  1629. * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
  1630. */
  1631. extern void free_area_init_nodes(unsigned long *max_zone_pfn);
  1632. unsigned long node_map_pfn_alignment(void);
  1633. unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
  1634. unsigned long end_pfn);
  1635. extern unsigned long absent_pages_in_range(unsigned long start_pfn,
  1636. unsigned long end_pfn);
  1637. extern void get_pfn_range_for_nid(unsigned int nid,
  1638. unsigned long *start_pfn, unsigned long *end_pfn);
  1639. extern unsigned long find_min_pfn_with_active_regions(void);
  1640. extern void free_bootmem_with_active_regions(int nid,
  1641. unsigned long max_low_pfn);
  1642. extern void sparse_memory_present_with_active_regions(int nid);
  1643. #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
  1644. #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
  1645. !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
  1646. static inline int __early_pfn_to_nid(unsigned long pfn,
  1647. struct mminit_pfnnid_cache *state)
  1648. {
  1649. return 0;
  1650. }
  1651. #else
  1652. /* please see mm/page_alloc.c */
  1653. extern int __meminit early_pfn_to_nid(unsigned long pfn);
  1654. /* there is a per-arch backend function. */
  1655. extern int __meminit __early_pfn_to_nid(unsigned long pfn,
  1656. struct mminit_pfnnid_cache *state);
  1657. #endif
  1658. extern void set_dma_reserve(unsigned long new_dma_reserve);
  1659. extern void memmap_init_zone(unsigned long, int, unsigned long,
  1660. unsigned long, enum memmap_context);
  1661. extern void setup_per_zone_wmarks(void);
  1662. extern int __meminit init_per_zone_wmark_min(void);
  1663. extern void mem_init(void);
  1664. extern void __init mmap_init(void);
  1665. extern void show_mem(unsigned int flags);
  1666. extern long si_mem_available(void);
  1667. extern void si_meminfo(struct sysinfo * val);
  1668. extern void si_meminfo_node(struct sysinfo *val, int nid);
  1669. extern __printf(3, 4)
  1670. void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
  1671. const char *fmt, ...);
  1672. extern void setup_per_cpu_pageset(void);
  1673. extern void zone_pcp_update(struct zone *zone);
  1674. extern void zone_pcp_reset(struct zone *zone);
  1675. /* page_alloc.c */
  1676. extern int min_free_kbytes;
  1677. extern int watermark_scale_factor;
  1678. /* nommu.c */
  1679. extern atomic_long_t mmap_pages_allocated;
  1680. extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
  1681. /* interval_tree.c */
  1682. void vma_interval_tree_insert(struct vm_area_struct *node,
  1683. struct rb_root *root);
  1684. void vma_interval_tree_insert_after(struct vm_area_struct *node,
  1685. struct vm_area_struct *prev,
  1686. struct rb_root *root);
  1687. void vma_interval_tree_remove(struct vm_area_struct *node,
  1688. struct rb_root *root);
  1689. struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
  1690. unsigned long start, unsigned long last);
  1691. struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
  1692. unsigned long start, unsigned long last);
  1693. #define vma_interval_tree_foreach(vma, root, start, last) \
  1694. for (vma = vma_interval_tree_iter_first(root, start, last); \
  1695. vma; vma = vma_interval_tree_iter_next(vma, start, last))
  1696. void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
  1697. struct rb_root *root);
  1698. void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
  1699. struct rb_root *root);
  1700. struct anon_vma_chain *anon_vma_interval_tree_iter_first(
  1701. struct rb_root *root, unsigned long start, unsigned long last);
  1702. struct anon_vma_chain *anon_vma_interval_tree_iter_next(
  1703. struct anon_vma_chain *node, unsigned long start, unsigned long last);
  1704. #ifdef CONFIG_DEBUG_VM_RB
  1705. void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
  1706. #endif
  1707. #define anon_vma_interval_tree_foreach(avc, root, start, last) \
  1708. for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
  1709. avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
  1710. /* mmap.c */
  1711. extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
  1712. extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
  1713. unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
