core.c 212 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. DEFINE_MUTEX(sched_domains_mutex);
  89. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  90. static void update_rq_clock_task(struct rq *rq, s64 delta);
  91. void update_rq_clock(struct rq *rq)
  92. {
  93. s64 delta;
  94. lockdep_assert_held(&rq->lock);
  95. if (rq->clock_skip_update & RQCF_ACT_SKIP)
  96. return;
  97. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  98. if (delta < 0)
  99. return;
  100. rq->clock += delta;
  101. update_rq_clock_task(rq, delta);
  102. }
  103. /*
  104. * Debugging: various feature bits
  105. */
  106. #define SCHED_FEAT(name, enabled) \
  107. (1UL << __SCHED_FEAT_##name) * enabled |
  108. const_debug unsigned int sysctl_sched_features =
  109. #include "features.h"
  110. 0;
  111. #undef SCHED_FEAT
  112. #ifdef CONFIG_SCHED_DEBUG
  113. #define SCHED_FEAT(name, enabled) \
  114. #name ,
  115. static const char * const sched_feat_names[] = {
  116. #include "features.h"
  117. };
  118. #undef SCHED_FEAT
  119. static int sched_feat_show(struct seq_file *m, void *v)
  120. {
  121. int i;
  122. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  123. if (!(sysctl_sched_features & (1UL << i)))
  124. seq_puts(m, "NO_");
  125. seq_printf(m, "%s ", sched_feat_names[i]);
  126. }
  127. seq_puts(m, "\n");
  128. return 0;
  129. }
  130. #ifdef HAVE_JUMP_LABEL
  131. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  132. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  133. #define SCHED_FEAT(name, enabled) \
  134. jump_label_key__##enabled ,
  135. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  136. #include "features.h"
  137. };
  138. #undef SCHED_FEAT
  139. static void sched_feat_disable(int i)
  140. {
  141. static_key_disable(&sched_feat_keys[i]);
  142. }
  143. static void sched_feat_enable(int i)
  144. {
  145. static_key_enable(&sched_feat_keys[i]);
  146. }
  147. #else
  148. static void sched_feat_disable(int i) { };
  149. static void sched_feat_enable(int i) { };
  150. #endif /* HAVE_JUMP_LABEL */
  151. static int sched_feat_set(char *cmp)
  152. {
  153. int i;
  154. int neg = 0;
  155. if (strncmp(cmp, "NO_", 3) == 0) {
  156. neg = 1;
  157. cmp += 3;
  158. }
  159. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  160. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  161. if (neg) {
  162. sysctl_sched_features &= ~(1UL << i);
  163. sched_feat_disable(i);
  164. } else {
  165. sysctl_sched_features |= (1UL << i);
  166. sched_feat_enable(i);
  167. }
  168. break;
  169. }
  170. }
  171. return i;
  172. }
  173. static ssize_t
  174. sched_feat_write(struct file *filp, const char __user *ubuf,
  175. size_t cnt, loff_t *ppos)
  176. {
  177. char buf[64];
  178. char *cmp;
  179. int i;
  180. struct inode *inode;
  181. if (cnt > 63)
  182. cnt = 63;
  183. if (copy_from_user(&buf, ubuf, cnt))
  184. return -EFAULT;
  185. buf[cnt] = 0;
  186. cmp = strstrip(buf);
  187. /* Ensure the static_key remains in a consistent state */
  188. inode = file_inode(filp);
  189. inode_lock(inode);
  190. i = sched_feat_set(cmp);
  191. inode_unlock(inode);
  192. if (i == __SCHED_FEAT_NR)
  193. return -EINVAL;
  194. *ppos += cnt;
  195. return cnt;
  196. }
  197. static int sched_feat_open(struct inode *inode, struct file *filp)
  198. {
  199. return single_open(filp, sched_feat_show, NULL);
  200. }
  201. static const struct file_operations sched_feat_fops = {
  202. .open = sched_feat_open,
  203. .write = sched_feat_write,
  204. .read = seq_read,
  205. .llseek = seq_lseek,
  206. .release = single_release,
  207. };
  208. static __init int sched_init_debug(void)
  209. {
  210. debugfs_create_file("sched_features", 0644, NULL, NULL,
  211. &sched_feat_fops);
  212. return 0;
  213. }
  214. late_initcall(sched_init_debug);
  215. #endif /* CONFIG_SCHED_DEBUG */
  216. /*
  217. * Number of tasks to iterate in a single balance run.
  218. * Limited because this is done with IRQs disabled.
  219. */
  220. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  221. /*
  222. * period over which we average the RT time consumption, measured
  223. * in ms.
  224. *
  225. * default: 1s
  226. */
  227. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  228. /*
  229. * period over which we measure -rt task cpu usage in us.
  230. * default: 1s
  231. */
  232. unsigned int sysctl_sched_rt_period = 1000000;
  233. __read_mostly int scheduler_running;
  234. /*
  235. * part of the period that we allow rt tasks to run in us.
  236. * default: 0.95s
  237. */
  238. int sysctl_sched_rt_runtime = 950000;
  239. /* cpus with isolated domains */
  240. cpumask_var_t cpu_isolated_map;
  241. /*
  242. * this_rq_lock - lock this runqueue and disable interrupts.
  243. */
  244. static struct rq *this_rq_lock(void)
  245. __acquires(rq->lock)
  246. {
  247. struct rq *rq;
  248. local_irq_disable();
  249. rq = this_rq();
  250. raw_spin_lock(&rq->lock);
  251. return rq;
  252. }
  253. #ifdef CONFIG_SCHED_HRTICK
  254. /*
  255. * Use HR-timers to deliver accurate preemption points.
  256. */
  257. static void hrtick_clear(struct rq *rq)
  258. {
  259. if (hrtimer_active(&rq->hrtick_timer))
  260. hrtimer_cancel(&rq->hrtick_timer);
  261. }
  262. /*
  263. * High-resolution timer tick.
  264. * Runs from hardirq context with interrupts disabled.
  265. */
  266. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  267. {
  268. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  269. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  270. raw_spin_lock(&rq->lock);
  271. update_rq_clock(rq);
  272. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  273. raw_spin_unlock(&rq->lock);
  274. return HRTIMER_NORESTART;
  275. }
  276. #ifdef CONFIG_SMP
  277. static void __hrtick_restart(struct rq *rq)
  278. {
  279. struct hrtimer *timer = &rq->hrtick_timer;
  280. hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
  281. }
  282. /*
  283. * called from hardirq (IPI) context
  284. */
  285. static void __hrtick_start(void *arg)
  286. {
  287. struct rq *rq = arg;
  288. raw_spin_lock(&rq->lock);
  289. __hrtick_restart(rq);
  290. rq->hrtick_csd_pending = 0;
  291. raw_spin_unlock(&rq->lock);
  292. }
  293. /*
  294. * Called to set the hrtick timer state.
  295. *
  296. * called with rq->lock held and irqs disabled
  297. */
  298. void hrtick_start(struct rq *rq, u64 delay)
  299. {
  300. struct hrtimer *timer = &rq->hrtick_timer;
  301. ktime_t time;
  302. s64 delta;
  303. /*
  304. * Don't schedule slices shorter than 10000ns, that just
  305. * doesn't make sense and can cause timer DoS.
  306. */
  307. delta = max_t(s64, delay, 10000LL);
  308. time = ktime_add_ns(timer->base->get_time(), delta);
  309. hrtimer_set_expires(timer, time);
  310. if (rq == this_rq()) {
  311. __hrtick_restart(rq);
  312. } else if (!rq->hrtick_csd_pending) {
  313. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  314. rq->hrtick_csd_pending = 1;
  315. }
  316. }
  317. static int
  318. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  319. {
  320. int cpu = (int)(long)hcpu;
  321. switch (action) {
  322. case CPU_UP_CANCELED:
  323. case CPU_UP_CANCELED_FROZEN:
  324. case CPU_DOWN_PREPARE:
  325. case CPU_DOWN_PREPARE_FROZEN:
  326. case CPU_DEAD:
  327. case CPU_DEAD_FROZEN:
  328. hrtick_clear(cpu_rq(cpu));
  329. return NOTIFY_OK;
  330. }
  331. return NOTIFY_DONE;
  332. }
  333. static __init void init_hrtick(void)
  334. {
  335. hotcpu_notifier(hotplug_hrtick, 0);
  336. }
  337. #else
  338. /*
  339. * Called to set the hrtick timer state.
  340. *
  341. * called with rq->lock held and irqs disabled
  342. */
  343. void hrtick_start(struct rq *rq, u64 delay)
  344. {
  345. /*
  346. * Don't schedule slices shorter than 10000ns, that just
  347. * doesn't make sense. Rely on vruntime for fairness.
  348. */
  349. delay = max_t(u64, delay, 10000LL);
  350. hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
  351. HRTIMER_MODE_REL_PINNED);
  352. }
  353. static inline void init_hrtick(void)
  354. {
  355. }
  356. #endif /* CONFIG_SMP */
  357. static void init_rq_hrtick(struct rq *rq)
  358. {
  359. #ifdef CONFIG_SMP
  360. rq->hrtick_csd_pending = 0;
  361. rq->hrtick_csd.flags = 0;
  362. rq->hrtick_csd.func = __hrtick_start;
  363. rq->hrtick_csd.info = rq;
  364. #endif
  365. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  366. rq->hrtick_timer.function = hrtick;
  367. }
  368. #else /* CONFIG_SCHED_HRTICK */
  369. static inline void hrtick_clear(struct rq *rq)
  370. {
  371. }
  372. static inline void init_rq_hrtick(struct rq *rq)
  373. {
  374. }
  375. static inline void init_hrtick(void)
  376. {
  377. }
  378. #endif /* CONFIG_SCHED_HRTICK */
  379. /*
  380. * cmpxchg based fetch_or, macro so it works for different integer types
  381. */
  382. #define fetch_or(ptr, val) \
  383. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  384. for (;;) { \
  385. __old = cmpxchg((ptr), __val, __val | (val)); \
  386. if (__old == __val) \
  387. break; \
  388. __val = __old; \
  389. } \
  390. __old; \
  391. })
  392. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  393. /*
  394. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  395. * this avoids any races wrt polling state changes and thereby avoids
  396. * spurious IPIs.
  397. */
  398. static bool set_nr_and_not_polling(struct task_struct *p)
  399. {
  400. struct thread_info *ti = task_thread_info(p);
  401. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  402. }
  403. /*
  404. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  405. *
  406. * If this returns true, then the idle task promises to call
  407. * sched_ttwu_pending() and reschedule soon.
  408. */
  409. static bool set_nr_if_polling(struct task_struct *p)
  410. {
  411. struct thread_info *ti = task_thread_info(p);
  412. typeof(ti->flags) old, val = READ_ONCE(ti->flags);
  413. for (;;) {
  414. if (!(val & _TIF_POLLING_NRFLAG))
  415. return false;
  416. if (val & _TIF_NEED_RESCHED)
  417. return true;
  418. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  419. if (old == val)
  420. break;
  421. val = old;
  422. }
  423. return true;
  424. }
  425. #else
  426. static bool set_nr_and_not_polling(struct task_struct *p)
  427. {
  428. set_tsk_need_resched(p);
  429. return true;
  430. }
  431. #ifdef CONFIG_SMP
  432. static bool set_nr_if_polling(struct task_struct *p)
  433. {
  434. return false;
  435. }
  436. #endif
  437. #endif
  438. void wake_q_add(struct wake_q_head *head, struct task_struct *task)
  439. {
  440. struct wake_q_node *node = &task->wake_q;
  441. /*
  442. * Atomically grab the task, if ->wake_q is !nil already it means
  443. * its already queued (either by us or someone else) and will get the
  444. * wakeup due to that.
  445. *
  446. * This cmpxchg() implies a full barrier, which pairs with the write
  447. * barrier implied by the wakeup in wake_up_list().
  448. */
  449. if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
  450. return;
  451. get_task_struct(task);
  452. /*
  453. * The head is context local, there can be no concurrency.
  454. */
  455. *head->lastp = node;
  456. head->lastp = &node->next;
  457. }
  458. void wake_up_q(struct wake_q_head *head)
  459. {
  460. struct wake_q_node *node = head->first;
  461. while (node != WAKE_Q_TAIL) {
  462. struct task_struct *task;
  463. task = container_of(node, struct task_struct, wake_q);
  464. BUG_ON(!task);
  465. /* task can safely be re-inserted now */
  466. node = node->next;
  467. task->wake_q.next = NULL;
  468. /*
  469. * wake_up_process() implies a wmb() to pair with the queueing
  470. * in wake_q_add() so as not to miss wakeups.
  471. */
  472. wake_up_process(task);
  473. put_task_struct(task);
  474. }
  475. }
  476. /*
  477. * resched_curr - mark rq's current task 'to be rescheduled now'.
  478. *
  479. * On UP this means the setting of the need_resched flag, on SMP it
  480. * might also involve a cross-CPU call to trigger the scheduler on
  481. * the target CPU.
  482. */
  483. void resched_curr(struct rq *rq)
  484. {
  485. struct task_struct *curr = rq->curr;
  486. int cpu;
  487. lockdep_assert_held(&rq->lock);
  488. if (test_tsk_need_resched(curr))
  489. return;
  490. cpu = cpu_of(rq);
  491. if (cpu == smp_processor_id()) {
  492. set_tsk_need_resched(curr);
  493. set_preempt_need_resched();
  494. return;
  495. }
  496. if (set_nr_and_not_polling(curr))
  497. smp_send_reschedule(cpu);
  498. else
  499. trace_sched_wake_idle_without_ipi(cpu);
  500. }
  501. void resched_cpu(int cpu)
  502. {
  503. struct rq *rq = cpu_rq(cpu);
  504. unsigned long flags;
  505. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  506. return;
  507. resched_curr(rq);
  508. raw_spin_unlock_irqrestore(&rq->lock, flags);
  509. }
  510. #ifdef CONFIG_SMP
  511. #ifdef CONFIG_NO_HZ_COMMON
  512. /*
  513. * In the semi idle case, use the nearest busy cpu for migrating timers
  514. * from an idle cpu. This is good for power-savings.
  515. *
  516. * We don't do similar optimization for completely idle system, as
  517. * selecting an idle cpu will add more delays to the timers than intended
  518. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  519. */
  520. int get_nohz_timer_target(void)
  521. {
  522. int i, cpu = smp_processor_id();
  523. struct sched_domain *sd;
  524. if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
  525. return cpu;
  526. rcu_read_lock();
  527. for_each_domain(cpu, sd) {
  528. for_each_cpu(i, sched_domain_span(sd)) {
  529. if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
  530. cpu = i;
  531. goto unlock;
  532. }
  533. }
  534. }
  535. if (!is_housekeeping_cpu(cpu))
  536. cpu = housekeeping_any_cpu();
  537. unlock:
  538. rcu_read_unlock();
  539. return cpu;
  540. }
  541. /*
  542. * When add_timer_on() enqueues a timer into the timer wheel of an
  543. * idle CPU then this timer might expire before the next timer event
  544. * which is scheduled to wake up that CPU. In case of a completely
  545. * idle system the next event might even be infinite time into the
  546. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  547. * leaves the inner idle loop so the newly added timer is taken into
  548. * account when the CPU goes back to idle and evaluates the timer
  549. * wheel for the next timer event.
  550. */
  551. static void wake_up_idle_cpu(int cpu)
  552. {
  553. struct rq *rq = cpu_rq(cpu);
  554. if (cpu == smp_processor_id())
  555. return;
  556. if (set_nr_and_not_polling(rq->idle))
  557. smp_send_reschedule(cpu);
  558. else
  559. trace_sched_wake_idle_without_ipi(cpu);
  560. }
  561. static bool wake_up_full_nohz_cpu(int cpu)
  562. {
  563. /*
  564. * We just need the target to call irq_exit() and re-evaluate
  565. * the next tick. The nohz full kick at least implies that.
  566. * If needed we can still optimize that later with an
  567. * empty IRQ.
  568. */
  569. if (tick_nohz_full_cpu(cpu)) {
  570. if (cpu != smp_processor_id() ||
  571. tick_nohz_tick_stopped())
  572. tick_nohz_full_kick_cpu(cpu);
  573. return true;
  574. }
  575. return false;
  576. }
  577. void wake_up_nohz_cpu(int cpu)
  578. {
  579. if (!wake_up_full_nohz_cpu(cpu))
  580. wake_up_idle_cpu(cpu);
  581. }
  582. static inline bool got_nohz_idle_kick(void)
  583. {
  584. int cpu = smp_processor_id();
  585. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  586. return false;
  587. if (idle_cpu(cpu) && !need_resched())
  588. return true;
  589. /*
  590. * We can't run Idle Load Balance on this CPU for this time so we
  591. * cancel it and clear NOHZ_BALANCE_KICK
  592. */
  593. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  594. return false;
  595. }
  596. #else /* CONFIG_NO_HZ_COMMON */
  597. static inline bool got_nohz_idle_kick(void)
  598. {
  599. return false;
  600. }
  601. #endif /* CONFIG_NO_HZ_COMMON */
  602. #ifdef CONFIG_NO_HZ_FULL
  603. bool sched_can_stop_tick(void)
  604. {
  605. /*
  606. * FIFO realtime policy runs the highest priority task. Other runnable
  607. * tasks are of a lower priority. The scheduler tick does nothing.
  608. */
  609. if (current->policy == SCHED_FIFO)
  610. return true;
  611. /*
  612. * Round-robin realtime tasks time slice with other tasks at the same
  613. * realtime priority. Is this task the only one at this priority?
  614. */
  615. if (current->policy == SCHED_RR) {
  616. struct sched_rt_entity *rt_se = &current->rt;
  617. return list_is_singular(&rt_se->run_list);
  618. }
  619. /*
  620. * More than one running task need preemption.
  621. * nr_running update is assumed to be visible
  622. * after IPI is sent from wakers.
  623. */
  624. if (this_rq()->nr_running > 1)
  625. return false;
  626. return true;
  627. }
  628. #endif /* CONFIG_NO_HZ_FULL */
  629. void sched_avg_update(struct rq *rq)
  630. {
  631. s64 period = sched_avg_period();
  632. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  633. /*
  634. * Inline assembly required to prevent the compiler
  635. * optimising this loop into a divmod call.
  636. * See __iter_div_u64_rem() for another example of this.
  637. */
  638. asm("" : "+rm" (rq->age_stamp));
  639. rq->age_stamp += period;
  640. rq->rt_avg /= 2;
  641. }
  642. }
  643. #endif /* CONFIG_SMP */
  644. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  645. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  646. /*
  647. * Iterate task_group tree rooted at *from, calling @down when first entering a
  648. * node and @up when leaving it for the final time.
  649. *
  650. * Caller must hold rcu_lock or sufficient equivalent.
  651. */
  652. int walk_tg_tree_from(struct task_group *from,
  653. tg_visitor down, tg_visitor up, void *data)
  654. {
  655. struct task_group *parent, *child;
  656. int ret;
  657. parent = from;
  658. down:
  659. ret = (*down)(parent, data);
  660. if (ret)
  661. goto out;
  662. list_for_each_entry_rcu(child, &parent->children, siblings) {
  663. parent = child;
  664. goto down;
  665. up:
  666. continue;
  667. }
  668. ret = (*up)(parent, data);
  669. if (ret || parent == from)
  670. goto out;
  671. child = parent;
  672. parent = parent->parent;
  673. if (parent)
  674. goto up;
  675. out:
  676. return ret;
  677. }
  678. int tg_nop(struct task_group *tg, void *data)
  679. {
  680. return 0;
  681. }
  682. #endif
  683. static void set_load_weight(struct task_struct *p)
  684. {
  685. int prio = p->static_prio - MAX_RT_PRIO;
  686. struct load_weight *load = &p->se.load;
  687. /*
  688. * SCHED_IDLE tasks get minimal weight:
  689. */
  690. if (idle_policy(p->policy)) {
  691. load->weight = scale_load(WEIGHT_IDLEPRIO);
  692. load->inv_weight = WMULT_IDLEPRIO;
  693. return;
  694. }
  695. load->weight = scale_load(sched_prio_to_weight[prio]);
  696. load->inv_weight = sched_prio_to_wmult[prio];
  697. }
  698. static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  699. {
  700. update_rq_clock(rq);
  701. if (!(flags & ENQUEUE_RESTORE))
  702. sched_info_queued(rq, p);
  703. p->sched_class->enqueue_task(rq, p, flags);
  704. }
  705. static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  706. {
  707. update_rq_clock(rq);
  708. if (!(flags & DEQUEUE_SAVE))
  709. sched_info_dequeued(rq, p);
  710. p->sched_class->dequeue_task(rq, p, flags);
  711. }
  712. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  713. {
  714. if (task_contributes_to_load(p))
  715. rq->nr_uninterruptible--;
  716. enqueue_task(rq, p, flags);
  717. }
  718. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  719. {
  720. if (task_contributes_to_load(p))
  721. rq->nr_uninterruptible++;
  722. dequeue_task(rq, p, flags);
  723. }
  724. static void update_rq_clock_task(struct rq *rq, s64 delta)
  725. {
  726. /*
  727. * In theory, the compile should just see 0 here, and optimize out the call
  728. * to sched_rt_avg_update. But I don't trust it...
  729. */
  730. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  731. s64 steal = 0, irq_delta = 0;
  732. #endif
  733. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  734. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  735. /*
  736. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  737. * this case when a previous update_rq_clock() happened inside a
  738. * {soft,}irq region.
  739. *
  740. * When this happens, we stop ->clock_task and only update the
  741. * prev_irq_time stamp to account for the part that fit, so that a next
  742. * update will consume the rest. This ensures ->clock_task is
  743. * monotonic.
  744. *
  745. * It does however cause some slight miss-attribution of {soft,}irq
  746. * time, a more accurate solution would be to update the irq_time using
  747. * the current rq->clock timestamp, except that would require using
  748. * atomic ops.
  749. */
  750. if (irq_delta > delta)
  751. irq_delta = delta;
  752. rq->prev_irq_time += irq_delta;
  753. delta -= irq_delta;
  754. #endif
  755. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  756. if (static_key_false((&paravirt_steal_rq_enabled))) {
  757. steal = paravirt_steal_clock(cpu_of(rq));
  758. steal -= rq->prev_steal_time_rq;
  759. if (unlikely(steal > delta))
  760. steal = delta;
  761. rq->prev_steal_time_rq += steal;
  762. delta -= steal;
  763. }
  764. #endif
  765. rq->clock_task += delta;
  766. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  767. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  768. sched_rt_avg_update(rq, irq_delta + steal);
  769. #endif
  770. }
  771. void sched_set_stop_task(int cpu, struct task_struct *stop)
  772. {
  773. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  774. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  775. if (stop) {
  776. /*
  777. * Make it appear like a SCHED_FIFO task, its something
  778. * userspace knows about and won't get confused about.
  779. *
  780. * Also, it will make PI more or less work without too
  781. * much confusion -- but then, stop work should not
  782. * rely on PI working anyway.
  783. */
  784. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  785. stop->sched_class = &stop_sched_class;
  786. }
  787. cpu_rq(cpu)->stop = stop;
  788. if (old_stop) {
  789. /*
  790. * Reset it back to a normal scheduling class so that
  791. * it can die in pieces.
  792. */
  793. old_stop->sched_class = &rt_sched_class;
  794. }
  795. }
  796. /*
  797. * __normal_prio - return the priority that is based on the static prio
  798. */
  799. static inline int __normal_prio(struct task_struct *p)
  800. {
  801. return p->static_prio;
  802. }
  803. /*
  804. * Calculate the expected normal priority: i.e. priority
  805. * without taking RT-inheritance into account. Might be
  806. * boosted by interactivity modifiers. Changes upon fork,
  807. * setprio syscalls, and whenever the interactivity
  808. * estimator recalculates.
  809. */
  810. static inline int normal_prio(struct task_struct *p)
  811. {
  812. int prio;
  813. if (task_has_dl_policy(p))
  814. prio = MAX_DL_PRIO-1;
  815. else if (task_has_rt_policy(p))
  816. prio = MAX_RT_PRIO-1 - p->rt_priority;
  817. else
  818. prio = __normal_prio(p);
  819. return prio;
  820. }
  821. /*
  822. * Calculate the current priority, i.e. the priority
  823. * taken into account by the scheduler. This value might
  824. * be boosted by RT tasks, or might be boosted by
  825. * interactivity modifiers. Will be RT if the task got
  826. * RT-boosted. If not then it returns p->normal_prio.
  827. */
  828. static int effective_prio(struct task_struct *p)
  829. {
  830. p->normal_prio = normal_prio(p);
  831. /*
  832. * If we are RT tasks or we were boosted to RT priority,
  833. * keep the priority unchanged. Otherwise, update priority
  834. * to the normal priority:
  835. */
  836. if (!rt_prio(p->prio))
  837. return p->normal_prio;
  838. return p->prio;
  839. }
  840. /**
  841. * task_curr - is this task currently executing on a CPU?
  842. * @p: the task in question.
  843. *
  844. * Return: 1 if the task is currently executing. 0 otherwise.
  845. */
  846. inline int task_curr(const struct task_struct *p)
  847. {
  848. return cpu_curr(task_cpu(p)) == p;
  849. }
  850. /*
  851. * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
  852. * use the balance_callback list if you want balancing.
  853. *
  854. * this means any call to check_class_changed() must be followed by a call to
  855. * balance_callback().
  856. */
  857. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  858. const struct sched_class *prev_class,
  859. int oldprio)
  860. {
  861. if (prev_class != p->sched_class) {
  862. if (prev_class->switched_from)
  863. prev_class->switched_from(rq, p);
  864. p->sched_class->switched_to(rq, p);
  865. } else if (oldprio != p->prio || dl_task(p))
  866. p->sched_class->prio_changed(rq, p, oldprio);
  867. }
  868. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  869. {
  870. const struct sched_class *class;
  871. if (p->sched_class == rq->curr->sched_class) {
  872. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  873. } else {
  874. for_each_class(class) {
  875. if (class == rq->curr->sched_class)
  876. break;
  877. if (class == p->sched_class) {
  878. resched_curr(rq);
  879. break;
  880. }
  881. }
  882. }
  883. /*
  884. * A queue event has occurred, and we're going to schedule. In
  885. * this case, we can save a useless back to back clock update.
  886. */
  887. if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
  888. rq_clock_skip_update(rq, true);
  889. }
  890. #ifdef CONFIG_SMP
  891. /*
  892. * This is how migration works:
  893. *
  894. * 1) we invoke migration_cpu_stop() on the target CPU using
  895. * stop_one_cpu().
  896. * 2) stopper starts to run (implicitly forcing the migrated thread
  897. * off the CPU)
  898. * 3) it checks whether the migrated task is still in the wrong runqueue.
  899. * 4) if it's in the wrong runqueue then the migration thread removes
  900. * it and puts it into the right queue.
  901. * 5) stopper completes and stop_one_cpu() returns and the migration
  902. * is done.
  903. */
  904. /*
  905. * move_queued_task - move a queued task to new rq.
  906. *
  907. * Returns (locked) new rq. Old rq's lock is released.
  908. */
  909. static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
  910. {
  911. lockdep_assert_held(&rq->lock);
  912. p->on_rq = TASK_ON_RQ_MIGRATING;
  913. dequeue_task(rq, p, 0);
  914. set_task_cpu(p, new_cpu);
  915. raw_spin_unlock(&rq->lock);
  916. rq = cpu_rq(new_cpu);
  917. raw_spin_lock(&rq->lock);
  918. BUG_ON(task_cpu(p) != new_cpu);
  919. enqueue_task(rq, p, 0);
  920. p->on_rq = TASK_ON_RQ_QUEUED;
  921. check_preempt_curr(rq, p, 0);
  922. return rq;
  923. }
  924. struct migration_arg {
  925. struct task_struct *task;
  926. int dest_cpu;
  927. };
  928. /*
  929. * Move (not current) task off this cpu, onto dest cpu. We're doing
  930. * this because either it can't run here any more (set_cpus_allowed()
  931. * away from this CPU, or CPU going down), or because we're
  932. * attempting to rebalance this task on exec (sched_exec).
  933. *
  934. * So we race with normal scheduler movements, but that's OK, as long
  935. * as the task is no longer on this CPU.
  936. */
  937. static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
  938. {
  939. if (unlikely(!cpu_active(dest_cpu)))
  940. return rq;
  941. /* Affinity changed (again). */
  942. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  943. return rq;
  944. rq = move_queued_task(rq, p, dest_cpu);
  945. return rq;
  946. }
  947. /*
  948. * migration_cpu_stop - this will be executed by a highprio stopper thread
  949. * and performs thread migration by bumping thread off CPU then
  950. * 'pushing' onto another runqueue.
  951. */
  952. static int migration_cpu_stop(void *data)
  953. {
  954. struct migration_arg *arg = data;
  955. struct task_struct *p = arg->task;
  956. struct rq *rq = this_rq();
  957. /*
  958. * The original target cpu might have gone down and we might
  959. * be on another cpu but it doesn't matter.
  960. */
  961. local_irq_disable();
  962. /*
  963. * We need to explicitly wake pending tasks before running
  964. * __migrate_task() such that we will not miss enforcing cpus_allowed
  965. * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
  966. */
  967. sched_ttwu_pending();
  968. raw_spin_lock(&p->pi_lock);
  969. raw_spin_lock(&rq->lock);
  970. /*
  971. * If task_rq(p) != rq, it cannot be migrated here, because we're
  972. * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
  973. * we're holding p->pi_lock.
  974. */
  975. if (task_rq(p) == rq && task_on_rq_queued(p))
  976. rq = __migrate_task(rq, p, arg->dest_cpu);
  977. raw_spin_unlock(&rq->lock);
  978. raw_spin_unlock(&p->pi_lock);
  979. local_irq_enable();
  980. return 0;
  981. }
  982. /*
  983. * sched_class::set_cpus_allowed must do the below, but is not required to
  984. * actually call this function.
  985. */
  986. void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
  987. {
  988. cpumask_copy(&p->cpus_allowed, new_mask);
  989. p->nr_cpus_allowed = cpumask_weight(new_mask);
  990. }
  991. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  992. {
  993. struct rq *rq = task_rq(p);
  994. bool queued, running;
  995. lockdep_assert_held(&p->pi_lock);
  996. queued = task_on_rq_queued(p);
  997. running = task_current(rq, p);
  998. if (queued) {
  999. /*
  1000. * Because __kthread_bind() calls this on blocked tasks without
  1001. * holding rq->lock.
  1002. */
  1003. lockdep_assert_held(&rq->lock);
  1004. dequeue_task(rq, p, DEQUEUE_SAVE);
  1005. }
  1006. if (running)
  1007. put_prev_task(rq, p);
  1008. p->sched_class->set_cpus_allowed(p, new_mask);
  1009. if (running)
  1010. p->sched_class->set_curr_task(rq);
  1011. if (queued)
  1012. enqueue_task(rq, p, ENQUEUE_RESTORE);
  1013. }
  1014. /*
  1015. * Change a given task's CPU affinity. Migrate the thread to a
  1016. * proper CPU and schedule it away if the CPU it's executing on
  1017. * is removed from the allowed bitmask.
  1018. *
  1019. * NOTE: the caller must have a valid reference to the task, the
  1020. * task must not exit() & deallocate itself prematurely. The
  1021. * call is not atomic; no spinlocks may be held.
  1022. */
  1023. static int __set_cpus_allowed_ptr(struct task_struct *p,
  1024. const struct cpumask *new_mask, bool check)
  1025. {
  1026. unsigned long flags;
  1027. struct rq *rq;
  1028. unsigned int dest_cpu;
  1029. int ret = 0;
  1030. rq = task_rq_lock(p, &flags);
  1031. /*
  1032. * Must re-check here, to close a race against __kthread_bind(),
  1033. * sched_setaffinity() is not guaranteed to observe the flag.
  1034. */
  1035. if (check && (p->flags & PF_NO_SETAFFINITY)) {
  1036. ret = -EINVAL;
  1037. goto out;
  1038. }
  1039. if (cpumask_equal(&p->cpus_allowed, new_mask))
  1040. goto out;
  1041. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  1042. ret = -EINVAL;
  1043. goto out;
  1044. }
  1045. do_set_cpus_allowed(p, new_mask);
  1046. /* Can the task run on the task's current CPU? If so, we're done */
  1047. if (cpumask_test_cpu(task_cpu(p), new_mask))
  1048. goto out;
  1049. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  1050. if (task_running(rq, p) || p->state == TASK_WAKING) {
  1051. struct migration_arg arg = { p, dest_cpu };
  1052. /* Need help from migration thread: drop lock and wait. */
  1053. task_rq_unlock(rq, p, &flags);
  1054. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  1055. tlb_migrate_finish(p->mm);
  1056. return 0;
  1057. } else if (task_on_rq_queued(p)) {
  1058. /*
  1059. * OK, since we're going to drop the lock immediately
  1060. * afterwards anyway.
