intel_ringbuffer.c 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <linux/log2.h>
  30. #include <drm/drmP.h>
  31. #include "i915_drv.h"
  32. #include <drm/i915_drm.h>
  33. #include "i915_trace.h"
  34. #include "intel_drv.h"
  35. /* Rough estimate of the typical request size, performing a flush,
  36. * set-context and then emitting the batch.
  37. */
  38. #define LEGACY_REQUEST_SIZE 200
  39. int __intel_ring_space(int head, int tail, int size)
  40. {
  41. int space = head - tail;
  42. if (space <= 0)
  43. space += size;
  44. return space - I915_RING_FREE_SPACE;
  45. }
  46. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  47. {
  48. if (ringbuf->last_retired_head != -1) {
  49. ringbuf->head = ringbuf->last_retired_head;
  50. ringbuf->last_retired_head = -1;
  51. }
  52. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  53. ringbuf->tail, ringbuf->size);
  54. }
  55. bool intel_engine_stopped(struct intel_engine_cs *engine)
  56. {
  57. struct drm_i915_private *dev_priv = engine->i915;
  58. return dev_priv->gpu_error.stop_rings & intel_engine_flag(engine);
  59. }
  60. static void __intel_ring_advance(struct intel_engine_cs *engine)
  61. {
  62. struct intel_ringbuffer *ringbuf = engine->buffer;
  63. ringbuf->tail &= ringbuf->size - 1;
  64. if (intel_engine_stopped(engine))
  65. return;
  66. engine->write_tail(engine, ringbuf->tail);
  67. }
  68. static int
  69. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  70. u32 invalidate_domains,
  71. u32 flush_domains)
  72. {
  73. struct intel_engine_cs *engine = req->engine;
  74. u32 cmd;
  75. int ret;
  76. cmd = MI_FLUSH;
  77. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  78. cmd |= MI_NO_WRITE_FLUSH;
  79. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  80. cmd |= MI_READ_FLUSH;
  81. ret = intel_ring_begin(req, 2);
  82. if (ret)
  83. return ret;
  84. intel_ring_emit(engine, cmd);
  85. intel_ring_emit(engine, MI_NOOP);
  86. intel_ring_advance(engine);
  87. return 0;
  88. }
  89. static int
  90. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  91. u32 invalidate_domains,
  92. u32 flush_domains)
  93. {
  94. struct intel_engine_cs *engine = req->engine;
  95. u32 cmd;
  96. int ret;
  97. /*
  98. * read/write caches:
  99. *
  100. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  101. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  102. * also flushed at 2d versus 3d pipeline switches.
  103. *
  104. * read-only caches:
  105. *
  106. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  107. * MI_READ_FLUSH is set, and is always flushed on 965.
  108. *
  109. * I915_GEM_DOMAIN_COMMAND may not exist?
  110. *
  111. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  112. * invalidated when MI_EXE_FLUSH is set.
  113. *
  114. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  115. * invalidated with every MI_FLUSH.
  116. *
  117. * TLBs:
  118. *
  119. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  120. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  121. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  122. * are flushed at any MI_FLUSH.
  123. */
  124. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  125. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  126. cmd &= ~MI_NO_WRITE_FLUSH;
  127. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  128. cmd |= MI_EXE_FLUSH;
  129. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  130. (IS_G4X(req->i915) || IS_GEN5(req->i915)))
  131. cmd |= MI_INVALIDATE_ISP;
  132. ret = intel_ring_begin(req, 2);
  133. if (ret)
  134. return ret;
  135. intel_ring_emit(engine, cmd);
  136. intel_ring_emit(engine, MI_NOOP);
  137. intel_ring_advance(engine);
  138. return 0;
  139. }
  140. /**
  141. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  142. * implementing two workarounds on gen6. From section 1.4.7.1
  143. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  144. *
  145. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  146. * produced by non-pipelined state commands), software needs to first
  147. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  148. * 0.
  149. *
  150. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  151. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  152. *
  153. * And the workaround for these two requires this workaround first:
  154. *
  155. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  156. * BEFORE the pipe-control with a post-sync op and no write-cache
  157. * flushes.
  158. *
  159. * And this last workaround is tricky because of the requirements on
  160. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  161. * volume 2 part 1:
  162. *
  163. * "1 of the following must also be set:
  164. * - Render Target Cache Flush Enable ([12] of DW1)
  165. * - Depth Cache Flush Enable ([0] of DW1)
  166. * - Stall at Pixel Scoreboard ([1] of DW1)
  167. * - Depth Stall ([13] of DW1)
  168. * - Post-Sync Operation ([13] of DW1)
  169. * - Notify Enable ([8] of DW1)"
  170. *
  171. * The cache flushes require the workaround flush that triggered this
  172. * one, so we can't use it. Depth stall would trigger the same.
  173. * Post-sync nonzero is what triggered this second workaround, so we
  174. * can't use that one either. Notify enable is IRQs, which aren't
  175. * really our business. That leaves only stall at scoreboard.
  176. */
  177. static int
  178. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  179. {
  180. struct intel_engine_cs *engine = req->engine;
  181. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  182. int ret;
  183. ret = intel_ring_begin(req, 6);
  184. if (ret)
  185. return ret;
  186. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  187. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  188. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  189. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  190. intel_ring_emit(engine, 0); /* low dword */
  191. intel_ring_emit(engine, 0); /* high dword */
  192. intel_ring_emit(engine, MI_NOOP);
  193. intel_ring_advance(engine);
  194. ret = intel_ring_begin(req, 6);
  195. if (ret)
  196. return ret;
  197. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(5));
  198. intel_ring_emit(engine, PIPE_CONTROL_QW_WRITE);
  199. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  200. intel_ring_emit(engine, 0);
  201. intel_ring_emit(engine, 0);
  202. intel_ring_emit(engine, MI_NOOP);
  203. intel_ring_advance(engine);
  204. return 0;
  205. }
  206. static int
  207. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  208. u32 invalidate_domains, u32 flush_domains)
  209. {
  210. struct intel_engine_cs *engine = req->engine;
  211. u32 flags = 0;
  212. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  213. int ret;
  214. /* Force SNB workarounds for PIPE_CONTROL flushes */
  215. ret = intel_emit_post_sync_nonzero_flush(req);
  216. if (ret)
  217. return ret;
  218. /* Just flush everything. Experiments have shown that reducing the
  219. * number of bits based on the write domains has little performance
  220. * impact.
  221. */
  222. if (flush_domains) {
  223. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  224. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  225. /*
  226. * Ensure that any following seqno writes only happen
  227. * when the render cache is indeed flushed.
  228. */
  229. flags |= PIPE_CONTROL_CS_STALL;
  230. }
  231. if (invalidate_domains) {
  232. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  233. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  234. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  235. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  236. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  237. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  238. /*
  239. * TLB invalidate requires a post-sync write.
  240. */
  241. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  242. }
  243. ret = intel_ring_begin(req, 4);
  244. if (ret)
  245. return ret;
  246. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  247. intel_ring_emit(engine, flags);
  248. intel_ring_emit(engine, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  249. intel_ring_emit(engine, 0);
  250. intel_ring_advance(engine);
  251. return 0;
  252. }
  253. static int
  254. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  255. {
  256. struct intel_engine_cs *engine = req->engine;
  257. int ret;
  258. ret = intel_ring_begin(req, 4);
  259. if (ret)
  260. return ret;
  261. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  262. intel_ring_emit(engine, PIPE_CONTROL_CS_STALL |
  263. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  264. intel_ring_emit(engine, 0);
  265. intel_ring_emit(engine, 0);
  266. intel_ring_advance(engine);
  267. return 0;
  268. }
  269. static int
  270. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  271. u32 invalidate_domains, u32 flush_domains)
  272. {
  273. struct intel_engine_cs *engine = req->engine;
  274. u32 flags = 0;
  275. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  276. int ret;
  277. /*
  278. * Ensure that any following seqno writes only happen when the render
  279. * cache is indeed flushed.
  280. *
  281. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  282. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  283. * don't try to be clever and just set it unconditionally.
  284. */
  285. flags |= PIPE_CONTROL_CS_STALL;
  286. /* Just flush everything. Experiments have shown that reducing the
  287. * number of bits based on the write domains has little performance
  288. * impact.
  289. */
  290. if (flush_domains) {
  291. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  292. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  293. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  294. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  295. }
  296. if (invalidate_domains) {
  297. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  298. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  299. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  300. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  301. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  302. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  303. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  304. /*
  305. * TLB invalidate requires a post-sync write.
  306. */
  307. flags |= PIPE_CONTROL_QW_WRITE;
  308. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  309. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  310. /* Workaround: we must issue a pipe_control with CS-stall bit
  311. * set before a pipe_control command that has the state cache
  312. * invalidate bit set. */
  313. gen7_render_ring_cs_stall_wa(req);
  314. }
  315. ret = intel_ring_begin(req, 4);
  316. if (ret)
  317. return ret;
  318. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(4));
  319. intel_ring_emit(engine, flags);
  320. intel_ring_emit(engine, scratch_addr);
  321. intel_ring_emit(engine, 0);
  322. intel_ring_advance(engine);
  323. return 0;
  324. }
  325. static int
  326. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  327. u32 flags, u32 scratch_addr)
  328. {
  329. struct intel_engine_cs *engine = req->engine;
  330. int ret;
  331. ret = intel_ring_begin(req, 6);
  332. if (ret)
  333. return ret;
  334. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  335. intel_ring_emit(engine, flags);
  336. intel_ring_emit(engine, scratch_addr);
  337. intel_ring_emit(engine, 0);
  338. intel_ring_emit(engine, 0);
  339. intel_ring_emit(engine, 0);
  340. intel_ring_advance(engine);
  341. return 0;
  342. }
  343. static int
  344. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  345. u32 invalidate_domains, u32 flush_domains)
  346. {
  347. u32 flags = 0;
  348. u32 scratch_addr = req->engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  349. int ret;
  350. flags |= PIPE_CONTROL_CS_STALL;
  351. if (flush_domains) {
  352. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  353. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  354. flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
  355. flags |= PIPE_CONTROL_FLUSH_ENABLE;
  356. }
  357. if (invalidate_domains) {
  358. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  359. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  360. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  361. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  362. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  363. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  364. flags |= PIPE_CONTROL_QW_WRITE;
  365. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  366. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  367. ret = gen8_emit_pipe_control(req,
  368. PIPE_CONTROL_CS_STALL |
  369. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  370. 0);
  371. if (ret)
  372. return ret;
  373. }
  374. return gen8_emit_pipe_control(req, flags, scratch_addr);
  375. }
  376. static void ring_write_tail(struct intel_engine_cs *engine,
  377. u32 value)
  378. {
  379. struct drm_i915_private *dev_priv = engine->i915;
  380. I915_WRITE_TAIL(engine, value);
  381. }
  382. u64 intel_ring_get_active_head(struct intel_engine_cs *engine)
  383. {
  384. struct drm_i915_private *dev_priv = engine->i915;
  385. u64 acthd;
  386. if (INTEL_GEN(dev_priv) >= 8)
  387. acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
  388. RING_ACTHD_UDW(engine->mmio_base));
  389. else if (INTEL_GEN(dev_priv) >= 4)
  390. acthd = I915_READ(RING_ACTHD(engine->mmio_base));
  391. else
  392. acthd = I915_READ(ACTHD);
  393. return acthd;
  394. }
  395. static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
  396. {
  397. struct drm_i915_private *dev_priv = engine->i915;
  398. u32 addr;
  399. addr = dev_priv->status_page_dmah->busaddr;
  400. if (INTEL_GEN(dev_priv) >= 4)
  401. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  402. I915_WRITE(HWS_PGA, addr);
  403. }
  404. static void intel_ring_setup_status_page(struct intel_engine_cs *engine)
  405. {
  406. struct drm_i915_private *dev_priv = engine->i915;
  407. i915_reg_t mmio;
  408. /* The ring status page addresses are no longer next to the rest of
  409. * the ring registers as of gen7.
  410. */
  411. if (IS_GEN7(dev_priv)) {
  412. switch (engine->id) {
  413. case RCS:
  414. mmio = RENDER_HWS_PGA_GEN7;
  415. break;
  416. case BCS:
  417. mmio = BLT_HWS_PGA_GEN7;
  418. break;
  419. /*
  420. * VCS2 actually doesn't exist on Gen7. Only shut up
  421. * gcc switch check warning
  422. */
  423. case VCS2:
  424. case VCS:
  425. mmio = BSD_HWS_PGA_GEN7;
  426. break;
  427. case VECS:
  428. mmio = VEBOX_HWS_PGA_GEN7;
  429. break;
  430. }
  431. } else if (IS_GEN6(dev_priv)) {
  432. mmio = RING_HWS_PGA_GEN6(engine->mmio_base);
  433. } else {
  434. /* XXX: gen8 returns to sanity */
  435. mmio = RING_HWS_PGA(engine->mmio_base);
  436. }
  437. I915_WRITE(mmio, (u32)engine->status_page.gfx_addr);
  438. POSTING_READ(mmio);
  439. /*
  440. * Flush the TLB for this page
  441. *
  442. * FIXME: These two bits have disappeared on gen8, so a question
  443. * arises: do we still need this and if so how should we go about
  444. * invalidating the TLB?
