inode.c 24 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024
  1. /*
  2. * hugetlbpage-backed filesystem. Based on ramfs.
  3. *
  4. * William Irwin, 2002
  5. *
  6. * Copyright (C) 2002 Linus Torvalds.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/thread_info.h>
  10. #include <asm/current.h>
  11. #include <linux/sched.h> /* remove ASAP */
  12. #include <linux/fs.h>
  13. #include <linux/mount.h>
  14. #include <linux/file.h>
  15. #include <linux/kernel.h>
  16. #include <linux/writeback.h>
  17. #include <linux/pagemap.h>
  18. #include <linux/highmem.h>
  19. #include <linux/init.h>
  20. #include <linux/string.h>
  21. #include <linux/capability.h>
  22. #include <linux/ctype.h>
  23. #include <linux/backing-dev.h>
  24. #include <linux/hugetlb.h>
  25. #include <linux/pagevec.h>
  26. #include <linux/parser.h>
  27. #include <linux/mman.h>
  28. #include <linux/quotaops.h>
  29. #include <linux/slab.h>
  30. #include <linux/dnotify.h>
  31. #include <linux/statfs.h>
  32. #include <linux/security.h>
  33. #include <asm/uaccess.h>
  34. /* some random number */
  35. #define HUGETLBFS_MAGIC 0x958458f6
  36. static const struct super_operations hugetlbfs_ops;
  37. static const struct address_space_operations hugetlbfs_aops;
  38. const struct file_operations hugetlbfs_file_operations;
  39. static const struct inode_operations hugetlbfs_dir_inode_operations;
  40. static const struct inode_operations hugetlbfs_inode_operations;
  41. static struct backing_dev_info hugetlbfs_backing_dev_info = {
  42. .ra_pages = 0, /* No readahead */
  43. .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
  44. };
  45. int sysctl_hugetlb_shm_group;
  46. enum {
  47. Opt_size, Opt_nr_inodes,
  48. Opt_mode, Opt_uid, Opt_gid,
  49. Opt_err,
  50. };
  51. static match_table_t tokens = {
  52. {Opt_size, "size=%s"},
  53. {Opt_nr_inodes, "nr_inodes=%s"},
  54. {Opt_mode, "mode=%o"},
  55. {Opt_uid, "uid=%u"},
  56. {Opt_gid, "gid=%u"},
  57. {Opt_err, NULL},
  58. };
  59. static void huge_pagevec_release(struct pagevec *pvec)
  60. {
  61. int i;
  62. for (i = 0; i < pagevec_count(pvec); ++i)
  63. put_page(pvec->pages[i]);
  64. pagevec_reinit(pvec);
  65. }
  66. static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
  67. {
  68. struct inode *inode = file->f_path.dentry->d_inode;
  69. loff_t len, vma_len;
  70. int ret;
  71. struct hstate *h = hstate_file(file);
  72. /*
  73. * vma address alignment (but not the pgoff alignment) has
  74. * already been checked by prepare_hugepage_range. If you add
  75. * any error returns here, do so after setting VM_HUGETLB, so
  76. * is_vm_hugetlb_page tests below unmap_region go the right
  77. * way when do_mmap_pgoff unwinds (may be important on powerpc
  78. * and ia64).
  79. */
  80. vma->vm_flags |= VM_HUGETLB | VM_RESERVED;
  81. vma->vm_ops = &hugetlb_vm_ops;
  82. if (vma->vm_pgoff & ~(huge_page_mask(h) >> PAGE_SHIFT))
  83. return -EINVAL;
  84. vma_len = (loff_t)(vma->vm_end - vma->vm_start);
  85. mutex_lock(&inode->i_mutex);
  86. file_accessed(file);
  87. ret = -ENOMEM;
  88. len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
  89. if (hugetlb_reserve_pages(inode,
  90. vma->vm_pgoff >> huge_page_order(h),
  91. len >> huge_page_shift(h), vma))
  92. goto out;
  93. ret = 0;
  94. hugetlb_prefault_arch_hook(vma->vm_mm);
  95. if (vma->vm_flags & VM_WRITE && inode->i_size < len)
  96. inode->i_size = len;
  97. out:
  98. mutex_unlock(&inode->i_mutex);
  99. return ret;
  100. }
  101. /*
  102. * Called under down_write(mmap_sem).
