disk-io.c 126 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/fs.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/scatterlist.h>
  21. #include <linux/swap.h>
  22. #include <linux/radix-tree.h>
  23. #include <linux/writeback.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/workqueue.h>
  26. #include <linux/kthread.h>
  27. #include <linux/slab.h>
  28. #include <linux/migrate.h>
  29. #include <linux/ratelimit.h>
  30. #include <linux/uuid.h>
  31. #include <linux/semaphore.h>
  32. #include <asm/unaligned.h>
  33. #include "ctree.h"
  34. #include "disk-io.h"
  35. #include "hash.h"
  36. #include "transaction.h"
  37. #include "btrfs_inode.h"
  38. #include "volumes.h"
  39. #include "print-tree.h"
  40. #include "locking.h"
  41. #include "tree-log.h"
  42. #include "free-space-cache.h"
  43. #include "free-space-tree.h"
  44. #include "inode-map.h"
  45. #include "check-integrity.h"
  46. #include "rcu-string.h"
  47. #include "dev-replace.h"
  48. #include "raid56.h"
  49. #include "sysfs.h"
  50. #include "qgroup.h"
  51. #include "compression.h"
  52. #ifdef CONFIG_X86
  53. #include <asm/cpufeature.h>
  54. #endif
  55. #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
  56. BTRFS_HEADER_FLAG_RELOC |\
  57. BTRFS_SUPER_FLAG_ERROR |\
  58. BTRFS_SUPER_FLAG_SEEDING |\
  59. BTRFS_SUPER_FLAG_METADUMP)
  60. static const struct extent_io_ops btree_extent_io_ops;
  61. static void end_workqueue_fn(struct btrfs_work *work);
  62. static void free_fs_root(struct btrfs_root *root);
  63. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info);
  64. static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  65. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  66. struct btrfs_fs_info *fs_info);
  67. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  68. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  69. struct extent_io_tree *dirty_pages,
  70. int mark);
  71. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  72. struct extent_io_tree *pinned_extents);
  73. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  74. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  75. /*
  76. * btrfs_end_io_wq structs are used to do processing in task context when an IO
  77. * is complete. This is used during reads to verify checksums, and it is used
  78. * by writes to insert metadata for new file extents after IO is complete.
  79. */
  80. struct btrfs_end_io_wq {
  81. struct bio *bio;
  82. bio_end_io_t *end_io;
  83. void *private;
  84. struct btrfs_fs_info *info;
  85. blk_status_t status;
  86. enum btrfs_wq_endio_type metadata;
  87. struct btrfs_work work;
  88. };
  89. static struct kmem_cache *btrfs_end_io_wq_cache;
  90. int __init btrfs_end_io_wq_init(void)
  91. {
  92. btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
  93. sizeof(struct btrfs_end_io_wq),
  94. 0,
  95. SLAB_MEM_SPREAD,
  96. NULL);
  97. if (!btrfs_end_io_wq_cache)
  98. return -ENOMEM;
  99. return 0;
  100. }
  101. void btrfs_end_io_wq_exit(void)
  102. {
  103. kmem_cache_destroy(btrfs_end_io_wq_cache);
  104. }
  105. /*
  106. * async submit bios are used to offload expensive checksumming
  107. * onto the worker threads. They checksum file and metadata bios
  108. * just before they are sent down the IO stack.
  109. */
  110. struct async_submit_bio {
  111. void *private_data;
  112. struct btrfs_fs_info *fs_info;
  113. struct bio *bio;
  114. extent_submit_bio_hook_t *submit_bio_start;
  115. extent_submit_bio_hook_t *submit_bio_done;
  116. int mirror_num;
  117. unsigned long bio_flags;
  118. /*
  119. * bio_offset is optional, can be used if the pages in the bio
  120. * can't tell us where in the file the bio should go
  121. */
  122. u64 bio_offset;
  123. struct btrfs_work work;
  124. blk_status_t status;
  125. };
  126. /*
  127. * Lockdep class keys for extent_buffer->lock's in this root. For a given
  128. * eb, the lockdep key is determined by the btrfs_root it belongs to and
  129. * the level the eb occupies in the tree.
  130. *
  131. * Different roots are used for different purposes and may nest inside each
  132. * other and they require separate keysets. As lockdep keys should be
  133. * static, assign keysets according to the purpose of the root as indicated
  134. * by btrfs_root->objectid. This ensures that all special purpose roots
  135. * have separate keysets.
  136. *
  137. * Lock-nesting across peer nodes is always done with the immediate parent
  138. * node locked thus preventing deadlock. As lockdep doesn't know this, use
  139. * subclass to avoid triggering lockdep warning in such cases.
  140. *
  141. * The key is set by the readpage_end_io_hook after the buffer has passed
  142. * csum validation but before the pages are unlocked. It is also set by
  143. * btrfs_init_new_buffer on freshly allocated blocks.
  144. *
  145. * We also add a check to make sure the highest level of the tree is the
  146. * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
  147. * needs update as well.
  148. */
  149. #ifdef CONFIG_DEBUG_LOCK_ALLOC
  150. # if BTRFS_MAX_LEVEL != 8
  151. # error
  152. # endif
  153. static struct btrfs_lockdep_keyset {
  154. u64 id; /* root objectid */
  155. const char *name_stem; /* lock name stem */
  156. char names[BTRFS_MAX_LEVEL + 1][20];
  157. struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
  158. } btrfs_lockdep_keysets[] = {
  159. { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
  160. { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
  161. { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
  162. { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
  163. { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
  164. { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
  165. { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
  166. { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
  167. { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
  168. { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
  169. { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
  170. { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
  171. { .id = 0, .name_stem = "tree" },
  172. };
  173. void __init btrfs_init_lockdep(void)
  174. {
  175. int i, j;
  176. /* initialize lockdep class names */
  177. for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
  178. struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
  179. for (j = 0; j < ARRAY_SIZE(ks->names); j++)
  180. snprintf(ks->names[j], sizeof(ks->names[j]),
  181. "btrfs-%s-%02d", ks->name_stem, j);
  182. }
  183. }
  184. void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
  185. int level)
  186. {
  187. struct btrfs_lockdep_keyset *ks;
  188. BUG_ON(level >= ARRAY_SIZE(ks->keys));
  189. /* find the matching keyset, id 0 is the default entry */
  190. for (ks = btrfs_lockdep_keysets; ks->id; ks++)
  191. if (ks->id == objectid)
  192. break;
  193. lockdep_set_class_and_name(&eb->lock,
  194. &ks->keys[level], ks->names[level]);
  195. }
  196. #endif
  197. /*
  198. * extents on the btree inode are pretty simple, there's one extent
  199. * that covers the entire device
  200. */
  201. static struct extent_map *btree_get_extent(struct btrfs_inode *inode,
  202. struct page *page, size_t pg_offset, u64 start, u64 len,
  203. int create)
  204. {
  205. struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
  206. struct extent_map_tree *em_tree = &inode->extent_tree;
  207. struct extent_map *em;
  208. int ret;
  209. read_lock(&em_tree->lock);
  210. em = lookup_extent_mapping(em_tree, start, len);
  211. if (em) {
  212. em->bdev = fs_info->fs_devices->latest_bdev;
  213. read_unlock(&em_tree->lock);
  214. goto out;
  215. }
  216. read_unlock(&em_tree->lock);
  217. em = alloc_extent_map();
  218. if (!em) {
  219. em = ERR_PTR(-ENOMEM);
  220. goto out;
  221. }
  222. em->start = 0;
  223. em->len = (u64)-1;
  224. em->block_len = (u64)-1;
  225. em->block_start = 0;
  226. em->bdev = fs_info->fs_devices->latest_bdev;
  227. write_lock(&em_tree->lock);
  228. ret = add_extent_mapping(em_tree, em, 0);
  229. if (ret == -EEXIST) {
  230. free_extent_map(em);
  231. em = lookup_extent_mapping(em_tree, start, len);
  232. if (!em)
  233. em = ERR_PTR(-EIO);
  234. } else if (ret) {
  235. free_extent_map(em);
  236. em = ERR_PTR(ret);
  237. }
  238. write_unlock(&em_tree->lock);
  239. out:
  240. return em;
  241. }
  242. u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
  243. {
  244. return btrfs_crc32c(seed, data, len);
  245. }
  246. void btrfs_csum_final(u32 crc, u8 *result)
  247. {
  248. put_unaligned_le32(~crc, result);
  249. }
  250. /*
  251. * compute the csum for a btree block, and either verify it or write it
  252. * into the csum field of the block.