  1714. extern struct vm_area_struct *vma_merge(struct mm_struct *,
  1715. struct vm_area_struct *prev, unsigned long addr, unsigned long end,
  1716. unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
  1717. struct mempolicy *, struct vm_userfaultfd_ctx);
  1718. extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
  1719. extern int split_vma(struct mm_struct *,
  1720. struct vm_area_struct *, unsigned long addr, int new_below);
  1721. extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
  1722. extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
  1723. struct rb_node **, struct rb_node *);
  1724. extern void unlink_file_vma(struct vm_area_struct *);
  1725. extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
  1726. unsigned long addr, unsigned long len, pgoff_t pgoff,
  1727. bool *need_rmap_locks);
  1728. extern void exit_mmap(struct mm_struct *);
  1729. static inline int check_data_rlimit(unsigned long rlim,
  1730. unsigned long new,
  1731. unsigned long start,
  1732. unsigned long end_data,
  1733. unsigned long start_data)
  1734. {
  1735. if (rlim < RLIM_INFINITY) {
  1736. if (((new - start) + (end_data - start_data)) > rlim)
  1737. return -ENOSPC;
  1738. }
  1739. return 0;
  1740. }
  1741. extern int mm_take_all_locks(struct mm_struct *mm);
  1742. extern void mm_drop_all_locks(struct mm_struct *mm);
  1743. extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
  1744. extern struct file *get_mm_exe_file(struct mm_struct *mm);
  1745. extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
  1746. extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
  1747. extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
  1748. unsigned long addr, unsigned long len,
  1749. unsigned long flags,
  1750. const struct vm_special_mapping *spec);
  1751. /* This is an obsolete alternative to _install_special_mapping. */
  1752. extern int install_special_mapping(struct mm_struct *mm,
  1753. unsigned long addr, unsigned long len,
  1754. unsigned long flags, struct page **pages);
  1755. extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
  1756. extern unsigned long mmap_region(struct file *file, unsigned long addr,
  1757. unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
  1758. extern unsigned long do_mmap(struct file *file, unsigned long addr,
  1759. unsigned long len, unsigned long prot, unsigned long flags,
  1760. vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
  1761. extern int do_munmap(struct mm_struct *, unsigned long, size_t);
  1762. static inline unsigned long
  1763. do_mmap_pgoff(struct file *file, unsigned long addr,
  1764. unsigned long len, unsigned long prot, unsigned long flags,
  1765. unsigned long pgoff, unsigned long *populate)
  1766. {
  1767. return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
  1768. }
  1769. #ifdef CONFIG_MMU
  1770. extern int __mm_populate(unsigned long addr, unsigned long len,
  1771. int ignore_errors);
  1772. static inline void mm_populate(unsigned long addr, unsigned long len)
  1773. {
  1774. /* Ignore errors */
  1775. (void) __mm_populate(addr, len, 1);
  1776. }
  1777. #else
  1778. static inline void mm_populate(unsigned long addr, unsigned long len) {}
  1779. #endif
  1780. /* These take the mm semaphore themselves */
  1781. extern unsigned long vm_brk(unsigned long, unsigned long);
  1782. extern int vm_munmap(unsigned long, size_t);
  1783. extern unsigned long vm_mmap(struct file *, unsigned long,
  1784. unsigned long, unsigned long,
  1785. unsigned long, unsigned long);
  1786. struct vm_unmapped_area_info {
  1787. #define VM_UNMAPPED_AREA_TOPDOWN 1
  1788. unsigned long flags;
  1789. unsigned long length;
  1790. unsigned long low_limit;
  1791. unsigned long high_limit;
  1792. unsigned long align_mask;
  1793. unsigned long align_offset;
  1794. };
  1795. extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
  1796. extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
  1797. /*
  1798. * Search for an unmapped address range.
  1799. *
  1800. * We are looking for a range that:
  1801. * - does not intersect with any VMA;
  1802. * - is contained within the [low_limit, high_limit) interval;
  1803. * - is at least the desired size.
