tsc.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419
  1. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/init.h>
  5. #include <linux/export.h>
  6. #include <linux/timer.h>
  7. #include <linux/acpi_pmtmr.h>
  8. #include <linux/cpufreq.h>
  9. #include <linux/delay.h>
  10. #include <linux/clocksource.h>
  11. #include <linux/percpu.h>
  12. #include <linux/timex.h>
  13. #include <linux/static_key.h>
  14. #include <asm/hpet.h>
  15. #include <asm/timer.h>
  16. #include <asm/vgtod.h>
  17. #include <asm/time.h>
  18. #include <asm/delay.h>
  19. #include <asm/hypervisor.h>
  20. #include <asm/nmi.h>
  21. #include <asm/x86_init.h>
  22. #include <asm/geode.h>
  23. #include <asm/apic.h>
  24. #include <asm/intel-family.h>
  25. unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
  26. EXPORT_SYMBOL(cpu_khz);
  27. unsigned int __read_mostly tsc_khz;
  28. EXPORT_SYMBOL(tsc_khz);
  29. /*
  30. * TSC can be unstable due to cpufreq or due to unsynced TSCs
  31. */
  32. static int __read_mostly tsc_unstable;
  33. /* native_sched_clock() is called before tsc_init(), so
  34. we must start with the TSC soft disabled to prevent
  35. erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
  36. static int __read_mostly tsc_disabled = -1;
  37. static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  38. int tsc_clocksource_reliable;
  39. static u32 art_to_tsc_numerator;
  40. static u32 art_to_tsc_denominator;
  41. static u64 art_to_tsc_offset;
  42. struct clocksource *art_related_clocksource;
  43. /*
  44. * Use a ring-buffer like data structure, where a writer advances the head by
  45. * writing a new data entry and a reader advances the tail when it observes a
  46. * new entry.
  47. *
  48. * Writers are made to wait on readers until there's space to write a new
  49. * entry.
  50. *
  51. * This means that we can always use an {offset, mul} pair to compute a ns
  52. * value that is 'roughly' in the right direction, even if we're writing a new
  53. * {offset, mul} pair during the clock read.
  54. *
  55. * The down-side is that we can no longer guarantee strict monotonicity anymore
  56. * (assuming the TSC was that to begin with), because while we compute the
  57. * intersection point of the two clock slopes and make sure the time is
  58. * continuous at the point of switching; we can no longer guarantee a reader is
  59. * strictly before or after the switch point.
  60. *
  61. * It does mean a reader no longer needs to disable IRQs in order to avoid
  62. * CPU-Freq updates messing with his times, and similarly an NMI reader will
  63. * no longer run the risk of hitting half-written state.
  64. */
  65. struct cyc2ns {
  66. struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */
  67. struct cyc2ns_data *head; /* 48 + 8 = 56 */
  68. struct cyc2ns_data *tail; /* 56 + 8 = 64 */
  69. }; /* exactly fits one cacheline */
  70. static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  71. struct cyc2ns_data *cyc2ns_read_begin(void)
  72. {
  73. struct cyc2ns_data *head;
  74. preempt_disable();
  75. head = this_cpu_read(cyc2ns.head);
  76. /*
  77. * Ensure we observe the entry when we observe the pointer to it.
  78. * matches the wmb from cyc2ns_write_end().
  79. */
  80. smp_read_barrier_depends();
  81. head->__count++;
  82. barrier();
  83. return head;
  84. }
  85. void cyc2ns_read_end(struct cyc2ns_data *head)
  86. {
  87. barrier();
  88. /*
  89. * If we're the outer most nested read; update the tail pointer
  90. * when we're done. This notifies possible pending writers
  91. * that we've observed the head pointer and that the other
  92. * entry is now free.
  93. */
  94. if (!--head->__count) {
  95. /*
  96. * x86-TSO does not reorder writes with older reads;
  97. * therefore once this write becomes visible to another
  98. * cpu, we must be finished reading the cyc2ns_data.
  99. *
  100. * matches with cyc2ns_write_begin().
  101. */
  102. this_cpu_write(cyc2ns.tail, head);
  103. }
  104. preempt_enable();
  105. }
  106. /*
  107. * Begin writing a new @data entry for @cpu.
  108. *
  109. * Assumes some sort of write side lock; currently 'provided' by the assumption
  110. * that cpufreq will call its notifiers sequentially.
  111. */
  112. static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
  113. {
  114. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  115. struct cyc2ns_data *data = c2n->data;
  116. if (data == c2n->head)
  117. data++;
  118. /* XXX send an IPI to @cpu in order to guarantee a read? */
  119. /*
  120. * When we observe the tail write from cyc2ns_read_end(),
  121. * the cpu must be done with that entry and its safe
  122. * to start writing to it.
  123. */
  124. while (c2n->tail == data)
  125. cpu_relax();
  126. return data;
  127. }
  128. static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
  129. {
  130. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  131. /*
  132. * Ensure the @data writes are visible before we publish the
  133. * entry. Matches the data-depencency in cyc2ns_read_begin().
  134. */
  135. smp_wmb();
  136. ACCESS_ONCE(c2n->head) = data;
  137. }
  138. /*
  139. * Accelerators for sched_clock()
  140. * convert from cycles(64bits) => nanoseconds (64bits)
  141. * basic equation:
  142. * ns = cycles / (freq / ns_per_sec)
  143. * ns = cycles * (ns_per_sec / freq)
  144. * ns = cycles * (10^9 / (cpu_khz * 10^3))
  145. * ns = cycles * (10^6 / cpu_khz)
  146. *
  147. * Then we use scaling math (suggested by george@mvista.com) to get:
  148. * ns = cycles * (10^6 * SC / cpu_khz) / SC
  149. * ns = cycles * cyc2ns_scale / SC
  150. *
  151. * And since SC is a constant power of two, we can convert the div
  152. * into a shift. The larger SC is, the more accurate the conversion, but
  153. * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
  154. * (64-bit result) can be used.