  253. */
  254. static int csum_tree_block(struct btrfs_fs_info *fs_info,
  255. struct extent_buffer *buf,
  256. int verify)
  257. {
  258. u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
  259. char *result = NULL;
  260. unsigned long len;
  261. unsigned long cur_len;
  262. unsigned long offset = BTRFS_CSUM_SIZE;
  263. char *kaddr;
  264. unsigned long map_start;
  265. unsigned long map_len;
  266. int err;
  267. u32 crc = ~(u32)0;
  268. unsigned long inline_result;
  269. len = buf->len - offset;
  270. while (len > 0) {
  271. err = map_private_extent_buffer(buf, offset, 32,
  272. &kaddr, &map_start, &map_len);
  273. if (err)
  274. return err;
  275. cur_len = min(len, map_len - (offset - map_start));
  276. crc = btrfs_csum_data(kaddr + offset - map_start,
  277. crc, cur_len);
  278. len -= cur_len;
  279. offset += cur_len;
  280. }
  281. if (csum_size > sizeof(inline_result)) {
  282. result = kzalloc(csum_size, GFP_NOFS);
  283. if (!result)
  284. return -ENOMEM;
  285. } else {
  286. result = (char *)&inline_result;
  287. }
  288. btrfs_csum_final(crc, result);
  289. if (verify) {
  290. if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
  291. u32 val;
  292. u32 found = 0;
  293. memcpy(&found, result, csum_size);
  294. read_extent_buffer(buf, &val, 0, csum_size);
  295. btrfs_warn_rl(fs_info,
  296. "%s checksum verify failed on %llu wanted %X found %X level %d",
  297. fs_info->sb->s_id, buf->start,
  298. val, found, btrfs_header_level(buf));
  299. if (result != (char *)&inline_result)
  300. kfree(result);
  301. return -EUCLEAN;
  302. }
  303. } else {
  304. write_extent_buffer(buf, result, 0, csum_size);
  305. }
  306. if (result != (char *)&inline_result)
  307. kfree(result);
  308. return 0;
  309. }
  310. /*
  311. * we can't consider a given block up to date unless the transid of the
  312. * block matches the transid in the parent node's pointer. This is how we
  313. * detect blocks that either didn't get written at all or got written
  314. * in the wrong place.
  315. */
  316. static int verify_parent_transid(struct extent_io_tree *io_tree,
  317. struct extent_buffer *eb, u64 parent_transid,
  318. int atomic)
  319. {
  320. struct extent_state *cached_state = NULL;
  321. int ret;
  322. bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
  323. if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
  324. return 0;
  325. if (atomic)
  326. return -EAGAIN;
  327. if (need_lock) {
  328. btrfs_tree_read_lock(eb);
  329. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  330. }
  331. lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
  332. &cached_state);
  333. if (extent_buffer_uptodate(eb) &&
  334. btrfs_header_generation(eb) == parent_transid) {
  335. ret = 0;
  336. goto out;
  337. }
  338. btrfs_err_rl(eb->fs_info,
  339. "parent transid verify failed on %llu wanted %llu found %llu",
  340. eb->start,
  341. parent_transid, btrfs_header_generation(eb));
  342. ret = 1;
  343. /*
  344. * Things reading via commit roots that don't have normal protection,
  345. * like send, can have a really old block in cache that may point at a
  346. * block that has been freed and re-allocated. So don't clear uptodate
  347. * if we find an eb that is under IO (dirty/writeback) because we could
  348. * end up reading in the stale data and then writing it back out and
  349. * making everybody very sad.
  350. */
  351. if (!extent_buffer_under_io(eb))
  352. clear_extent_buffer_uptodate(eb);
  353. out:
  354. unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
  355. &cached_state, GFP_NOFS);
  356. if (need_lock)
  357. btrfs_tree_read_unlock_blocking(eb);
  358. return ret;
  359. }
  360. /*
  361. * Return 0 if the superblock checksum type matches the checksum value of that
  362. * algorithm. Pass the raw disk superblock data.
  363. */
  364. static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
  365. char *raw_disk_sb)
  366. {
  367. struct btrfs_super_block *disk_sb =
  368. (struct btrfs_super_block *)raw_disk_sb;
  369. u16 csum_type = btrfs_super_csum_type(disk_sb);
  370. int ret = 0;
  371. if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
  372. u32 crc = ~(u32)0;
  373. const int csum_size = sizeof(crc);
  374. char result[csum_size];
  375. /*
  376. * The super_block structure does not span the whole
  377. * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
  378. * is filled with zeros and is included in the checksum.
  379. */
  380. crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
  381. crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
  382. btrfs_csum_final(crc, result);
  383. if (memcmp(raw_disk_sb, result, csum_size))
  384. ret = 1;
  385. }
  386. if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
  387. btrfs_err(fs_info, "unsupported checksum algorithm %u",
  388. csum_type);
  389. ret = 1;
  390. }
  391. return ret;
  392. }
  393. /*
  394. * helper to read a given tree block, doing retries as required when
  395. * the checksums don't match and we have alternate mirrors to try.
