page_alloc.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/config.h>
  17. #include <linux/stddef.h>
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/pagemap.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/notifier.h>
  31. #include <linux/topology.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/cpu.h>
  34. #include <linux/cpuset.h>
  35. #include <linux/memory_hotplug.h>
  36. #include <linux/nodemask.h>
  37. #include <linux/vmalloc.h>
  38. #include <asm/tlbflush.h>
  39. #include "internal.h"
  40. /*
  41. * MCD - HACK: Find somewhere to initialize this EARLY, or make this
  42. * initializer cleaner
  43. */
  44. nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
  45. EXPORT_SYMBOL(node_online_map);
  46. nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
  47. EXPORT_SYMBOL(node_possible_map);
  48. struct pglist_data *pgdat_list __read_mostly;
  49. unsigned long totalram_pages __read_mostly;
  50. unsigned long totalhigh_pages __read_mostly;
  51. long nr_swap_pages;
  52. /*
  53. * results with 256, 32 in the lowmem_reserve sysctl:
  54. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  55. * 1G machine -> (16M dma, 784M normal, 224M high)
  56. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  57. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  58. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  59. *
  60. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  61. * don't need any ZONE_NORMAL reservation
  62. */
  63. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
  64. EXPORT_SYMBOL(totalram_pages);
  65. /*
  66. * Used by page_zone() to look up the address of the struct zone whose
  67. * id is encoded in the upper bits of page->flags
  68. */
  69. struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
  70. EXPORT_SYMBOL(zone_table);
  71. static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
  72. int min_free_kbytes = 1024;
  73. unsigned long __initdata nr_kernel_pages;
  74. unsigned long __initdata nr_all_pages;
  75. #ifdef CONFIG_DEBUG_VM
  76. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  77. {
  78. int ret = 0;
  79. unsigned seq;
  80. unsigned long pfn = page_to_pfn(page);
  81. do {
  82. seq = zone_span_seqbegin(zone);
  83. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  84. ret = 1;
  85. else if (pfn < zone->zone_start_pfn)
  86. ret = 1;
  87. } while (zone_span_seqretry(zone, seq));
  88. return ret;
  89. }
  90. static int page_is_consistent(struct zone *zone, struct page *page)
  91. {
  92. #ifdef CONFIG_HOLES_IN_ZONE
  93. if (!pfn_valid(page_to_pfn(page)))
  94. return 0;
  95. #endif
  96. if (zone != page_zone(page))
  97. return 0;
  98. return 1;
  99. }
  100. /*
  101. * Temporary debugging check for pages not lying within a given zone.
  102. */
  103. static int bad_range(struct zone *zone, struct page *page)
  104. {
  105. if (page_outside_zone_boundaries(zone, page))
  106. return 1;
  107. if (!page_is_consistent(zone, page))
  108. return 1;
  109. return 0;
  110. }
  111. #else
  112. static inline int bad_range(struct zone *zone, struct page *page)
  113. {
  114. return 0;
  115. }
  116. #endif
  117. static void bad_page(const char *function, struct page *page)
  118. {
  119. printk(KERN_EMERG "Bad page state at %s (in process '%s', page %p)\n",
  120. function, current->comm, page);
  121. printk(KERN_EMERG "flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  122. (int)(2*sizeof(unsigned long)), (unsigned long)page->flags,
  123. page->mapping, page_mapcount(page), page_count(page));
  124. printk(KERN_EMERG "Backtrace:\n");
  125. dump_stack();
  126. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n");
  127. page->flags &= ~(1 << PG_lru |
  128. 1 << PG_private |
  129. 1 << PG_locked |
  130. 1 << PG_active |
  131. 1 << PG_dirty |
  132. 1 << PG_reclaim |
  133. 1 << PG_slab |
  134. 1 << PG_swapcache |
  135. 1 << PG_writeback );
  136. set_page_count(page, 0);
  137. reset_page_mapcount(page);
  138. page->mapping = NULL;
  139. add_taint(TAINT_BAD_PAGE);
  140. }
  141. /*
  142. * Higher-order pages are called "compound pages". They are structured thusly:
  143. *
  144. * The first PAGE_SIZE page is called the "head page".
  145. *
  146. * The remaining PAGE_SIZE pages are called "tail pages".
  147. *
  148. * All pages have PG_compound set. All pages have their ->private pointing at
  149. * the head page (even the head page has this).
  150. *
  151. * The first tail page's ->mapping, if non-zero, holds the address of the
  152. * compound page's put_page() function.
  153. *
  154. * The order of the allocation is stored in the first tail page's ->index
  155. * This is only for debug at present. This usage means that zero-order pages
  156. * may not be compound.
  157. */
  158. static void prep_compound_page(struct page *page, unsigned long order)
  159. {
  160. int i;
  161. int nr_pages = 1 << order;
  162. page[1].mapping = NULL;
  163. page[1].index = order;
  164. for (i = 0; i < nr_pages; i++) {
  165. struct page *p = page + i;
  166. SetPageCompound(p);
  167. set_page_private(p, (unsigned long)page);
  168. }
  169. }
  170. static void destroy_compound_page(struct page *page, unsigned long order)
  171. {
  172. int i;
  173. int nr_pages = 1 << order;
  174. if (!PageCompound(page))
  175. return;
  176. if (page[1].index != order)
  177. bad_page(__FUNCTION__, page);
  178. for (i = 0; i < nr_pages; i++) {
  179. struct page *p = page + i;
  180. if (!PageCompound(p))
  181. bad_page(__FUNCTION__, page);
  182. if (page_private(p) != (unsigned long)page)
  183. bad_page(__FUNCTION__, page);
  184. ClearPageCompound(p);
  185. }
  186. }
  187. /*
  188. * function for dealing with page's order in buddy system.
  189. * zone->lock is already acquired when we use these.
  190. * So, we don't need atomic page->flags operations here.
  191. */
  192. static inline unsigned long page_order(struct page *page) {
  193. return page_private(page);
  194. }
  195. static inline void set_page_order(struct page *page, int order) {
  196. set_page_private(page, order);
  197. __SetPagePrivate(page);
  198. }
  199. static inline void rmv_page_order(struct page *page)
  200. {
  201. __ClearPagePrivate(page);
  202. set_page_private(page, 0);
  203. }
  204. /*
  205. * Locate the struct page for both the matching buddy in our
  206. * pair (buddy1) and the combined O(n+1) page they form (page).
  207. *
  208. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  209. * the following equation:
  210. * B2 = B1 ^ (1 << O)
  211. * For example, if the starting buddy (buddy2) is #8 its order
  212. * 1 buddy is #10:
  213. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  214. *
  215. * 2) Any buddy B will have an order O+1 parent P which
  216. * satisfies the following equation:
  217. * P = B & ~(1 << O)
  218. *
  219. * Assumption: *_mem_map is contigious at least up to MAX_ORDER
  220. */
  221. static inline struct page *
  222. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  223. {
  224. unsigned long buddy_idx = page_idx ^ (1 << order);
  225. return page + (buddy_idx - page_idx);
  226. }
  227. static inline unsigned long
  228. __find_combined_index(unsigned long page_idx, unsigned int order)
  229. {
  230. return (page_idx & ~(1 << order));
  231. }
  232. /*
  233. * This function checks whether a page is free && is the buddy
  234. * we can do coalesce a page and its buddy if
  235. * (a) the buddy is not in a hole &&
  236. * (b) the buddy is free &&
  237. * (c) the buddy is on the buddy system &&
  238. * (d) a page and its buddy have the same order.
  239. * for recording page's order, we use page_private(page) and PG_private.
  240. *
  241. */
  242. static inline int page_is_buddy(struct page *page, int order)
  243. {
  244. #ifdef CONFIG_HOLES_IN_ZONE
  245. if (!pfn_valid(page_to_pfn(page)))
  246. return 0;
  247. #endif
  248. if (PagePrivate(page) &&
  249. (page_order(page) == order) &&
  250. page_count(page) == 0)
  251. return 1;
  252. return 0;
  253. }
  254. /*
  255. * Freeing function for a buddy system allocator.
  256. *
  257. * The concept of a buddy system is to maintain direct-mapped table
  258. * (containing bit values) for memory blocks of various "orders".
  259. * The bottom level table contains the map for the smallest allocatable
  260. * units of memory (here, pages), and each level above it describes
  261. * pairs of units from the levels below, hence, "buddies".
  262. * At a high level, all that happens here is marking the table entry
  263. * at the bottom level available, and propagating the changes upward
  264. * as necessary, plus some accounting needed to play nicely with other
  265. * parts of the VM system.
  266. * At each level, we keep a list of pages, which are heads of continuous
  267. * free pages of length of (1 << order) and marked with PG_Private.Page's
  268. * order is recorded in page_private(page) field.
  269. * So when we are allocating or freeing one, we can derive the state of the
  270. * other. That is, if we allocate a small block, and both were
  271. * free, the remainder of the region must be split into blocks.
  272. * If a block is freed, and its buddy is also free, then this
  273. * triggers coalescing into a block of larger size.
  274. *
  275. * -- wli
  276. */
  277. static inline void __free_pages_bulk (struct page *page,
  278. struct zone *zone, unsigned int order)
  279. {
  280. unsigned long page_idx;
  281. int order_size = 1 << order;
  282. if (unlikely(order))
  283. destroy_compound_page(page, order);
  284. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  285. BUG_ON(page_idx & (order_size - 1));
  286. BUG_ON(bad_range(zone, page));
  287. zone->free_pages += order_size;
  288. while (order < MAX_ORDER-1) {
  289. unsigned long combined_idx;
  290. struct free_area *area;
  291. struct page *buddy;
  292. buddy = __page_find_buddy(page, page_idx, order);
  293. if (!page_is_buddy(buddy, order))
  294. break; /* Move the buddy up one level. */
  295. list_del(&buddy->lru);
  296. area = zone->free_area + order;
  297. area->nr_free--;
  298. rmv_page_order(buddy);
  299. combined_idx = __find_combined_index(page_idx, order);
  300. page = page + (combined_idx - page_idx);
  301. page_idx = combined_idx;
  302. order++;
  303. }
  304. set_page_order(page, order);
  305. list_add(&page->lru, &zone->free_area[order].free_list);
  306. zone->free_area[order].nr_free++;
  307. }
  308. static inline int free_pages_check(const char *function, struct page *page)
  309. {
  310. if (unlikely(page_mapcount(page) |
  311. (page->mapping != NULL) |
  312. (page_count(page) != 0) |
  313. (page->flags & (
  314. 1 << PG_lru |
  315. 1 << PG_private |
  316. 1 << PG_locked |
  317. 1 << PG_active |
  318. 1 << PG_reclaim |
  319. 1 << PG_slab |
  320. 1 << PG_swapcache |
  321. 1 << PG_writeback |
  322. 1 << PG_reserved ))))
  323. bad_page(function, page);
  324. if (PageDirty(page))
  325. __ClearPageDirty(page);
  326. /*
  327. * For now, we report if PG_reserved was found set, but do not
  328. * clear it, and do not free the page. But we shall soon need
  329. * to do more, for when the ZERO_PAGE count wraps negative.