  155. *
  156. * We can use khz divisor instead of mhz to keep a better precision.
  157. * (mathieu.desnoyers@polymtl.ca)
  158. *
  159. * -johnstul@us.ibm.com "math is hard, lets go shopping!"
  160. */
  161. static void cyc2ns_data_init(struct cyc2ns_data *data)
  162. {
  163. data->cyc2ns_mul = 0;
  164. data->cyc2ns_shift = 0;
  165. data->cyc2ns_offset = 0;
  166. data->__count = 0;
  167. }
  168. static void cyc2ns_init(int cpu)
  169. {
  170. struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
  171. cyc2ns_data_init(&c2n->data[0]);
  172. cyc2ns_data_init(&c2n->data[1]);
  173. c2n->head = c2n->data;
  174. c2n->tail = c2n->data;
  175. }
  176. static inline unsigned long long cycles_2_ns(unsigned long long cyc)
  177. {
  178. struct cyc2ns_data *data, *tail;
  179. unsigned long long ns;
  180. /*
  181. * See cyc2ns_read_*() for details; replicated in order to avoid
  182. * an extra few instructions that came with the abstraction.
  183. * Notable, it allows us to only do the __count and tail update
  184. * dance when its actually needed.
  185. */
  186. preempt_disable_notrace();
  187. data = this_cpu_read(cyc2ns.head);
  188. tail = this_cpu_read(cyc2ns.tail);
  189. if (likely(data == tail)) {
  190. ns = data->cyc2ns_offset;
  191. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  192. } else {
  193. data->__count++;
  194. barrier();
  195. ns = data->cyc2ns_offset;
  196. ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
  197. barrier();
  198. if (!--data->__count)
  199. this_cpu_write(cyc2ns.tail, data);
  200. }
  201. preempt_enable_notrace();
  202. return ns;
  203. }
  204. static void set_cyc2ns_scale(unsigned long khz, int cpu)
  205. {
  206. unsigned long long tsc_now, ns_now;
  207. struct cyc2ns_data *data;
  208. unsigned long flags;
  209. local_irq_save(flags);
  210. sched_clock_idle_sleep_event();
  211. if (!khz)
  212. goto done;
  213. data = cyc2ns_write_begin(cpu);
  214. tsc_now = rdtsc();
  215. ns_now = cycles_2_ns(tsc_now);
  216. /*
  217. * Compute a new multiplier as per the above comment and ensure our
  218. * time function is continuous; see the comment near struct
  219. * cyc2ns_data.
  220. */
  221. clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
  222. NSEC_PER_MSEC, 0);
  223. /*
  224. * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
  225. * not expected to be greater than 31 due to the original published
  226. * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
  227. * value) - refer perf_event_mmap_page documentation in perf_event.h.
  228. */
  229. if (data->cyc2ns_shift == 32) {
  230. data->cyc2ns_shift = 31;
  231. data->cyc2ns_mul >>= 1;
  232. }
  233. data->cyc2ns_offset = ns_now -
  234. mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
  235. cyc2ns_write_end(cpu, data);
  236. done:
  237. sched_clock_idle_wakeup_event(0);
  238. local_irq_restore(flags);
  239. }
  240. /*
  241. * Scheduler clock - returns current time in nanosec units.
  242. */
  243. u64 native_sched_clock(void)
  244. {
  245. if (static_branch_likely(&__use_tsc)) {
  246. u64 tsc_now = rdtsc();
  247. /* return the value in ns */
  248. return cycles_2_ns(tsc_now);
  249. }
  250. /*
  251. * Fall back to jiffies if there's no TSC available:
  252. * ( But note that we still use it if the TSC is marked
  253. * unstable. We do this because unlike Time Of Day,
  254. * the scheduler clock tolerates small errors and it's
  255. * very important for it to be as fast as the platform
  256. * can achieve it. )
  257. */
  258. /* No locking but a rare wrong value is not a big deal: */
  259. return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
  260. }
  261. /*
  262. * Generate a sched_clock if you already have a TSC value.