  1061. */
  1062. lockdep_unpin_lock(&rq->lock);
  1063. rq = move_queued_task(rq, p, dest_cpu);
  1064. lockdep_pin_lock(&rq->lock);
  1065. }
  1066. out:
  1067. task_rq_unlock(rq, p, &flags);
  1068. return ret;
  1069. }
  1070. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  1071. {
  1072. return __set_cpus_allowed_ptr(p, new_mask, false);
  1073. }
  1074. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  1075. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  1076. {
  1077. #ifdef CONFIG_SCHED_DEBUG
  1078. /*
  1079. * We should never call set_task_cpu() on a blocked task,
  1080. * ttwu() will sort out the placement.
  1081. */
  1082. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  1083. !p->on_rq);
  1084. /*
  1085. * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
  1086. * because schedstat_wait_{start,end} rebase migrating task's wait_start
  1087. * time relying on p->on_rq.
  1088. */
  1089. WARN_ON_ONCE(p->state == TASK_RUNNING &&
  1090. p->sched_class == &fair_sched_class &&
  1091. (p->on_rq && !task_on_rq_migrating(p)));
  1092. #ifdef CONFIG_LOCKDEP
  1093. /*
  1094. * The caller should hold either p->pi_lock or rq->lock, when changing
  1095. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  1096. *
  1097. * sched_move_task() holds both and thus holding either pins the cgroup,
  1098. * see task_group().
  1099. *
  1100. * Furthermore, all task_rq users should acquire both locks, see
  1101. * task_rq_lock().
  1102. */
  1103. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  1104. lockdep_is_held(&task_rq(p)->lock)));
  1105. #endif
  1106. #endif
  1107. trace_sched_migrate_task(p, new_cpu);
  1108. if (task_cpu(p) != new_cpu) {
  1109. if (p->sched_class->migrate_task_rq)
  1110. p->sched_class->migrate_task_rq(p);
  1111. p->se.nr_migrations++;
  1112. perf_event_task_migrate(p);
  1113. }
  1114. __set_task_cpu(p, new_cpu);
  1115. }
  1116. static void __migrate_swap_task(struct task_struct *p, int cpu)
  1117. {
  1118. if (task_on_rq_queued(p)) {
  1119. struct rq *src_rq, *dst_rq;
  1120. src_rq = task_rq(p);
  1121. dst_rq = cpu_rq(cpu);
  1122. p->on_rq = TASK_ON_RQ_MIGRATING;
  1123. deactivate_task(src_rq, p, 0);
  1124. set_task_cpu(p, cpu);
  1125. activate_task(dst_rq, p, 0);
  1126. p->on_rq = TASK_ON_RQ_QUEUED;
  1127. check_preempt_curr(dst_rq, p, 0);
  1128. } else {
  1129. /*
  1130. * Task isn't running anymore; make it appear like we migrated
  1131. * it before it went to sleep. This means on wakeup we make the
  1132. * previous cpu our targer instead of where it really is.
  1133. */
  1134. p->wake_cpu = cpu;
  1135. }
  1136. }
  1137. struct migration_swap_arg {
  1138. struct task_struct *src_task, *dst_task;
  1139. int src_cpu, dst_cpu;
  1140. };
  1141. static int migrate_swap_stop(void *data)
  1142. {
  1143. struct migration_swap_arg *arg = data;
  1144. struct rq *src_rq, *dst_rq;
  1145. int ret = -EAGAIN;
  1146. if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
  1147. return -EAGAIN;
  1148. src_rq = cpu_rq(arg->src_cpu);
  1149. dst_rq = cpu_rq(arg->dst_cpu);
  1150. double_raw_lock(&arg->src_task->pi_lock,
  1151. &arg->dst_task->pi_lock);
  1152. double_rq_lock(src_rq, dst_rq);
  1153. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  1154. goto unlock;
  1155. if (task_cpu(arg->src_task) != arg->src_cpu)
  1156. goto unlock;
  1157. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  1158. goto unlock;
  1159. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  1160. goto unlock;
  1161. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  1162. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  1163. ret = 0;
  1164. unlock:
  1165. double_rq_unlock(src_rq, dst_rq);
  1166. raw_spin_unlock(&arg->dst_task->pi_lock);
  1167. raw_spin_unlock(&arg->src_task->pi_lock);
  1168. return ret;
  1169. }
  1170. /*
  1171. * Cross migrate two tasks
  1172. */
  1173. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  1174. {
  1175. struct migration_swap_arg arg;
  1176. int ret = -EINVAL;
  1177. arg = (struct migration_swap_arg){
  1178. .src_task = cur,
  1179. .src_cpu = task_cpu(cur),
  1180. .dst_task = p,
  1181. .dst_cpu = task_cpu(p),
  1182. };
  1183. if (arg.src_cpu == arg.dst_cpu)
  1184. goto out;
  1185. /*
  1186. * These three tests are all lockless; this is OK since all of them
  1187. * will be re-checked with proper locks held further down the line.
  1188. */
  1189. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  1190. goto out;
  1191. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  1192. goto out;
  1193. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  1194. goto out;
  1195. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  1196. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  1197. out:
  1198. return ret;
  1199. }
  1200. /*
  1201. * wait_task_inactive - wait for a thread to unschedule.
  1202. *
  1203. * If @match_state is nonzero, it's the @p->state value just checked and
  1204. * not expected to change. If it changes, i.e. @p might have woken up,
  1205. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1206. * we return a positive number (its total switch count). If a second call
  1207. * a short while later returns the same number, the caller can be sure that
  1208. * @p has remained unscheduled the whole time.
  1209. *
  1210. * The caller must ensure that the task *will* unschedule sometime soon,
  1211. * else this function might spin for a *long* time. This function can't
  1212. * be called with interrupts off, or it may introduce deadlock with
  1213. * smp_call_function() if an IPI is sent by the same process we are
  1214. * waiting to become inactive.
  1215. */
  1216. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1217. {
  1218. unsigned long flags;
  1219. int running, queued;
  1220. unsigned long ncsw;
  1221. struct rq *rq;
  1222. for (;;) {
  1223. /*
  1224. * We do the initial early heuristics without holding
  1225. * any task-queue locks at all. We'll only try to get
  1226. * the runqueue lock when things look like they will
  1227. * work out!
  1228. */
  1229. rq = task_rq(p);
  1230. /*
  1231. * If the task is actively running on another CPU
  1232. * still, just relax and busy-wait without holding
  1233. * any locks.
  1234. *
  1235. * NOTE! Since we don't hold any locks, it's not
  1236. * even sure that "rq" stays as the right runqueue!
  1237. * But we don't care, since "task_running()" will
  1238. * return false if the runqueue has changed and p
  1239. * is actually now running somewhere else!
  1240. */
  1241. while (task_running(rq, p)) {
  1242. if (match_state && unlikely(p->state != match_state))
  1243. return 0;
  1244. cpu_relax();
  1245. }
  1246. /*
  1247. * Ok, time to look more closely! We need the rq
  1248. * lock now, to be *sure*. If we're wrong, we'll
  1249. * just go back and repeat.
  1250. */
  1251. rq = task_rq_lock(p, &flags);
  1252. trace_sched_wait_task(p);
  1253. running = task_running(rq, p);
  1254. queued = task_on_rq_queued(p);
  1255. ncsw = 0;
  1256. if (!match_state || p->state == match_state)
  1257. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1258. task_rq_unlock(rq, p, &flags);
  1259. /*
  1260. * If it changed from the expected state, bail out now.
  1261. */
  1262. if (unlikely(!ncsw))
  1263. break;
  1264. /*
  1265. * Was it really running after all now that we
  1266. * checked with the proper locks actually held?
  1267. *
  1268. * Oops. Go back and try again..
  1269. */
  1270. if (unlikely(running)) {
  1271. cpu_relax();
  1272. continue;
  1273. }
  1274. /*
  1275. * It's not enough that it's not actively running,
  1276. * it must be off the runqueue _entirely_, and not
  1277. * preempted!
  1278. *
  1279. * So if it was still runnable (but just not actively
  1280. * running right now), it's preempted, and we should
  1281. * yield - it could be a while.
  1282. */
  1283. if (unlikely(queued)) {
  1284. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1285. set_current_state(TASK_UNINTERRUPTIBLE);
  1286. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1287. continue;
  1288. }
  1289. /*
  1290. * Ahh, all good. It wasn't running, and it wasn't
  1291. * runnable, which means that it will never become
  1292. * running in the future either. We're all done!
  1293. */
  1294. break;
  1295. }
  1296. return ncsw;
  1297. }
  1298. /***
  1299. * kick_process - kick a running thread to enter/exit the kernel
  1300. * @p: the to-be-kicked thread
  1301. *
  1302. * Cause a process which is running on another CPU to enter
  1303. * kernel-mode, without any delay. (to get signals handled.)
  1304. *
  1305. * NOTE: this function doesn't have to take the runqueue lock,
  1306. * because all it wants to ensure is that the remote task enters
  1307. * the kernel. If the IPI races and the task has been migrated
  1308. * to another CPU then no harm is done and the purpose has been
  1309. * achieved as well.
  1310. */
  1311. void kick_process(struct task_struct *p)
  1312. {
  1313. int cpu;
  1314. preempt_disable();
  1315. cpu = task_cpu(p);
  1316. if ((cpu != smp_processor_id()) && task_curr(p))
  1317. smp_send_reschedule(cpu);
  1318. preempt_enable();
  1319. }
  1320. EXPORT_SYMBOL_GPL(kick_process);
  1321. /*
  1322. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1323. */
  1324. static int select_fallback_rq(int cpu, struct task_struct *p)
  1325. {
  1326. int nid = cpu_to_node(cpu);
  1327. const struct cpumask *nodemask = NULL;
  1328. enum { cpuset, possible, fail } state = cpuset;
  1329. int dest_cpu;
  1330. /*
  1331. * If the node that the cpu is on has been offlined, cpu_to_node()
  1332. * will return -1. There is no cpu on the node, and we should
  1333. * select the cpu on the other node.
  1334. */
  1335. if (nid != -1) {
  1336. nodemask = cpumask_of_node(nid);
  1337. /* Look for allowed, online CPU in same node. */
  1338. for_each_cpu(dest_cpu, nodemask) {
  1339. if (!cpu_online(dest_cpu))
  1340. continue;
  1341. if (!cpu_active(dest_cpu))
  1342. continue;
  1343. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1344. return dest_cpu;
  1345. }
  1346. }
  1347. for (;;) {
  1348. /* Any allowed, online CPU? */
  1349. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1350. if (!cpu_online(dest_cpu))
  1351. continue;
  1352. if (!cpu_active(dest_cpu))
  1353. continue;
  1354. goto out;
  1355. }
  1356. /* No more Mr. Nice Guy. */
  1357. switch (state) {
  1358. case cpuset:
  1359. if (IS_ENABLED(CONFIG_CPUSETS)) {
  1360. cpuset_cpus_allowed_fallback(p);
  1361. state = possible;
  1362. break;
  1363. }
  1364. /* fall-through */
  1365. case possible:
  1366. do_set_cpus_allowed(p, cpu_possible_mask);
  1367. state = fail;
  1368. break;
  1369. case fail:
  1370. BUG();
  1371. break;
  1372. }
  1373. }
  1374. out:
  1375. if (state != cpuset) {
  1376. /*
  1377. * Don't tell them about moving exiting tasks or
  1378. * kernel threads (both mm NULL), since they never
  1379. * leave kernel.
  1380. */
  1381. if (p->mm && printk_ratelimit()) {
  1382. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1383. task_pid_nr(p), p->comm, cpu);
  1384. }
  1385. }
  1386. return dest_cpu;
  1387. }
  1388. /*
  1389. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1390. */
  1391. static inline
  1392. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1393. {
  1394. lockdep_assert_held(&p->pi_lock);
  1395. if (p->nr_cpus_allowed > 1)
  1396. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1397. /*
  1398. * In order not to call set_task_cpu() on a blocking task we need
  1399. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1400. * cpu.
  1401. *
  1402. * Since this is common to all placement strategies, this lives here.
  1403. *
  1404. * [ this allows ->select_task() to simply return task_cpu(p) and
  1405. * not worry about this generic constraint ]
  1406. */
  1407. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1408. !cpu_online(cpu)))
  1409. cpu = select_fallback_rq(task_cpu(p), p);
  1410. return cpu;
  1411. }
  1412. static void update_avg(u64 *avg, u64 sample)
  1413. {
  1414. s64 diff = sample - *avg;
  1415. *avg += diff >> 3;
  1416. }
  1417. #else
  1418. static inline int __set_cpus_allowed_ptr(struct task_struct *p,
  1419. const struct cpumask *new_mask, bool check)
  1420. {
  1421. return set_cpus_allowed_ptr(p, new_mask);
  1422. }
  1423. #endif /* CONFIG_SMP */
  1424. static void
  1425. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1426. {
  1427. #ifdef CONFIG_SCHEDSTATS
  1428. struct rq *rq = this_rq();
  1429. #ifdef CONFIG_SMP
  1430. int this_cpu = smp_processor_id();
  1431. if (cpu == this_cpu) {
  1432. schedstat_inc(rq, ttwu_local);
  1433. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1434. } else {
  1435. struct sched_domain *sd;
  1436. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1437. rcu_read_lock();
  1438. for_each_domain(this_cpu, sd) {
  1439. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1440. schedstat_inc(sd, ttwu_wake_remote);
  1441. break;
  1442. }
  1443. }
  1444. rcu_read_unlock();
  1445. }
  1446. if (wake_flags & WF_MIGRATED)
  1447. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1448. #endif /* CONFIG_SMP */
  1449. schedstat_inc(rq, ttwu_count);
  1450. schedstat_inc(p, se.statistics.nr_wakeups);
  1451. if (wake_flags & WF_SYNC)
  1452. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1453. #endif /* CONFIG_SCHEDSTATS */
  1454. }
  1455. static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1456. {
  1457. activate_task(rq, p, en_flags);
  1458. p->on_rq = TASK_ON_RQ_QUEUED;
  1459. /* if a worker is waking up, notify workqueue */
  1460. if (p->flags & PF_WQ_WORKER)
  1461. wq_worker_waking_up(p, cpu_of(rq));
  1462. }
  1463. /*
  1464. * Mark the task runnable and perform wakeup-preemption.
  1465. */
  1466. static void
  1467. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1468. {
  1469. check_preempt_curr(rq, p, wake_flags);
  1470. p->state = TASK_RUNNING;
  1471. trace_sched_wakeup(p);
  1472. #ifdef CONFIG_SMP
  1473. if (p->sched_class->task_woken) {
  1474. /*
  1475. * Our task @p is fully woken up and running; so its safe to
  1476. * drop the rq->lock, hereafter rq is only used for statistics.
  1477. */
  1478. lockdep_unpin_lock(&rq->lock);
  1479. p->sched_class->task_woken(rq, p);
  1480. lockdep_pin_lock(&rq->lock);
  1481. }
  1482. if (rq->idle_stamp) {
  1483. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1484. u64 max = 2*rq->max_idle_balance_cost;
  1485. update_avg(&rq->avg_idle, delta);
  1486. if (rq->avg_idle > max)
  1487. rq->avg_idle = max;
  1488. rq->idle_stamp = 0;
  1489. }
  1490. #endif
  1491. }
  1492. static void
  1493. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1494. {
  1495. lockdep_assert_held(&rq->lock);
  1496. #ifdef CONFIG_SMP
  1497. if (p->sched_contributes_to_load)
  1498. rq->nr_uninterruptible--;
  1499. #endif
  1500. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1501. ttwu_do_wakeup(rq, p, wake_flags);
  1502. }
  1503. /*
  1504. * Called in case the task @p isn't fully descheduled from its runqueue,
  1505. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1506. * since all we need to do is flip p->state to TASK_RUNNING, since
  1507. * the task is still ->on_rq.
  1508. */
  1509. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1510. {
  1511. struct rq *rq;
  1512. int ret = 0;
  1513. rq = __task_rq_lock(p);
  1514. if (task_on_rq_queued(p)) {
  1515. /* check_preempt_curr() may use rq clock */
  1516. update_rq_clock(rq);
  1517. ttwu_do_wakeup(rq, p, wake_flags);
  1518. ret = 1;
  1519. }
  1520. __task_rq_unlock(rq);
  1521. return ret;
  1522. }
  1523. #ifdef CONFIG_SMP
  1524. void sched_ttwu_pending(void)
  1525. {
  1526. struct rq *rq = this_rq();
  1527. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1528. struct task_struct *p;
  1529. unsigned long flags;
  1530. if (!llist)
  1531. return;
  1532. raw_spin_lock_irqsave(&rq->lock, flags);
  1533. lockdep_pin_lock(&rq->lock);
  1534. while (llist) {
  1535. p = llist_entry(llist, struct task_struct, wake_entry);
  1536. llist = llist_next(llist);
  1537. ttwu_do_activate(rq, p, 0);
  1538. }
  1539. lockdep_unpin_lock(&rq->lock);
  1540. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1541. }
  1542. void scheduler_ipi(void)
  1543. {
  1544. /*
  1545. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1546. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1547. * this IPI.
  1548. */
  1549. preempt_fold_need_resched();
  1550. if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
  1551. return;
  1552. /*
  1553. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1554. * traditionally all their work was done from the interrupt return
  1555. * path. Now that we actually do some work, we need to make sure
  1556. * we do call them.
  1557. *
  1558. * Some archs already do call them, luckily irq_enter/exit nest
  1559. * properly.
  1560. *
  1561. * Arguably we should visit all archs and update all handlers,
  1562. * however a fair share of IPIs are still resched only so this would
  1563. * somewhat pessimize the simple resched case.
  1564. */
  1565. irq_enter();
  1566. sched_ttwu_pending();
  1567. /*
  1568. * Check if someone kicked us for doing the nohz idle load balance.
  1569. */
  1570. if (unlikely(got_nohz_idle_kick())) {
  1571. this_rq()->idle_balance = 1;
  1572. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1573. }
  1574. irq_exit();
  1575. }
  1576. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1577. {
  1578. struct rq *rq = cpu_rq(cpu);
  1579. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1580. if (!set_nr_if_polling(rq->idle))
  1581. smp_send_reschedule(cpu);
  1582. else
  1583. trace_sched_wake_idle_without_ipi(cpu);
  1584. }
  1585. }
  1586. void wake_up_if_idle(int cpu)
  1587. {
  1588. struct rq *rq = cpu_rq(cpu);
  1589. unsigned long flags;
  1590. rcu_read_lock();
  1591. if (!is_idle_task(rcu_dereference(rq->curr)))
  1592. goto out;
  1593. if (set_nr_if_polling(rq->idle)) {
  1594. trace_sched_wake_idle_without_ipi(cpu);
  1595. } else {
  1596. raw_spin_lock_irqsave(&rq->lock, flags);
  1597. if (is_idle_task(rq->curr))
  1598. smp_send_reschedule(cpu);
  1599. /* Else cpu is not in idle, do nothing here */
  1600. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1601. }
  1602. out:
  1603. rcu_read_unlock();
  1604. }
  1605. bool cpus_share_cache(int this_cpu, int that_cpu)
  1606. {
  1607. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1608. }
  1609. #endif /* CONFIG_SMP */
  1610. static void ttwu_queue(struct task_struct *p, int cpu)
  1611. {
  1612. struct rq *rq = cpu_rq(cpu);
  1613. #if defined(CONFIG_SMP)
  1614. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1615. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1616. ttwu_queue_remote(p, cpu);
  1617. return;
  1618. }
  1619. #endif
  1620. raw_spin_lock(&rq->lock);
  1621. lockdep_pin_lock(&rq->lock);
  1622. ttwu_do_activate(rq, p, 0);
  1623. lockdep_unpin_lock(&rq->lock);
  1624. raw_spin_unlock(&rq->lock);
  1625. }
  1626. /*
  1627. * Notes on Program-Order guarantees on SMP systems.
  1628. *
  1629. * MIGRATION
  1630. *
  1631. * The basic program-order guarantee on SMP systems is that when a task [t]
  1632. * migrates, all its activity on its old cpu [c0] happens-before any subsequent
  1633. * execution on its new cpu [c1].
  1634. *
  1635. * For migration (of runnable tasks) this is provided by the following means:
  1636. *
  1637. * A) UNLOCK of the rq(c0)->lock scheduling out task t
  1638. * B) migration for t is required to synchronize *both* rq(c0)->lock and
  1639. * rq(c1)->lock (if not at the same time, then in that order).
  1640. * C) LOCK of the rq(c1)->lock scheduling in task
  1641. *
  1642. * Transitivity guarantees that B happens after A and C after B.
  1643. * Note: we only require RCpc transitivity.
  1644. * Note: the cpu doing B need not be c0 or c1
  1645. *
  1646. * Example:
  1647. *
  1648. * CPU0 CPU1 CPU2
  1649. *
  1650. * LOCK rq(0)->lock
  1651. * sched-out X
  1652. * sched-in Y
  1653. * UNLOCK rq(0)->lock
  1654. *
  1655. * LOCK rq(0)->lock // orders against CPU0
  1656. * dequeue X
  1657. * UNLOCK rq(0)->lock
  1658. *
  1659. * LOCK rq(1)->lock
  1660. * enqueue X
  1661. * UNLOCK rq(1)->lock
  1662. *
  1663. * LOCK rq(1)->lock // orders against CPU2
  1664. * sched-out Z
  1665. * sched-in X
  1666. * UNLOCK rq(1)->lock
  1667. *
  1668. *
  1669. * BLOCKING -- aka. SLEEP + WAKEUP
  1670. *
  1671. * For blocking we (obviously) need to provide the same guarantee as for
  1672. * migration. However the means are completely different as there is no lock
  1673. * chain to provide order. Instead we do:
  1674. *
  1675. * 1) smp_store_release(X->on_cpu, 0)
  1676. * 2) smp_cond_acquire(!X->on_cpu)
  1677. *
  1678. * Example:
  1679. *
  1680. * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
  1681. *
  1682. * LOCK rq(0)->lock LOCK X->pi_lock
  1683. * dequeue X
  1684. * sched-out X
  1685. * smp_store_release(X->on_cpu, 0);
  1686. *
  1687. * smp_cond_acquire(!X->on_cpu);
  1688. * X->state = WAKING
  1689. * set_task_cpu(X,2)
  1690. *
  1691. * LOCK rq(2)->lock
  1692. * enqueue X
  1693. * X->state = RUNNING
  1694. * UNLOCK rq(2)->lock
  1695. *
  1696. * LOCK rq(2)->lock // orders against CPU1
  1697. * sched-out Z
  1698. * sched-in X
  1699. * UNLOCK rq(2)->lock
  1700. *
  1701. * UNLOCK X->pi_lock
  1702. * UNLOCK rq(0)->lock
  1703. *
  1704. *
  1705. * However; for wakeups there is a second guarantee we must provide, namely we
  1706. * must observe the state that lead to our wakeup. That is, not only must our
  1707. * task observe its own prior state, it must also observe the stores prior to
  1708. * its wakeup.
  1709. *
  1710. * This means that any means of doing remote wakeups must order the CPU doing
  1711. * the wakeup against the CPU the task is going to end up running on. This,
  1712. * however, is already required for the regular Program-Order guarantee above,
  1713. * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
  1714. *
  1715. */
  1716. /**
  1717. * try_to_wake_up - wake up a thread
  1718. * @p: the thread to be awakened
  1719. * @state: the mask of task states that can be woken
  1720. * @wake_flags: wake modifier flags (WF_*)
  1721. *
  1722. * Put it on the run-queue if it's not already there. The "current"
  1723. * thread is always on the run-queue (except when the actual
  1724. * re-schedule is in progress), and as such you're allowed to do
  1725. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1726. * runnable without the overhead of this.
  1727. *
  1728. * Return: %true if @p was woken up, %false if it was already running.
  1729. * or @state didn't match @p's state.
  1730. */
  1731. static int
  1732. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1733. {
  1734. unsigned long flags;
  1735. int cpu, success = 0;
  1736. /*
  1737. * If we are going to wake up a thread waiting for CONDITION we
  1738. * need to ensure that CONDITION=1 done by the caller can not be
  1739. * reordered with p->state check below. This pairs with mb() in
  1740. * set_current_state() the waiting thread does.
  1741. */
  1742. smp_mb__before_spinlock();
  1743. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1744. if (!(p->state & state))
  1745. goto out;
  1746. trace_sched_waking(p);
  1747. success = 1; /* we're going to change ->state */
  1748. cpu = task_cpu(p);
  1749. if (p->on_rq && ttwu_remote(p, wake_flags))
  1750. goto stat;
  1751. #ifdef CONFIG_SMP
  1752. /*
  1753. * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
  1754. * possible to, falsely, observe p->on_cpu == 0.
  1755. *
  1756. * One must be running (->on_cpu == 1) in order to remove oneself
  1757. * from the runqueue.
  1758. *
  1759. * [S] ->on_cpu = 1; [L] ->on_rq
  1760. * UNLOCK rq->lock
  1761. * RMB
  1762. * LOCK rq->lock
  1763. * [S] ->on_rq = 0; [L] ->on_cpu
  1764. *
  1765. * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
  1766. * from the consecutive calls to schedule(); the first switching to our
  1767. * task, the second putting it to sleep.
  1768. */
  1769. smp_rmb();
  1770. /*
  1771. * If the owning (remote) cpu is still in the middle of schedule() with
  1772. * this task as prev, wait until its done referencing the task.
  1773. *
  1774. * Pairs with the smp_store_release() in finish_lock_switch().
  1775. *
  1776. * This ensures that tasks getting woken will be fully ordered against
  1777. * their previous state and preserve Program Order.
  1778. */
  1779. smp_cond_acquire(!p->on_cpu);
  1780. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1781. p->state = TASK_WAKING;
  1782. if (p->sched_class->task_waking)
  1783. p->sched_class->task_waking(p);
  1784. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1785. if (task_cpu(p) != cpu) {
  1786. wake_flags |= WF_MIGRATED;
  1787. set_task_cpu(p, cpu);
  1788. }
  1789. #endif /* CONFIG_SMP */
  1790. ttwu_queue(p, cpu);
  1791. stat:
  1792. ttwu_stat(p, cpu, wake_flags);
  1793. out:
  1794. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1795. return success;
  1796. }
  1797. /**
  1798. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1799. * @p: the thread to be awakened
  1800. *
  1801. * Put @p on the run-queue if it's not already there. The caller must
  1802. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1803. * the current task.
  1804. */
  1805. static void try_to_wake_up_local(struct task_struct *p)
  1806. {
  1807. struct rq *rq = task_rq(p);
  1808. if (WARN_ON_ONCE(rq != this_rq()) ||
  1809. WARN_ON_ONCE(p == current))
  1810. return;
  1811. lockdep_assert_held(&rq->lock);
  1812. if (!raw_spin_trylock(&p->pi_lock)) {
  1813. /*
  1814. * This is OK, because current is on_cpu, which avoids it being
  1815. * picked for load-balance and preemption/IRQs are still
  1816. * disabled avoiding further scheduler activity on it and we've
  1817. * not yet picked a replacement task.
  1818. */
  1819. lockdep_unpin_lock(&rq->lock);
  1820. raw_spin_unlock(&rq->lock);
  1821. raw_spin_lock(&p->pi_lock);
  1822. raw_spin_lock(&rq->lock);
  1823. lockdep_pin_lock(&rq->lock);
  1824. }
  1825. if (!(p->state & TASK_NORMAL))
  1826. goto out;
  1827. trace_sched_waking(p);
  1828. if (!task_on_rq_queued(p))
  1829. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1830. ttwu_do_wakeup(rq, p, 0);
  1831. ttwu_stat(p, smp_processor_id(), 0);
  1832. out:
  1833. raw_spin_unlock(&p->pi_lock);
  1834. }
  1835. /**
  1836. * wake_up_process - Wake up a specific process
  1837. * @p: The process to be woken up.
  1838. *
  1839. * Attempt to wake up the nominated process and move it to the set of runnable
  1840. * processes.
  1841. *
  1842. * Return: 1 if the process was woken up, 0 if it was already running.
  1843. *
  1844. * It may be assumed that this function implies a write memory barrier before
  1845. * changing the task state if and only if any tasks are woken up.
  1846. */
  1847. int wake_up_process(struct task_struct *p)
  1848. {
  1849. return try_to_wake_up(p, TASK_NORMAL, 0);
  1850. }
  1851. EXPORT_SYMBOL(wake_up_process);
  1852. int wake_up_state(struct task_struct *p, unsigned int state)
  1853. {
  1854. return try_to_wake_up(p, state, 0);
  1855. }
  1856. /*
  1857. * This function clears the sched_dl_entity static params.
  1858. */
  1859. void __dl_clear_params(struct task_struct *p)
  1860. {
  1861. struct sched_dl_entity *dl_se = &p->dl;
  1862. dl_se->dl_runtime = 0;
  1863. dl_se->dl_deadline = 0;
  1864. dl_se->dl_period = 0;
  1865. dl_se->flags = 0;
  1866. dl_se->dl_bw = 0;
  1867. dl_se->dl_throttled = 0;
  1868. dl_se->dl_new = 1;
  1869. dl_se->dl_yielded = 0;
  1870. }
  1871. /*
  1872. * Perform scheduler related setup for a newly forked process p.
  1873. * p is forked by current.
  1874. *
  1875. * __sched_fork() is basic setup used by init_idle() too:
  1876. */
  1877. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1878. {
  1879. p->on_rq = 0;
  1880. p->se.on_rq = 0;
  1881. p->se.exec_start = 0;
  1882. p->se.sum_exec_runtime = 0;
  1883. p->se.prev_sum_exec_runtime = 0;
  1884. p->se.nr_migrations = 0;
  1885. p->se.vruntime = 0;
  1886. INIT_LIST_HEAD(&p->se.group_node);
  1887. #ifdef CONFIG_FAIR_GROUP_SCHED
  1888. p->se.cfs_rq = NULL;
  1889. #endif
  1890. #ifdef CONFIG_SCHEDSTATS
  1891. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1892. #endif
  1893. RB_CLEAR_NODE(&p->dl.rb_node);
  1894. init_dl_task_timer(&p->dl);
  1895. __dl_clear_params(p);
  1896. INIT_LIST_HEAD(&p->rt.run_list);
  1897. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1898. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1899. #endif
  1900. #ifdef CONFIG_NUMA_BALANCING
  1901. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1902. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1903. p->mm->numa_scan_seq = 0;
  1904. }
  1905. if (clone_flags & CLONE_VM)
  1906. p->numa_preferred_nid = current->numa_preferred_nid;
  1907. else
  1908. p->numa_preferred_nid = -1;
  1909. p->node_stamp = 0ULL;
  1910. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1911. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1912. p->numa_work.next = &p->numa_work;
  1913. p->numa_faults = NULL;
  1914. p->last_task_numa_placement = 0;
  1915. p->last_sum_exec_runtime = 0;
  1916. p->numa_group = NULL;
  1917. #endif /* CONFIG_NUMA_BALANCING */
  1918. }
  1919. DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
  1920. #ifdef CONFIG_NUMA_BALANCING
  1921. void set_numabalancing_state(bool enabled)
  1922. {
  1923. if (enabled)
  1924. static_branch_enable(&sched_numa_balancing);
  1925. else
  1926. static_branch_disable(&sched_numa_balancing);
  1927. }
  1928. #ifdef CONFIG_PROC_SYSCTL
  1929. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1930. void __user *buffer, size_t *lenp, loff_t *ppos)
  1931. {
  1932. struct ctl_table t;
  1933. int err;
  1934. int state = static_branch_likely(&sched_numa_balancing);
  1935. if (write && !capable(CAP_SYS_ADMIN))
  1936. return -EPERM;
  1937. t = *table;
  1938. t.data = &state;
  1939. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1940. if (err < 0)
  1941. return err;
  1942. if (write)
  1943. set_numabalancing_state(state);
  1944. return err;
  1945. }
  1946. #endif
  1947. #endif
  1948. /*
  1949. * fork()/clone()-time setup:
  1950. */
  1951. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1952. {
  1953. unsigned long flags;
  1954. int cpu = get_cpu();
  1955. __sched_fork(clone_flags, p);
  1956. /*
  1957. * We mark the process as running here. This guarantees that
  1958. * nobody will actually run it, and a signal or other external
  1959. * event cannot wake it up and insert it on the runqueue either.