  330. */
  331. return PageReserved(page);
  332. }
  333. /*
  334. * Frees a list of pages.
  335. * Assumes all pages on list are in same zone, and of same order.
  336. * count is the number of pages to free.
  337. *
  338. * If the zone was previously in an "all pages pinned" state then look to
  339. * see if this freeing clears that state.
  340. *
  341. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  342. * pinned" detection logic.
  343. */
  344. static int
  345. free_pages_bulk(struct zone *zone, int count,
  346. struct list_head *list, unsigned int order)
  347. {
  348. struct page *page = NULL;
  349. int ret = 0;
  350. spin_lock(&zone->lock);
  351. zone->all_unreclaimable = 0;
  352. zone->pages_scanned = 0;
  353. while (!list_empty(list) && count--) {
  354. page = list_entry(list->prev, struct page, lru);
  355. /* have to delete it as __free_pages_bulk list manipulates */
  356. list_del(&page->lru);
  357. __free_pages_bulk(page, zone, order);
  358. ret++;
  359. }
  360. spin_unlock(&zone->lock);
  361. return ret;
  362. }
  363. void __free_pages_ok(struct page *page, unsigned int order)
  364. {
  365. unsigned long flags;
  366. LIST_HEAD(list);
  367. int i;
  368. int reserved = 0;
  369. arch_free_page(page, order);
  370. #ifndef CONFIG_MMU
  371. if (order > 0)
  372. for (i = 1 ; i < (1 << order) ; ++i)
  373. __put_page(page + i);
  374. #endif
  375. for (i = 0 ; i < (1 << order) ; ++i)
  376. reserved += free_pages_check(__FUNCTION__, page + i);
  377. if (reserved)
  378. return;
  379. list_add(&page->lru, &list);
  380. mod_page_state(pgfree, 1 << order);
  381. kernel_map_pages(page, 1<<order, 0);
  382. local_irq_save(flags);
  383. free_pages_bulk(page_zone(page), 1, &list, order);
  384. local_irq_restore(flags);
  385. }
  386. /*
  387. * The order of subdivision here is critical for the IO subsystem.
  388. * Please do not alter this order without good reasons and regression
  389. * testing. Specifically, as large blocks of memory are subdivided,
  390. * the order in which smaller blocks are delivered depends on the order
  391. * they're subdivided in this function. This is the primary factor
  392. * influencing the order in which pages are delivered to the IO
  393. * subsystem according to empirical testing, and this is also justified
  394. * by considering the behavior of a buddy system containing a single
  395. * large block of memory acted on by a series of small allocations.
  396. * This behavior is a critical factor in sglist merging's success.
  397. *
  398. * -- wli
  399. */
  400. static inline struct page *
  401. expand(struct zone *zone, struct page *page,
  402. int low, int high, struct free_area *area)
  403. {
  404. unsigned long size = 1 << high;
  405. while (high > low) {
  406. area--;
  407. high--;
  408. size >>= 1;
  409. BUG_ON(bad_range(zone, &page[size]));
  410. list_add(&page[size].lru, &area->free_list);
  411. area->nr_free++;
  412. set_page_order(&page[size], high);
  413. }
  414. return page;
  415. }
  416. /*
  417. * This page is about to be returned from the page allocator
  418. */
  419. static int prep_new_page(struct page *page, int order)
  420. {
  421. if (unlikely(page_mapcount(page) |
  422. (page->mapping != NULL) |
  423. (page_count(page) != 0) |
  424. (page->flags & (
  425. 1 << PG_lru |
  426. 1 << PG_private |
  427. 1 << PG_locked |
  428. 1 << PG_active |
  429. 1 << PG_dirty |
  430. 1 << PG_reclaim |
  431. 1 << PG_slab |
  432. 1 << PG_swapcache |
  433. 1 << PG_writeback |
  434. 1 << PG_reserved ))))
  435. bad_page(__FUNCTION__, page);
  436. /*
  437. * For now, we report if PG_reserved was found set, but do not
  438. * clear it, and do not allocate the page: as a safety net.
  439. */
  440. if (PageReserved(page))
  441. return 1;
  442. page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
  443. 1 << PG_referenced | 1 << PG_arch_1 |
  444. 1 << PG_checked | 1 << PG_mappedtodisk);
  445. set_page_private(page, 0);
  446. set_page_refs(page, order);
  447. kernel_map_pages(page, 1 << order, 1);
  448. return 0;
  449. }
  450. /*
  451. * Do the hard work of removing an element from the buddy allocator.
  452. * Call me with the zone->lock already held.
  453. */
  454. static struct page *__rmqueue(struct zone *zone, unsigned int order)
  455. {
  456. struct free_area * area;
  457. unsigned int current_order;
  458. struct page *page;
  459. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  460. area = zone->free_area + current_order;
  461. if (list_empty(&area->free_list))
  462. continue;
  463. page = list_entry(area->free_list.next, struct page, lru);
  464. list_del(&page->lru);
  465. rmv_page_order(page);
  466. area->nr_free--;
  467. zone->free_pages -= 1UL << order;
  468. return expand(zone, page, order, current_order, area);
  469. }
  470. return NULL;
  471. }
  472. /*
  473. * Obtain a specified number of elements from the buddy allocator, all under
  474. * a single hold of the lock, for efficiency. Add them to the supplied list.
  475. * Returns the number of new pages which were placed at *list.
  476. */
  477. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  478. unsigned long count, struct list_head *list)
  479. {
  480. int i;
  481. int allocated = 0;
  482. struct page *page;
  483. spin_lock(&zone->lock);
  484. for (i = 0; i < count; ++i) {
  485. page = __rmqueue(zone, order);
  486. if (page == NULL)
  487. break;
  488. allocated++;
  489. list_add_tail(&page->lru, list);
  490. }
  491. spin_unlock(&zone->lock);
  492. return allocated;
  493. }
  494. #ifdef CONFIG_NUMA
  495. /* Called from the slab reaper to drain remote pagesets */
  496. void drain_remote_pages(void)
  497. {
  498. struct zone *zone;
  499. int i;
  500. unsigned long flags;
  501. local_irq_save(flags);
  502. for_each_zone(zone) {
  503. struct per_cpu_pageset *pset;
  504. /* Do not drain local pagesets */
  505. if (zone->zone_pgdat->node_id == numa_node_id())
  506. continue;
  507. pset = zone->pageset[smp_processor_id()];
  508. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  509. struct per_cpu_pages *pcp;
  510. pcp = &pset->pcp[i];
  511. if (pcp->count)
  512. pcp->count -= free_pages_bulk(zone, pcp->count,
  513. &pcp->list, 0);
  514. }
  515. }
  516. local_irq_restore(flags);
  517. }
  518. #endif
  519. #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
  520. static void __drain_pages(unsigned int cpu)
  521. {
  522. unsigned long flags;
  523. struct zone *zone;
  524. int i;
  525. for_each_zone(zone) {
  526. struct per_cpu_pageset *pset;
  527. pset = zone_pcp(zone, cpu);
  528. for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
  529. struct per_cpu_pages *pcp;
  530. pcp = &pset->pcp[i];
  531. local_irq_save(flags);
  532. pcp->count -= free_pages_bulk(zone, pcp->count,
  533. &pcp->list, 0);
  534. local_irq_restore(flags);
  535. }
  536. }
  537. }
  538. #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
  539. #ifdef CONFIG_PM
  540. void mark_free_pages(struct zone *zone)
  541. {
  542. unsigned long zone_pfn, flags;
  543. int order;
  544. struct list_head *curr;
  545. if (!zone->spanned_pages)
  546. return;
  547. spin_lock_irqsave(&zone->lock, flags);
  548. for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
  549. ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
  550. for (order = MAX_ORDER - 1; order >= 0; --order)
  551. list_for_each(curr, &zone->free_area[order].free_list) {
  552. unsigned long start_pfn, i;
  553. start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
  554. for (i=0; i < (1<<order); i++)
  555. SetPageNosaveFree(pfn_to_page(start_pfn+i));
  556. }
  557. spin_unlock_irqrestore(&zone->lock, flags);
  558. }
  559. /*
  560. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  561. */
  562. void drain_local_pages(void)
  563. {
  564. unsigned long flags;
  565. local_irq_save(flags);
  566. __drain_pages(smp_processor_id());
  567. local_irq_restore(flags);
  568. }
  569. #endif /* CONFIG_PM */
  570. static void zone_statistics(struct zonelist *zonelist, struct zone *z)
  571. {
  572. #ifdef CONFIG_NUMA
  573. unsigned long flags;
  574. int cpu;
  575. pg_data_t *pg = z->zone_pgdat;
  576. pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
  577. struct per_cpu_pageset *p;
  578. local_irq_save(flags);
  579. cpu = smp_processor_id();
  580. p = zone_pcp(z,cpu);
  581. if (pg == orig) {
  582. p->numa_hit++;
  583. } else {
  584. p->numa_miss++;
  585. zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
  586. }
  587. if (pg == NODE_DATA(numa_node_id()))
  588. p->local_node++;
  589. else
  590. p->other_node++;
  591. local_irq_restore(flags);
  592. #endif
  593. }
  594. /*
  595. * Free a 0-order page
  596. */
  597. static void FASTCALL(free_hot_cold_page(struct page *page, int cold));
  598. static void fastcall free_hot_cold_page(struct page *page, int cold)
  599. {
  600. struct zone *zone = page_zone(page);
  601. struct per_cpu_pages *pcp;
  602. unsigned long flags;
  603. arch_free_page(page, 0);
  604. if (PageAnon(page))
  605. page->mapping = NULL;
  606. if (free_pages_check(__FUNCTION__, page))
  607. return;
  608. inc_page_state(pgfree);
  609. kernel_map_pages(page, 1, 0);
  610. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  611. local_irq_save(flags);
  612. list_add(&page->lru, &pcp->list);
  613. pcp->count++;
  614. if (pcp->count >= pcp->high)
  615. pcp->count -= free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  616. local_irq_restore(flags);
  617. put_cpu();
  618. }
  619. void fastcall free_hot_page(struct page *page)
  620. {
  621. free_hot_cold_page(page, 0);
  622. }
  623. void fastcall free_cold_page(struct page *page)
  624. {
  625. free_hot_cold_page(page, 1);
  626. }
  627. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  628. {
  629. int i;
  630. BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
  631. for(i = 0; i < (1 << order); i++)
  632. clear_highpage(page + i);
  633. }
  634. /*
  635. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  636. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  637. * or two.