  263. */
  264. u64 native_sched_clock_from_tsc(u64 tsc)
  265. {
  266. return cycles_2_ns(tsc);
  267. }
  268. /* We need to define a real function for sched_clock, to override the
  269. weak default version */
  270. #ifdef CONFIG_PARAVIRT
  271. unsigned long long sched_clock(void)
  272. {
  273. return paravirt_sched_clock();
  274. }
  275. #else
  276. unsigned long long
  277. sched_clock(void) __attribute__((alias("native_sched_clock")));
  278. #endif
  279. int check_tsc_unstable(void)
  280. {
  281. return tsc_unstable;
  282. }
  283. EXPORT_SYMBOL_GPL(check_tsc_unstable);
  284. #ifdef CONFIG_X86_TSC
  285. int __init notsc_setup(char *str)
  286. {
  287. pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
  288. tsc_disabled = 1;
  289. return 1;
  290. }
  291. #else
  292. /*
  293. * disable flag for tsc. Takes effect by clearing the TSC cpu flag
  294. * in cpu/common.c
  295. */
  296. int __init notsc_setup(char *str)
  297. {
  298. setup_clear_cpu_cap(X86_FEATURE_TSC);
  299. return 1;
  300. }
  301. #endif
  302. __setup("notsc", notsc_setup);
  303. static int no_sched_irq_time;
  304. static int __init tsc_setup(char *str)
  305. {
  306. if (!strcmp(str, "reliable"))
  307. tsc_clocksource_reliable = 1;
  308. if (!strncmp(str, "noirqtime", 9))
  309. no_sched_irq_time = 1;
  310. return 1;
  311. }
  312. __setup("tsc=", tsc_setup);
  313. #define MAX_RETRIES 5
  314. #define SMI_TRESHOLD 50000
  315. /*
  316. * Read TSC and the reference counters. Take care of SMI disturbance
  317. */
  318. static u64 tsc_read_refs(u64 *p, int hpet)
  319. {
  320. u64 t1, t2;
  321. int i;
  322. for (i = 0; i < MAX_RETRIES; i++) {
  323. t1 = get_cycles();
  324. if (hpet)
  325. *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
  326. else
  327. *p = acpi_pm_read_early();
  328. t2 = get_cycles();
  329. if ((t2 - t1) < SMI_TRESHOLD)
  330. return t2;
  331. }
  332. return ULLONG_MAX;
  333. }
  334. /*
  335. * Calculate the TSC frequency from HPET reference
  336. */
  337. static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
  338. {
  339. u64 tmp;
  340. if (hpet2 < hpet1)
  341. hpet2 += 0x100000000ULL;
  342. hpet2 -= hpet1;
  343. tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
  344. do_div(tmp, 1000000);
  345. do_div(deltatsc, tmp);
  346. return (unsigned long) deltatsc;
  347. }
  348. /*
  349. * Calculate the TSC frequency from PMTimer reference
  350. */
  351. static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
  352. {
  353. u64 tmp;
  354. if (!pm1 && !pm2)
  355. return ULONG_MAX;
  356. if (pm2 < pm1)
  357. pm2 += (u64)ACPI_PM_OVRRUN;
  358. pm2 -= pm1;
  359. tmp = pm2 * 1000000000LL;
  360. do_div(tmp, PMTMR_TICKS_PER_SEC);
  361. do_div(deltatsc, tmp);
  362. return (unsigned long) deltatsc;
  363. }
  364. #define CAL_MS 10
  365. #define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
  366. #define CAL_PIT_LOOPS 1000
  367. #define CAL2_MS 50
  368. #define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
  369. #define CAL2_PIT_LOOPS 5000
  370. /*
  371. * Try to calibrate the TSC against the Programmable
  372. * Interrupt Timer and return the frequency of the TSC
  373. * in kHz.
  374. *
  375. * Return ULONG_MAX on failure to calibrate.
  376. */
  377. static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
  378. {
  379. u64 tsc, t1, t2, delta;
  380. unsigned long tscmin, tscmax;
  381. int pitcnt;
  382. /* Set the Gate high, disable speaker */
  383. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  384. /*
  385. * Setup CTC channel 2* for mode 0, (interrupt on terminal
  386. * count mode), binary count. Set the latch register to 50ms
  387. * (LSB then MSB) to begin countdown.
  388. */
  389. outb(0xb0, 0x43);
  390. outb(latch & 0xff, 0x42);
  391. outb(latch >> 8, 0x42);
  392. tsc = t1 = t2 = get_cycles();
  393. pitcnt = 0;
  394. tscmax = 0;
  395. tscmin = ULONG_MAX;
  396. while ((inb(0x61) & 0x20) == 0) {
  397. t2 = get_cycles();
  398. delta = t2 - tsc;
  399. tsc = t2;
  400. if ((unsigned long) delta < tscmin)
  401. tscmin = (unsigned int) delta;
  402. if ((unsigned long) delta > tscmax)
  403. tscmax = (unsigned int) delta;
  404. pitcnt++;
  405. }
  406. /*
  407. * Sanity checks:
  408. *
  409. * If we were not able to read the PIT more than loopmin
  410. * times, then we have been hit by a massive SMI
  411. *
  412. * If the maximum is 10 times larger than the minimum,
  413. * then we got hit by an SMI as well.
  414. */
  415. if (pitcnt < loopmin || tscmax > 10 * tscmin)
  416. return ULONG_MAX;
  417. /* Calculate the PIT value */
  418. delta = t2 - t1;
  419. do_div(delta, ms);
  420. return delta;
  421. }
  422. /*
  423. * This reads the current MSB of the PIT counter, and
  424. * checks if we are running on sufficiently fast and
  425. * non-virtualized hardware.
  426. *
  427. * Our expectations are:
  428. *
  429. * - the PIT is running at roughly 1.19MHz
  430. *
  431. * - each IO is going to take about 1us on real hardware,
  432. * but we allow it to be much faster (by a factor of 10) or
  433. * _slightly_ slower (ie we allow up to a 2us read+counter
  434. * update - anything else implies a unacceptably slow CPU
  435. * or PIT for the fast calibration to work.
  436. *
  437. * - with 256 PIT ticks to read the value, we have 214us to
  438. * see the same MSB (and overhead like doing a single TSC
  439. * read per MSB value etc).
  440. *
  441. * - We're doing 2 reads per loop (LSB, MSB), and we expect
  442. * them each to take about a microsecond on real hardware.
  443. * So we expect a count value of around 100. But we'll be
  444. * generous, and accept anything over 50.
  445. *
  446. * - if the PIT is stuck, and we see *many* more reads, we
  447. * return early (and the next caller of pit_expect_msb()
  448. * then consider it a failure when they don't see the
  449. * next expected value).