  445. */
  446. if (IS_GEN(dev_priv, 6, 7)) {
  447. i915_reg_t reg = RING_INSTPM(engine->mmio_base);
  448. /* ring should be idle before issuing a sync flush*/
  449. WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
  450. I915_WRITE(reg,
  451. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  452. INSTPM_SYNC_FLUSH));
  453. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  454. 1000))
  455. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  456. engine->name);
  457. }
  458. }
  459. static bool stop_ring(struct intel_engine_cs *engine)
  460. {
  461. struct drm_i915_private *dev_priv = engine->i915;
  462. if (!IS_GEN2(dev_priv)) {
  463. I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
  464. if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
  465. DRM_ERROR("%s : timed out trying to stop ring\n",
  466. engine->name);
  467. /* Sometimes we observe that the idle flag is not
  468. * set even though the ring is empty. So double
  469. * check before giving up.
  470. */
  471. if (I915_READ_HEAD(engine) != I915_READ_TAIL(engine))
  472. return false;
  473. }
  474. }
  475. I915_WRITE_CTL(engine, 0);
  476. I915_WRITE_HEAD(engine, 0);
  477. engine->write_tail(engine, 0);
  478. if (!IS_GEN2(dev_priv)) {
  479. (void)I915_READ_CTL(engine);
  480. I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
  481. }
  482. return (I915_READ_HEAD(engine) & HEAD_ADDR) == 0;
  483. }
  484. void intel_engine_init_hangcheck(struct intel_engine_cs *engine)
  485. {
  486. memset(&engine->hangcheck, 0, sizeof(engine->hangcheck));
  487. }
  488. static int init_ring_common(struct intel_engine_cs *engine)
  489. {
  490. struct drm_i915_private *dev_priv = engine->i915;
  491. struct intel_ringbuffer *ringbuf = engine->buffer;
  492. struct drm_i915_gem_object *obj = ringbuf->obj;
  493. int ret = 0;
  494. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  495. if (!stop_ring(engine)) {
  496. /* G45 ring initialization often fails to reset head to zero */
  497. DRM_DEBUG_KMS("%s head not reset to zero "
  498. "ctl %08x head %08x tail %08x start %08x\n",
  499. engine->name,
  500. I915_READ_CTL(engine),
  501. I915_READ_HEAD(engine),
  502. I915_READ_TAIL(engine),
  503. I915_READ_START(engine));
  504. if (!stop_ring(engine)) {
  505. DRM_ERROR("failed to set %s head to zero "
  506. "ctl %08x head %08x tail %08x start %08x\n",
  507. engine->name,
  508. I915_READ_CTL(engine),
  509. I915_READ_HEAD(engine),
  510. I915_READ_TAIL(engine),
  511. I915_READ_START(engine));
  512. ret = -EIO;
  513. goto out;
  514. }
  515. }
  516. if (I915_NEED_GFX_HWS(dev_priv))
  517. intel_ring_setup_status_page(engine);
  518. else
  519. ring_setup_phys_status_page(engine);
  520. /* Enforce ordering by reading HEAD register back */
  521. I915_READ_HEAD(engine);
  522. /* Initialize the ring. This must happen _after_ we've cleared the ring
  523. * registers with the above sequence (the readback of the HEAD registers
  524. * also enforces ordering), otherwise the hw might lose the new ring
  525. * register values. */
  526. I915_WRITE_START(engine, i915_gem_obj_ggtt_offset(obj));
  527. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  528. if (I915_READ_HEAD(engine))
  529. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  530. engine->name, I915_READ_HEAD(engine));
  531. I915_WRITE_HEAD(engine, 0);
  532. (void)I915_READ_HEAD(engine);
  533. I915_WRITE_CTL(engine,
  534. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  535. | RING_VALID);
  536. /* If the head is still not zero, the ring is dead */
  537. if (wait_for((I915_READ_CTL(engine) & RING_VALID) != 0 &&
  538. I915_READ_START(engine) == i915_gem_obj_ggtt_offset(obj) &&
  539. (I915_READ_HEAD(engine) & HEAD_ADDR) == 0, 50)) {
  540. DRM_ERROR("%s initialization failed "
  541. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  542. engine->name,
  543. I915_READ_CTL(engine),
  544. I915_READ_CTL(engine) & RING_VALID,
  545. I915_READ_HEAD(engine), I915_READ_TAIL(engine),
  546. I915_READ_START(engine),
  547. (unsigned long)i915_gem_obj_ggtt_offset(obj));
  548. ret = -EIO;
  549. goto out;
  550. }
  551. ringbuf->last_retired_head = -1;
  552. ringbuf->head = I915_READ_HEAD(engine);
  553. ringbuf->tail = I915_READ_TAIL(engine) & TAIL_ADDR;
  554. intel_ring_update_space(ringbuf);
  555. intel_engine_init_hangcheck(engine);
  556. out:
  557. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  558. return ret;
  559. }
  560. void
  561. intel_fini_pipe_control(struct intel_engine_cs *engine)
  562. {
  563. if (engine->scratch.obj == NULL)
  564. return;
  565. if (INTEL_GEN(engine->i915) >= 5) {
  566. kunmap(sg_page(engine->scratch.obj->pages->sgl));
  567. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  568. }
  569. drm_gem_object_unreference(&engine->scratch.obj->base);
  570. engine->scratch.obj = NULL;
  571. }
  572. int
  573. intel_init_pipe_control(struct intel_engine_cs *engine)
  574. {
  575. int ret;
  576. WARN_ON(engine->scratch.obj);
  577. engine->scratch.obj = i915_gem_object_create(engine->i915->dev, 4096);
  578. if (IS_ERR(engine->scratch.obj)) {
  579. DRM_ERROR("Failed to allocate seqno page\n");
  580. ret = PTR_ERR(engine->scratch.obj);
  581. engine->scratch.obj = NULL;
  582. goto err;
  583. }
  584. ret = i915_gem_object_set_cache_level(engine->scratch.obj,
  585. I915_CACHE_LLC);
  586. if (ret)
  587. goto err_unref;
  588. ret = i915_gem_obj_ggtt_pin(engine->scratch.obj, 4096, 0);
  589. if (ret)
  590. goto err_unref;
  591. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(engine->scratch.obj);
  592. engine->scratch.cpu_page = kmap(sg_page(engine->scratch.obj->pages->sgl));
  593. if (engine->scratch.cpu_page == NULL) {
  594. ret = -ENOMEM;
  595. goto err_unpin;
  596. }
  597. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  598. engine->name, engine->scratch.gtt_offset);
  599. return 0;
  600. err_unpin:
  601. i915_gem_object_ggtt_unpin(engine->scratch.obj);
  602. err_unref:
  603. drm_gem_object_unreference(&engine->scratch.obj->base);
  604. err:
  605. return ret;
  606. }
  607. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  608. {
  609. struct intel_engine_cs *engine = req->engine;
  610. struct i915_workarounds *w = &req->i915->workarounds;
  611. int ret, i;
  612. if (w->count == 0)
  613. return 0;
  614. engine->gpu_caches_dirty = true;
  615. ret = intel_ring_flush_all_caches(req);
  616. if (ret)
  617. return ret;
  618. ret = intel_ring_begin(req, (w->count * 2 + 2));
  619. if (ret)
  620. return ret;
  621. intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(w->count));
  622. for (i = 0; i < w->count; i++) {
  623. intel_ring_emit_reg(engine, w->reg[i].addr);
  624. intel_ring_emit(engine, w->reg[i].value);
  625. }
  626. intel_ring_emit(engine, MI_NOOP);
  627. intel_ring_advance(engine);
  628. engine->gpu_caches_dirty = true;
  629. ret = intel_ring_flush_all_caches(req);
  630. if (ret)
  631. return ret;
  632. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  633. return 0;
  634. }
  635. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  636. {
  637. int ret;
  638. ret = intel_ring_workarounds_emit(req);
  639. if (ret != 0)
  640. return ret;
  641. ret = i915_gem_render_state_init(req);
  642. if (ret)
  643. return ret;
  644. return 0;
  645. }
  646. static int wa_add(struct drm_i915_private *dev_priv,
  647. i915_reg_t addr,
  648. const u32 mask, const u32 val)
  649. {
  650. const u32 idx = dev_priv->workarounds.count;
  651. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  652. return -ENOSPC;
  653. dev_priv->workarounds.reg[idx].addr = addr;
  654. dev_priv->workarounds.reg[idx].value = val;
  655. dev_priv->workarounds.reg[idx].mask = mask;
  656. dev_priv->workarounds.count++;
  657. return 0;
  658. }
  659. #define WA_REG(addr, mask, val) do { \
  660. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  661. if (r) \
  662. return r; \
  663. } while (0)
  664. #define WA_SET_BIT_MASKED(addr, mask) \
  665. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  666. #define WA_CLR_BIT_MASKED(addr, mask) \
  667. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  668. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  669. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  670. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  671. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  672. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  673. static int wa_ring_whitelist_reg(struct intel_engine_cs *engine,
  674. i915_reg_t reg)
  675. {
  676. struct drm_i915_private *dev_priv = engine->i915;
  677. struct i915_workarounds *wa = &dev_priv->workarounds;
  678. const uint32_t index = wa->hw_whitelist_count[engine->id];
  679. if (WARN_ON(index >= RING_MAX_NONPRIV_SLOTS))
  680. return -EINVAL;
  681. WA_WRITE(RING_FORCE_TO_NONPRIV(engine->mmio_base, index),
  682. i915_mmio_reg_offset(reg));
  683. wa->hw_whitelist_count[engine->id]++;
  684. return 0;
  685. }
  686. static int gen8_init_workarounds(struct intel_engine_cs *engine)
  687. {
  688. struct drm_i915_private *dev_priv = engine->i915;
  689. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  690. /* WaDisableAsyncFlipPerfMode:bdw,chv */
  691. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  692. /* WaDisablePartialInstShootdown:bdw,chv */
  693. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  694. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  695. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  696. * workaround for for a possible hang in the unlikely event a TLB
  697. * invalidation occurs during a PSD flush.
  698. */
  699. /* WaForceEnableNonCoherent:bdw,chv */
  700. /* WaHdcDisableFetchWhenMasked:bdw,chv */
  701. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  702. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  703. HDC_FORCE_NON_COHERENT);
  704. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  705. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  706. * polygons in the same 8x4 pixel/sample area to be processed without
  707. * stalling waiting for the earlier ones to write to Hierarchical Z
  708. * buffer."
  709. *
  710. * This optimization is off by default for BDW and CHV; turn it on.
  711. */
  712. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  713. /* Wa4x4STCOptimizationDisable:bdw,chv */
  714. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  715. /*
  716. * BSpec recommends 8x4 when MSAA is used,
  717. * however in practice 16x4 seems fastest.
  718. *
  719. * Note that PS/WM thread counts depend on the WIZ hashing
  720. * disable bit, which we don't touch here, but it's good
  721. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  722. */
  723. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  724. GEN6_WIZ_HASHING_MASK,
  725. GEN6_WIZ_HASHING_16x4);
  726. return 0;
  727. }
  728. static int bdw_init_workarounds(struct intel_engine_cs *engine)
  729. {
  730. struct drm_i915_private *dev_priv = engine->i915;
  731. int ret;
  732. ret = gen8_init_workarounds(engine);
  733. if (ret)
  734. return ret;
  735. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  736. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  737. /* WaDisableDopClockGating:bdw */
  738. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  739. DOP_CLOCK_GATING_DISABLE);
  740. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  741. GEN8_SAMPLER_POWER_BYPASS_DIS);
  742. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  743. /* WaForceContextSaveRestoreNonCoherent:bdw */
  744. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  745. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  746. (IS_BDW_GT3(dev_priv) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  747. return 0;
  748. }
  749. static int chv_init_workarounds(struct intel_engine_cs *engine)
  750. {
  751. struct drm_i915_private *dev_priv = engine->i915;
  752. int ret;
  753. ret = gen8_init_workarounds(engine);
  754. if (ret)
  755. return ret;
  756. /* WaDisableThreadStallDopClockGating:chv */
  757. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
  758. /* Improve HiZ throughput on CHV. */
  759. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  760. return 0;
  761. }
  762. static int gen9_init_workarounds(struct intel_engine_cs *engine)
  763. {
  764. struct drm_i915_private *dev_priv = engine->i915;
  765. int ret;
  766. /* WaConextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl */
  767. I915_WRITE(GEN9_CSFE_CHICKEN1_RCS, _MASKED_BIT_ENABLE(GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE));
  768. /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl */
  769. I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
  770. GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
  771. /* WaDisableKillLogic:bxt,skl,kbl */
  772. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  773. ECOCHK_DIS_TLB);
  774. /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl */
  775. /* WaDisablePartialInstShootdown:skl,bxt,kbl */
  776. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  777. FLOW_CONTROL_ENABLE |
  778. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  779. /* Syncing dependencies between camera and graphics:skl,bxt,kbl */
  780. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  781. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  782. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  783. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  784. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  785. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  786. GEN9_DG_MIRROR_FIX_ENABLE);
  787. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  788. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_B0) ||
  789. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  790. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  791. GEN9_RHWO_OPTIMIZATION_DISABLE);
  792. /*
  793. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  794. * but we do that in per ctx batchbuffer as there is an issue
  795. * with this register not getting restored on ctx restore
  796. */
  797. }
  798. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl */
  799. /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl */
  800. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  801. GEN9_ENABLE_YV12_BUGFIX |
  802. GEN9_ENABLE_GPGPU_PREEMPTION);
  803. /* Wa4x4STCOptimizationDisable:skl,bxt,kbl */
  804. /* WaDisablePartialResolveInVc:skl,bxt,kbl */
  805. WA_SET_BIT_MASKED(CACHE_MODE_1, (GEN8_4x4_STC_OPTIMIZATION_DISABLE |
  806. GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE));
  807. /* WaCcsTlbPrefetchDisable:skl,bxt,kbl */
  808. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  809. GEN9_CCS_TLB_PREFETCH_ENABLE);
  810. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  811. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_C0) ||
  812. IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  813. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  814. PIXEL_MASK_CAMMING_DISABLE);
  815. /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl */
  816. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  817. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  818. HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
  819. /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
  820. * both tied to WaForceContextSaveRestoreNonCoherent
  821. * in some hsds for skl. We keep the tie for all gen9. The
  822. * documentation is a bit hazy and so we want to get common behaviour,
  823. * even though there is no clear evidence we would need both on kbl/bxt.