  1804. * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
  1805. */
  1806. static inline unsigned long
  1807. vm_unmapped_area(struct vm_unmapped_area_info *info)
  1808. {
  1809. if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
  1810. return unmapped_area_topdown(info);
  1811. else
  1812. return unmapped_area(info);
  1813. }
  1814. /* truncate.c */
  1815. extern void truncate_inode_pages(struct address_space *, loff_t);
  1816. extern void truncate_inode_pages_range(struct address_space *,
  1817. loff_t lstart, loff_t lend);
  1818. extern void truncate_inode_pages_final(struct address_space *);
  1819. /* generic vm_area_ops exported for stackable file systems */
  1820. extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
  1821. extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
  1822. extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
  1823. /* mm/page-writeback.c */
  1824. int write_one_page(struct page *page, int wait);
  1825. void task_dirty_inc(struct task_struct *tsk);
  1826. /* readahead.c */
  1827. #define VM_MAX_READAHEAD 128 /* kbytes */
  1828. #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
  1829. int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
  1830. pgoff_t offset, unsigned long nr_to_read);
  1831. void page_cache_sync_readahead(struct address_space *mapping,
  1832. struct file_ra_state *ra,
  1833. struct file *filp,
  1834. pgoff_t offset,
  1835. unsigned long size);
  1836. void page_cache_async_readahead(struct address_space *mapping,
  1837. struct file_ra_state *ra,
  1838. struct file *filp,
  1839. struct page *pg,
  1840. pgoff_t offset,
  1841. unsigned long size);
  1842. /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
  1843. extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
  1844. /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
  1845. extern int expand_downwards(struct vm_area_struct *vma,
  1846. unsigned long address);
  1847. #if VM_GROWSUP
  1848. extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
  1849. #else
  1850. #define expand_upwards(vma, address) (0)
  1851. #endif
  1852. /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
  1853. extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
  1854. extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
  1855. struct vm_area_struct **pprev);
  1856. /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
  1857. NULL if none. Assume start_addr < end_addr. */
  1858. static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
  1859. {
  1860. struct vm_area_struct * vma = find_vma(mm,start_addr);
  1861. if (vma && end_addr <= vma->vm_start)
  1862. vma = NULL;
  1863. return vma;
  1864. }
  1865. static inline unsigned long vma_pages(struct vm_area_struct *vma)
  1866. {
  1867. return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
  1868. }
  1869. /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
  1870. static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
  1871. unsigned long vm_start, unsigned long vm_end)
  1872. {
  1873. struct vm_area_struct *vma = find_vma(mm, vm_start);
  1874. if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
  1875. vma = NULL;
  1876. return vma;
  1877. }
  1878. #ifdef CONFIG_MMU
  1879. pgprot_t vm_get_page_prot(unsigned long vm_flags);
  1880. void vma_set_page_prot(struct vm_area_struct *vma);
  1881. #else
  1882. static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
  1883. {
  1884. return __pgprot(0);
  1885. }
  1886. static inline void vma_set_page_prot(struct vm_area_struct *vma)
  1887. {
  1888. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  1889. }
  1890. #endif
  1891. #ifdef CONFIG_NUMA_BALANCING
  1892. unsigned long change_prot_numa(struct vm_area_struct *vma,
  1893. unsigned long start, unsigned long end);
  1894. #endif
  1895. struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
  1896. int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
  1897. unsigned long pfn, unsigned long size, pgprot_t);
  1898. int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
  1899. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1900. unsigned long pfn);
  1901. int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
  1902. unsigned long pfn, pgprot_t pgprot);
  1903. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1904. pfn_t pfn);
  1905. int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
  1906. struct page *follow_page_mask(struct vm_area_struct *vma,
  1907. unsigned long address, unsigned int foll_flags,
  1908. unsigned int *page_mask);
  1909. static inline struct page *follow_page(struct vm_area_struct *vma,
  1910. unsigned long address, unsigned int foll_flags)
  1911. {
  1912. unsigned int unused_page_mask;
  1913. return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
  1914. }
  1915. #define FOLL_WRITE 0x01 /* check pte is writable */
  1916. #define FOLL_TOUCH 0x02 /* mark page accessed */
  1917. #define FOLL_GET 0x04 /* do get_page on page */
  1918. #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
  1919. #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
  1920. #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
  1921. * and return without waiting upon it */
  1922. #define FOLL_POPULATE 0x40 /* fault in page */
  1923. #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