  450. *
  451. * These expectations mean that we know that we have seen the
  452. * transition from one expected value to another with a fairly
  453. * high accuracy, and we didn't miss any events. We can thus
  454. * use the TSC value at the transitions to calculate a pretty
  455. * good value for the TSC frequencty.
  456. */
  457. static inline int pit_verify_msb(unsigned char val)
  458. {
  459. /* Ignore LSB */
  460. inb(0x42);
  461. return inb(0x42) == val;
  462. }
  463. static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
  464. {
  465. int count;
  466. u64 tsc = 0, prev_tsc = 0;
  467. for (count = 0; count < 50000; count++) {
  468. if (!pit_verify_msb(val))
  469. break;
  470. prev_tsc = tsc;
  471. tsc = get_cycles();
  472. }
  473. *deltap = get_cycles() - prev_tsc;
  474. *tscp = tsc;
  475. /*
  476. * We require _some_ success, but the quality control
  477. * will be based on the error terms on the TSC values.
  478. */
  479. return count > 5;
  480. }
  481. /*
  482. * How many MSB values do we want to see? We aim for
  483. * a maximum error rate of 500ppm (in practice the
  484. * real error is much smaller), but refuse to spend
  485. * more than 50ms on it.
  486. */
  487. #define MAX_QUICK_PIT_MS 50
  488. #define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
  489. static unsigned long quick_pit_calibrate(void)
  490. {
  491. int i;
  492. u64 tsc, delta;
  493. unsigned long d1, d2;
  494. /* Set the Gate high, disable speaker */
  495. outb((inb(0x61) & ~0x02) | 0x01, 0x61);
  496. /*
  497. * Counter 2, mode 0 (one-shot), binary count
  498. *
  499. * NOTE! Mode 2 decrements by two (and then the
  500. * output is flipped each time, giving the same
  501. * final output frequency as a decrement-by-one),
  502. * so mode 0 is much better when looking at the
  503. * individual counts.
  504. */
  505. outb(0xb0, 0x43);
  506. /* Start at 0xffff */
  507. outb(0xff, 0x42);
  508. outb(0xff, 0x42);
  509. /*
  510. * The PIT starts counting at the next edge, so we
  511. * need to delay for a microsecond. The easiest way
  512. * to do that is to just read back the 16-bit counter
  513. * once from the PIT.
  514. */
  515. pit_verify_msb(0);
  516. if (pit_expect_msb(0xff, &tsc, &d1)) {
  517. for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
  518. if (!pit_expect_msb(0xff-i, &delta, &d2))
  519. break;
  520. delta -= tsc;
  521. /*
  522. * Extrapolate the error and fail fast if the error will
  523. * never be below 500 ppm.
  524. */
  525. if (i == 1 &&
  526. d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
  527. return 0;
  528. /*
  529. * Iterate until the error is less than 500 ppm
  530. */
  531. if (d1+d2 >= delta >> 11)
  532. continue;
  533. /*
  534. * Check the PIT one more time to verify that
  535. * all TSC reads were stable wrt the PIT.
  536. *
  537. * This also guarantees serialization of the
  538. * last cycle read ('d2') in pit_expect_msb.
  539. */
  540. if (!pit_verify_msb(0xfe - i))
  541. break;
  542. goto success;
  543. }
  544. }
  545. pr_info("Fast TSC calibration failed\n");
  546. return 0;
  547. success:
  548. /*
  549. * Ok, if we get here, then we've seen the
  550. * MSB of the PIT decrement 'i' times, and the
  551. * error has shrunk to less than 500 ppm.
  552. *
  553. * As a result, we can depend on there not being
  554. * any odd delays anywhere, and the TSC reads are
  555. * reliable (within the error).
  556. *
  557. * kHz = ticks / time-in-seconds / 1000;
  558. * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
  559. * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
  560. */
  561. delta *= PIT_TICK_RATE;
  562. do_div(delta, i*256*1000);
  563. pr_info("Fast TSC calibration using PIT\n");
  564. return delta;
  565. }
  566. /**
  567. * native_calibrate_tsc
  568. * Determine TSC frequency via CPUID, else return 0.
  569. */
  570. unsigned long native_calibrate_tsc(void)
  571. {
  572. unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
  573. unsigned int crystal_khz;
  574. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  575. return 0;
  576. if (boot_cpu_data.cpuid_level < 0x15)
  577. return 0;
  578. eax_denominator = ebx_numerator = ecx_hz = edx = 0;
  579. /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
  580. cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
  581. if (ebx_numerator == 0 || eax_denominator == 0)
  582. return 0;
  583. crystal_khz = ecx_hz / 1000;
  584. if (crystal_khz == 0) {
  585. switch (boot_cpu_data.x86_model) {
  586. case INTEL_FAM6_SKYLAKE_MOBILE:
  587. case INTEL_FAM6_SKYLAKE_DESKTOP:
  588. case INTEL_FAM6_KABYLAKE_MOBILE:
  589. case INTEL_FAM6_KABYLAKE_DESKTOP:
  590. crystal_khz = 24000; /* 24.0 MHz */
  591. break;
  592. case INTEL_FAM6_SKYLAKE_X:
  593. crystal_khz = 25000; /* 25.0 MHz */
  594. break;
  595. case INTEL_FAM6_ATOM_GOLDMONT:
  596. crystal_khz = 19200; /* 19.2 MHz */
  597. break;
  598. }
  599. }
  600. /*
  601. * TSC frequency determined by CPUID is a "hardware reported"
  602. * frequency and is the most accurate one so far we have. This
  603. * is considered a known frequency.