  103. */
  104. #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
  105. static unsigned long
  106. hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
  107. unsigned long len, unsigned long pgoff, unsigned long flags)
  108. {
  109. struct mm_struct *mm = current->mm;
  110. struct vm_area_struct *vma;
  111. unsigned long start_addr;
  112. struct hstate *h = hstate_file(file);
  113. if (len & ~huge_page_mask(h))
  114. return -EINVAL;
  115. if (len > TASK_SIZE)
  116. return -ENOMEM;
  117. if (flags & MAP_FIXED) {
  118. if (prepare_hugepage_range(file, addr, len))
  119. return -EINVAL;
  120. return addr;
  121. }
  122. if (addr) {
  123. addr = ALIGN(addr, huge_page_size(h));
  124. vma = find_vma(mm, addr);
  125. if (TASK_SIZE - len >= addr &&
  126. (!vma || addr + len <= vma->vm_start))
  127. return addr;
  128. }
  129. start_addr = mm->free_area_cache;
  130. if (len <= mm->cached_hole_size)
  131. start_addr = TASK_UNMAPPED_BASE;
  132. full_search:
  133. addr = ALIGN(start_addr, huge_page_size(h));
  134. for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
  135. /* At this point: (!vma || addr < vma->vm_end). */
  136. if (TASK_SIZE - len < addr) {
  137. /*
  138. * Start a new search - just in case we missed
  139. * some holes.
  140. */
  141. if (start_addr != TASK_UNMAPPED_BASE) {
  142. start_addr = TASK_UNMAPPED_BASE;
  143. goto full_search;
  144. }
  145. return -ENOMEM;
  146. }
  147. if (!vma || addr + len <= vma->vm_start)
  148. return addr;
  149. addr = ALIGN(vma->vm_end, huge_page_size(h));
  150. }
  151. }
  152. #endif
  153. static int
  154. hugetlbfs_read_actor(struct page *page, unsigned long offset,
  155. char __user *buf, unsigned long count,
  156. unsigned long size)
  157. {
  158. char *kaddr;
  159. unsigned long left, copied = 0;
  160. int i, chunksize;
  161. if (size > count)
  162. size = count;
  163. /* Find which 4k chunk and offset with in that chunk */
  164. i = offset >> PAGE_CACHE_SHIFT;
  165. offset = offset & ~PAGE_CACHE_MASK;
  166. while (size) {
  167. chunksize = PAGE_CACHE_SIZE;
  168. if (offset)
  169. chunksize -= offset;
  170. if (chunksize > size)
  171. chunksize = size;
  172. kaddr = kmap(&page[i]);
  173. left = __copy_to_user(buf, kaddr + offset, chunksize);
  174. kunmap(&page[i]);
  175. if (left) {
  176. copied += (chunksize - left);
  177. break;
  178. }
  179. offset = 0;
  180. size -= chunksize;
  181. buf += chunksize;
  182. copied += chunksize;
  183. i++;
  184. }
  185. return copied ? copied : -EFAULT;
  186. }
  187. /*
  188. * Support for read() - Find the page attached to f_mapping and copy out the
  189. * data. Its *very* similar to do_generic_mapping_read(), we can't use that
  190. * since it has PAGE_CACHE_SIZE assumptions.
  191. */
  192. static ssize_t hugetlbfs_read(struct file *filp, char __user *buf,
  193. size_t len, loff_t *ppos)
  194. {
  195. struct hstate *h = hstate_file(filp);
  196. struct address_space *mapping = filp->f_mapping;
  197. struct inode *inode = mapping->host;
  198. unsigned long index = *ppos >> huge_page_shift(h);
  199. unsigned long offset = *ppos & ~huge_page_mask(h);
  200. unsigned long end_index;
  201. loff_t isize;
  202. ssize_t retval = 0;
  203. mutex_lock(&inode->i_mutex);
  204. /* validate length */
  205. if (len == 0)
  206. goto out;
  207. isize = i_size_read(inode);
  208. if (!isize)
  209. goto out;
  210. end_index = (isize - 1) >> huge_page_shift(h);
  211. for (;;) {
  212. struct page *page;
  213. unsigned long nr, ret;
  214. /* nr is the maximum number of bytes to copy from this page */
  215. nr = huge_page_size(h);
  216. if (index >= end_index) {
  217. if (index > end_index)
  218. goto out;
  219. nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
  220. if (nr <= offset) {
  221. goto out;
  222. }
  223. }
  224. nr = nr - offset;
  225. /* Find the page */
  226. page = find_get_page(mapping, index);
  227. if (unlikely(page == NULL)) {
  228. /*
  229. * We have a HOLE, zero out the user-buffer for the
  230. * length of the hole or request.
