bpf_jit_comp_64.c 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571
  1. #include <linux/moduleloader.h>
  2. #include <linux/workqueue.h>
  3. #include <linux/netdevice.h>
  4. #include <linux/filter.h>
  5. #include <linux/bpf.h>
  6. #include <linux/cache.h>
  7. #include <linux/if_vlan.h>
  8. #include <asm/cacheflush.h>
  9. #include <asm/ptrace.h>
  10. #include "bpf_jit_64.h"
  11. int bpf_jit_enable __read_mostly;
  12. static inline bool is_simm13(unsigned int value)
  13. {
  14. return value + 0x1000 < 0x2000;
  15. }
  16. static inline bool is_simm10(unsigned int value)
  17. {
  18. return value + 0x200 < 0x400;
  19. }
  20. static inline bool is_simm5(unsigned int value)
  21. {
  22. return value + 0x10 < 0x20;
  23. }
  24. static inline bool is_sethi(unsigned int value)
  25. {
  26. return (value & ~0x3fffff) == 0;
  27. }
  28. static void bpf_flush_icache(void *start_, void *end_)
  29. {
  30. /* Cheetah's I-cache is fully coherent. */
  31. if (tlb_type == spitfire) {
  32. unsigned long start = (unsigned long) start_;
  33. unsigned long end = (unsigned long) end_;
  34. start &= ~7UL;
  35. end = (end + 7UL) & ~7UL;
  36. while (start < end) {
  37. flushi(start);
  38. start += 32;
  39. }
  40. }
  41. }
  42. #define SEEN_DATAREF 1 /* might call external helpers */
  43. #define SEEN_XREG 2 /* ebx is used */
  44. #define SEEN_MEM 4 /* use mem[] for temporary storage */
  45. #define S13(X) ((X) & 0x1fff)
  46. #define S5(X) ((X) & 0x1f)
  47. #define IMMED 0x00002000
  48. #define RD(X) ((X) << 25)
  49. #define RS1(X) ((X) << 14)
  50. #define RS2(X) ((X))
  51. #define OP(X) ((X) << 30)
  52. #define OP2(X) ((X) << 22)
  53. #define OP3(X) ((X) << 19)
  54. #define COND(X) (((X) & 0xf) << 25)
  55. #define CBCOND(X) (((X) & 0x1f) << 25)
  56. #define F1(X) OP(X)
  57. #define F2(X, Y) (OP(X) | OP2(Y))
  58. #define F3(X, Y) (OP(X) | OP3(Y))
  59. #define ASI(X) (((X) & 0xff) << 5)
  60. #define CONDN COND(0x0)
  61. #define CONDE COND(0x1)
  62. #define CONDLE COND(0x2)
  63. #define CONDL COND(0x3)
  64. #define CONDLEU COND(0x4)
  65. #define CONDCS COND(0x5)
  66. #define CONDNEG COND(0x6)
  67. #define CONDVC COND(0x7)
  68. #define CONDA COND(0x8)
  69. #define CONDNE COND(0x9)
  70. #define CONDG COND(0xa)
  71. #define CONDGE COND(0xb)
  72. #define CONDGU COND(0xc)
  73. #define CONDCC COND(0xd)
  74. #define CONDPOS COND(0xe)
  75. #define CONDVS COND(0xf)
  76. #define CONDGEU CONDCC
  77. #define CONDLU CONDCS
  78. #define WDISP22(X) (((X) >> 2) & 0x3fffff)
  79. #define WDISP19(X) (((X) >> 2) & 0x7ffff)
  80. /* The 10-bit branch displacement for CBCOND is split into two fields */
  81. static u32 WDISP10(u32 off)
  82. {
  83. u32 ret = ((off >> 2) & 0xff) << 5;
  84. ret |= ((off >> (2 + 8)) & 0x03) << 19;
  85. return ret;
  86. }
  87. #define CBCONDE CBCOND(0x09)
  88. #define CBCONDLE CBCOND(0x0a)
  89. #define CBCONDL CBCOND(0x0b)
  90. #define CBCONDLEU CBCOND(0x0c)
  91. #define CBCONDCS CBCOND(0x0d)
  92. #define CBCONDN CBCOND(0x0e)
  93. #define CBCONDVS CBCOND(0x0f)
  94. #define CBCONDNE CBCOND(0x19)
  95. #define CBCONDG CBCOND(0x1a)
  96. #define CBCONDGE CBCOND(0x1b)
  97. #define CBCONDGU CBCOND(0x1c)
  98. #define CBCONDCC CBCOND(0x1d)
  99. #define CBCONDPOS CBCOND(0x1e)
  100. #define CBCONDVC CBCOND(0x1f)
  101. #define CBCONDGEU CBCONDCC
  102. #define CBCONDLU CBCONDCS
  103. #define ANNUL (1 << 29)
  104. #define XCC (1 << 21)
  105. #define BRANCH (F2(0, 1) | XCC)
  106. #define CBCOND_OP (F2(0, 3) | XCC)
  107. #define BA (BRANCH | CONDA)
  108. #define BG (BRANCH | CONDG)
  109. #define BGU (BRANCH | CONDGU)
  110. #define BLEU (BRANCH | CONDLEU)
  111. #define BGE (BRANCH | CONDGE)
  112. #define BGEU (BRANCH | CONDGEU)
  113. #define BLU (BRANCH | CONDLU)
  114. #define BE (BRANCH | CONDE)
  115. #define BNE (BRANCH | CONDNE)
  116. #define SETHI(K, REG) \
  117. (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
  118. #define OR_LO(K, REG) \
  119. (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
  120. #define ADD F3(2, 0x00)
  121. #define AND F3(2, 0x01)
  122. #define ANDCC F3(2, 0x11)
  123. #define OR F3(2, 0x02)
  124. #define XOR F3(2, 0x03)
  125. #define SUB F3(2, 0x04)
  126. #define SUBCC F3(2, 0x14)
  127. #define MUL F3(2, 0x0a)
  128. #define MULX F3(2, 0x09)
  129. #define UDIVX F3(2, 0x0d)
  130. #define DIV F3(2, 0x0e)
  131. #define SLL F3(2, 0x25)
  132. #define SLLX (F3(2, 0x25)|(1<<12))
  133. #define SRA F3(2, 0x27)
  134. #define SRAX (F3(2, 0x27)|(1<<12))
  135. #define SRL F3(2, 0x26)
  136. #define SRLX (F3(2, 0x26)|(1<<12))
  137. #define JMPL F3(2, 0x38)
  138. #define SAVE F3(2, 0x3c)
  139. #define RESTORE F3(2, 0x3d)
  140. #define CALL F1(1)
  141. #define BR F2(0, 0x01)
  142. #define RD_Y F3(2, 0x28)
  143. #define WR_Y F3(2, 0x30)
  144. #define LD32 F3(3, 0x00)
  145. #define LD8 F3(3, 0x01)
  146. #define LD16 F3(3, 0x02)
  147. #define LD64 F3(3, 0x0b)
  148. #define LD64A F3(3, 0x1b)
  149. #define ST8 F3(3, 0x05)
  150. #define ST16 F3(3, 0x06)
  151. #define ST32 F3(3, 0x04)
  152. #define ST64 F3(3, 0x0e)
  153. #define CAS F3(3, 0x3c)
  154. #define CASX F3(3, 0x3e)
  155. #define LDPTR LD64
  156. #define BASE_STACKFRAME 176
  157. #define LD32I (LD32 | IMMED)
  158. #define LD8I (LD8 | IMMED)
  159. #define LD16I (LD16 | IMMED)
  160. #define LD64I (LD64 | IMMED)
  161. #define LDPTRI (LDPTR | IMMED)
  162. #define ST32I (ST32 | IMMED)
  163. struct jit_ctx {
  164. struct bpf_prog *prog;
  165. unsigned int *offset;
  166. int idx;
  167. int epilogue_offset;
  168. bool tmp_1_used;
  169. bool tmp_2_used;
  170. bool tmp_3_used;
  171. bool saw_ld_abs_ind;
  172. bool saw_frame_pointer;
  173. bool saw_call;
  174. bool saw_tail_call;
  175. u32 *image;
  176. };
  177. #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
  178. #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
  179. #define SKB_HLEN_REG (MAX_BPF_JIT_REG + 2)
  180. #define SKB_DATA_REG (MAX_BPF_JIT_REG + 3)
  181. #define TMP_REG_3 (MAX_BPF_JIT_REG + 4)
  182. /* Map BPF registers to SPARC registers */
  183. static const int bpf2sparc[] = {
  184. /* return value from in-kernel function, and exit value from eBPF */
  185. [BPF_REG_0] = O5,
  186. /* arguments from eBPF program to in-kernel function */
  187. [BPF_REG_1] = O0,
  188. [BPF_REG_2] = O1,
  189. [BPF_REG_3] = O2,
  190. [BPF_REG_4] = O3,
  191. [BPF_REG_5] = O4,
  192. /* callee saved registers that in-kernel function will preserve */
  193. [BPF_REG_6] = L0,
  194. [BPF_REG_7] = L1,
  195. [BPF_REG_8] = L2,