  1960. */
  1961. p->state = TASK_RUNNING;
  1962. /*
  1963. * Make sure we do not leak PI boosting priority to the child.
  1964. */
  1965. p->prio = current->normal_prio;
  1966. /*
  1967. * Revert to default priority/policy on fork if requested.
  1968. */
  1969. if (unlikely(p->sched_reset_on_fork)) {
  1970. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1971. p->policy = SCHED_NORMAL;
  1972. p->static_prio = NICE_TO_PRIO(0);
  1973. p->rt_priority = 0;
  1974. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1975. p->static_prio = NICE_TO_PRIO(0);
  1976. p->prio = p->normal_prio = __normal_prio(p);
  1977. set_load_weight(p);
  1978. /*
  1979. * We don't need the reset flag anymore after the fork. It has
  1980. * fulfilled its duty:
  1981. */
  1982. p->sched_reset_on_fork = 0;
  1983. }
  1984. if (dl_prio(p->prio)) {
  1985. put_cpu();
  1986. return -EAGAIN;
  1987. } else if (rt_prio(p->prio)) {
  1988. p->sched_class = &rt_sched_class;
  1989. } else {
  1990. p->sched_class = &fair_sched_class;
  1991. }
  1992. if (p->sched_class->task_fork)
  1993. p->sched_class->task_fork(p);
  1994. /*
  1995. * The child is not yet in the pid-hash so no cgroup attach races,
  1996. * and the cgroup is pinned to this child due to cgroup_fork()
  1997. * is ran before sched_fork().
  1998. *
  1999. * Silence PROVE_RCU.
  2000. */
  2001. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2002. set_task_cpu(p, cpu);
  2003. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2004. #ifdef CONFIG_SCHED_INFO
  2005. if (likely(sched_info_on()))
  2006. memset(&p->sched_info, 0, sizeof(p->sched_info));
  2007. #endif
  2008. #if defined(CONFIG_SMP)
  2009. p->on_cpu = 0;
  2010. #endif
  2011. init_task_preempt_count(p);
  2012. #ifdef CONFIG_SMP
  2013. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  2014. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  2015. #endif
  2016. put_cpu();
  2017. return 0;
  2018. }
  2019. unsigned long to_ratio(u64 period, u64 runtime)
  2020. {
  2021. if (runtime == RUNTIME_INF)
  2022. return 1ULL << 20;
  2023. /*
  2024. * Doing this here saves a lot of checks in all
  2025. * the calling paths, and returning zero seems
  2026. * safe for them anyway.
  2027. */
  2028. if (period == 0)
  2029. return 0;
  2030. return div64_u64(runtime << 20, period);
  2031. }
  2032. #ifdef CONFIG_SMP
  2033. inline struct dl_bw *dl_bw_of(int i)
  2034. {
  2035. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  2036. "sched RCU must be held");
  2037. return &cpu_rq(i)->rd->dl_bw;
  2038. }
  2039. static inline int dl_bw_cpus(int i)
  2040. {
  2041. struct root_domain *rd = cpu_rq(i)->rd;
  2042. int cpus = 0;
  2043. RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  2044. "sched RCU must be held");
  2045. for_each_cpu_and(i, rd->span, cpu_active_mask)
  2046. cpus++;
  2047. return cpus;
  2048. }
  2049. #else
  2050. inline struct dl_bw *dl_bw_of(int i)
  2051. {
  2052. return &cpu_rq(i)->dl.dl_bw;
  2053. }
  2054. static inline int dl_bw_cpus(int i)
  2055. {
  2056. return 1;
  2057. }
  2058. #endif
  2059. /*
  2060. * We must be sure that accepting a new task (or allowing changing the
  2061. * parameters of an existing one) is consistent with the bandwidth
  2062. * constraints. If yes, this function also accordingly updates the currently
  2063. * allocated bandwidth to reflect the new situation.
  2064. *
  2065. * This function is called while holding p's rq->lock.
  2066. *
  2067. * XXX we should delay bw change until the task's 0-lag point, see
  2068. * __setparam_dl().
  2069. */
  2070. static int dl_overflow(struct task_struct *p, int policy,
  2071. const struct sched_attr *attr)
  2072. {
  2073. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  2074. u64 period = attr->sched_period ?: attr->sched_deadline;
  2075. u64 runtime = attr->sched_runtime;
  2076. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  2077. int cpus, err = -1;
  2078. if (new_bw == p->dl.dl_bw)
  2079. return 0;
  2080. /*
  2081. * Either if a task, enters, leave, or stays -deadline but changes
  2082. * its parameters, we may need to update accordingly the total
  2083. * allocated bandwidth of the container.
  2084. */
  2085. raw_spin_lock(&dl_b->lock);
  2086. cpus = dl_bw_cpus(task_cpu(p));
  2087. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  2088. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  2089. __dl_add(dl_b, new_bw);
  2090. err = 0;
  2091. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  2092. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  2093. __dl_clear(dl_b, p->dl.dl_bw);
  2094. __dl_add(dl_b, new_bw);
  2095. err = 0;
  2096. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  2097. __dl_clear(dl_b, p->dl.dl_bw);
  2098. err = 0;
  2099. }
  2100. raw_spin_unlock(&dl_b->lock);
  2101. return err;
  2102. }
  2103. extern void init_dl_bw(struct dl_bw *dl_b);
  2104. /*
  2105. * wake_up_new_task - wake up a newly created task for the first time.
  2106. *
  2107. * This function will do some initial scheduler statistics housekeeping
  2108. * that must be done for every newly created context, then puts the task
  2109. * on the runqueue and wakes it.
  2110. */
  2111. void wake_up_new_task(struct task_struct *p)
  2112. {
  2113. unsigned long flags;
  2114. struct rq *rq;
  2115. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2116. /* Initialize new task's runnable average */
  2117. init_entity_runnable_average(&p->se);
  2118. #ifdef CONFIG_SMP
  2119. /*
  2120. * Fork balancing, do it here and not earlier because:
  2121. * - cpus_allowed can change in the fork path
  2122. * - any previously selected cpu might disappear through hotplug
  2123. */
  2124. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  2125. #endif
  2126. rq = __task_rq_lock(p);
  2127. activate_task(rq, p, 0);
  2128. p->on_rq = TASK_ON_RQ_QUEUED;
  2129. trace_sched_wakeup_new(p);
  2130. check_preempt_curr(rq, p, WF_FORK);
  2131. #ifdef CONFIG_SMP
  2132. if (p->sched_class->task_woken) {
  2133. /*
  2134. * Nothing relies on rq->lock after this, so its fine to
  2135. * drop it.
  2136. */
  2137. lockdep_unpin_lock(&rq->lock);
  2138. p->sched_class->task_woken(rq, p);
  2139. lockdep_pin_lock(&rq->lock);
  2140. }
  2141. #endif
  2142. task_rq_unlock(rq, p, &flags);
  2143. }
  2144. #ifdef CONFIG_PREEMPT_NOTIFIERS
  2145. static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
  2146. void preempt_notifier_inc(void)
  2147. {
  2148. static_key_slow_inc(&preempt_notifier_key);
  2149. }
  2150. EXPORT_SYMBOL_GPL(preempt_notifier_inc);
  2151. void preempt_notifier_dec(void)
  2152. {
  2153. static_key_slow_dec(&preempt_notifier_key);
  2154. }
  2155. EXPORT_SYMBOL_GPL(preempt_notifier_dec);
  2156. /**
  2157. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  2158. * @notifier: notifier struct to register
  2159. */
  2160. void preempt_notifier_register(struct preempt_notifier *notifier)
  2161. {
  2162. if (!static_key_false(&preempt_notifier_key))
  2163. WARN(1, "registering preempt_notifier while notifiers disabled\n");
  2164. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  2165. }
  2166. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  2167. /**
  2168. * preempt_notifier_unregister - no longer interested in preemption notifications
  2169. * @notifier: notifier struct to unregister
  2170. *
  2171. * This is *not* safe to call from within a preemption notifier.
  2172. */
  2173. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  2174. {
  2175. hlist_del(&notifier->link);
  2176. }
  2177. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  2178. static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2179. {
  2180. struct preempt_notifier *notifier;
  2181. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2182. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  2183. }
  2184. static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2185. {
  2186. if (static_key_false(&preempt_notifier_key))
  2187. __fire_sched_in_preempt_notifiers(curr);
  2188. }
  2189. static void
  2190. __fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2191. struct task_struct *next)
  2192. {
  2193. struct preempt_notifier *notifier;
  2194. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  2195. notifier->ops->sched_out(notifier, next);
  2196. }
  2197. static __always_inline void
  2198. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2199. struct task_struct *next)
  2200. {
  2201. if (static_key_false(&preempt_notifier_key))
  2202. __fire_sched_out_preempt_notifiers(curr, next);
  2203. }
  2204. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  2205. static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  2206. {
  2207. }
  2208. static inline void
  2209. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  2210. struct task_struct *next)
  2211. {
  2212. }
  2213. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  2214. /**
  2215. * prepare_task_switch - prepare to switch tasks
  2216. * @rq: the runqueue preparing to switch
  2217. * @prev: the current task that is being switched out
  2218. * @next: the task we are going to switch to.
  2219. *
  2220. * This is called with the rq lock held and interrupts off. It must
  2221. * be paired with a subsequent finish_task_switch after the context
  2222. * switch.
  2223. *
  2224. * prepare_task_switch sets up locking and calls architecture specific
  2225. * hooks.
  2226. */
  2227. static inline void
  2228. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  2229. struct task_struct *next)
  2230. {
  2231. sched_info_switch(rq, prev, next);
  2232. perf_event_task_sched_out(prev, next);
  2233. fire_sched_out_preempt_notifiers(prev, next);
  2234. prepare_lock_switch(rq, next);
  2235. prepare_arch_switch(next);
  2236. }
  2237. /**
  2238. * finish_task_switch - clean up after a task-switch
  2239. * @prev: the thread we just switched away from.
  2240. *
  2241. * finish_task_switch must be called after the context switch, paired
  2242. * with a prepare_task_switch call before the context switch.
  2243. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  2244. * and do any other architecture-specific cleanup actions.
  2245. *
  2246. * Note that we may have delayed dropping an mm in context_switch(). If
  2247. * so, we finish that here outside of the runqueue lock. (Doing it
  2248. * with the lock held can cause deadlocks; see schedule() for
  2249. * details.)
  2250. *
  2251. * The context switch have flipped the stack from under us and restored the
  2252. * local variables which were saved when this task called schedule() in the
  2253. * past. prev == current is still correct but we need to recalculate this_rq
  2254. * because prev may have moved to another CPU.
  2255. */
  2256. static struct rq *finish_task_switch(struct task_struct *prev)
  2257. __releases(rq->lock)
  2258. {
  2259. struct rq *rq = this_rq();
  2260. struct mm_struct *mm = rq->prev_mm;
  2261. long prev_state;
  2262. /*
  2263. * The previous task will have left us with a preempt_count of 2
  2264. * because it left us after:
  2265. *
  2266. * schedule()
  2267. * preempt_disable(); // 1
  2268. * __schedule()
  2269. * raw_spin_lock_irq(&rq->lock) // 2
  2270. *
  2271. * Also, see FORK_PREEMPT_COUNT.
  2272. */
  2273. if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
  2274. "corrupted preempt_count: %s/%d/0x%x\n",
  2275. current->comm, current->pid, preempt_count()))
  2276. preempt_count_set(FORK_PREEMPT_COUNT);
  2277. rq->prev_mm = NULL;
  2278. /*
  2279. * A task struct has one reference for the use as "current".
  2280. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  2281. * schedule one last time. The schedule call will never return, and
  2282. * the scheduled task must drop that reference.
  2283. *
  2284. * We must observe prev->state before clearing prev->on_cpu (in
  2285. * finish_lock_switch), otherwise a concurrent wakeup can get prev
  2286. * running on another CPU and we could rave with its RUNNING -> DEAD
  2287. * transition, resulting in a double drop.
  2288. */
  2289. prev_state = prev->state;
  2290. vtime_task_switch(prev);
  2291. perf_event_task_sched_in(prev, current);
  2292. finish_lock_switch(rq, prev);
  2293. finish_arch_post_lock_switch();
  2294. fire_sched_in_preempt_notifiers(current);
  2295. if (mm)
  2296. mmdrop(mm);
  2297. if (unlikely(prev_state == TASK_DEAD)) {
  2298. if (prev->sched_class->task_dead)
  2299. prev->sched_class->task_dead(prev);
  2300. /*
  2301. * Remove function-return probe instances associated with this
  2302. * task and put them back on the free list.
  2303. */
  2304. kprobe_flush_task(prev);
  2305. put_task_struct(prev);
  2306. }
  2307. tick_nohz_task_switch();
  2308. return rq;
  2309. }
  2310. #ifdef CONFIG_SMP
  2311. /* rq->lock is NOT held, but preemption is disabled */
  2312. static void __balance_callback(struct rq *rq)
  2313. {
  2314. struct callback_head *head, *next;
  2315. void (*func)(struct rq *rq);
  2316. unsigned long flags;
  2317. raw_spin_lock_irqsave(&rq->lock, flags);
  2318. head = rq->balance_callback;
  2319. rq->balance_callback = NULL;
  2320. while (head) {
  2321. func = (void (*)(struct rq *))head->func;
  2322. next = head->next;
  2323. head->next = NULL;
  2324. head = next;
  2325. func(rq);
  2326. }
  2327. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2328. }
  2329. static inline void balance_callback(struct rq *rq)
  2330. {
  2331. if (unlikely(rq->balance_callback))
  2332. __balance_callback(rq);
  2333. }
  2334. #else
  2335. static inline void balance_callback(struct rq *rq)
  2336. {
  2337. }
  2338. #endif
  2339. /**
  2340. * schedule_tail - first thing a freshly forked thread must call.
  2341. * @prev: the thread we just switched away from.
  2342. */
  2343. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  2344. __releases(rq->lock)
  2345. {
  2346. struct rq *rq;
  2347. /*
  2348. * New tasks start with FORK_PREEMPT_COUNT, see there and
  2349. * finish_task_switch() for details.
  2350. *
  2351. * finish_task_switch() will drop rq->lock() and lower preempt_count
  2352. * and the preempt_enable() will end up enabling preemption (on
  2353. * PREEMPT_COUNT kernels).
  2354. */
  2355. rq = finish_task_switch(prev);
  2356. balance_callback(rq);
  2357. preempt_enable();
  2358. if (current->set_child_tid)
  2359. put_user(task_pid_vnr(current), current->set_child_tid);
  2360. }
  2361. /*
  2362. * context_switch - switch to the new MM and the new thread's register state.
  2363. */
  2364. static inline struct rq *
  2365. context_switch(struct rq *rq, struct task_struct *prev,
  2366. struct task_struct *next)
  2367. {
  2368. struct mm_struct *mm, *oldmm;
  2369. prepare_task_switch(rq, prev, next);
  2370. mm = next->mm;
  2371. oldmm = prev->active_mm;
  2372. /*
  2373. * For paravirt, this is coupled with an exit in switch_to to
  2374. * combine the page table reload and the switch backend into
  2375. * one hypercall.
  2376. */
  2377. arch_start_context_switch(prev);
  2378. if (!mm) {
  2379. next->active_mm = oldmm;
  2380. atomic_inc(&oldmm->mm_count);
  2381. enter_lazy_tlb(oldmm, next);
  2382. } else
  2383. switch_mm(oldmm, mm, next);
  2384. if (!prev->mm) {
  2385. prev->active_mm = NULL;
  2386. rq->prev_mm = oldmm;
  2387. }
  2388. /*
  2389. * Since the runqueue lock will be released by the next
  2390. * task (which is an invalid locking op but in the case
  2391. * of the scheduler it's an obvious special-case), so we
  2392. * do an early lockdep release here:
  2393. */
  2394. lockdep_unpin_lock(&rq->lock);
  2395. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  2396. /* Here we just switch the register state and the stack. */
  2397. switch_to(prev, next, prev);
  2398. barrier();
  2399. return finish_task_switch(prev);
  2400. }
  2401. /*
  2402. * nr_running and nr_context_switches:
  2403. *
  2404. * externally visible scheduler statistics: current number of runnable
  2405. * threads, total number of context switches performed since bootup.
  2406. */
  2407. unsigned long nr_running(void)
  2408. {
  2409. unsigned long i, sum = 0;
  2410. for_each_online_cpu(i)
  2411. sum += cpu_rq(i)->nr_running;
  2412. return sum;
  2413. }
  2414. /*
  2415. * Check if only the current task is running on the cpu.
  2416. *
  2417. * Caution: this function does not check that the caller has disabled
  2418. * preemption, thus the result might have a time-of-check-to-time-of-use
  2419. * race. The caller is responsible to use it correctly, for example:
  2420. *
  2421. * - from a non-preemptable section (of course)
  2422. *
  2423. * - from a thread that is bound to a single CPU
  2424. *
  2425. * - in a loop with very short iterations (e.g. a polling loop)
  2426. */
  2427. bool single_task_running(void)
  2428. {
  2429. return raw_rq()->nr_running == 1;
  2430. }
  2431. EXPORT_SYMBOL(single_task_running);
  2432. unsigned long long nr_context_switches(void)
  2433. {
  2434. int i;
  2435. unsigned long long sum = 0;
  2436. for_each_possible_cpu(i)
  2437. sum += cpu_rq(i)->nr_switches;
  2438. return sum;
  2439. }
  2440. unsigned long nr_iowait(void)
  2441. {
  2442. unsigned long i, sum = 0;
  2443. for_each_possible_cpu(i)
  2444. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2445. return sum;
  2446. }
  2447. unsigned long nr_iowait_cpu(int cpu)
  2448. {
  2449. struct rq *this = cpu_rq(cpu);
  2450. return atomic_read(&this->nr_iowait);
  2451. }
  2452. void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
  2453. {
  2454. struct rq *rq = this_rq();
  2455. *nr_waiters = atomic_read(&rq->nr_iowait);
  2456. *load = rq->load.weight;
  2457. }
  2458. #ifdef CONFIG_SMP
  2459. /*
  2460. * sched_exec - execve() is a valuable balancing opportunity, because at
  2461. * this point the task has the smallest effective memory and cache footprint.
  2462. */
  2463. void sched_exec(void)
  2464. {
  2465. struct task_struct *p = current;
  2466. unsigned long flags;
  2467. int dest_cpu;
  2468. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2469. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2470. if (dest_cpu == smp_processor_id())
  2471. goto unlock;
  2472. if (likely(cpu_active(dest_cpu))) {
  2473. struct migration_arg arg = { p, dest_cpu };
  2474. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2475. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2476. return;
  2477. }
  2478. unlock:
  2479. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2480. }
  2481. #endif
  2482. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2483. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2484. EXPORT_PER_CPU_SYMBOL(kstat);
  2485. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2486. /*
  2487. * Return accounted runtime for the task.
  2488. * In case the task is currently running, return the runtime plus current's
  2489. * pending runtime that have not been accounted yet.
  2490. */
  2491. unsigned long long task_sched_runtime(struct task_struct *p)
  2492. {
  2493. unsigned long flags;
  2494. struct rq *rq;
  2495. u64 ns;
  2496. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2497. /*
  2498. * 64-bit doesn't need locks to atomically read a 64bit value.
  2499. * So we have a optimization chance when the task's delta_exec is 0.
  2500. * Reading ->on_cpu is racy, but this is ok.
  2501. *
  2502. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2503. * If we race with it entering cpu, unaccounted time is 0. This is
  2504. * indistinguishable from the read occurring a few cycles earlier.
  2505. * If we see ->on_cpu without ->on_rq, the task is leaving, and has
  2506. * been accounted, so we're correct here as well.
  2507. */
  2508. if (!p->on_cpu || !task_on_rq_queued(p))
  2509. return p->se.sum_exec_runtime;
  2510. #endif
  2511. rq = task_rq_lock(p, &flags);
  2512. /*
  2513. * Must be ->curr _and_ ->on_rq. If dequeued, we would
  2514. * project cycles that may never be accounted to this
  2515. * thread, breaking clock_gettime().
  2516. */
  2517. if (task_current(rq, p) && task_on_rq_queued(p)) {
  2518. update_rq_clock(rq);
  2519. p->sched_class->update_curr(rq);
  2520. }
  2521. ns = p->se.sum_exec_runtime;
  2522. task_rq_unlock(rq, p, &flags);
  2523. return ns;
  2524. }
  2525. /*
  2526. * This function gets called by the timer code, with HZ frequency.
  2527. * We call it with interrupts disabled.
  2528. */
  2529. void scheduler_tick(void)
  2530. {
  2531. int cpu = smp_processor_id();
  2532. struct rq *rq = cpu_rq(cpu);
  2533. struct task_struct *curr = rq->curr;
  2534. sched_clock_tick();
  2535. raw_spin_lock(&rq->lock);
  2536. update_rq_clock(rq);
  2537. curr->sched_class->task_tick(rq, curr, 0);
  2538. update_cpu_load_active(rq);
  2539. calc_global_load_tick(rq);
  2540. raw_spin_unlock(&rq->lock);
  2541. perf_event_task_tick();
  2542. #ifdef CONFIG_SMP
  2543. rq->idle_balance = idle_cpu(cpu);
  2544. trigger_load_balance(rq);
  2545. #endif
  2546. rq_last_tick_reset(rq);
  2547. }
  2548. #ifdef CONFIG_NO_HZ_FULL
  2549. /**
  2550. * scheduler_tick_max_deferment
  2551. *
  2552. * Keep at least one tick per second when a single
  2553. * active task is running because the scheduler doesn't
  2554. * yet completely support full dynticks environment.
  2555. *
  2556. * This makes sure that uptime, CFS vruntime, load
  2557. * balancing, etc... continue to move forward, even
  2558. * with a very low granularity.
  2559. *
  2560. * Return: Maximum deferment in nanoseconds.
  2561. */
  2562. u64 scheduler_tick_max_deferment(void)
  2563. {
  2564. struct rq *rq = this_rq();
  2565. unsigned long next, now = READ_ONCE(jiffies);
  2566. next = rq->last_sched_tick + HZ;
  2567. if (time_before_eq(next, now))
  2568. return 0;
  2569. return jiffies_to_nsecs(next - now);
  2570. }
  2571. #endif
  2572. notrace unsigned long get_parent_ip(unsigned long addr)
  2573. {
  2574. if (in_lock_functions(addr)) {
  2575. addr = CALLER_ADDR2;
  2576. if (in_lock_functions(addr))
  2577. addr = CALLER_ADDR3;
  2578. }
  2579. return addr;
  2580. }
  2581. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2582. defined(CONFIG_PREEMPT_TRACER))
  2583. void preempt_count_add(int val)
  2584. {
  2585. #ifdef CONFIG_DEBUG_PREEMPT
  2586. /*
  2587. * Underflow?
  2588. */
  2589. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2590. return;
  2591. #endif
  2592. __preempt_count_add(val);
  2593. #ifdef CONFIG_DEBUG_PREEMPT
  2594. /*
  2595. * Spinlock count overflowing soon?
  2596. */
  2597. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2598. PREEMPT_MASK - 10);
  2599. #endif
  2600. if (preempt_count() == val) {
  2601. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2602. #ifdef CONFIG_DEBUG_PREEMPT
  2603. current->preempt_disable_ip = ip;
  2604. #endif
  2605. trace_preempt_off(CALLER_ADDR0, ip);
  2606. }
  2607. }
  2608. EXPORT_SYMBOL(preempt_count_add);
  2609. NOKPROBE_SYMBOL(preempt_count_add);
  2610. void preempt_count_sub(int val)
  2611. {
  2612. #ifdef CONFIG_DEBUG_PREEMPT
  2613. /*
  2614. * Underflow?
  2615. */
  2616. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2617. return;
  2618. /*
  2619. * Is the spinlock portion underflowing?
  2620. */
  2621. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2622. !(preempt_count() & PREEMPT_MASK)))
  2623. return;
  2624. #endif
  2625. if (preempt_count() == val)
  2626. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2627. __preempt_count_sub(val);
  2628. }
  2629. EXPORT_SYMBOL(preempt_count_sub);
  2630. NOKPROBE_SYMBOL(preempt_count_sub);
  2631. #endif
  2632. /*
  2633. * Print scheduling while atomic bug:
  2634. */
  2635. static noinline void __schedule_bug(struct task_struct *prev)
  2636. {
  2637. if (oops_in_progress)
  2638. return;
  2639. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2640. prev->comm, prev->pid, preempt_count());
  2641. debug_show_held_locks(prev);
  2642. print_modules();
  2643. if (irqs_disabled())
  2644. print_irqtrace_events(prev);
  2645. #ifdef CONFIG_DEBUG_PREEMPT
  2646. if (in_atomic_preempt_off()) {
  2647. pr_err("Preemption disabled at:");
  2648. print_ip_sym(current->preempt_disable_ip);
  2649. pr_cont("\n");
  2650. }
  2651. #endif
  2652. dump_stack();
  2653. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2654. }
  2655. /*
  2656. * Various schedule()-time debugging checks and statistics:
  2657. */
  2658. static inline void schedule_debug(struct task_struct *prev)
  2659. {
  2660. #ifdef CONFIG_SCHED_STACK_END_CHECK
  2661. BUG_ON(task_stack_end_corrupted(prev));
  2662. #endif
  2663. if (unlikely(in_atomic_preempt_off())) {
  2664. __schedule_bug(prev);
  2665. preempt_count_set(PREEMPT_DISABLED);
  2666. }
  2667. rcu_sleep_check();
  2668. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2669. schedstat_inc(this_rq(), sched_count);
  2670. }
  2671. /*
  2672. * Pick up the highest-prio task:
  2673. */
  2674. static inline struct task_struct *
  2675. pick_next_task(struct rq *rq, struct task_struct *prev)
  2676. {
  2677. const struct sched_class *class = &fair_sched_class;
  2678. struct task_struct *p;
  2679. /*
  2680. * Optimization: we know that if all tasks are in
  2681. * the fair class we can call that function directly:
  2682. */
  2683. if (likely(prev->sched_class == class &&
  2684. rq->nr_running == rq->cfs.h_nr_running)) {
  2685. p = fair_sched_class.pick_next_task(rq, prev);
  2686. if (unlikely(p == RETRY_TASK))
  2687. goto again;
  2688. /* assumes fair_sched_class->next == idle_sched_class */
  2689. if (unlikely(!p))
  2690. p = idle_sched_class.pick_next_task(rq, prev);
  2691. return p;
  2692. }
  2693. again:
  2694. for_each_class(class) {
  2695. p = class->pick_next_task(rq, prev);
  2696. if (p) {
  2697. if (unlikely(p == RETRY_TASK))
  2698. goto again;
  2699. return p;
  2700. }
  2701. }
  2702. BUG(); /* the idle class will always have a runnable task */
  2703. }
  2704. /*
  2705. * __schedule() is the main scheduler function.
  2706. *
  2707. * The main means of driving the scheduler and thus entering this function are:
  2708. *
  2709. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2710. *
  2711. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2712. * paths. For example, see arch/x86/entry_64.S.
  2713. *
  2714. * To drive preemption between tasks, the scheduler sets the flag in timer
  2715. * interrupt handler scheduler_tick().
  2716. *
  2717. * 3. Wakeups don't really cause entry into schedule(). They add a
  2718. * task to the run-queue and that's it.
  2719. *
  2720. * Now, if the new task added to the run-queue preempts the current
  2721. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2722. * called on the nearest possible occasion:
  2723. *
  2724. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2725. *
  2726. * - in syscall or exception context, at the next outmost
  2727. * preempt_enable(). (this might be as soon as the wake_up()'s
  2728. * spin_unlock()!)
  2729. *
  2730. * - in IRQ context, return from interrupt-handler to
  2731. * preemptible context
  2732. *
  2733. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2734. * then at the next:
  2735. *
  2736. * - cond_resched() call
  2737. * - explicit schedule() call
  2738. * - return from syscall or exception to user-space
  2739. * - return from interrupt-handler to user-space
  2740. *
  2741. * WARNING: must be called with preemption disabled!
  2742. */
  2743. static void __sched notrace __schedule(bool preempt)
  2744. {
  2745. struct task_struct *prev, *next;
  2746. unsigned long *switch_count;
  2747. struct rq *rq;
  2748. int cpu;
  2749. cpu = smp_processor_id();
  2750. rq = cpu_rq(cpu);
  2751. prev = rq->curr;
  2752. /*
  2753. * do_exit() calls schedule() with preemption disabled as an exception;
  2754. * however we must fix that up, otherwise the next task will see an
  2755. * inconsistent (higher) preempt count.
  2756. *
  2757. * It also avoids the below schedule_debug() test from complaining
  2758. * about this.
  2759. */
  2760. if (unlikely(prev->state == TASK_DEAD))
  2761. preempt_enable_no_resched_notrace();
  2762. schedule_debug(prev);
  2763. if (sched_feat(HRTICK))
  2764. hrtick_clear(rq);
  2765. local_irq_disable();
  2766. rcu_note_context_switch();
  2767. /*
  2768. * Make sure that signal_pending_state()->signal_pending() below
  2769. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2770. * done by the caller to avoid the race with signal_wake_up().
  2771. */
  2772. smp_mb__before_spinlock();
  2773. raw_spin_lock(&rq->lock);
  2774. lockdep_pin_lock(&rq->lock);
  2775. rq->clock_skip_update <<= 1; /* promote REQ to ACT */
  2776. switch_count = &prev->nivcsw;
  2777. if (!preempt && prev->state) {
  2778. if (unlikely(signal_pending_state(prev->state, prev))) {
  2779. prev->state = TASK_RUNNING;
  2780. } else {
  2781. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2782. prev->on_rq = 0;
  2783. /*
  2784. * If a worker went to sleep, notify and ask workqueue
  2785. * whether it wants to wake up a task to maintain
  2786. * concurrency.
  2787. */
  2788. if (prev->flags & PF_WQ_WORKER) {
  2789. struct task_struct *to_wakeup;
  2790. to_wakeup = wq_worker_sleeping(prev, cpu);
  2791. if (to_wakeup)
  2792. try_to_wake_up_local(to_wakeup);
  2793. }
  2794. }
  2795. switch_count = &prev->nvcsw;
  2796. }
  2797. if (task_on_rq_queued(prev))
  2798. update_rq_clock(rq);
  2799. next = pick_next_task(rq, prev);
  2800. clear_tsk_need_resched(prev);
  2801. clear_preempt_need_resched();
  2802. rq->clock_skip_update = 0;
  2803. if (likely(prev != next)) {
  2804. rq->nr_switches++;
  2805. rq->curr = next;
  2806. ++*switch_count;
  2807. trace_sched_switch(preempt, prev, next);
  2808. rq = context_switch(rq, prev, next); /* unlocks the rq */
  2809. cpu = cpu_of(rq);
  2810. } else {
  2811. lockdep_unpin_lock(&rq->lock);
  2812. raw_spin_unlock_irq(&rq->lock);
  2813. }
  2814. balance_callback(rq);
  2815. }
  2816. static inline void sched_submit_work(struct task_struct *tsk)
  2817. {
  2818. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2819. return;
  2820. /*
  2821. * If we are going to sleep and we have plugged IO queued,
  2822. * make sure to submit it to avoid deadlocks.
  2823. */
  2824. if (blk_needs_flush_plug(tsk))
  2825. blk_schedule_flush_plug(tsk);
  2826. }
  2827. asmlinkage __visible void __sched schedule(void)
  2828. {
  2829. struct task_struct *tsk = current;
  2830. sched_submit_work(tsk);
  2831. do {
  2832. preempt_disable();
  2833. __schedule(false);
  2834. sched_preempt_enable_no_resched();
  2835. } while (need_resched());
  2836. }
  2837. EXPORT_SYMBOL(schedule);
  2838. #ifdef CONFIG_CONTEXT_TRACKING
  2839. asmlinkage __visible void __sched schedule_user(void)
  2840. {
  2841. /*
  2842. * If we come here after a random call to set_need_resched(),
  2843. * or we have been woken up remotely but the IPI has not yet arrived,
  2844. * we haven't yet exited the RCU idle mode. Do it here manually until
  2845. * we find a better solution.
  2846. *
  2847. * NB: There are buggy callers of this function. Ideally we
  2848. * should warn if prev_state != CONTEXT_USER, but that will trigger
  2849. * too frequently to make sense yet.