  231. */
  232. ret = len < nr ? len : nr;
  233. if (clear_user(buf, ret))
  234. ret = -EFAULT;
  235. } else {
  236. /*
  237. * We have the page, copy it to user space buffer.
  238. */
  239. ret = hugetlbfs_read_actor(page, offset, buf, len, nr);
  240. }
  241. if (ret < 0) {
  242. if (retval == 0)
  243. retval = ret;
  244. if (page)
  245. page_cache_release(page);
  246. goto out;
  247. }
  248. offset += ret;
  249. retval += ret;
  250. len -= ret;
  251. index += offset >> huge_page_shift(h);
  252. offset &= ~huge_page_mask(h);
  253. if (page)
  254. page_cache_release(page);
  255. /* short read or no more work */
  256. if ((ret != nr) || (len == 0))
  257. break;
  258. }
  259. out:
  260. *ppos = ((loff_t)index << huge_page_shift(h)) + offset;
  261. mutex_unlock(&inode->i_mutex);
  262. return retval;
  263. }
  264. /*
  265. * Read a page. Again trivial. If it didn't already exist
  266. * in the page cache, it is zero-filled.
  267. */
  268. static int hugetlbfs_readpage(struct file *file, struct page * page)
  269. {
  270. unlock_page(page);
  271. return -EINVAL;
  272. }
  273. static int hugetlbfs_write_begin(struct file *file,
  274. struct address_space *mapping,
  275. loff_t pos, unsigned len, unsigned flags,
  276. struct page **pagep, void **fsdata)
  277. {
  278. return -EINVAL;
  279. }
  280. static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
  281. loff_t pos, unsigned len, unsigned copied,
  282. struct page *page, void *fsdata)
  283. {
  284. BUG();
  285. return -EINVAL;
  286. }
  287. static void truncate_huge_page(struct page *page)
  288. {
  289. cancel_dirty_page(page, /* No IO accounting for huge pages? */0);
  290. ClearPageUptodate(page);
  291. remove_from_page_cache(page);
  292. put_page(page);
  293. }
  294. static void truncate_hugepages(struct inode *inode, loff_t lstart)
  295. {
  296. struct hstate *h = hstate_inode(inode);
  297. struct address_space *mapping = &inode->i_data;
  298. const pgoff_t start = lstart >> huge_page_shift(h);
  299. struct pagevec pvec;
  300. pgoff_t next;
  301. int i, freed = 0;
  302. pagevec_init(&pvec, 0);
  303. next = start;
  304. while (1) {
  305. if (!pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
  306. if (next == start)
  307. break;
  308. next = start;
  309. continue;
  310. }
  311. for (i = 0; i < pagevec_count(&pvec); ++i) {
  312. struct page *page = pvec.pages[i];
  313. lock_page(page);
  314. if (page->index > next)
  315. next = page->index;
  316. ++next;
  317. truncate_huge_page(page);
  318. unlock_page(page);
  319. freed++;
  320. }
  321. huge_pagevec_release(&pvec);
  322. }
  323. BUG_ON(!lstart && mapping->nrpages);
  324. hugetlb_unreserve_pages(inode, start, freed);
  325. }
  326. static void hugetlbfs_delete_inode(struct inode *inode)
  327. {
  328. truncate_hugepages(inode, 0);
  329. clear_inode(inode);
  330. }
  331. static void hugetlbfs_forget_inode(struct inode *inode) __releases(inode_lock)
  332. {
  333. struct super_block *sb = inode->i_sb;
  334. if (!hlist_unhashed(&inode->i_hash)) {
  335. if (!(inode->i_state & (I_DIRTY|I_SYNC)))
  336. list_move(&inode->i_list, &inode_unused);
  337. inodes_stat.nr_unused++;
  338. if (!sb || (sb->s_flags & MS_ACTIVE)) {
  339. spin_unlock(&inode_lock);
  340. return;
  341. }
  342. inode->i_state |= I_WILL_FREE;
  343. spin_unlock(&inode_lock);
  344. /*
  345. * write_inode_now is a noop as we set BDI_CAP_NO_WRITEBACK
  346. * in our backing_dev_info.