  196. [BPF_REG_9] = L3,
  197. /* read-only frame pointer to access stack */
  198. [BPF_REG_FP] = L6,
  199. [BPF_REG_AX] = G7,
  200. /* temporary register for internal BPF JIT */
  201. [TMP_REG_1] = G1,
  202. [TMP_REG_2] = G2,
  203. [TMP_REG_3] = G3,
  204. [SKB_HLEN_REG] = L4,
  205. [SKB_DATA_REG] = L5,
  206. };
  207. static void emit(const u32 insn, struct jit_ctx *ctx)
  208. {
  209. if (ctx->image != NULL)
  210. ctx->image[ctx->idx] = insn;
  211. ctx->idx++;
  212. }
  213. static void emit_call(u32 *func, struct jit_ctx *ctx)
  214. {
  215. if (ctx->image != NULL) {
  216. void *here = &ctx->image[ctx->idx];
  217. unsigned int off;
  218. off = (void *)func - here;
  219. ctx->image[ctx->idx] = CALL | ((off >> 2) & 0x3fffffff);
  220. }
  221. ctx->idx++;
  222. }
  223. static void emit_nop(struct jit_ctx *ctx)
  224. {
  225. emit(SETHI(0, G0), ctx);
  226. }
  227. static void emit_reg_move(u32 from, u32 to, struct jit_ctx *ctx)
  228. {
  229. emit(OR | RS1(G0) | RS2(from) | RD(to), ctx);
  230. }
  231. /* Emit 32-bit constant, zero extended. */
  232. static void emit_set_const(s32 K, u32 reg, struct jit_ctx *ctx)
  233. {
  234. emit(SETHI(K, reg), ctx);
  235. emit(OR_LO(K, reg), ctx);
  236. }
  237. /* Emit 32-bit constant, sign extended. */
  238. static void emit_set_const_sext(s32 K, u32 reg, struct jit_ctx *ctx)
  239. {
  240. if (K >= 0) {
  241. emit(SETHI(K, reg), ctx);
  242. emit(OR_LO(K, reg), ctx);
  243. } else {
  244. u32 hbits = ~(u32) K;
  245. u32 lbits = -0x400 | (u32) K;
  246. emit(SETHI(hbits, reg), ctx);
  247. emit(XOR | IMMED | RS1(reg) | S13(lbits) | RD(reg), ctx);
  248. }
  249. }
  250. static void emit_alu(u32 opcode, u32 src, u32 dst, struct jit_ctx *ctx)
  251. {
  252. emit(opcode | RS1(dst) | RS2(src) | RD(dst), ctx);
  253. }
  254. static void emit_alu3(u32 opcode, u32 a, u32 b, u32 c, struct jit_ctx *ctx)
  255. {
  256. emit(opcode | RS1(a) | RS2(b) | RD(c), ctx);
  257. }
  258. static void emit_alu_K(unsigned int opcode, unsigned int dst, unsigned int imm,
  259. struct jit_ctx *ctx)
  260. {
  261. bool small_immed = is_simm13(imm);
  262. unsigned int insn = opcode;
  263. insn |= RS1(dst) | RD(dst);
  264. if (small_immed) {
  265. emit(insn | IMMED | S13(imm), ctx);
  266. } else {
  267. unsigned int tmp = bpf2sparc[TMP_REG_1];
  268. ctx->tmp_1_used = true;
  269. emit_set_const_sext(imm, tmp, ctx);
  270. emit(insn | RS2(tmp), ctx);
  271. }
  272. }
  273. static void emit_alu3_K(unsigned int opcode, unsigned int src, unsigned int imm,
  274. unsigned int dst, struct jit_ctx *ctx)
  275. {
  276. bool small_immed = is_simm13(imm);
  277. unsigned int insn = opcode;
  278. insn |= RS1(src) | RD(dst);
  279. if (small_immed) {
  280. emit(insn | IMMED | S13(imm), ctx);
  281. } else {
  282. unsigned int tmp = bpf2sparc[TMP_REG_1];
  283. ctx->tmp_1_used = true;
  284. emit_set_const_sext(imm, tmp, ctx);
  285. emit(insn | RS2(tmp), ctx);
  286. }
  287. }
  288. static void emit_loadimm32(s32 K, unsigned int dest, struct jit_ctx *ctx)
  289. {
  290. if (K >= 0 && is_simm13(K)) {
  291. /* or %g0, K, DEST */
  292. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  293. } else {
  294. emit_set_const(K, dest, ctx);
  295. }
  296. }
  297. static void emit_loadimm(s32 K, unsigned int dest, struct jit_ctx *ctx)
  298. {
  299. if (is_simm13(K)) {
  300. /* or %g0, K, DEST */
  301. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  302. } else {
  303. emit_set_const(K, dest, ctx);
  304. }
  305. }
  306. static void emit_loadimm_sext(s32 K, unsigned int dest, struct jit_ctx *ctx)
  307. {
  308. if (is_simm13(K)) {
  309. /* or %g0, K, DEST */
  310. emit(OR | IMMED | RS1(G0) | S13(K) | RD(dest), ctx);
  311. } else {
  312. emit_set_const_sext(K, dest, ctx);
  313. }
  314. }
  315. static void analyze_64bit_constant(u32 high_bits, u32 low_bits,
  316. int *hbsp, int *lbsp, int *abbasp)
  317. {
  318. int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
  319. int i;
  320. lowest_bit_set = highest_bit_set = -1;
  321. i = 0;
  322. do {
  323. if ((lowest_bit_set == -1) && ((low_bits >> i) & 1))
  324. lowest_bit_set = i;
  325. if ((highest_bit_set == -1) && ((high_bits >> (32 - i - 1)) & 1))
  326. highest_bit_set = (64 - i - 1);
  327. } while (++i < 32 && (highest_bit_set == -1 ||
  328. lowest_bit_set == -1));
  329. if (i == 32) {
  330. i = 0;
  331. do {
  332. if (lowest_bit_set == -1 && ((high_bits >> i) & 1))
  333. lowest_bit_set = i + 32;
  334. if (highest_bit_set == -1 &&
  335. ((low_bits >> (32 - i - 1)) & 1))
  336. highest_bit_set = 32 - i - 1;
  337. } while (++i < 32 && (highest_bit_set == -1 ||
  338. lowest_bit_set == -1));
  339. }
  340. all_bits_between_are_set = 1;
  341. for (i = lowest_bit_set; i <= highest_bit_set; i++) {
  342. if (i < 32) {
  343. if ((low_bits & (1 << i)) != 0)
  344. continue;
  345. } else {
  346. if ((high_bits & (1 << (i - 32))) != 0)
  347. continue;
  348. }
  349. all_bits_between_are_set = 0;
  350. break;
  351. }
  352. *hbsp = highest_bit_set;
  353. *lbsp = lowest_bit_set;
  354. *abbasp = all_bits_between_are_set;
  355. }
  356. static unsigned long create_simple_focus_bits(unsigned long high_bits,
  357. unsigned long low_bits,
  358. int lowest_bit_set, int shift)
  359. {
  360. long hi, lo;
  361. if (lowest_bit_set < 32) {
  362. lo = (low_bits >> lowest_bit_set) << shift;
  363. hi = ((high_bits << (32 - lowest_bit_set)) << shift);
  364. } else {
  365. lo = 0;
  366. hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
  367. }
  368. return hi | lo;
  369. }
  370. static bool const64_is_2insns(unsigned long high_bits,
  371. unsigned long low_bits)
  372. {
  373. int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
  374. if (high_bits == 0 || high_bits == 0xffffffff)
  375. return true;
  376. analyze_64bit_constant(high_bits, low_bits,
  377. &highest_bit_set, &lowest_bit_set,
  378. &all_bits_between_are_set);
  379. if ((highest_bit_set == 63 || lowest_bit_set == 0) &&
  380. all_bits_between_are_set != 0)
  381. return true;
  382. if (highest_bit_set - lowest_bit_set < 21)
  383. return true;
  384. return false;
  385. }
  386. static void sparc_emit_set_const64_quick2(unsigned long high_bits,
  387. unsigned long low_imm,
  388. unsigned int dest,
  389. int shift_count, struct jit_ctx *ctx)
  390. {
  391. emit_loadimm32(high_bits, dest, ctx);
  392. /* Now shift it up into place. */
  393. emit_alu_K(SLLX, dest, shift_count, ctx);
  394. /* If there is a low immediate part piece, finish up by
  395. * putting that in as well.