  638. */
  639. static struct page *
  640. buffered_rmqueue(struct zone *zone, int order, gfp_t gfp_flags)
  641. {
  642. unsigned long flags;
  643. struct page *page;
  644. int cold = !!(gfp_flags & __GFP_COLD);
  645. again:
  646. if (order == 0) {
  647. struct per_cpu_pages *pcp;
  648. page = NULL;
  649. pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
  650. local_irq_save(flags);
  651. if (!pcp->count)
  652. pcp->count += rmqueue_bulk(zone, 0,
  653. pcp->batch, &pcp->list);
  654. if (likely(pcp->count)) {
  655. page = list_entry(pcp->list.next, struct page, lru);
  656. list_del(&page->lru);
  657. pcp->count--;
  658. }
  659. local_irq_restore(flags);
  660. put_cpu();
  661. } else {
  662. spin_lock_irqsave(&zone->lock, flags);
  663. page = __rmqueue(zone, order);
  664. spin_unlock_irqrestore(&zone->lock, flags);
  665. }
  666. if (page != NULL) {
  667. BUG_ON(bad_range(zone, page));
  668. mod_page_state_zone(zone, pgalloc, 1 << order);
  669. if (prep_new_page(page, order))
  670. goto again;
  671. if (gfp_flags & __GFP_ZERO)
  672. prep_zero_page(page, order, gfp_flags);
  673. if (order && (gfp_flags & __GFP_COMP))
  674. prep_compound_page(page, order);
  675. }
  676. return page;
  677. }
  678. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  679. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  680. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  681. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  682. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  683. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  684. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  685. /*
  686. * Return 1 if free pages are above 'mark'. This takes into account the order
  687. * of the allocation.
  688. */
  689. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  690. int classzone_idx, int alloc_flags)
  691. {
  692. /* free_pages my go negative - that's OK */
  693. long min = mark, free_pages = z->free_pages - (1 << order) + 1;
  694. int o;
  695. if (alloc_flags & ALLOC_HIGH)
  696. min -= min / 2;
  697. if (alloc_flags & ALLOC_HARDER)
  698. min -= min / 4;
  699. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  700. return 0;
  701. for (o = 0; o < order; o++) {
  702. /* At the next order, this order's pages become unavailable */
  703. free_pages -= z->free_area[o].nr_free << o;
  704. /* Require fewer higher order pages to be free */
  705. min >>= 1;
  706. if (free_pages <= min)
  707. return 0;
  708. }
  709. return 1;
  710. }
  711. /*
  712. * get_page_from_freeliest goes through the zonelist trying to allocate
  713. * a page.
  714. */
  715. static struct page *
  716. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  717. struct zonelist *zonelist, int alloc_flags)
  718. {
  719. struct zone **z = zonelist->zones;
  720. struct page *page = NULL;
  721. int classzone_idx = zone_idx(*z);
  722. /*
  723. * Go through the zonelist once, looking for a zone with enough free.
  724. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  725. */
  726. do {
  727. if ((alloc_flags & ALLOC_CPUSET) &&
  728. !cpuset_zone_allowed(*z, gfp_mask))
  729. continue;
  730. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  731. unsigned long mark;
  732. if (alloc_flags & ALLOC_WMARK_MIN)
  733. mark = (*z)->pages_min;
  734. else if (alloc_flags & ALLOC_WMARK_LOW)
  735. mark = (*z)->pages_low;
  736. else
  737. mark = (*z)->pages_high;
  738. if (!zone_watermark_ok(*z, order, mark,
  739. classzone_idx, alloc_flags))
  740. continue;
  741. }
  742. page = buffered_rmqueue(*z, order, gfp_mask);
  743. if (page) {
  744. zone_statistics(zonelist, *z);
  745. break;
  746. }
  747. } while (*(++z) != NULL);
  748. return page;
  749. }
  750. /*
  751. * This is the 'heart' of the zoned buddy allocator.
  752. */
  753. struct page * fastcall
  754. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  755. struct zonelist *zonelist)
  756. {
  757. const gfp_t wait = gfp_mask & __GFP_WAIT;
  758. struct zone **z;
  759. struct page *page;
  760. struct reclaim_state reclaim_state;
  761. struct task_struct *p = current;
  762. int do_retry;
  763. int alloc_flags;
  764. int did_some_progress;
  765. might_sleep_if(wait);
  766. restart:
  767. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  768. if (unlikely(*z == NULL)) {
  769. /* Should this ever happen?? */
  770. return NULL;
  771. }
  772. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  773. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  774. if (page)
  775. goto got_pg;
  776. do {
  777. wakeup_kswapd(*z, order);
  778. } while (*(++z));
  779. /*
  780. * OK, we're below the kswapd watermark and have kicked background
  781. * reclaim. Now things get more complex, so set up alloc_flags according
  782. * to how we want to proceed.
  783. *
  784. * The caller may dip into page reserves a bit more if the caller
  785. * cannot run direct reclaim, or if the caller has realtime scheduling
  786. * policy.
  787. */
  788. alloc_flags = ALLOC_WMARK_MIN;
  789. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  790. alloc_flags |= ALLOC_HARDER;
  791. if (gfp_mask & __GFP_HIGH)
  792. alloc_flags |= ALLOC_HIGH;
  793. alloc_flags |= ALLOC_CPUSET;
  794. /*
  795. * Go through the zonelist again. Let __GFP_HIGH and allocations
  796. * coming from realtime tasks go deeper into reserves.
  797. *
  798. * This is the last chance, in general, before the goto nopage.
  799. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  800. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  801. */
  802. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  803. if (page)
  804. goto got_pg;
  805. /* This allocation should allow future memory freeing. */
  806. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  807. && !in_interrupt()) {
  808. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  809. nofail_alloc:
  810. /* go through the zonelist yet again, ignoring mins */
  811. page = get_page_from_freelist(gfp_mask, order,
  812. zonelist, ALLOC_NO_WATERMARKS);
  813. if (page)
  814. goto got_pg;
  815. if (gfp_mask & __GFP_NOFAIL) {
  816. blk_congestion_wait(WRITE, HZ/50);
  817. goto nofail_alloc;
  818. }
  819. }
  820. goto nopage;
  821. }
  822. /* Atomic allocations - we can't balance anything */
  823. if (!wait)
  824. goto nopage;
  825. rebalance:
  826. cond_resched();
  827. /* We now go into synchronous reclaim */
  828. p->flags |= PF_MEMALLOC;
  829. reclaim_state.reclaimed_slab = 0;
  830. p->reclaim_state = &reclaim_state;
  831. did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
  832. p->reclaim_state = NULL;
  833. p->flags &= ~PF_MEMALLOC;
  834. cond_resched();
  835. if (likely(did_some_progress)) {
  836. page = get_page_from_freelist(gfp_mask, order,
  837. zonelist, alloc_flags);
  838. if (page)
  839. goto got_pg;
  840. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  841. /*
  842. * Go through the zonelist yet one more time, keep
  843. * very high watermark here, this is only to catch
  844. * a parallel oom killing, we must fail if we're still
  845. * under heavy pressure.
  846. */
  847. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  848. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  849. if (page)
  850. goto got_pg;
  851. out_of_memory(gfp_mask, order);
  852. goto restart;
  853. }
  854. /*
  855. * Don't let big-order allocations loop unless the caller explicitly
  856. * requests that. Wait for some write requests to complete then retry.
  857. *
  858. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  859. * <= 3, but that may not be true in other implementations.
  860. */
  861. do_retry = 0;
  862. if (!(gfp_mask & __GFP_NORETRY)) {
  863. if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
  864. do_retry = 1;
  865. if (gfp_mask & __GFP_NOFAIL)
  866. do_retry = 1;
  867. }
  868. if (do_retry) {
  869. blk_congestion_wait(WRITE, HZ/50);
  870. goto rebalance;
  871. }
  872. nopage:
  873. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  874. printk(KERN_WARNING "%s: page allocation failure."
  875. " order:%d, mode:0x%x\n",
  876. p->comm, order, gfp_mask);
  877. dump_stack();
  878. show_mem();
  879. }
  880. got_pg:
  881. return page;
  882. }
  883. EXPORT_SYMBOL(__alloc_pages);
  884. /*
  885. * Common helper functions.
