book3s_hv_builtin.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License, version 2, as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/cpu.h>
  9. #include <linux/kvm_host.h>
  10. #include <linux/preempt.h>
  11. #include <linux/export.h>
  12. #include <linux/sched.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/init.h>
  15. #include <linux/memblock.h>
  16. #include <linux/sizes.h>
  17. #include <linux/cma.h>
  18. #include <linux/bitops.h>
  19. #include <asm/cputable.h>
  20. #include <asm/kvm_ppc.h>
  21. #include <asm/kvm_book3s.h>
  22. #include <asm/archrandom.h>
  23. #include <asm/xics.h>
  24. #include <asm/xive.h>
  25. #include <asm/dbell.h>
  26. #include <asm/cputhreads.h>
  27. #include <asm/io.h>
  28. #include <asm/opal.h>
  29. #include <asm/smp.h>
  30. #define KVM_CMA_CHUNK_ORDER 18
  31. #include "book3s_xics.h"
  32. #include "book3s_xive.h"
  33. /*
  34. * The XIVE module will populate these when it loads
  35. */
  36. unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu);
  37. unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server);
  38. int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server,
  39. unsigned long mfrr);
  40. int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr);
  41. int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr);
  42. EXPORT_SYMBOL_GPL(__xive_vm_h_xirr);
  43. EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll);
  44. EXPORT_SYMBOL_GPL(__xive_vm_h_ipi);
  45. EXPORT_SYMBOL_GPL(__xive_vm_h_cppr);
  46. EXPORT_SYMBOL_GPL(__xive_vm_h_eoi);
  47. /*
  48. * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
  49. * should be power of 2.
  50. */
  51. #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
  52. /*
  53. * By default we reserve 5% of memory for hash pagetable allocation.
  54. */
  55. static unsigned long kvm_cma_resv_ratio = 5;
  56. static struct cma *kvm_cma;
  57. static int __init early_parse_kvm_cma_resv(char *p)
  58. {
  59. pr_debug("%s(%s)\n", __func__, p);
  60. if (!p)
  61. return -EINVAL;
  62. return kstrtoul(p, 0, &kvm_cma_resv_ratio);
  63. }
  64. early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
  65. struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
  66. {
  67. VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
  68. return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
  69. GFP_KERNEL);
  70. }
  71. EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
  72. void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
  73. {
  74. cma_release(kvm_cma, page, nr_pages);
  75. }
  76. EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
  77. /**
  78. * kvm_cma_reserve() - reserve area for kvm hash pagetable
  79. *
  80. * This function reserves memory from early allocator. It should be
  81. * called by arch specific code once the memblock allocator
  82. * has been activated and all other subsystems have already allocated/reserved
  83. * memory.
  84. */
  85. void __init kvm_cma_reserve(void)
  86. {
  87. unsigned long align_size;
  88. struct memblock_region *reg;
  89. phys_addr_t selected_size = 0;
  90. /*
  91. * We need CMA reservation only when we are in HV mode
  92. */
  93. if (!cpu_has_feature(CPU_FTR_HVMODE))
  94. return;
  95. /*
  96. * We cannot use memblock_phys_mem_size() here, because
  97. * memblock_analyze() has not been called yet.
  98. */
  99. for_each_memblock(memory, reg)
  100. selected_size += memblock_region_memory_end_pfn(reg) -
  101. memblock_region_memory_base_pfn(reg);
  102. selected_size = (selected_size * kvm_cma_resv_ratio / 100) << PAGE_SHIFT;
  103. if (selected_size) {
  104. pr_debug("%s: reserving %ld MiB for global area\n", __func__,
  105. (unsigned long)selected_size / SZ_1M);
  106. align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
  107. cma_declare_contiguous(0, selected_size, 0, align_size,
  108. KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
  109. &kvm_cma);
  110. }
  111. }
  112. /*
  113. * Real-mode H_CONFER implementation.
  114. * We check if we are the only vcpu out of this virtual core
  115. * still running in the guest and not ceded. If so, we pop up
  116. * to the virtual-mode implementation; if not, just return to
  117. * the guest.
  118. */
  119. long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
  120. unsigned int yield_count)
  121. {
  122. struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
  123. int ptid = local_paca->kvm_hstate.ptid;
  124. int threads_running;
  125. int threads_ceded;
  126. int threads_conferring;
  127. u64 stop = get_tb() + 10 * tb_ticks_per_usec;
  128. int rv = H_SUCCESS; /* => don't yield */
  129. set_bit(ptid, &vc->conferring_threads);
  130. while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
  131. threads_running = VCORE_ENTRY_MAP(vc);
  132. threads_ceded = vc->napping_threads;
  133. threads_conferring = vc->conferring_threads;
  134. if ((threads_ceded | threads_conferring) == threads_running) {
  135. rv = H_TOO_HARD; /* => do yield */
  136. break;
  137. }
  138. }
  139. clear_bit(ptid, &vc->conferring_threads);
  140. return rv;
  141. }
  142. /*
  143. * When running HV mode KVM we need to block certain operations while KVM VMs
  144. * exist in the system. We use a counter of VMs to track this.