  2850. */
  2851. enum ctx_state prev_state = exception_enter();
  2852. schedule();
  2853. exception_exit(prev_state);
  2854. }
  2855. #endif
  2856. /**
  2857. * schedule_preempt_disabled - called with preemption disabled
  2858. *
  2859. * Returns with preemption disabled. Note: preempt_count must be 1
  2860. */
  2861. void __sched schedule_preempt_disabled(void)
  2862. {
  2863. sched_preempt_enable_no_resched();
  2864. schedule();
  2865. preempt_disable();
  2866. }
  2867. static void __sched notrace preempt_schedule_common(void)
  2868. {
  2869. do {
  2870. preempt_disable_notrace();
  2871. __schedule(true);
  2872. preempt_enable_no_resched_notrace();
  2873. /*
  2874. * Check again in case we missed a preemption opportunity
  2875. * between schedule and now.
  2876. */
  2877. } while (need_resched());
  2878. }
  2879. #ifdef CONFIG_PREEMPT
  2880. /*
  2881. * this is the entry point to schedule() from in-kernel preemption
  2882. * off of preempt_enable. Kernel preemptions off return from interrupt
  2883. * occur there and call schedule directly.
  2884. */
  2885. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2886. {
  2887. /*
  2888. * If there is a non-zero preempt_count or interrupts are disabled,
  2889. * we do not want to preempt the current task. Just return..
  2890. */
  2891. if (likely(!preemptible()))
  2892. return;
  2893. preempt_schedule_common();
  2894. }
  2895. NOKPROBE_SYMBOL(preempt_schedule);
  2896. EXPORT_SYMBOL(preempt_schedule);
  2897. /**
  2898. * preempt_schedule_notrace - preempt_schedule called by tracing
  2899. *
  2900. * The tracing infrastructure uses preempt_enable_notrace to prevent
  2901. * recursion and tracing preempt enabling caused by the tracing
  2902. * infrastructure itself. But as tracing can happen in areas coming
  2903. * from userspace or just about to enter userspace, a preempt enable
  2904. * can occur before user_exit() is called. This will cause the scheduler
  2905. * to be called when the system is still in usermode.
  2906. *
  2907. * To prevent this, the preempt_enable_notrace will use this function
  2908. * instead of preempt_schedule() to exit user context if needed before
  2909. * calling the scheduler.
  2910. */
  2911. asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
  2912. {
  2913. enum ctx_state prev_ctx;
  2914. if (likely(!preemptible()))
  2915. return;
  2916. do {
  2917. preempt_disable_notrace();
  2918. /*
  2919. * Needs preempt disabled in case user_exit() is traced
  2920. * and the tracer calls preempt_enable_notrace() causing
  2921. * an infinite recursion.
  2922. */
  2923. prev_ctx = exception_enter();
  2924. __schedule(true);
  2925. exception_exit(prev_ctx);
  2926. preempt_enable_no_resched_notrace();
  2927. } while (need_resched());
  2928. }
  2929. EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
  2930. #endif /* CONFIG_PREEMPT */
  2931. /*
  2932. * this is the entry point to schedule() from kernel preemption
  2933. * off of irq context.
  2934. * Note, that this is called and return with irqs disabled. This will
  2935. * protect us against recursive calling from irq.
  2936. */
  2937. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2938. {
  2939. enum ctx_state prev_state;
  2940. /* Catch callers which need to be fixed */
  2941. BUG_ON(preempt_count() || !irqs_disabled());
  2942. prev_state = exception_enter();
  2943. do {
  2944. preempt_disable();
  2945. local_irq_enable();
  2946. __schedule(true);
  2947. local_irq_disable();
  2948. sched_preempt_enable_no_resched();
  2949. } while (need_resched());
  2950. exception_exit(prev_state);
  2951. }
  2952. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2953. void *key)
  2954. {
  2955. return try_to_wake_up(curr->private, mode, wake_flags);
  2956. }
  2957. EXPORT_SYMBOL(default_wake_function);
  2958. #ifdef CONFIG_RT_MUTEXES
  2959. /*
  2960. * rt_mutex_setprio - set the current priority of a task
  2961. * @p: task
  2962. * @prio: prio value (kernel-internal form)
  2963. *
  2964. * This function changes the 'effective' priority of a task. It does
  2965. * not touch ->normal_prio like __setscheduler().
  2966. *
  2967. * Used by the rt_mutex code to implement priority inheritance
  2968. * logic. Call site only calls if the priority of the task changed.
  2969. */
  2970. void rt_mutex_setprio(struct task_struct *p, int prio)
  2971. {
  2972. int oldprio, queued, running, enqueue_flag = ENQUEUE_RESTORE;
  2973. struct rq *rq;
  2974. const struct sched_class *prev_class;
  2975. BUG_ON(prio > MAX_PRIO);
  2976. rq = __task_rq_lock(p);
  2977. /*
  2978. * Idle task boosting is a nono in general. There is one
  2979. * exception, when PREEMPT_RT and NOHZ is active:
  2980. *
  2981. * The idle task calls get_next_timer_interrupt() and holds
  2982. * the timer wheel base->lock on the CPU and another CPU wants
  2983. * to access the timer (probably to cancel it). We can safely
  2984. * ignore the boosting request, as the idle CPU runs this code
  2985. * with interrupts disabled and will complete the lock
  2986. * protected section without being interrupted. So there is no
  2987. * real need to boost.
  2988. */
  2989. if (unlikely(p == rq->idle)) {
  2990. WARN_ON(p != rq->curr);
  2991. WARN_ON(p->pi_blocked_on);
  2992. goto out_unlock;
  2993. }
  2994. trace_sched_pi_setprio(p, prio);
  2995. oldprio = p->prio;
  2996. prev_class = p->sched_class;
  2997. queued = task_on_rq_queued(p);
  2998. running = task_current(rq, p);
  2999. if (queued)
  3000. dequeue_task(rq, p, DEQUEUE_SAVE);
  3001. if (running)
  3002. put_prev_task(rq, p);
  3003. /*
  3004. * Boosting condition are:
  3005. * 1. -rt task is running and holds mutex A
  3006. * --> -dl task blocks on mutex A
  3007. *
  3008. * 2. -dl task is running and holds mutex A
  3009. * --> -dl task blocks on mutex A and could preempt the
  3010. * running task
  3011. */
  3012. if (dl_prio(prio)) {
  3013. struct task_struct *pi_task = rt_mutex_get_top_task(p);
  3014. if (!dl_prio(p->normal_prio) ||
  3015. (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
  3016. p->dl.dl_boosted = 1;
  3017. enqueue_flag |= ENQUEUE_REPLENISH;
  3018. } else
  3019. p->dl.dl_boosted = 0;
  3020. p->sched_class = &dl_sched_class;
  3021. } else if (rt_prio(prio)) {
  3022. if (dl_prio(oldprio))
  3023. p->dl.dl_boosted = 0;
  3024. if (oldprio < prio)
  3025. enqueue_flag |= ENQUEUE_HEAD;
  3026. p->sched_class = &rt_sched_class;
  3027. } else {
  3028. if (dl_prio(oldprio))
  3029. p->dl.dl_boosted = 0;
  3030. if (rt_prio(oldprio))
  3031. p->rt.timeout = 0;
  3032. p->sched_class = &fair_sched_class;
  3033. }
  3034. p->prio = prio;
  3035. if (running)
  3036. p->sched_class->set_curr_task(rq);
  3037. if (queued)
  3038. enqueue_task(rq, p, enqueue_flag);
  3039. check_class_changed(rq, p, prev_class, oldprio);
  3040. out_unlock:
  3041. preempt_disable(); /* avoid rq from going away on us */
  3042. __task_rq_unlock(rq);
  3043. balance_callback(rq);
  3044. preempt_enable();
  3045. }
  3046. #endif
  3047. void set_user_nice(struct task_struct *p, long nice)
  3048. {
  3049. int old_prio, delta, queued;
  3050. unsigned long flags;
  3051. struct rq *rq;
  3052. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  3053. return;
  3054. /*
  3055. * We have to be careful, if called from sys_setpriority(),
  3056. * the task might be in the middle of scheduling on another CPU.
  3057. */
  3058. rq = task_rq_lock(p, &flags);
  3059. /*
  3060. * The RT priorities are set via sched_setscheduler(), but we still
  3061. * allow the 'normal' nice value to be set - but as expected
  3062. * it wont have any effect on scheduling until the task is
  3063. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  3064. */
  3065. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  3066. p->static_prio = NICE_TO_PRIO(nice);
  3067. goto out_unlock;
  3068. }
  3069. queued = task_on_rq_queued(p);
  3070. if (queued)
  3071. dequeue_task(rq, p, DEQUEUE_SAVE);
  3072. p->static_prio = NICE_TO_PRIO(nice);
  3073. set_load_weight(p);
  3074. old_prio = p->prio;
  3075. p->prio = effective_prio(p);
  3076. delta = p->prio - old_prio;
  3077. if (queued) {
  3078. enqueue_task(rq, p, ENQUEUE_RESTORE);
  3079. /*
  3080. * If the task increased its priority or is running and
  3081. * lowered its priority, then reschedule its CPU:
  3082. */
  3083. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3084. resched_curr(rq);
  3085. }
  3086. out_unlock:
  3087. task_rq_unlock(rq, p, &flags);
  3088. }
  3089. EXPORT_SYMBOL(set_user_nice);
  3090. /*
  3091. * can_nice - check if a task can reduce its nice value
  3092. * @p: task
  3093. * @nice: nice value
  3094. */
  3095. int can_nice(const struct task_struct *p, const int nice)
  3096. {
  3097. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3098. int nice_rlim = nice_to_rlimit(nice);
  3099. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  3100. capable(CAP_SYS_NICE));
  3101. }
  3102. #ifdef __ARCH_WANT_SYS_NICE
  3103. /*
  3104. * sys_nice - change the priority of the current process.
  3105. * @increment: priority increment
  3106. *
  3107. * sys_setpriority is a more generic, but much slower function that
  3108. * does similar things.
  3109. */
  3110. SYSCALL_DEFINE1(nice, int, increment)
  3111. {
  3112. long nice, retval;
  3113. /*
  3114. * Setpriority might change our priority at the same moment.
  3115. * We don't have to worry. Conceptually one call occurs first
  3116. * and we have a single winner.
  3117. */
  3118. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  3119. nice = task_nice(current) + increment;
  3120. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  3121. if (increment < 0 && !can_nice(current, nice))
  3122. return -EPERM;
  3123. retval = security_task_setnice(current, nice);
  3124. if (retval)
  3125. return retval;
  3126. set_user_nice(current, nice);
  3127. return 0;
  3128. }
  3129. #endif
  3130. /**
  3131. * task_prio - return the priority value of a given task.
  3132. * @p: the task in question.
  3133. *
  3134. * Return: The priority value as seen by users in /proc.
  3135. * RT tasks are offset by -200. Normal tasks are centered
  3136. * around 0, value goes from -16 to +15.
  3137. */
  3138. int task_prio(const struct task_struct *p)
  3139. {
  3140. return p->prio - MAX_RT_PRIO;
  3141. }
  3142. /**
  3143. * idle_cpu - is a given cpu idle currently?
  3144. * @cpu: the processor in question.
  3145. *
  3146. * Return: 1 if the CPU is currently idle. 0 otherwise.
  3147. */
  3148. int idle_cpu(int cpu)
  3149. {
  3150. struct rq *rq = cpu_rq(cpu);
  3151. if (rq->curr != rq->idle)
  3152. return 0;
  3153. if (rq->nr_running)
  3154. return 0;
  3155. #ifdef CONFIG_SMP
  3156. if (!llist_empty(&rq->wake_list))
  3157. return 0;
  3158. #endif
  3159. return 1;
  3160. }
  3161. /**
  3162. * idle_task - return the idle task for a given cpu.
  3163. * @cpu: the processor in question.
  3164. *
  3165. * Return: The idle task for the cpu @cpu.
  3166. */
  3167. struct task_struct *idle_task(int cpu)
  3168. {
  3169. return cpu_rq(cpu)->idle;
  3170. }
  3171. /**
  3172. * find_process_by_pid - find a process with a matching PID value.
  3173. * @pid: the pid in question.
  3174. *
  3175. * The task of @pid, if found. %NULL otherwise.
  3176. */
  3177. static struct task_struct *find_process_by_pid(pid_t pid)
  3178. {
  3179. return pid ? find_task_by_vpid(pid) : current;
  3180. }
  3181. /*
  3182. * This function initializes the sched_dl_entity of a newly becoming
  3183. * SCHED_DEADLINE task.
  3184. *
  3185. * Only the static values are considered here, the actual runtime and the
  3186. * absolute deadline will be properly calculated when the task is enqueued
  3187. * for the first time with its new policy.
  3188. */
  3189. static void
  3190. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  3191. {
  3192. struct sched_dl_entity *dl_se = &p->dl;
  3193. dl_se->dl_runtime = attr->sched_runtime;
  3194. dl_se->dl_deadline = attr->sched_deadline;
  3195. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  3196. dl_se->flags = attr->sched_flags;
  3197. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  3198. /*
  3199. * Changing the parameters of a task is 'tricky' and we're not doing
  3200. * the correct thing -- also see task_dead_dl() and switched_from_dl().
  3201. *
  3202. * What we SHOULD do is delay the bandwidth release until the 0-lag
  3203. * point. This would include retaining the task_struct until that time
  3204. * and change dl_overflow() to not immediately decrement the current
  3205. * amount.
  3206. *
  3207. * Instead we retain the current runtime/deadline and let the new
  3208. * parameters take effect after the current reservation period lapses.
  3209. * This is safe (albeit pessimistic) because the 0-lag point is always
  3210. * before the current scheduling deadline.
  3211. *
  3212. * We can still have temporary overloads because we do not delay the
  3213. * change in bandwidth until that time; so admission control is
  3214. * not on the safe side. It does however guarantee tasks will never
  3215. * consume more than promised.
  3216. */
  3217. }
  3218. /*
  3219. * sched_setparam() passes in -1 for its policy, to let the functions
  3220. * it calls know not to change it.
  3221. */
  3222. #define SETPARAM_POLICY -1
  3223. static void __setscheduler_params(struct task_struct *p,
  3224. const struct sched_attr *attr)
  3225. {
  3226. int policy = attr->sched_policy;
  3227. if (policy == SETPARAM_POLICY)
  3228. policy = p->policy;
  3229. p->policy = policy;
  3230. if (dl_policy(policy))
  3231. __setparam_dl(p, attr);
  3232. else if (fair_policy(policy))
  3233. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  3234. /*
  3235. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  3236. * !rt_policy. Always setting this ensures that things like
  3237. * getparam()/getattr() don't report silly values for !rt tasks.
  3238. */
  3239. p->rt_priority = attr->sched_priority;
  3240. p->normal_prio = normal_prio(p);
  3241. set_load_weight(p);
  3242. }
  3243. /* Actually do priority change: must hold pi & rq lock. */
  3244. static void __setscheduler(struct rq *rq, struct task_struct *p,
  3245. const struct sched_attr *attr, bool keep_boost)
  3246. {
  3247. __setscheduler_params(p, attr);
  3248. /*
  3249. * Keep a potential priority boosting if called from
  3250. * sched_setscheduler().
  3251. */
  3252. if (keep_boost)
  3253. p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
  3254. else
  3255. p->prio = normal_prio(p);
  3256. if (dl_prio(p->prio))
  3257. p->sched_class = &dl_sched_class;
  3258. else if (rt_prio(p->prio))
  3259. p->sched_class = &rt_sched_class;
  3260. else
  3261. p->sched_class = &fair_sched_class;
  3262. }
  3263. static void
  3264. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  3265. {
  3266. struct sched_dl_entity *dl_se = &p->dl;
  3267. attr->sched_priority = p->rt_priority;
  3268. attr->sched_runtime = dl_se->dl_runtime;
  3269. attr->sched_deadline = dl_se->dl_deadline;
  3270. attr->sched_period = dl_se->dl_period;
  3271. attr->sched_flags = dl_se->flags;
  3272. }
  3273. /*
  3274. * This function validates the new parameters of a -deadline task.
  3275. * We ask for the deadline not being zero, and greater or equal
  3276. * than the runtime, as well as the period of being zero or
  3277. * greater than deadline. Furthermore, we have to be sure that
  3278. * user parameters are above the internal resolution of 1us (we
  3279. * check sched_runtime only since it is always the smaller one) and
  3280. * below 2^63 ns (we have to check both sched_deadline and
  3281. * sched_period, as the latter can be zero).
  3282. */
  3283. static bool
  3284. __checkparam_dl(const struct sched_attr *attr)
  3285. {
  3286. /* deadline != 0 */
  3287. if (attr->sched_deadline == 0)
  3288. return false;
  3289. /*
  3290. * Since we truncate DL_SCALE bits, make sure we're at least
  3291. * that big.
  3292. */
  3293. if (attr->sched_runtime < (1ULL << DL_SCALE))
  3294. return false;
  3295. /*
  3296. * Since we use the MSB for wrap-around and sign issues, make
  3297. * sure it's not set (mind that period can be equal to zero).
  3298. */
  3299. if (attr->sched_deadline & (1ULL << 63) ||
  3300. attr->sched_period & (1ULL << 63))
  3301. return false;
  3302. /* runtime <= deadline <= period (if period != 0) */
  3303. if ((attr->sched_period != 0 &&
  3304. attr->sched_period < attr->sched_deadline) ||
  3305. attr->sched_deadline < attr->sched_runtime)
  3306. return false;
  3307. return true;
  3308. }
  3309. /*
  3310. * check the target process has a UID that matches the current process's
  3311. */
  3312. static bool check_same_owner(struct task_struct *p)
  3313. {
  3314. const struct cred *cred = current_cred(), *pcred;
  3315. bool match;
  3316. rcu_read_lock();
  3317. pcred = __task_cred(p);
  3318. match = (uid_eq(cred->euid, pcred->euid) ||
  3319. uid_eq(cred->euid, pcred->uid));
  3320. rcu_read_unlock();
  3321. return match;
  3322. }
  3323. static bool dl_param_changed(struct task_struct *p,
  3324. const struct sched_attr *attr)
  3325. {
  3326. struct sched_dl_entity *dl_se = &p->dl;
  3327. if (dl_se->dl_runtime != attr->sched_runtime ||
  3328. dl_se->dl_deadline != attr->sched_deadline ||
  3329. dl_se->dl_period != attr->sched_period ||
  3330. dl_se->flags != attr->sched_flags)
  3331. return true;
  3332. return false;
  3333. }
  3334. static int __sched_setscheduler(struct task_struct *p,
  3335. const struct sched_attr *attr,
  3336. bool user, bool pi)
  3337. {
  3338. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  3339. MAX_RT_PRIO - 1 - attr->sched_priority;
  3340. int retval, oldprio, oldpolicy = -1, queued, running;
  3341. int new_effective_prio, policy = attr->sched_policy;
  3342. unsigned long flags;
  3343. const struct sched_class *prev_class;
  3344. struct rq *rq;
  3345. int reset_on_fork;
  3346. /* may grab non-irq protected spin_locks */
  3347. BUG_ON(in_interrupt());
  3348. recheck:
  3349. /* double check policy once rq lock held */
  3350. if (policy < 0) {
  3351. reset_on_fork = p->sched_reset_on_fork;
  3352. policy = oldpolicy = p->policy;
  3353. } else {
  3354. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  3355. if (!valid_policy(policy))
  3356. return -EINVAL;
  3357. }
  3358. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  3359. return -EINVAL;
  3360. /*
  3361. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3362. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  3363. * SCHED_BATCH and SCHED_IDLE is 0.
  3364. */
  3365. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  3366. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  3367. return -EINVAL;
  3368. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  3369. (rt_policy(policy) != (attr->sched_priority != 0)))
  3370. return -EINVAL;
  3371. /*
  3372. * Allow unprivileged RT tasks to decrease priority:
  3373. */
  3374. if (user && !capable(CAP_SYS_NICE)) {
  3375. if (fair_policy(policy)) {
  3376. if (attr->sched_nice < task_nice(p) &&
  3377. !can_nice(p, attr->sched_nice))
  3378. return -EPERM;
  3379. }
  3380. if (rt_policy(policy)) {
  3381. unsigned long rlim_rtprio =
  3382. task_rlimit(p, RLIMIT_RTPRIO);
  3383. /* can't set/change the rt policy */
  3384. if (policy != p->policy && !rlim_rtprio)
  3385. return -EPERM;
  3386. /* can't increase priority */
  3387. if (attr->sched_priority > p->rt_priority &&
  3388. attr->sched_priority > rlim_rtprio)
  3389. return -EPERM;
  3390. }
  3391. /*
  3392. * Can't set/change SCHED_DEADLINE policy at all for now
  3393. * (safest behavior); in the future we would like to allow
  3394. * unprivileged DL tasks to increase their relative deadline
  3395. * or reduce their runtime (both ways reducing utilization)
  3396. */
  3397. if (dl_policy(policy))
  3398. return -EPERM;
  3399. /*
  3400. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  3401. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  3402. */
  3403. if (idle_policy(p->policy) && !idle_policy(policy)) {
  3404. if (!can_nice(p, task_nice(p)))
  3405. return -EPERM;
  3406. }
  3407. /* can't change other user's priorities */
  3408. if (!check_same_owner(p))
  3409. return -EPERM;
  3410. /* Normal users shall not reset the sched_reset_on_fork flag */
  3411. if (p->sched_reset_on_fork && !reset_on_fork)
  3412. return -EPERM;
  3413. }
  3414. if (user) {
  3415. retval = security_task_setscheduler(p);
  3416. if (retval)
  3417. return retval;
  3418. }
  3419. /*
  3420. * make sure no PI-waiters arrive (or leave) while we are
  3421. * changing the priority of the task:
  3422. *
  3423. * To be able to change p->policy safely, the appropriate
  3424. * runqueue lock must be held.
  3425. */
  3426. rq = task_rq_lock(p, &flags);
  3427. /*
  3428. * Changing the policy of the stop threads its a very bad idea
  3429. */
  3430. if (p == rq->stop) {
  3431. task_rq_unlock(rq, p, &flags);
  3432. return -EINVAL;
  3433. }
  3434. /*
  3435. * If not changing anything there's no need to proceed further,
  3436. * but store a possible modification of reset_on_fork.
  3437. */
  3438. if (unlikely(policy == p->policy)) {
  3439. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  3440. goto change;
  3441. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  3442. goto change;
  3443. if (dl_policy(policy) && dl_param_changed(p, attr))
  3444. goto change;
  3445. p->sched_reset_on_fork = reset_on_fork;
  3446. task_rq_unlock(rq, p, &flags);
  3447. return 0;
  3448. }
  3449. change:
  3450. if (user) {
  3451. #ifdef CONFIG_RT_GROUP_SCHED
  3452. /*
  3453. * Do not allow realtime tasks into groups that have no runtime
  3454. * assigned.
  3455. */
  3456. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  3457. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  3458. !task_group_is_autogroup(task_group(p))) {
  3459. task_rq_unlock(rq, p, &flags);
  3460. return -EPERM;
  3461. }
  3462. #endif
  3463. #ifdef CONFIG_SMP
  3464. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  3465. cpumask_t *span = rq->rd->span;
  3466. /*
  3467. * Don't allow tasks with an affinity mask smaller than
  3468. * the entire root_domain to become SCHED_DEADLINE. We
  3469. * will also fail if there's no bandwidth available.
  3470. */
  3471. if (!cpumask_subset(span, &p->cpus_allowed) ||
  3472. rq->rd->dl_bw.bw == 0) {
  3473. task_rq_unlock(rq, p, &flags);
  3474. return -EPERM;
  3475. }
  3476. }
  3477. #endif
  3478. }
  3479. /* recheck policy now with rq lock held */
  3480. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3481. policy = oldpolicy = -1;
  3482. task_rq_unlock(rq, p, &flags);
  3483. goto recheck;
  3484. }
  3485. /*
  3486. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  3487. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  3488. * is available.
  3489. */
  3490. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  3491. task_rq_unlock(rq, p, &flags);
  3492. return -EBUSY;
  3493. }
  3494. p->sched_reset_on_fork = reset_on_fork;
  3495. oldprio = p->prio;
  3496. if (pi) {
  3497. /*
  3498. * Take priority boosted tasks into account. If the new
  3499. * effective priority is unchanged, we just store the new
  3500. * normal parameters and do not touch the scheduler class and
  3501. * the runqueue. This will be done when the task deboost
  3502. * itself.
  3503. */
  3504. new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
  3505. if (new_effective_prio == oldprio) {
  3506. __setscheduler_params(p, attr);
  3507. task_rq_unlock(rq, p, &flags);
  3508. return 0;
  3509. }
  3510. }
  3511. queued = task_on_rq_queued(p);
  3512. running = task_current(rq, p);
  3513. if (queued)
  3514. dequeue_task(rq, p, DEQUEUE_SAVE);
  3515. if (running)
  3516. put_prev_task(rq, p);
  3517. prev_class = p->sched_class;
  3518. __setscheduler(rq, p, attr, pi);
  3519. if (running)
  3520. p->sched_class->set_curr_task(rq);
  3521. if (queued) {
  3522. int enqueue_flags = ENQUEUE_RESTORE;
  3523. /*
  3524. * We enqueue to tail when the priority of a task is
  3525. * increased (user space view).
  3526. */
  3527. if (oldprio <= p->prio)
  3528. enqueue_flags |= ENQUEUE_HEAD;
  3529. enqueue_task(rq, p, enqueue_flags);
  3530. }
  3531. check_class_changed(rq, p, prev_class, oldprio);
  3532. preempt_disable(); /* avoid rq from going away on us */
  3533. task_rq_unlock(rq, p, &flags);
  3534. if (pi)
  3535. rt_mutex_adjust_pi(p);
  3536. /*
  3537. * Run balance callbacks after we've adjusted the PI chain.
  3538. */
  3539. balance_callback(rq);
  3540. preempt_enable();
  3541. return 0;
  3542. }
  3543. static int _sched_setscheduler(struct task_struct *p, int policy,
  3544. const struct sched_param *param, bool check)
  3545. {
  3546. struct sched_attr attr = {
  3547. .sched_policy = policy,
  3548. .sched_priority = param->sched_priority,
  3549. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3550. };
  3551. /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
  3552. if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
  3553. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3554. policy &= ~SCHED_RESET_ON_FORK;
  3555. attr.sched_policy = policy;
  3556. }
  3557. return __sched_setscheduler(p, &attr, check, true);
  3558. }
  3559. /**
  3560. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3561. * @p: the task in question.
  3562. * @policy: new policy.
  3563. * @param: structure containing the new RT priority.
  3564. *
  3565. * Return: 0 on success. An error code otherwise.
  3566. *
  3567. * NOTE that the task may be already dead.
  3568. */
  3569. int sched_setscheduler(struct task_struct *p, int policy,
  3570. const struct sched_param *param)
  3571. {
  3572. return _sched_setscheduler(p, policy, param, true);
  3573. }
  3574. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3575. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3576. {
  3577. return __sched_setscheduler(p, attr, true, true);
  3578. }
  3579. EXPORT_SYMBOL_GPL(sched_setattr);
  3580. /**
  3581. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3582. * @p: the task in question.
  3583. * @policy: new policy.
  3584. * @param: structure containing the new RT priority.
  3585. *
  3586. * Just like sched_setscheduler, only don't bother checking if the
  3587. * current context has permission. For example, this is needed in
  3588. * stop_machine(): we create temporary high priority worker threads,
  3589. * but our caller might not have that capability.
  3590. *
  3591. * Return: 0 on success. An error code otherwise.
  3592. */
  3593. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3594. const struct sched_param *param)
  3595. {
  3596. return _sched_setscheduler(p, policy, param, false);
  3597. }
  3598. EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
  3599. static int
  3600. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3601. {
  3602. struct sched_param lparam;
  3603. struct task_struct *p;
  3604. int retval;
  3605. if (!param || pid < 0)
  3606. return -EINVAL;
  3607. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3608. return -EFAULT;
  3609. rcu_read_lock();
  3610. retval = -ESRCH;
  3611. p = find_process_by_pid(pid);
  3612. if (p != NULL)
  3613. retval = sched_setscheduler(p, policy, &lparam);
  3614. rcu_read_unlock();
  3615. return retval;
  3616. }
  3617. /*
  3618. * Mimics kernel/events/core.c perf_copy_attr().
  3619. */
  3620. static int sched_copy_attr(struct sched_attr __user *uattr,
  3621. struct sched_attr *attr)
  3622. {
  3623. u32 size;
  3624. int ret;
  3625. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3626. return -EFAULT;
  3627. /*
  3628. * zero the full structure, so that a short copy will be nice.
  3629. */
  3630. memset(attr, 0, sizeof(*attr));
  3631. ret = get_user(size, &uattr->size);
  3632. if (ret)
  3633. return ret;
  3634. if (size > PAGE_SIZE) /* silly large */
  3635. goto err_size;
  3636. if (!size) /* abi compat */
  3637. size = SCHED_ATTR_SIZE_VER0;
  3638. if (size < SCHED_ATTR_SIZE_VER0)
  3639. goto err_size;
  3640. /*
  3641. * If we're handed a bigger struct than we know of,
  3642. * ensure all the unknown bits are 0 - i.e. new
  3643. * user-space does not rely on any kernel feature
  3644. * extensions we dont know about yet.
  3645. */
  3646. if (size > sizeof(*attr)) {
  3647. unsigned char __user *addr;
  3648. unsigned char __user *end;
  3649. unsigned char val;
  3650. addr = (void __user *)uattr + sizeof(*attr);
  3651. end = (void __user *)uattr + size;
  3652. for (; addr < end; addr++) {
  3653. ret = get_user(val, addr);
  3654. if (ret)
  3655. return ret;
  3656. if (val)
  3657. goto err_size;
  3658. }
  3659. size = sizeof(*attr);
  3660. }
  3661. ret = copy_from_user(attr, uattr, size);
  3662. if (ret)
  3663. return -EFAULT;
  3664. /*
  3665. * XXX: do we want to be lenient like existing syscalls; or do we want
  3666. * to be strict and return an error on out-of-bounds values?
  3667. */
  3668. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3669. return 0;
  3670. err_size:
  3671. put_user(sizeof(*attr), &uattr->size);
  3672. return -E2BIG;
  3673. }
  3674. /**
  3675. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3676. * @pid: the pid in question.
  3677. * @policy: new policy.
  3678. * @param: structure containing the new RT priority.
  3679. *
  3680. * Return: 0 on success. An error code otherwise.
  3681. */
  3682. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3683. struct sched_param __user *, param)
  3684. {
  3685. /* negative values for policy are not valid */
  3686. if (policy < 0)
  3687. return -EINVAL;
  3688. return do_sched_setscheduler(pid, policy, param);
  3689. }
  3690. /**
  3691. * sys_sched_setparam - set/change the RT priority of a thread
  3692. * @pid: the pid in question.
  3693. * @param: structure containing the new RT priority.
  3694. *
  3695. * Return: 0 on success. An error code otherwise.
  3696. */
  3697. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3698. {
  3699. return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
  3700. }
  3701. /**
  3702. * sys_sched_setattr - same as above, but with extended sched_attr
  3703. * @pid: the pid in question.
  3704. * @uattr: structure containing the extended parameters.
  3705. * @flags: for future extension.
  3706. */
  3707. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3708. unsigned int, flags)
  3709. {
  3710. struct sched_attr attr;
  3711. struct task_struct *p;
  3712. int retval;
  3713. if (!uattr || pid < 0 || flags)
  3714. return -EINVAL;
  3715. retval = sched_copy_attr(uattr, &attr);
  3716. if (retval)
  3717. return retval;
  3718. if ((int)attr.sched_policy < 0)
  3719. return -EINVAL;
  3720. rcu_read_lock();
  3721. retval = -ESRCH;
  3722. p = find_process_by_pid(pid);
  3723. if (p != NULL)
  3724. retval = sched_setattr(p, &attr);
  3725. rcu_read_unlock();
  3726. return retval;
  3727. }
  3728. /**
  3729. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3730. * @pid: the pid in question.
  3731. *
  3732. * Return: On success, the policy of the thread. Otherwise, a negative error
  3733. * code.
  3734. */
  3735. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3736. {
  3737. struct task_struct *p;
  3738. int retval;
  3739. if (pid < 0)
  3740. return -EINVAL;
  3741. retval = -ESRCH;
  3742. rcu_read_lock();
  3743. p = find_process_by_pid(pid);
  3744. if (p) {
  3745. retval = security_task_getscheduler(p);
  3746. if (!retval)
  3747. retval = p->policy
  3748. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3749. }
  3750. rcu_read_unlock();
  3751. return retval;
  3752. }
  3753. /**
  3754. * sys_sched_getparam - get the RT priority of a thread
  3755. * @pid: the pid in question.
  3756. * @param: structure containing the RT priority.
  3757. *
  3758. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3759. * code.