  1924. #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
  1925. #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
  1926. #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
  1927. #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
  1928. #define FOLL_MLOCK 0x1000 /* lock present pages */
  1929. #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
  1930. typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
  1931. void *data);
  1932. extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
  1933. unsigned long size, pte_fn_t fn, void *data);
  1934. #ifdef CONFIG_PAGE_POISONING
  1935. extern bool page_poisoning_enabled(void);
  1936. extern void kernel_poison_pages(struct page *page, int numpages, int enable);
  1937. extern bool page_is_poisoned(struct page *page);
  1938. #else
  1939. static inline bool page_poisoning_enabled(void) { return false; }
  1940. static inline void kernel_poison_pages(struct page *page, int numpages,
  1941. int enable) { }
  1942. static inline bool page_is_poisoned(struct page *page) { return false; }
  1943. #endif
  1944. #ifdef CONFIG_DEBUG_PAGEALLOC
  1945. extern bool _debug_pagealloc_enabled;
  1946. extern void __kernel_map_pages(struct page *page, int numpages, int enable);
  1947. static inline bool debug_pagealloc_enabled(void)
  1948. {
  1949. return _debug_pagealloc_enabled;
  1950. }
  1951. static inline void
  1952. kernel_map_pages(struct page *page, int numpages, int enable)
  1953. {
  1954. if (!debug_pagealloc_enabled())
  1955. return;
  1956. __kernel_map_pages(page, numpages, enable);
  1957. }
  1958. #ifdef CONFIG_HIBERNATION
  1959. extern bool kernel_page_present(struct page *page);
  1960. #endif /* CONFIG_HIBERNATION */
  1961. #else /* CONFIG_DEBUG_PAGEALLOC */
  1962. static inline void
  1963. kernel_map_pages(struct page *page, int numpages, int enable) {}
  1964. #ifdef CONFIG_HIBERNATION
  1965. static inline bool kernel_page_present(struct page *page) { return true; }
  1966. #endif /* CONFIG_HIBERNATION */
  1967. static inline bool debug_pagealloc_enabled(void)
  1968. {
  1969. return false;
  1970. }
  1971. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1972. #ifdef __HAVE_ARCH_GATE_AREA
  1973. extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
  1974. extern int in_gate_area_no_mm(unsigned long addr);
  1975. extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
  1976. #else
  1977. static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  1978. {
  1979. return NULL;
  1980. }
  1981. static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
  1982. static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
  1983. {
  1984. return 0;
  1985. }
  1986. #endif /* __HAVE_ARCH_GATE_AREA */
  1987. #ifdef CONFIG_SYSCTL
  1988. extern int sysctl_drop_caches;
  1989. int drop_caches_sysctl_handler(struct ctl_table *, int,
  1990. void __user *, size_t *, loff_t *);
  1991. #endif
  1992. void drop_slab(void);
  1993. void drop_slab_node(int nid);
  1994. #ifndef CONFIG_MMU
  1995. #define randomize_va_space 0
  1996. #else
  1997. extern int randomize_va_space;
  1998. #endif
  1999. const char * arch_vma_name(struct vm_area_struct *vma);
  2000. void print_vma_addr(char *prefix, unsigned long rip);
  2001. void sparse_mem_maps_populate_node(struct page **map_map,
  2002. unsigned long pnum_begin,
  2003. unsigned long pnum_end,
  2004. unsigned long map_count,
  2005. int nodeid);
  2006. struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
  2007. pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
  2008. pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
  2009. pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
  2010. pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
  2011. void *vmemmap_alloc_block(unsigned long size, int node);
  2012. struct vmem_altmap;
  2013. void *__vmemmap_alloc_block_buf(unsigned long size, int node,
  2014. struct vmem_altmap *altmap);
  2015. static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
  2016. {
  2017. return __vmemmap_alloc_block_buf(size, node, NULL);
  2018. }
  2019. void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
  2020. int vmemmap_populate_basepages(unsigned long start, unsigned long end,
  2021. int node);
  2022. int vmemmap_populate(unsigned long start, unsigned long end, int node);
  2023. void vmemmap_populate_print_last(void);
  2024. #ifdef CONFIG_MEMORY_HOTPLUG
  2025. void vmemmap_free(unsigned long start, unsigned long end);
  2026. #endif
  2027. void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
  2028. unsigned long size);
  2029. enum mf_flags {
  2030. MF_COUNT_INCREASED = 1 << 0,
  2031. MF_ACTION_REQUIRED = 1 << 1,
  2032. MF_MUST_KILL = 1 << 2,
  2033. MF_SOFT_OFFLINE = 1 << 3,
  2034. };
  2035. extern int memory_failure(unsigned long pfn, int trapno, int flags);
  2036. extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
  2037. extern int unpoison_memory(unsigned long pfn);
  2038. extern int get_hwpoison_page(struct page *page);
  2039. #define put_hwpoison_page(page) put_page(page)
  2040. extern int sysctl_memory_failure_early_kill;
  2041. extern int sysctl_memory_failure_recovery;
  2042. extern void shake_page(struct page *p, int access);
  2043. extern atomic_long_t num_poisoned_pages;
  2044. extern int soft_offline_page(struct page *page, int flags);
  2045. /*
  2046. * Error handlers for various types of pages.