  396. */
  397. static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
  398. struct extent_buffer *eb,
  399. u64 parent_transid)
  400. {
  401. struct extent_io_tree *io_tree;
  402. int failed = 0;
  403. int ret;
  404. int num_copies = 0;
  405. int mirror_num = 0;
  406. int failed_mirror = 0;
  407. clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  408. io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
  409. while (1) {
  410. ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
  411. btree_get_extent, mirror_num);
  412. if (!ret) {
  413. if (!verify_parent_transid(io_tree, eb,
  414. parent_transid, 0))
  415. break;
  416. else
  417. ret = -EIO;
  418. }
  419. /*
  420. * This buffer's crc is fine, but its contents are corrupted, so
  421. * there is no reason to read the other copies, they won't be
  422. * any less wrong.
  423. */
  424. if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
  425. break;
  426. num_copies = btrfs_num_copies(fs_info,
  427. eb->start, eb->len);
  428. if (num_copies == 1)
  429. break;
  430. if (!failed_mirror) {
  431. failed = 1;
  432. failed_mirror = eb->read_mirror;
  433. }
  434. mirror_num++;
  435. if (mirror_num == failed_mirror)
  436. mirror_num++;
  437. if (mirror_num > num_copies)
  438. break;
  439. }
  440. if (failed && !ret && failed_mirror)
  441. repair_eb_io_failure(fs_info, eb, failed_mirror);
  442. return ret;
  443. }
  444. /*
  445. * checksum a dirty tree block before IO. This has extra checks to make sure
  446. * we only fill in the checksum field in the first page of a multi-page block
  447. */
  448. static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
  449. {
  450. u64 start = page_offset(page);
  451. u64 found_start;
  452. struct extent_buffer *eb;
  453. eb = (struct extent_buffer *)page->private;
  454. if (page != eb->pages[0])
  455. return 0;
  456. found_start = btrfs_header_bytenr(eb);
  457. /*
  458. * Please do not consolidate these warnings into a single if.
  459. * It is useful to know what went wrong.
  460. */
  461. if (WARN_ON(found_start != start))
  462. return -EUCLEAN;
  463. if (WARN_ON(!PageUptodate(page)))
  464. return -EUCLEAN;
  465. ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
  466. btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
  467. return csum_tree_block(fs_info, eb, 0);
  468. }
  469. static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
  470. struct extent_buffer *eb)
  471. {
  472. struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
  473. u8 fsid[BTRFS_UUID_SIZE];
  474. int ret = 1;
  475. read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
  476. while (fs_devices) {
  477. if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
  478. ret = 0;
  479. break;
  480. }
  481. fs_devices = fs_devices->seed;
  482. }
  483. return ret;
  484. }
  485. #define CORRUPT(reason, eb, root, slot) \
  486. btrfs_crit(root->fs_info, \
  487. "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \
  488. btrfs_header_level(eb) == 0 ? "leaf" : "node", \
  489. reason, btrfs_header_bytenr(eb), root->objectid, slot)
  490. static noinline int check_leaf(struct btrfs_root *root,
  491. struct extent_buffer *leaf)
  492. {
  493. struct btrfs_fs_info *fs_info = root->fs_info;
  494. struct btrfs_key key;
  495. struct btrfs_key leaf_key;
  496. u32 nritems = btrfs_header_nritems(leaf);
  497. int slot;
  498. /*
  499. * Extent buffers from a relocation tree have a owner field that
  500. * corresponds to the subvolume tree they are based on. So just from an
  501. * extent buffer alone we can not find out what is the id of the
  502. * corresponding subvolume tree, so we can not figure out if the extent
  503. * buffer corresponds to the root of the relocation tree or not. So skip
  504. * this check for relocation trees.
  505. */
  506. if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
  507. struct btrfs_root *check_root;
  508. key.objectid = btrfs_header_owner(leaf);
  509. key.type = BTRFS_ROOT_ITEM_KEY;
  510. key.offset = (u64)-1;
  511. check_root = btrfs_get_fs_root(fs_info, &key, false);
  512. /*
  513. * The only reason we also check NULL here is that during
  514. * open_ctree() some roots has not yet been set up.
  515. */
  516. if (!IS_ERR_OR_NULL(check_root)) {
  517. struct extent_buffer *eb;
  518. eb = btrfs_root_node(check_root);
  519. /* if leaf is the root, then it's fine */
  520. if (leaf != eb) {
  521. CORRUPT("non-root leaf's nritems is 0",
  522. leaf, check_root, 0);
  523. free_extent_buffer(eb);
  524. return -EIO;
  525. }
  526. free_extent_buffer(eb);
  527. }
  528. return 0;
  529. }
  530. if (nritems == 0)
  531. return 0;
  532. /* Check the 0 item */
  533. if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
  534. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  535. CORRUPT("invalid item offset size pair", leaf, root, 0);
  536. return -EIO;
  537. }
  538. /*
  539. * Check to make sure each items keys are in the correct order and their
  540. * offsets make sense. We only have to loop through nritems-1 because
  541. * we check the current slot against the next slot, which verifies the
  542. * next slot's offset+size makes sense and that the current's slot
  543. * offset is correct.
  544. */
  545. for (slot = 0; slot < nritems - 1; slot++) {
  546. btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
  547. btrfs_item_key_to_cpu(leaf, &key, slot + 1);
  548. /* Make sure the keys are in the right order */
  549. if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
  550. CORRUPT("bad key order", leaf, root, slot);
  551. return -EIO;
  552. }
  553. /*
  554. * Make sure the offset and ends are right, remember that the
  555. * item data starts at the end of the leaf and grows towards the
  556. * front.
  557. */
  558. if (btrfs_item_offset_nr(leaf, slot) !=
  559. btrfs_item_end_nr(leaf, slot + 1)) {
  560. CORRUPT("slot offset bad", leaf, root, slot);
  561. return -EIO;
  562. }
  563. /*
  564. * Check to make sure that we don't point outside of the leaf,
  565. * just in case all the items are consistent to each other, but
  566. * all point outside of the leaf.