  3760. */
  3761. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3762. {
  3763. struct sched_param lp = { .sched_priority = 0 };
  3764. struct task_struct *p;
  3765. int retval;
  3766. if (!param || pid < 0)
  3767. return -EINVAL;
  3768. rcu_read_lock();
  3769. p = find_process_by_pid(pid);
  3770. retval = -ESRCH;
  3771. if (!p)
  3772. goto out_unlock;
  3773. retval = security_task_getscheduler(p);
  3774. if (retval)
  3775. goto out_unlock;
  3776. if (task_has_rt_policy(p))
  3777. lp.sched_priority = p->rt_priority;
  3778. rcu_read_unlock();
  3779. /*
  3780. * This one might sleep, we cannot do it with a spinlock held ...
  3781. */
  3782. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3783. return retval;
  3784. out_unlock:
  3785. rcu_read_unlock();
  3786. return retval;
  3787. }
  3788. static int sched_read_attr(struct sched_attr __user *uattr,
  3789. struct sched_attr *attr,
  3790. unsigned int usize)
  3791. {
  3792. int ret;
  3793. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3794. return -EFAULT;
  3795. /*
  3796. * If we're handed a smaller struct than we know of,
  3797. * ensure all the unknown bits are 0 - i.e. old
  3798. * user-space does not get uncomplete information.
  3799. */
  3800. if (usize < sizeof(*attr)) {
  3801. unsigned char *addr;
  3802. unsigned char *end;
  3803. addr = (void *)attr + usize;
  3804. end = (void *)attr + sizeof(*attr);
  3805. for (; addr < end; addr++) {
  3806. if (*addr)
  3807. return -EFBIG;
  3808. }
  3809. attr->size = usize;
  3810. }
  3811. ret = copy_to_user(uattr, attr, attr->size);
  3812. if (ret)
  3813. return -EFAULT;
  3814. return 0;
  3815. }
  3816. /**
  3817. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3818. * @pid: the pid in question.
  3819. * @uattr: structure containing the extended parameters.
  3820. * @size: sizeof(attr) for fwd/bwd comp.
  3821. * @flags: for future extension.
  3822. */
  3823. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3824. unsigned int, size, unsigned int, flags)
  3825. {
  3826. struct sched_attr attr = {
  3827. .size = sizeof(struct sched_attr),
  3828. };
  3829. struct task_struct *p;
  3830. int retval;
  3831. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3832. size < SCHED_ATTR_SIZE_VER0 || flags)
  3833. return -EINVAL;
  3834. rcu_read_lock();
  3835. p = find_process_by_pid(pid);
  3836. retval = -ESRCH;
  3837. if (!p)
  3838. goto out_unlock;
  3839. retval = security_task_getscheduler(p);
  3840. if (retval)
  3841. goto out_unlock;
  3842. attr.sched_policy = p->policy;
  3843. if (p->sched_reset_on_fork)
  3844. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3845. if (task_has_dl_policy(p))
  3846. __getparam_dl(p, &attr);
  3847. else if (task_has_rt_policy(p))
  3848. attr.sched_priority = p->rt_priority;
  3849. else
  3850. attr.sched_nice = task_nice(p);
  3851. rcu_read_unlock();
  3852. retval = sched_read_attr(uattr, &attr, size);
  3853. return retval;
  3854. out_unlock:
  3855. rcu_read_unlock();
  3856. return retval;
  3857. }
  3858. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3859. {
  3860. cpumask_var_t cpus_allowed, new_mask;
  3861. struct task_struct *p;
  3862. int retval;
  3863. rcu_read_lock();
  3864. p = find_process_by_pid(pid);
  3865. if (!p) {
  3866. rcu_read_unlock();
  3867. return -ESRCH;
  3868. }
  3869. /* Prevent p going away */
  3870. get_task_struct(p);
  3871. rcu_read_unlock();
  3872. if (p->flags & PF_NO_SETAFFINITY) {
  3873. retval = -EINVAL;
  3874. goto out_put_task;
  3875. }
  3876. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3877. retval = -ENOMEM;
  3878. goto out_put_task;
  3879. }
  3880. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3881. retval = -ENOMEM;
  3882. goto out_free_cpus_allowed;
  3883. }
  3884. retval = -EPERM;
  3885. if (!check_same_owner(p)) {
  3886. rcu_read_lock();
  3887. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3888. rcu_read_unlock();
  3889. goto out_free_new_mask;
  3890. }
  3891. rcu_read_unlock();
  3892. }
  3893. retval = security_task_setscheduler(p);
  3894. if (retval)
  3895. goto out_free_new_mask;
  3896. cpuset_cpus_allowed(p, cpus_allowed);
  3897. cpumask_and(new_mask, in_mask, cpus_allowed);
  3898. /*
  3899. * Since bandwidth control happens on root_domain basis,
  3900. * if admission test is enabled, we only admit -deadline
  3901. * tasks allowed to run on all the CPUs in the task's
  3902. * root_domain.
  3903. */
  3904. #ifdef CONFIG_SMP
  3905. if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
  3906. rcu_read_lock();
  3907. if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
  3908. retval = -EBUSY;
  3909. rcu_read_unlock();
  3910. goto out_free_new_mask;
  3911. }
  3912. rcu_read_unlock();
  3913. }
  3914. #endif
  3915. again:
  3916. retval = __set_cpus_allowed_ptr(p, new_mask, true);
  3917. if (!retval) {
  3918. cpuset_cpus_allowed(p, cpus_allowed);
  3919. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3920. /*
  3921. * We must have raced with a concurrent cpuset
  3922. * update. Just reset the cpus_allowed to the
  3923. * cpuset's cpus_allowed
  3924. */
  3925. cpumask_copy(new_mask, cpus_allowed);
  3926. goto again;
  3927. }
  3928. }
  3929. out_free_new_mask:
  3930. free_cpumask_var(new_mask);
  3931. out_free_cpus_allowed:
  3932. free_cpumask_var(cpus_allowed);
  3933. out_put_task:
  3934. put_task_struct(p);
  3935. return retval;
  3936. }
  3937. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3938. struct cpumask *new_mask)
  3939. {
  3940. if (len < cpumask_size())
  3941. cpumask_clear(new_mask);
  3942. else if (len > cpumask_size())
  3943. len = cpumask_size();
  3944. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3945. }
  3946. /**
  3947. * sys_sched_setaffinity - set the cpu affinity of a process
  3948. * @pid: pid of the process
  3949. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3950. * @user_mask_ptr: user-space pointer to the new cpu mask
  3951. *
  3952. * Return: 0 on success. An error code otherwise.
  3953. */
  3954. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3955. unsigned long __user *, user_mask_ptr)
  3956. {
  3957. cpumask_var_t new_mask;
  3958. int retval;
  3959. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3960. return -ENOMEM;
  3961. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3962. if (retval == 0)
  3963. retval = sched_setaffinity(pid, new_mask);
  3964. free_cpumask_var(new_mask);
  3965. return retval;
  3966. }
  3967. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3968. {
  3969. struct task_struct *p;
  3970. unsigned long flags;
  3971. int retval;
  3972. rcu_read_lock();
  3973. retval = -ESRCH;
  3974. p = find_process_by_pid(pid);
  3975. if (!p)
  3976. goto out_unlock;
  3977. retval = security_task_getscheduler(p);
  3978. if (retval)
  3979. goto out_unlock;
  3980. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3981. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3982. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3983. out_unlock:
  3984. rcu_read_unlock();
  3985. return retval;
  3986. }
  3987. /**
  3988. * sys_sched_getaffinity - get the cpu affinity of a process
  3989. * @pid: pid of the process
  3990. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3991. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3992. *
  3993. * Return: 0 on success. An error code otherwise.
  3994. */
  3995. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3996. unsigned long __user *, user_mask_ptr)
  3997. {
  3998. int ret;
  3999. cpumask_var_t mask;
  4000. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  4001. return -EINVAL;
  4002. if (len & (sizeof(unsigned long)-1))
  4003. return -EINVAL;
  4004. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  4005. return -ENOMEM;
  4006. ret = sched_getaffinity(pid, mask);
  4007. if (ret == 0) {
  4008. size_t retlen = min_t(size_t, len, cpumask_size());
  4009. if (copy_to_user(user_mask_ptr, mask, retlen))
  4010. ret = -EFAULT;
  4011. else
  4012. ret = retlen;
  4013. }
  4014. free_cpumask_var(mask);
  4015. return ret;
  4016. }
  4017. /**
  4018. * sys_sched_yield - yield the current processor to other threads.
  4019. *
  4020. * This function yields the current CPU to other tasks. If there are no
  4021. * other threads running on this CPU then this function will return.
  4022. *
  4023. * Return: 0.
  4024. */
  4025. SYSCALL_DEFINE0(sched_yield)
  4026. {
  4027. struct rq *rq = this_rq_lock();
  4028. schedstat_inc(rq, yld_count);
  4029. current->sched_class->yield_task(rq);
  4030. /*
  4031. * Since we are going to call schedule() anyway, there's
  4032. * no need to preempt or enable interrupts:
  4033. */
  4034. __release(rq->lock);
  4035. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  4036. do_raw_spin_unlock(&rq->lock);
  4037. sched_preempt_enable_no_resched();
  4038. schedule();
  4039. return 0;
  4040. }
  4041. int __sched _cond_resched(void)
  4042. {
  4043. if (should_resched(0)) {
  4044. preempt_schedule_common();
  4045. return 1;
  4046. }
  4047. return 0;
  4048. }
  4049. EXPORT_SYMBOL(_cond_resched);
  4050. /*
  4051. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  4052. * call schedule, and on return reacquire the lock.
  4053. *
  4054. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  4055. * operations here to prevent schedule() from being called twice (once via
  4056. * spin_unlock(), once by hand).
  4057. */
  4058. int __cond_resched_lock(spinlock_t *lock)
  4059. {
  4060. int resched = should_resched(PREEMPT_LOCK_OFFSET);
  4061. int ret = 0;
  4062. lockdep_assert_held(lock);
  4063. if (spin_needbreak(lock) || resched) {
  4064. spin_unlock(lock);
  4065. if (resched)
  4066. preempt_schedule_common();
  4067. else
  4068. cpu_relax();
  4069. ret = 1;
  4070. spin_lock(lock);
  4071. }
  4072. return ret;
  4073. }
  4074. EXPORT_SYMBOL(__cond_resched_lock);
  4075. int __sched __cond_resched_softirq(void)
  4076. {
  4077. BUG_ON(!in_softirq());
  4078. if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
  4079. local_bh_enable();
  4080. preempt_schedule_common();
  4081. local_bh_disable();
  4082. return 1;
  4083. }
  4084. return 0;
  4085. }
  4086. EXPORT_SYMBOL(__cond_resched_softirq);
  4087. /**
  4088. * yield - yield the current processor to other threads.
  4089. *
  4090. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  4091. *
  4092. * The scheduler is at all times free to pick the calling task as the most
  4093. * eligible task to run, if removing the yield() call from your code breaks
  4094. * it, its already broken.
  4095. *
  4096. * Typical broken usage is:
  4097. *
  4098. * while (!event)
  4099. * yield();
  4100. *
  4101. * where one assumes that yield() will let 'the other' process run that will
  4102. * make event true. If the current task is a SCHED_FIFO task that will never
  4103. * happen. Never use yield() as a progress guarantee!!
  4104. *
  4105. * If you want to use yield() to wait for something, use wait_event().
  4106. * If you want to use yield() to be 'nice' for others, use cond_resched().
  4107. * If you still want to use yield(), do not!
  4108. */
  4109. void __sched yield(void)
  4110. {
  4111. set_current_state(TASK_RUNNING);
  4112. sys_sched_yield();
  4113. }
  4114. EXPORT_SYMBOL(yield);
  4115. /**
  4116. * yield_to - yield the current processor to another thread in
  4117. * your thread group, or accelerate that thread toward the
  4118. * processor it's on.
  4119. * @p: target task
  4120. * @preempt: whether task preemption is allowed or not
  4121. *
  4122. * It's the caller's job to ensure that the target task struct
  4123. * can't go away on us before we can do any checks.
  4124. *
  4125. * Return:
  4126. * true (>0) if we indeed boosted the target task.
  4127. * false (0) if we failed to boost the target.
  4128. * -ESRCH if there's no task to yield to.
  4129. */
  4130. int __sched yield_to(struct task_struct *p, bool preempt)
  4131. {
  4132. struct task_struct *curr = current;
  4133. struct rq *rq, *p_rq;
  4134. unsigned long flags;
  4135. int yielded = 0;
  4136. local_irq_save(flags);
  4137. rq = this_rq();
  4138. again:
  4139. p_rq = task_rq(p);
  4140. /*
  4141. * If we're the only runnable task on the rq and target rq also
  4142. * has only one task, there's absolutely no point in yielding.
  4143. */
  4144. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  4145. yielded = -ESRCH;
  4146. goto out_irq;
  4147. }
  4148. double_rq_lock(rq, p_rq);
  4149. if (task_rq(p) != p_rq) {
  4150. double_rq_unlock(rq, p_rq);
  4151. goto again;
  4152. }
  4153. if (!curr->sched_class->yield_to_task)
  4154. goto out_unlock;
  4155. if (curr->sched_class != p->sched_class)
  4156. goto out_unlock;
  4157. if (task_running(p_rq, p) || p->state)
  4158. goto out_unlock;
  4159. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  4160. if (yielded) {
  4161. schedstat_inc(rq, yld_count);
  4162. /*
  4163. * Make p's CPU reschedule; pick_next_entity takes care of
  4164. * fairness.
  4165. */
  4166. if (preempt && rq != p_rq)
  4167. resched_curr(p_rq);
  4168. }
  4169. out_unlock:
  4170. double_rq_unlock(rq, p_rq);
  4171. out_irq:
  4172. local_irq_restore(flags);
  4173. if (yielded > 0)
  4174. schedule();
  4175. return yielded;
  4176. }
  4177. EXPORT_SYMBOL_GPL(yield_to);
  4178. /*
  4179. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  4180. * that process accounting knows that this is a task in IO wait state.
  4181. */
  4182. long __sched io_schedule_timeout(long timeout)
  4183. {
  4184. int old_iowait = current->in_iowait;
  4185. struct rq *rq;
  4186. long ret;
  4187. current->in_iowait = 1;
  4188. blk_schedule_flush_plug(current);
  4189. delayacct_blkio_start();
  4190. rq = raw_rq();
  4191. atomic_inc(&rq->nr_iowait);
  4192. ret = schedule_timeout(timeout);
  4193. current->in_iowait = old_iowait;
  4194. atomic_dec(&rq->nr_iowait);
  4195. delayacct_blkio_end();
  4196. return ret;
  4197. }
  4198. EXPORT_SYMBOL(io_schedule_timeout);
  4199. /**
  4200. * sys_sched_get_priority_max - return maximum RT priority.
  4201. * @policy: scheduling class.
  4202. *
  4203. * Return: On success, this syscall returns the maximum
  4204. * rt_priority that can be used by a given scheduling class.
  4205. * On failure, a negative error code is returned.
  4206. */
  4207. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  4208. {
  4209. int ret = -EINVAL;
  4210. switch (policy) {
  4211. case SCHED_FIFO:
  4212. case SCHED_RR:
  4213. ret = MAX_USER_RT_PRIO-1;
  4214. break;
  4215. case SCHED_DEADLINE:
  4216. case SCHED_NORMAL:
  4217. case SCHED_BATCH:
  4218. case SCHED_IDLE:
  4219. ret = 0;
  4220. break;
  4221. }
  4222. return ret;
  4223. }
  4224. /**
  4225. * sys_sched_get_priority_min - return minimum RT priority.
  4226. * @policy: scheduling class.
  4227. *
  4228. * Return: On success, this syscall returns the minimum
  4229. * rt_priority that can be used by a given scheduling class.
  4230. * On failure, a negative error code is returned.
  4231. */
  4232. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  4233. {
  4234. int ret = -EINVAL;
  4235. switch (policy) {
  4236. case SCHED_FIFO:
  4237. case SCHED_RR:
  4238. ret = 1;
  4239. break;
  4240. case SCHED_DEADLINE:
  4241. case SCHED_NORMAL:
  4242. case SCHED_BATCH:
  4243. case SCHED_IDLE:
  4244. ret = 0;
  4245. }
  4246. return ret;
  4247. }
  4248. /**
  4249. * sys_sched_rr_get_interval - return the default timeslice of a process.
  4250. * @pid: pid of the process.
  4251. * @interval: userspace pointer to the timeslice value.
  4252. *
  4253. * this syscall writes the default timeslice value of a given process
  4254. * into the user-space timespec buffer. A value of '0' means infinity.
  4255. *
  4256. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  4257. * an error code.
  4258. */
  4259. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  4260. struct timespec __user *, interval)
  4261. {
  4262. struct task_struct *p;
  4263. unsigned int time_slice;
  4264. unsigned long flags;
  4265. struct rq *rq;
  4266. int retval;
  4267. struct timespec t;
  4268. if (pid < 0)
  4269. return -EINVAL;
  4270. retval = -ESRCH;
  4271. rcu_read_lock();
  4272. p = find_process_by_pid(pid);
  4273. if (!p)
  4274. goto out_unlock;
  4275. retval = security_task_getscheduler(p);
  4276. if (retval)
  4277. goto out_unlock;
  4278. rq = task_rq_lock(p, &flags);
  4279. time_slice = 0;
  4280. if (p->sched_class->get_rr_interval)
  4281. time_slice = p->sched_class->get_rr_interval(rq, p);
  4282. task_rq_unlock(rq, p, &flags);
  4283. rcu_read_unlock();
  4284. jiffies_to_timespec(time_slice, &t);
  4285. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  4286. return retval;
  4287. out_unlock:
  4288. rcu_read_unlock();
  4289. return retval;
  4290. }
  4291. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  4292. void sched_show_task(struct task_struct *p)
  4293. {
  4294. unsigned long free = 0;
  4295. int ppid;
  4296. unsigned long state = p->state;
  4297. if (state)
  4298. state = __ffs(state) + 1;
  4299. printk(KERN_INFO "%-15.15s %c", p->comm,
  4300. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  4301. #if BITS_PER_LONG == 32
  4302. if (state == TASK_RUNNING)
  4303. printk(KERN_CONT " running ");
  4304. else
  4305. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  4306. #else
  4307. if (state == TASK_RUNNING)
  4308. printk(KERN_CONT " running task ");
  4309. else
  4310. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  4311. #endif
  4312. #ifdef CONFIG_DEBUG_STACK_USAGE
  4313. free = stack_not_used(p);
  4314. #endif
  4315. ppid = 0;
  4316. rcu_read_lock();
  4317. if (pid_alive(p))
  4318. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  4319. rcu_read_unlock();
  4320. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  4321. task_pid_nr(p), ppid,
  4322. (unsigned long)task_thread_info(p)->flags);
  4323. print_worker_info(KERN_INFO, p);
  4324. show_stack(p, NULL);
  4325. }
  4326. void show_state_filter(unsigned long state_filter)
  4327. {
  4328. struct task_struct *g, *p;
  4329. #if BITS_PER_LONG == 32
  4330. printk(KERN_INFO
  4331. " task PC stack pid father\n");
  4332. #else
  4333. printk(KERN_INFO
  4334. " task PC stack pid father\n");
  4335. #endif
  4336. rcu_read_lock();
  4337. for_each_process_thread(g, p) {
  4338. /*
  4339. * reset the NMI-timeout, listing all files on a slow
  4340. * console might take a lot of time:
  4341. */
  4342. touch_nmi_watchdog();
  4343. if (!state_filter || (p->state & state_filter))
  4344. sched_show_task(p);
  4345. }
  4346. touch_all_softlockup_watchdogs();
  4347. #ifdef CONFIG_SCHED_DEBUG
  4348. sysrq_sched_debug_show();
  4349. #endif
  4350. rcu_read_unlock();
  4351. /*
  4352. * Only show locks if all tasks are dumped:
  4353. */
  4354. if (!state_filter)
  4355. debug_show_all_locks();
  4356. }
  4357. void init_idle_bootup_task(struct task_struct *idle)
  4358. {
  4359. idle->sched_class = &idle_sched_class;
  4360. }
  4361. /**
  4362. * init_idle - set up an idle thread for a given CPU
  4363. * @idle: task in question
  4364. * @cpu: cpu the idle task belongs to
  4365. *
  4366. * NOTE: this function does not set the idle thread's NEED_RESCHED
  4367. * flag, to make booting more robust.
  4368. */
  4369. void init_idle(struct task_struct *idle, int cpu)
  4370. {
  4371. struct rq *rq = cpu_rq(cpu);
  4372. unsigned long flags;
  4373. raw_spin_lock_irqsave(&idle->pi_lock, flags);
  4374. raw_spin_lock(&rq->lock);
  4375. __sched_fork(0, idle);
  4376. idle->state = TASK_RUNNING;
  4377. idle->se.exec_start = sched_clock();
  4378. #ifdef CONFIG_SMP
  4379. /*
  4380. * Its possible that init_idle() gets called multiple times on a task,
  4381. * in that case do_set_cpus_allowed() will not do the right thing.
  4382. *
  4383. * And since this is boot we can forgo the serialization.
  4384. */
  4385. set_cpus_allowed_common(idle, cpumask_of(cpu));
  4386. #endif
  4387. /*
  4388. * We're having a chicken and egg problem, even though we are
  4389. * holding rq->lock, the cpu isn't yet set to this cpu so the
  4390. * lockdep check in task_group() will fail.
  4391. *
  4392. * Similar case to sched_fork(). / Alternatively we could
  4393. * use task_rq_lock() here and obtain the other rq->lock.
  4394. *
  4395. * Silence PROVE_RCU
  4396. */
  4397. rcu_read_lock();
  4398. __set_task_cpu(idle, cpu);
  4399. rcu_read_unlock();
  4400. rq->curr = rq->idle = idle;
  4401. idle->on_rq = TASK_ON_RQ_QUEUED;
  4402. #ifdef CONFIG_SMP
  4403. idle->on_cpu = 1;
  4404. #endif
  4405. raw_spin_unlock(&rq->lock);
  4406. raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
  4407. /* Set the preempt count _outside_ the spinlocks! */
  4408. init_idle_preempt_count(idle, cpu);
  4409. /*
  4410. * The idle tasks have their own, simple scheduling class:
  4411. */
  4412. idle->sched_class = &idle_sched_class;
  4413. ftrace_graph_init_idle_task(idle, cpu);
  4414. vtime_init_idle(idle, cpu);
  4415. #ifdef CONFIG_SMP
  4416. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  4417. #endif
  4418. }
  4419. int cpuset_cpumask_can_shrink(const struct cpumask *cur,
  4420. const struct cpumask *trial)
  4421. {
  4422. int ret = 1, trial_cpus;
  4423. struct dl_bw *cur_dl_b;
  4424. unsigned long flags;
  4425. if (!cpumask_weight(cur))
  4426. return ret;
  4427. rcu_read_lock_sched();
  4428. cur_dl_b = dl_bw_of(cpumask_any(cur));
  4429. trial_cpus = cpumask_weight(trial);
  4430. raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
  4431. if (cur_dl_b->bw != -1 &&
  4432. cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
  4433. ret = 0;
  4434. raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
  4435. rcu_read_unlock_sched();
  4436. return ret;
  4437. }
  4438. int task_can_attach(struct task_struct *p,
  4439. const struct cpumask *cs_cpus_allowed)
  4440. {
  4441. int ret = 0;
  4442. /*
  4443. * Kthreads which disallow setaffinity shouldn't be moved
  4444. * to a new cpuset; we don't want to change their cpu
  4445. * affinity and isolating such threads by their set of
  4446. * allowed nodes is unnecessary. Thus, cpusets are not
  4447. * applicable for such threads. This prevents checking for
  4448. * success of set_cpus_allowed_ptr() on all attached tasks
  4449. * before cpus_allowed may be changed.
  4450. */
  4451. if (p->flags & PF_NO_SETAFFINITY) {
  4452. ret = -EINVAL;
  4453. goto out;
  4454. }
  4455. #ifdef CONFIG_SMP
  4456. if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
  4457. cs_cpus_allowed)) {
  4458. unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
  4459. cs_cpus_allowed);
  4460. struct dl_bw *dl_b;
  4461. bool overflow;
  4462. int cpus;
  4463. unsigned long flags;
  4464. rcu_read_lock_sched();
  4465. dl_b = dl_bw_of(dest_cpu);
  4466. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4467. cpus = dl_bw_cpus(dest_cpu);
  4468. overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
  4469. if (overflow)
  4470. ret = -EBUSY;
  4471. else {
  4472. /*
  4473. * We reserve space for this task in the destination
  4474. * root_domain, as we can't fail after this point.
  4475. * We will free resources in the source root_domain
  4476. * later on (see set_cpus_allowed_dl()).
  4477. */
  4478. __dl_add(dl_b, p->dl.dl_bw);
  4479. }
  4480. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4481. rcu_read_unlock_sched();
  4482. }
  4483. #endif
  4484. out:
  4485. return ret;
  4486. }
  4487. #ifdef CONFIG_SMP
  4488. #ifdef CONFIG_NUMA_BALANCING
  4489. /* Migrate current task p to target_cpu */
  4490. int migrate_task_to(struct task_struct *p, int target_cpu)
  4491. {
  4492. struct migration_arg arg = { p, target_cpu };
  4493. int curr_cpu = task_cpu(p);
  4494. if (curr_cpu == target_cpu)
  4495. return 0;
  4496. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4497. return -EINVAL;
  4498. /* TODO: This is not properly updating schedstats */
  4499. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4500. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4501. }
  4502. /*
  4503. * Requeue a task on a given node and accurately track the number of NUMA
  4504. * tasks on the runqueues
  4505. */
  4506. void sched_setnuma(struct task_struct *p, int nid)
  4507. {
  4508. struct rq *rq;
  4509. unsigned long flags;
  4510. bool queued, running;
  4511. rq = task_rq_lock(p, &flags);
  4512. queued = task_on_rq_queued(p);
  4513. running = task_current(rq, p);
  4514. if (queued)
  4515. dequeue_task(rq, p, DEQUEUE_SAVE);
  4516. if (running)
  4517. put_prev_task(rq, p);
  4518. p->numa_preferred_nid = nid;
  4519. if (running)
  4520. p->sched_class->set_curr_task(rq);
  4521. if (queued)
  4522. enqueue_task(rq, p, ENQUEUE_RESTORE);
  4523. task_rq_unlock(rq, p, &flags);
  4524. }
  4525. #endif /* CONFIG_NUMA_BALANCING */
  4526. #ifdef CONFIG_HOTPLUG_CPU
  4527. /*
  4528. * Ensures that the idle task is using init_mm right before its cpu goes
  4529. * offline.
  4530. */
  4531. void idle_task_exit(void)
  4532. {
  4533. struct mm_struct *mm = current->active_mm;
  4534. BUG_ON(cpu_online(smp_processor_id()));
  4535. if (mm != &init_mm) {
  4536. switch_mm(mm, &init_mm, current);
  4537. finish_arch_post_lock_switch();
  4538. }
  4539. mmdrop(mm);
  4540. }
  4541. /*
  4542. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4543. * we might have. Assumes we're called after migrate_tasks() so that the
  4544. * nr_active count is stable.
  4545. *
  4546. * Also see the comment "Global load-average calculations".
  4547. */
  4548. static void calc_load_migrate(struct rq *rq)
  4549. {
  4550. long delta = calc_load_fold_active(rq);
  4551. if (delta)
  4552. atomic_long_add(delta, &calc_load_tasks);
  4553. }
  4554. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4555. {
  4556. }
  4557. static const struct sched_class fake_sched_class = {
  4558. .put_prev_task = put_prev_task_fake,
  4559. };
  4560. static struct task_struct fake_task = {
  4561. /*
  4562. * Avoid pull_{rt,dl}_task()
  4563. */
  4564. .prio = MAX_PRIO + 1,
  4565. .sched_class = &fake_sched_class,
  4566. };
  4567. /*
  4568. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4569. * try_to_wake_up()->select_task_rq().
  4570. *
  4571. * Called with rq->lock held even though we'er in stop_machine() and
  4572. * there's no concurrency possible, we hold the required locks anyway
  4573. * because of lock validation efforts.
  4574. */
  4575. static void migrate_tasks(struct rq *dead_rq)
  4576. {
  4577. struct rq *rq = dead_rq;
  4578. struct task_struct *next, *stop = rq->stop;
  4579. int dest_cpu;
  4580. /*
  4581. * Fudge the rq selection such that the below task selection loop
  4582. * doesn't get stuck on the currently eligible stop task.
  4583. *
  4584. * We're currently inside stop_machine() and the rq is either stuck
  4585. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4586. * either way we should never end up calling schedule() until we're
  4587. * done here.
  4588. */
  4589. rq->stop = NULL;
  4590. /*
  4591. * put_prev_task() and pick_next_task() sched
  4592. * class method both need to have an up-to-date
  4593. * value of rq->clock[_task]
  4594. */
  4595. update_rq_clock(rq);
  4596. for (;;) {
  4597. /*
  4598. * There's this thread running, bail when that's the only
  4599. * remaining thread.
  4600. */
  4601. if (rq->nr_running == 1)
  4602. break;
  4603. /*
  4604. * pick_next_task assumes pinned rq->lock.
  4605. */
  4606. lockdep_pin_lock(&rq->lock);
  4607. next = pick_next_task(rq, &fake_task);
  4608. BUG_ON(!next);
  4609. next->sched_class->put_prev_task(rq, next);
  4610. /*
  4611. * Rules for changing task_struct::cpus_allowed are holding
  4612. * both pi_lock and rq->lock, such that holding either
  4613. * stabilizes the mask.
  4614. *
  4615. * Drop rq->lock is not quite as disastrous as it usually is
  4616. * because !cpu_active at this point, which means load-balance
  4617. * will not interfere. Also, stop-machine.
  4618. */
  4619. lockdep_unpin_lock(&rq->lock);
  4620. raw_spin_unlock(&rq->lock);
  4621. raw_spin_lock(&next->pi_lock);
  4622. raw_spin_lock(&rq->lock);
  4623. /*
  4624. * Since we're inside stop-machine, _nothing_ should have
  4625. * changed the task, WARN if weird stuff happened, because in
  4626. * that case the above rq->lock drop is a fail too.
  4627. */
  4628. if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
  4629. raw_spin_unlock(&next->pi_lock);
  4630. continue;
  4631. }
  4632. /* Find suitable destination for @next, with force if needed. */
  4633. dest_cpu = select_fallback_rq(dead_rq->cpu, next);
  4634. rq = __migrate_task(rq, next, dest_cpu);
  4635. if (rq != dead_rq) {
  4636. raw_spin_unlock(&rq->lock);
  4637. rq = dead_rq;
  4638. raw_spin_lock(&rq->lock);
  4639. }
  4640. raw_spin_unlock(&next->pi_lock);
  4641. }
  4642. rq->stop = stop;
  4643. }
  4644. #endif /* CONFIG_HOTPLUG_CPU */
  4645. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4646. static struct ctl_table sd_ctl_dir[] = {
  4647. {
  4648. .procname = "sched_domain",
  4649. .mode = 0555,
  4650. },
  4651. {}
  4652. };
  4653. static struct ctl_table sd_ctl_root[] = {
  4654. {
  4655. .procname = "kernel",
  4656. .mode = 0555,
  4657. .child = sd_ctl_dir,
  4658. },
  4659. {}
  4660. };
  4661. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4662. {
  4663. struct ctl_table *entry =
  4664. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4665. return entry;
  4666. }
  4667. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4668. {
  4669. struct ctl_table *entry;
  4670. /*
  4671. * In the intermediate directories, both the child directory and
  4672. * procname are dynamically allocated and could fail but the mode
  4673. * will always be set. In the lowest directory the names are
  4674. * static strings and all have proc handlers.