  604. */
  605. setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
  606. /*
  607. * For Atom SoCs TSC is the only reliable clocksource.
  608. * Mark TSC reliable so no watchdog on it.
  609. */
  610. if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
  611. setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
  612. return crystal_khz * ebx_numerator / eax_denominator;
  613. }
  614. static unsigned long cpu_khz_from_cpuid(void)
  615. {
  616. unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
  617. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
  618. return 0;
  619. if (boot_cpu_data.cpuid_level < 0x16)
  620. return 0;
  621. eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
  622. cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
  623. return eax_base_mhz * 1000;
  624. }
  625. /**
  626. * native_calibrate_cpu - calibrate the cpu on boot
  627. */
  628. unsigned long native_calibrate_cpu(void)
  629. {
  630. u64 tsc1, tsc2, delta, ref1, ref2;
  631. unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
  632. unsigned long flags, latch, ms, fast_calibrate;
  633. int hpet = is_hpet_enabled(), i, loopmin;
  634. fast_calibrate = cpu_khz_from_cpuid();
  635. if (fast_calibrate)
  636. return fast_calibrate;
  637. fast_calibrate = cpu_khz_from_msr();
  638. if (fast_calibrate)
  639. return fast_calibrate;
  640. local_irq_save(flags);
  641. fast_calibrate = quick_pit_calibrate();
  642. local_irq_restore(flags);
  643. if (fast_calibrate)
  644. return fast_calibrate;
  645. /*
  646. * Run 5 calibration loops to get the lowest frequency value
  647. * (the best estimate). We use two different calibration modes
  648. * here:
  649. *
  650. * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
  651. * load a timeout of 50ms. We read the time right after we
  652. * started the timer and wait until the PIT count down reaches
  653. * zero. In each wait loop iteration we read the TSC and check
  654. * the delta to the previous read. We keep track of the min
  655. * and max values of that delta. The delta is mostly defined
  656. * by the IO time of the PIT access, so we can detect when a
  657. * SMI/SMM disturbance happened between the two reads. If the
  658. * maximum time is significantly larger than the minimum time,
  659. * then we discard the result and have another try.
  660. *
  661. * 2) Reference counter. If available we use the HPET or the
  662. * PMTIMER as a reference to check the sanity of that value.
  663. * We use separate TSC readouts and check inside of the
  664. * reference read for a SMI/SMM disturbance. We dicard
  665. * disturbed values here as well. We do that around the PIT
  666. * calibration delay loop as we have to wait for a certain
  667. * amount of time anyway.
  668. */
  669. /* Preset PIT loop values */
  670. latch = CAL_LATCH;
  671. ms = CAL_MS;
  672. loopmin = CAL_PIT_LOOPS;
  673. for (i = 0; i < 3; i++) {
  674. unsigned long tsc_pit_khz;
  675. /*
  676. * Read the start value and the reference count of
  677. * hpet/pmtimer when available. Then do the PIT
  678. * calibration, which will take at least 50ms, and
  679. * read the end value.
  680. */
  681. local_irq_save(flags);
  682. tsc1 = tsc_read_refs(&ref1, hpet);
  683. tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
  684. tsc2 = tsc_read_refs(&ref2, hpet);
  685. local_irq_restore(flags);
  686. /* Pick the lowest PIT TSC calibration so far */
  687. tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
  688. /* hpet or pmtimer available ? */
  689. if (ref1 == ref2)
  690. continue;
  691. /* Check, whether the sampling was disturbed by an SMI */
  692. if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
  693. continue;
  694. tsc2 = (tsc2 - tsc1) * 1000000LL;
  695. if (hpet)
  696. tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
  697. else
  698. tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
  699. tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
  700. /* Check the reference deviation */
  701. delta = ((u64) tsc_pit_min) * 100;
  702. do_div(delta, tsc_ref_min);
  703. /*
  704. * If both calibration results are inside a 10% window
  705. * then we can be sure, that the calibration
  706. * succeeded. We break out of the loop right away. We
  707. * use the reference value, as it is more precise.
  708. */
  709. if (delta >= 90 && delta <= 110) {
  710. pr_info("PIT calibration matches %s. %d loops\n",
  711. hpet ? "HPET" : "PMTIMER", i + 1);
  712. return tsc_ref_min;
  713. }
  714. /*
  715. * Check whether PIT failed more than once. This
  716. * happens in virtualized environments. We need to
  717. * give the virtual PC a slightly longer timeframe for
  718. * the HPET/PMTIMER to make the result precise.
  719. */
  720. if (i == 1 && tsc_pit_min == ULONG_MAX) {
  721. latch = CAL2_LATCH;
  722. ms = CAL2_MS;
  723. loopmin = CAL2_PIT_LOOPS;
  724. }
  725. }
  726. /*
  727. * Now check the results.