  347. */
  348. write_inode_now(inode, 1);
  349. spin_lock(&inode_lock);
  350. inode->i_state &= ~I_WILL_FREE;
  351. inodes_stat.nr_unused--;
  352. hlist_del_init(&inode->i_hash);
  353. }
  354. list_del_init(&inode->i_list);
  355. list_del_init(&inode->i_sb_list);
  356. inode->i_state |= I_FREEING;
  357. inodes_stat.nr_inodes--;
  358. spin_unlock(&inode_lock);
  359. truncate_hugepages(inode, 0);
  360. clear_inode(inode);
  361. destroy_inode(inode);
  362. }
  363. static void hugetlbfs_drop_inode(struct inode *inode)
  364. {
  365. if (!inode->i_nlink)
  366. generic_delete_inode(inode);
  367. else
  368. hugetlbfs_forget_inode(inode);
  369. }
  370. static inline void
  371. hugetlb_vmtruncate_list(struct prio_tree_root *root, pgoff_t pgoff)
  372. {
  373. struct vm_area_struct *vma;
  374. struct prio_tree_iter iter;
  375. vma_prio_tree_foreach(vma, &iter, root, pgoff, ULONG_MAX) {
  376. unsigned long v_offset;
  377. /*
  378. * Can the expression below overflow on 32-bit arches?
  379. * No, because the prio_tree returns us only those vmas
  380. * which overlap the truncated area starting at pgoff,
  381. * and no vma on a 32-bit arch can span beyond the 4GB.
  382. */
  383. if (vma->vm_pgoff < pgoff)
  384. v_offset = (pgoff - vma->vm_pgoff) << PAGE_SHIFT;
  385. else
  386. v_offset = 0;
  387. __unmap_hugepage_range(vma,
  388. vma->vm_start + v_offset, vma->vm_end, NULL);
  389. }
  390. }
  391. static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
  392. {
  393. pgoff_t pgoff;
  394. struct address_space *mapping = inode->i_mapping;
  395. struct hstate *h = hstate_inode(inode);
  396. BUG_ON(offset & ~huge_page_mask(h));
  397. pgoff = offset >> PAGE_SHIFT;
  398. i_size_write(inode, offset);
  399. spin_lock(&mapping->i_mmap_lock);
  400. if (!prio_tree_empty(&mapping->i_mmap))
  401. hugetlb_vmtruncate_list(&mapping->i_mmap, pgoff);
  402. spin_unlock(&mapping->i_mmap_lock);
  403. truncate_hugepages(inode, offset);
  404. return 0;
  405. }
  406. static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
  407. {
  408. struct inode *inode = dentry->d_inode;
  409. struct hstate *h = hstate_inode(inode);
  410. int error;
  411. unsigned int ia_valid = attr->ia_valid;
  412. BUG_ON(!inode);
  413. error = inode_change_ok(inode, attr);
  414. if (error)
  415. goto out;
  416. if (ia_valid & ATTR_SIZE) {
  417. error = -EINVAL;
  418. if (!(attr->ia_size & ~huge_page_mask(h)))
  419. error = hugetlb_vmtruncate(inode, attr->ia_size);
  420. if (error)
  421. goto out;
  422. attr->ia_valid &= ~ATTR_SIZE;
  423. }
  424. error = inode_setattr(inode, attr);
  425. out:
  426. return error;
  427. }
  428. static struct inode *hugetlbfs_get_inode(struct super_block *sb, uid_t uid,
  429. gid_t gid, int mode, dev_t dev)
  430. {
  431. struct inode *inode;
  432. inode = new_inode(sb);
  433. if (inode) {
  434. struct hugetlbfs_inode_info *info;
  435. inode->i_mode = mode;
  436. inode->i_uid = uid;
  437. inode->i_gid = gid;
  438. inode->i_blocks = 0;
  439. inode->i_mapping->a_ops = &hugetlbfs_aops;
  440. inode->i_mapping->backing_dev_info =&hugetlbfs_backing_dev_info;
  441. inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  442. INIT_LIST_HEAD(&inode->i_mapping->private_list);
  443. info = HUGETLBFS_I(inode);
  444. mpol_shared_policy_init(&info->policy, NULL);
  445. switch (mode & S_IFMT) {
  446. default:
  447. init_special_inode(inode, mode, dev);
  448. break;
  449. case S_IFREG:
  450. inode->i_op = &hugetlbfs_inode_operations;
  451. inode->i_fop = &hugetlbfs_file_operations;
  452. break;
  453. case S_IFDIR:
  454. inode->i_op = &hugetlbfs_dir_inode_operations;
  455. inode->i_fop = &simple_dir_operations;
  456. /* directory inodes start off with i_nlink == 2 (for "." entry) */
  457. inc_nlink(inode);
  458. break;
  459. case S_IFLNK:
  460. inode->i_op = &page_symlink_inode_operations;
  461. break;
  462. }
  463. }
  464. return inode;
  465. }
  466. /*
  467. * File creation. Allocate an inode, and we're done..