  824. * This area has been source of system hangs so we play it safe
  825. * and mimic the skl regardless of what bspec says.
  826. *
  827. * Use Force Non-Coherent whenever executing a 3D context. This
  828. * is a workaround for a possible hang in the unlikely event
  829. * a TLB invalidation occurs during a PSD flush.
  830. */
  831. /* WaForceEnableNonCoherent:skl,bxt,kbl */
  832. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  833. HDC_FORCE_NON_COHERENT);
  834. /* WaDisableHDCInvalidation:skl,bxt,kbl */
  835. I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
  836. BDW_DISABLE_HDC_INVALIDATION);
  837. /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl */
  838. if (IS_SKYLAKE(dev_priv) ||
  839. IS_KABYLAKE(dev_priv) ||
  840. IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  841. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  842. GEN8_SAMPLER_POWER_BYPASS_DIS);
  843. /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl */
  844. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
  845. /* WaOCLCoherentLineFlush:skl,bxt,kbl */
  846. I915_WRITE(GEN8_L3SQCREG4, (I915_READ(GEN8_L3SQCREG4) |
  847. GEN8_LQSC_FLUSH_COHERENT_LINES));
  848. /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt */
  849. ret = wa_ring_whitelist_reg(engine, GEN9_CTX_PREEMPT_REG);
  850. if (ret)
  851. return ret;
  852. /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl */
  853. ret= wa_ring_whitelist_reg(engine, GEN8_CS_CHICKEN1);
  854. if (ret)
  855. return ret;
  856. /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl */
  857. ret = wa_ring_whitelist_reg(engine, GEN8_HDC_CHICKEN1);
  858. if (ret)
  859. return ret;
  860. return 0;
  861. }
  862. static int skl_tune_iz_hashing(struct intel_engine_cs *engine)
  863. {
  864. struct drm_i915_private *dev_priv = engine->i915;
  865. u8 vals[3] = { 0, 0, 0 };
  866. unsigned int i;
  867. for (i = 0; i < 3; i++) {
  868. u8 ss;
  869. /*
  870. * Only consider slices where one, and only one, subslice has 7
  871. * EUs
  872. */
  873. if (!is_power_of_2(dev_priv->info.subslice_7eu[i]))
  874. continue;
  875. /*
  876. * subslice_7eu[i] != 0 (because of the check above) and
  877. * ss_max == 4 (maximum number of subslices possible per slice)
  878. *
  879. * -> 0 <= ss <= 3;
  880. */
  881. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  882. vals[i] = 3 - ss;
  883. }
  884. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  885. return 0;
  886. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  887. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  888. GEN9_IZ_HASHING_MASK(2) |
  889. GEN9_IZ_HASHING_MASK(1) |
  890. GEN9_IZ_HASHING_MASK(0),
  891. GEN9_IZ_HASHING(2, vals[2]) |
  892. GEN9_IZ_HASHING(1, vals[1]) |
  893. GEN9_IZ_HASHING(0, vals[0]));
  894. return 0;
  895. }
  896. static int skl_init_workarounds(struct intel_engine_cs *engine)
  897. {
  898. struct drm_i915_private *dev_priv = engine->i915;
  899. int ret;
  900. ret = gen9_init_workarounds(engine);
  901. if (ret)
  902. return ret;
  903. /*
  904. * Actual WA is to disable percontext preemption granularity control
  905. * until D0 which is the default case so this is equivalent to
  906. * !WaDisablePerCtxtPreemptionGranularityControl:skl
  907. */
  908. if (IS_SKL_REVID(dev_priv, SKL_REVID_E0, REVID_FOREVER)) {
  909. I915_WRITE(GEN7_FF_SLICE_CS_CHICKEN1,
  910. _MASKED_BIT_ENABLE(GEN9_FFSC_PERCTX_PREEMPT_CTRL));
  911. }
  912. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0)) {
  913. /* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
  914. I915_WRITE(FF_SLICE_CS_CHICKEN2,
  915. _MASKED_BIT_ENABLE(GEN9_TSG_BARRIER_ACK_DISABLE));
  916. }
  917. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  918. * involving this register should also be added to WA batch as required.
  919. */
  920. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_E0))
  921. /* WaDisableLSQCROPERFforOCL:skl */
  922. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  923. GEN8_LQSC_RO_PERF_DIS);
  924. /* WaEnableGapsTsvCreditFix:skl */
  925. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, REVID_FOREVER)) {
  926. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  927. GEN9_GAPS_TSV_CREDIT_DISABLE));
  928. }
  929. /* WaDisablePowerCompilerClockGating:skl */
  930. if (IS_SKL_REVID(dev_priv, SKL_REVID_B0, SKL_REVID_B0))
  931. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  932. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  933. /* WaBarrierPerformanceFixDisable:skl */
  934. if (IS_SKL_REVID(dev_priv, SKL_REVID_C0, SKL_REVID_D0))
  935. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  936. HDC_FENCE_DEST_SLM_DISABLE |
  937. HDC_BARRIER_PERFORMANCE_DISABLE);
  938. /* WaDisableSbeCacheDispatchPortSharing:skl */
  939. if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
  940. WA_SET_BIT_MASKED(
  941. GEN7_HALF_SLICE_CHICKEN1,
  942. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  943. /* WaDisableGafsUnitClkGating:skl */
  944. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  945. /* WaDisableLSQCROPERFforOCL:skl */
  946. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  947. if (ret)
  948. return ret;
  949. return skl_tune_iz_hashing(engine);
  950. }
  951. static int bxt_init_workarounds(struct intel_engine_cs *engine)
  952. {
  953. struct drm_i915_private *dev_priv = engine->i915;
  954. int ret;
  955. ret = gen9_init_workarounds(engine);
  956. if (ret)
  957. return ret;
  958. /* WaStoreMultiplePTEenable:bxt */
  959. /* This is a requirement according to Hardware specification */
  960. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
  961. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_TLBPF);
  962. /* WaSetClckGatingDisableMedia:bxt */
  963. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  964. I915_WRITE(GEN7_MISCCPCTL, (I915_READ(GEN7_MISCCPCTL) &
  965. ~GEN8_DOP_CLOCK_GATE_MEDIA_ENABLE));
  966. }
  967. /* WaDisableThreadStallDopClockGating:bxt */
  968. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  969. STALL_DOP_GATING_DISABLE);
  970. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  971. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0)) {
  972. WA_SET_BIT_MASKED(
  973. GEN7_HALF_SLICE_CHICKEN1,
  974. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  975. }
  976. /* WaDisableObjectLevelPreemptionForTrifanOrPolygon:bxt */
  977. /* WaDisableObjectLevelPreemptionForInstancedDraw:bxt */
  978. /* WaDisableObjectLevelPreemtionForInstanceId:bxt */
  979. /* WaDisableLSQCROPERFforOCL:bxt */
  980. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
  981. ret = wa_ring_whitelist_reg(engine, GEN9_CS_DEBUG_MODE1);
  982. if (ret)
  983. return ret;
  984. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  985. if (ret)
  986. return ret;
  987. }
  988. /* WaProgramL3SqcReg1DefaultForPerf:bxt */
  989. if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
  990. I915_WRITE(GEN8_L3SQCREG1, L3_GENERAL_PRIO_CREDITS(62) |
  991. L3_HIGH_PRIO_CREDITS(2));
  992. /* WaInsertDummyPushConstPs:bxt */
  993. if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_B0))
  994. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  995. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  996. return 0;
  997. }
  998. static int kbl_init_workarounds(struct intel_engine_cs *engine)
  999. {
  1000. struct drm_i915_private *dev_priv = engine->i915;
  1001. int ret;
  1002. ret = gen9_init_workarounds(engine);
  1003. if (ret)
  1004. return ret;
  1005. /* WaEnableGapsTsvCreditFix:kbl */
  1006. I915_WRITE(GEN8_GARBCNTL, (I915_READ(GEN8_GARBCNTL) |
  1007. GEN9_GAPS_TSV_CREDIT_DISABLE));
  1008. /* WaDisableDynamicCreditSharing:kbl */
  1009. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1010. WA_SET_BIT(GAMT_CHKN_BIT_REG,
  1011. GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
  1012. /* WaDisableFenceDestinationToSLM:kbl (pre-prod) */
  1013. if (IS_KBL_REVID(dev_priv, KBL_REVID_A0, KBL_REVID_A0))
  1014. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  1015. HDC_FENCE_DEST_SLM_DISABLE);
  1016. /* GEN8_L3SQCREG4 has a dependency with WA batch so any new changes
  1017. * involving this register should also be added to WA batch as required.
  1018. */
  1019. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_E0))
  1020. /* WaDisableLSQCROPERFforOCL:kbl */
  1021. I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
  1022. GEN8_LQSC_RO_PERF_DIS);
  1023. /* WaInsertDummyPushConstPs:kbl */
  1024. if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
  1025. WA_SET_BIT_MASKED(COMMON_SLICE_CHICKEN2,
  1026. GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
  1027. /* WaDisableGafsUnitClkGating:kbl */
  1028. WA_SET_BIT(GEN7_UCGCTL4, GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
  1029. /* WaDisableSbeCacheDispatchPortSharing:kbl */
  1030. WA_SET_BIT_MASKED(
  1031. GEN7_HALF_SLICE_CHICKEN1,
  1032. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  1033. /* WaDisableLSQCROPERFforOCL:kbl */
  1034. ret = wa_ring_whitelist_reg(engine, GEN8_L3SQCREG4);
  1035. if (ret)
  1036. return ret;
  1037. return 0;
  1038. }
  1039. int init_workarounds_ring(struct intel_engine_cs *engine)
  1040. {
  1041. struct drm_i915_private *dev_priv = engine->i915;
  1042. WARN_ON(engine->id != RCS);
  1043. dev_priv->workarounds.count = 0;
  1044. dev_priv->workarounds.hw_whitelist_count[RCS] = 0;
  1045. if (IS_BROADWELL(dev_priv))
  1046. return bdw_init_workarounds(engine);
  1047. if (IS_CHERRYVIEW(dev_priv))
  1048. return chv_init_workarounds(engine);
  1049. if (IS_SKYLAKE(dev_priv))
  1050. return skl_init_workarounds(engine);
  1051. if (IS_BROXTON(dev_priv))
  1052. return bxt_init_workarounds(engine);
  1053. if (IS_KABYLAKE(dev_priv))
  1054. return kbl_init_workarounds(engine);
  1055. return 0;
  1056. }
  1057. static int init_render_ring(struct intel_engine_cs *engine)
  1058. {
  1059. struct drm_i915_private *dev_priv = engine->i915;
  1060. int ret = init_ring_common(engine);
  1061. if (ret)
  1062. return ret;
  1063. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  1064. if (IS_GEN(dev_priv, 4, 6))
  1065. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  1066. /* We need to disable the AsyncFlip performance optimisations in order
  1067. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  1068. * programmed to '1' on all products.
  1069. *
  1070. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  1071. */
  1072. if (IS_GEN(dev_priv, 6, 7))
  1073. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  1074. /* Required for the hardware to program scanline values for waiting */
  1075. /* WaEnableFlushTlbInvalidationMode:snb */
  1076. if (IS_GEN6(dev_priv))
  1077. I915_WRITE(GFX_MODE,
  1078. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  1079. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  1080. if (IS_GEN7(dev_priv))
  1081. I915_WRITE(GFX_MODE_GEN7,
  1082. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  1083. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  1084. if (IS_GEN6(dev_priv)) {
  1085. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  1086. * "If this bit is set, STCunit will have LRA as replacement
  1087. * policy. [...] This bit must be reset. LRA replacement
  1088. * policy is not supported."