  728. */
  729. if (tsc_pit_min == ULONG_MAX) {
  730. /* PIT gave no useful value */
  731. pr_warn("Unable to calibrate against PIT\n");
  732. /* We don't have an alternative source, disable TSC */
  733. if (!hpet && !ref1 && !ref2) {
  734. pr_notice("No reference (HPET/PMTIMER) available\n");
  735. return 0;
  736. }
  737. /* The alternative source failed as well, disable TSC */
  738. if (tsc_ref_min == ULONG_MAX) {
  739. pr_warn("HPET/PMTIMER calibration failed\n");
  740. return 0;
  741. }
  742. /* Use the alternative source */
  743. pr_info("using %s reference calibration\n",
  744. hpet ? "HPET" : "PMTIMER");
  745. return tsc_ref_min;
  746. }
  747. /* We don't have an alternative source, use the PIT calibration value */
  748. if (!hpet && !ref1 && !ref2) {
  749. pr_info("Using PIT calibration value\n");
  750. return tsc_pit_min;
  751. }
  752. /* The alternative source failed, use the PIT calibration value */
  753. if (tsc_ref_min == ULONG_MAX) {
  754. pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
  755. return tsc_pit_min;
  756. }
  757. /*
  758. * The calibration values differ too much. In doubt, we use
  759. * the PIT value as we know that there are PMTIMERs around
  760. * running at double speed. At least we let the user know:
  761. */
  762. pr_warn("PIT calibration deviates from %s: %lu %lu\n",
  763. hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
  764. pr_info("Using PIT calibration value\n");
  765. return tsc_pit_min;
  766. }
  767. int recalibrate_cpu_khz(void)
  768. {
  769. #ifndef CONFIG_SMP
  770. unsigned long cpu_khz_old = cpu_khz;
  771. if (!boot_cpu_has(X86_FEATURE_TSC))
  772. return -ENODEV;
  773. cpu_khz = x86_platform.calibrate_cpu();
  774. tsc_khz = x86_platform.calibrate_tsc();
  775. if (tsc_khz == 0)
  776. tsc_khz = cpu_khz;
  777. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  778. cpu_khz = tsc_khz;
  779. cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
  780. cpu_khz_old, cpu_khz);
  781. return 0;
  782. #else
  783. return -ENODEV;
  784. #endif
  785. }
  786. EXPORT_SYMBOL(recalibrate_cpu_khz);
  787. static unsigned long long cyc2ns_suspend;
  788. void tsc_save_sched_clock_state(void)
  789. {
  790. if (!sched_clock_stable())
  791. return;
  792. cyc2ns_suspend = sched_clock();
  793. }
  794. /*
  795. * Even on processors with invariant TSC, TSC gets reset in some the
  796. * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
  797. * arbitrary value (still sync'd across cpu's) during resume from such sleep
  798. * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
  799. * that sched_clock() continues from the point where it was left off during
  800. * suspend.
  801. */
  802. void tsc_restore_sched_clock_state(void)
  803. {
  804. unsigned long long offset;
  805. unsigned long flags;
  806. int cpu;
  807. if (!sched_clock_stable())
  808. return;
  809. local_irq_save(flags);
  810. /*
  811. * We're coming out of suspend, there's no concurrency yet; don't
  812. * bother being nice about the RCU stuff, just write to both
  813. * data fields.
  814. */
  815. this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
  816. this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
  817. offset = cyc2ns_suspend - sched_clock();
  818. for_each_possible_cpu(cpu) {
  819. per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
  820. per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
  821. }
  822. local_irq_restore(flags);
  823. }
  824. #ifdef CONFIG_CPU_FREQ
  825. /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
  826. * changes.
  827. *
  828. * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
  829. * not that important because current Opteron setups do not support
  830. * scaling on SMP anyroads.
  831. *
  832. * Should fix up last_tsc too. Currently gettimeofday in the
  833. * first tick after the change will be slightly wrong.
  834. */
  835. static unsigned int ref_freq;
  836. static unsigned long loops_per_jiffy_ref;
  837. static unsigned long tsc_khz_ref;
  838. static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  839. void *data)
  840. {
  841. struct cpufreq_freqs *freq = data;
  842. unsigned long *lpj;
  843. lpj = &boot_cpu_data.loops_per_jiffy;
  844. #ifdef CONFIG_SMP
  845. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  846. lpj = &cpu_data(freq->cpu).loops_per_jiffy;
  847. #endif
  848. if (!ref_freq) {
  849. ref_freq = freq->old;
  850. loops_per_jiffy_ref = *lpj;
  851. tsc_khz_ref = tsc_khz;
  852. }
  853. if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
  854. (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
  855. *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
  856. tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
  857. if (!(freq->flags & CPUFREQ_CONST_LOOPS))
  858. mark_tsc_unstable("cpufreq changes");
  859. set_cyc2ns_scale(tsc_khz, freq->cpu);
  860. }
  861. return 0;
  862. }
  863. static struct notifier_block time_cpufreq_notifier_block = {
  864. .notifier_call = time_cpufreq_notifier
  865. };
  866. static int __init cpufreq_register_tsc_scaling(void)
  867. {
  868. if (!boot_cpu_has(X86_FEATURE_TSC))
  869. return 0;
  870. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  871. return 0;
  872. cpufreq_register_notifier(&time_cpufreq_notifier_block,
  873. CPUFREQ_TRANSITION_NOTIFIER);
  874. return 0;
  875. }
  876. core_initcall(cpufreq_register_tsc_scaling);
  877. #endif /* CONFIG_CPU_FREQ */
  878. #define ART_CPUID_LEAF (0x15)
  879. #define ART_MIN_DENOMINATOR (1)
  880. /*
  881. * If ART is present detect the numerator:denominator to convert to TSC
  882. */
  883. static void detect_art(void)
  884. {
  885. unsigned int unused[2];
  886. if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
  887. return;
  888. /* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
  889. if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
  890. !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
  891. !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
  892. return;
  893. cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
  894. &art_to_tsc_numerator, unused, unused+1);
  895. if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
  896. return;
  897. rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
  898. /* Make this sticky over multiple CPU init calls */
  899. setup_force_cpu_cap(X86_FEATURE_ART);
  900. }
  901. /* clocksource code */
  902. static struct clocksource clocksource_tsc;
  903. static void tsc_resume(struct clocksource *cs)
  904. {
  905. tsc_verify_tsc_adjust(true);
  906. }
  907. /*
  908. * We used to compare the TSC to the cycle_last value in the clocksource
  909. * structure to avoid a nasty time-warp. This can be observed in a
  910. * very small window right after one CPU updated cycle_last under
  911. * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
  912. * is smaller than the cycle_last reference value due to a TSC which
  913. * is slighty behind. This delta is nowhere else observable, but in
  914. * that case it results in a forward time jump in the range of hours
  915. * due to the unsigned delta calculation of the time keeping core
  916. * code, which is necessary to support wrapping clocksources like pm
  917. * timer.