  396. */
  397. if (low_imm != 0)
  398. emit(OR | IMMED | RS1(dest) | S13(low_imm) | RD(dest), ctx);
  399. }
  400. static void emit_loadimm64(u64 K, unsigned int dest, struct jit_ctx *ctx)
  401. {
  402. int all_bits_between_are_set, lowest_bit_set, highest_bit_set;
  403. unsigned int tmp = bpf2sparc[TMP_REG_1];
  404. u32 low_bits = (K & 0xffffffff);
  405. u32 high_bits = (K >> 32);
  406. /* These two tests also take care of all of the one
  407. * instruction cases.
  408. */
  409. if (high_bits == 0xffffffff && (low_bits & 0x80000000))
  410. return emit_loadimm_sext(K, dest, ctx);
  411. if (high_bits == 0x00000000)
  412. return emit_loadimm32(K, dest, ctx);
  413. analyze_64bit_constant(high_bits, low_bits, &highest_bit_set,
  414. &lowest_bit_set, &all_bits_between_are_set);
  415. /* 1) mov -1, %reg
  416. * sllx %reg, shift, %reg
  417. * 2) mov -1, %reg
  418. * srlx %reg, shift, %reg
  419. * 3) mov some_small_const, %reg
  420. * sllx %reg, shift, %reg
  421. */
  422. if (((highest_bit_set == 63 || lowest_bit_set == 0) &&
  423. all_bits_between_are_set != 0) ||
  424. ((highest_bit_set - lowest_bit_set) < 12)) {
  425. int shift = lowest_bit_set;
  426. long the_const = -1;
  427. if ((highest_bit_set != 63 && lowest_bit_set != 0) ||
  428. all_bits_between_are_set == 0) {
  429. the_const =
  430. create_simple_focus_bits(high_bits, low_bits,
  431. lowest_bit_set, 0);
  432. } else if (lowest_bit_set == 0)
  433. shift = -(63 - highest_bit_set);
  434. emit(OR | IMMED | RS1(G0) | S13(the_const) | RD(dest), ctx);
  435. if (shift > 0)
  436. emit_alu_K(SLLX, dest, shift, ctx);
  437. else if (shift < 0)
  438. emit_alu_K(SRLX, dest, -shift, ctx);
  439. return;
  440. }
  441. /* Now a range of 22 or less bits set somewhere.
  442. * 1) sethi %hi(focus_bits), %reg
  443. * sllx %reg, shift, %reg
  444. * 2) sethi %hi(focus_bits), %reg
  445. * srlx %reg, shift, %reg
  446. */
  447. if ((highest_bit_set - lowest_bit_set) < 21) {
  448. unsigned long focus_bits =
  449. create_simple_focus_bits(high_bits, low_bits,
  450. lowest_bit_set, 10);
  451. emit(SETHI(focus_bits, dest), ctx);
  452. /* If lowest_bit_set == 10 then a sethi alone could
  453. * have done it.
  454. */
  455. if (lowest_bit_set < 10)
  456. emit_alu_K(SRLX, dest, 10 - lowest_bit_set, ctx);
  457. else if (lowest_bit_set > 10)
  458. emit_alu_K(SLLX, dest, lowest_bit_set - 10, ctx);
  459. return;
  460. }
  461. /* Ok, now 3 instruction sequences. */
  462. if (low_bits == 0) {
  463. emit_loadimm32(high_bits, dest, ctx);
  464. emit_alu_K(SLLX, dest, 32, ctx);
  465. return;
  466. }
  467. /* We may be able to do something quick
  468. * when the constant is negated, so try that.
  469. */
  470. if (const64_is_2insns((~high_bits) & 0xffffffff,
  471. (~low_bits) & 0xfffffc00)) {
  472. /* NOTE: The trailing bits get XOR'd so we need the
  473. * non-negated bits, not the negated ones.
  474. */
  475. unsigned long trailing_bits = low_bits & 0x3ff;
  476. if ((((~high_bits) & 0xffffffff) == 0 &&
  477. ((~low_bits) & 0x80000000) == 0) ||
  478. (((~high_bits) & 0xffffffff) == 0xffffffff &&
  479. ((~low_bits) & 0x80000000) != 0)) {
  480. unsigned long fast_int = (~low_bits & 0xffffffff);
  481. if ((is_sethi(fast_int) &&
  482. (~high_bits & 0xffffffff) == 0)) {
  483. emit(SETHI(fast_int, dest), ctx);
  484. } else if (is_simm13(fast_int)) {
  485. emit(OR | IMMED | RS1(G0) | S13(fast_int) | RD(dest), ctx);
  486. } else {
  487. emit_loadimm64(fast_int, dest, ctx);
  488. }
  489. } else {
  490. u64 n = ((~low_bits) & 0xfffffc00) |
  491. (((unsigned long)((~high_bits) & 0xffffffff))<<32);
  492. emit_loadimm64(n, dest, ctx);
  493. }
  494. low_bits = -0x400 | trailing_bits;
  495. emit(XOR | IMMED | RS1(dest) | S13(low_bits) | RD(dest), ctx);
  496. return;
  497. }
  498. /* 1) sethi %hi(xxx), %reg
  499. * or %reg, %lo(xxx), %reg
  500. * sllx %reg, yyy, %reg
  501. */
  502. if ((highest_bit_set - lowest_bit_set) < 32) {
  503. unsigned long focus_bits =
  504. create_simple_focus_bits(high_bits, low_bits,
  505. lowest_bit_set, 0);
  506. /* So what we know is that the set bits straddle the
  507. * middle of the 64-bit word.