  4675. */
  4676. for (entry = *tablep; entry->mode; entry++) {
  4677. if (entry->child)
  4678. sd_free_ctl_entry(&entry->child);
  4679. if (entry->proc_handler == NULL)
  4680. kfree(entry->procname);
  4681. }
  4682. kfree(*tablep);
  4683. *tablep = NULL;
  4684. }
  4685. static int min_load_idx = 0;
  4686. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4687. static void
  4688. set_table_entry(struct ctl_table *entry,
  4689. const char *procname, void *data, int maxlen,
  4690. umode_t mode, proc_handler *proc_handler,
  4691. bool load_idx)
  4692. {
  4693. entry->procname = procname;
  4694. entry->data = data;
  4695. entry->maxlen = maxlen;
  4696. entry->mode = mode;
  4697. entry->proc_handler = proc_handler;
  4698. if (load_idx) {
  4699. entry->extra1 = &min_load_idx;
  4700. entry->extra2 = &max_load_idx;
  4701. }
  4702. }
  4703. static struct ctl_table *
  4704. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4705. {
  4706. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4707. if (table == NULL)
  4708. return NULL;
  4709. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4710. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4711. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4712. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4713. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4714. sizeof(int), 0644, proc_dointvec_minmax, true);
  4715. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4716. sizeof(int), 0644, proc_dointvec_minmax, true);
  4717. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4718. sizeof(int), 0644, proc_dointvec_minmax, true);
  4719. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4720. sizeof(int), 0644, proc_dointvec_minmax, true);
  4721. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4722. sizeof(int), 0644, proc_dointvec_minmax, true);
  4723. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4724. sizeof(int), 0644, proc_dointvec_minmax, false);
  4725. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4726. sizeof(int), 0644, proc_dointvec_minmax, false);
  4727. set_table_entry(&table[9], "cache_nice_tries",
  4728. &sd->cache_nice_tries,
  4729. sizeof(int), 0644, proc_dointvec_minmax, false);
  4730. set_table_entry(&table[10], "flags", &sd->flags,
  4731. sizeof(int), 0644, proc_dointvec_minmax, false);
  4732. set_table_entry(&table[11], "max_newidle_lb_cost",
  4733. &sd->max_newidle_lb_cost,
  4734. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4735. set_table_entry(&table[12], "name", sd->name,
  4736. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4737. /* &table[13] is terminator */
  4738. return table;
  4739. }
  4740. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4741. {
  4742. struct ctl_table *entry, *table;
  4743. struct sched_domain *sd;
  4744. int domain_num = 0, i;
  4745. char buf[32];
  4746. for_each_domain(cpu, sd)
  4747. domain_num++;
  4748. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4749. if (table == NULL)
  4750. return NULL;
  4751. i = 0;
  4752. for_each_domain(cpu, sd) {
  4753. snprintf(buf, 32, "domain%d", i);
  4754. entry->procname = kstrdup(buf, GFP_KERNEL);
  4755. entry->mode = 0555;
  4756. entry->child = sd_alloc_ctl_domain_table(sd);
  4757. entry++;
  4758. i++;
  4759. }
  4760. return table;
  4761. }
  4762. static struct ctl_table_header *sd_sysctl_header;
  4763. static void register_sched_domain_sysctl(void)
  4764. {
  4765. int i, cpu_num = num_possible_cpus();
  4766. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4767. char buf[32];
  4768. WARN_ON(sd_ctl_dir[0].child);
  4769. sd_ctl_dir[0].child = entry;
  4770. if (entry == NULL)
  4771. return;
  4772. for_each_possible_cpu(i) {
  4773. snprintf(buf, 32, "cpu%d", i);
  4774. entry->procname = kstrdup(buf, GFP_KERNEL);
  4775. entry->mode = 0555;
  4776. entry->child = sd_alloc_ctl_cpu_table(i);
  4777. entry++;
  4778. }
  4779. WARN_ON(sd_sysctl_header);
  4780. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4781. }
  4782. /* may be called multiple times per register */
  4783. static void unregister_sched_domain_sysctl(void)
  4784. {
  4785. unregister_sysctl_table(sd_sysctl_header);
  4786. sd_sysctl_header = NULL;
  4787. if (sd_ctl_dir[0].child)
  4788. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4789. }
  4790. #else
  4791. static void register_sched_domain_sysctl(void)
  4792. {
  4793. }
  4794. static void unregister_sched_domain_sysctl(void)
  4795. {
  4796. }
  4797. #endif /* CONFIG_SCHED_DEBUG && CONFIG_SYSCTL */
  4798. static void set_rq_online(struct rq *rq)
  4799. {
  4800. if (!rq->online) {
  4801. const struct sched_class *class;
  4802. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4803. rq->online = 1;
  4804. for_each_class(class) {
  4805. if (class->rq_online)
  4806. class->rq_online(rq);
  4807. }
  4808. }
  4809. }
  4810. static void set_rq_offline(struct rq *rq)
  4811. {
  4812. if (rq->online) {
  4813. const struct sched_class *class;
  4814. for_each_class(class) {
  4815. if (class->rq_offline)
  4816. class->rq_offline(rq);
  4817. }
  4818. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4819. rq->online = 0;
  4820. }
  4821. }
  4822. /*
  4823. * migration_call - callback that gets triggered when a CPU is added.
  4824. * Here we can start up the necessary migration thread for the new CPU.
  4825. */
  4826. static int
  4827. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4828. {
  4829. int cpu = (long)hcpu;
  4830. unsigned long flags;
  4831. struct rq *rq = cpu_rq(cpu);
  4832. switch (action & ~CPU_TASKS_FROZEN) {
  4833. case CPU_UP_PREPARE:
  4834. rq->calc_load_update = calc_load_update;
  4835. break;
  4836. case CPU_ONLINE:
  4837. /* Update our root-domain */
  4838. raw_spin_lock_irqsave(&rq->lock, flags);
  4839. if (rq->rd) {
  4840. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4841. set_rq_online(rq);
  4842. }
  4843. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4844. break;
  4845. #ifdef CONFIG_HOTPLUG_CPU
  4846. case CPU_DYING:
  4847. sched_ttwu_pending();
  4848. /* Update our root-domain */
  4849. raw_spin_lock_irqsave(&rq->lock, flags);
  4850. if (rq->rd) {
  4851. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4852. set_rq_offline(rq);
  4853. }
  4854. migrate_tasks(rq);
  4855. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4856. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4857. break;
  4858. case CPU_DEAD:
  4859. calc_load_migrate(rq);
  4860. break;
  4861. #endif
  4862. }
  4863. update_max_interval();
  4864. return NOTIFY_OK;
  4865. }
  4866. /*
  4867. * Register at high priority so that task migration (migrate_all_tasks)
  4868. * happens before everything else. This has to be lower priority than
  4869. * the notifier in the perf_event subsystem, though.
  4870. */
  4871. static struct notifier_block migration_notifier = {
  4872. .notifier_call = migration_call,
  4873. .priority = CPU_PRI_MIGRATION,
  4874. };
  4875. static void set_cpu_rq_start_time(void)
  4876. {
  4877. int cpu = smp_processor_id();
  4878. struct rq *rq = cpu_rq(cpu);
  4879. rq->age_stamp = sched_clock_cpu(cpu);
  4880. }
  4881. static int sched_cpu_active(struct notifier_block *nfb,
  4882. unsigned long action, void *hcpu)
  4883. {
  4884. int cpu = (long)hcpu;
  4885. switch (action & ~CPU_TASKS_FROZEN) {
  4886. case CPU_STARTING:
  4887. set_cpu_rq_start_time();
  4888. return NOTIFY_OK;
  4889. case CPU_ONLINE:
  4890. /*
  4891. * At this point a starting CPU has marked itself as online via
  4892. * set_cpu_online(). But it might not yet have marked itself
  4893. * as active, which is essential from here on.
  4894. */
  4895. set_cpu_active(cpu, true);
  4896. stop_machine_unpark(cpu);
  4897. return NOTIFY_OK;
  4898. case CPU_DOWN_FAILED:
  4899. set_cpu_active(cpu, true);
  4900. return NOTIFY_OK;
  4901. default:
  4902. return NOTIFY_DONE;
  4903. }
  4904. }
  4905. static int sched_cpu_inactive(struct notifier_block *nfb,
  4906. unsigned long action, void *hcpu)
  4907. {
  4908. switch (action & ~CPU_TASKS_FROZEN) {
  4909. case CPU_DOWN_PREPARE:
  4910. set_cpu_active((long)hcpu, false);
  4911. return NOTIFY_OK;
  4912. default:
  4913. return NOTIFY_DONE;
  4914. }
  4915. }
  4916. static int __init migration_init(void)
  4917. {
  4918. void *cpu = (void *)(long)smp_processor_id();
  4919. int err;
  4920. /* Initialize migration for the boot CPU */
  4921. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4922. BUG_ON(err == NOTIFY_BAD);
  4923. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4924. register_cpu_notifier(&migration_notifier);
  4925. /* Register cpu active notifiers */
  4926. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4927. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4928. return 0;
  4929. }
  4930. early_initcall(migration_init);
  4931. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4932. #ifdef CONFIG_SCHED_DEBUG
  4933. static __read_mostly int sched_debug_enabled;
  4934. static int __init sched_debug_setup(char *str)
  4935. {
  4936. sched_debug_enabled = 1;
  4937. return 0;
  4938. }
  4939. early_param("sched_debug", sched_debug_setup);
  4940. static inline bool sched_debug(void)
  4941. {
  4942. return sched_debug_enabled;
  4943. }
  4944. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4945. struct cpumask *groupmask)
  4946. {
  4947. struct sched_group *group = sd->groups;
  4948. cpumask_clear(groupmask);
  4949. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4950. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4951. printk("does not load-balance\n");
  4952. if (sd->parent)
  4953. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4954. " has parent");
  4955. return -1;
  4956. }
  4957. printk(KERN_CONT "span %*pbl level %s\n",
  4958. cpumask_pr_args(sched_domain_span(sd)), sd->name);
  4959. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4960. printk(KERN_ERR "ERROR: domain->span does not contain "
  4961. "CPU%d\n", cpu);
  4962. }
  4963. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4964. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4965. " CPU%d\n", cpu);
  4966. }
  4967. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4968. do {
  4969. if (!group) {
  4970. printk("\n");
  4971. printk(KERN_ERR "ERROR: group is NULL\n");
  4972. break;
  4973. }
  4974. if (!cpumask_weight(sched_group_cpus(group))) {
  4975. printk(KERN_CONT "\n");
  4976. printk(KERN_ERR "ERROR: empty group\n");
  4977. break;
  4978. }
  4979. if (!(sd->flags & SD_OVERLAP) &&
  4980. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4981. printk(KERN_CONT "\n");
  4982. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4983. break;
  4984. }
  4985. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4986. printk(KERN_CONT " %*pbl",
  4987. cpumask_pr_args(sched_group_cpus(group)));
  4988. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4989. printk(KERN_CONT " (cpu_capacity = %d)",
  4990. group->sgc->capacity);
  4991. }
  4992. group = group->next;
  4993. } while (group != sd->groups);
  4994. printk(KERN_CONT "\n");
  4995. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4996. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4997. if (sd->parent &&
  4998. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4999. printk(KERN_ERR "ERROR: parent span is not a superset "
  5000. "of domain->span\n");
  5001. return 0;
  5002. }
  5003. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  5004. {
  5005. int level = 0;
  5006. if (!sched_debug_enabled)
  5007. return;
  5008. if (!sd) {
  5009. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  5010. return;
  5011. }
  5012. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  5013. for (;;) {
  5014. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  5015. break;
  5016. level++;
  5017. sd = sd->parent;
  5018. if (!sd)
  5019. break;
  5020. }
  5021. }
  5022. #else /* !CONFIG_SCHED_DEBUG */
  5023. # define sched_domain_debug(sd, cpu) do { } while (0)
  5024. static inline bool sched_debug(void)
  5025. {
  5026. return false;
  5027. }
  5028. #endif /* CONFIG_SCHED_DEBUG */
  5029. static int sd_degenerate(struct sched_domain *sd)
  5030. {
  5031. if (cpumask_weight(sched_domain_span(sd)) == 1)
  5032. return 1;
  5033. /* Following flags need at least 2 groups */
  5034. if (sd->flags & (SD_LOAD_BALANCE |
  5035. SD_BALANCE_NEWIDLE |
  5036. SD_BALANCE_FORK |
  5037. SD_BALANCE_EXEC |
  5038. SD_SHARE_CPUCAPACITY |
  5039. SD_SHARE_PKG_RESOURCES |
  5040. SD_SHARE_POWERDOMAIN)) {
  5041. if (sd->groups != sd->groups->next)
  5042. return 0;
  5043. }
  5044. /* Following flags don't use groups */
  5045. if (sd->flags & (SD_WAKE_AFFINE))
  5046. return 0;
  5047. return 1;
  5048. }
  5049. static int
  5050. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  5051. {
  5052. unsigned long cflags = sd->flags, pflags = parent->flags;
  5053. if (sd_degenerate(parent))
  5054. return 1;
  5055. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  5056. return 0;
  5057. /* Flags needing groups don't count if only 1 group in parent */
  5058. if (parent->groups == parent->groups->next) {
  5059. pflags &= ~(SD_LOAD_BALANCE |
  5060. SD_BALANCE_NEWIDLE |
  5061. SD_BALANCE_FORK |
  5062. SD_BALANCE_EXEC |
  5063. SD_SHARE_CPUCAPACITY |
  5064. SD_SHARE_PKG_RESOURCES |
  5065. SD_PREFER_SIBLING |
  5066. SD_SHARE_POWERDOMAIN);
  5067. if (nr_node_ids == 1)
  5068. pflags &= ~SD_SERIALIZE;
  5069. }
  5070. if (~cflags & pflags)
  5071. return 0;
  5072. return 1;
  5073. }
  5074. static void free_rootdomain(struct rcu_head *rcu)
  5075. {
  5076. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  5077. cpupri_cleanup(&rd->cpupri);
  5078. cpudl_cleanup(&rd->cpudl);
  5079. free_cpumask_var(rd->dlo_mask);
  5080. free_cpumask_var(rd->rto_mask);
  5081. free_cpumask_var(rd->online);
  5082. free_cpumask_var(rd->span);
  5083. kfree(rd);
  5084. }
  5085. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  5086. {
  5087. struct root_domain *old_rd = NULL;
  5088. unsigned long flags;
  5089. raw_spin_lock_irqsave(&rq->lock, flags);
  5090. if (rq->rd) {
  5091. old_rd = rq->rd;
  5092. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  5093. set_rq_offline(rq);
  5094. cpumask_clear_cpu(rq->cpu, old_rd->span);
  5095. /*
  5096. * If we dont want to free the old_rd yet then
  5097. * set old_rd to NULL to skip the freeing later
  5098. * in this function:
  5099. */
  5100. if (!atomic_dec_and_test(&old_rd->refcount))
  5101. old_rd = NULL;
  5102. }
  5103. atomic_inc(&rd->refcount);
  5104. rq->rd = rd;
  5105. cpumask_set_cpu(rq->cpu, rd->span);
  5106. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  5107. set_rq_online(rq);
  5108. raw_spin_unlock_irqrestore(&rq->lock, flags);
  5109. if (old_rd)
  5110. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  5111. }
  5112. static int init_rootdomain(struct root_domain *rd)
  5113. {
  5114. memset(rd, 0, sizeof(*rd));
  5115. if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
  5116. goto out;
  5117. if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
  5118. goto free_span;
  5119. if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  5120. goto free_online;
  5121. if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  5122. goto free_dlo_mask;
  5123. init_dl_bw(&rd->dl_bw);
  5124. if (cpudl_init(&rd->cpudl) != 0)
  5125. goto free_dlo_mask;
  5126. if (cpupri_init(&rd->cpupri) != 0)
  5127. goto free_rto_mask;
  5128. return 0;
  5129. free_rto_mask:
  5130. free_cpumask_var(rd->rto_mask);
  5131. free_dlo_mask:
  5132. free_cpumask_var(rd->dlo_mask);
  5133. free_online:
  5134. free_cpumask_var(rd->online);
  5135. free_span:
  5136. free_cpumask_var(rd->span);
  5137. out:
  5138. return -ENOMEM;
  5139. }
  5140. /*
  5141. * By default the system creates a single root-domain with all cpus as
  5142. * members (mimicking the global state we have today).
  5143. */
  5144. struct root_domain def_root_domain;
  5145. static void init_defrootdomain(void)
  5146. {
  5147. init_rootdomain(&def_root_domain);
  5148. atomic_set(&def_root_domain.refcount, 1);
  5149. }
  5150. static struct root_domain *alloc_rootdomain(void)
  5151. {
  5152. struct root_domain *rd;
  5153. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  5154. if (!rd)
  5155. return NULL;
  5156. if (init_rootdomain(rd) != 0) {
  5157. kfree(rd);
  5158. return NULL;
  5159. }
  5160. return rd;
  5161. }
  5162. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  5163. {
  5164. struct sched_group *tmp, *first;
  5165. if (!sg)
  5166. return;
  5167. first = sg;
  5168. do {
  5169. tmp = sg->next;
  5170. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  5171. kfree(sg->sgc);
  5172. kfree(sg);
  5173. sg = tmp;
  5174. } while (sg != first);
  5175. }
  5176. static void free_sched_domain(struct rcu_head *rcu)
  5177. {
  5178. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  5179. /*
  5180. * If its an overlapping domain it has private groups, iterate and
  5181. * nuke them all.
  5182. */
  5183. if (sd->flags & SD_OVERLAP) {
  5184. free_sched_groups(sd->groups, 1);
  5185. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  5186. kfree(sd->groups->sgc);
  5187. kfree(sd->groups);
  5188. }
  5189. kfree(sd);
  5190. }
  5191. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  5192. {
  5193. call_rcu(&sd->rcu, free_sched_domain);
  5194. }
  5195. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  5196. {
  5197. for (; sd; sd = sd->parent)
  5198. destroy_sched_domain(sd, cpu);
  5199. }
  5200. /*
  5201. * Keep a special pointer to the highest sched_domain that has
  5202. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  5203. * allows us to avoid some pointer chasing select_idle_sibling().
  5204. *
  5205. * Also keep a unique ID per domain (we use the first cpu number in
  5206. * the cpumask of the domain), this allows us to quickly tell if
  5207. * two cpus are in the same cache domain, see cpus_share_cache().
  5208. */
  5209. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  5210. DEFINE_PER_CPU(int, sd_llc_size);
  5211. DEFINE_PER_CPU(int, sd_llc_id);
  5212. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  5213. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  5214. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  5215. static void update_top_cache_domain(int cpu)
  5216. {
  5217. struct sched_domain *sd;
  5218. struct sched_domain *busy_sd = NULL;
  5219. int id = cpu;
  5220. int size = 1;
  5221. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  5222. if (sd) {
  5223. id = cpumask_first(sched_domain_span(sd));
  5224. size = cpumask_weight(sched_domain_span(sd));
  5225. busy_sd = sd->parent; /* sd_busy */
  5226. }
  5227. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  5228. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  5229. per_cpu(sd_llc_size, cpu) = size;
  5230. per_cpu(sd_llc_id, cpu) = id;
  5231. sd = lowest_flag_domain(cpu, SD_NUMA);
  5232. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  5233. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  5234. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  5235. }
  5236. /*
  5237. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  5238. * hold the hotplug lock.
  5239. */
  5240. static void
  5241. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  5242. {
  5243. struct rq *rq = cpu_rq(cpu);
  5244. struct sched_domain *tmp;
  5245. /* Remove the sched domains which do not contribute to scheduling. */
  5246. for (tmp = sd; tmp; ) {
  5247. struct sched_domain *parent = tmp->parent;
  5248. if (!parent)
  5249. break;
  5250. if (sd_parent_degenerate(tmp, parent)) {
  5251. tmp->parent = parent->parent;
  5252. if (parent->parent)
  5253. parent->parent->child = tmp;
  5254. /*
  5255. * Transfer SD_PREFER_SIBLING down in case of a
  5256. * degenerate parent; the spans match for this
  5257. * so the property transfers.
  5258. */
  5259. if (parent->flags & SD_PREFER_SIBLING)
  5260. tmp->flags |= SD_PREFER_SIBLING;
  5261. destroy_sched_domain(parent, cpu);
  5262. } else
  5263. tmp = tmp->parent;
  5264. }
  5265. if (sd && sd_degenerate(sd)) {
  5266. tmp = sd;
  5267. sd = sd->parent;
  5268. destroy_sched_domain(tmp, cpu);
  5269. if (sd)
  5270. sd->child = NULL;
  5271. }
  5272. sched_domain_debug(sd, cpu);
  5273. rq_attach_root(rq, rd);
  5274. tmp = rq->sd;
  5275. rcu_assign_pointer(rq->sd, sd);
  5276. destroy_sched_domains(tmp, cpu);
  5277. update_top_cache_domain(cpu);
  5278. }
  5279. /* Setup the mask of cpus configured for isolated domains */
  5280. static int __init isolated_cpu_setup(char *str)
  5281. {
  5282. int ret;
  5283. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  5284. ret = cpulist_parse(str, cpu_isolated_map);
  5285. if (ret) {
  5286. pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
  5287. return 0;
  5288. }
  5289. return 1;
  5290. }
  5291. __setup("isolcpus=", isolated_cpu_setup);
  5292. struct s_data {
  5293. struct sched_domain ** __percpu sd;
  5294. struct root_domain *rd;
  5295. };
  5296. enum s_alloc {
  5297. sa_rootdomain,
  5298. sa_sd,
  5299. sa_sd_storage,
  5300. sa_none,
  5301. };
  5302. /*
  5303. * Build an iteration mask that can exclude certain CPUs from the upwards
  5304. * domain traversal.
  5305. *
  5306. * Asymmetric node setups can result in situations where the domain tree is of
  5307. * unequal depth, make sure to skip domains that already cover the entire
  5308. * range.
  5309. *
  5310. * In that case build_sched_domains() will have terminated the iteration early
  5311. * and our sibling sd spans will be empty. Domains should always include the
  5312. * cpu they're built on, so check that.
  5313. *
  5314. */
  5315. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  5316. {
  5317. const struct cpumask *span = sched_domain_span(sd);
  5318. struct sd_data *sdd = sd->private;
  5319. struct sched_domain *sibling;
  5320. int i;
  5321. for_each_cpu(i, span) {
  5322. sibling = *per_cpu_ptr(sdd->sd, i);
  5323. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5324. continue;
  5325. cpumask_set_cpu(i, sched_group_mask(sg));
  5326. }
  5327. }
  5328. /*
  5329. * Return the canonical balance cpu for this group, this is the first cpu
  5330. * of this group that's also in the iteration mask.
  5331. */
  5332. int group_balance_cpu(struct sched_group *sg)
  5333. {
  5334. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  5335. }
  5336. static int
  5337. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  5338. {
  5339. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  5340. const struct cpumask *span = sched_domain_span(sd);
  5341. struct cpumask *covered = sched_domains_tmpmask;
  5342. struct sd_data *sdd = sd->private;
  5343. struct sched_domain *sibling;
  5344. int i;
  5345. cpumask_clear(covered);
  5346. for_each_cpu(i, span) {
  5347. struct cpumask *sg_span;
  5348. if (cpumask_test_cpu(i, covered))
  5349. continue;
  5350. sibling = *per_cpu_ptr(sdd->sd, i);
  5351. /* See the comment near build_group_mask(). */
  5352. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  5353. continue;
  5354. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5355. GFP_KERNEL, cpu_to_node(cpu));
  5356. if (!sg)
  5357. goto fail;
  5358. sg_span = sched_group_cpus(sg);
  5359. if (sibling->child)
  5360. cpumask_copy(sg_span, sched_domain_span(sibling->child));
  5361. else
  5362. cpumask_set_cpu(i, sg_span);
  5363. cpumask_or(covered, covered, sg_span);
  5364. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  5365. if (atomic_inc_return(&sg->sgc->ref) == 1)
  5366. build_group_mask(sd, sg);
  5367. /*
  5368. * Initialize sgc->capacity such that even if we mess up the
  5369. * domains and no possible iteration will get us here, we won't
  5370. * die on a /0 trap.
  5371. */
  5372. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  5373. /*
  5374. * Make sure the first group of this domain contains the
  5375. * canonical balance cpu. Otherwise the sched_domain iteration
  5376. * breaks. See update_sg_lb_stats().
  5377. */
  5378. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  5379. group_balance_cpu(sg) == cpu)
  5380. groups = sg;
  5381. if (!first)
  5382. first = sg;
  5383. if (last)
  5384. last->next = sg;
  5385. last = sg;
  5386. last->next = first;
  5387. }
  5388. sd->groups = groups;
  5389. return 0;
  5390. fail:
  5391. free_sched_groups(first, 0);
  5392. return -ENOMEM;
  5393. }
  5394. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  5395. {
  5396. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  5397. struct sched_domain *child = sd->child;
  5398. if (child)
  5399. cpu = cpumask_first(sched_domain_span(child));
  5400. if (sg) {
  5401. *sg = *per_cpu_ptr(sdd->sg, cpu);
  5402. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  5403. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  5404. }
  5405. return cpu;
  5406. }
  5407. /*
  5408. * build_sched_groups will build a circular linked list of the groups
  5409. * covered by the given span, and will set each group's ->cpumask correctly,
  5410. * and ->cpu_capacity to 0.
  5411. *
  5412. * Assumes the sched_domain tree is fully constructed
  5413. */
  5414. static int
  5415. build_sched_groups(struct sched_domain *sd, int cpu)
  5416. {
  5417. struct sched_group *first = NULL, *last = NULL;
  5418. struct sd_data *sdd = sd->private;
  5419. const struct cpumask *span = sched_domain_span(sd);
  5420. struct cpumask *covered;
  5421. int i;
  5422. get_group(cpu, sdd, &sd->groups);
  5423. atomic_inc(&sd->groups->ref);
  5424. if (cpu != cpumask_first(span))
  5425. return 0;
  5426. lockdep_assert_held(&sched_domains_mutex);
  5427. covered = sched_domains_tmpmask;
  5428. cpumask_clear(covered);
  5429. for_each_cpu(i, span) {
  5430. struct sched_group *sg;
  5431. int group, j;
  5432. if (cpumask_test_cpu(i, covered))
  5433. continue;
  5434. group = get_group(i, sdd, &sg);
  5435. cpumask_setall(sched_group_mask(sg));
  5436. for_each_cpu(j, span) {
  5437. if (get_group(j, sdd, NULL) != group)
  5438. continue;
  5439. cpumask_set_cpu(j, covered);
  5440. cpumask_set_cpu(j, sched_group_cpus(sg));
  5441. }
  5442. if (!first)
  5443. first = sg;
  5444. if (last)
  5445. last->next = sg;
  5446. last = sg;
  5447. }
  5448. last->next = first;
  5449. return 0;
  5450. }
  5451. /*
  5452. * Initialize sched groups cpu_capacity.
  5453. *
  5454. * cpu_capacity indicates the capacity of sched group, which is used while
  5455. * distributing the load between different sched groups in a sched domain.
  5456. * Typically cpu_capacity for all the groups in a sched domain will be same
  5457. * unless there are asymmetries in the topology. If there are asymmetries,
  5458. * group having more cpu_capacity will pickup more load compared to the
  5459. * group having less cpu_capacity.
  5460. */
  5461. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  5462. {
  5463. struct sched_group *sg = sd->groups;
  5464. WARN_ON(!sg);
  5465. do {
  5466. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5467. sg = sg->next;
  5468. } while (sg != sd->groups);
  5469. if (cpu != group_balance_cpu(sg))
  5470. return;
  5471. update_group_capacity(sd, cpu);
  5472. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5473. }
  5474. /*
  5475. * Initializers for schedule domains
  5476. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5477. */
  5478. static int default_relax_domain_level = -1;
  5479. int sched_domain_level_max;
  5480. static int __init setup_relax_domain_level(char *str)
  5481. {
  5482. if (kstrtoint(str, 0, &default_relax_domain_level))
  5483. pr_warn("Unable to set relax_domain_level\n");
  5484. return 1;
  5485. }
  5486. __setup("relax_domain_level=", setup_relax_domain_level);
  5487. static void set_domain_attribute(struct sched_domain *sd,
  5488. struct sched_domain_attr *attr)
  5489. {
  5490. int request;
  5491. if (!attr || attr->relax_domain_level < 0) {
  5492. if (default_relax_domain_level < 0)
  5493. return;
  5494. else
  5495. request = default_relax_domain_level;
  5496. } else
  5497. request = attr->relax_domain_level;
  5498. if (request < sd->level) {
  5499. /* turn off idle balance on this domain */
  5500. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5501. } else {
  5502. /* turn on idle balance on this domain */
  5503. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5504. }
  5505. }
  5506. static void __sdt_free(const struct cpumask *cpu_map);
  5507. static int __sdt_alloc(const struct cpumask *cpu_map);
  5508. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5509. const struct cpumask *cpu_map)
  5510. {
  5511. switch (what) {
  5512. case sa_rootdomain:
  5513. if (!atomic_read(&d->rd->refcount))
  5514. free_rootdomain(&d->rd->rcu); /* fall through */
  5515. case sa_sd:
  5516. free_percpu(d->sd); /* fall through */
  5517. case sa_sd_storage:
  5518. __sdt_free(cpu_map); /* fall through */
  5519. case sa_none:
  5520. break;
  5521. }
  5522. }
  5523. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5524. const struct cpumask *cpu_map)
  5525. {
  5526. memset(d, 0, sizeof(*d));
  5527. if (__sdt_alloc(cpu_map))
  5528. return sa_sd_storage;
  5529. d->sd = alloc_percpu(struct sched_domain *);
  5530. if (!d->sd)
  5531. return sa_sd_storage;
  5532. d->rd = alloc_rootdomain();
  5533. if (!d->rd)
  5534. return sa_sd;
  5535. return sa_rootdomain;
  5536. }
  5537. /*
  5538. * NULL the sd_data elements we've used to build the sched_domain and
  5539. * sched_group structure so that the subsequent __free_domain_allocs()
  5540. * will not free the data we're using.
  5541. */
  5542. static void claim_allocations(int cpu, struct sched_domain *sd)
  5543. {
  5544. struct sd_data *sdd = sd->private;
  5545. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5546. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5547. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5548. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5549. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5550. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5551. }
  5552. #ifdef CONFIG_NUMA
  5553. static int sched_domains_numa_levels;
  5554. enum numa_topology_type sched_numa_topology_type;
  5555. static int *sched_domains_numa_distance;
  5556. int sched_max_numa_distance;
  5557. static struct cpumask ***sched_domains_numa_masks;
  5558. static int sched_domains_curr_level;
  5559. #endif
  5560. /*
  5561. * SD_flags allowed in topology descriptions.
  5562. *
  5563. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5564. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5565. * SD_NUMA - describes NUMA topologies
  5566. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5567. *
  5568. * Odd one out:
  5569. * SD_ASYM_PACKING - describes SMT quirks
  5570. */
  5571. #define TOPOLOGY_SD_FLAGS \
  5572. (SD_SHARE_CPUCAPACITY | \
  5573. SD_SHARE_PKG_RESOURCES | \
  5574. SD_NUMA | \
  5575. SD_ASYM_PACKING | \
  5576. SD_SHARE_POWERDOMAIN)
  5577. static struct sched_domain *
  5578. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5579. {
  5580. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5581. int sd_weight, sd_flags = 0;
  5582. #ifdef CONFIG_NUMA
  5583. /*
  5584. * Ugly hack to pass state to sd_numa_mask()...
  5585. */
  5586. sched_domains_curr_level = tl->numa_level;
  5587. #endif
  5588. sd_weight = cpumask_weight(tl->mask(cpu));
  5589. if (tl->sd_flags)
  5590. sd_flags = (*tl->sd_flags)();
  5591. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5592. "wrong sd_flags in topology description\n"))
  5593. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5594. *sd = (struct sched_domain){
  5595. .min_interval = sd_weight,
  5596. .max_interval = 2*sd_weight,
  5597. .busy_factor = 32,
  5598. .imbalance_pct = 125,
  5599. .cache_nice_tries = 0,
  5600. .busy_idx = 0,
  5601. .idle_idx = 0,
  5602. .newidle_idx = 0,
  5603. .wake_idx = 0,
  5604. .forkexec_idx = 0,
  5605. .flags = 1*SD_LOAD_BALANCE
  5606. | 1*SD_BALANCE_NEWIDLE
  5607. | 1*SD_BALANCE_EXEC
  5608. | 1*SD_BALANCE_FORK
  5609. | 0*SD_BALANCE_WAKE
  5610. | 1*SD_WAKE_AFFINE
  5611. | 0*SD_SHARE_CPUCAPACITY
  5612. | 0*SD_SHARE_PKG_RESOURCES
  5613. | 0*SD_SERIALIZE
  5614. | 0*SD_PREFER_SIBLING
  5615. | 0*SD_NUMA
  5616. | sd_flags
  5617. ,
  5618. .last_balance = jiffies,
  5619. .balance_interval = sd_weight,
  5620. .smt_gain = 0,
  5621. .max_newidle_lb_cost = 0,
  5622. .next_decay_max_lb_cost = jiffies,
  5623. #ifdef CONFIG_SCHED_DEBUG
  5624. .name = tl->name,
  5625. #endif
  5626. };
  5627. /*
  5628. * Convert topological properties into behaviour.