  918. *
  919. * This sanity check is now done in the core timekeeping code.
  920. * checking the result of read_tsc() - cycle_last for being negative.
  921. * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
  922. */
  923. static u64 read_tsc(struct clocksource *cs)
  924. {
  925. return (u64)rdtsc_ordered();
  926. }
  927. /*
  928. * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
  929. */
  930. static struct clocksource clocksource_tsc = {
  931. .name = "tsc",
  932. .rating = 300,
  933. .read = read_tsc,
  934. .mask = CLOCKSOURCE_MASK(64),
  935. .flags = CLOCK_SOURCE_IS_CONTINUOUS |
  936. CLOCK_SOURCE_MUST_VERIFY,
  937. .archdata = { .vclock_mode = VCLOCK_TSC },
  938. .resume = tsc_resume,
  939. };
  940. void mark_tsc_unstable(char *reason)
  941. {
  942. if (!tsc_unstable) {
  943. tsc_unstable = 1;
  944. clear_sched_clock_stable();
  945. disable_sched_clock_irqtime();
  946. pr_info("Marking TSC unstable due to %s\n", reason);
  947. /* Change only the rating, when not registered */
  948. if (clocksource_tsc.mult)
  949. clocksource_mark_unstable(&clocksource_tsc);
  950. else {
  951. clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
  952. clocksource_tsc.rating = 0;
  953. }
  954. }
  955. }
  956. EXPORT_SYMBOL_GPL(mark_tsc_unstable);
  957. static void __init check_system_tsc_reliable(void)
  958. {
  959. #if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
  960. if (is_geode_lx()) {
  961. /* RTSC counts during suspend */
  962. #define RTSC_SUSP 0x100
  963. unsigned long res_low, res_high;
  964. rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
  965. /* Geode_LX - the OLPC CPU has a very reliable TSC */
  966. if (res_low & RTSC_SUSP)
  967. tsc_clocksource_reliable = 1;
  968. }
  969. #endif
  970. if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
  971. tsc_clocksource_reliable = 1;
  972. }
  973. /*
  974. * Make an educated guess if the TSC is trustworthy and synchronized
  975. * over all CPUs.
  976. */
  977. int unsynchronized_tsc(void)
  978. {
  979. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
  980. return 1;
  981. #ifdef CONFIG_SMP
  982. if (apic_is_clustered_box())
  983. return 1;
  984. #endif
  985. if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  986. return 0;
  987. if (tsc_clocksource_reliable)
  988. return 0;
  989. /*
  990. * Intel systems are normally all synchronized.
  991. * Exceptions must mark TSC as unstable:
  992. */
  993. if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
  994. /* assume multi socket systems are not synchronized: */
  995. if (num_possible_cpus() > 1)
  996. return 1;
  997. }
  998. return 0;
  999. }
  1000. /*
  1001. * Convert ART to TSC given numerator/denominator found in detect_art()
  1002. */
  1003. struct system_counterval_t convert_art_to_tsc(u64 art)
  1004. {
  1005. u64 tmp, res, rem;
  1006. rem = do_div(art, art_to_tsc_denominator);
  1007. res = art * art_to_tsc_numerator;
  1008. tmp = rem * art_to_tsc_numerator;
  1009. do_div(tmp, art_to_tsc_denominator);
  1010. res += tmp + art_to_tsc_offset;
  1011. return (struct system_counterval_t) {.cs = art_related_clocksource,
  1012. .cycles = res};
  1013. }
  1014. EXPORT_SYMBOL(convert_art_to_tsc);
  1015. static void tsc_refine_calibration_work(struct work_struct *work);
  1016. static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
  1017. /**
  1018. * tsc_refine_calibration_work - Further refine tsc freq calibration
  1019. * @work - ignored.
  1020. *
  1021. * This functions uses delayed work over a period of a
  1022. * second to further refine the TSC freq value. Since this is
  1023. * timer based, instead of loop based, we don't block the boot
  1024. * process while this longer calibration is done.
  1025. *
  1026. * If there are any calibration anomalies (too many SMIs, etc),
  1027. * or the refined calibration is off by 1% of the fast early
  1028. * calibration, we throw out the new calibration and use the
  1029. * early calibration.
  1030. */
  1031. static void tsc_refine_calibration_work(struct work_struct *work)
  1032. {
  1033. static u64 tsc_start = -1, ref_start;
  1034. static int hpet;
  1035. u64 tsc_stop, ref_stop, delta;
  1036. unsigned long freq;
  1037. /* Don't bother refining TSC on unstable systems */
  1038. if (check_tsc_unstable())
  1039. goto out;
  1040. /*
  1041. * Since the work is started early in boot, we may be
  1042. * delayed the first time we expire. So set the workqueue
  1043. * again once we know timers are working.
  1044. */
  1045. if (tsc_start == -1) {
  1046. /*
  1047. * Only set hpet once, to avoid mixing hardware
  1048. * if the hpet becomes enabled later.