  508. */
  509. sparc_emit_set_const64_quick2(focus_bits, 0, dest,
  510. lowest_bit_set, ctx);
  511. return;
  512. }
  513. /* 1) sethi %hi(high_bits), %reg
  514. * or %reg, %lo(high_bits), %reg
  515. * sllx %reg, 32, %reg
  516. * or %reg, low_bits, %reg
  517. */
  518. if (is_simm13(low_bits) && ((int)low_bits > 0)) {
  519. sparc_emit_set_const64_quick2(high_bits, low_bits,
  520. dest, 32, ctx);
  521. return;
  522. }
  523. /* Oh well, we tried... Do a full 64-bit decomposition. */
  524. ctx->tmp_1_used = true;
  525. emit_loadimm32(high_bits, tmp, ctx);
  526. emit_loadimm32(low_bits, dest, ctx);
  527. emit_alu_K(SLLX, tmp, 32, ctx);
  528. emit(OR | RS1(dest) | RS2(tmp) | RD(dest), ctx);
  529. }
  530. static void emit_branch(unsigned int br_opc, unsigned int from_idx, unsigned int to_idx,
  531. struct jit_ctx *ctx)
  532. {
  533. unsigned int off = to_idx - from_idx;
  534. if (br_opc & XCC)
  535. emit(br_opc | WDISP19(off << 2), ctx);
  536. else
  537. emit(br_opc | WDISP22(off << 2), ctx);
  538. }
  539. static void emit_cbcond(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
  540. const u8 dst, const u8 src, struct jit_ctx *ctx)
  541. {
  542. unsigned int off = to_idx - from_idx;
  543. emit(cb_opc | WDISP10(off << 2) | RS1(dst) | RS2(src), ctx);
  544. }
  545. static void emit_cbcondi(unsigned int cb_opc, unsigned int from_idx, unsigned int to_idx,
  546. const u8 dst, s32 imm, struct jit_ctx *ctx)
  547. {
  548. unsigned int off = to_idx - from_idx;
  549. emit(cb_opc | IMMED | WDISP10(off << 2) | RS1(dst) | S5(imm), ctx);
  550. }
  551. #define emit_read_y(REG, CTX) emit(RD_Y | RD(REG), CTX)
  552. #define emit_write_y(REG, CTX) emit(WR_Y | IMMED | RS1(REG) | S13(0), CTX)
  553. #define emit_cmp(R1, R2, CTX) \
  554. emit(SUBCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
  555. #define emit_cmpi(R1, IMM, CTX) \
  556. emit(SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
  557. #define emit_btst(R1, R2, CTX) \
  558. emit(ANDCC | RS1(R1) | RS2(R2) | RD(G0), CTX)
  559. #define emit_btsti(R1, IMM, CTX) \
  560. emit(ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0), CTX)
  561. static int emit_compare_and_branch(const u8 code, const u8 dst, u8 src,
  562. const s32 imm, bool is_imm, int branch_dst,
  563. struct jit_ctx *ctx)
  564. {
  565. bool use_cbcond = (sparc64_elf_hwcap & AV_SPARC_CBCOND) != 0;
  566. const u8 tmp = bpf2sparc[TMP_REG_1];
  567. branch_dst = ctx->offset[branch_dst];
  568. if (!is_simm10(branch_dst - ctx->idx) ||
  569. BPF_OP(code) == BPF_JSET)
  570. use_cbcond = false;
  571. if (is_imm) {
  572. bool fits = true;
  573. if (use_cbcond) {
  574. if (!is_simm5(imm))
  575. fits = false;
  576. } else if (!is_simm13(imm)) {
  577. fits = false;
  578. }
  579. if (!fits) {
  580. ctx->tmp_1_used = true;
  581. emit_loadimm_sext(imm, tmp, ctx);
  582. src = tmp;
  583. is_imm = false;
  584. }
  585. }
  586. if (!use_cbcond) {
  587. u32 br_opcode;
  588. if (BPF_OP(code) == BPF_JSET) {
  589. if (is_imm)
  590. emit_btsti(dst, imm, ctx);
  591. else
  592. emit_btst(dst, src, ctx);
  593. } else {
  594. if (is_imm)
  595. emit_cmpi(dst, imm, ctx);
  596. else
  597. emit_cmp(dst, src, ctx);
  598. }
  599. switch (BPF_OP(code)) {
  600. case BPF_JEQ:
  601. br_opcode = BE;
  602. break;
  603. case BPF_JGT:
  604. br_opcode = BGU;
  605. break;
  606. case BPF_JGE:
  607. br_opcode = BGEU;
  608. break;
  609. case BPF_JSET:
  610. case BPF_JNE:
  611. br_opcode = BNE;
  612. break;
  613. case BPF_JSGT:
  614. br_opcode = BG;
  615. break;
  616. case BPF_JSGE:
  617. br_opcode = BGE;
  618. break;
  619. default:
  620. /* Make sure we dont leak kernel information to the
  621. * user.
  622. */
  623. return -EFAULT;
  624. }
  625. emit_branch(br_opcode, ctx->idx, branch_dst, ctx);
  626. emit_nop(ctx);
  627. } else {
  628. u32 cbcond_opcode;
  629. switch (BPF_OP(code)) {
  630. case BPF_JEQ:
  631. cbcond_opcode = CBCONDE;
  632. break;
  633. case BPF_JGT:
  634. cbcond_opcode = CBCONDGU;
  635. break;
  636. case BPF_JGE:
  637. cbcond_opcode = CBCONDGEU;
  638. break;
  639. case BPF_JNE:
  640. cbcond_opcode = CBCONDNE;
  641. break;
  642. case BPF_JSGT:
  643. cbcond_opcode = CBCONDG;
  644. break;
  645. case BPF_JSGE:
  646. cbcond_opcode = CBCONDGE;
  647. break;
  648. default:
  649. /* Make sure we dont leak kernel information to the
  650. * user.
  651. */
  652. return -EFAULT;
  653. }
  654. cbcond_opcode |= CBCOND_OP;
  655. if (is_imm)
  656. emit_cbcondi(cbcond_opcode, ctx->idx, branch_dst,
  657. dst, imm, ctx);
  658. else
  659. emit_cbcond(cbcond_opcode, ctx->idx, branch_dst,
  660. dst, src, ctx);
  661. }
  662. return 0;
  663. }
  664. static void load_skb_regs(struct jit_ctx *ctx, u8 r_skb)
  665. {
  666. const u8 r_headlen = bpf2sparc[SKB_HLEN_REG];
  667. const u8 r_data = bpf2sparc[SKB_DATA_REG];
  668. const u8 r_tmp = bpf2sparc[TMP_REG_1];
  669. unsigned int off;
  670. off = offsetof(struct sk_buff, len);
  671. emit(LD32I | RS1(r_skb) | S13(off) | RD(r_headlen), ctx);
  672. off = offsetof(struct sk_buff, data_len);
  673. emit(LD32I | RS1(r_skb) | S13(off) | RD(r_tmp), ctx);
  674. emit(SUB | RS1(r_headlen) | RS2(r_tmp) | RD(r_headlen), ctx);
  675. off = offsetof(struct sk_buff, data);
  676. emit(LDPTRI | RS1(r_skb) | S13(off) | RD(r_data), ctx);
  677. }
  678. /* Just skip the save instruction and the ctx register move. */
  679. #define BPF_TAILCALL_PROLOGUE_SKIP 16
  680. #define BPF_TAILCALL_CNT_SP_OFF (STACK_BIAS + 128)
  681. static void build_prologue(struct jit_ctx *ctx)
  682. {
  683. s32 stack_needed = BASE_STACKFRAME;