  2047. */
  2048. enum mf_result {
  2049. MF_IGNORED, /* Error: cannot be handled */
  2050. MF_FAILED, /* Error: handling failed */
  2051. MF_DELAYED, /* Will be handled later */
  2052. MF_RECOVERED, /* Successfully recovered */
  2053. };
  2054. enum mf_action_page_type {
  2055. MF_MSG_KERNEL,
  2056. MF_MSG_KERNEL_HIGH_ORDER,
  2057. MF_MSG_SLAB,
  2058. MF_MSG_DIFFERENT_COMPOUND,
  2059. MF_MSG_POISONED_HUGE,
  2060. MF_MSG_HUGE,
  2061. MF_MSG_FREE_HUGE,
  2062. MF_MSG_UNMAP_FAILED,
  2063. MF_MSG_DIRTY_SWAPCACHE,
  2064. MF_MSG_CLEAN_SWAPCACHE,
  2065. MF_MSG_DIRTY_MLOCKED_LRU,
  2066. MF_MSG_CLEAN_MLOCKED_LRU,
  2067. MF_MSG_DIRTY_UNEVICTABLE_LRU,
  2068. MF_MSG_CLEAN_UNEVICTABLE_LRU,
  2069. MF_MSG_DIRTY_LRU,
  2070. MF_MSG_CLEAN_LRU,
  2071. MF_MSG_TRUNCATED_LRU,
  2072. MF_MSG_BUDDY,
  2073. MF_MSG_BUDDY_2ND,
  2074. MF_MSG_UNKNOWN,
  2075. };
  2076. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  2077. extern void clear_huge_page(struct page *page,
  2078. unsigned long addr,
  2079. unsigned int pages_per_huge_page);
  2080. extern void copy_user_huge_page(struct page *dst, struct page *src,
  2081. unsigned long addr, struct vm_area_struct *vma,
  2082. unsigned int pages_per_huge_page);
  2083. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
  2084. extern struct page_ext_operations debug_guardpage_ops;
  2085. extern struct page_ext_operations page_poisoning_ops;
  2086. #ifdef CONFIG_DEBUG_PAGEALLOC
  2087. extern unsigned int _debug_guardpage_minorder;
  2088. extern bool _debug_guardpage_enabled;
  2089. static inline unsigned int debug_guardpage_minorder(void)
  2090. {
  2091. return _debug_guardpage_minorder;
  2092. }
  2093. static inline bool debug_guardpage_enabled(void)
  2094. {
  2095. return _debug_guardpage_enabled;
  2096. }
  2097. static inline bool page_is_guard(struct page *page)
  2098. {
  2099. struct page_ext *page_ext;
  2100. if (!debug_guardpage_enabled())
  2101. return false;
  2102. page_ext = lookup_page_ext(page);
  2103. return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
  2104. }
  2105. #else
  2106. static inline unsigned int debug_guardpage_minorder(void) { return 0; }
  2107. static inline bool debug_guardpage_enabled(void) { return false; }
  2108. static inline bool page_is_guard(struct page *page) { return false; }
  2109. #endif /* CONFIG_DEBUG_PAGEALLOC */
  2110. #if MAX_NUMNODES > 1
  2111. void __init setup_nr_node_ids(void);
  2112. #else
  2113. static inline void setup_nr_node_ids(void) {}
  2114. #endif
  2115. #endif /* __KERNEL__ */
  2116. #endif /* _LINUX_MM_H */