  567. */
  568. if (btrfs_item_end_nr(leaf, slot) >
  569. BTRFS_LEAF_DATA_SIZE(fs_info)) {
  570. CORRUPT("slot end outside of leaf", leaf, root, slot);
  571. return -EIO;
  572. }
  573. }
  574. return 0;
  575. }
  576. static int check_node(struct btrfs_root *root, struct extent_buffer *node)
  577. {
  578. unsigned long nr = btrfs_header_nritems(node);
  579. struct btrfs_key key, next_key;
  580. int slot;
  581. u64 bytenr;
  582. int ret = 0;
  583. if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
  584. btrfs_crit(root->fs_info,
  585. "corrupt node: block %llu root %llu nritems %lu",
  586. node->start, root->objectid, nr);
  587. return -EIO;
  588. }
  589. for (slot = 0; slot < nr - 1; slot++) {
  590. bytenr = btrfs_node_blockptr(node, slot);
  591. btrfs_node_key_to_cpu(node, &key, slot);
  592. btrfs_node_key_to_cpu(node, &next_key, slot + 1);
  593. if (!bytenr) {
  594. CORRUPT("invalid item slot", node, root, slot);
  595. ret = -EIO;
  596. goto out;
  597. }
  598. if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
  599. CORRUPT("bad key order", node, root, slot);
  600. ret = -EIO;
  601. goto out;
  602. }
  603. }
  604. out:
  605. return ret;
  606. }
  607. static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
  608. u64 phy_offset, struct page *page,
  609. u64 start, u64 end, int mirror)
  610. {
  611. u64 found_start;
  612. int found_level;
  613. struct extent_buffer *eb;
  614. struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
  615. struct btrfs_fs_info *fs_info = root->fs_info;
  616. int ret = 0;
  617. int reads_done;
  618. if (!page->private)
  619. goto out;
  620. eb = (struct extent_buffer *)page->private;
  621. /* the pending IO might have been the only thing that kept this buffer
  622. * in memory. Make sure we have a ref for all this other checks
  623. */
  624. extent_buffer_get(eb);
  625. reads_done = atomic_dec_and_test(&eb->io_pages);
  626. if (!reads_done)
  627. goto err;
  628. eb->read_mirror = mirror;
  629. if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
  630. ret = -EIO;
  631. goto err;
  632. }
  633. found_start = btrfs_header_bytenr(eb);
  634. if (found_start != eb->start) {
  635. btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
  636. found_start, eb->start);
  637. ret = -EIO;
  638. goto err;
  639. }
  640. if (check_tree_block_fsid(fs_info, eb)) {
  641. btrfs_err_rl(fs_info, "bad fsid on block %llu",
  642. eb->start);
  643. ret = -EIO;
  644. goto err;
  645. }
  646. found_level = btrfs_header_level(eb);
  647. if (found_level >= BTRFS_MAX_LEVEL) {
  648. btrfs_err(fs_info, "bad tree block level %d",
  649. (int)btrfs_header_level(eb));
  650. ret = -EIO;
  651. goto err;
  652. }
  653. btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
  654. eb, found_level);
  655. ret = csum_tree_block(fs_info, eb, 1);
  656. if (ret)
  657. goto err;
  658. /*
  659. * If this is a leaf block and it is corrupt, set the corrupt bit so
  660. * that we don't try and read the other copies of this block, just
  661. * return -EIO.
  662. */
  663. if (found_level == 0 && check_leaf(root, eb)) {
  664. set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
  665. ret = -EIO;
  666. }
  667. if (found_level > 0 && check_node(root, eb))
  668. ret = -EIO;
  669. if (!ret)
  670. set_extent_buffer_uptodate(eb);
  671. err:
  672. if (reads_done &&
  673. test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  674. btree_readahead_hook(eb, ret);
  675. if (ret) {
  676. /*
  677. * our io error hook is going to dec the io pages
  678. * again, we have to make sure it has something
  679. * to decrement
  680. */
  681. atomic_inc(&eb->io_pages);
  682. clear_extent_buffer_uptodate(eb);
  683. }
  684. free_extent_buffer(eb);
  685. out:
  686. return ret;
  687. }
  688. static int btree_io_failed_hook(struct page *page, int failed_mirror)
  689. {
  690. struct extent_buffer *eb;
  691. eb = (struct extent_buffer *)page->private;
  692. set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
  693. eb->read_mirror = failed_mirror;
  694. atomic_dec(&eb->io_pages);
  695. if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
  696. btree_readahead_hook(eb, -EIO);
  697. return -EIO; /* we fixed nothing */
  698. }
  699. static void end_workqueue_bio(struct bio *bio)
  700. {
  701. struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
  702. struct btrfs_fs_info *fs_info;
  703. struct btrfs_workqueue *wq;
  704. btrfs_work_func_t func;
  705. fs_info = end_io_wq->info;
  706. end_io_wq->status = bio->bi_status;
  707. if (bio_op(bio) == REQ_OP_WRITE) {
  708. if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
  709. wq = fs_info->endio_meta_write_workers;
  710. func = btrfs_endio_meta_write_helper;
  711. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
  712. wq = fs_info->endio_freespace_worker;
  713. func = btrfs_freespace_write_helper;
  714. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  715. wq = fs_info->endio_raid56_workers;
  716. func = btrfs_endio_raid56_helper;
  717. } else {
  718. wq = fs_info->endio_write_workers;
  719. func = btrfs_endio_write_helper;
  720. }
  721. } else {
  722. if (unlikely(end_io_wq->metadata ==
  723. BTRFS_WQ_ENDIO_DIO_REPAIR)) {
  724. wq = fs_info->endio_repair_workers;
  725. func = btrfs_endio_repair_helper;
  726. } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
  727. wq = fs_info->endio_raid56_workers;
  728. func = btrfs_endio_raid56_helper;
  729. } else if (end_io_wq->metadata) {
  730. wq = fs_info->endio_meta_workers;
  731. func = btrfs_endio_meta_helper;
  732. } else {
  733. wq = fs_info->endio_workers;
  734. func = btrfs_endio_helper;
  735. }
  736. }
  737. btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
  738. btrfs_queue_work(wq, &end_io_wq->work);
  739. }
  740. blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
  741. enum btrfs_wq_endio_type metadata)
  742. {
  743. struct btrfs_end_io_wq *end_io_wq;
  744. end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
  745. if (!end_io_wq)
  746. return BLK_STS_RESOURCE;
  747. end_io_wq->private = bio->bi_private;
  748. end_io_wq->end_io = bio->bi_end_io;
  749. end_io_wq->info = info;
  750. end_io_wq->status = 0;
  751. end_io_wq->bio = bio;
  752. end_io_wq->metadata = metadata;
  753. bio->bi_private = end_io_wq;
  754. bio->bi_end_io = end_workqueue_bio;