  5629. */
  5630. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5631. sd->flags |= SD_PREFER_SIBLING;
  5632. sd->imbalance_pct = 110;
  5633. sd->smt_gain = 1178; /* ~15% */
  5634. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5635. sd->imbalance_pct = 117;
  5636. sd->cache_nice_tries = 1;
  5637. sd->busy_idx = 2;
  5638. #ifdef CONFIG_NUMA
  5639. } else if (sd->flags & SD_NUMA) {
  5640. sd->cache_nice_tries = 2;
  5641. sd->busy_idx = 3;
  5642. sd->idle_idx = 2;
  5643. sd->flags |= SD_SERIALIZE;
  5644. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5645. sd->flags &= ~(SD_BALANCE_EXEC |
  5646. SD_BALANCE_FORK |
  5647. SD_WAKE_AFFINE);
  5648. }
  5649. #endif
  5650. } else {
  5651. sd->flags |= SD_PREFER_SIBLING;
  5652. sd->cache_nice_tries = 1;
  5653. sd->busy_idx = 2;
  5654. sd->idle_idx = 1;
  5655. }
  5656. sd->private = &tl->data;
  5657. return sd;
  5658. }
  5659. /*
  5660. * Topology list, bottom-up.
  5661. */
  5662. static struct sched_domain_topology_level default_topology[] = {
  5663. #ifdef CONFIG_SCHED_SMT
  5664. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5665. #endif
  5666. #ifdef CONFIG_SCHED_MC
  5667. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5668. #endif
  5669. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5670. { NULL, },
  5671. };
  5672. static struct sched_domain_topology_level *sched_domain_topology =
  5673. default_topology;
  5674. #define for_each_sd_topology(tl) \
  5675. for (tl = sched_domain_topology; tl->mask; tl++)
  5676. void set_sched_topology(struct sched_domain_topology_level *tl)
  5677. {
  5678. sched_domain_topology = tl;
  5679. }
  5680. #ifdef CONFIG_NUMA
  5681. static const struct cpumask *sd_numa_mask(int cpu)
  5682. {
  5683. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5684. }
  5685. static void sched_numa_warn(const char *str)
  5686. {
  5687. static int done = false;
  5688. int i,j;
  5689. if (done)
  5690. return;
  5691. done = true;
  5692. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5693. for (i = 0; i < nr_node_ids; i++) {
  5694. printk(KERN_WARNING " ");
  5695. for (j = 0; j < nr_node_ids; j++)
  5696. printk(KERN_CONT "%02d ", node_distance(i,j));
  5697. printk(KERN_CONT "\n");
  5698. }
  5699. printk(KERN_WARNING "\n");
  5700. }
  5701. bool find_numa_distance(int distance)
  5702. {
  5703. int i;
  5704. if (distance == node_distance(0, 0))
  5705. return true;
  5706. for (i = 0; i < sched_domains_numa_levels; i++) {
  5707. if (sched_domains_numa_distance[i] == distance)
  5708. return true;
  5709. }
  5710. return false;
  5711. }
  5712. /*
  5713. * A system can have three types of NUMA topology:
  5714. * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
  5715. * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
  5716. * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
  5717. *
  5718. * The difference between a glueless mesh topology and a backplane
  5719. * topology lies in whether communication between not directly
  5720. * connected nodes goes through intermediary nodes (where programs
  5721. * could run), or through backplane controllers. This affects
  5722. * placement of programs.
  5723. *
  5724. * The type of topology can be discerned with the following tests:
  5725. * - If the maximum distance between any nodes is 1 hop, the system
  5726. * is directly connected.
  5727. * - If for two nodes A and B, located N > 1 hops away from each other,
  5728. * there is an intermediary node C, which is < N hops away from both
  5729. * nodes A and B, the system is a glueless mesh.
  5730. */
  5731. static void init_numa_topology_type(void)
  5732. {
  5733. int a, b, c, n;
  5734. n = sched_max_numa_distance;
  5735. if (sched_domains_numa_levels <= 1) {
  5736. sched_numa_topology_type = NUMA_DIRECT;
  5737. return;
  5738. }
  5739. for_each_online_node(a) {
  5740. for_each_online_node(b) {
  5741. /* Find two nodes furthest removed from each other. */
  5742. if (node_distance(a, b) < n)
  5743. continue;
  5744. /* Is there an intermediary node between a and b? */
  5745. for_each_online_node(c) {
  5746. if (node_distance(a, c) < n &&
  5747. node_distance(b, c) < n) {
  5748. sched_numa_topology_type =
  5749. NUMA_GLUELESS_MESH;
  5750. return;
  5751. }
  5752. }
  5753. sched_numa_topology_type = NUMA_BACKPLANE;
  5754. return;
  5755. }
  5756. }
  5757. }
  5758. static void sched_init_numa(void)
  5759. {
  5760. int next_distance, curr_distance = node_distance(0, 0);
  5761. struct sched_domain_topology_level *tl;
  5762. int level = 0;
  5763. int i, j, k;
  5764. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5765. if (!sched_domains_numa_distance)
  5766. return;
  5767. /*
  5768. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5769. * unique distances in the node_distance() table.
  5770. *
  5771. * Assumes node_distance(0,j) includes all distances in
  5772. * node_distance(i,j) in order to avoid cubic time.
  5773. */
  5774. next_distance = curr_distance;
  5775. for (i = 0; i < nr_node_ids; i++) {
  5776. for (j = 0; j < nr_node_ids; j++) {
  5777. for (k = 0; k < nr_node_ids; k++) {
  5778. int distance = node_distance(i, k);
  5779. if (distance > curr_distance &&
  5780. (distance < next_distance ||
  5781. next_distance == curr_distance))
  5782. next_distance = distance;
  5783. /*
  5784. * While not a strong assumption it would be nice to know
  5785. * about cases where if node A is connected to B, B is not
  5786. * equally connected to A.
  5787. */
  5788. if (sched_debug() && node_distance(k, i) != distance)
  5789. sched_numa_warn("Node-distance not symmetric");
  5790. if (sched_debug() && i && !find_numa_distance(distance))
  5791. sched_numa_warn("Node-0 not representative");
  5792. }
  5793. if (next_distance != curr_distance) {
  5794. sched_domains_numa_distance[level++] = next_distance;
  5795. sched_domains_numa_levels = level;
  5796. curr_distance = next_distance;
  5797. } else break;
  5798. }
  5799. /*
  5800. * In case of sched_debug() we verify the above assumption.
  5801. */
  5802. if (!sched_debug())
  5803. break;
  5804. }
  5805. if (!level)
  5806. return;
  5807. /*
  5808. * 'level' contains the number of unique distances, excluding the
  5809. * identity distance node_distance(i,i).
  5810. *
  5811. * The sched_domains_numa_distance[] array includes the actual distance
  5812. * numbers.
  5813. */
  5814. /*
  5815. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5816. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5817. * the array will contain less then 'level' members. This could be
  5818. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5819. * in other functions.
  5820. *
  5821. * We reset it to 'level' at the end of this function.
  5822. */
  5823. sched_domains_numa_levels = 0;
  5824. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5825. if (!sched_domains_numa_masks)
  5826. return;
  5827. /*
  5828. * Now for each level, construct a mask per node which contains all
  5829. * cpus of nodes that are that many hops away from us.
  5830. */
  5831. for (i = 0; i < level; i++) {
  5832. sched_domains_numa_masks[i] =
  5833. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5834. if (!sched_domains_numa_masks[i])
  5835. return;
  5836. for (j = 0; j < nr_node_ids; j++) {
  5837. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5838. if (!mask)
  5839. return;
  5840. sched_domains_numa_masks[i][j] = mask;
  5841. for_each_node(k) {
  5842. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5843. continue;
  5844. cpumask_or(mask, mask, cpumask_of_node(k));
  5845. }
  5846. }
  5847. }
  5848. /* Compute default topology size */
  5849. for (i = 0; sched_domain_topology[i].mask; i++);
  5850. tl = kzalloc((i + level + 1) *
  5851. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5852. if (!tl)
  5853. return;
  5854. /*
  5855. * Copy the default topology bits..
  5856. */
  5857. for (i = 0; sched_domain_topology[i].mask; i++)
  5858. tl[i] = sched_domain_topology[i];
  5859. /*
  5860. * .. and append 'j' levels of NUMA goodness.
  5861. */
  5862. for (j = 0; j < level; i++, j++) {
  5863. tl[i] = (struct sched_domain_topology_level){
  5864. .mask = sd_numa_mask,
  5865. .sd_flags = cpu_numa_flags,
  5866. .flags = SDTL_OVERLAP,
  5867. .numa_level = j,
  5868. SD_INIT_NAME(NUMA)
  5869. };
  5870. }
  5871. sched_domain_topology = tl;
  5872. sched_domains_numa_levels = level;
  5873. sched_max_numa_distance = sched_domains_numa_distance[level - 1];
  5874. init_numa_topology_type();
  5875. }
  5876. static void sched_domains_numa_masks_set(int cpu)
  5877. {
  5878. int i, j;
  5879. int node = cpu_to_node(cpu);
  5880. for (i = 0; i < sched_domains_numa_levels; i++) {
  5881. for (j = 0; j < nr_node_ids; j++) {
  5882. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5883. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5884. }
  5885. }
  5886. }
  5887. static void sched_domains_numa_masks_clear(int cpu)
  5888. {
  5889. int i, j;
  5890. for (i = 0; i < sched_domains_numa_levels; i++) {
  5891. for (j = 0; j < nr_node_ids; j++)
  5892. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5893. }
  5894. }
  5895. /*
  5896. * Update sched_domains_numa_masks[level][node] array when new cpus
  5897. * are onlined.
  5898. */
  5899. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5900. unsigned long action,
  5901. void *hcpu)
  5902. {
  5903. int cpu = (long)hcpu;
  5904. switch (action & ~CPU_TASKS_FROZEN) {
  5905. case CPU_ONLINE:
  5906. sched_domains_numa_masks_set(cpu);
  5907. break;
  5908. case CPU_DEAD:
  5909. sched_domains_numa_masks_clear(cpu);
  5910. break;
  5911. default:
  5912. return NOTIFY_DONE;
  5913. }
  5914. return NOTIFY_OK;
  5915. }
  5916. #else
  5917. static inline void sched_init_numa(void)
  5918. {
  5919. }
  5920. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5921. unsigned long action,
  5922. void *hcpu)
  5923. {
  5924. return 0;
  5925. }
  5926. #endif /* CONFIG_NUMA */
  5927. static int __sdt_alloc(const struct cpumask *cpu_map)
  5928. {
  5929. struct sched_domain_topology_level *tl;
  5930. int j;
  5931. for_each_sd_topology(tl) {
  5932. struct sd_data *sdd = &tl->data;
  5933. sdd->sd = alloc_percpu(struct sched_domain *);
  5934. if (!sdd->sd)
  5935. return -ENOMEM;
  5936. sdd->sg = alloc_percpu(struct sched_group *);
  5937. if (!sdd->sg)
  5938. return -ENOMEM;
  5939. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5940. if (!sdd->sgc)
  5941. return -ENOMEM;
  5942. for_each_cpu(j, cpu_map) {
  5943. struct sched_domain *sd;
  5944. struct sched_group *sg;
  5945. struct sched_group_capacity *sgc;
  5946. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5947. GFP_KERNEL, cpu_to_node(j));
  5948. if (!sd)
  5949. return -ENOMEM;
  5950. *per_cpu_ptr(sdd->sd, j) = sd;
  5951. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5952. GFP_KERNEL, cpu_to_node(j));
  5953. if (!sg)
  5954. return -ENOMEM;
  5955. sg->next = sg;
  5956. *per_cpu_ptr(sdd->sg, j) = sg;
  5957. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5958. GFP_KERNEL, cpu_to_node(j));
  5959. if (!sgc)
  5960. return -ENOMEM;
  5961. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5962. }
  5963. }
  5964. return 0;
  5965. }
  5966. static void __sdt_free(const struct cpumask *cpu_map)
  5967. {
  5968. struct sched_domain_topology_level *tl;
  5969. int j;
  5970. for_each_sd_topology(tl) {
  5971. struct sd_data *sdd = &tl->data;
  5972. for_each_cpu(j, cpu_map) {
  5973. struct sched_domain *sd;
  5974. if (sdd->sd) {
  5975. sd = *per_cpu_ptr(sdd->sd, j);
  5976. if (sd && (sd->flags & SD_OVERLAP))
  5977. free_sched_groups(sd->groups, 0);
  5978. kfree(*per_cpu_ptr(sdd->sd, j));
  5979. }
  5980. if (sdd->sg)
  5981. kfree(*per_cpu_ptr(sdd->sg, j));
  5982. if (sdd->sgc)
  5983. kfree(*per_cpu_ptr(sdd->sgc, j));
  5984. }
  5985. free_percpu(sdd->sd);
  5986. sdd->sd = NULL;
  5987. free_percpu(sdd->sg);
  5988. sdd->sg = NULL;
  5989. free_percpu(sdd->sgc);
  5990. sdd->sgc = NULL;
  5991. }
  5992. }
  5993. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5994. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5995. struct sched_domain *child, int cpu)
  5996. {
  5997. struct sched_domain *sd = sd_init(tl, cpu);
  5998. if (!sd)
  5999. return child;
  6000. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  6001. if (child) {
  6002. sd->level = child->level + 1;
  6003. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  6004. child->parent = sd;
  6005. sd->child = child;
  6006. if (!cpumask_subset(sched_domain_span(child),
  6007. sched_domain_span(sd))) {
  6008. pr_err("BUG: arch topology borken\n");
  6009. #ifdef CONFIG_SCHED_DEBUG
  6010. pr_err(" the %s domain not a subset of the %s domain\n",
  6011. child->name, sd->name);
  6012. #endif
  6013. /* Fixup, ensure @sd has at least @child cpus. */
  6014. cpumask_or(sched_domain_span(sd),
  6015. sched_domain_span(sd),
  6016. sched_domain_span(child));
  6017. }
  6018. }
  6019. set_domain_attribute(sd, attr);
  6020. return sd;
  6021. }
  6022. /*
  6023. * Build sched domains for a given set of cpus and attach the sched domains
  6024. * to the individual cpus
  6025. */
  6026. static int build_sched_domains(const struct cpumask *cpu_map,
  6027. struct sched_domain_attr *attr)
  6028. {
  6029. enum s_alloc alloc_state;
  6030. struct sched_domain *sd;
  6031. struct s_data d;
  6032. int i, ret = -ENOMEM;
  6033. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  6034. if (alloc_state != sa_rootdomain)
  6035. goto error;
  6036. /* Set up domains for cpus specified by the cpu_map. */
  6037. for_each_cpu(i, cpu_map) {
  6038. struct sched_domain_topology_level *tl;
  6039. sd = NULL;
  6040. for_each_sd_topology(tl) {
  6041. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  6042. if (tl == sched_domain_topology)
  6043. *per_cpu_ptr(d.sd, i) = sd;
  6044. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  6045. sd->flags |= SD_OVERLAP;
  6046. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  6047. break;
  6048. }
  6049. }
  6050. /* Build the groups for the domains */
  6051. for_each_cpu(i, cpu_map) {
  6052. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6053. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  6054. if (sd->flags & SD_OVERLAP) {
  6055. if (build_overlap_sched_groups(sd, i))
  6056. goto error;
  6057. } else {
  6058. if (build_sched_groups(sd, i))
  6059. goto error;
  6060. }
  6061. }
  6062. }
  6063. /* Calculate CPU capacity for physical packages and nodes */
  6064. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  6065. if (!cpumask_test_cpu(i, cpu_map))
  6066. continue;
  6067. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  6068. claim_allocations(i, sd);
  6069. init_sched_groups_capacity(i, sd);
  6070. }
  6071. }
  6072. /* Attach the domains */
  6073. rcu_read_lock();
  6074. for_each_cpu(i, cpu_map) {
  6075. sd = *per_cpu_ptr(d.sd, i);
  6076. cpu_attach_domain(sd, d.rd, i);
  6077. }
  6078. rcu_read_unlock();
  6079. ret = 0;
  6080. error:
  6081. __free_domain_allocs(&d, alloc_state, cpu_map);
  6082. return ret;
  6083. }
  6084. static cpumask_var_t *doms_cur; /* current sched domains */
  6085. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  6086. static struct sched_domain_attr *dattr_cur;
  6087. /* attribues of custom domains in 'doms_cur' */
  6088. /*
  6089. * Special case: If a kmalloc of a doms_cur partition (array of
  6090. * cpumask) fails, then fallback to a single sched domain,
  6091. * as determined by the single cpumask fallback_doms.
  6092. */
  6093. static cpumask_var_t fallback_doms;
  6094. /*
  6095. * arch_update_cpu_topology lets virtualized architectures update the
  6096. * cpu core maps. It is supposed to return 1 if the topology changed
  6097. * or 0 if it stayed the same.
  6098. */
  6099. int __weak arch_update_cpu_topology(void)
  6100. {
  6101. return 0;
  6102. }
  6103. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  6104. {
  6105. int i;
  6106. cpumask_var_t *doms;
  6107. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  6108. if (!doms)
  6109. return NULL;
  6110. for (i = 0; i < ndoms; i++) {
  6111. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  6112. free_sched_domains(doms, i);
  6113. return NULL;
  6114. }
  6115. }
  6116. return doms;
  6117. }
  6118. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  6119. {
  6120. unsigned int i;
  6121. for (i = 0; i < ndoms; i++)
  6122. free_cpumask_var(doms[i]);
  6123. kfree(doms);
  6124. }
  6125. /*
  6126. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  6127. * For now this just excludes isolated cpus, but could be used to
  6128. * exclude other special cases in the future.
  6129. */
  6130. static int init_sched_domains(const struct cpumask *cpu_map)
  6131. {
  6132. int err;
  6133. arch_update_cpu_topology();
  6134. ndoms_cur = 1;
  6135. doms_cur = alloc_sched_domains(ndoms_cur);
  6136. if (!doms_cur)
  6137. doms_cur = &fallback_doms;
  6138. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  6139. err = build_sched_domains(doms_cur[0], NULL);
  6140. register_sched_domain_sysctl();
  6141. return err;
  6142. }
  6143. /*
  6144. * Detach sched domains from a group of cpus specified in cpu_map
  6145. * These cpus will now be attached to the NULL domain
  6146. */
  6147. static void detach_destroy_domains(const struct cpumask *cpu_map)
  6148. {
  6149. int i;
  6150. rcu_read_lock();
  6151. for_each_cpu(i, cpu_map)
  6152. cpu_attach_domain(NULL, &def_root_domain, i);
  6153. rcu_read_unlock();
  6154. }
  6155. /* handle null as "default" */
  6156. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  6157. struct sched_domain_attr *new, int idx_new)
  6158. {
  6159. struct sched_domain_attr tmp;
  6160. /* fast path */
  6161. if (!new && !cur)
  6162. return 1;
  6163. tmp = SD_ATTR_INIT;
  6164. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  6165. new ? (new + idx_new) : &tmp,
  6166. sizeof(struct sched_domain_attr));
  6167. }
  6168. /*
  6169. * Partition sched domains as specified by the 'ndoms_new'
  6170. * cpumasks in the array doms_new[] of cpumasks. This compares
  6171. * doms_new[] to the current sched domain partitioning, doms_cur[].
  6172. * It destroys each deleted domain and builds each new domain.
  6173. *
  6174. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  6175. * The masks don't intersect (don't overlap.) We should setup one
  6176. * sched domain for each mask. CPUs not in any of the cpumasks will
  6177. * not be load balanced. If the same cpumask appears both in the
  6178. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  6179. * it as it is.
  6180. *
  6181. * The passed in 'doms_new' should be allocated using
  6182. * alloc_sched_domains. This routine takes ownership of it and will
  6183. * free_sched_domains it when done with it. If the caller failed the
  6184. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  6185. * and partition_sched_domains() will fallback to the single partition
  6186. * 'fallback_doms', it also forces the domains to be rebuilt.
  6187. *
  6188. * If doms_new == NULL it will be replaced with cpu_online_mask.
  6189. * ndoms_new == 0 is a special case for destroying existing domains,
  6190. * and it will not create the default domain.
  6191. *
  6192. * Call with hotplug lock held
  6193. */
  6194. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  6195. struct sched_domain_attr *dattr_new)
  6196. {
  6197. int i, j, n;
  6198. int new_topology;
  6199. mutex_lock(&sched_domains_mutex);
  6200. /* always unregister in case we don't destroy any domains */
  6201. unregister_sched_domain_sysctl();
  6202. /* Let architecture update cpu core mappings. */
  6203. new_topology = arch_update_cpu_topology();
  6204. n = doms_new ? ndoms_new : 0;
  6205. /* Destroy deleted domains */
  6206. for (i = 0; i < ndoms_cur; i++) {
  6207. for (j = 0; j < n && !new_topology; j++) {
  6208. if (cpumask_equal(doms_cur[i], doms_new[j])
  6209. && dattrs_equal(dattr_cur, i, dattr_new, j))
  6210. goto match1;
  6211. }
  6212. /* no match - a current sched domain not in new doms_new[] */
  6213. detach_destroy_domains(doms_cur[i]);
  6214. match1:
  6215. ;
  6216. }
  6217. n = ndoms_cur;
  6218. if (doms_new == NULL) {
  6219. n = 0;
  6220. doms_new = &fallback_doms;
  6221. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  6222. WARN_ON_ONCE(dattr_new);
  6223. }
  6224. /* Build new domains */
  6225. for (i = 0; i < ndoms_new; i++) {
  6226. for (j = 0; j < n && !new_topology; j++) {
  6227. if (cpumask_equal(doms_new[i], doms_cur[j])
  6228. && dattrs_equal(dattr_new, i, dattr_cur, j))
  6229. goto match2;
  6230. }
  6231. /* no match - add a new doms_new */
  6232. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  6233. match2:
  6234. ;
  6235. }
  6236. /* Remember the new sched domains */
  6237. if (doms_cur != &fallback_doms)
  6238. free_sched_domains(doms_cur, ndoms_cur);
  6239. kfree(dattr_cur); /* kfree(NULL) is safe */
  6240. doms_cur = doms_new;
  6241. dattr_cur = dattr_new;
  6242. ndoms_cur = ndoms_new;
  6243. register_sched_domain_sysctl();
  6244. mutex_unlock(&sched_domains_mutex);
  6245. }
  6246. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  6247. /*
  6248. * Update cpusets according to cpu_active mask. If cpusets are
  6249. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  6250. * around partition_sched_domains().
  6251. *
  6252. * If we come here as part of a suspend/resume, don't touch cpusets because we
  6253. * want to restore it back to its original state upon resume anyway.
  6254. */
  6255. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  6256. void *hcpu)
  6257. {
  6258. switch (action) {
  6259. case CPU_ONLINE_FROZEN:
  6260. case CPU_DOWN_FAILED_FROZEN:
  6261. /*
  6262. * num_cpus_frozen tracks how many CPUs are involved in suspend
  6263. * resume sequence. As long as this is not the last online
  6264. * operation in the resume sequence, just build a single sched
  6265. * domain, ignoring cpusets.
  6266. */
  6267. num_cpus_frozen--;
  6268. if (likely(num_cpus_frozen)) {
  6269. partition_sched_domains(1, NULL, NULL);
  6270. break;
  6271. }
  6272. /*
  6273. * This is the last CPU online operation. So fall through and
  6274. * restore the original sched domains by considering the
  6275. * cpuset configurations.
  6276. */
  6277. case CPU_ONLINE:
  6278. cpuset_update_active_cpus(true);
  6279. break;
  6280. default:
  6281. return NOTIFY_DONE;
  6282. }
  6283. return NOTIFY_OK;
  6284. }
  6285. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  6286. void *hcpu)
  6287. {
  6288. unsigned long flags;
  6289. long cpu = (long)hcpu;
  6290. struct dl_bw *dl_b;
  6291. bool overflow;
  6292. int cpus;
  6293. switch (action) {
  6294. case CPU_DOWN_PREPARE:
  6295. rcu_read_lock_sched();
  6296. dl_b = dl_bw_of(cpu);
  6297. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6298. cpus = dl_bw_cpus(cpu);
  6299. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  6300. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6301. rcu_read_unlock_sched();
  6302. if (overflow)
  6303. return notifier_from_errno(-EBUSY);
  6304. cpuset_update_active_cpus(false);
  6305. break;
  6306. case CPU_DOWN_PREPARE_FROZEN:
  6307. num_cpus_frozen++;
  6308. partition_sched_domains(1, NULL, NULL);
  6309. break;
  6310. default:
  6311. return NOTIFY_DONE;
  6312. }
  6313. return NOTIFY_OK;
  6314. }
  6315. void __init sched_init_smp(void)
  6316. {
  6317. cpumask_var_t non_isolated_cpus;
  6318. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  6319. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  6320. sched_init_numa();
  6321. /*
  6322. * There's no userspace yet to cause hotplug operations; hence all the
  6323. * cpu masks are stable and all blatant races in the below code cannot
  6324. * happen.
  6325. */
  6326. mutex_lock(&sched_domains_mutex);
  6327. init_sched_domains(cpu_active_mask);
  6328. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  6329. if (cpumask_empty(non_isolated_cpus))
  6330. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  6331. mutex_unlock(&sched_domains_mutex);
  6332. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  6333. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  6334. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  6335. init_hrtick();
  6336. /* Move init over to a non-isolated CPU */
  6337. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  6338. BUG();
  6339. sched_init_granularity();
  6340. free_cpumask_var(non_isolated_cpus);
  6341. init_sched_rt_class();
  6342. init_sched_dl_class();
  6343. }
  6344. #else
  6345. void __init sched_init_smp(void)
  6346. {
  6347. sched_init_granularity();
  6348. }
  6349. #endif /* CONFIG_SMP */
  6350. int in_sched_functions(unsigned long addr)
  6351. {
  6352. return in_lock_functions(addr) ||
  6353. (addr >= (unsigned long)__sched_text_start
  6354. && addr < (unsigned long)__sched_text_end);
  6355. }
  6356. #ifdef CONFIG_CGROUP_SCHED
  6357. /*
  6358. * Default task group.
  6359. * Every task in system belongs to this group at bootup.
  6360. */
  6361. struct task_group root_task_group;
  6362. LIST_HEAD(task_groups);
  6363. /* Cacheline aligned slab cache for task_group */
  6364. static struct kmem_cache *task_group_cache __read_mostly;
  6365. #endif
  6366. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  6367. void __init sched_init(void)
  6368. {
  6369. int i, j;
  6370. unsigned long alloc_size = 0, ptr;
  6371. #ifdef CONFIG_FAIR_GROUP_SCHED
  6372. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6373. #endif
  6374. #ifdef CONFIG_RT_GROUP_SCHED
  6375. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  6376. #endif
  6377. if (alloc_size) {
  6378. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  6379. #ifdef CONFIG_FAIR_GROUP_SCHED
  6380. root_task_group.se = (struct sched_entity **)ptr;
  6381. ptr += nr_cpu_ids * sizeof(void **);
  6382. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  6383. ptr += nr_cpu_ids * sizeof(void **);
  6384. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6385. #ifdef CONFIG_RT_GROUP_SCHED
  6386. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  6387. ptr += nr_cpu_ids * sizeof(void **);
  6388. root_task_group.rt_rq = (struct rt_rq **)ptr;
  6389. ptr += nr_cpu_ids * sizeof(void **);
  6390. #endif /* CONFIG_RT_GROUP_SCHED */
  6391. }
  6392. #ifdef CONFIG_CPUMASK_OFFSTACK
  6393. for_each_possible_cpu(i) {
  6394. per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
  6395. cpumask_size(), GFP_KERNEL, cpu_to_node(i));
  6396. }
  6397. #endif /* CONFIG_CPUMASK_OFFSTACK */
  6398. init_rt_bandwidth(&def_rt_bandwidth,
  6399. global_rt_period(), global_rt_runtime());
  6400. init_dl_bandwidth(&def_dl_bandwidth,
  6401. global_rt_period(), global_rt_runtime());
  6402. #ifdef CONFIG_SMP
  6403. init_defrootdomain();
  6404. #endif
  6405. #ifdef CONFIG_RT_GROUP_SCHED
  6406. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  6407. global_rt_period(), global_rt_runtime());
  6408. #endif /* CONFIG_RT_GROUP_SCHED */
  6409. #ifdef CONFIG_CGROUP_SCHED
  6410. task_group_cache = KMEM_CACHE(task_group, 0);
  6411. list_add(&root_task_group.list, &task_groups);
  6412. INIT_LIST_HEAD(&root_task_group.children);
  6413. INIT_LIST_HEAD(&root_task_group.siblings);
  6414. autogroup_init(&init_task);
  6415. #endif /* CONFIG_CGROUP_SCHED */
  6416. for_each_possible_cpu(i) {
  6417. struct rq *rq;
  6418. rq = cpu_rq(i);
  6419. raw_spin_lock_init(&rq->lock);
  6420. rq->nr_running = 0;
  6421. rq->calc_load_active = 0;
  6422. rq->calc_load_update = jiffies + LOAD_FREQ;
  6423. init_cfs_rq(&rq->cfs);
  6424. init_rt_rq(&rq->rt);
  6425. init_dl_rq(&rq->dl);
  6426. #ifdef CONFIG_FAIR_GROUP_SCHED
  6427. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  6428. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  6429. /*
  6430. * How much cpu bandwidth does root_task_group get?
  6431. *
  6432. * In case of task-groups formed thr' the cgroup filesystem, it
  6433. * gets 100% of the cpu resources in the system. This overall
  6434. * system cpu resource is divided among the tasks of
  6435. * root_task_group and its child task-groups in a fair manner,
  6436. * based on each entity's (task or task-group's) weight
  6437. * (se->load.weight).
  6438. *
  6439. * In other words, if root_task_group has 10 tasks of weight
  6440. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  6441. * then A0's share of the cpu resource is:
  6442. *
  6443. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  6444. *
  6445. * We achieve this by letting root_task_group's tasks sit
  6446. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  6447. */
  6448. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  6449. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  6450. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6451. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  6452. #ifdef CONFIG_RT_GROUP_SCHED
  6453. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  6454. #endif
  6455. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  6456. rq->cpu_load[j] = 0;
  6457. rq->last_load_update_tick = jiffies;
  6458. #ifdef CONFIG_SMP
  6459. rq->sd = NULL;
  6460. rq->rd = NULL;
  6461. rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
  6462. rq->balance_callback = NULL;
  6463. rq->active_balance = 0;
  6464. rq->next_balance = jiffies;
  6465. rq->push_cpu = 0;
  6466. rq->cpu = i;
  6467. rq->online = 0;
  6468. rq->idle_stamp = 0;
  6469. rq->avg_idle = 2*sysctl_sched_migration_cost;
  6470. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  6471. INIT_LIST_HEAD(&rq->cfs_tasks);
  6472. rq_attach_root(rq, &def_root_domain);
  6473. #ifdef CONFIG_NO_HZ_COMMON
  6474. rq->nohz_flags = 0;
  6475. #endif
  6476. #ifdef CONFIG_NO_HZ_FULL
  6477. rq->last_sched_tick = 0;
  6478. #endif
  6479. #endif
  6480. init_rq_hrtick(rq);
  6481. atomic_set(&rq->nr_iowait, 0);
  6482. }
  6483. set_load_weight(&init_task);
  6484. #ifdef CONFIG_PREEMPT_NOTIFIERS
  6485. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  6486. #endif
  6487. /*
  6488. * The boot idle thread does lazy MMU switching as well:
  6489. */
  6490. atomic_inc(&init_mm.mm_count);
  6491. enter_lazy_tlb(&init_mm, current);
  6492. /*
  6493. * During early bootup we pretend to be a normal task:
  6494. */
  6495. current->sched_class = &fair_sched_class;
  6496. /*
  6497. * Make us the idle thread. Technically, schedule() should not be
  6498. * called from this thread, however somewhere below it might be,
  6499. * but because we are the idle thread, we just pick up running again
  6500. * when this runqueue becomes "idle".
  6501. */
  6502. init_idle(current, smp_processor_id());
  6503. calc_load_update = jiffies + LOAD_FREQ;
  6504. #ifdef CONFIG_SMP
  6505. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  6506. /* May be allocated at isolcpus cmdline parse time */
  6507. if (cpu_isolated_map == NULL)
  6508. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  6509. idle_thread_set_boot_cpu();
  6510. set_cpu_rq_start_time();
  6511. #endif
  6512. init_sched_fair_class();
  6513. scheduler_running = 1;
  6514. }
  6515. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  6516. static inline int preempt_count_equals(int preempt_offset)
  6517. {
  6518. int nested = preempt_count() + rcu_preempt_depth();
  6519. return (nested == preempt_offset);
  6520. }
  6521. void __might_sleep(const char *file, int line, int preempt_offset)
  6522. {
  6523. /*
  6524. * Blocking primitives will set (and therefore destroy) current->state,
  6525. * since we will exit with TASK_RUNNING make sure we enter with it,
  6526. * otherwise we will destroy state.