  145. *
  146. * One of the operations we need to block is onlining of secondaries, so we
  147. * protect hv_vm_count with get/put_online_cpus().
  148. */
  149. static atomic_t hv_vm_count;
  150. void kvm_hv_vm_activated(void)
  151. {
  152. get_online_cpus();
  153. atomic_inc(&hv_vm_count);
  154. put_online_cpus();
  155. }
  156. EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
  157. void kvm_hv_vm_deactivated(void)
  158. {
  159. get_online_cpus();
  160. atomic_dec(&hv_vm_count);
  161. put_online_cpus();
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
  164. bool kvm_hv_mode_active(void)
  165. {
  166. return atomic_read(&hv_vm_count) != 0;
  167. }
  168. extern int hcall_real_table[], hcall_real_table_end[];
  169. int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
  170. {
  171. cmd /= 4;
  172. if (cmd < hcall_real_table_end - hcall_real_table &&
  173. hcall_real_table[cmd])
  174. return 1;
  175. return 0;
  176. }
  177. EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
  178. int kvmppc_hwrng_present(void)
  179. {
  180. return powernv_hwrng_present();
  181. }
  182. EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
  183. long kvmppc_h_random(struct kvm_vcpu *vcpu)
  184. {
  185. int r;
  186. /* Only need to do the expensive mfmsr() on radix */
  187. if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR))
  188. r = powernv_get_random_long(&vcpu->arch.gpr[4]);
  189. else
  190. r = powernv_get_random_real_mode(&vcpu->arch.gpr[4]);
  191. if (r)
  192. return H_SUCCESS;
  193. return H_HARDWARE;
  194. }
  195. /*
  196. * Send an interrupt or message to another CPU.
  197. * The caller needs to include any barrier needed to order writes
  198. * to memory vs. the IPI/message.
  199. */
  200. void kvmhv_rm_send_ipi(int cpu)
  201. {
  202. void __iomem *xics_phys;
  203. unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
  204. /* On POWER9 we can use msgsnd for any destination cpu. */
  205. if (cpu_has_feature(CPU_FTR_ARCH_300)) {
  206. msg |= get_hard_smp_processor_id(cpu);
  207. __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
  208. return;
  209. }
  210. /* On POWER8 for IPIs to threads in the same core, use msgsnd. */
  211. if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
  212. cpu_first_thread_sibling(cpu) ==
  213. cpu_first_thread_sibling(raw_smp_processor_id())) {
  214. msg |= cpu_thread_in_core(cpu);
  215. __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
  216. return;
  217. }
  218. /* We should never reach this */
  219. if (WARN_ON_ONCE(xive_enabled()))
  220. return;
  221. /* Else poke the target with an IPI */
  222. xics_phys = paca[cpu].kvm_hstate.xics_phys;
  223. if (xics_phys)
  224. __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
  225. else
  226. opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
  227. }
  228. /*
  229. * The following functions are called from the assembly code
  230. * in book3s_hv_rmhandlers.S.
  231. */
  232. static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
  233. {
  234. int cpu = vc->pcpu;
  235. /* Order setting of exit map vs. msgsnd/IPI */
  236. smp_mb();
  237. for (; active; active >>= 1, ++cpu)
  238. if (active & 1)
  239. kvmhv_rm_send_ipi(cpu);
  240. }
  241. void kvmhv_commence_exit(int trap)
  242. {
  243. struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
  244. int ptid = local_paca->kvm_hstate.ptid;
  245. struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
  246. int me, ee, i;
  247. /* Set our bit in the threads-exiting-guest map in the 0xff00
  248. bits of vcore->entry_exit_map */
  249. me = 0x100 << ptid;
  250. do {
  251. ee = vc->entry_exit_map;
  252. } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
  253. /* Are we the first here? */
  254. if ((ee >> 8) != 0)
  255. return;
  256. /*
  257. * Trigger the other threads in this vcore to exit the guest.
  258. * If this is a hypervisor decrementer interrupt then they
  259. * will be already on their way out of the guest.
  260. */
  261. if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
  262. kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
  263. /*
  264. * If we are doing dynamic micro-threading, interrupt the other
  265. * subcores to pull them out of their guests too.