  1089. */
  1090. I915_WRITE(CACHE_MODE_0,
  1091. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  1092. }
  1093. if (IS_GEN(dev_priv, 6, 7))
  1094. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  1095. if (HAS_L3_DPF(dev_priv))
  1096. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1097. return init_workarounds_ring(engine);
  1098. }
  1099. static void render_ring_cleanup(struct intel_engine_cs *engine)
  1100. {
  1101. struct drm_i915_private *dev_priv = engine->i915;
  1102. if (dev_priv->semaphore_obj) {
  1103. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  1104. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  1105. dev_priv->semaphore_obj = NULL;
  1106. }
  1107. intel_fini_pipe_control(engine);
  1108. }
  1109. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  1110. unsigned int num_dwords)
  1111. {
  1112. #define MBOX_UPDATE_DWORDS 8
  1113. struct intel_engine_cs *signaller = signaller_req->engine;
  1114. struct drm_i915_private *dev_priv = signaller_req->i915;
  1115. struct intel_engine_cs *waiter;
  1116. enum intel_engine_id id;
  1117. int ret, num_rings;
  1118. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1119. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1120. #undef MBOX_UPDATE_DWORDS
  1121. ret = intel_ring_begin(signaller_req, num_dwords);
  1122. if (ret)
  1123. return ret;
  1124. for_each_engine_id(waiter, dev_priv, id) {
  1125. u32 seqno;
  1126. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1127. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1128. continue;
  1129. seqno = i915_gem_request_get_seqno(signaller_req);
  1130. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1131. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1132. PIPE_CONTROL_QW_WRITE |
  1133. PIPE_CONTROL_CS_STALL);
  1134. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1135. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1136. intel_ring_emit(signaller, seqno);
  1137. intel_ring_emit(signaller, 0);
  1138. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1139. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1140. intel_ring_emit(signaller, 0);
  1141. }
  1142. return 0;
  1143. }
  1144. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1145. unsigned int num_dwords)
  1146. {
  1147. #define MBOX_UPDATE_DWORDS 6
  1148. struct intel_engine_cs *signaller = signaller_req->engine;
  1149. struct drm_i915_private *dev_priv = signaller_req->i915;
  1150. struct intel_engine_cs *waiter;
  1151. enum intel_engine_id id;
  1152. int ret, num_rings;
  1153. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1154. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1155. #undef MBOX_UPDATE_DWORDS
  1156. ret = intel_ring_begin(signaller_req, num_dwords);
  1157. if (ret)
  1158. return ret;
  1159. for_each_engine_id(waiter, dev_priv, id) {
  1160. u32 seqno;
  1161. u64 gtt_offset = signaller->semaphore.signal_ggtt[id];
  1162. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1163. continue;
  1164. seqno = i915_gem_request_get_seqno(signaller_req);
  1165. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1166. MI_FLUSH_DW_OP_STOREDW);
  1167. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1168. MI_FLUSH_DW_USE_GTT);
  1169. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1170. intel_ring_emit(signaller, seqno);
  1171. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1172. MI_SEMAPHORE_TARGET(waiter->hw_id));
  1173. intel_ring_emit(signaller, 0);
  1174. }
  1175. return 0;
  1176. }
  1177. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1178. unsigned int num_dwords)
  1179. {
  1180. struct intel_engine_cs *signaller = signaller_req->engine;
  1181. struct drm_i915_private *dev_priv = signaller_req->i915;
  1182. struct intel_engine_cs *useless;
  1183. enum intel_engine_id id;
  1184. int ret, num_rings;
  1185. #define MBOX_UPDATE_DWORDS 3
  1186. num_rings = hweight32(INTEL_INFO(dev_priv)->ring_mask);
  1187. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1188. #undef MBOX_UPDATE_DWORDS
  1189. ret = intel_ring_begin(signaller_req, num_dwords);
  1190. if (ret)
  1191. return ret;
  1192. for_each_engine_id(useless, dev_priv, id) {
  1193. i915_reg_t mbox_reg = signaller->semaphore.mbox.signal[id];
  1194. if (i915_mmio_reg_valid(mbox_reg)) {
  1195. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1196. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1197. intel_ring_emit_reg(signaller, mbox_reg);
  1198. intel_ring_emit(signaller, seqno);
  1199. }
  1200. }
  1201. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1202. if (num_rings % 2 == 0)
  1203. intel_ring_emit(signaller, MI_NOOP);
  1204. return 0;
  1205. }
  1206. /**
  1207. * gen6_add_request - Update the semaphore mailbox registers
  1208. *
  1209. * @request - request to write to the ring
  1210. *
  1211. * Update the mailbox registers in the *other* rings with the current seqno.
  1212. * This acts like a signal in the canonical semaphore.
  1213. */
  1214. static int
  1215. gen6_add_request(struct drm_i915_gem_request *req)
  1216. {
  1217. struct intel_engine_cs *engine = req->engine;
  1218. int ret;
  1219. if (engine->semaphore.signal)
  1220. ret = engine->semaphore.signal(req, 4);
  1221. else
  1222. ret = intel_ring_begin(req, 4);
  1223. if (ret)
  1224. return ret;
  1225. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1226. intel_ring_emit(engine,
  1227. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1228. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1229. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1230. __intel_ring_advance(engine);
  1231. return 0;
  1232. }
  1233. static int
  1234. gen8_render_add_request(struct drm_i915_gem_request *req)
  1235. {
  1236. struct intel_engine_cs *engine = req->engine;
  1237. int ret;
  1238. if (engine->semaphore.signal)
  1239. ret = engine->semaphore.signal(req, 8);
  1240. else
  1241. ret = intel_ring_begin(req, 8);
  1242. if (ret)
  1243. return ret;
  1244. intel_ring_emit(engine, GFX_OP_PIPE_CONTROL(6));
  1245. intel_ring_emit(engine, (PIPE_CONTROL_GLOBAL_GTT_IVB |
  1246. PIPE_CONTROL_CS_STALL |
  1247. PIPE_CONTROL_QW_WRITE));
  1248. intel_ring_emit(engine, intel_hws_seqno_address(req->engine));
  1249. intel_ring_emit(engine, 0);
  1250. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1251. /* We're thrashing one dword of HWS. */
  1252. intel_ring_emit(engine, 0);
  1253. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1254. intel_ring_emit(engine, MI_NOOP);
  1255. __intel_ring_advance(engine);
  1256. return 0;
  1257. }
  1258. static inline bool i915_gem_has_seqno_wrapped(struct drm_i915_private *dev_priv,
  1259. u32 seqno)
  1260. {
  1261. return dev_priv->last_seqno < seqno;
  1262. }
  1263. /**
  1264. * intel_ring_sync - sync the waiter to the signaller on seqno
  1265. *
  1266. * @waiter - ring that is waiting
  1267. * @signaller - ring which has, or will signal
  1268. * @seqno - seqno which the waiter will block on
  1269. */
  1270. static int
  1271. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1272. struct intel_engine_cs *signaller,
  1273. u32 seqno)
  1274. {
  1275. struct intel_engine_cs *waiter = waiter_req->engine;
  1276. struct drm_i915_private *dev_priv = waiter_req->i915;
  1277. struct i915_hw_ppgtt *ppgtt;
  1278. int ret;
  1279. ret = intel_ring_begin(waiter_req, 4);
  1280. if (ret)
  1281. return ret;
  1282. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1283. MI_SEMAPHORE_GLOBAL_GTT |
  1284. MI_SEMAPHORE_SAD_GTE_SDD);
  1285. intel_ring_emit(waiter, seqno);
  1286. intel_ring_emit(waiter,
  1287. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1288. intel_ring_emit(waiter,
  1289. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1290. intel_ring_advance(waiter);
  1291. /* When the !RCS engines idle waiting upon a semaphore, they lose their
  1292. * pagetables and we must reload them before executing the batch.
  1293. * We do this on the i915_switch_context() following the wait and
  1294. * before the dispatch.
  1295. */
  1296. ppgtt = waiter_req->ctx->ppgtt;
  1297. if (ppgtt && waiter_req->engine->id != RCS)
  1298. ppgtt->pd_dirty_rings |= intel_engine_flag(waiter_req->engine);
  1299. return 0;
  1300. }
  1301. static int
  1302. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1303. struct intel_engine_cs *signaller,
  1304. u32 seqno)
  1305. {
  1306. struct intel_engine_cs *waiter = waiter_req->engine;
  1307. u32 dw1 = MI_SEMAPHORE_MBOX |
  1308. MI_SEMAPHORE_COMPARE |
  1309. MI_SEMAPHORE_REGISTER;
  1310. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1311. int ret;
  1312. /* Throughout all of the GEM code, seqno passed implies our current
  1313. * seqno is >= the last seqno executed. However for hardware the
  1314. * comparison is strictly greater than.
  1315. */
  1316. seqno -= 1;
  1317. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1318. ret = intel_ring_begin(waiter_req, 4);
  1319. if (ret)
  1320. return ret;
  1321. /* If seqno wrap happened, omit the wait with no-ops */
  1322. if (likely(!i915_gem_has_seqno_wrapped(waiter_req->i915, seqno))) {
  1323. intel_ring_emit(waiter, dw1 | wait_mbox);
  1324. intel_ring_emit(waiter, seqno);
  1325. intel_ring_emit(waiter, 0);
  1326. intel_ring_emit(waiter, MI_NOOP);
  1327. } else {
  1328. intel_ring_emit(waiter, MI_NOOP);
  1329. intel_ring_emit(waiter, MI_NOOP);
  1330. intel_ring_emit(waiter, MI_NOOP);
  1331. intel_ring_emit(waiter, MI_NOOP);
  1332. }
  1333. intel_ring_advance(waiter);
  1334. return 0;
  1335. }
  1336. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1337. do { \
  1338. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1339. PIPE_CONTROL_DEPTH_STALL); \
  1340. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1341. intel_ring_emit(ring__, 0); \
  1342. intel_ring_emit(ring__, 0); \
  1343. } while (0)
  1344. static int
  1345. pc_render_add_request(struct drm_i915_gem_request *req)
  1346. {
  1347. struct intel_engine_cs *engine = req->engine;
  1348. u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1349. int ret;
  1350. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1351. * incoherent with writes to memory, i.e. completely fubar,
  1352. * so we need to use PIPE_NOTIFY instead.
  1353. *
  1354. * However, we also need to workaround the qword write
  1355. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1356. * memory before requesting an interrupt.
  1357. */
  1358. ret = intel_ring_begin(req, 32);
  1359. if (ret)
  1360. return ret;
  1361. intel_ring_emit(engine,
  1362. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1363. PIPE_CONTROL_WRITE_FLUSH |
  1364. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1365. intel_ring_emit(engine,
  1366. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1367. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1368. intel_ring_emit(engine, 0);
  1369. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1370. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1371. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1372. scratch_addr += 2 * CACHELINE_BYTES;
  1373. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1374. scratch_addr += 2 * CACHELINE_BYTES;
  1375. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1376. scratch_addr += 2 * CACHELINE_BYTES;
  1377. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1378. scratch_addr += 2 * CACHELINE_BYTES;
  1379. PIPE_CONTROL_FLUSH(engine, scratch_addr);
  1380. intel_ring_emit(engine,
  1381. GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1382. PIPE_CONTROL_WRITE_FLUSH |
  1383. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1384. PIPE_CONTROL_NOTIFY);
  1385. intel_ring_emit(engine,
  1386. engine->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1387. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1388. intel_ring_emit(engine, 0);
  1389. __intel_ring_advance(engine);
  1390. return 0;
  1391. }
  1392. static void
  1393. gen6_seqno_barrier(struct intel_engine_cs *engine)
  1394. {
  1395. struct drm_i915_private *dev_priv = engine->i915;
  1396. /* Workaround to force correct ordering between irq and seqno writes on
  1397. * ivb (and maybe also on snb) by reading from a CS register (like
  1398. * ACTHD) before reading the status page.
  1399. *
  1400. * Note that this effectively stalls the read by the time it takes to
  1401. * do a memory transaction, which more or less ensures that the write
  1402. * from the GPU has sufficient time to invalidate the CPU cacheline.
  1403. * Alternatively we could delay the interrupt from the CS ring to give
  1404. * the write time to land, but that would incur a delay after every
  1405. * batch i.e. much more frequent than a delay when waiting for the
  1406. * interrupt (with the same net latency).
  1407. *
  1408. * Also note that to prevent whole machine hangs on gen7, we have to
  1409. * take the spinlock to guard against concurrent cacheline access.