  1049. */
  1050. hpet = is_hpet_enabled();
  1051. schedule_delayed_work(&tsc_irqwork, HZ);
  1052. tsc_start = tsc_read_refs(&ref_start, hpet);
  1053. return;
  1054. }
  1055. tsc_stop = tsc_read_refs(&ref_stop, hpet);
  1056. /* hpet or pmtimer available ? */
  1057. if (ref_start == ref_stop)
  1058. goto out;
  1059. /* Check, whether the sampling was disturbed by an SMI */
  1060. if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
  1061. goto out;
  1062. delta = tsc_stop - tsc_start;
  1063. delta *= 1000000LL;
  1064. if (hpet)
  1065. freq = calc_hpet_ref(delta, ref_start, ref_stop);
  1066. else
  1067. freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
  1068. /* Make sure we're within 1% */
  1069. if (abs(tsc_khz - freq) > tsc_khz/100)
  1070. goto out;
  1071. tsc_khz = freq;
  1072. pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
  1073. (unsigned long)tsc_khz / 1000,
  1074. (unsigned long)tsc_khz % 1000);
  1075. /* Inform the TSC deadline clockevent devices about the recalibration */
  1076. lapic_update_tsc_freq();
  1077. out:
  1078. if (boot_cpu_has(X86_FEATURE_ART))
  1079. art_related_clocksource = &clocksource_tsc;
  1080. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1081. }
  1082. static int __init init_tsc_clocksource(void)
  1083. {
  1084. if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
  1085. return 0;
  1086. if (tsc_clocksource_reliable)
  1087. clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
  1088. /* lower the rating if we already know its unstable: */
  1089. if (check_tsc_unstable()) {
  1090. clocksource_tsc.rating = 0;
  1091. clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
  1092. }
  1093. if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
  1094. clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
  1095. /*
  1096. * When TSC frequency is known (retrieved via MSR or CPUID), we skip
  1097. * the refined calibration and directly register it as a clocksource.
  1098. */
  1099. if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
  1100. clocksource_register_khz(&clocksource_tsc, tsc_khz);
  1101. return 0;
  1102. }
  1103. schedule_delayed_work(&tsc_irqwork, 0);
  1104. return 0;
  1105. }
  1106. /*
  1107. * We use device_initcall here, to ensure we run after the hpet
  1108. * is fully initialized, which may occur at fs_initcall time.
  1109. */
  1110. device_initcall(init_tsc_clocksource);
  1111. void __init tsc_init(void)
  1112. {
  1113. u64 lpj;
  1114. int cpu;
  1115. if (!boot_cpu_has(X86_FEATURE_TSC)) {
  1116. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1117. return;
  1118. }
  1119. cpu_khz = x86_platform.calibrate_cpu();
  1120. tsc_khz = x86_platform.calibrate_tsc();
  1121. /*
  1122. * Trust non-zero tsc_khz as authorative,
  1123. * and use it to sanity check cpu_khz,
  1124. * which will be off if system timer is off.
  1125. */
  1126. if (tsc_khz == 0)
  1127. tsc_khz = cpu_khz;
  1128. else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
  1129. cpu_khz = tsc_khz;
  1130. if (!tsc_khz) {
  1131. mark_tsc_unstable("could not calculate TSC khz");
  1132. setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
  1133. return;
  1134. }
  1135. pr_info("Detected %lu.%03lu MHz processor\n",
  1136. (unsigned long)cpu_khz / 1000,
  1137. (unsigned long)cpu_khz % 1000);
  1138. /*
  1139. * Secondary CPUs do not run through tsc_init(), so set up
  1140. * all the scale factors for all CPUs, assuming the same
  1141. * speed as the bootup CPU. (cpufreq notifiers will fix this
  1142. * up if their speed diverges)
  1143. */
  1144. for_each_possible_cpu(cpu) {
  1145. cyc2ns_init(cpu);
  1146. set_cyc2ns_scale(tsc_khz, cpu);
  1147. }
  1148. if (tsc_disabled > 0)
  1149. return;
  1150. /* now allow native_sched_clock() to use rdtsc */
  1151. tsc_disabled = 0;
  1152. static_branch_enable(&__use_tsc);
  1153. if (!no_sched_irq_time)
  1154. enable_sched_clock_irqtime();
  1155. lpj = ((u64)tsc_khz * 1000);
  1156. do_div(lpj, HZ);
  1157. lpj_fine = lpj;
  1158. use_tsc_delay();
  1159. if (unsynchronized_tsc())
  1160. mark_tsc_unstable("TSCs unsynchronized");
  1161. else
  1162. tsc_store_and_check_tsc_adjust(true);
  1163. check_system_tsc_reliable();
  1164. detect_art();
  1165. }
  1166. #ifdef CONFIG_SMP
  1167. /*
  1168. * If we have a constant TSC and are using the TSC for the delay loop,
  1169. * we can skip clock calibration if another cpu in the same socket has already
  1170. * been calibrated. This assumes that CONSTANT_TSC applies to all
  1171. * cpus in the socket - this should be a safe assumption.
  1172. */
  1173. unsigned long calibrate_delay_is_known(void)
  1174. {
  1175. int sibling, cpu = smp_processor_id();
  1176. struct cpumask *mask = topology_core_cpumask(cpu);
  1177. if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
  1178. return 0;
  1179. if (!mask)
  1180. return 0;
  1181. sibling = cpumask_any_but(mask, cpu);
  1182. if (sibling < nr_cpu_ids)
  1183. return cpu_data(sibling).loops_per_jiffy;
  1184. return 0;
  1185. }
  1186. #endif