  266. */
  267. if (!sip)
  268. return;
  269. for (i = 0; i < MAX_SUBCORES; ++i) {
  270. vc = sip->master_vcs[i];
  271. if (!vc)
  272. break;
  273. do {
  274. ee = vc->entry_exit_map;
  275. /* Already asked to exit? */
  276. if ((ee >> 8) != 0)
  277. break;
  278. } while (cmpxchg(&vc->entry_exit_map, ee,
  279. ee | VCORE_EXIT_REQ) != ee);
  280. if ((ee >> 8) == 0)
  281. kvmhv_interrupt_vcore(vc, ee);
  282. }
  283. }
  284. struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
  285. EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
  286. #ifdef CONFIG_KVM_XICS
  287. static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
  288. u32 xisr)
  289. {
  290. int i;
  291. /*
  292. * We access the mapped array here without a lock. That
  293. * is safe because we never reduce the number of entries
  294. * in the array and we never change the v_hwirq field of
  295. * an entry once it is set.
  296. *
  297. * We have also carefully ordered the stores in the writer
  298. * and the loads here in the reader, so that if we find a matching
  299. * hwirq here, the associated GSI and irq_desc fields are valid.
  300. */
  301. for (i = 0; i < pimap->n_mapped; i++) {
  302. if (xisr == pimap->mapped[i].r_hwirq) {
  303. /*
  304. * Order subsequent reads in the caller to serialize
  305. * with the writer.
  306. */
  307. smp_rmb();
  308. return &pimap->mapped[i];
  309. }
  310. }
  311. return NULL;
  312. }
  313. /*
  314. * If we have an interrupt that's not an IPI, check if we have a
  315. * passthrough adapter and if so, check if this external interrupt
  316. * is for the adapter.
  317. * We will attempt to deliver the IRQ directly to the target VCPU's
  318. * ICP, the virtual ICP (based on affinity - the xive value in ICS).
  319. *
  320. * If the delivery fails or if this is not for a passthrough adapter,
  321. * return to the host to handle this interrupt. We earlier
  322. * saved a copy of the XIRR in the PACA, it will be picked up by
  323. * the host ICP driver.
  324. */
  325. static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
  326. {
  327. struct kvmppc_passthru_irqmap *pimap;
  328. struct kvmppc_irq_map *irq_map;
  329. struct kvm_vcpu *vcpu;
  330. vcpu = local_paca->kvm_hstate.kvm_vcpu;
  331. if (!vcpu)
  332. return 1;
  333. pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
  334. if (!pimap)
  335. return 1;
  336. irq_map = get_irqmap(pimap, xisr);
  337. if (!irq_map)
  338. return 1;
  339. /* We're handling this interrupt, generic code doesn't need to */
  340. local_paca->kvm_hstate.saved_xirr = 0;
  341. return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
  342. }
  343. #else
  344. static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
  345. {
  346. return 1;
  347. }
  348. #endif
  349. /*
  350. * Determine what sort of external interrupt is pending (if any).
  351. * Returns:
  352. * 0 if no interrupt is pending
  353. * 1 if an interrupt is pending that needs to be handled by the host
  354. * 2 Passthrough that needs completion in the host
  355. * -1 if there was a guest wakeup IPI (which has now been cleared)
  356. * -2 if there is PCI passthrough external interrupt that was handled
  357. */
  358. static long kvmppc_read_one_intr(bool *again);
  359. long kvmppc_read_intr(void)
  360. {
  361. long ret = 0;
  362. long rc;
  363. bool again;
  364. if (xive_enabled())
  365. return 1;
  366. do {
  367. again = false;
  368. rc = kvmppc_read_one_intr(&again);
  369. if (rc && (ret == 0 || rc > ret))
  370. ret = rc;
  371. } while (again);
  372. return ret;
  373. }
  374. static long kvmppc_read_one_intr(bool *again)
  375. {
  376. void __iomem *xics_phys;
  377. u32 h_xirr;
  378. __be32 xirr;
  379. u32 xisr;
  380. u8 host_ipi;
  381. int64_t rc;
  382. if (xive_enabled())
  383. return 1;
  384. /* see if a host IPI is pending */
  385. host_ipi = local_paca->kvm_hstate.host_ipi;
  386. if (host_ipi)
  387. return 1;
  388. /* Now read the interrupt from the ICP */
  389. xics_phys = local_paca->kvm_hstate.xics_phys;
  390. rc = 0;
  391. if (!xics_phys)
  392. rc = opal_int_get_xirr(&xirr, false);
  393. else
  394. xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
  395. if (rc < 0)
  396. return 1;
  397. /*
  398. * Save XIRR for later. Since we get control in reverse endian
  399. * on LE systems, save it byte reversed and fetch it back in
  400. * host endian. Note that xirr is the value read from the
  401. * XIRR register, while h_xirr is the host endian version.