  886. */
  887. fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  888. {
  889. struct page * page;
  890. page = alloc_pages(gfp_mask, order);
  891. if (!page)
  892. return 0;
  893. return (unsigned long) page_address(page);
  894. }
  895. EXPORT_SYMBOL(__get_free_pages);
  896. fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
  897. {
  898. struct page * page;
  899. /*
  900. * get_zeroed_page() returns a 32-bit address, which cannot represent
  901. * a highmem page
  902. */
  903. BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  904. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  905. if (page)
  906. return (unsigned long) page_address(page);
  907. return 0;
  908. }
  909. EXPORT_SYMBOL(get_zeroed_page);
  910. void __pagevec_free(struct pagevec *pvec)
  911. {
  912. int i = pagevec_count(pvec);
  913. while (--i >= 0)
  914. free_hot_cold_page(pvec->pages[i], pvec->cold);
  915. }
  916. fastcall void __free_pages(struct page *page, unsigned int order)
  917. {
  918. if (put_page_testzero(page)) {
  919. if (order == 0)
  920. free_hot_page(page);
  921. else
  922. __free_pages_ok(page, order);
  923. }
  924. }
  925. EXPORT_SYMBOL(__free_pages);
  926. fastcall void free_pages(unsigned long addr, unsigned int order)
  927. {
  928. if (addr != 0) {
  929. BUG_ON(!virt_addr_valid((void *)addr));
  930. __free_pages(virt_to_page((void *)addr), order);
  931. }
  932. }
  933. EXPORT_SYMBOL(free_pages);
  934. /*
  935. * Total amount of free (allocatable) RAM:
  936. */
  937. unsigned int nr_free_pages(void)
  938. {
  939. unsigned int sum = 0;
  940. struct zone *zone;
  941. for_each_zone(zone)
  942. sum += zone->free_pages;
  943. return sum;
  944. }
  945. EXPORT_SYMBOL(nr_free_pages);
  946. #ifdef CONFIG_NUMA
  947. unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
  948. {
  949. unsigned int i, sum = 0;
  950. for (i = 0; i < MAX_NR_ZONES; i++)
  951. sum += pgdat->node_zones[i].free_pages;
  952. return sum;
  953. }
  954. #endif
  955. static unsigned int nr_free_zone_pages(int offset)
  956. {
  957. /* Just pick one node, since fallback list is circular */
  958. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  959. unsigned int sum = 0;
  960. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  961. struct zone **zonep = zonelist->zones;
  962. struct zone *zone;
  963. for (zone = *zonep++; zone; zone = *zonep++) {
  964. unsigned long size = zone->present_pages;
  965. unsigned long high = zone->pages_high;
  966. if (size > high)
  967. sum += size - high;
  968. }
  969. return sum;
  970. }
  971. /*
  972. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  973. */
  974. unsigned int nr_free_buffer_pages(void)
  975. {
  976. return nr_free_zone_pages(gfp_zone(GFP_USER));
  977. }
  978. /*
  979. * Amount of free RAM allocatable within all zones
  980. */
  981. unsigned int nr_free_pagecache_pages(void)
  982. {
  983. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
  984. }
  985. #ifdef CONFIG_HIGHMEM
  986. unsigned int nr_free_highpages (void)
  987. {
  988. pg_data_t *pgdat;
  989. unsigned int pages = 0;
  990. for_each_pgdat(pgdat)
  991. pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  992. return pages;
  993. }
  994. #endif
  995. #ifdef CONFIG_NUMA
  996. static void show_node(struct zone *zone)
  997. {
  998. printk("Node %d ", zone->zone_pgdat->node_id);
  999. }
  1000. #else
  1001. #define show_node(zone) do { } while (0)
  1002. #endif
  1003. /*
  1004. * Accumulate the page_state information across all CPUs.
  1005. * The result is unavoidably approximate - it can change
  1006. * during and after execution of this function.
  1007. */
  1008. static DEFINE_PER_CPU(struct page_state, page_states) = {0};
  1009. atomic_t nr_pagecache = ATOMIC_INIT(0);
  1010. EXPORT_SYMBOL(nr_pagecache);
  1011. #ifdef CONFIG_SMP
  1012. DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
  1013. #endif
  1014. static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
  1015. {
  1016. int cpu = 0;
  1017. memset(ret, 0, sizeof(*ret));
  1018. cpu = first_cpu(*cpumask);
  1019. while (cpu < NR_CPUS) {
  1020. unsigned long *in, *out, off;
  1021. in = (unsigned long *)&per_cpu(page_states, cpu);
  1022. cpu = next_cpu(cpu, *cpumask);
  1023. if (cpu < NR_CPUS)
  1024. prefetch(&per_cpu(page_states, cpu));
  1025. out = (unsigned long *)ret;
  1026. for (off = 0; off < nr; off++)
  1027. *out++ += *in++;
  1028. }
  1029. }
  1030. void get_page_state_node(struct page_state *ret, int node)
  1031. {
  1032. int nr;
  1033. cpumask_t mask = node_to_cpumask(node);
  1034. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  1035. nr /= sizeof(unsigned long);
  1036. __get_page_state(ret, nr+1, &mask);
  1037. }
  1038. void get_page_state(struct page_state *ret)
  1039. {
  1040. int nr;
  1041. cpumask_t mask = CPU_MASK_ALL;
  1042. nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
  1043. nr /= sizeof(unsigned long);
  1044. __get_page_state(ret, nr + 1, &mask);
  1045. }
  1046. void get_full_page_state(struct page_state *ret)
  1047. {
  1048. cpumask_t mask = CPU_MASK_ALL;
  1049. __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
  1050. }
  1051. unsigned long __read_page_state(unsigned long offset)
  1052. {
  1053. unsigned long ret = 0;
  1054. int cpu;
  1055. for_each_cpu(cpu) {
  1056. unsigned long in;
  1057. in = (unsigned long)&per_cpu(page_states, cpu) + offset;
  1058. ret += *((unsigned long *)in);
  1059. }
  1060. return ret;
  1061. }
  1062. void __mod_page_state(unsigned long offset, unsigned long delta)
  1063. {
  1064. unsigned long flags;
  1065. void* ptr;
  1066. local_irq_save(flags);
  1067. ptr = &__get_cpu_var(page_states);
  1068. *(unsigned long*)(ptr + offset) += delta;
  1069. local_irq_restore(flags);
  1070. }
  1071. EXPORT_SYMBOL(__mod_page_state);
  1072. void __get_zone_counts(unsigned long *active, unsigned long *inactive,
  1073. unsigned long *free, struct pglist_data *pgdat)
  1074. {
  1075. struct zone *zones = pgdat->node_zones;
  1076. int i;
  1077. *active = 0;
  1078. *inactive = 0;
  1079. *free = 0;
  1080. for (i = 0; i < MAX_NR_ZONES; i++) {
  1081. *active += zones[i].nr_active;
  1082. *inactive += zones[i].nr_inactive;
  1083. *free += zones[i].free_pages;
  1084. }
  1085. }
  1086. void get_zone_counts(unsigned long *active,
  1087. unsigned long *inactive, unsigned long *free)
  1088. {
  1089. struct pglist_data *pgdat;
  1090. *active = 0;
  1091. *inactive = 0;
  1092. *free = 0;
  1093. for_each_pgdat(pgdat) {
  1094. unsigned long l, m, n;
  1095. __get_zone_counts(&l, &m, &n, pgdat);
  1096. *active += l;
  1097. *inactive += m;
  1098. *free += n;
  1099. }
  1100. }
  1101. void si_meminfo(struct sysinfo *val)
  1102. {
  1103. val->totalram = totalram_pages;
  1104. val->sharedram = 0;
  1105. val->freeram = nr_free_pages();
  1106. val->bufferram = nr_blockdev_pages();
  1107. #ifdef CONFIG_HIGHMEM
  1108. val->totalhigh = totalhigh_pages;
  1109. val->freehigh = nr_free_highpages();
  1110. #else
  1111. val->totalhigh = 0;
  1112. val->freehigh = 0;
  1113. #endif
  1114. val->mem_unit = PAGE_SIZE;
  1115. }
  1116. EXPORT_SYMBOL(si_meminfo);
  1117. #ifdef CONFIG_NUMA
  1118. void si_meminfo_node(struct sysinfo *val, int nid)
  1119. {
  1120. pg_data_t *pgdat = NODE_DATA(nid);
  1121. val->totalram = pgdat->node_present_pages;
  1122. val->freeram = nr_free_pages_pgdat(pgdat);
  1123. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1124. val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
  1125. val->mem_unit = PAGE_SIZE;
  1126. }
  1127. #endif
  1128. #define K(x) ((x) << (PAGE_SHIFT-10))
  1129. /*
  1130. * Show free area list (used inside shift_scroll-lock stuff)
  1131. * We also calculate the percentage fragmentation. We do this by counting the
  1132. * memory on each free list with the exception of the first item on the list.
  1133. */
  1134. void show_free_areas(void)
  1135. {
  1136. struct page_state ps;
  1137. int cpu, temperature;
  1138. unsigned long active;
  1139. unsigned long inactive;
  1140. unsigned long free;
  1141. struct zone *zone;
  1142. for_each_zone(zone) {
  1143. show_node(zone);
  1144. printk("%s per-cpu:", zone->name);
  1145. if (!zone->present_pages) {
  1146. printk(" empty\n");
  1147. continue;
  1148. } else
  1149. printk("\n");
  1150. for_each_online_cpu(cpu) {
  1151. struct per_cpu_pageset *pageset;
  1152. pageset = zone_pcp(zone, cpu);
  1153. for (temperature = 0; temperature < 2; temperature++)
  1154. printk("cpu %d %s: high %d, batch %d used:%d\n",
  1155. cpu,
  1156. temperature ? "cold" : "hot",
  1157. pageset->pcp[temperature].high,
  1158. pageset->pcp[temperature].batch,
  1159. pageset->pcp[temperature].count);
  1160. }
  1161. }
  1162. get_page_state(&ps);
  1163. get_zone_counts(&active, &inactive, &free);
  1164. printk("Free pages: %11ukB (%ukB HighMem)\n",
  1165. K(nr_free_pages()),
  1166. K(nr_free_highpages()));
  1167. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
  1168. "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
  1169. active,
  1170. inactive,
  1171. ps.nr_dirty,
  1172. ps.nr_writeback,
  1173. ps.nr_unstable,
  1174. nr_free_pages(),
  1175. ps.nr_slab,
  1176. ps.nr_mapped,
  1177. ps.nr_page_table_pages);
  1178. for_each_zone(zone) {
  1179. int i;
  1180. show_node(zone);
  1181. printk("%s"
  1182. " free:%lukB"
  1183. " min:%lukB"
  1184. " low:%lukB"
  1185. " high:%lukB"
  1186. " active:%lukB"
  1187. " inactive:%lukB"
  1188. " present:%lukB"
  1189. " pages_scanned:%lu"
  1190. " all_unreclaimable? %s"
  1191. "\n",
  1192. zone->name,
  1193. K(zone->free_pages),
  1194. K(zone->pages_min),
  1195. K(zone->pages_low),
  1196. K(zone->pages_high),
  1197. K(zone->nr_active),
  1198. K(zone->nr_inactive),
  1199. K(zone->present_pages),
  1200. zone->pages_scanned,
  1201. (zone->all_unreclaimable ? "yes" : "no")
  1202. );
  1203. printk("lowmem_reserve[]:");
  1204. for (i = 0; i < MAX_NR_ZONES; i++)
  1205. printk(" %lu", zone->lowmem_reserve[i]);
  1206. printk("\n");
  1207. }
  1208. for_each_zone(zone) {
  1209. unsigned long nr, flags, order, total = 0;
  1210. show_node(zone);
  1211. printk("%s: ", zone->name);
  1212. if (!zone->present_pages) {
  1213. printk("empty\n");
  1214. continue;
  1215. }
  1216. spin_lock_irqsave(&zone->lock, flags);
  1217. for (order = 0; order < MAX_ORDER; order++) {
  1218. nr = zone->free_area[order].nr_free;
  1219. total += nr << order;
  1220. printk("%lu*%lukB ", nr, K(1UL) << order);
  1221. }
  1222. spin_unlock_irqrestore(&zone->lock, flags);
  1223. printk("= %lukB\n", K(total));
  1224. }
  1225. show_swap_cache_info();
  1226. }
  1227. /*
  1228. * Builds allocation fallback zone lists.