  755. return 0;
  756. }
  757. unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
  758. {
  759. unsigned long limit = min_t(unsigned long,
  760. info->thread_pool_size,
  761. info->fs_devices->open_devices);
  762. return 256 * limit;
  763. }
  764. static void run_one_async_start(struct btrfs_work *work)
  765. {
  766. struct async_submit_bio *async;
  767. blk_status_t ret;
  768. async = container_of(work, struct async_submit_bio, work);
  769. ret = async->submit_bio_start(async->private_data, async->bio,
  770. async->mirror_num, async->bio_flags,
  771. async->bio_offset);
  772. if (ret)
  773. async->status = ret;
  774. }
  775. static void run_one_async_done(struct btrfs_work *work)
  776. {
  777. struct btrfs_fs_info *fs_info;
  778. struct async_submit_bio *async;
  779. int limit;
  780. async = container_of(work, struct async_submit_bio, work);
  781. fs_info = async->fs_info;
  782. limit = btrfs_async_submit_limit(fs_info);
  783. limit = limit * 2 / 3;
  784. /*
  785. * atomic_dec_return implies a barrier for waitqueue_active
  786. */
  787. if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
  788. waitqueue_active(&fs_info->async_submit_wait))
  789. wake_up(&fs_info->async_submit_wait);
  790. /* If an error occurred we just want to clean up the bio and move on */
  791. if (async->status) {
  792. async->bio->bi_status = async->status;
  793. bio_endio(async->bio);
  794. return;
  795. }
  796. async->submit_bio_done(async->private_data, async->bio, async->mirror_num,
  797. async->bio_flags, async->bio_offset);
  798. }
  799. static void run_one_async_free(struct btrfs_work *work)
  800. {
  801. struct async_submit_bio *async;
  802. async = container_of(work, struct async_submit_bio, work);
  803. kfree(async);
  804. }
  805. blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
  806. int mirror_num, unsigned long bio_flags,
  807. u64 bio_offset, void *private_data,
  808. extent_submit_bio_hook_t *submit_bio_start,
  809. extent_submit_bio_hook_t *submit_bio_done)
  810. {
  811. struct async_submit_bio *async;
  812. async = kmalloc(sizeof(*async), GFP_NOFS);
  813. if (!async)
  814. return BLK_STS_RESOURCE;
  815. async->private_data = private_data;
  816. async->fs_info = fs_info;
  817. async->bio = bio;
  818. async->mirror_num = mirror_num;
  819. async->submit_bio_start = submit_bio_start;
  820. async->submit_bio_done = submit_bio_done;
  821. btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
  822. run_one_async_done, run_one_async_free);
  823. async->bio_flags = bio_flags;
  824. async->bio_offset = bio_offset;
  825. async->status = 0;
  826. atomic_inc(&fs_info->nr_async_submits);
  827. if (op_is_sync(bio->bi_opf))
  828. btrfs_set_work_high_priority(&async->work);
  829. btrfs_queue_work(fs_info->workers, &async->work);
  830. while (atomic_read(&fs_info->async_submit_draining) &&
  831. atomic_read(&fs_info->nr_async_submits)) {
  832. wait_event(fs_info->async_submit_wait,
  833. (atomic_read(&fs_info->nr_async_submits) == 0));
  834. }
  835. return 0;
  836. }
  837. static blk_status_t btree_csum_one_bio(struct bio *bio)
  838. {
  839. struct bio_vec *bvec;
  840. struct btrfs_root *root;
  841. int i, ret = 0;
  842. bio_for_each_segment_all(bvec, bio, i) {
  843. root = BTRFS_I(bvec->bv_page->mapping->host)->root;
  844. ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
  845. if (ret)
  846. break;
  847. }
  848. return errno_to_blk_status(ret);
  849. }
  850. static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio,
  851. int mirror_num, unsigned long bio_flags,
  852. u64 bio_offset)
  853. {
  854. /*
  855. * when we're called for a write, we're already in the async
  856. * submission context. Just jump into btrfs_map_bio
  857. */
  858. return btree_csum_one_bio(bio);
  859. }
  860. static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio,
  861. int mirror_num, unsigned long bio_flags,
  862. u64 bio_offset)
  863. {
  864. struct inode *inode = private_data;
  865. blk_status_t ret;
  866. /*
  867. * when we're called for a write, we're already in the async
  868. * submission context. Just jump into btrfs_map_bio
  869. */
  870. ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
  871. if (ret) {
  872. bio->bi_status = ret;
  873. bio_endio(bio);
  874. }
  875. return ret;
  876. }
  877. static int check_async_write(unsigned long bio_flags)
  878. {
  879. if (bio_flags & EXTENT_BIO_TREE_LOG)
  880. return 0;
  881. #ifdef CONFIG_X86
  882. if (static_cpu_has(X86_FEATURE_XMM4_2))
  883. return 0;
  884. #endif
  885. return 1;
  886. }
  887. static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
  888. int mirror_num, unsigned long bio_flags,
  889. u64 bio_offset)
  890. {
  891. struct inode *inode = private_data;
  892. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  893. int async = check_async_write(bio_flags);
  894. blk_status_t ret;
  895. if (bio_op(bio) != REQ_OP_WRITE) {
  896. /*
  897. * called for a read, do the setup so that checksum validation
  898. * can happen in the async kernel threads
  899. */
  900. ret = btrfs_bio_wq_end_io(fs_info, bio,
  901. BTRFS_WQ_ENDIO_METADATA);
  902. if (ret)
  903. goto out_w_error;
  904. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  905. } else if (!async) {
  906. ret = btree_csum_one_bio(bio);
  907. if (ret)
  908. goto out_w_error;
  909. ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
  910. } else {
  911. /*
  912. * kthread helpers are used to submit writes so that
  913. * checksumming can happen in parallel across all CPUs
  914. */
  915. ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
  916. bio_offset, private_data,
  917. __btree_submit_bio_start,
  918. __btree_submit_bio_done);
  919. }
  920. if (ret)
  921. goto out_w_error;
  922. return 0;
  923. out_w_error:
  924. bio->bi_status = ret;
  925. bio_endio(bio);
  926. return ret;
  927. }
  928. #ifdef CONFIG_MIGRATION
  929. static int btree_migratepage(struct address_space *mapping,
  930. struct page *newpage, struct page *page,
  931. enum migrate_mode mode)
  932. {
  933. /*
  934. * we can't safely write a btree page from here,
  935. * we haven't done the locking hook
  936. */
  937. if (PageDirty(page))
  938. return -EAGAIN;
  939. /*
  940. * Buffers may be managed in a filesystem specific way.
  941. * We must have no buffers or drop them.