  6527. */
  6528. WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
  6529. "do not call blocking ops when !TASK_RUNNING; "
  6530. "state=%lx set at [<%p>] %pS\n",
  6531. current->state,
  6532. (void *)current->task_state_change,
  6533. (void *)current->task_state_change);
  6534. ___might_sleep(file, line, preempt_offset);
  6535. }
  6536. EXPORT_SYMBOL(__might_sleep);
  6537. void ___might_sleep(const char *file, int line, int preempt_offset)
  6538. {
  6539. static unsigned long prev_jiffy; /* ratelimiting */
  6540. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  6541. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  6542. !is_idle_task(current)) ||
  6543. system_state != SYSTEM_RUNNING || oops_in_progress)
  6544. return;
  6545. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  6546. return;
  6547. prev_jiffy = jiffies;
  6548. printk(KERN_ERR
  6549. "BUG: sleeping function called from invalid context at %s:%d\n",
  6550. file, line);
  6551. printk(KERN_ERR
  6552. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  6553. in_atomic(), irqs_disabled(),
  6554. current->pid, current->comm);
  6555. if (task_stack_end_corrupted(current))
  6556. printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
  6557. debug_show_held_locks(current);
  6558. if (irqs_disabled())
  6559. print_irqtrace_events(current);
  6560. #ifdef CONFIG_DEBUG_PREEMPT
  6561. if (!preempt_count_equals(preempt_offset)) {
  6562. pr_err("Preemption disabled at:");
  6563. print_ip_sym(current->preempt_disable_ip);
  6564. pr_cont("\n");
  6565. }
  6566. #endif
  6567. dump_stack();
  6568. }
  6569. EXPORT_SYMBOL(___might_sleep);
  6570. #endif
  6571. #ifdef CONFIG_MAGIC_SYSRQ
  6572. void normalize_rt_tasks(void)
  6573. {
  6574. struct task_struct *g, *p;
  6575. struct sched_attr attr = {
  6576. .sched_policy = SCHED_NORMAL,
  6577. };
  6578. read_lock(&tasklist_lock);
  6579. for_each_process_thread(g, p) {
  6580. /*
  6581. * Only normalize user tasks:
  6582. */
  6583. if (p->flags & PF_KTHREAD)
  6584. continue;
  6585. p->se.exec_start = 0;
  6586. #ifdef CONFIG_SCHEDSTATS
  6587. p->se.statistics.wait_start = 0;
  6588. p->se.statistics.sleep_start = 0;
  6589. p->se.statistics.block_start = 0;
  6590. #endif
  6591. if (!dl_task(p) && !rt_task(p)) {
  6592. /*
  6593. * Renice negative nice level userspace
  6594. * tasks back to 0:
  6595. */
  6596. if (task_nice(p) < 0)
  6597. set_user_nice(p, 0);
  6598. continue;
  6599. }
  6600. __sched_setscheduler(p, &attr, false, false);
  6601. }
  6602. read_unlock(&tasklist_lock);
  6603. }
  6604. #endif /* CONFIG_MAGIC_SYSRQ */
  6605. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6606. /*
  6607. * These functions are only useful for the IA64 MCA handling, or kdb.
  6608. *
  6609. * They can only be called when the whole system has been
  6610. * stopped - every CPU needs to be quiescent, and no scheduling
  6611. * activity can take place. Using them for anything else would
  6612. * be a serious bug, and as a result, they aren't even visible
  6613. * under any other configuration.
  6614. */
  6615. /**
  6616. * curr_task - return the current task for a given cpu.
  6617. * @cpu: the processor in question.
  6618. *
  6619. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6620. *
  6621. * Return: The current task for @cpu.
  6622. */
  6623. struct task_struct *curr_task(int cpu)
  6624. {
  6625. return cpu_curr(cpu);
  6626. }
  6627. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6628. #ifdef CONFIG_IA64
  6629. /**
  6630. * set_curr_task - set the current task for a given cpu.
  6631. * @cpu: the processor in question.
  6632. * @p: the task pointer to set.
  6633. *
  6634. * Description: This function must only be used when non-maskable interrupts
  6635. * are serviced on a separate stack. It allows the architecture to switch the
  6636. * notion of the current task on a cpu in a non-blocking manner. This function
  6637. * must be called with all CPU's synchronized, and interrupts disabled, the
  6638. * and caller must save the original value of the current task (see
  6639. * curr_task() above) and restore that value before reenabling interrupts and
  6640. * re-starting the system.
  6641. *
  6642. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6643. */
  6644. void set_curr_task(int cpu, struct task_struct *p)
  6645. {
  6646. cpu_curr(cpu) = p;
  6647. }
  6648. #endif
  6649. #ifdef CONFIG_CGROUP_SCHED
  6650. /* task_group_lock serializes the addition/removal of task groups */
  6651. static DEFINE_SPINLOCK(task_group_lock);
  6652. static void free_sched_group(struct task_group *tg)
  6653. {
  6654. free_fair_sched_group(tg);
  6655. free_rt_sched_group(tg);
  6656. autogroup_free(tg);
  6657. kmem_cache_free(task_group_cache, tg);
  6658. }
  6659. /* allocate runqueue etc for a new task group */
  6660. struct task_group *sched_create_group(struct task_group *parent)
  6661. {
  6662. struct task_group *tg;
  6663. tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
  6664. if (!tg)
  6665. return ERR_PTR(-ENOMEM);
  6666. if (!alloc_fair_sched_group(tg, parent))
  6667. goto err;
  6668. if (!alloc_rt_sched_group(tg, parent))
  6669. goto err;
  6670. return tg;
  6671. err:
  6672. free_sched_group(tg);
  6673. return ERR_PTR(-ENOMEM);
  6674. }
  6675. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6676. {
  6677. unsigned long flags;
  6678. spin_lock_irqsave(&task_group_lock, flags);
  6679. list_add_rcu(&tg->list, &task_groups);
  6680. WARN_ON(!parent); /* root should already exist */
  6681. tg->parent = parent;
  6682. INIT_LIST_HEAD(&tg->children);
  6683. list_add_rcu(&tg->siblings, &parent->children);
  6684. spin_unlock_irqrestore(&task_group_lock, flags);
  6685. }
  6686. /* rcu callback to free various structures associated with a task group */
  6687. static void free_sched_group_rcu(struct rcu_head *rhp)
  6688. {
  6689. /* now it should be safe to free those cfs_rqs */
  6690. free_sched_group(container_of(rhp, struct task_group, rcu));
  6691. }
  6692. /* Destroy runqueue etc associated with a task group */
  6693. void sched_destroy_group(struct task_group *tg)
  6694. {
  6695. /* wait for possible concurrent references to cfs_rqs complete */
  6696. call_rcu(&tg->rcu, free_sched_group_rcu);
  6697. }
  6698. void sched_offline_group(struct task_group *tg)
  6699. {
  6700. unsigned long flags;
  6701. int i;
  6702. /* end participation in shares distribution */
  6703. for_each_possible_cpu(i)
  6704. unregister_fair_sched_group(tg, i);
  6705. spin_lock_irqsave(&task_group_lock, flags);
  6706. list_del_rcu(&tg->list);
  6707. list_del_rcu(&tg->siblings);
  6708. spin_unlock_irqrestore(&task_group_lock, flags);
  6709. }
  6710. /* change task's runqueue when it moves between groups.
  6711. * The caller of this function should have put the task in its new group
  6712. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6713. * reflect its new group.
  6714. */
  6715. void sched_move_task(struct task_struct *tsk)
  6716. {
  6717. struct task_group *tg;
  6718. int queued, running;
  6719. unsigned long flags;
  6720. struct rq *rq;
  6721. rq = task_rq_lock(tsk, &flags);
  6722. running = task_current(rq, tsk);
  6723. queued = task_on_rq_queued(tsk);
  6724. if (queued)
  6725. dequeue_task(rq, tsk, DEQUEUE_SAVE);
  6726. if (unlikely(running))
  6727. put_prev_task(rq, tsk);
  6728. /*
  6729. * All callers are synchronized by task_rq_lock(); we do not use RCU
  6730. * which is pointless here. Thus, we pass "true" to task_css_check()
  6731. * to prevent lockdep warnings.
  6732. */
  6733. tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
  6734. struct task_group, css);
  6735. tg = autogroup_task_group(tsk, tg);
  6736. tsk->sched_task_group = tg;
  6737. #ifdef CONFIG_FAIR_GROUP_SCHED
  6738. if (tsk->sched_class->task_move_group)
  6739. tsk->sched_class->task_move_group(tsk);
  6740. else
  6741. #endif
  6742. set_task_rq(tsk, task_cpu(tsk));
  6743. if (unlikely(running))
  6744. tsk->sched_class->set_curr_task(rq);
  6745. if (queued)
  6746. enqueue_task(rq, tsk, ENQUEUE_RESTORE);
  6747. task_rq_unlock(rq, tsk, &flags);
  6748. }
  6749. #endif /* CONFIG_CGROUP_SCHED */
  6750. #ifdef CONFIG_RT_GROUP_SCHED
  6751. /*
  6752. * Ensure that the real time constraints are schedulable.
  6753. */
  6754. static DEFINE_MUTEX(rt_constraints_mutex);
  6755. /* Must be called with tasklist_lock held */
  6756. static inline int tg_has_rt_tasks(struct task_group *tg)
  6757. {
  6758. struct task_struct *g, *p;
  6759. /*
  6760. * Autogroups do not have RT tasks; see autogroup_create().
  6761. */
  6762. if (task_group_is_autogroup(tg))
  6763. return 0;
  6764. for_each_process_thread(g, p) {
  6765. if (rt_task(p) && task_group(p) == tg)
  6766. return 1;
  6767. }
  6768. return 0;
  6769. }
  6770. struct rt_schedulable_data {
  6771. struct task_group *tg;
  6772. u64 rt_period;
  6773. u64 rt_runtime;
  6774. };
  6775. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6776. {
  6777. struct rt_schedulable_data *d = data;
  6778. struct task_group *child;
  6779. unsigned long total, sum = 0;
  6780. u64 period, runtime;
  6781. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6782. runtime = tg->rt_bandwidth.rt_runtime;
  6783. if (tg == d->tg) {
  6784. period = d->rt_period;
  6785. runtime = d->rt_runtime;
  6786. }
  6787. /*
  6788. * Cannot have more runtime than the period.
  6789. */
  6790. if (runtime > period && runtime != RUNTIME_INF)
  6791. return -EINVAL;
  6792. /*
  6793. * Ensure we don't starve existing RT tasks.
  6794. */
  6795. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6796. return -EBUSY;
  6797. total = to_ratio(period, runtime);
  6798. /*
  6799. * Nobody can have more than the global setting allows.
  6800. */
  6801. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6802. return -EINVAL;
  6803. /*
  6804. * The sum of our children's runtime should not exceed our own.
  6805. */
  6806. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6807. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6808. runtime = child->rt_bandwidth.rt_runtime;
  6809. if (child == d->tg) {
  6810. period = d->rt_period;
  6811. runtime = d->rt_runtime;
  6812. }
  6813. sum += to_ratio(period, runtime);
  6814. }
  6815. if (sum > total)
  6816. return -EINVAL;
  6817. return 0;
  6818. }
  6819. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6820. {
  6821. int ret;
  6822. struct rt_schedulable_data data = {
  6823. .tg = tg,
  6824. .rt_period = period,
  6825. .rt_runtime = runtime,
  6826. };
  6827. rcu_read_lock();
  6828. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6829. rcu_read_unlock();
  6830. return ret;
  6831. }
  6832. static int tg_set_rt_bandwidth(struct task_group *tg,
  6833. u64 rt_period, u64 rt_runtime)
  6834. {
  6835. int i, err = 0;
  6836. /*
  6837. * Disallowing the root group RT runtime is BAD, it would disallow the
  6838. * kernel creating (and or operating) RT threads.
  6839. */
  6840. if (tg == &root_task_group && rt_runtime == 0)
  6841. return -EINVAL;
  6842. /* No period doesn't make any sense. */
  6843. if (rt_period == 0)
  6844. return -EINVAL;
  6845. mutex_lock(&rt_constraints_mutex);
  6846. read_lock(&tasklist_lock);
  6847. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6848. if (err)
  6849. goto unlock;
  6850. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6851. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6852. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6853. for_each_possible_cpu(i) {
  6854. struct rt_rq *rt_rq = tg->rt_rq[i];
  6855. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6856. rt_rq->rt_runtime = rt_runtime;
  6857. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6858. }
  6859. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6860. unlock:
  6861. read_unlock(&tasklist_lock);
  6862. mutex_unlock(&rt_constraints_mutex);
  6863. return err;
  6864. }
  6865. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6866. {
  6867. u64 rt_runtime, rt_period;
  6868. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6869. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6870. if (rt_runtime_us < 0)
  6871. rt_runtime = RUNTIME_INF;
  6872. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6873. }
  6874. static long sched_group_rt_runtime(struct task_group *tg)
  6875. {
  6876. u64 rt_runtime_us;
  6877. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6878. return -1;
  6879. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6880. do_div(rt_runtime_us, NSEC_PER_USEC);
  6881. return rt_runtime_us;
  6882. }
  6883. static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
  6884. {
  6885. u64 rt_runtime, rt_period;
  6886. rt_period = rt_period_us * NSEC_PER_USEC;
  6887. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6888. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6889. }
  6890. static long sched_group_rt_period(struct task_group *tg)
  6891. {
  6892. u64 rt_period_us;
  6893. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6894. do_div(rt_period_us, NSEC_PER_USEC);
  6895. return rt_period_us;
  6896. }
  6897. #endif /* CONFIG_RT_GROUP_SCHED */
  6898. #ifdef CONFIG_RT_GROUP_SCHED
  6899. static int sched_rt_global_constraints(void)
  6900. {
  6901. int ret = 0;
  6902. mutex_lock(&rt_constraints_mutex);
  6903. read_lock(&tasklist_lock);
  6904. ret = __rt_schedulable(NULL, 0, 0);
  6905. read_unlock(&tasklist_lock);
  6906. mutex_unlock(&rt_constraints_mutex);
  6907. return ret;
  6908. }
  6909. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6910. {
  6911. /* Don't accept realtime tasks when there is no way for them to run */
  6912. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6913. return 0;
  6914. return 1;
  6915. }
  6916. #else /* !CONFIG_RT_GROUP_SCHED */
  6917. static int sched_rt_global_constraints(void)
  6918. {
  6919. unsigned long flags;
  6920. int i, ret = 0;
  6921. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6922. for_each_possible_cpu(i) {
  6923. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6924. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6925. rt_rq->rt_runtime = global_rt_runtime();
  6926. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6927. }
  6928. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6929. return ret;
  6930. }
  6931. #endif /* CONFIG_RT_GROUP_SCHED */
  6932. static int sched_dl_global_validate(void)
  6933. {
  6934. u64 runtime = global_rt_runtime();
  6935. u64 period = global_rt_period();
  6936. u64 new_bw = to_ratio(period, runtime);
  6937. struct dl_bw *dl_b;
  6938. int cpu, ret = 0;
  6939. unsigned long flags;
  6940. /*
  6941. * Here we want to check the bandwidth not being set to some
  6942. * value smaller than the currently allocated bandwidth in
  6943. * any of the root_domains.
  6944. *
  6945. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6946. * cycling on root_domains... Discussion on different/better
  6947. * solutions is welcome!
  6948. */
  6949. for_each_possible_cpu(cpu) {
  6950. rcu_read_lock_sched();
  6951. dl_b = dl_bw_of(cpu);
  6952. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6953. if (new_bw < dl_b->total_bw)
  6954. ret = -EBUSY;
  6955. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6956. rcu_read_unlock_sched();
  6957. if (ret)
  6958. break;
  6959. }
  6960. return ret;
  6961. }
  6962. static void sched_dl_do_global(void)
  6963. {
  6964. u64 new_bw = -1;
  6965. struct dl_bw *dl_b;
  6966. int cpu;
  6967. unsigned long flags;
  6968. def_dl_bandwidth.dl_period = global_rt_period();
  6969. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6970. if (global_rt_runtime() != RUNTIME_INF)
  6971. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6972. /*
  6973. * FIXME: As above...
  6974. */
  6975. for_each_possible_cpu(cpu) {
  6976. rcu_read_lock_sched();
  6977. dl_b = dl_bw_of(cpu);
  6978. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6979. dl_b->bw = new_bw;
  6980. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6981. rcu_read_unlock_sched();
  6982. }
  6983. }
  6984. static int sched_rt_global_validate(void)
  6985. {
  6986. if (sysctl_sched_rt_period <= 0)
  6987. return -EINVAL;
  6988. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6989. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6990. return -EINVAL;
  6991. return 0;
  6992. }
  6993. static void sched_rt_do_global(void)
  6994. {
  6995. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6996. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6997. }
  6998. int sched_rt_handler(struct ctl_table *table, int write,
  6999. void __user *buffer, size_t *lenp,
  7000. loff_t *ppos)
  7001. {
  7002. int old_period, old_runtime;
  7003. static DEFINE_MUTEX(mutex);
  7004. int ret;
  7005. mutex_lock(&mutex);
  7006. old_period = sysctl_sched_rt_period;
  7007. old_runtime = sysctl_sched_rt_runtime;
  7008. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7009. if (!ret && write) {
  7010. ret = sched_rt_global_validate();
  7011. if (ret)
  7012. goto undo;
  7013. ret = sched_dl_global_validate();
  7014. if (ret)
  7015. goto undo;
  7016. ret = sched_rt_global_constraints();
  7017. if (ret)
  7018. goto undo;
  7019. sched_rt_do_global();
  7020. sched_dl_do_global();
  7021. }
  7022. if (0) {
  7023. undo:
  7024. sysctl_sched_rt_period = old_period;
  7025. sysctl_sched_rt_runtime = old_runtime;
  7026. }
  7027. mutex_unlock(&mutex);
  7028. return ret;
  7029. }
  7030. int sched_rr_handler(struct ctl_table *table, int write,
  7031. void __user *buffer, size_t *lenp,
  7032. loff_t *ppos)
  7033. {
  7034. int ret;
  7035. static DEFINE_MUTEX(mutex);
  7036. mutex_lock(&mutex);
  7037. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  7038. /* make sure that internally we keep jiffies */
  7039. /* also, writing zero resets timeslice to default */
  7040. if (!ret && write) {
  7041. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  7042. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  7043. }
  7044. mutex_unlock(&mutex);
  7045. return ret;
  7046. }
  7047. #ifdef CONFIG_CGROUP_SCHED
  7048. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  7049. {
  7050. return css ? container_of(css, struct task_group, css) : NULL;
  7051. }
  7052. static struct cgroup_subsys_state *
  7053. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  7054. {
  7055. struct task_group *parent = css_tg(parent_css);
  7056. struct task_group *tg;
  7057. if (!parent) {
  7058. /* This is early initialization for the top cgroup */
  7059. return &root_task_group.css;
  7060. }
  7061. tg = sched_create_group(parent);
  7062. if (IS_ERR(tg))
  7063. return ERR_PTR(-ENOMEM);
  7064. return &tg->css;
  7065. }
  7066. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  7067. {
  7068. struct task_group *tg = css_tg(css);
  7069. struct task_group *parent = css_tg(css->parent);
  7070. if (parent)
  7071. sched_online_group(tg, parent);
  7072. return 0;
  7073. }
  7074. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  7075. {
  7076. struct task_group *tg = css_tg(css);
  7077. sched_destroy_group(tg);
  7078. }
  7079. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  7080. {
  7081. struct task_group *tg = css_tg(css);
  7082. sched_offline_group(tg);
  7083. }
  7084. static void cpu_cgroup_fork(struct task_struct *task)
  7085. {
  7086. sched_move_task(task);
  7087. }
  7088. static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
  7089. {
  7090. struct task_struct *task;
  7091. struct cgroup_subsys_state *css;
  7092. cgroup_taskset_for_each(task, css, tset) {
  7093. #ifdef CONFIG_RT_GROUP_SCHED
  7094. if (!sched_rt_can_attach(css_tg(css), task))
  7095. return -EINVAL;
  7096. #else
  7097. /* We don't support RT-tasks being in separate groups */
  7098. if (task->sched_class != &fair_sched_class)
  7099. return -EINVAL;
  7100. #endif
  7101. }
  7102. return 0;
  7103. }
  7104. static void cpu_cgroup_attach(struct cgroup_taskset *tset)
  7105. {
  7106. struct task_struct *task;
  7107. struct cgroup_subsys_state *css;
  7108. cgroup_taskset_for_each(task, css, tset)
  7109. sched_move_task(task);
  7110. }
  7111. #ifdef CONFIG_FAIR_GROUP_SCHED
  7112. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  7113. struct cftype *cftype, u64 shareval)
  7114. {
  7115. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  7116. }
  7117. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  7118. struct cftype *cft)
  7119. {
  7120. struct task_group *tg = css_tg(css);
  7121. return (u64) scale_load_down(tg->shares);
  7122. }
  7123. #ifdef CONFIG_CFS_BANDWIDTH
  7124. static DEFINE_MUTEX(cfs_constraints_mutex);
  7125. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  7126. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  7127. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  7128. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  7129. {
  7130. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  7131. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7132. if (tg == &root_task_group)
  7133. return -EINVAL;
  7134. /*
  7135. * Ensure we have at some amount of bandwidth every period. This is
  7136. * to prevent reaching a state of large arrears when throttled via
  7137. * entity_tick() resulting in prolonged exit starvation.
  7138. */
  7139. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  7140. return -EINVAL;
  7141. /*
  7142. * Likewise, bound things on the otherside by preventing insane quota
  7143. * periods. This also allows us to normalize in computing quota
  7144. * feasibility.
  7145. */
  7146. if (period > max_cfs_quota_period)
  7147. return -EINVAL;
  7148. /*
  7149. * Prevent race between setting of cfs_rq->runtime_enabled and
  7150. * unthrottle_offline_cfs_rqs().
  7151. */
  7152. get_online_cpus();
  7153. mutex_lock(&cfs_constraints_mutex);
  7154. ret = __cfs_schedulable(tg, period, quota);
  7155. if (ret)
  7156. goto out_unlock;
  7157. runtime_enabled = quota != RUNTIME_INF;
  7158. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  7159. /*
  7160. * If we need to toggle cfs_bandwidth_used, off->on must occur
  7161. * before making related changes, and on->off must occur afterwards
  7162. */
  7163. if (runtime_enabled && !runtime_was_enabled)
  7164. cfs_bandwidth_usage_inc();
  7165. raw_spin_lock_irq(&cfs_b->lock);
  7166. cfs_b->period = ns_to_ktime(period);
  7167. cfs_b->quota = quota;
  7168. __refill_cfs_bandwidth_runtime(cfs_b);
  7169. /* restart the period timer (if active) to handle new period expiry */
  7170. if (runtime_enabled)
  7171. start_cfs_bandwidth(cfs_b);
  7172. raw_spin_unlock_irq(&cfs_b->lock);
  7173. for_each_online_cpu(i) {
  7174. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  7175. struct rq *rq = cfs_rq->rq;
  7176. raw_spin_lock_irq(&rq->lock);
  7177. cfs_rq->runtime_enabled = runtime_enabled;
  7178. cfs_rq->runtime_remaining = 0;
  7179. if (cfs_rq->throttled)
  7180. unthrottle_cfs_rq(cfs_rq);
  7181. raw_spin_unlock_irq(&rq->lock);
  7182. }
  7183. if (runtime_was_enabled && !runtime_enabled)
  7184. cfs_bandwidth_usage_dec();
  7185. out_unlock:
  7186. mutex_unlock(&cfs_constraints_mutex);
  7187. put_online_cpus();
  7188. return ret;
  7189. }
  7190. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  7191. {
  7192. u64 quota, period;
  7193. period = ktime_to_ns(tg->cfs_bandwidth.period);
  7194. if (cfs_quota_us < 0)
  7195. quota = RUNTIME_INF;
  7196. else
  7197. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  7198. return tg_set_cfs_bandwidth(tg, period, quota);
  7199. }
  7200. long tg_get_cfs_quota(struct task_group *tg)
  7201. {
  7202. u64 quota_us;
  7203. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  7204. return -1;
  7205. quota_us = tg->cfs_bandwidth.quota;
  7206. do_div(quota_us, NSEC_PER_USEC);
  7207. return quota_us;
  7208. }
  7209. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  7210. {
  7211. u64 quota, period;
  7212. period = (u64)cfs_period_us * NSEC_PER_USEC;
  7213. quota = tg->cfs_bandwidth.quota;
  7214. return tg_set_cfs_bandwidth(tg, period, quota);
  7215. }
  7216. long tg_get_cfs_period(struct task_group *tg)
  7217. {
  7218. u64 cfs_period_us;
  7219. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  7220. do_div(cfs_period_us, NSEC_PER_USEC);
  7221. return cfs_period_us;
  7222. }
  7223. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  7224. struct cftype *cft)
  7225. {
  7226. return tg_get_cfs_quota(css_tg(css));
  7227. }
  7228. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  7229. struct cftype *cftype, s64 cfs_quota_us)
  7230. {
  7231. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  7232. }
  7233. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  7234. struct cftype *cft)
  7235. {
  7236. return tg_get_cfs_period(css_tg(css));
  7237. }
  7238. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  7239. struct cftype *cftype, u64 cfs_period_us)
  7240. {
  7241. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  7242. }
  7243. struct cfs_schedulable_data {
  7244. struct task_group *tg;
  7245. u64 period, quota;
  7246. };
  7247. /*
  7248. * normalize group quota/period to be quota/max_period
  7249. * note: units are usecs
  7250. */
  7251. static u64 normalize_cfs_quota(struct task_group *tg,
  7252. struct cfs_schedulable_data *d)
  7253. {
  7254. u64 quota, period;
  7255. if (tg == d->tg) {
  7256. period = d->period;
  7257. quota = d->quota;
  7258. } else {
  7259. period = tg_get_cfs_period(tg);
  7260. quota = tg_get_cfs_quota(tg);
  7261. }
  7262. /* note: these should typically be equivalent */
  7263. if (quota == RUNTIME_INF || quota == -1)
  7264. return RUNTIME_INF;
  7265. return to_ratio(period, quota);
  7266. }
  7267. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  7268. {
  7269. struct cfs_schedulable_data *d = data;
  7270. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7271. s64 quota = 0, parent_quota = -1;
  7272. if (!tg->parent) {
  7273. quota = RUNTIME_INF;
  7274. } else {
  7275. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  7276. quota = normalize_cfs_quota(tg, d);
  7277. parent_quota = parent_b->hierarchical_quota;
  7278. /*
  7279. * ensure max(child_quota) <= parent_quota, inherit when no
  7280. * limit is set
  7281. */
  7282. if (quota == RUNTIME_INF)
  7283. quota = parent_quota;
  7284. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  7285. return -EINVAL;
  7286. }
  7287. cfs_b->hierarchical_quota = quota;
  7288. return 0;
  7289. }
  7290. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  7291. {
  7292. int ret;
  7293. struct cfs_schedulable_data data = {
  7294. .tg = tg,
  7295. .period = period,
  7296. .quota = quota,
  7297. };
  7298. if (quota != RUNTIME_INF) {
  7299. do_div(data.period, NSEC_PER_USEC);
  7300. do_div(data.quota, NSEC_PER_USEC);
  7301. }
  7302. rcu_read_lock();
  7303. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  7304. rcu_read_unlock();
  7305. return ret;
  7306. }
  7307. static int cpu_stats_show(struct seq_file *sf, void *v)
  7308. {
  7309. struct task_group *tg = css_tg(seq_css(sf));
  7310. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  7311. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  7312. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  7313. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  7314. return 0;
  7315. }
  7316. #endif /* CONFIG_CFS_BANDWIDTH */
  7317. #endif /* CONFIG_FAIR_GROUP_SCHED */
  7318. #ifdef CONFIG_RT_GROUP_SCHED
  7319. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  7320. struct cftype *cft, s64 val)
  7321. {
  7322. return sched_group_set_rt_runtime(css_tg(css), val);
  7323. }
  7324. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  7325. struct cftype *cft)
  7326. {
  7327. return sched_group_rt_runtime(css_tg(css));
  7328. }
  7329. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  7330. struct cftype *cftype, u64 rt_period_us)
  7331. {
  7332. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  7333. }
  7334. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  7335. struct cftype *cft)
  7336. {
  7337. return sched_group_rt_period(css_tg(css));
  7338. }
  7339. #endif /* CONFIG_RT_GROUP_SCHED */
  7340. static struct cftype cpu_files[] = {
  7341. #ifdef CONFIG_FAIR_GROUP_SCHED
  7342. {
  7343. .name = "shares",
  7344. .read_u64 = cpu_shares_read_u64,
  7345. .write_u64 = cpu_shares_write_u64,
  7346. },
  7347. #endif
  7348. #ifdef CONFIG_CFS_BANDWIDTH
  7349. {
  7350. .name = "cfs_quota_us",
  7351. .read_s64 = cpu_cfs_quota_read_s64,
  7352. .write_s64 = cpu_cfs_quota_write_s64,
  7353. },
  7354. {
  7355. .name = "cfs_period_us",
  7356. .read_u64 = cpu_cfs_period_read_u64,
  7357. .write_u64 = cpu_cfs_period_write_u64,
  7358. },
  7359. {
  7360. .name = "stat",
  7361. .seq_show = cpu_stats_show,
  7362. },
  7363. #endif
  7364. #ifdef CONFIG_RT_GROUP_SCHED
  7365. {
  7366. .name = "rt_runtime_us",
  7367. .read_s64 = cpu_rt_runtime_read,
  7368. .write_s64 = cpu_rt_runtime_write,
  7369. },
  7370. {
  7371. .name = "rt_period_us",
  7372. .read_u64 = cpu_rt_period_read_uint,
  7373. .write_u64 = cpu_rt_period_write_uint,
  7374. },
  7375. #endif
  7376. { } /* terminate */
  7377. };
  7378. struct cgroup_subsys cpu_cgrp_subsys = {
  7379. .css_alloc = cpu_cgroup_css_alloc,
  7380. .css_free = cpu_cgroup_css_free,
  7381. .css_online = cpu_cgroup_css_online,
  7382. .css_offline = cpu_cgroup_css_offline,
  7383. .fork = cpu_cgroup_fork,
  7384. .can_attach = cpu_cgroup_can_attach,
  7385. .attach = cpu_cgroup_attach,
  7386. .legacy_cftypes = cpu_files,
  7387. .early_init = 1,
  7388. };
  7389. #endif /* CONFIG_CGROUP_SCHED */
  7390. void dump_cpu_task(int cpu)
  7391. {
  7392. pr_info("Task dump for CPU %d:\n", cpu);
  7393. sched_show_task(cpu_curr(cpu));
  7394. }
  7395. /*
  7396. * Nice levels are multiplicative, with a gentle 10% change for every
  7397. * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
  7398. * nice 1, it will get ~10% less CPU time than another CPU-bound task
  7399. * that remained on nice 0.
  7400. *
  7401. * The "10% effect" is relative and cumulative: from _any_ nice level,
  7402. * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
  7403. * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
  7404. * If a task goes up by ~10% and another task goes down by ~10% then
  7405. * the relative distance between them is ~25%.)
  7406. */
  7407. const int sched_prio_to_weight[40] = {
  7408. /* -20 */ 88761, 71755, 56483, 46273, 36291,
  7409. /* -15 */ 29154, 23254, 18705, 14949, 11916,
  7410. /* -10 */ 9548, 7620, 6100, 4904, 3906,
  7411. /* -5 */ 3121, 2501, 1991, 1586, 1277,
  7412. /* 0 */ 1024, 820, 655, 526, 423,
  7413. /* 5 */ 335, 272, 215, 172, 137,
  7414. /* 10 */ 110, 87, 70, 56, 45,
  7415. /* 15 */ 36, 29, 23, 18, 15,
  7416. };
  7417. /*
  7418. * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
  7419. *
  7420. * In cases where the weight does not change often, we can use the
  7421. * precalculated inverse to speed up arithmetics by turning divisions
  7422. * into multiplications:
  7423. */
  7424. const u32 sched_prio_to_wmult[40] = {
  7425. /* -20 */ 48388, 59856, 76040, 92818, 118348,
  7426. /* -15 */ 147320, 184698, 229616, 287308, 360437,
  7427. /* -10 */ 449829, 563644, 704093, 875809, 1099582,
  7428. /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
  7429. /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
  7430. /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
  7431. /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
  7432. /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
  7433. };