  1229. */
  1230. static int __init build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, int j, int k)
  1231. {
  1232. switch (k) {
  1233. struct zone *zone;
  1234. default:
  1235. BUG();
  1236. case ZONE_HIGHMEM:
  1237. zone = pgdat->node_zones + ZONE_HIGHMEM;
  1238. if (zone->present_pages) {
  1239. #ifndef CONFIG_HIGHMEM
  1240. BUG();
  1241. #endif
  1242. zonelist->zones[j++] = zone;
  1243. }
  1244. case ZONE_NORMAL:
  1245. zone = pgdat->node_zones + ZONE_NORMAL;
  1246. if (zone->present_pages)
  1247. zonelist->zones[j++] = zone;
  1248. case ZONE_DMA32:
  1249. zone = pgdat->node_zones + ZONE_DMA32;
  1250. if (zone->present_pages)
  1251. zonelist->zones[j++] = zone;
  1252. case ZONE_DMA:
  1253. zone = pgdat->node_zones + ZONE_DMA;
  1254. if (zone->present_pages)
  1255. zonelist->zones[j++] = zone;
  1256. }
  1257. return j;
  1258. }
  1259. static inline int highest_zone(int zone_bits)
  1260. {
  1261. int res = ZONE_NORMAL;
  1262. if (zone_bits & (__force int)__GFP_HIGHMEM)
  1263. res = ZONE_HIGHMEM;
  1264. if (zone_bits & (__force int)__GFP_DMA32)
  1265. res = ZONE_DMA32;
  1266. if (zone_bits & (__force int)__GFP_DMA)
  1267. res = ZONE_DMA;
  1268. return res;
  1269. }
  1270. #ifdef CONFIG_NUMA
  1271. #define MAX_NODE_LOAD (num_online_nodes())
  1272. static int __initdata node_load[MAX_NUMNODES];
  1273. /**
  1274. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1275. * @node: node whose fallback list we're appending
  1276. * @used_node_mask: nodemask_t of already used nodes
  1277. *
  1278. * We use a number of factors to determine which is the next node that should
  1279. * appear on a given node's fallback list. The node should not have appeared
  1280. * already in @node's fallback list, and it should be the next closest node
  1281. * according to the distance array (which contains arbitrary distance values
  1282. * from each node to each node in the system), and should also prefer nodes
  1283. * with no CPUs, since presumably they'll have very little allocation pressure
  1284. * on them otherwise.
  1285. * It returns -1 if no node is found.
  1286. */
  1287. static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
  1288. {
  1289. int i, n, val;
  1290. int min_val = INT_MAX;
  1291. int best_node = -1;
  1292. for_each_online_node(i) {
  1293. cpumask_t tmp;
  1294. /* Start from local node */
  1295. n = (node+i) % num_online_nodes();
  1296. /* Don't want a node to appear more than once */
  1297. if (node_isset(n, *used_node_mask))
  1298. continue;
  1299. /* Use the local node if we haven't already */
  1300. if (!node_isset(node, *used_node_mask)) {
  1301. best_node = node;
  1302. break;
  1303. }
  1304. /* Use the distance array to find the distance */
  1305. val = node_distance(node, n);
  1306. /* Give preference to headless and unused nodes */
  1307. tmp = node_to_cpumask(n);
  1308. if (!cpus_empty(tmp))
  1309. val += PENALTY_FOR_NODE_WITH_CPUS;
  1310. /* Slight preference for less loaded node */
  1311. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1312. val += node_load[n];
  1313. if (val < min_val) {
  1314. min_val = val;
  1315. best_node = n;
  1316. }
  1317. }
  1318. if (best_node >= 0)
  1319. node_set(best_node, *used_node_mask);
  1320. return best_node;
  1321. }
  1322. static void __init build_zonelists(pg_data_t *pgdat)
  1323. {
  1324. int i, j, k, node, local_node;
  1325. int prev_node, load;
  1326. struct zonelist *zonelist;
  1327. nodemask_t used_mask;
  1328. /* initialize zonelists */
  1329. for (i = 0; i < GFP_ZONETYPES; i++) {
  1330. zonelist = pgdat->node_zonelists + i;
  1331. zonelist->zones[0] = NULL;
  1332. }
  1333. /* NUMA-aware ordering of nodes */
  1334. local_node = pgdat->node_id;
  1335. load = num_online_nodes();
  1336. prev_node = local_node;
  1337. nodes_clear(used_mask);
  1338. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1339. /*
  1340. * We don't want to pressure a particular node.
  1341. * So adding penalty to the first node in same
  1342. * distance group to make it round-robin.
  1343. */
  1344. if (node_distance(local_node, node) !=
  1345. node_distance(local_node, prev_node))
  1346. node_load[node] += load;
  1347. prev_node = node;
  1348. load--;
  1349. for (i = 0; i < GFP_ZONETYPES; i++) {
  1350. zonelist = pgdat->node_zonelists + i;
  1351. for (j = 0; zonelist->zones[j] != NULL; j++);
  1352. k = highest_zone(i);
  1353. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1354. zonelist->zones[j] = NULL;
  1355. }
  1356. }
  1357. }
  1358. #else /* CONFIG_NUMA */
  1359. static void __init build_zonelists(pg_data_t *pgdat)
  1360. {
  1361. int i, j, k, node, local_node;
  1362. local_node = pgdat->node_id;
  1363. for (i = 0; i < GFP_ZONETYPES; i++) {
  1364. struct zonelist *zonelist;
  1365. zonelist = pgdat->node_zonelists + i;
  1366. j = 0;
  1367. k = highest_zone(i);
  1368. j = build_zonelists_node(pgdat, zonelist, j, k);
  1369. /*
  1370. * Now we build the zonelist so that it contains the zones
  1371. * of all the other nodes.
  1372. * We don't want to pressure a particular node, so when
  1373. * building the zones for node N, we make sure that the
  1374. * zones coming right after the local ones are those from
  1375. * node N+1 (modulo N)
  1376. */
  1377. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1378. if (!node_online(node))
  1379. continue;
  1380. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1381. }
  1382. for (node = 0; node < local_node; node++) {
  1383. if (!node_online(node))
  1384. continue;
  1385. j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
  1386. }
  1387. zonelist->zones[j] = NULL;
  1388. }
  1389. }
  1390. #endif /* CONFIG_NUMA */
  1391. void __init build_all_zonelists(void)
  1392. {
  1393. int i;
  1394. for_each_online_node(i)
  1395. build_zonelists(NODE_DATA(i));
  1396. printk("Built %i zonelists\n", num_online_nodes());
  1397. cpuset_init_current_mems_allowed();
  1398. }
  1399. /*
  1400. * Helper functions to size the waitqueue hash table.
  1401. * Essentially these want to choose hash table sizes sufficiently
  1402. * large so that collisions trying to wait on pages are rare.
  1403. * But in fact, the number of active page waitqueues on typical
  1404. * systems is ridiculously low, less than 200. So this is even
  1405. * conservative, even though it seems large.
  1406. *
  1407. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  1408. * waitqueues, i.e. the size of the waitq table given the number of pages.
  1409. */
  1410. #define PAGES_PER_WAITQUEUE 256
  1411. static inline unsigned long wait_table_size(unsigned long pages)
  1412. {
  1413. unsigned long size = 1;
  1414. pages /= PAGES_PER_WAITQUEUE;
  1415. while (size < pages)
  1416. size <<= 1;
  1417. /*
  1418. * Once we have dozens or even hundreds of threads sleeping
  1419. * on IO we've got bigger problems than wait queue collision.
  1420. * Limit the size of the wait table to a reasonable size.
  1421. */
  1422. size = min(size, 4096UL);
  1423. return max(size, 4UL);
  1424. }
  1425. /*
  1426. * This is an integer logarithm so that shifts can be used later
  1427. * to extract the more random high bits from the multiplicative
  1428. * hash function before the remainder is taken.
  1429. */
  1430. static inline unsigned long wait_table_bits(unsigned long size)
  1431. {
  1432. return ffz(~size);
  1433. }
  1434. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  1435. static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
  1436. unsigned long *zones_size, unsigned long *zholes_size)
  1437. {
  1438. unsigned long realtotalpages, totalpages = 0;
  1439. int i;
  1440. for (i = 0; i < MAX_NR_ZONES; i++)
  1441. totalpages += zones_size[i];
  1442. pgdat->node_spanned_pages = totalpages;
  1443. realtotalpages = totalpages;
  1444. if (zholes_size)
  1445. for (i = 0; i < MAX_NR_ZONES; i++)
  1446. realtotalpages -= zholes_size[i];
  1447. pgdat->node_present_pages = realtotalpages;
  1448. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
  1449. }
  1450. /*
  1451. * Initially all pages are reserved - free ones are freed
  1452. * up by free_all_bootmem() once the early boot process is
  1453. * done. Non-atomic initialization, single-pass.