  942. */
  943. if (page_has_private(page) &&
  944. !try_to_release_page(page, GFP_KERNEL))
  945. return -EAGAIN;
  946. return migrate_page(mapping, newpage, page, mode);
  947. }
  948. #endif
  949. static int btree_writepages(struct address_space *mapping,
  950. struct writeback_control *wbc)
  951. {
  952. struct btrfs_fs_info *fs_info;
  953. int ret;
  954. if (wbc->sync_mode == WB_SYNC_NONE) {
  955. if (wbc->for_kupdate)
  956. return 0;
  957. fs_info = BTRFS_I(mapping->host)->root->fs_info;
  958. /* this is a bit racy, but that's ok */
  959. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  960. BTRFS_DIRTY_METADATA_THRESH);
  961. if (ret < 0)
  962. return 0;
  963. }
  964. return btree_write_cache_pages(mapping, wbc);
  965. }
  966. static int btree_readpage(struct file *file, struct page *page)
  967. {
  968. struct extent_io_tree *tree;
  969. tree = &BTRFS_I(page->mapping->host)->io_tree;
  970. return extent_read_full_page(tree, page, btree_get_extent, 0);
  971. }
  972. static int btree_releasepage(struct page *page, gfp_t gfp_flags)
  973. {
  974. if (PageWriteback(page) || PageDirty(page))
  975. return 0;
  976. return try_release_extent_buffer(page);
  977. }
  978. static void btree_invalidatepage(struct page *page, unsigned int offset,
  979. unsigned int length)
  980. {
  981. struct extent_io_tree *tree;
  982. tree = &BTRFS_I(page->mapping->host)->io_tree;
  983. extent_invalidatepage(tree, page, offset);
  984. btree_releasepage(page, GFP_NOFS);
  985. if (PagePrivate(page)) {
  986. btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
  987. "page private not zero on page %llu",
  988. (unsigned long long)page_offset(page));
  989. ClearPagePrivate(page);
  990. set_page_private(page, 0);
  991. put_page(page);
  992. }
  993. }
  994. static int btree_set_page_dirty(struct page *page)
  995. {
  996. #ifdef DEBUG
  997. struct extent_buffer *eb;
  998. BUG_ON(!PagePrivate(page));
  999. eb = (struct extent_buffer *)page->private;
  1000. BUG_ON(!eb);
  1001. BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
  1002. BUG_ON(!atomic_read(&eb->refs));
  1003. btrfs_assert_tree_locked(eb);
  1004. #endif
  1005. return __set_page_dirty_nobuffers(page);
  1006. }
  1007. static const struct address_space_operations btree_aops = {
  1008. .readpage = btree_readpage,
  1009. .writepages = btree_writepages,
  1010. .releasepage = btree_releasepage,
  1011. .invalidatepage = btree_invalidatepage,
  1012. #ifdef CONFIG_MIGRATION
  1013. .migratepage = btree_migratepage,
  1014. #endif
  1015. .set_page_dirty = btree_set_page_dirty,
  1016. };
  1017. void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
  1018. {
  1019. struct extent_buffer *buf = NULL;
  1020. struct inode *btree_inode = fs_info->btree_inode;
  1021. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1022. if (IS_ERR(buf))
  1023. return;
  1024. read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
  1025. buf, WAIT_NONE, btree_get_extent, 0);
  1026. free_extent_buffer(buf);
  1027. }
  1028. int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
  1029. int mirror_num, struct extent_buffer **eb)
  1030. {
  1031. struct extent_buffer *buf = NULL;
  1032. struct inode *btree_inode = fs_info->btree_inode;
  1033. struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
  1034. int ret;
  1035. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1036. if (IS_ERR(buf))
  1037. return 0;
  1038. set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
  1039. ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
  1040. btree_get_extent, mirror_num);
  1041. if (ret) {
  1042. free_extent_buffer(buf);
  1043. return ret;
  1044. }
  1045. if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
  1046. free_extent_buffer(buf);
  1047. return -EIO;
  1048. } else if (extent_buffer_uptodate(buf)) {
  1049. *eb = buf;
  1050. } else {
  1051. free_extent_buffer(buf);
  1052. }
  1053. return 0;
  1054. }
  1055. struct extent_buffer *btrfs_find_create_tree_block(
  1056. struct btrfs_fs_info *fs_info,
  1057. u64 bytenr)
  1058. {
  1059. if (btrfs_is_testing(fs_info))
  1060. return alloc_test_extent_buffer(fs_info, bytenr);
  1061. return alloc_extent_buffer(fs_info, bytenr);
  1062. }
  1063. int btrfs_write_tree_block(struct extent_buffer *buf)
  1064. {
  1065. return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
  1066. buf->start + buf->len - 1);
  1067. }
  1068. void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
  1069. {
  1070. filemap_fdatawait_range(buf->pages[0]->mapping,
  1071. buf->start, buf->start + buf->len - 1);
  1072. }
  1073. struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
  1074. u64 parent_transid)
  1075. {
  1076. struct extent_buffer *buf = NULL;
  1077. int ret;
  1078. buf = btrfs_find_create_tree_block(fs_info, bytenr);
  1079. if (IS_ERR(buf))
  1080. return buf;
  1081. ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  1082. if (ret) {
  1083. free_extent_buffer(buf);
  1084. return ERR_PTR(ret);
  1085. }
  1086. return buf;
  1087. }
  1088. void clean_tree_block(struct btrfs_fs_info *fs_info,
  1089. struct extent_buffer *buf)
  1090. {
  1091. if (btrfs_header_generation(buf) ==
  1092. fs_info->running_transaction->transid) {
  1093. btrfs_assert_tree_locked(buf);
  1094. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
  1095. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  1096. -buf->len,
  1097. fs_info->dirty_metadata_batch);
  1098. /* ugh, clear_extent_buffer_dirty needs to lock the page */
  1099. btrfs_set_lock_blocking(buf);
  1100. clear_extent_buffer_dirty(buf);
  1101. }
  1102. }
  1103. }
  1104. static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
  1105. {
  1106. struct btrfs_subvolume_writers *writers;
  1107. int ret;
  1108. writers = kmalloc(sizeof(*writers), GFP_NOFS);
  1109. if (!writers)
  1110. return ERR_PTR(-ENOMEM);
  1111. ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
  1112. if (ret < 0) {
  1113. kfree(writers);
  1114. return ERR_PTR(ret);
  1115. }
  1116. init_waitqueue_head(&writers->wait);
  1117. return writers;
  1118. }
  1119. static void
  1120. btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
  1121. {
  1122. percpu_counter_destroy(&writers->counter);
  1123. kfree(writers);
  1124. }
  1125. static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
  1126. u64 objectid)
  1127. {
  1128. bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
  1129. root->node = NULL;
  1130. root->commit_root = NULL;
  1131. root->state = 0;
  1132. root->orphan_cleanup_state = 0;