  684. if (ctx->saw_frame_pointer || ctx->saw_tail_call) {
  685. struct bpf_prog *prog = ctx->prog;
  686. u32 stack_depth;
  687. stack_depth = prog->aux->stack_depth;
  688. stack_needed += round_up(stack_depth, 16);
  689. }
  690. if (ctx->saw_tail_call)
  691. stack_needed += 8;
  692. /* save %sp, -176, %sp */
  693. emit(SAVE | IMMED | RS1(SP) | S13(-stack_needed) | RD(SP), ctx);
  694. /* tail_call_cnt = 0 */
  695. if (ctx->saw_tail_call) {
  696. u32 off = BPF_TAILCALL_CNT_SP_OFF;
  697. emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(G0), ctx);
  698. } else {
  699. emit_nop(ctx);
  700. }
  701. if (ctx->saw_frame_pointer) {
  702. const u8 vfp = bpf2sparc[BPF_REG_FP];
  703. emit(ADD | IMMED | RS1(FP) | S13(STACK_BIAS) | RD(vfp), ctx);
  704. }
  705. emit_reg_move(I0, O0, ctx);
  706. /* If you add anything here, adjust BPF_TAILCALL_PROLOGUE_SKIP above. */
  707. if (ctx->saw_ld_abs_ind)
  708. load_skb_regs(ctx, bpf2sparc[BPF_REG_1]);
  709. }
  710. static void build_epilogue(struct jit_ctx *ctx)
  711. {
  712. ctx->epilogue_offset = ctx->idx;
  713. /* ret (jmpl %i7 + 8, %g0) */
  714. emit(JMPL | IMMED | RS1(I7) | S13(8) | RD(G0), ctx);
  715. /* restore %i5, %g0, %o0 */
  716. emit(RESTORE | RS1(bpf2sparc[BPF_REG_0]) | RS2(G0) | RD(O0), ctx);
  717. }
  718. static void emit_tail_call(struct jit_ctx *ctx)
  719. {
  720. const u8 bpf_array = bpf2sparc[BPF_REG_2];
  721. const u8 bpf_index = bpf2sparc[BPF_REG_3];
  722. const u8 tmp = bpf2sparc[TMP_REG_1];
  723. u32 off;
  724. ctx->saw_tail_call = true;
  725. off = offsetof(struct bpf_array, map.max_entries);
  726. emit(LD32 | IMMED | RS1(bpf_array) | S13(off) | RD(tmp), ctx);
  727. emit_cmp(bpf_index, tmp, ctx);
  728. #define OFFSET1 17
  729. emit_branch(BGEU, ctx->idx, ctx->idx + OFFSET1, ctx);
  730. emit_nop(ctx);
  731. off = BPF_TAILCALL_CNT_SP_OFF;
  732. emit(LD32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
  733. emit_cmpi(tmp, MAX_TAIL_CALL_CNT, ctx);
  734. #define OFFSET2 13
  735. emit_branch(BGU, ctx->idx, ctx->idx + OFFSET2, ctx);
  736. emit_nop(ctx);
  737. emit_alu_K(ADD, tmp, 1, ctx);
  738. off = BPF_TAILCALL_CNT_SP_OFF;
  739. emit(ST32 | IMMED | RS1(SP) | S13(off) | RD(tmp), ctx);
  740. emit_alu3_K(SLL, bpf_index, 3, tmp, ctx);
  741. emit_alu(ADD, bpf_array, tmp, ctx);
  742. off = offsetof(struct bpf_array, ptrs);
  743. emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
  744. emit_cmpi(tmp, 0, ctx);
  745. #define OFFSET3 5
  746. emit_branch(BE, ctx->idx, ctx->idx + OFFSET3, ctx);
  747. emit_nop(ctx);
  748. off = offsetof(struct bpf_prog, bpf_func);
  749. emit(LD64 | IMMED | RS1(tmp) | S13(off) | RD(tmp), ctx);
  750. off = BPF_TAILCALL_PROLOGUE_SKIP;
  751. emit(JMPL | IMMED | RS1(tmp) | S13(off) | RD(G0), ctx);
  752. emit_nop(ctx);
  753. }
  754. static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
  755. {
  756. const u8 code = insn->code;
  757. const u8 dst = bpf2sparc[insn->dst_reg];
  758. const u8 src = bpf2sparc[insn->src_reg];
  759. const int i = insn - ctx->prog->insnsi;
  760. const s16 off = insn->off;
  761. const s32 imm = insn->imm;
  762. u32 *func;
  763. if (insn->src_reg == BPF_REG_FP)
  764. ctx->saw_frame_pointer = true;
  765. switch (code) {
  766. /* dst = src */
  767. case BPF_ALU | BPF_MOV | BPF_X:
  768. emit_alu3_K(SRL, src, 0, dst, ctx);
  769. break;
  770. case BPF_ALU64 | BPF_MOV | BPF_X:
  771. emit_reg_move(src, dst, ctx);
  772. break;
  773. /* dst = dst OP src */
  774. case BPF_ALU | BPF_ADD | BPF_X:
  775. case BPF_ALU64 | BPF_ADD | BPF_X:
  776. emit_alu(ADD, src, dst, ctx);
  777. goto do_alu32_trunc;
  778. case BPF_ALU | BPF_SUB | BPF_X:
  779. case BPF_ALU64 | BPF_SUB | BPF_X:
  780. emit_alu(SUB, src, dst, ctx);
  781. goto do_alu32_trunc;
  782. case BPF_ALU | BPF_AND | BPF_X:
  783. case BPF_ALU64 | BPF_AND | BPF_X:
  784. emit_alu(AND, src, dst, ctx);
  785. goto do_alu32_trunc;
  786. case BPF_ALU | BPF_OR | BPF_X:
  787. case BPF_ALU64 | BPF_OR | BPF_X:
  788. emit_alu(OR, src, dst, ctx);
  789. goto do_alu32_trunc;
  790. case BPF_ALU | BPF_XOR | BPF_X:
  791. case BPF_ALU64 | BPF_XOR | BPF_X:
  792. emit_alu(XOR, src, dst, ctx);
  793. goto do_alu32_trunc;
  794. case BPF_ALU | BPF_MUL | BPF_X:
  795. emit_alu(MUL, src, dst, ctx);
  796. goto do_alu32_trunc;
  797. case BPF_ALU64 | BPF_MUL | BPF_X:
  798. emit_alu(MULX, src, dst, ctx);
  799. break;
  800. case BPF_ALU | BPF_DIV | BPF_X:
  801. emit_cmp(src, G0, ctx);
  802. emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
  803. emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
  804. emit_write_y(G0, ctx);
  805. emit_alu(DIV, src, dst, ctx);
  806. break;
  807. case BPF_ALU64 | BPF_DIV | BPF_X:
  808. emit_cmp(src, G0, ctx);
  809. emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
  810. emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
  811. emit_alu(UDIVX, src, dst, ctx);
  812. break;
  813. case BPF_ALU | BPF_MOD | BPF_X: {
  814. const u8 tmp = bpf2sparc[TMP_REG_1];
  815. ctx->tmp_1_used = true;
  816. emit_cmp(src, G0, ctx);
  817. emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
  818. emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
  819. emit_write_y(G0, ctx);
  820. emit_alu3(DIV, dst, src, tmp, ctx);
  821. emit_alu3(MULX, tmp, src, tmp, ctx);
  822. emit_alu3(SUB, dst, tmp, dst, ctx);
  823. goto do_alu32_trunc;
  824. }
  825. case BPF_ALU64 | BPF_MOD | BPF_X: {
  826. const u8 tmp = bpf2sparc[TMP_REG_1];
  827. ctx->tmp_1_used = true;
  828. emit_cmp(src, G0, ctx);
  829. emit_branch(BE|ANNUL, ctx->idx, ctx->epilogue_offset, ctx);
  830. emit_loadimm(0, bpf2sparc[BPF_REG_0], ctx);