  468. */
  469. static int hugetlbfs_mknod(struct inode *dir,
  470. struct dentry *dentry, int mode, dev_t dev)
  471. {
  472. struct inode *inode;
  473. int error = -ENOSPC;
  474. gid_t gid;
  475. if (dir->i_mode & S_ISGID) {
  476. gid = dir->i_gid;
  477. if (S_ISDIR(mode))
  478. mode |= S_ISGID;
  479. } else {
  480. gid = current->fsgid;
  481. }
  482. inode = hugetlbfs_get_inode(dir->i_sb, current->fsuid, gid, mode, dev);
  483. if (inode) {
  484. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  485. d_instantiate(dentry, inode);
  486. dget(dentry); /* Extra count - pin the dentry in core */
  487. error = 0;
  488. }
  489. return error;
  490. }
  491. static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
  492. {
  493. int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
  494. if (!retval)
  495. inc_nlink(dir);
  496. return retval;
  497. }
  498. static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd)
  499. {
  500. return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
  501. }
  502. static int hugetlbfs_symlink(struct inode *dir,
  503. struct dentry *dentry, const char *symname)
  504. {
  505. struct inode *inode;
  506. int error = -ENOSPC;
  507. gid_t gid;
  508. if (dir->i_mode & S_ISGID)
  509. gid = dir->i_gid;
  510. else
  511. gid = current->fsgid;
  512. inode = hugetlbfs_get_inode(dir->i_sb, current->fsuid,
  513. gid, S_IFLNK|S_IRWXUGO, 0);
  514. if (inode) {
  515. int l = strlen(symname)+1;
  516. error = page_symlink(inode, symname, l);
  517. if (!error) {
  518. d_instantiate(dentry, inode);
  519. dget(dentry);
  520. } else
  521. iput(inode);
  522. }
  523. dir->i_ctime = dir->i_mtime = CURRENT_TIME;
  524. return error;
  525. }
  526. /*
  527. * mark the head page dirty
  528. */
  529. static int hugetlbfs_set_page_dirty(struct page *page)
  530. {
  531. struct page *head = compound_head(page);
  532. SetPageDirty(head);
  533. return 0;
  534. }
  535. static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  536. {
  537. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
  538. struct hstate *h = hstate_inode(dentry->d_inode);
  539. buf->f_type = HUGETLBFS_MAGIC;
  540. buf->f_bsize = huge_page_size(h);
  541. if (sbinfo) {
  542. spin_lock(&sbinfo->stat_lock);
  543. /* If no limits set, just report 0 for max/free/used
  544. * blocks, like simple_statfs() */
  545. if (sbinfo->max_blocks >= 0) {
  546. buf->f_blocks = sbinfo->max_blocks;
  547. buf->f_bavail = buf->f_bfree = sbinfo->free_blocks;
  548. buf->f_files = sbinfo->max_inodes;
  549. buf->f_ffree = sbinfo->free_inodes;
  550. }
  551. spin_unlock(&sbinfo->stat_lock);
  552. }
  553. buf->f_namelen = NAME_MAX;
  554. return 0;
  555. }
  556. static void hugetlbfs_put_super(struct super_block *sb)
  557. {
  558. struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
  559. if (sbi) {
  560. sb->s_fs_info = NULL;
  561. kfree(sbi);
  562. }
  563. }
  564. static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  565. {
  566. if (sbinfo->free_inodes >= 0) {
  567. spin_lock(&sbinfo->stat_lock);
  568. if (unlikely(!sbinfo->free_inodes)) {
  569. spin_unlock(&sbinfo->stat_lock);
  570. return 0;
  571. }
  572. sbinfo->free_inodes--;
  573. spin_unlock(&sbinfo->stat_lock);
  574. }
  575. return 1;
  576. }