  1454. */
  1455. void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  1456. unsigned long start_pfn)
  1457. {
  1458. struct page *page;
  1459. unsigned long end_pfn = start_pfn + size;
  1460. unsigned long pfn;
  1461. for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
  1462. if (!early_pfn_valid(pfn))
  1463. continue;
  1464. page = pfn_to_page(pfn);
  1465. set_page_links(page, zone, nid, pfn);
  1466. set_page_count(page, 1);
  1467. reset_page_mapcount(page);
  1468. SetPageReserved(page);
  1469. INIT_LIST_HEAD(&page->lru);
  1470. #ifdef WANT_PAGE_VIRTUAL
  1471. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  1472. if (!is_highmem_idx(zone))
  1473. set_page_address(page, __va(pfn << PAGE_SHIFT));
  1474. #endif
  1475. }
  1476. }
  1477. void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
  1478. unsigned long size)
  1479. {
  1480. int order;
  1481. for (order = 0; order < MAX_ORDER ; order++) {
  1482. INIT_LIST_HEAD(&zone->free_area[order].free_list);
  1483. zone->free_area[order].nr_free = 0;
  1484. }
  1485. }
  1486. #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
  1487. void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
  1488. unsigned long size)
  1489. {
  1490. unsigned long snum = pfn_to_section_nr(pfn);
  1491. unsigned long end = pfn_to_section_nr(pfn + size);
  1492. if (FLAGS_HAS_NODE)
  1493. zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
  1494. else
  1495. for (; snum <= end; snum++)
  1496. zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
  1497. }
  1498. #ifndef __HAVE_ARCH_MEMMAP_INIT
  1499. #define memmap_init(size, nid, zone, start_pfn) \
  1500. memmap_init_zone((size), (nid), (zone), (start_pfn))
  1501. #endif
  1502. static int __devinit zone_batchsize(struct zone *zone)
  1503. {
  1504. int batch;
  1505. /*
  1506. * The per-cpu-pages pools are set to around 1000th of the
  1507. * size of the zone. But no more than 1/2 of a meg.
  1508. *
  1509. * OK, so we don't know how big the cache is. So guess.
  1510. */
  1511. batch = zone->present_pages / 1024;
  1512. if (batch * PAGE_SIZE > 512 * 1024)
  1513. batch = (512 * 1024) / PAGE_SIZE;
  1514. batch /= 4; /* We effectively *= 4 below */
  1515. if (batch < 1)
  1516. batch = 1;
  1517. /*
  1518. * Clamp the batch to a 2^n - 1 value. Having a power
  1519. * of 2 value was found to be more likely to have
  1520. * suboptimal cache aliasing properties in some cases.
  1521. *
  1522. * For example if 2 tasks are alternately allocating
  1523. * batches of pages, one task can end up with a lot
  1524. * of pages of one half of the possible page colors
  1525. * and the other with pages of the other colors.
  1526. */
  1527. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  1528. return batch;
  1529. }
  1530. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  1531. {
  1532. struct per_cpu_pages *pcp;
  1533. memset(p, 0, sizeof(*p));
  1534. pcp = &p->pcp[0]; /* hot */
  1535. pcp->count = 0;
  1536. pcp->high = 6 * batch;
  1537. pcp->batch = max(1UL, 1 * batch);
  1538. INIT_LIST_HEAD(&pcp->list);
  1539. pcp = &p->pcp[1]; /* cold*/
  1540. pcp->count = 0;
  1541. pcp->high = 2 * batch;
  1542. pcp->batch = max(1UL, batch/2);
  1543. INIT_LIST_HEAD(&pcp->list);
  1544. }
  1545. #ifdef CONFIG_NUMA
  1546. /*
  1547. * Boot pageset table. One per cpu which is going to be used for all
  1548. * zones and all nodes. The parameters will be set in such a way
  1549. * that an item put on a list will immediately be handed over to
  1550. * the buddy list. This is safe since pageset manipulation is done
  1551. * with interrupts disabled.
  1552. *
  1553. * Some NUMA counter updates may also be caught by the boot pagesets.
  1554. *
  1555. * The boot_pagesets must be kept even after bootup is complete for
  1556. * unused processors and/or zones. They do play a role for bootstrapping
  1557. * hotplugged processors.
  1558. *
  1559. * zoneinfo_show() and maybe other functions do
  1560. * not check if the processor is online before following the pageset pointer.
  1561. * Other parts of the kernel may not check if the zone is available.
  1562. */
  1563. static struct per_cpu_pageset
  1564. boot_pageset[NR_CPUS];
  1565. /*
  1566. * Dynamically allocate memory for the
  1567. * per cpu pageset array in struct zone.
  1568. */
  1569. static int __devinit process_zones(int cpu)
  1570. {
  1571. struct zone *zone, *dzone;
  1572. for_each_zone(zone) {
  1573. zone->pageset[cpu] = kmalloc_node(sizeof(struct per_cpu_pageset),
  1574. GFP_KERNEL, cpu_to_node(cpu));
  1575. if (!zone->pageset[cpu])
  1576. goto bad;
  1577. setup_pageset(zone->pageset[cpu], zone_batchsize(zone));
  1578. }
  1579. return 0;
  1580. bad:
  1581. for_each_zone(dzone) {
  1582. if (dzone == zone)
  1583. break;
  1584. kfree(dzone->pageset[cpu]);
  1585. dzone->pageset[cpu] = NULL;
  1586. }
  1587. return -ENOMEM;
  1588. }
  1589. static inline void free_zone_pagesets(int cpu)
  1590. {
  1591. #ifdef CONFIG_NUMA
  1592. struct zone *zone;
  1593. for_each_zone(zone) {
  1594. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  1595. zone_pcp(zone, cpu) = NULL;
  1596. kfree(pset);
  1597. }
  1598. #endif
  1599. }
  1600. static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
  1601. unsigned long action,
  1602. void *hcpu)
  1603. {
  1604. int cpu = (long)hcpu;
  1605. int ret = NOTIFY_OK;
  1606. switch (action) {
  1607. case CPU_UP_PREPARE:
  1608. if (process_zones(cpu))
  1609. ret = NOTIFY_BAD;
  1610. break;
  1611. case CPU_UP_CANCELED:
  1612. case CPU_DEAD:
  1613. free_zone_pagesets(cpu);
  1614. break;
  1615. default:
  1616. break;
  1617. }
  1618. return ret;
  1619. }
  1620. static struct notifier_block pageset_notifier =
  1621. { &pageset_cpuup_callback, NULL, 0 };
  1622. void __init setup_per_cpu_pageset(void)
  1623. {
  1624. int err;
  1625. /* Initialize per_cpu_pageset for cpu 0.
  1626. * A cpuup callback will do this for every cpu
  1627. * as it comes online
  1628. */
  1629. err = process_zones(smp_processor_id());
  1630. BUG_ON(err);
  1631. register_cpu_notifier(&pageset_notifier);
  1632. }
  1633. #endif
  1634. static __devinit
  1635. void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  1636. {
  1637. int i;
  1638. struct pglist_data *pgdat = zone->zone_pgdat;
  1639. /*
  1640. * The per-page waitqueue mechanism uses hashed waitqueues
  1641. * per zone.