  831. emit_alu3(UDIVX, dst, src, tmp, ctx);
  832. emit_alu3(MULX, tmp, src, tmp, ctx);
  833. emit_alu3(SUB, dst, tmp, dst, ctx);
  834. break;
  835. }
  836. case BPF_ALU | BPF_LSH | BPF_X:
  837. emit_alu(SLL, src, dst, ctx);
  838. goto do_alu32_trunc;
  839. case BPF_ALU64 | BPF_LSH | BPF_X:
  840. emit_alu(SLLX, src, dst, ctx);
  841. break;
  842. case BPF_ALU | BPF_RSH | BPF_X:
  843. emit_alu(SRL, src, dst, ctx);
  844. break;
  845. case BPF_ALU64 | BPF_RSH | BPF_X:
  846. emit_alu(SRLX, src, dst, ctx);
  847. break;
  848. case BPF_ALU | BPF_ARSH | BPF_X:
  849. emit_alu(SRA, src, dst, ctx);
  850. goto do_alu32_trunc;
  851. case BPF_ALU64 | BPF_ARSH | BPF_X:
  852. emit_alu(SRAX, src, dst, ctx);
  853. break;
  854. /* dst = -dst */
  855. case BPF_ALU | BPF_NEG:
  856. case BPF_ALU64 | BPF_NEG:
  857. emit(SUB | RS1(0) | RS2(dst) | RD(dst), ctx);
  858. goto do_alu32_trunc;
  859. case BPF_ALU | BPF_END | BPF_FROM_BE:
  860. switch (imm) {
  861. case 16:
  862. emit_alu_K(SLL, dst, 16, ctx);
  863. emit_alu_K(SRL, dst, 16, ctx);
  864. break;
  865. case 32:
  866. emit_alu_K(SRL, dst, 0, ctx);
  867. break;
  868. case 64:
  869. /* nop */
  870. break;
  871. }
  872. break;
  873. /* dst = BSWAP##imm(dst) */
  874. case BPF_ALU | BPF_END | BPF_FROM_LE: {
  875. const u8 tmp = bpf2sparc[TMP_REG_1];
  876. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  877. ctx->tmp_1_used = true;
  878. switch (imm) {
  879. case 16:
  880. emit_alu3_K(AND, dst, 0xff, tmp, ctx);
  881. emit_alu3_K(SRL, dst, 8, dst, ctx);
  882. emit_alu3_K(AND, dst, 0xff, dst, ctx);
  883. emit_alu3_K(SLL, tmp, 8, tmp, ctx);
  884. emit_alu(OR, tmp, dst, ctx);
  885. break;
  886. case 32:
  887. ctx->tmp_2_used = true;
  888. emit_alu3_K(SRL, dst, 24, tmp, ctx); /* tmp = dst >> 24 */
  889. emit_alu3_K(SRL, dst, 16, tmp2, ctx); /* tmp2 = dst >> 16 */
  890. emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
  891. emit_alu3_K(SLL, tmp2, 8, tmp2, ctx); /* tmp2 = tmp2 << 8 */
  892. emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
  893. emit_alu3_K(SRL, dst, 8, tmp2, ctx); /* tmp2 = dst >> 8 */
  894. emit_alu3_K(AND, tmp2, 0xff, tmp2, ctx);/* tmp2 = tmp2 & 0xff */
  895. emit_alu3_K(SLL, tmp2, 16, tmp2, ctx); /* tmp2 = tmp2 << 16 */
  896. emit_alu(OR, tmp2, tmp, ctx); /* tmp = tmp | tmp2 */
  897. emit_alu3_K(AND, dst, 0xff, dst, ctx); /* dst = dst & 0xff */
  898. emit_alu3_K(SLL, dst, 24, dst, ctx); /* dst = dst << 24 */
  899. emit_alu(OR, tmp, dst, ctx); /* dst = dst | tmp */
  900. break;
  901. case 64:
  902. emit_alu3_K(ADD, SP, STACK_BIAS + 128, tmp, ctx);
  903. emit(ST64 | RS1(tmp) | RS2(G0) | RD(dst), ctx);
  904. emit(LD64A | ASI(ASI_PL) | RS1(tmp) | RS2(G0) | RD(dst), ctx);
  905. break;
  906. }
  907. break;
  908. }
  909. /* dst = imm */
  910. case BPF_ALU | BPF_MOV | BPF_K:
  911. emit_loadimm32(imm, dst, ctx);
  912. break;
  913. case BPF_ALU64 | BPF_MOV | BPF_K:
  914. emit_loadimm_sext(imm, dst, ctx);
  915. break;
  916. /* dst = dst OP imm */
  917. case BPF_ALU | BPF_ADD | BPF_K:
  918. case BPF_ALU64 | BPF_ADD | BPF_K:
  919. emit_alu_K(ADD, dst, imm, ctx);
  920. goto do_alu32_trunc;
  921. case BPF_ALU | BPF_SUB | BPF_K:
  922. case BPF_ALU64 | BPF_SUB | BPF_K:
  923. emit_alu_K(SUB, dst, imm, ctx);
  924. goto do_alu32_trunc;
  925. case BPF_ALU | BPF_AND | BPF_K:
  926. case BPF_ALU64 | BPF_AND | BPF_K:
  927. emit_alu_K(AND, dst, imm, ctx);
  928. goto do_alu32_trunc;
  929. case BPF_ALU | BPF_OR | BPF_K:
  930. case BPF_ALU64 | BPF_OR | BPF_K:
  931. emit_alu_K(OR, dst, imm, ctx);
  932. goto do_alu32_trunc;
  933. case BPF_ALU | BPF_XOR | BPF_K:
  934. case BPF_ALU64 | BPF_XOR | BPF_K:
  935. emit_alu_K(XOR, dst, imm, ctx);
  936. goto do_alu32_trunc;
  937. case BPF_ALU | BPF_MUL | BPF_K:
  938. emit_alu_K(MUL, dst, imm, ctx);
  939. goto do_alu32_trunc;
  940. case BPF_ALU64 | BPF_MUL | BPF_K:
  941. emit_alu_K(MULX, dst, imm, ctx);
  942. break;
  943. case BPF_ALU | BPF_DIV | BPF_K:
  944. if (imm == 0)
  945. return -EINVAL;
  946. emit_write_y(G0, ctx);
  947. emit_alu_K(DIV, dst, imm, ctx);
  948. goto do_alu32_trunc;
  949. case BPF_ALU64 | BPF_DIV | BPF_K:
  950. if (imm == 0)
  951. return -EINVAL;
  952. emit_alu_K(UDIVX, dst, imm, ctx);
  953. break;
  954. case BPF_ALU64 | BPF_MOD | BPF_K:
  955. case BPF_ALU | BPF_MOD | BPF_K: {
  956. const u8 tmp = bpf2sparc[TMP_REG_2];
  957. unsigned int div;
  958. if (imm == 0)
  959. return -EINVAL;
  960. div = (BPF_CLASS(code) == BPF_ALU64) ? UDIVX : DIV;
  961. ctx->tmp_2_used = true;
  962. if (BPF_CLASS(code) != BPF_ALU64)
  963. emit_write_y(G0, ctx);
  964. if (is_simm13(imm)) {
  965. emit(div | IMMED | RS1(dst) | S13(imm) | RD(tmp), ctx);
  966. emit(MULX | IMMED | RS1(tmp) | S13(imm) | RD(tmp), ctx);
  967. emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
  968. } else {
  969. const u8 tmp1 = bpf2sparc[TMP_REG_1];
  970. ctx->tmp_1_used = true;
  971. emit_set_const_sext(imm, tmp1, ctx);
  972. emit(div | RS1(dst) | RS2(tmp1) | RD(tmp), ctx);
  973. emit(MULX | RS1(tmp) | RS2(tmp1) | RD(tmp), ctx);
  974. emit(SUB | RS1(dst) | RS2(tmp) | RD(dst), ctx);
  975. }
  976. goto do_alu32_trunc;
  977. }
  978. case BPF_ALU | BPF_LSH | BPF_K:
  979. emit_alu_K(SLL, dst, imm, ctx);
  980. goto do_alu32_trunc;
  981. case BPF_ALU64 | BPF_LSH | BPF_K:
  982. emit_alu_K(SLLX, dst, imm, ctx);
  983. break;
  984. case BPF_ALU | BPF_RSH | BPF_K:
  985. emit_alu_K(SRL, dst, imm, ctx);
  986. break;
  987. case BPF_ALU64 | BPF_RSH | BPF_K:
  988. emit_alu_K(SRLX, dst, imm, ctx);
  989. break;
  990. case BPF_ALU | BPF_ARSH | BPF_K:
  991. emit_alu_K(SRA, dst, imm, ctx);
  992. goto do_alu32_trunc;
  993. case BPF_ALU64 | BPF_ARSH | BPF_K:
  994. emit_alu_K(SRAX, dst, imm, ctx);
  995. break;
  996. do_alu32_trunc:
  997. if (BPF_CLASS(code) == BPF_ALU)
  998. emit_alu_K(SRL, dst, 0, ctx);
  999. break;
  1000. /* JUMP off */
  1001. case BPF_JMP | BPF_JA:
  1002. emit_branch(BA, ctx->idx, ctx->offset[i + off], ctx);
  1003. emit_nop(ctx);
  1004. break;
  1005. /* IF (dst COND src) JUMP off */
  1006. case BPF_JMP | BPF_JEQ | BPF_X:
  1007. case BPF_JMP | BPF_JGT | BPF_X:
  1008. case BPF_JMP | BPF_JGE | BPF_X:
  1009. case BPF_JMP | BPF_JNE | BPF_X:
  1010. case BPF_JMP | BPF_JSGT | BPF_X:
  1011. case BPF_JMP | BPF_JSGE | BPF_X:
  1012. case BPF_JMP | BPF_JSET | BPF_X: {
  1013. int err;
  1014. err = emit_compare_and_branch(code, dst, src, 0, false, i + off, ctx);
  1015. if (err)
  1016. return err;
  1017. break;
  1018. }
  1019. /* IF (dst COND imm) JUMP off */
  1020. case BPF_JMP | BPF_JEQ | BPF_K:
  1021. case BPF_JMP | BPF_JGT | BPF_K:
  1022. case BPF_JMP | BPF_JGE | BPF_K:
  1023. case BPF_JMP | BPF_JNE | BPF_K:
  1024. case BPF_JMP | BPF_JSGT | BPF_K:
  1025. case BPF_JMP | BPF_JSGE | BPF_K:
  1026. case BPF_JMP | BPF_JSET | BPF_K: {
  1027. int err;
  1028. err = emit_compare_and_branch(code, dst, 0, imm, true, i + off, ctx);
  1029. if (err)
  1030. return err;
  1031. break;
  1032. }
  1033. /* function call */
  1034. case BPF_JMP | BPF_CALL:
  1035. {
  1036. u8 *func = ((u8 *)__bpf_call_base) + imm;
  1037. ctx->saw_call = true;
  1038. emit_call((u32 *)func, ctx);
  1039. emit_nop(ctx);
  1040. emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
  1041. if (bpf_helper_changes_pkt_data(func) && ctx->saw_ld_abs_ind)
  1042. load_skb_regs(ctx, bpf2sparc[BPF_REG_6]);
  1043. break;
  1044. }
  1045. /* tail call */
  1046. case BPF_JMP | BPF_TAIL_CALL:
  1047. emit_tail_call(ctx);
  1048. break;
  1049. /* function return */
  1050. case BPF_JMP | BPF_EXIT:
  1051. /* Optimization: when last instruction is EXIT,
  1052. simply fallthrough to epilogue. */
  1053. if (i == ctx->prog->len - 1)
  1054. break;
  1055. emit_branch(BA, ctx->idx, ctx->epilogue_offset, ctx);
  1056. emit_nop(ctx);
  1057. break;
  1058. /* dst = imm64 */
  1059. case BPF_LD | BPF_IMM | BPF_DW:
  1060. {
  1061. const struct bpf_insn insn1 = insn[1];
  1062. u64 imm64;
  1063. imm64 = (u64)insn1.imm << 32 | (u32)imm;
  1064. emit_loadimm64(imm64, dst, ctx);
  1065. return 1;
  1066. }
  1067. /* LDX: dst = *(size *)(src + off) */
  1068. case BPF_LDX | BPF_MEM | BPF_W:
  1069. case BPF_LDX | BPF_MEM | BPF_H:
  1070. case BPF_LDX | BPF_MEM | BPF_B:
  1071. case BPF_LDX | BPF_MEM | BPF_DW: {
  1072. const u8 tmp = bpf2sparc[TMP_REG_1];
  1073. u32 opcode = 0, rs2;
  1074. ctx->tmp_1_used = true;
  1075. switch (BPF_SIZE(code)) {
  1076. case BPF_W:
  1077. opcode = LD32;
  1078. break;
  1079. case BPF_H:
  1080. opcode = LD16;
  1081. break;
  1082. case BPF_B:
  1083. opcode = LD8;
  1084. break;
  1085. case BPF_DW:
  1086. opcode = LD64;
  1087. break;
  1088. }
  1089. if (is_simm13(off)) {
  1090. opcode |= IMMED;
  1091. rs2 = S13(off);
  1092. } else {
  1093. emit_loadimm(off, tmp, ctx);
  1094. rs2 = RS2(tmp);
  1095. }
  1096. emit(opcode | RS1(src) | rs2 | RD(dst), ctx);
  1097. break;
  1098. }
  1099. /* ST: *(size *)(dst + off) = imm */
  1100. case BPF_ST | BPF_MEM | BPF_W:
  1101. case BPF_ST | BPF_MEM | BPF_H:
  1102. case BPF_ST | BPF_MEM | BPF_B:
  1103. case BPF_ST | BPF_MEM | BPF_DW: {
  1104. const u8 tmp = bpf2sparc[TMP_REG_1];
  1105. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1106. u32 opcode = 0, rs2;
  1107. ctx->tmp_2_used = true;
  1108. emit_loadimm(imm, tmp2, ctx);
  1109. switch (BPF_SIZE(code)) {
  1110. case BPF_W:
  1111. opcode = ST32;
  1112. break;
  1113. case BPF_H:
  1114. opcode = ST16;
  1115. break;
  1116. case BPF_B:
  1117. opcode = ST8;
  1118. break;
  1119. case BPF_DW:
  1120. opcode = ST64;
  1121. break;
  1122. }
  1123. if (is_simm13(off)) {
  1124. opcode |= IMMED;
  1125. rs2 = S13(off);
  1126. } else {
  1127. ctx->tmp_1_used = true;
  1128. emit_loadimm(off, tmp, ctx);
  1129. rs2 = RS2(tmp);
  1130. }
  1131. emit(opcode | RS1(dst) | rs2 | RD(tmp2), ctx);
  1132. break;
  1133. }
  1134. /* STX: *(size *)(dst + off) = src */
  1135. case BPF_STX | BPF_MEM | BPF_W:
  1136. case BPF_STX | BPF_MEM | BPF_H:
  1137. case BPF_STX | BPF_MEM | BPF_B:
  1138. case BPF_STX | BPF_MEM | BPF_DW: {
  1139. const u8 tmp = bpf2sparc[TMP_REG_1];
  1140. u32 opcode = 0, rs2;
  1141. switch (BPF_SIZE(code)) {
  1142. case BPF_W:
  1143. opcode = ST32;
  1144. break;
  1145. case BPF_H:
  1146. opcode = ST16;
  1147. break;
  1148. case BPF_B:
  1149. opcode = ST8;
  1150. break;
  1151. case BPF_DW:
  1152. opcode = ST64;
  1153. break;
  1154. }
  1155. if (is_simm13(off)) {
  1156. opcode |= IMMED;
  1157. rs2 = S13(off);
  1158. } else {
  1159. ctx->tmp_1_used = true;
  1160. emit_loadimm(off, tmp, ctx);
  1161. rs2 = RS2(tmp);
  1162. }
  1163. emit(opcode | RS1(dst) | rs2 | RD(src), ctx);
  1164. break;
  1165. }
  1166. /* STX XADD: lock *(u32 *)(dst + off) += src */
  1167. case BPF_STX | BPF_XADD | BPF_W: {
  1168. const u8 tmp = bpf2sparc[TMP_REG_1];
  1169. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1170. const u8 tmp3 = bpf2sparc[TMP_REG_3];
  1171. ctx->tmp_1_used = true;
  1172. ctx->tmp_2_used = true;
  1173. ctx->tmp_3_used = true;
  1174. emit_loadimm(off, tmp, ctx);
  1175. emit_alu3(ADD, dst, tmp, tmp, ctx);
  1176. emit(LD32 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
  1177. emit_alu3(ADD, tmp2, src, tmp3, ctx);