  577. static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
  578. {
  579. if (sbinfo->free_inodes >= 0) {
  580. spin_lock(&sbinfo->stat_lock);
  581. sbinfo->free_inodes++;
  582. spin_unlock(&sbinfo->stat_lock);
  583. }
  584. }
  585. static struct kmem_cache *hugetlbfs_inode_cachep;
  586. static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
  587. {
  588. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
  589. struct hugetlbfs_inode_info *p;
  590. if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
  591. return NULL;
  592. p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
  593. if (unlikely(!p)) {
  594. hugetlbfs_inc_free_inodes(sbinfo);
  595. return NULL;
  596. }
  597. return &p->vfs_inode;
  598. }
  599. static void hugetlbfs_destroy_inode(struct inode *inode)
  600. {
  601. hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
  602. mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
  603. kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
  604. }
  605. static const struct address_space_operations hugetlbfs_aops = {
  606. .readpage = hugetlbfs_readpage,
  607. .write_begin = hugetlbfs_write_begin,
  608. .write_end = hugetlbfs_write_end,
  609. .set_page_dirty = hugetlbfs_set_page_dirty,
  610. };
  611. static void init_once(struct kmem_cache *cachep, void *foo)
  612. {
  613. struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
  614. inode_init_once(&ei->vfs_inode);
  615. }
  616. const struct file_operations hugetlbfs_file_operations = {
  617. .read = hugetlbfs_read,
  618. .mmap = hugetlbfs_file_mmap,
  619. .fsync = simple_sync_file,
  620. .get_unmapped_area = hugetlb_get_unmapped_area,
  621. };
  622. static const struct inode_operations hugetlbfs_dir_inode_operations = {
  623. .create = hugetlbfs_create,
  624. .lookup = simple_lookup,
  625. .link = simple_link,
  626. .unlink = simple_unlink,
  627. .symlink = hugetlbfs_symlink,
  628. .mkdir = hugetlbfs_mkdir,
  629. .rmdir = simple_rmdir,
  630. .mknod = hugetlbfs_mknod,
  631. .rename = simple_rename,
  632. .setattr = hugetlbfs_setattr,
  633. };
  634. static const struct inode_operations hugetlbfs_inode_operations = {
  635. .setattr = hugetlbfs_setattr,
  636. };
  637. static const struct super_operations hugetlbfs_ops = {
  638. .alloc_inode = hugetlbfs_alloc_inode,
  639. .destroy_inode = hugetlbfs_destroy_inode,
  640. .statfs = hugetlbfs_statfs,
  641. .delete_inode = hugetlbfs_delete_inode,
  642. .drop_inode = hugetlbfs_drop_inode,
  643. .put_super = hugetlbfs_put_super,
  644. .show_options = generic_show_options,
  645. };
  646. static int
  647. hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
  648. {
  649. char *p, *rest;
  650. substring_t args[MAX_OPT_ARGS];
  651. int option;
  652. if (!options)
  653. return 0;
  654. while ((p = strsep(&options, ",")) != NULL) {
  655. int token;
  656. if (!*p)
  657. continue;
  658. token = match_token(p, tokens, args);
  659. switch (token) {
  660. case Opt_uid:
  661. if (match_int(&args[0], &option))
  662. goto bad_val;
  663. pconfig->uid = option;
  664. break;
  665. case Opt_gid:
  666. if (match_int(&args[0], &option))
  667. goto bad_val;
  668. pconfig->gid = option;
  669. break;
  670. case Opt_mode:
  671. if (match_octal(&args[0], &option))
  672. goto bad_val;