  1642. */
  1643. zone->wait_table_size = wait_table_size(zone_size_pages);
  1644. zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
  1645. zone->wait_table = (wait_queue_head_t *)
  1646. alloc_bootmem_node(pgdat, zone->wait_table_size
  1647. * sizeof(wait_queue_head_t));
  1648. for(i = 0; i < zone->wait_table_size; ++i)
  1649. init_waitqueue_head(zone->wait_table + i);
  1650. }
  1651. static __devinit void zone_pcp_init(struct zone *zone)
  1652. {
  1653. int cpu;
  1654. unsigned long batch = zone_batchsize(zone);
  1655. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  1656. #ifdef CONFIG_NUMA
  1657. /* Early boot. Slab allocator not functional yet */
  1658. zone->pageset[cpu] = &boot_pageset[cpu];
  1659. setup_pageset(&boot_pageset[cpu],0);
  1660. #else
  1661. setup_pageset(zone_pcp(zone,cpu), batch);
  1662. #endif
  1663. }
  1664. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  1665. zone->name, zone->present_pages, batch);
  1666. }
  1667. static __devinit void init_currently_empty_zone(struct zone *zone,
  1668. unsigned long zone_start_pfn, unsigned long size)
  1669. {
  1670. struct pglist_data *pgdat = zone->zone_pgdat;
  1671. zone_wait_table_init(zone, size);
  1672. pgdat->nr_zones = zone_idx(zone) + 1;
  1673. zone->zone_mem_map = pfn_to_page(zone_start_pfn);
  1674. zone->zone_start_pfn = zone_start_pfn;
  1675. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  1676. zone_init_free_lists(pgdat, zone, zone->spanned_pages);
  1677. }
  1678. /*
  1679. * Set up the zone data structures:
  1680. * - mark all pages reserved
  1681. * - mark all memory queues empty
  1682. * - clear the memory bitmaps
  1683. */
  1684. static void __init free_area_init_core(struct pglist_data *pgdat,
  1685. unsigned long *zones_size, unsigned long *zholes_size)
  1686. {
  1687. unsigned long j;
  1688. int nid = pgdat->node_id;
  1689. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  1690. pgdat_resize_init(pgdat);
  1691. pgdat->nr_zones = 0;
  1692. init_waitqueue_head(&pgdat->kswapd_wait);
  1693. pgdat->kswapd_max_order = 0;
  1694. for (j = 0; j < MAX_NR_ZONES; j++) {
  1695. struct zone *zone = pgdat->node_zones + j;
  1696. unsigned long size, realsize;
  1697. realsize = size = zones_size[j];
  1698. if (zholes_size)
  1699. realsize -= zholes_size[j];
  1700. if (j < ZONE_HIGHMEM)
  1701. nr_kernel_pages += realsize;
  1702. nr_all_pages += realsize;
  1703. zone->spanned_pages = size;
  1704. zone->present_pages = realsize;
  1705. zone->name = zone_names[j];
  1706. spin_lock_init(&zone->lock);
  1707. spin_lock_init(&zone->lru_lock);
  1708. zone_seqlock_init(zone);
  1709. zone->zone_pgdat = pgdat;
  1710. zone->free_pages = 0;
  1711. zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
  1712. zone_pcp_init(zone);
  1713. INIT_LIST_HEAD(&zone->active_list);
  1714. INIT_LIST_HEAD(&zone->inactive_list);
  1715. zone->nr_scan_active = 0;
  1716. zone->nr_scan_inactive = 0;
  1717. zone->nr_active = 0;
  1718. zone->nr_inactive = 0;
  1719. atomic_set(&zone->reclaim_in_progress, 0);
  1720. if (!size)
  1721. continue;
  1722. zonetable_add(zone, nid, j, zone_start_pfn, size);
  1723. init_currently_empty_zone(zone, zone_start_pfn, size);
  1724. zone_start_pfn += size;
  1725. }
  1726. }
  1727. static void __init alloc_node_mem_map(struct pglist_data *pgdat)
  1728. {
  1729. /* Skip empty nodes */
  1730. if (!pgdat->node_spanned_pages)
  1731. return;
  1732. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  1733. /* ia64 gets its own node_mem_map, before this, without bootmem */
  1734. if (!pgdat->node_mem_map) {
  1735. unsigned long size;
  1736. struct page *map;
  1737. size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
  1738. map = alloc_remap(pgdat->node_id, size);
  1739. if (!map)
  1740. map = alloc_bootmem_node(pgdat, size);
  1741. pgdat->node_mem_map = map;
  1742. }
  1743. #ifdef CONFIG_FLATMEM
  1744. /*
  1745. * With no DISCONTIG, the global mem_map is just set as node 0's
  1746. */
  1747. if (pgdat == NODE_DATA(0))
  1748. mem_map = NODE_DATA(0)->node_mem_map;
  1749. #endif
  1750. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  1751. }
  1752. void __init free_area_init_node(int nid, struct pglist_data *pgdat,
  1753. unsigned long *zones_size, unsigned long node_start_pfn,
  1754. unsigned long *zholes_size)
  1755. {
  1756. pgdat->node_id = nid;
  1757. pgdat->node_start_pfn = node_start_pfn;
  1758. calculate_zone_totalpages(pgdat, zones_size, zholes_size);
  1759. alloc_node_mem_map(pgdat);
  1760. free_area_init_core(pgdat, zones_size, zholes_size);
  1761. }
  1762. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1763. static bootmem_data_t contig_bootmem_data;
  1764. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  1765. EXPORT_SYMBOL(contig_page_data);
  1766. #endif
  1767. void __init free_area_init(unsigned long *zones_size)
  1768. {
  1769. free_area_init_node(0, NODE_DATA(0), zones_size,
  1770. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  1771. }
  1772. #ifdef CONFIG_PROC_FS
  1773. #include <linux/seq_file.h>
  1774. static void *frag_start(struct seq_file *m, loff_t *pos)
  1775. {
  1776. pg_data_t *pgdat;
  1777. loff_t node = *pos;
  1778. for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
  1779. --node;
  1780. return pgdat;
  1781. }
  1782. static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
  1783. {
  1784. pg_data_t *pgdat = (pg_data_t *)arg;
  1785. (*pos)++;
  1786. return pgdat->pgdat_next;
  1787. }
  1788. static void frag_stop(struct seq_file *m, void *arg)
  1789. {
  1790. }
  1791. /*
  1792. * This walks the free areas for each zone.
  1793. */
  1794. static int frag_show(struct seq_file *m, void *arg)
  1795. {
  1796. pg_data_t *pgdat = (pg_data_t *)arg;
  1797. struct zone *zone;
  1798. struct zone *node_zones = pgdat->node_zones;
  1799. unsigned long flags;
  1800. int order;
  1801. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
  1802. if (!zone->present_pages)
  1803. continue;
  1804. spin_lock_irqsave(&zone->lock, flags);
  1805. seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
  1806. for (order = 0; order < MAX_ORDER; ++order)
  1807. seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
  1808. spin_unlock_irqrestore(&zone->lock, flags);
  1809. seq_putc(m, '\n');
  1810. }
  1811. return 0;
  1812. }
  1813. struct seq_operations fragmentation_op = {
  1814. .start = frag_start,
  1815. .next = frag_next,
  1816. .stop = frag_stop,
  1817. .show = frag_show,
  1818. };
  1819. /*
  1820. * Output information about zones in @pgdat.
  1821. */
  1822. static int zoneinfo_show(struct seq_file *m, void *arg)
  1823. {
  1824. pg_data_t *pgdat = arg;
  1825. struct zone *zone;
  1826. struct zone *node_zones = pgdat->node_zones;
  1827. unsigned long flags;
  1828. for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
  1829. int i;
  1830. if (!zone->present_pages)
  1831. continue;
  1832. spin_lock_irqsave(&zone->lock, flags);
  1833. seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
  1834. seq_printf(m,
  1835. "\n pages free %lu"
  1836. "\n min %lu"
  1837. "\n low %lu"
  1838. "\n high %lu"
  1839. "\n active %lu"
  1840. "\n inactive %lu"
  1841. "\n scanned %lu (a: %lu i: %lu)"
  1842. "\n spanned %lu"
  1843. "\n present %lu",
  1844. zone->free_pages,
  1845. zone->pages_min,
  1846. zone->pages_low,
  1847. zone->pages_high,
  1848. zone->nr_active,
  1849. zone->nr_inactive,
  1850. zone->pages_scanned,
  1851. zone->nr_scan_active, zone->nr_scan_inactive,
  1852. zone->spanned_pages,
  1853. zone->present_pages);
  1854. seq_printf(m,
  1855. "\n protection: (%lu",
  1856. zone->lowmem_reserve[0]);
  1857. for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
  1858. seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
  1859. seq_printf(m,
  1860. ")"
  1861. "\n pagesets");
  1862. for (i = 0; i < ARRAY_SIZE(zone->pageset); i++) {
  1863. struct per_cpu_pageset *pageset;
  1864. int j;
  1865. pageset = zone_pcp(zone, i);
  1866. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1867. if (pageset->pcp[j].count)
  1868. break;
  1869. }
  1870. if (j == ARRAY_SIZE(pageset->pcp))
  1871. continue;
  1872. for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
  1873. seq_printf(m,
  1874. "\n cpu: %i pcp: %i"
  1875. "\n count: %i"
  1876. "\n high: %i"
  1877. "\n batch: %i",
  1878. i, j,
  1879. pageset->pcp[j].count,
  1880. pageset->pcp[j].high,
  1881. pageset->pcp[j].batch);
  1882. }
  1883. #ifdef CONFIG_NUMA
  1884. seq_printf(m,
  1885. "\n numa_hit: %lu"
  1886. "\n numa_miss: %lu"
  1887. "\n numa_foreign: %lu"
  1888. "\n interleave_hit: %lu"
  1889. "\n local_node: %lu"
  1890. "\n other_node: %lu",
  1891. pageset->numa_hit,
  1892. pageset->numa_miss,
  1893. pageset->numa_foreign,
  1894. pageset->interleave_hit,
  1895. pageset->local_node,
  1896. pageset->other_node);
  1897. #endif
  1898. }
  1899. seq_printf(m,
  1900. "\n all_unreclaimable: %u"
  1901. "\n prev_priority: %i"
  1902. "\n temp_priority: %i"
  1903. "\n start_pfn: %lu",
  1904. zone->all_unreclaimable,
  1905. zone->prev_priority,
  1906. zone->temp_priority,
  1907. zone->zone_start_pfn);
  1908. spin_unlock_irqrestore(&zone->lock, flags);
  1909. seq_putc(m, '\n');
  1910. }
  1911. return 0;
  1912. }
  1913. struct seq_operations zoneinfo_op = {
  1914. .start = frag_start, /* iterate over all zones. The same as in
  1915. * fragmentation. */
  1916. .next = frag_next,
  1917. .stop = frag_stop,
  1918. .show = zoneinfo_show,
  1919. };
  1920. static char *vmstat_text[] = {
  1921. "nr_dirty",
  1922. "nr_writeback",
  1923. "nr_unstable",
  1924. "nr_page_table_pages",
  1925. "nr_mapped",
  1926. "nr_slab",
  1927. "pgpgin",
  1928. "pgpgout",
  1929. "pswpin",
  1930. "pswpout",
  1931. "pgalloc_high",
  1932. "pgalloc_normal",
  1933. "pgalloc_dma",
  1934. "pgfree",
  1935. "pgactivate",
  1936. "pgdeactivate",
  1937. "pgfault",
  1938. "pgmajfault",
  1939. "pgrefill_high",
  1940. "pgrefill_normal",
  1941. "pgrefill_dma",
  1942. "pgsteal_high",
  1943. "pgsteal_normal",
  1944. "pgsteal_dma",
  1945. "pgscan_kswapd_high",
  1946. "pgscan_kswapd_normal",
  1947. "pgscan_kswapd_dma",
  1948. "pgscan_direct_high",
  1949. "pgscan_direct_normal",
  1950. "pgscan_direct_dma",
  1951. "pginodesteal",
  1952. "slabs_scanned",
  1953. "kswapd_steal",
  1954. "kswapd_inodesteal",
  1955. "pageoutrun",
  1956. "allocstall",
  1957. "pgrotated",
  1958. "nr_bounce",
  1959. };
  1960. static void *vmstat_start(struct seq_file *m, loff_t *pos)
  1961. {
  1962. struct page_state *ps;
  1963. if (*pos >= ARRAY_SIZE(vmstat_text))
  1964. return NULL;
  1965. ps = kmalloc(sizeof(*ps), GFP_KERNEL);
  1966. m->private = ps;
  1967. if (!ps)
  1968. return ERR_PTR(-ENOMEM);
  1969. get_full_page_state(ps);
  1970. ps->pgpgin /= 2; /* sectors -> kbytes */
  1971. ps->pgpgout /= 2;
  1972. return (unsigned long *)ps + *pos;
  1973. }
  1974. static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
  1975. {
  1976. (*pos)++;
  1977. if (*pos >= ARRAY_SIZE(vmstat_text))
  1978. return NULL;
  1979. return (unsigned long *)m->private + *pos;
  1980. }
  1981. static int vmstat_show(struct seq_file *m, void *arg)
  1982. {
  1983. unsigned long *l = arg;
  1984. unsigned long off = l - (unsigned long *)m->private;
  1985. seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
  1986. return 0;
  1987. }
  1988. static void vmstat_stop(struct seq_file *m, void *arg)
  1989. {
  1990. kfree(m->private);
  1991. m->private = NULL;
  1992. }
  1993. struct seq_operations vmstat_op = {
  1994. .start = vmstat_start,
  1995. .next = vmstat_next,
  1996. .stop = vmstat_stop,
  1997. .show = vmstat_show,
  1998. };
  1999. #endif /* CONFIG_PROC_FS */
  2000. #ifdef CONFIG_HOTPLUG_CPU
  2001. static int page_alloc_cpu_notify(struct notifier_block *self,
  2002. unsigned long action, void *hcpu)
  2003. {
  2004. int cpu = (unsigned long)hcpu;
  2005. long *count;
  2006. unsigned long *src, *dest;
  2007. if (action == CPU_DEAD) {
  2008. int i;
  2009. /* Drain local pagecache count. */
  2010. count = &per_cpu(nr_pagecache_local, cpu);
  2011. atomic_add(*count, &nr_pagecache);
  2012. *count = 0;
  2013. local_irq_disable();
  2014. __drain_pages(cpu);
  2015. /* Add dead cpu's page_states to our own. */
  2016. dest = (unsigned long *)&__get_cpu_var(page_states);
  2017. src = (unsigned long *)&per_cpu(page_states, cpu);
  2018. for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
  2019. i++) {
  2020. dest[i] += src[i];
  2021. src[i] = 0;
  2022. }
  2023. local_irq_enable();
  2024. }
  2025. return NOTIFY_OK;
  2026. }
  2027. #endif /* CONFIG_HOTPLUG_CPU */
  2028. void __init page_alloc_init(void)
  2029. {
  2030. hotcpu_notifier(page_alloc_cpu_notify, 0);
  2031. }
  2032. /*
  2033. * setup_per_zone_lowmem_reserve - called whenever
  2034. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  2035. * has a correct pages reserved value, so an adequate number of
  2036. * pages are left in the zone after a successful __alloc_pages().