  1410. */
  1411. spin_lock_irq(&dev_priv->uncore.lock);
  1412. POSTING_READ_FW(RING_ACTHD(engine->mmio_base));
  1413. spin_unlock_irq(&dev_priv->uncore.lock);
  1414. }
  1415. static u32
  1416. ring_get_seqno(struct intel_engine_cs *engine)
  1417. {
  1418. return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
  1419. }
  1420. static void
  1421. ring_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1422. {
  1423. intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
  1424. }
  1425. static u32
  1426. pc_render_get_seqno(struct intel_engine_cs *engine)
  1427. {
  1428. return engine->scratch.cpu_page[0];
  1429. }
  1430. static void
  1431. pc_render_set_seqno(struct intel_engine_cs *engine, u32 seqno)
  1432. {
  1433. engine->scratch.cpu_page[0] = seqno;
  1434. }
  1435. static bool
  1436. gen5_ring_get_irq(struct intel_engine_cs *engine)
  1437. {
  1438. struct drm_i915_private *dev_priv = engine->i915;
  1439. unsigned long flags;
  1440. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1441. return false;
  1442. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1443. if (engine->irq_refcount++ == 0)
  1444. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1445. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1446. return true;
  1447. }
  1448. static void
  1449. gen5_ring_put_irq(struct intel_engine_cs *engine)
  1450. {
  1451. struct drm_i915_private *dev_priv = engine->i915;
  1452. unsigned long flags;
  1453. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1454. if (--engine->irq_refcount == 0)
  1455. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1456. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1457. }
  1458. static bool
  1459. i9xx_ring_get_irq(struct intel_engine_cs *engine)
  1460. {
  1461. struct drm_i915_private *dev_priv = engine->i915;
  1462. unsigned long flags;
  1463. if (!intel_irqs_enabled(dev_priv))
  1464. return false;
  1465. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1466. if (engine->irq_refcount++ == 0) {
  1467. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1468. I915_WRITE(IMR, dev_priv->irq_mask);
  1469. POSTING_READ(IMR);
  1470. }
  1471. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1472. return true;
  1473. }
  1474. static void
  1475. i9xx_ring_put_irq(struct intel_engine_cs *engine)
  1476. {
  1477. struct drm_i915_private *dev_priv = engine->i915;
  1478. unsigned long flags;
  1479. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1480. if (--engine->irq_refcount == 0) {
  1481. dev_priv->irq_mask |= engine->irq_enable_mask;
  1482. I915_WRITE(IMR, dev_priv->irq_mask);
  1483. POSTING_READ(IMR);
  1484. }
  1485. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1486. }
  1487. static bool
  1488. i8xx_ring_get_irq(struct intel_engine_cs *engine)
  1489. {
  1490. struct drm_i915_private *dev_priv = engine->i915;
  1491. unsigned long flags;
  1492. if (!intel_irqs_enabled(dev_priv))
  1493. return false;
  1494. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1495. if (engine->irq_refcount++ == 0) {
  1496. dev_priv->irq_mask &= ~engine->irq_enable_mask;
  1497. I915_WRITE16(IMR, dev_priv->irq_mask);
  1498. POSTING_READ16(IMR);
  1499. }
  1500. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1501. return true;
  1502. }
  1503. static void
  1504. i8xx_ring_put_irq(struct intel_engine_cs *engine)
  1505. {
  1506. struct drm_i915_private *dev_priv = engine->i915;
  1507. unsigned long flags;
  1508. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1509. if (--engine->irq_refcount == 0) {
  1510. dev_priv->irq_mask |= engine->irq_enable_mask;
  1511. I915_WRITE16(IMR, dev_priv->irq_mask);
  1512. POSTING_READ16(IMR);
  1513. }
  1514. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1515. }
  1516. static int
  1517. bsd_ring_flush(struct drm_i915_gem_request *req,
  1518. u32 invalidate_domains,
  1519. u32 flush_domains)
  1520. {
  1521. struct intel_engine_cs *engine = req->engine;
  1522. int ret;
  1523. ret = intel_ring_begin(req, 2);
  1524. if (ret)
  1525. return ret;
  1526. intel_ring_emit(engine, MI_FLUSH);
  1527. intel_ring_emit(engine, MI_NOOP);
  1528. intel_ring_advance(engine);
  1529. return 0;
  1530. }
  1531. static int
  1532. i9xx_add_request(struct drm_i915_gem_request *req)
  1533. {
  1534. struct intel_engine_cs *engine = req->engine;
  1535. int ret;
  1536. ret = intel_ring_begin(req, 4);
  1537. if (ret)
  1538. return ret;
  1539. intel_ring_emit(engine, MI_STORE_DWORD_INDEX);
  1540. intel_ring_emit(engine,
  1541. I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1542. intel_ring_emit(engine, i915_gem_request_get_seqno(req));
  1543. intel_ring_emit(engine, MI_USER_INTERRUPT);
  1544. __intel_ring_advance(engine);
  1545. return 0;
  1546. }
  1547. static bool
  1548. gen6_ring_get_irq(struct intel_engine_cs *engine)
  1549. {
  1550. struct drm_i915_private *dev_priv = engine->i915;
  1551. unsigned long flags;
  1552. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1553. return false;
  1554. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1555. if (engine->irq_refcount++ == 0) {
  1556. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1557. I915_WRITE_IMR(engine,
  1558. ~(engine->irq_enable_mask |
  1559. GT_PARITY_ERROR(dev_priv)));
  1560. else
  1561. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1562. gen5_enable_gt_irq(dev_priv, engine->irq_enable_mask);
  1563. }
  1564. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1565. return true;
  1566. }
  1567. static void
  1568. gen6_ring_put_irq(struct intel_engine_cs *engine)
  1569. {
  1570. struct drm_i915_private *dev_priv = engine->i915;
  1571. unsigned long flags;
  1572. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1573. if (--engine->irq_refcount == 0) {
  1574. if (HAS_L3_DPF(dev_priv) && engine->id == RCS)
  1575. I915_WRITE_IMR(engine, ~GT_PARITY_ERROR(dev_priv));
  1576. else
  1577. I915_WRITE_IMR(engine, ~0);
  1578. gen5_disable_gt_irq(dev_priv, engine->irq_enable_mask);
  1579. }
  1580. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1581. }
  1582. static bool
  1583. hsw_vebox_get_irq(struct intel_engine_cs *engine)
  1584. {
  1585. struct drm_i915_private *dev_priv = engine->i915;
  1586. unsigned long flags;
  1587. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1588. return false;
  1589. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1590. if (engine->irq_refcount++ == 0) {
  1591. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1592. gen6_enable_pm_irq(dev_priv, engine->irq_enable_mask);
  1593. }
  1594. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1595. return true;
  1596. }
  1597. static void
  1598. hsw_vebox_put_irq(struct intel_engine_cs *engine)
  1599. {
  1600. struct drm_i915_private *dev_priv = engine->i915;
  1601. unsigned long flags;
  1602. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1603. if (--engine->irq_refcount == 0) {
  1604. I915_WRITE_IMR(engine, ~0);
  1605. gen6_disable_pm_irq(dev_priv, engine->irq_enable_mask);
  1606. }
  1607. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1608. }
  1609. static bool
  1610. gen8_ring_get_irq(struct intel_engine_cs *engine)
  1611. {
  1612. struct drm_i915_private *dev_priv = engine->i915;
  1613. unsigned long flags;
  1614. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1615. return false;
  1616. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1617. if (engine->irq_refcount++ == 0) {
  1618. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1619. I915_WRITE_IMR(engine,
  1620. ~(engine->irq_enable_mask |
  1621. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1622. } else {
  1623. I915_WRITE_IMR(engine, ~engine->irq_enable_mask);
  1624. }
  1625. POSTING_READ(RING_IMR(engine->mmio_base));
  1626. }
  1627. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1628. return true;
  1629. }
  1630. static void
  1631. gen8_ring_put_irq(struct intel_engine_cs *engine)
  1632. {
  1633. struct drm_i915_private *dev_priv = engine->i915;
  1634. unsigned long flags;
  1635. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1636. if (--engine->irq_refcount == 0) {
  1637. if (HAS_L3_DPF(dev_priv) && engine->id == RCS) {
  1638. I915_WRITE_IMR(engine,
  1639. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1640. } else {
  1641. I915_WRITE_IMR(engine, ~0);
  1642. }
  1643. POSTING_READ(RING_IMR(engine->mmio_base));
  1644. }
  1645. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1646. }
  1647. static int
  1648. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1649. u64 offset, u32 length,
  1650. unsigned dispatch_flags)
  1651. {
  1652. struct intel_engine_cs *engine = req->engine;
  1653. int ret;
  1654. ret = intel_ring_begin(req, 2);
  1655. if (ret)
  1656. return ret;
  1657. intel_ring_emit(engine,
  1658. MI_BATCH_BUFFER_START |
  1659. MI_BATCH_GTT |
  1660. (dispatch_flags & I915_DISPATCH_SECURE ?
  1661. 0 : MI_BATCH_NON_SECURE_I965));
  1662. intel_ring_emit(engine, offset);
  1663. intel_ring_advance(engine);
  1664. return 0;
  1665. }
  1666. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1667. #define I830_BATCH_LIMIT (256*1024)
  1668. #define I830_TLB_ENTRIES (2)
  1669. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1670. static int
  1671. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1672. u64 offset, u32 len,
  1673. unsigned dispatch_flags)
  1674. {
  1675. struct intel_engine_cs *engine = req->engine;
  1676. u32 cs_offset = engine->scratch.gtt_offset;
  1677. int ret;
  1678. ret = intel_ring_begin(req, 6);
  1679. if (ret)
  1680. return ret;
  1681. /* Evict the invalid PTE TLBs */
  1682. intel_ring_emit(engine, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1683. intel_ring_emit(engine, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1684. intel_ring_emit(engine, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1685. intel_ring_emit(engine, cs_offset);
  1686. intel_ring_emit(engine, 0xdeadbeef);
  1687. intel_ring_emit(engine, MI_NOOP);
  1688. intel_ring_advance(engine);
  1689. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1690. if (len > I830_BATCH_LIMIT)
  1691. return -ENOSPC;
  1692. ret = intel_ring_begin(req, 6 + 2);
  1693. if (ret)
  1694. return ret;
  1695. /* Blit the batch (which has now all relocs applied) to the
  1696. * stable batch scratch bo area (so that the CS never
  1697. * stumbles over its tlb invalidation bug) ...
  1698. */
  1699. intel_ring_emit(engine, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1700. intel_ring_emit(engine,
  1701. BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1702. intel_ring_emit(engine, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1703. intel_ring_emit(engine, cs_offset);
  1704. intel_ring_emit(engine, 4096);
  1705. intel_ring_emit(engine, offset);
  1706. intel_ring_emit(engine, MI_FLUSH);
  1707. intel_ring_emit(engine, MI_NOOP);
  1708. intel_ring_advance(engine);
  1709. /* ... and execute it. */
  1710. offset = cs_offset;
  1711. }
  1712. ret = intel_ring_begin(req, 2);
  1713. if (ret)
  1714. return ret;
  1715. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1716. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1717. 0 : MI_BATCH_NON_SECURE));
  1718. intel_ring_advance(engine);
  1719. return 0;
  1720. }
  1721. static int
  1722. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1723. u64 offset, u32 len,
  1724. unsigned dispatch_flags)
  1725. {
  1726. struct intel_engine_cs *engine = req->engine;
  1727. int ret;
  1728. ret = intel_ring_begin(req, 2);
  1729. if (ret)
  1730. return ret;
  1731. intel_ring_emit(engine, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1732. intel_ring_emit(engine, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1733. 0 : MI_BATCH_NON_SECURE));
  1734. intel_ring_advance(engine);
  1735. return 0;
  1736. }
  1737. static void cleanup_phys_status_page(struct intel_engine_cs *engine)
  1738. {
  1739. struct drm_i915_private *dev_priv = engine->i915;
  1740. if (!dev_priv->status_page_dmah)
  1741. return;
  1742. drm_pci_free(dev_priv->dev, dev_priv->status_page_dmah);
  1743. engine->status_page.page_addr = NULL;
  1744. }
  1745. static void cleanup_status_page(struct intel_engine_cs *engine)
  1746. {
  1747. struct drm_i915_gem_object *obj;
  1748. obj = engine->status_page.obj;
  1749. if (obj == NULL)
  1750. return;
  1751. kunmap(sg_page(obj->pages->sgl));
  1752. i915_gem_object_ggtt_unpin(obj);
  1753. drm_gem_object_unreference(&obj->base);
  1754. engine->status_page.obj = NULL;
  1755. }
  1756. static int init_status_page(struct intel_engine_cs *engine)
  1757. {
  1758. struct drm_i915_gem_object *obj = engine->status_page.obj;
  1759. if (obj == NULL) {
  1760. unsigned flags;
  1761. int ret;
  1762. obj = i915_gem_object_create(engine->i915->dev, 4096);
  1763. if (IS_ERR(obj)) {
  1764. DRM_ERROR("Failed to allocate status page\n");
  1765. return PTR_ERR(obj);
  1766. }
  1767. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1768. if (ret)
  1769. goto err_unref;
  1770. flags = 0;
  1771. if (!HAS_LLC(engine->i915))
  1772. /* On g33, we cannot place HWS above 256MiB, so
  1773. * restrict its pinning to the low mappable arena.