  673. pconfig->mode = option & 01777U;
  674. break;
  675. case Opt_size: {
  676. unsigned long long size;
  677. /* memparse() will accept a K/M/G without a digit */
  678. if (!isdigit(*args[0].from))
  679. goto bad_val;
  680. size = memparse(args[0].from, &rest);
  681. if (*rest == '%') {
  682. size <<= HPAGE_SHIFT;
  683. size *= max_huge_pages;
  684. do_div(size, 100);
  685. }
  686. pconfig->nr_blocks = (size >> HPAGE_SHIFT);
  687. break;
  688. }
  689. case Opt_nr_inodes:
  690. /* memparse() will accept a K/M/G without a digit */
  691. if (!isdigit(*args[0].from))
  692. goto bad_val;
  693. pconfig->nr_inodes = memparse(args[0].from, &rest);
  694. break;
  695. default:
  696. printk(KERN_ERR "hugetlbfs: Bad mount option: \"%s\"\n",
  697. p);
  698. return -EINVAL;
  699. break;
  700. }
  701. }
  702. return 0;
  703. bad_val:
  704. printk(KERN_ERR "hugetlbfs: Bad value '%s' for mount option '%s'\n",
  705. args[0].from, p);
  706. return 1;
  707. }
  708. static int
  709. hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
  710. {
  711. struct inode * inode;
  712. struct dentry * root;
  713. int ret;
  714. struct hugetlbfs_config config;
  715. struct hugetlbfs_sb_info *sbinfo;
  716. save_mount_options(sb, data);
  717. config.nr_blocks = -1; /* No limit on size by default */
  718. config.nr_inodes = -1; /* No limit on number of inodes by default */
  719. config.uid = current->fsuid;
  720. config.gid = current->fsgid;
  721. config.mode = 0755;
  722. ret = hugetlbfs_parse_options(data, &config);
  723. if (ret)
  724. return ret;
  725. sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
  726. if (!sbinfo)
  727. return -ENOMEM;
  728. sb->s_fs_info = sbinfo;
  729. spin_lock_init(&sbinfo->stat_lock);
  730. sbinfo->max_blocks = config.nr_blocks;
  731. sbinfo->free_blocks = config.nr_blocks;
  732. sbinfo->max_inodes = config.nr_inodes;
  733. sbinfo->free_inodes = config.nr_inodes;
  734. sb->s_maxbytes = MAX_LFS_FILESIZE;
  735. sb->s_blocksize = HPAGE_SIZE;
  736. sb->s_blocksize_bits = HPAGE_SHIFT;
  737. sb->s_magic = HUGETLBFS_MAGIC;
  738. sb->s_op = &hugetlbfs_ops;
  739. sb->s_time_gran = 1;
  740. inode = hugetlbfs_get_inode(sb, config.uid, config.gid,
  741. S_IFDIR | config.mode, 0);
  742. if (!inode)
  743. goto out_free;
  744. root = d_alloc_root(inode);
  745. if (!root) {
  746. iput(inode);
  747. goto out_free;
  748. }
  749. sb->s_root = root;
  750. return 0;
  751. out_free:
  752. kfree(sbinfo);
  753. return -ENOMEM;
  754. }
  755. int hugetlb_get_quota(struct address_space *mapping, long delta)
  756. {
  757. int ret = 0;
  758. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  759. if (sbinfo->free_blocks > -1) {
  760. spin_lock(&sbinfo->stat_lock);
  761. if (sbinfo->free_blocks - delta >= 0)
  762. sbinfo->free_blocks -= delta;
  763. else
  764. ret = -ENOMEM;
  765. spin_unlock(&sbinfo->stat_lock);
  766. }
  767. return ret;
  768. }
  769. void hugetlb_put_quota(struct address_space *mapping, long delta)
  770. {
  771. struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(mapping->host->i_sb);
  772. if (sbinfo->free_blocks > -1) {
  773. spin_lock(&sbinfo->stat_lock);
  774. sbinfo->free_blocks += delta;
  775. spin_unlock(&sbinfo->stat_lock);
  776. }
  777. }