  1133. root->objectid = objectid;
  1134. root->last_trans = 0;
  1135. root->highest_objectid = 0;
  1136. root->nr_delalloc_inodes = 0;
  1137. root->nr_ordered_extents = 0;
  1138. root->name = NULL;
  1139. root->inode_tree = RB_ROOT;
  1140. INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
  1141. root->block_rsv = NULL;
  1142. root->orphan_block_rsv = NULL;
  1143. INIT_LIST_HEAD(&root->dirty_list);
  1144. INIT_LIST_HEAD(&root->root_list);
  1145. INIT_LIST_HEAD(&root->delalloc_inodes);
  1146. INIT_LIST_HEAD(&root->delalloc_root);
  1147. INIT_LIST_HEAD(&root->ordered_extents);
  1148. INIT_LIST_HEAD(&root->ordered_root);
  1149. INIT_LIST_HEAD(&root->logged_list[0]);
  1150. INIT_LIST_HEAD(&root->logged_list[1]);
  1151. spin_lock_init(&root->orphan_lock);
  1152. spin_lock_init(&root->inode_lock);
  1153. spin_lock_init(&root->delalloc_lock);
  1154. spin_lock_init(&root->ordered_extent_lock);
  1155. spin_lock_init(&root->accounting_lock);
  1156. spin_lock_init(&root->log_extents_lock[0]);
  1157. spin_lock_init(&root->log_extents_lock[1]);
  1158. mutex_init(&root->objectid_mutex);
  1159. mutex_init(&root->log_mutex);
  1160. mutex_init(&root->ordered_extent_mutex);
  1161. mutex_init(&root->delalloc_mutex);
  1162. init_waitqueue_head(&root->log_writer_wait);
  1163. init_waitqueue_head(&root->log_commit_wait[0]);
  1164. init_waitqueue_head(&root->log_commit_wait[1]);
  1165. INIT_LIST_HEAD(&root->log_ctxs[0]);
  1166. INIT_LIST_HEAD(&root->log_ctxs[1]);
  1167. atomic_set(&root->log_commit[0], 0);
  1168. atomic_set(&root->log_commit[1], 0);
  1169. atomic_set(&root->log_writers, 0);
  1170. atomic_set(&root->log_batch, 0);
  1171. atomic_set(&root->orphan_inodes, 0);
  1172. refcount_set(&root->refs, 1);
  1173. atomic_set(&root->will_be_snapshoted, 0);
  1174. atomic64_set(&root->qgroup_meta_rsv, 0);
  1175. root->log_transid = 0;
  1176. root->log_transid_committed = -1;
  1177. root->last_log_commit = 0;
  1178. if (!dummy)
  1179. extent_io_tree_init(&root->dirty_log_pages, NULL);
  1180. memset(&root->root_key, 0, sizeof(root->root_key));
  1181. memset(&root->root_item, 0, sizeof(root->root_item));
  1182. memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
  1183. if (!dummy)
  1184. root->defrag_trans_start = fs_info->generation;
  1185. else
  1186. root->defrag_trans_start = 0;
  1187. root->root_key.objectid = objectid;
  1188. root->anon_dev = 0;
  1189. spin_lock_init(&root->root_item_lock);
  1190. }
  1191. static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
  1192. gfp_t flags)
  1193. {
  1194. struct btrfs_root *root = kzalloc(sizeof(*root), flags);
  1195. if (root)
  1196. root->fs_info = fs_info;
  1197. return root;
  1198. }
  1199. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  1200. /* Should only be used by the testing infrastructure */
  1201. struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
  1202. {
  1203. struct btrfs_root *root;
  1204. if (!fs_info)
  1205. return ERR_PTR(-EINVAL);
  1206. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1207. if (!root)
  1208. return ERR_PTR(-ENOMEM);
  1209. /* We don't use the stripesize in selftest, set it as sectorsize */
  1210. __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  1211. root->alloc_bytenr = 0;
  1212. return root;
  1213. }
  1214. #endif
  1215. struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
  1216. struct btrfs_fs_info *fs_info,
  1217. u64 objectid)
  1218. {
  1219. struct extent_buffer *leaf;
  1220. struct btrfs_root *tree_root = fs_info->tree_root;
  1221. struct btrfs_root *root;
  1222. struct btrfs_key key;
  1223. int ret = 0;
  1224. uuid_le uuid;
  1225. root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  1226. if (!root)
  1227. return ERR_PTR(-ENOMEM);
  1228. __setup_root(root, fs_info, objectid);
  1229. root->root_key.objectid = objectid;
  1230. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1231. root->root_key.offset = 0;
  1232. leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
  1233. if (IS_ERR(leaf)) {
  1234. ret = PTR_ERR(leaf);
  1235. leaf = NULL;
  1236. goto fail;
  1237. }
  1238. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1239. btrfs_set_header_bytenr(leaf, leaf->start);
  1240. btrfs_set_header_generation(leaf, trans->transid);
  1241. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1242. btrfs_set_header_owner(leaf, objectid);
  1243. root->node = leaf;
  1244. write_extent_buffer_fsid(leaf, fs_info->fsid);
  1245. write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
  1246. btrfs_mark_buffer_dirty(leaf);
  1247. root->commit_root = btrfs_root_node(root);
  1248. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  1249. root->root_item.flags = 0;
  1250. root->root_item.byte_limit = 0;
  1251. btrfs_set_root_bytenr(&root->root_item, leaf->start);
  1252. btrfs_set_root_generation(&root->root_item, trans->transid);
  1253. btrfs_set_root_level(&root->root_item, 0);
  1254. btrfs_set_root_refs(&root->root_item, 1);
  1255. btrfs_set_root_used(&root->root_item, leaf->len);
  1256. btrfs_set_root_last_snapshot(&root->root_item, 0);
  1257. btrfs_set_root_dirid(&root->root_item, 0);
  1258. uuid_le_gen(&uuid);
  1259. memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
  1260. root->root_item.drop_level = 0;
  1261. key.objectid = objectid;
  1262. key.type = BTRFS_ROOT_ITEM_KEY;
  1263. key.offset = 0;
  1264. ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
  1265. if (ret)
  1266. goto fail;
  1267. btrfs_tree_unlock(leaf);
  1268. return root;
  1269. fail:
  1270. if (leaf) {
  1271. btrfs_tree_unlock(leaf);
  1272. free_extent_buffer(root->commit_root);
  1273. free_extent_buffer(leaf);
  1274. }
  1275. kfree(root);
  1276. return ERR_PTR(ret);
  1277. }
  1278. static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
  1279. struct btrfs_fs_info *fs_info)
  1280. {
  1281. struct btrfs_root *root;
  1282. struct extent_buffer *leaf;
  1283. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1284. if (!root)
  1285. return ERR_PTR(-ENOMEM);
  1286. __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  1287. root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
  1288. root->root_key.type = BTRFS_ROOT_ITEM_KEY;
  1289. root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
  1290. /*
  1291. * DON'T set REF_COWS for log trees
  1292. *
  1293. * log trees do not get reference counted because they go away
  1294. * before a real commit is actually done. They do store pointers
  1295. * to file data extents, and those reference counts still get
  1296. * updated (along with back refs to the log tree).