  1774. * Though this restriction is not documented for
  1775. * gen4, gen5, or byt, they also behave similarly
  1776. * and hang if the HWS is placed at the top of the
  1777. * GTT. To generalise, it appears that all !llc
  1778. * platforms have issues with us placing the HWS
  1779. * above the mappable region (even though we never
  1780. * actualy map it).
  1781. */
  1782. flags |= PIN_MAPPABLE;
  1783. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1784. if (ret) {
  1785. err_unref:
  1786. drm_gem_object_unreference(&obj->base);
  1787. return ret;
  1788. }
  1789. engine->status_page.obj = obj;
  1790. }
  1791. engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1792. engine->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1793. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1794. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1795. engine->name, engine->status_page.gfx_addr);
  1796. return 0;
  1797. }
  1798. static int init_phys_status_page(struct intel_engine_cs *engine)
  1799. {
  1800. struct drm_i915_private *dev_priv = engine->i915;
  1801. if (!dev_priv->status_page_dmah) {
  1802. dev_priv->status_page_dmah =
  1803. drm_pci_alloc(dev_priv->dev, PAGE_SIZE, PAGE_SIZE);
  1804. if (!dev_priv->status_page_dmah)
  1805. return -ENOMEM;
  1806. }
  1807. engine->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1808. memset(engine->status_page.page_addr, 0, PAGE_SIZE);
  1809. return 0;
  1810. }
  1811. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1812. {
  1813. GEM_BUG_ON(ringbuf->vma == NULL);
  1814. GEM_BUG_ON(ringbuf->virtual_start == NULL);
  1815. if (HAS_LLC(ringbuf->obj->base.dev) && !ringbuf->obj->stolen)
  1816. i915_gem_object_unpin_map(ringbuf->obj);
  1817. else
  1818. i915_vma_unpin_iomap(ringbuf->vma);
  1819. ringbuf->virtual_start = NULL;
  1820. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1821. ringbuf->vma = NULL;
  1822. }
  1823. int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
  1824. struct intel_ringbuffer *ringbuf)
  1825. {
  1826. struct drm_i915_gem_object *obj = ringbuf->obj;
  1827. /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
  1828. unsigned flags = PIN_OFFSET_BIAS | 4096;
  1829. void *addr;
  1830. int ret;
  1831. if (HAS_LLC(dev_priv) && !obj->stolen) {
  1832. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, flags);
  1833. if (ret)
  1834. return ret;
  1835. ret = i915_gem_object_set_to_cpu_domain(obj, true);
  1836. if (ret)
  1837. goto err_unpin;
  1838. addr = i915_gem_object_pin_map(obj);
  1839. if (IS_ERR(addr)) {
  1840. ret = PTR_ERR(addr);
  1841. goto err_unpin;
  1842. }
  1843. } else {
  1844. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE,
  1845. flags | PIN_MAPPABLE);
  1846. if (ret)
  1847. return ret;
  1848. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1849. if (ret)
  1850. goto err_unpin;
  1851. /* Access through the GTT requires the device to be awake. */
  1852. assert_rpm_wakelock_held(dev_priv);
  1853. addr = i915_vma_pin_iomap(i915_gem_obj_to_ggtt(obj));
  1854. if (IS_ERR(addr)) {
  1855. ret = PTR_ERR(addr);
  1856. goto err_unpin;
  1857. }
  1858. }
  1859. ringbuf->virtual_start = addr;
  1860. ringbuf->vma = i915_gem_obj_to_ggtt(obj);
  1861. return 0;
  1862. err_unpin:
  1863. i915_gem_object_ggtt_unpin(obj);
  1864. return ret;
  1865. }
  1866. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1867. {
  1868. drm_gem_object_unreference(&ringbuf->obj->base);
  1869. ringbuf->obj = NULL;
  1870. }
  1871. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1872. struct intel_ringbuffer *ringbuf)
  1873. {
  1874. struct drm_i915_gem_object *obj;
  1875. obj = NULL;
  1876. if (!HAS_LLC(dev))
  1877. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1878. if (obj == NULL)
  1879. obj = i915_gem_object_create(dev, ringbuf->size);
  1880. if (IS_ERR(obj))
  1881. return PTR_ERR(obj);
  1882. /* mark ring buffers as read-only from GPU side by default */
  1883. obj->gt_ro = 1;
  1884. ringbuf->obj = obj;
  1885. return 0;
  1886. }
  1887. struct intel_ringbuffer *
  1888. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1889. {
  1890. struct intel_ringbuffer *ring;
  1891. int ret;
  1892. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1893. if (ring == NULL) {
  1894. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s\n",
  1895. engine->name);
  1896. return ERR_PTR(-ENOMEM);
  1897. }
  1898. ring->engine = engine;
  1899. list_add(&ring->link, &engine->buffers);
  1900. ring->size = size;
  1901. /* Workaround an erratum on the i830 which causes a hang if
  1902. * the TAIL pointer points to within the last 2 cachelines
  1903. * of the buffer.
  1904. */
  1905. ring->effective_size = size;
  1906. if (IS_I830(engine->i915) || IS_845G(engine->i915))
  1907. ring->effective_size -= 2 * CACHELINE_BYTES;
  1908. ring->last_retired_head = -1;
  1909. intel_ring_update_space(ring);
  1910. ret = intel_alloc_ringbuffer_obj(engine->i915->dev, ring);
  1911. if (ret) {
  1912. DRM_DEBUG_DRIVER("Failed to allocate ringbuffer %s: %d\n",
  1913. engine->name, ret);
  1914. list_del(&ring->link);
  1915. kfree(ring);
  1916. return ERR_PTR(ret);
  1917. }
  1918. return ring;
  1919. }
  1920. void
  1921. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1922. {
  1923. intel_destroy_ringbuffer_obj(ring);
  1924. list_del(&ring->link);
  1925. kfree(ring);
  1926. }
  1927. static int intel_init_ring_buffer(struct drm_device *dev,
  1928. struct intel_engine_cs *engine)
  1929. {
  1930. struct drm_i915_private *dev_priv = to_i915(dev);
  1931. struct intel_ringbuffer *ringbuf;
  1932. int ret;
  1933. WARN_ON(engine->buffer);
  1934. engine->i915 = dev_priv;
  1935. INIT_LIST_HEAD(&engine->active_list);
  1936. INIT_LIST_HEAD(&engine->request_list);
  1937. INIT_LIST_HEAD(&engine->execlist_queue);
  1938. INIT_LIST_HEAD(&engine->buffers);
  1939. i915_gem_batch_pool_init(dev, &engine->batch_pool);
  1940. memset(engine->semaphore.sync_seqno, 0,
  1941. sizeof(engine->semaphore.sync_seqno));
  1942. init_waitqueue_head(&engine->irq_queue);
  1943. ringbuf = intel_engine_create_ringbuffer(engine, 32 * PAGE_SIZE);
  1944. if (IS_ERR(ringbuf)) {
  1945. ret = PTR_ERR(ringbuf);
  1946. goto error;
  1947. }
  1948. engine->buffer = ringbuf;
  1949. if (I915_NEED_GFX_HWS(dev_priv)) {
  1950. ret = init_status_page(engine);
  1951. if (ret)
  1952. goto error;
  1953. } else {
  1954. WARN_ON(engine->id != RCS);
  1955. ret = init_phys_status_page(engine);
  1956. if (ret)
  1957. goto error;
  1958. }
  1959. ret = intel_pin_and_map_ringbuffer_obj(dev_priv, ringbuf);
  1960. if (ret) {
  1961. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1962. engine->name, ret);
  1963. intel_destroy_ringbuffer_obj(ringbuf);
  1964. goto error;
  1965. }
  1966. ret = i915_cmd_parser_init_ring(engine);
  1967. if (ret)
  1968. goto error;
  1969. return 0;
  1970. error:
  1971. intel_cleanup_engine(engine);
  1972. return ret;
  1973. }
  1974. void intel_cleanup_engine(struct intel_engine_cs *engine)
  1975. {
  1976. struct drm_i915_private *dev_priv;
  1977. if (!intel_engine_initialized(engine))
  1978. return;
  1979. dev_priv = engine->i915;
  1980. if (engine->buffer) {
  1981. intel_stop_engine(engine);
  1982. WARN_ON(!IS_GEN2(dev_priv) && (I915_READ_MODE(engine) & MODE_IDLE) == 0);
  1983. intel_unpin_ringbuffer_obj(engine->buffer);
  1984. intel_ringbuffer_free(engine->buffer);
  1985. engine->buffer = NULL;
  1986. }
  1987. if (engine->cleanup)
  1988. engine->cleanup(engine);
  1989. if (I915_NEED_GFX_HWS(dev_priv)) {
  1990. cleanup_status_page(engine);
  1991. } else {
  1992. WARN_ON(engine->id != RCS);
  1993. cleanup_phys_status_page(engine);
  1994. }
  1995. i915_cmd_parser_fini_ring(engine);
  1996. i915_gem_batch_pool_fini(&engine->batch_pool);
  1997. engine->i915 = NULL;
  1998. }
  1999. int intel_engine_idle(struct intel_engine_cs *engine)
  2000. {
  2001. struct drm_i915_gem_request *req;
  2002. /* Wait upon the last request to be completed */
  2003. if (list_empty(&engine->request_list))
  2004. return 0;
  2005. req = list_entry(engine->request_list.prev,
  2006. struct drm_i915_gem_request,
  2007. list);
  2008. /* Make sure we do not trigger any retires */
  2009. return __i915_wait_request(req,
  2010. req->i915->mm.interruptible,
  2011. NULL, NULL);
  2012. }
  2013. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  2014. {
  2015. int ret;
  2016. /* Flush enough space to reduce the likelihood of waiting after
  2017. * we start building the request - in which case we will just
  2018. * have to repeat work.
  2019. */
  2020. request->reserved_space += LEGACY_REQUEST_SIZE;
  2021. request->ringbuf = request->engine->buffer;
  2022. ret = intel_ring_begin(request, 0);
  2023. if (ret)
  2024. return ret;
  2025. request->reserved_space -= LEGACY_REQUEST_SIZE;
  2026. return 0;
  2027. }
  2028. static int wait_for_space(struct drm_i915_gem_request *req, int bytes)
  2029. {
  2030. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2031. struct intel_engine_cs *engine = req->engine;
  2032. struct drm_i915_gem_request *target;
  2033. intel_ring_update_space(ringbuf);
  2034. if (ringbuf->space >= bytes)
  2035. return 0;
  2036. /*
  2037. * Space is reserved in the ringbuffer for finalising the request,
  2038. * as that cannot be allowed to fail. During request finalisation,
  2039. * reserved_space is set to 0 to stop the overallocation and the
  2040. * assumption is that then we never need to wait (which has the
  2041. * risk of failing with EINTR).
  2042. *
  2043. * See also i915_gem_request_alloc() and i915_add_request().
  2044. */
  2045. GEM_BUG_ON(!req->reserved_space);
  2046. list_for_each_entry(target, &engine->request_list, list) {
  2047. unsigned space;
  2048. /*
  2049. * The request queue is per-engine, so can contain requests
  2050. * from multiple ringbuffers. Here, we must ignore any that
  2051. * aren't from the ringbuffer we're considering.
  2052. */
  2053. if (target->ringbuf != ringbuf)
  2054. continue;
  2055. /* Would completion of this request free enough space? */
  2056. space = __intel_ring_space(target->postfix, ringbuf->tail,
  2057. ringbuf->size);
  2058. if (space >= bytes)
  2059. break;
  2060. }
  2061. if (WARN_ON(&target->list == &engine->request_list))
  2062. return -ENOSPC;
  2063. return i915_wait_request(target);
  2064. }
  2065. int intel_ring_begin(struct drm_i915_gem_request *req, int num_dwords)
  2066. {
  2067. struct intel_ringbuffer *ringbuf = req->ringbuf;
  2068. int remain_actual = ringbuf->size - ringbuf->tail;
  2069. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  2070. int bytes = num_dwords * sizeof(u32);
  2071. int total_bytes, wait_bytes;
  2072. bool need_wrap = false;
  2073. total_bytes = bytes + req->reserved_space;
  2074. if (unlikely(bytes > remain_usable)) {
  2075. /*
  2076. * Not enough space for the basic request. So need to flush
  2077. * out the remainder and then wait for base + reserved.
  2078. */
  2079. wait_bytes = remain_actual + total_bytes;
  2080. need_wrap = true;
  2081. } else if (unlikely(total_bytes > remain_usable)) {
  2082. /*
  2083. * The base request will fit but the reserved space
  2084. * falls off the end. So we don't need an immediate wrap
  2085. * and only need to effectively wait for the reserved
  2086. * size space from the start of ringbuffer.