  778. static int hugetlbfs_get_sb(struct file_system_type *fs_type,
  779. int flags, const char *dev_name, void *data, struct vfsmount *mnt)
  780. {
  781. return get_sb_nodev(fs_type, flags, data, hugetlbfs_fill_super, mnt);
  782. }
  783. static struct file_system_type hugetlbfs_fs_type = {
  784. .name = "hugetlbfs",
  785. .get_sb = hugetlbfs_get_sb,
  786. .kill_sb = kill_litter_super,
  787. };
  788. static struct vfsmount *hugetlbfs_vfsmount;
  789. static int can_do_hugetlb_shm(void)
  790. {
  791. return likely(capable(CAP_IPC_LOCK) ||
  792. in_group_p(sysctl_hugetlb_shm_group) ||
  793. can_do_mlock());
  794. }
  795. struct file *hugetlb_file_setup(const char *name, size_t size)
  796. {
  797. int error = -ENOMEM;
  798. struct file *file;
  799. struct inode *inode;
  800. struct dentry *dentry, *root;
  801. struct qstr quick_string;
  802. if (!hugetlbfs_vfsmount)
  803. return ERR_PTR(-ENOENT);
  804. if (!can_do_hugetlb_shm())
  805. return ERR_PTR(-EPERM);
  806. if (!user_shm_lock(size, current->user))
  807. return ERR_PTR(-ENOMEM);
  808. root = hugetlbfs_vfsmount->mnt_root;
  809. quick_string.name = name;
  810. quick_string.len = strlen(quick_string.name);
  811. quick_string.hash = 0;
  812. dentry = d_alloc(root, &quick_string);
  813. if (!dentry)
  814. goto out_shm_unlock;
  815. error = -ENOSPC;
  816. inode = hugetlbfs_get_inode(root->d_sb, current->fsuid,
  817. current->fsgid, S_IFREG | S_IRWXUGO, 0);
  818. if (!inode)
  819. goto out_dentry;
  820. error = -ENOMEM;
  821. if (hugetlb_reserve_pages(inode, 0,
  822. size >> huge_page_shift(hstate_inode(inode)), NULL))
  823. goto out_inode;
  824. d_instantiate(dentry, inode);
  825. inode->i_size = size;
  826. inode->i_nlink = 0;
  827. error = -ENFILE;
  828. file = alloc_file(hugetlbfs_vfsmount, dentry,
  829. FMODE_WRITE | FMODE_READ,
  830. &hugetlbfs_file_operations);
  831. if (!file)
  832. goto out_dentry; /* inode is already attached */
  833. return file;
  834. out_inode:
  835. iput(inode);
  836. out_dentry:
  837. dput(dentry);
  838. out_shm_unlock:
  839. user_shm_unlock(size, current->user);
  840. return ERR_PTR(error);
  841. }
  842. static int __init init_hugetlbfs_fs(void)
  843. {
  844. int error;
  845. struct vfsmount *vfsmount;
  846. error = bdi_init(&hugetlbfs_backing_dev_info);
  847. if (error)
  848. return error;
  849. hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
  850. sizeof(struct hugetlbfs_inode_info),
  851. 0, 0, init_once);
  852. if (hugetlbfs_inode_cachep == NULL)
  853. goto out2;
  854. error = register_filesystem(&hugetlbfs_fs_type);
  855. if (error)
  856. goto out;
  857. vfsmount = kern_mount(&hugetlbfs_fs_type);
  858. if (!IS_ERR(vfsmount)) {
  859. hugetlbfs_vfsmount = vfsmount;
  860. return 0;
  861. }
  862. error = PTR_ERR(vfsmount);
  863. out:
  864. if (error)
  865. kmem_cache_destroy(hugetlbfs_inode_cachep);
  866. out2:
  867. bdi_destroy(&hugetlbfs_backing_dev_info);
  868. return error;
  869. }
  870. static void __exit exit_hugetlbfs_fs(void)
  871. {
  872. kmem_cache_destroy(hugetlbfs_inode_cachep);
  873. unregister_filesystem(&hugetlbfs_fs_type);
  874. bdi_destroy(&hugetlbfs_backing_dev_info);
  875. }
  876. module_init(init_hugetlbfs_fs)
  877. module_exit(exit_hugetlbfs_fs)
  878. MODULE_LICENSE("GPL");