  2037. */
  2038. static void setup_per_zone_lowmem_reserve(void)
  2039. {
  2040. struct pglist_data *pgdat;
  2041. int j, idx;
  2042. for_each_pgdat(pgdat) {
  2043. for (j = 0; j < MAX_NR_ZONES; j++) {
  2044. struct zone *zone = pgdat->node_zones + j;
  2045. unsigned long present_pages = zone->present_pages;
  2046. zone->lowmem_reserve[j] = 0;
  2047. for (idx = j-1; idx >= 0; idx--) {
  2048. struct zone *lower_zone;
  2049. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  2050. sysctl_lowmem_reserve_ratio[idx] = 1;
  2051. lower_zone = pgdat->node_zones + idx;
  2052. lower_zone->lowmem_reserve[j] = present_pages /
  2053. sysctl_lowmem_reserve_ratio[idx];
  2054. present_pages += lower_zone->present_pages;
  2055. }
  2056. }
  2057. }
  2058. }
  2059. /*
  2060. * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
  2061. * that the pages_{min,low,high} values for each zone are set correctly
  2062. * with respect to min_free_kbytes.
  2063. */
  2064. void setup_per_zone_pages_min(void)
  2065. {
  2066. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  2067. unsigned long lowmem_pages = 0;
  2068. struct zone *zone;
  2069. unsigned long flags;
  2070. /* Calculate total number of !ZONE_HIGHMEM pages */
  2071. for_each_zone(zone) {
  2072. if (!is_highmem(zone))
  2073. lowmem_pages += zone->present_pages;
  2074. }
  2075. for_each_zone(zone) {
  2076. unsigned long tmp;
  2077. spin_lock_irqsave(&zone->lru_lock, flags);
  2078. tmp = (pages_min * zone->present_pages) / lowmem_pages;
  2079. if (is_highmem(zone)) {
  2080. /*
  2081. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  2082. * need highmem pages, so cap pages_min to a small
  2083. * value here.
  2084. *
  2085. * The (pages_high-pages_low) and (pages_low-pages_min)
  2086. * deltas controls asynch page reclaim, and so should
  2087. * not be capped for highmem.
  2088. */
  2089. int min_pages;
  2090. min_pages = zone->present_pages / 1024;
  2091. if (min_pages < SWAP_CLUSTER_MAX)
  2092. min_pages = SWAP_CLUSTER_MAX;
  2093. if (min_pages > 128)
  2094. min_pages = 128;
  2095. zone->pages_min = min_pages;
  2096. } else {
  2097. /*
  2098. * If it's a lowmem zone, reserve a number of pages
  2099. * proportionate to the zone's size.
  2100. */
  2101. zone->pages_min = tmp;
  2102. }
  2103. zone->pages_low = zone->pages_min + tmp / 4;
  2104. zone->pages_high = zone->pages_min + tmp / 2;
  2105. spin_unlock_irqrestore(&zone->lru_lock, flags);
  2106. }
  2107. }
  2108. /*
  2109. * Initialise min_free_kbytes.
  2110. *
  2111. * For small machines we want it small (128k min). For large machines
  2112. * we want it large (64MB max). But it is not linear, because network
  2113. * bandwidth does not increase linearly with machine size. We use
  2114. *
  2115. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  2116. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  2117. *
  2118. * which yields
  2119. *
  2120. * 16MB: 512k
  2121. * 32MB: 724k
  2122. * 64MB: 1024k
  2123. * 128MB: 1448k
  2124. * 256MB: 2048k
  2125. * 512MB: 2896k
  2126. * 1024MB: 4096k
  2127. * 2048MB: 5792k
  2128. * 4096MB: 8192k
  2129. * 8192MB: 11584k
  2130. * 16384MB: 16384k
  2131. */
  2132. static int __init init_per_zone_pages_min(void)
  2133. {
  2134. unsigned long lowmem_kbytes;
  2135. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  2136. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  2137. if (min_free_kbytes < 128)
  2138. min_free_kbytes = 128;
  2139. if (min_free_kbytes > 65536)
  2140. min_free_kbytes = 65536;
  2141. setup_per_zone_pages_min();
  2142. setup_per_zone_lowmem_reserve();
  2143. return 0;
  2144. }
  2145. module_init(init_per_zone_pages_min)
  2146. /*
  2147. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  2148. * that we can call two helper functions whenever min_free_kbytes
  2149. * changes.
  2150. */
  2151. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  2152. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2153. {
  2154. proc_dointvec(table, write, file, buffer, length, ppos);
  2155. setup_per_zone_pages_min();
  2156. return 0;
  2157. }
  2158. /*
  2159. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  2160. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  2161. * whenever sysctl_lowmem_reserve_ratio changes.
  2162. *
  2163. * The reserve ratio obviously has absolutely no relation with the
  2164. * pages_min watermarks. The lowmem reserve ratio can only make sense
  2165. * if in function of the boot time zone sizes.
  2166. */
  2167. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  2168. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  2169. {
  2170. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  2171. setup_per_zone_lowmem_reserve();
  2172. return 0;
  2173. }
  2174. __initdata int hashdist = HASHDIST_DEFAULT;
  2175. #ifdef CONFIG_NUMA
  2176. static int __init set_hashdist(char *str)
  2177. {
  2178. if (!str)
  2179. return 0;
  2180. hashdist = simple_strtoul(str, &str, 0);
  2181. return 1;
  2182. }
  2183. __setup("hashdist=", set_hashdist);
  2184. #endif
  2185. /*
  2186. * allocate a large system hash table from bootmem
  2187. * - it is assumed that the hash table must contain an exact power-of-2
  2188. * quantity of entries
  2189. * - limit is the number of hash buckets, not the total allocation size
  2190. */
  2191. void *__init alloc_large_system_hash(const char *tablename,
  2192. unsigned long bucketsize,
  2193. unsigned long numentries,
  2194. int scale,
  2195. int flags,
  2196. unsigned int *_hash_shift,
  2197. unsigned int *_hash_mask,
  2198. unsigned long limit)
  2199. {
  2200. unsigned long long max = limit;
  2201. unsigned long log2qty, size;
  2202. void *table = NULL;
  2203. /* allow the kernel cmdline to have a say */
  2204. if (!numentries) {
  2205. /* round applicable memory size up to nearest megabyte */
  2206. numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
  2207. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  2208. numentries >>= 20 - PAGE_SHIFT;
  2209. numentries <<= 20 - PAGE_SHIFT;
  2210. /* limit to 1 bucket per 2^scale bytes of low memory */
  2211. if (scale > PAGE_SHIFT)
  2212. numentries >>= (scale - PAGE_SHIFT);
  2213. else
  2214. numentries <<= (PAGE_SHIFT - scale);
  2215. }
  2216. /* rounded up to nearest power of 2 in size */
  2217. numentries = 1UL << (long_log2(numentries) + 1);
  2218. /* limit allocation size to 1/16 total memory by default */
  2219. if (max == 0) {
  2220. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  2221. do_div(max, bucketsize);
  2222. }
  2223. if (numentries > max)
  2224. numentries = max;
  2225. log2qty = long_log2(numentries);
  2226. do {
  2227. size = bucketsize << log2qty;
  2228. if (flags & HASH_EARLY)
  2229. table = alloc_bootmem(size);
  2230. else if (hashdist)
  2231. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  2232. else {
  2233. unsigned long order;
  2234. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  2235. ;
  2236. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  2237. }
  2238. } while (!table && size > PAGE_SIZE && --log2qty);
  2239. if (!table)
  2240. panic("Failed to allocate %s hash table\n", tablename);
  2241. printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
  2242. tablename,
  2243. (1U << log2qty),
  2244. long_log2(size) - PAGE_SHIFT,
  2245. size);
  2246. if (_hash_shift)
  2247. *_hash_shift = log2qty;
  2248. if (_hash_mask)
  2249. *_hash_mask = (1 << log2qty) - 1;
  2250. return table;
  2251. }