  402. */
  403. h_xirr = be32_to_cpu(xirr);
  404. local_paca->kvm_hstate.saved_xirr = h_xirr;
  405. xisr = h_xirr & 0xffffff;
  406. /*
  407. * Ensure that the store/load complete to guarantee all side
  408. * effects of loading from XIRR has completed
  409. */
  410. smp_mb();
  411. /* if nothing pending in the ICP */
  412. if (!xisr)
  413. return 0;
  414. /* We found something in the ICP...
  415. *
  416. * If it is an IPI, clear the MFRR and EOI it.
  417. */
  418. if (xisr == XICS_IPI) {
  419. rc = 0;
  420. if (xics_phys) {
  421. __raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
  422. __raw_rm_writel(xirr, xics_phys + XICS_XIRR);
  423. } else {
  424. opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
  425. rc = opal_int_eoi(h_xirr);
  426. }
  427. /* If rc > 0, there is another interrupt pending */
  428. *again = rc > 0;
  429. /*
  430. * Need to ensure side effects of above stores
  431. * complete before proceeding.
  432. */
  433. smp_mb();
  434. /*
  435. * We need to re-check host IPI now in case it got set in the
  436. * meantime. If it's clear, we bounce the interrupt to the
  437. * guest
  438. */
  439. host_ipi = local_paca->kvm_hstate.host_ipi;
  440. if (unlikely(host_ipi != 0)) {
  441. /* We raced with the host,
  442. * we need to resend that IPI, bummer
  443. */
  444. if (xics_phys)
  445. __raw_rm_writeb(IPI_PRIORITY,
  446. xics_phys + XICS_MFRR);
  447. else
  448. opal_int_set_mfrr(hard_smp_processor_id(),
  449. IPI_PRIORITY);
  450. /* Let side effects complete */
  451. smp_mb();
  452. return 1;
  453. }
  454. /* OK, it's an IPI for us */
  455. local_paca->kvm_hstate.saved_xirr = 0;
  456. return -1;
  457. }
  458. return kvmppc_check_passthru(xisr, xirr, again);
  459. }
  460. #ifdef CONFIG_KVM_XICS
  461. static inline bool is_rm(void)
  462. {
  463. return !(mfmsr() & MSR_DR);
  464. }
  465. unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu)
  466. {
  467. if (xive_enabled()) {
  468. if (is_rm())
  469. return xive_rm_h_xirr(vcpu);
  470. if (unlikely(!__xive_vm_h_xirr))
  471. return H_NOT_AVAILABLE;
  472. return __xive_vm_h_xirr(vcpu);
  473. } else
  474. return xics_rm_h_xirr(vcpu);
  475. }
  476. unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu)
  477. {
  478. vcpu->arch.gpr[5] = get_tb();
  479. if (xive_enabled()) {
  480. if (is_rm())
  481. return xive_rm_h_xirr(vcpu);
  482. if (unlikely(!__xive_vm_h_xirr))
  483. return H_NOT_AVAILABLE;
  484. return __xive_vm_h_xirr(vcpu);
  485. } else
  486. return xics_rm_h_xirr(vcpu);
  487. }
  488. unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server)
  489. {
  490. if (xive_enabled()) {
  491. if (is_rm())
  492. return xive_rm_h_ipoll(vcpu, server);
  493. if (unlikely(!__xive_vm_h_ipoll))
  494. return H_NOT_AVAILABLE;
  495. return __xive_vm_h_ipoll(vcpu, server);
  496. } else
  497. return H_TOO_HARD;
  498. }
  499. int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server,
  500. unsigned long mfrr)
  501. {
  502. if (xive_enabled()) {
  503. if (is_rm())
  504. return xive_rm_h_ipi(vcpu, server, mfrr);
  505. if (unlikely(!__xive_vm_h_ipi))
  506. return H_NOT_AVAILABLE;
  507. return __xive_vm_h_ipi(vcpu, server, mfrr);
  508. } else
  509. return xics_rm_h_ipi(vcpu, server, mfrr);
  510. }
  511. int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr)
  512. {
  513. if (xive_enabled()) {
  514. if (is_rm())
  515. return xive_rm_h_cppr(vcpu, cppr);
  516. if (unlikely(!__xive_vm_h_cppr))
  517. return H_NOT_AVAILABLE;
  518. return __xive_vm_h_cppr(vcpu, cppr);
  519. } else
  520. return xics_rm_h_cppr(vcpu, cppr);
  521. }
  522. int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr)
  523. {
  524. if (xive_enabled()) {
  525. if (is_rm())
  526. return xive_rm_h_eoi(vcpu, xirr);
  527. if (unlikely(!__xive_vm_h_eoi))
  528. return H_NOT_AVAILABLE;
  529. return __xive_vm_h_eoi(vcpu, xirr);
  530. } else
  531. return xics_rm_h_eoi(vcpu, xirr);
  532. }
  533. #endif /* CONFIG_KVM_XICS */