  2087. */
  2088. wait_bytes = remain_actual + req->reserved_space;
  2089. } else {
  2090. /* No wrapping required, just waiting. */
  2091. wait_bytes = total_bytes;
  2092. }
  2093. if (wait_bytes > ringbuf->space) {
  2094. int ret = wait_for_space(req, wait_bytes);
  2095. if (unlikely(ret))
  2096. return ret;
  2097. intel_ring_update_space(ringbuf);
  2098. if (unlikely(ringbuf->space < wait_bytes))
  2099. return -EAGAIN;
  2100. }
  2101. if (unlikely(need_wrap)) {
  2102. GEM_BUG_ON(remain_actual > ringbuf->space);
  2103. GEM_BUG_ON(ringbuf->tail + remain_actual > ringbuf->size);
  2104. /* Fill the tail with MI_NOOP */
  2105. memset(ringbuf->virtual_start + ringbuf->tail,
  2106. 0, remain_actual);
  2107. ringbuf->tail = 0;
  2108. ringbuf->space -= remain_actual;
  2109. }
  2110. ringbuf->space -= bytes;
  2111. GEM_BUG_ON(ringbuf->space < 0);
  2112. return 0;
  2113. }
  2114. /* Align the ring tail to a cacheline boundary */
  2115. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  2116. {
  2117. struct intel_engine_cs *engine = req->engine;
  2118. int num_dwords = (engine->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  2119. int ret;
  2120. if (num_dwords == 0)
  2121. return 0;
  2122. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  2123. ret = intel_ring_begin(req, num_dwords);
  2124. if (ret)
  2125. return ret;
  2126. while (num_dwords--)
  2127. intel_ring_emit(engine, MI_NOOP);
  2128. intel_ring_advance(engine);
  2129. return 0;
  2130. }
  2131. void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno)
  2132. {
  2133. struct drm_i915_private *dev_priv = engine->i915;
  2134. /* Our semaphore implementation is strictly monotonic (i.e. we proceed
  2135. * so long as the semaphore value in the register/page is greater
  2136. * than the sync value), so whenever we reset the seqno,
  2137. * so long as we reset the tracking semaphore value to 0, it will
  2138. * always be before the next request's seqno. If we don't reset
  2139. * the semaphore value, then when the seqno moves backwards all
  2140. * future waits will complete instantly (causing rendering corruption).
  2141. */
  2142. if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
  2143. I915_WRITE(RING_SYNC_0(engine->mmio_base), 0);
  2144. I915_WRITE(RING_SYNC_1(engine->mmio_base), 0);
  2145. if (HAS_VEBOX(dev_priv))
  2146. I915_WRITE(RING_SYNC_2(engine->mmio_base), 0);
  2147. }
  2148. if (dev_priv->semaphore_obj) {
  2149. struct drm_i915_gem_object *obj = dev_priv->semaphore_obj;
  2150. struct page *page = i915_gem_object_get_dirty_page(obj, 0);
  2151. void *semaphores = kmap(page);
  2152. memset(semaphores + GEN8_SEMAPHORE_OFFSET(engine->id, 0),
  2153. 0, I915_NUM_ENGINES * gen8_semaphore_seqno_size);
  2154. kunmap(page);
  2155. }
  2156. memset(engine->semaphore.sync_seqno, 0,
  2157. sizeof(engine->semaphore.sync_seqno));
  2158. engine->set_seqno(engine, seqno);
  2159. engine->last_submitted_seqno = seqno;
  2160. engine->hangcheck.seqno = seqno;
  2161. }
  2162. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *engine,
  2163. u32 value)
  2164. {
  2165. struct drm_i915_private *dev_priv = engine->i915;
  2166. /* Every tail move must follow the sequence below */
  2167. /* Disable notification that the ring is IDLE. The GT
  2168. * will then assume that it is busy and bring it out of rc6.
  2169. */
  2170. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2171. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2172. /* Clear the context id. Here be magic! */
  2173. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  2174. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  2175. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  2176. GEN6_BSD_SLEEP_INDICATOR) == 0,
  2177. 50))
  2178. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2179. /* Now that the ring is fully powered up, update the tail */
  2180. I915_WRITE_TAIL(engine, value);
  2181. POSTING_READ(RING_TAIL(engine->mmio_base));
  2182. /* Let the ring send IDLE messages to the GT again,
  2183. * and so let it sleep to conserve power when idle.
  2184. */
  2185. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2186. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2187. }
  2188. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2189. u32 invalidate, u32 flush)
  2190. {
  2191. struct intel_engine_cs *engine = req->engine;
  2192. uint32_t cmd;
  2193. int ret;
  2194. ret = intel_ring_begin(req, 4);
  2195. if (ret)
  2196. return ret;
  2197. cmd = MI_FLUSH_DW;
  2198. if (INTEL_GEN(req->i915) >= 8)
  2199. cmd += 1;
  2200. /* We always require a command barrier so that subsequent
  2201. * commands, such as breadcrumb interrupts, are strictly ordered
  2202. * wrt the contents of the write cache being flushed to memory
  2203. * (and thus being coherent from the CPU).
  2204. */
  2205. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2206. /*
  2207. * Bspec vol 1c.5 - video engine command streamer:
  2208. * "If ENABLED, all TLBs will be invalidated once the flush
  2209. * operation is complete. This bit is only valid when the
  2210. * Post-Sync Operation field is a value of 1h or 3h."
  2211. */
  2212. if (invalidate & I915_GEM_GPU_DOMAINS)
  2213. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2214. intel_ring_emit(engine, cmd);
  2215. intel_ring_emit(engine,
  2216. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2217. if (INTEL_GEN(req->i915) >= 8) {
  2218. intel_ring_emit(engine, 0); /* upper addr */
  2219. intel_ring_emit(engine, 0); /* value */
  2220. } else {
  2221. intel_ring_emit(engine, 0);
  2222. intel_ring_emit(engine, MI_NOOP);
  2223. }
  2224. intel_ring_advance(engine);
  2225. return 0;
  2226. }
  2227. static int
  2228. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2229. u64 offset, u32 len,
  2230. unsigned dispatch_flags)
  2231. {
  2232. struct intel_engine_cs *engine = req->engine;
  2233. bool ppgtt = USES_PPGTT(engine->dev) &&
  2234. !(dispatch_flags & I915_DISPATCH_SECURE);
  2235. int ret;
  2236. ret = intel_ring_begin(req, 4);
  2237. if (ret)
  2238. return ret;
  2239. /* FIXME(BDW): Address space and security selectors. */
  2240. intel_ring_emit(engine, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2241. (dispatch_flags & I915_DISPATCH_RS ?
  2242. MI_BATCH_RESOURCE_STREAMER : 0));
  2243. intel_ring_emit(engine, lower_32_bits(offset));
  2244. intel_ring_emit(engine, upper_32_bits(offset));
  2245. intel_ring_emit(engine, MI_NOOP);
  2246. intel_ring_advance(engine);
  2247. return 0;
  2248. }
  2249. static int
  2250. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2251. u64 offset, u32 len,
  2252. unsigned dispatch_flags)
  2253. {
  2254. struct intel_engine_cs *engine = req->engine;
  2255. int ret;
  2256. ret = intel_ring_begin(req, 2);
  2257. if (ret)
  2258. return ret;
  2259. intel_ring_emit(engine,
  2260. MI_BATCH_BUFFER_START |
  2261. (dispatch_flags & I915_DISPATCH_SECURE ?
  2262. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2263. (dispatch_flags & I915_DISPATCH_RS ?
  2264. MI_BATCH_RESOURCE_STREAMER : 0));
  2265. /* bit0-7 is the length on GEN6+ */
  2266. intel_ring_emit(engine, offset);
  2267. intel_ring_advance(engine);
  2268. return 0;
  2269. }
  2270. static int
  2271. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2272. u64 offset, u32 len,
  2273. unsigned dispatch_flags)
  2274. {
  2275. struct intel_engine_cs *engine = req->engine;
  2276. int ret;
  2277. ret = intel_ring_begin(req, 2);
  2278. if (ret)
  2279. return ret;
  2280. intel_ring_emit(engine,
  2281. MI_BATCH_BUFFER_START |
  2282. (dispatch_flags & I915_DISPATCH_SECURE ?
  2283. 0 : MI_BATCH_NON_SECURE_I965));
  2284. /* bit0-7 is the length on GEN6+ */
  2285. intel_ring_emit(engine, offset);
  2286. intel_ring_advance(engine);
  2287. return 0;
  2288. }
  2289. /* Blitter support (SandyBridge+) */
  2290. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2291. u32 invalidate, u32 flush)
  2292. {
  2293. struct intel_engine_cs *engine = req->engine;
  2294. uint32_t cmd;
  2295. int ret;
  2296. ret = intel_ring_begin(req, 4);
  2297. if (ret)
  2298. return ret;
  2299. cmd = MI_FLUSH_DW;
  2300. if (INTEL_GEN(req->i915) >= 8)
  2301. cmd += 1;
  2302. /* We always require a command barrier so that subsequent
  2303. * commands, such as breadcrumb interrupts, are strictly ordered
  2304. * wrt the contents of the write cache being flushed to memory
  2305. * (and thus being coherent from the CPU).
  2306. */
  2307. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2308. /*
  2309. * Bspec vol 1c.3 - blitter engine command streamer:
  2310. * "If ENABLED, all TLBs will be invalidated once the flush
  2311. * operation is complete. This bit is only valid when the
  2312. * Post-Sync Operation field is a value of 1h or 3h."
  2313. */
  2314. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2315. cmd |= MI_INVALIDATE_TLB;
  2316. intel_ring_emit(engine, cmd);
  2317. intel_ring_emit(engine,
  2318. I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2319. if (INTEL_GEN(req->i915) >= 8) {
  2320. intel_ring_emit(engine, 0); /* upper addr */
  2321. intel_ring_emit(engine, 0); /* value */
  2322. } else {
  2323. intel_ring_emit(engine, 0);
  2324. intel_ring_emit(engine, MI_NOOP);
  2325. }
  2326. intel_ring_advance(engine);
  2327. return 0;
  2328. }
  2329. int intel_init_render_ring_buffer(struct drm_device *dev)
  2330. {
  2331. struct drm_i915_private *dev_priv = dev->dev_private;
  2332. struct intel_engine_cs *engine = &dev_priv->engine[RCS];
  2333. struct drm_i915_gem_object *obj;
  2334. int ret;
  2335. engine->name = "render ring";
  2336. engine->id = RCS;
  2337. engine->exec_id = I915_EXEC_RENDER;
  2338. engine->hw_id = 0;
  2339. engine->mmio_base = RENDER_RING_BASE;
  2340. if (INTEL_GEN(dev_priv) >= 8) {
  2341. if (i915_semaphore_is_enabled(dev_priv)) {
  2342. obj = i915_gem_object_create(dev, 4096);
  2343. if (IS_ERR(obj)) {
  2344. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2345. i915.semaphores = 0;
  2346. } else {
  2347. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2348. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2349. if (ret != 0) {
  2350. drm_gem_object_unreference(&obj->base);
  2351. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2352. i915.semaphores = 0;
  2353. } else
  2354. dev_priv->semaphore_obj = obj;
  2355. }
  2356. }
  2357. engine->init_context = intel_rcs_ctx_init;
  2358. engine->add_request = gen8_render_add_request;
  2359. engine->flush = gen8_render_ring_flush;
  2360. engine->irq_get = gen8_ring_get_irq;
  2361. engine->irq_put = gen8_ring_put_irq;
  2362. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2363. engine->get_seqno = ring_get_seqno;
  2364. engine->set_seqno = ring_set_seqno;
  2365. if (i915_semaphore_is_enabled(dev_priv)) {
  2366. WARN_ON(!dev_priv->semaphore_obj);
  2367. engine->semaphore.sync_to = gen8_ring_sync;
  2368. engine->semaphore.signal = gen8_rcs_signal;
  2369. GEN8_RING_SEMAPHORE_INIT(engine);
  2370. }
  2371. } else if (INTEL_GEN(dev_priv) >= 6) {
  2372. engine->init_context = intel_rcs_ctx_init;
  2373. engine->add_request = gen6_add_request;
  2374. engine->flush = gen7_render_ring_flush;
  2375. if (IS_GEN6(dev_priv))
  2376. engine->flush = gen6_render_ring_flush;
  2377. engine->irq_get = gen6_ring_get_irq;
  2378. engine->irq_put = gen6_ring_put_irq;
  2379. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2380. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2381. engine->get_seqno = ring_get_seqno;
  2382. engine->set_seqno = ring_set_seqno;
  2383. if (i915_semaphore_is_enabled(dev_priv)) {
  2384. engine->semaphore.sync_to = gen6_ring_sync;
  2385. engine->semaphore.signal = gen6_signal;
  2386. /*
  2387. * The current semaphore is only applied on pre-gen8
  2388. * platform. And there is no VCS2 ring on the pre-gen8
  2389. * platform. So the semaphore between RCS and VCS2 is
  2390. * initialized as INVALID. Gen8 will initialize the
  2391. * sema between VCS2 and RCS later.