  1178. emit(CAS | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
  1179. emit_cmp(tmp2, tmp3, ctx);
  1180. emit_branch(BNE, 4, 0, ctx);
  1181. emit_nop(ctx);
  1182. break;
  1183. }
  1184. /* STX XADD: lock *(u64 *)(dst + off) += src */
  1185. case BPF_STX | BPF_XADD | BPF_DW: {
  1186. const u8 tmp = bpf2sparc[TMP_REG_1];
  1187. const u8 tmp2 = bpf2sparc[TMP_REG_2];
  1188. const u8 tmp3 = bpf2sparc[TMP_REG_3];
  1189. ctx->tmp_1_used = true;
  1190. ctx->tmp_2_used = true;
  1191. ctx->tmp_3_used = true;
  1192. emit_loadimm(off, tmp, ctx);
  1193. emit_alu3(ADD, dst, tmp, tmp, ctx);
  1194. emit(LD64 | RS1(tmp) | RS2(G0) | RD(tmp2), ctx);
  1195. emit_alu3(ADD, tmp2, src, tmp3, ctx);
  1196. emit(CASX | ASI(ASI_P) | RS1(tmp) | RS2(tmp2) | RD(tmp3), ctx);
  1197. emit_cmp(tmp2, tmp3, ctx);
  1198. emit_branch(BNE, 4, 0, ctx);
  1199. emit_nop(ctx);
  1200. break;
  1201. }
  1202. #define CHOOSE_LOAD_FUNC(K, func) \
  1203. ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
  1204. /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */
  1205. case BPF_LD | BPF_ABS | BPF_W:
  1206. func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_word);
  1207. goto common_load;
  1208. case BPF_LD | BPF_ABS | BPF_H:
  1209. func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_half);
  1210. goto common_load;
  1211. case BPF_LD | BPF_ABS | BPF_B:
  1212. func = CHOOSE_LOAD_FUNC(imm, bpf_jit_load_byte);
  1213. goto common_load;
  1214. /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */
  1215. case BPF_LD | BPF_IND | BPF_W:
  1216. func = bpf_jit_load_word;
  1217. goto common_load;
  1218. case BPF_LD | BPF_IND | BPF_H:
  1219. func = bpf_jit_load_half;
  1220. goto common_load;
  1221. case BPF_LD | BPF_IND | BPF_B:
  1222. func = bpf_jit_load_byte;
  1223. common_load:
  1224. ctx->saw_ld_abs_ind = true;
  1225. emit_reg_move(bpf2sparc[BPF_REG_6], O0, ctx);
  1226. emit_loadimm(imm, O1, ctx);
  1227. if (BPF_MODE(code) == BPF_IND)
  1228. emit_alu(ADD, src, O1, ctx);
  1229. emit_call(func, ctx);
  1230. emit_alu_K(SRA, O1, 0, ctx);
  1231. emit_reg_move(O0, bpf2sparc[BPF_REG_0], ctx);
  1232. break;
  1233. default:
  1234. pr_err_once("unknown opcode %02x\n", code);
  1235. return -EINVAL;
  1236. }
  1237. return 0;
  1238. }
  1239. static int build_body(struct jit_ctx *ctx)
  1240. {
  1241. const struct bpf_prog *prog = ctx->prog;
  1242. int i;
  1243. for (i = 0; i < prog->len; i++) {
  1244. const struct bpf_insn *insn = &prog->insnsi[i];
  1245. int ret;
  1246. ret = build_insn(insn, ctx);
  1247. if (ret > 0) {
  1248. i++;
  1249. ctx->offset[i] = ctx->idx;
  1250. continue;
  1251. }
  1252. ctx->offset[i] = ctx->idx;
  1253. if (ret)
  1254. return ret;
  1255. }
  1256. return 0;
  1257. }
  1258. static void jit_fill_hole(void *area, unsigned int size)
  1259. {
  1260. u32 *ptr;
  1261. /* We are guaranteed to have aligned memory. */
  1262. for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
  1263. *ptr++ = 0x91d02005; /* ta 5 */
  1264. }
  1265. struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
  1266. {
  1267. struct bpf_prog *tmp, *orig_prog = prog;
  1268. struct bpf_binary_header *header;
  1269. bool tmp_blinded = false;
  1270. struct jit_ctx ctx;
  1271. u32 image_size;
  1272. u8 *image_ptr;
  1273. int pass;
  1274. if (!bpf_jit_enable)
  1275. return orig_prog;
  1276. tmp = bpf_jit_blind_constants(prog);
  1277. /* If blinding was requested and we failed during blinding,
  1278. * we must fall back to the interpreter.
  1279. */
  1280. if (IS_ERR(tmp))
  1281. return orig_prog;
  1282. if (tmp != prog) {
  1283. tmp_blinded = true;
  1284. prog = tmp;
  1285. }
  1286. memset(&ctx, 0, sizeof(ctx));
  1287. ctx.prog = prog;
  1288. ctx.offset = kcalloc(prog->len, sizeof(unsigned int), GFP_KERNEL);
  1289. if (ctx.offset == NULL) {
  1290. prog = orig_prog;
  1291. goto out;
  1292. }
  1293. /* Fake pass to detect features used, and get an accurate assessment
  1294. * of what the final image size will be.
  1295. */
  1296. if (build_body(&ctx)) {
  1297. prog = orig_prog;
  1298. goto out_off;
  1299. }
  1300. build_prologue(&ctx);
  1301. build_epilogue(&ctx);
  1302. /* Now we know the actual image size. */
  1303. image_size = sizeof(u32) * ctx.idx;
  1304. header = bpf_jit_binary_alloc(image_size, &image_ptr,
  1305. sizeof(u32), jit_fill_hole);
  1306. if (header == NULL) {
  1307. prog = orig_prog;
  1308. goto out_off;
  1309. }
  1310. ctx.image = (u32 *)image_ptr;
  1311. for (pass = 1; pass < 3; pass++) {
  1312. ctx.idx = 0;
  1313. build_prologue(&ctx);
  1314. if (build_body(&ctx)) {
  1315. bpf_jit_binary_free(header);
  1316. prog = orig_prog;
  1317. goto out_off;
  1318. }
  1319. build_epilogue(&ctx);
  1320. if (bpf_jit_enable > 1)
  1321. pr_info("Pass %d: shrink = %d, seen = [%c%c%c%c%c%c%c]\n", pass,
  1322. image_size - (ctx.idx * 4),
  1323. ctx.tmp_1_used ? '1' : ' ',
  1324. ctx.tmp_2_used ? '2' : ' ',
  1325. ctx.tmp_3_used ? '3' : ' ',
  1326. ctx.saw_ld_abs_ind ? 'L' : ' ',
  1327. ctx.saw_frame_pointer ? 'F' : ' ',
  1328. ctx.saw_call ? 'C' : ' ',
  1329. ctx.saw_tail_call ? 'T' : ' ');
  1330. }
  1331. if (bpf_jit_enable > 1)
  1332. bpf_jit_dump(prog->len, image_size, pass, ctx.image);
  1333. bpf_flush_icache(header, (u8 *)header + (header->pages * PAGE_SIZE));
  1334. bpf_jit_binary_lock_ro(header);
  1335. prog->bpf_func = (void *)ctx.image;
  1336. prog->jited = 1;
  1337. out_off:
  1338. kfree(ctx.offset);
  1339. out:
  1340. if (tmp_blinded)
  1341. bpf_jit_prog_release_other(prog, prog == orig_prog ?
  1342. tmp : orig_prog);
  1343. return prog;
  1344. }