  2392. */
  2393. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2394. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2395. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2396. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2397. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2398. engine->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2399. engine->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2400. engine->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2401. engine->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2402. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2403. }
  2404. } else if (IS_GEN5(dev_priv)) {
  2405. engine->add_request = pc_render_add_request;
  2406. engine->flush = gen4_render_ring_flush;
  2407. engine->get_seqno = pc_render_get_seqno;
  2408. engine->set_seqno = pc_render_set_seqno;
  2409. engine->irq_get = gen5_ring_get_irq;
  2410. engine->irq_put = gen5_ring_put_irq;
  2411. engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2412. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2413. } else {
  2414. engine->add_request = i9xx_add_request;
  2415. if (INTEL_GEN(dev_priv) < 4)
  2416. engine->flush = gen2_render_ring_flush;
  2417. else
  2418. engine->flush = gen4_render_ring_flush;
  2419. engine->get_seqno = ring_get_seqno;
  2420. engine->set_seqno = ring_set_seqno;
  2421. if (IS_GEN2(dev_priv)) {
  2422. engine->irq_get = i8xx_ring_get_irq;
  2423. engine->irq_put = i8xx_ring_put_irq;
  2424. } else {
  2425. engine->irq_get = i9xx_ring_get_irq;
  2426. engine->irq_put = i9xx_ring_put_irq;
  2427. }
  2428. engine->irq_enable_mask = I915_USER_INTERRUPT;
  2429. }
  2430. engine->write_tail = ring_write_tail;
  2431. if (IS_HASWELL(dev_priv))
  2432. engine->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2433. else if (IS_GEN8(dev_priv))
  2434. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2435. else if (INTEL_GEN(dev_priv) >= 6)
  2436. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2437. else if (INTEL_GEN(dev_priv) >= 4)
  2438. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2439. else if (IS_I830(dev_priv) || IS_845G(dev_priv))
  2440. engine->dispatch_execbuffer = i830_dispatch_execbuffer;
  2441. else
  2442. engine->dispatch_execbuffer = i915_dispatch_execbuffer;
  2443. engine->init_hw = init_render_ring;
  2444. engine->cleanup = render_ring_cleanup;
  2445. /* Workaround batchbuffer to combat CS tlb bug. */
  2446. if (HAS_BROKEN_CS_TLB(dev_priv)) {
  2447. obj = i915_gem_object_create(dev, I830_WA_SIZE);
  2448. if (IS_ERR(obj)) {
  2449. DRM_ERROR("Failed to allocate batch bo\n");
  2450. return PTR_ERR(obj);
  2451. }
  2452. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2453. if (ret != 0) {
  2454. drm_gem_object_unreference(&obj->base);
  2455. DRM_ERROR("Failed to ping batch bo\n");
  2456. return ret;
  2457. }
  2458. engine->scratch.obj = obj;
  2459. engine->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2460. }
  2461. ret = intel_init_ring_buffer(dev, engine);
  2462. if (ret)
  2463. return ret;
  2464. if (INTEL_GEN(dev_priv) >= 5) {
  2465. ret = intel_init_pipe_control(engine);
  2466. if (ret)
  2467. return ret;
  2468. }
  2469. return 0;
  2470. }
  2471. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2472. {
  2473. struct drm_i915_private *dev_priv = dev->dev_private;
  2474. struct intel_engine_cs *engine = &dev_priv->engine[VCS];
  2475. engine->name = "bsd ring";
  2476. engine->id = VCS;
  2477. engine->exec_id = I915_EXEC_BSD;
  2478. engine->hw_id = 1;
  2479. engine->write_tail = ring_write_tail;
  2480. if (INTEL_GEN(dev_priv) >= 6) {
  2481. engine->mmio_base = GEN6_BSD_RING_BASE;
  2482. /* gen6 bsd needs a special wa for tail updates */
  2483. if (IS_GEN6(dev_priv))
  2484. engine->write_tail = gen6_bsd_ring_write_tail;
  2485. engine->flush = gen6_bsd_ring_flush;
  2486. engine->add_request = gen6_add_request;
  2487. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2488. engine->get_seqno = ring_get_seqno;
  2489. engine->set_seqno = ring_set_seqno;
  2490. if (INTEL_GEN(dev_priv) >= 8) {
  2491. engine->irq_enable_mask =
  2492. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2493. engine->irq_get = gen8_ring_get_irq;
  2494. engine->irq_put = gen8_ring_put_irq;
  2495. engine->dispatch_execbuffer =
  2496. gen8_ring_dispatch_execbuffer;
  2497. if (i915_semaphore_is_enabled(dev_priv)) {
  2498. engine->semaphore.sync_to = gen8_ring_sync;
  2499. engine->semaphore.signal = gen8_xcs_signal;
  2500. GEN8_RING_SEMAPHORE_INIT(engine);
  2501. }
  2502. } else {
  2503. engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2504. engine->irq_get = gen6_ring_get_irq;
  2505. engine->irq_put = gen6_ring_put_irq;
  2506. engine->dispatch_execbuffer =
  2507. gen6_ring_dispatch_execbuffer;
  2508. if (i915_semaphore_is_enabled(dev_priv)) {
  2509. engine->semaphore.sync_to = gen6_ring_sync;
  2510. engine->semaphore.signal = gen6_signal;
  2511. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2512. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2513. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2514. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2515. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2516. engine->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2517. engine->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2518. engine->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2519. engine->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2520. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2521. }
  2522. }
  2523. } else {
  2524. engine->mmio_base = BSD_RING_BASE;
  2525. engine->flush = bsd_ring_flush;
  2526. engine->add_request = i9xx_add_request;
  2527. engine->get_seqno = ring_get_seqno;
  2528. engine->set_seqno = ring_set_seqno;
  2529. if (IS_GEN5(dev_priv)) {
  2530. engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2531. engine->irq_get = gen5_ring_get_irq;
  2532. engine->irq_put = gen5_ring_put_irq;
  2533. } else {
  2534. engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2535. engine->irq_get = i9xx_ring_get_irq;
  2536. engine->irq_put = i9xx_ring_put_irq;
  2537. }
  2538. engine->dispatch_execbuffer = i965_dispatch_execbuffer;
  2539. }
  2540. engine->init_hw = init_ring_common;
  2541. return intel_init_ring_buffer(dev, engine);
  2542. }
  2543. /**
  2544. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2545. */
  2546. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2547. {
  2548. struct drm_i915_private *dev_priv = dev->dev_private;
  2549. struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
  2550. engine->name = "bsd2 ring";
  2551. engine->id = VCS2;
  2552. engine->exec_id = I915_EXEC_BSD;
  2553. engine->hw_id = 4;
  2554. engine->write_tail = ring_write_tail;
  2555. engine->mmio_base = GEN8_BSD2_RING_BASE;
  2556. engine->flush = gen6_bsd_ring_flush;
  2557. engine->add_request = gen6_add_request;
  2558. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2559. engine->get_seqno = ring_get_seqno;
  2560. engine->set_seqno = ring_set_seqno;
  2561. engine->irq_enable_mask =
  2562. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2563. engine->irq_get = gen8_ring_get_irq;
  2564. engine->irq_put = gen8_ring_put_irq;
  2565. engine->dispatch_execbuffer =
  2566. gen8_ring_dispatch_execbuffer;
  2567. if (i915_semaphore_is_enabled(dev_priv)) {
  2568. engine->semaphore.sync_to = gen8_ring_sync;
  2569. engine->semaphore.signal = gen8_xcs_signal;
  2570. GEN8_RING_SEMAPHORE_INIT(engine);
  2571. }
  2572. engine->init_hw = init_ring_common;
  2573. return intel_init_ring_buffer(dev, engine);
  2574. }
  2575. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2576. {
  2577. struct drm_i915_private *dev_priv = dev->dev_private;
  2578. struct intel_engine_cs *engine = &dev_priv->engine[BCS];
  2579. engine->name = "blitter ring";
  2580. engine->id = BCS;
  2581. engine->exec_id = I915_EXEC_BLT;
  2582. engine->hw_id = 2;
  2583. engine->mmio_base = BLT_RING_BASE;
  2584. engine->write_tail = ring_write_tail;
  2585. engine->flush = gen6_ring_flush;
  2586. engine->add_request = gen6_add_request;
  2587. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2588. engine->get_seqno = ring_get_seqno;
  2589. engine->set_seqno = ring_set_seqno;
  2590. if (INTEL_GEN(dev_priv) >= 8) {
  2591. engine->irq_enable_mask =
  2592. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2593. engine->irq_get = gen8_ring_get_irq;
  2594. engine->irq_put = gen8_ring_put_irq;
  2595. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2596. if (i915_semaphore_is_enabled(dev_priv)) {
  2597. engine->semaphore.sync_to = gen8_ring_sync;
  2598. engine->semaphore.signal = gen8_xcs_signal;
  2599. GEN8_RING_SEMAPHORE_INIT(engine);
  2600. }
  2601. } else {
  2602. engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2603. engine->irq_get = gen6_ring_get_irq;
  2604. engine->irq_put = gen6_ring_put_irq;
  2605. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2606. if (i915_semaphore_is_enabled(dev_priv)) {
  2607. engine->semaphore.signal = gen6_signal;
  2608. engine->semaphore.sync_to = gen6_ring_sync;
  2609. /*
  2610. * The current semaphore is only applied on pre-gen8
  2611. * platform. And there is no VCS2 ring on the pre-gen8
  2612. * platform. So the semaphore between BCS and VCS2 is
  2613. * initialized as INVALID. Gen8 will initialize the
  2614. * sema between BCS and VCS2 later.
  2615. */
  2616. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2617. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2618. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2619. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2620. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2621. engine->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2622. engine->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2623. engine->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2624. engine->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2625. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2626. }
  2627. }
  2628. engine->init_hw = init_ring_common;
  2629. return intel_init_ring_buffer(dev, engine);
  2630. }
  2631. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2632. {
  2633. struct drm_i915_private *dev_priv = dev->dev_private;
  2634. struct intel_engine_cs *engine = &dev_priv->engine[VECS];
  2635. engine->name = "video enhancement ring";
  2636. engine->id = VECS;
  2637. engine->exec_id = I915_EXEC_VEBOX;
  2638. engine->hw_id = 3;
  2639. engine->mmio_base = VEBOX_RING_BASE;
  2640. engine->write_tail = ring_write_tail;
  2641. engine->flush = gen6_ring_flush;
  2642. engine->add_request = gen6_add_request;
  2643. engine->irq_seqno_barrier = gen6_seqno_barrier;
  2644. engine->get_seqno = ring_get_seqno;
  2645. engine->set_seqno = ring_set_seqno;
  2646. if (INTEL_GEN(dev_priv) >= 8) {
  2647. engine->irq_enable_mask =
  2648. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2649. engine->irq_get = gen8_ring_get_irq;
  2650. engine->irq_put = gen8_ring_put_irq;
  2651. engine->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2652. if (i915_semaphore_is_enabled(dev_priv)) {
  2653. engine->semaphore.sync_to = gen8_ring_sync;
  2654. engine->semaphore.signal = gen8_xcs_signal;
  2655. GEN8_RING_SEMAPHORE_INIT(engine);
  2656. }
  2657. } else {
  2658. engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2659. engine->irq_get = hsw_vebox_get_irq;
  2660. engine->irq_put = hsw_vebox_put_irq;
  2661. engine->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2662. if (i915_semaphore_is_enabled(dev_priv)) {
  2663. engine->semaphore.sync_to = gen6_ring_sync;
  2664. engine->semaphore.signal = gen6_signal;
  2665. engine->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2666. engine->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2667. engine->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2668. engine->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2669. engine->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2670. engine->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2671. engine->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2672. engine->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2673. engine->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2674. engine->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2675. }
  2676. }
  2677. engine->init_hw = init_ring_common;
  2678. return intel_init_ring_buffer(dev, engine);
  2679. }
  2680. int
  2681. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2682. {
  2683. struct intel_engine_cs *engine = req->engine;
  2684. int ret;
  2685. if (!engine->gpu_caches_dirty)
  2686. return 0;
  2687. ret = engine->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2688. if (ret)
  2689. return ret;
  2690. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2691. engine->gpu_caches_dirty = false;
  2692. return 0;
  2693. }
  2694. int
  2695. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2696. {
  2697. struct intel_engine_cs *engine = req->engine;
  2698. uint32_t flush_domains;
  2699. int ret;
  2700. flush_domains = 0;
  2701. if (engine->gpu_caches_dirty)
  2702. flush_domains = I915_GEM_GPU_DOMAINS;
  2703. ret = engine->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2704. if (ret)
  2705. return ret;
  2706. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2707. engine->gpu_caches_dirty = false;
  2708. return 0;
  2709. }
  2710. void
  2711. intel_stop_engine(struct intel_engine_cs *engine)
  2712. {
  2713. int ret;
  2714. if (!intel_engine_initialized(engine))
  2715. return;
  2716. ret = intel_engine_idle(engine);
  2717. if (ret)
  2718. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2719. engine->name, ret);
  2720. stop_ring(engine);
  2721. }