  1297. */
  1298. leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
  1299. NULL, 0, 0, 0);
  1300. if (IS_ERR(leaf)) {
  1301. kfree(root);
  1302. return ERR_CAST(leaf);
  1303. }
  1304. memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
  1305. btrfs_set_header_bytenr(leaf, leaf->start);
  1306. btrfs_set_header_generation(leaf, trans->transid);
  1307. btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
  1308. btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
  1309. root->node = leaf;
  1310. write_extent_buffer_fsid(root->node, fs_info->fsid);
  1311. btrfs_mark_buffer_dirty(root->node);
  1312. btrfs_tree_unlock(root->node);
  1313. return root;
  1314. }
  1315. int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
  1316. struct btrfs_fs_info *fs_info)
  1317. {
  1318. struct btrfs_root *log_root;
  1319. log_root = alloc_log_tree(trans, fs_info);
  1320. if (IS_ERR(log_root))
  1321. return PTR_ERR(log_root);
  1322. WARN_ON(fs_info->log_root_tree);
  1323. fs_info->log_root_tree = log_root;
  1324. return 0;
  1325. }
  1326. int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
  1327. struct btrfs_root *root)
  1328. {
  1329. struct btrfs_fs_info *fs_info = root->fs_info;
  1330. struct btrfs_root *log_root;
  1331. struct btrfs_inode_item *inode_item;
  1332. log_root = alloc_log_tree(trans, fs_info);
  1333. if (IS_ERR(log_root))
  1334. return PTR_ERR(log_root);
  1335. log_root->last_trans = trans->transid;
  1336. log_root->root_key.offset = root->root_key.objectid;
  1337. inode_item = &log_root->root_item.inode;
  1338. btrfs_set_stack_inode_generation(inode_item, 1);
  1339. btrfs_set_stack_inode_size(inode_item, 3);
  1340. btrfs_set_stack_inode_nlink(inode_item, 1);
  1341. btrfs_set_stack_inode_nbytes(inode_item,
  1342. fs_info->nodesize);
  1343. btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
  1344. btrfs_set_root_node(&log_root->root_item, log_root->node);
  1345. WARN_ON(root->log_root);
  1346. root->log_root = log_root;
  1347. root->log_transid = 0;
  1348. root->log_transid_committed = -1;
  1349. root->last_log_commit = 0;
  1350. return 0;
  1351. }
  1352. static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
  1353. struct btrfs_key *key)
  1354. {
  1355. struct btrfs_root *root;
  1356. struct btrfs_fs_info *fs_info = tree_root->fs_info;
  1357. struct btrfs_path *path;
  1358. u64 generation;
  1359. int ret;
  1360. path = btrfs_alloc_path();
  1361. if (!path)
  1362. return ERR_PTR(-ENOMEM);
  1363. root = btrfs_alloc_root(fs_info, GFP_NOFS);
  1364. if (!root) {
  1365. ret = -ENOMEM;
  1366. goto alloc_fail;
  1367. }
  1368. __setup_root(root, fs_info, key->objectid);
  1369. ret = btrfs_find_root(tree_root, key, path,
  1370. &root->root_item, &root->root_key);
  1371. if (ret) {
  1372. if (ret > 0)
  1373. ret = -ENOENT;
  1374. goto find_fail;
  1375. }
  1376. generation = btrfs_root_generation(&root->root_item);
  1377. root->node = read_tree_block(fs_info,
  1378. btrfs_root_bytenr(&root->root_item),
  1379. generation);
  1380. if (IS_ERR(root->node)) {
  1381. ret = PTR_ERR(root->node);
  1382. goto find_fail;
  1383. } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
  1384. ret = -EIO;
  1385. free_extent_buffer(root->node);
  1386. goto find_fail;
  1387. }
  1388. root->commit_root = btrfs_root_node(root);
  1389. out:
  1390. btrfs_free_path(path);
  1391. return root;
  1392. find_fail:
  1393. kfree(root);
  1394. alloc_fail:
  1395. root = ERR_PTR(ret);
  1396. goto out;
  1397. }
  1398. struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
  1399. struct btrfs_key *location)
  1400. {
  1401. struct btrfs_root *root;
  1402. root = btrfs_read_tree_root(tree_root, location);
  1403. if (IS_ERR(root))
  1404. return root;
  1405. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  1406. set_bit(BTRFS_ROOT_REF_COWS, &root->state);
  1407. btrfs_check_and_init_root_item(&root->root_item);
  1408. }
  1409. return root;
  1410. }
  1411. int btrfs_init_fs_root(struct btrfs_root *root)
  1412. {
  1413. int ret;
  1414. struct btrfs_subvolume_writers *writers;
  1415. root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
  1416. root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
  1417. GFP_NOFS);
  1418. if (!root->free_ino_pinned || !root->free_ino_ctl) {
  1419. ret = -ENOMEM;
  1420. goto fail;
  1421. }
  1422. writers = btrfs_alloc_subvolume_writers();
  1423. if (IS_ERR(writers)) {
  1424. ret = PTR_ERR(writers);
  1425. goto fail;
  1426. }
  1427. root->subv_writers = writers;
  1428. btrfs_init_free_ino_ctl(root);
  1429. spin_lock_init(&root->ino_cache_lock);
  1430. init_waitqueue_head(&root->ino_cache_wait);
  1431. ret = get_anon_bdev(&root->anon_dev);
  1432. if (ret)
  1433. goto fail;
  1434. mutex_lock(&root->objectid_mutex);
  1435. ret = btrfs_find_highest_objectid(root,
  1436. &root->highest_objectid);
  1437. if (ret) {
  1438. mutex_unlock(&root->objectid_mutex);
  1439. goto fail;
  1440. }
  1441. ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  1442. mutex_unlock(&root->objectid_mutex);
  1443. return 0;
  1444. fail:
  1445. /* the caller is responsible to call free_fs_root */
  1446. return ret;
  1447. }
  1448. struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
  1449. u64 root_id)
  1450. {
  1451. struct btrfs_root *root;
  1452. spin_lock(&fs_info->fs_roots_radix_lock);
  1453. root = radix_tree_lookup(&fs_info->fs_roots_radix,
  1454. (unsigned long)root_id);
  1455. spin_unlock(&fs_info->fs_roots_radix_lock);
  1456. return root;
  1457. }
  1458. int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
  1459. struct btrfs_root *root)
  1460. {
  1461. int ret;
  1462. ret = radix_tree_preload(GFP_NOFS);
  1463. if (ret)
  1464. return ret;
  1465. spin_lock(&fs_info->fs_roots_radix_lock);
  1466. ret = radix_tree_insert(&fs_info->fs_roots_radix,
  1467. (unsigned long)root->root_key.objectid,
  1468. root);
  1469. if (ret == 0)
  1470. set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
  1471. spin_unlock(&fs_info->fs_roots_radix_lock);
  1472. radix_tree_preload_end();
  1473. return ret;
  1474. }
  1475. struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
  1476. struct btrfs_key *location,
  1477. bool check_ref)
  1478. {
  1479. struct btrfs_root *root;
  1480. struct btrfs_path *path;
  1481. struct btrfs_key key;
  1482. int ret;
  1483. if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
  1484. return fs_info->tree_root;
  1485. if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
  1486. return fs_info->extent_root;
  1487. if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
  1488. return fs_info->chunk_root;
  1489. if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
  1490. return fs_info->dev_root;
  1491. if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
  1492. return fs_info->csum_root;
  1493. if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
  1494. return fs_info->quota_root ? fs_info->quota_root :
  1495. ERR_PTR(-ENOENT);
  1496. if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
  1497. return fs_info->uuid_root ? fs_info->uuid_root :
  1498. ERR_PTR(-ENOENT);
  1499. if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
  1500. return fs_info->free_space_root ? fs_info->free_space_root :
  1501. ERR_PTR(-ENOENT);
  1502. again:
  1503. root = btrfs_lookup_fs_root(fs_info, location->objectid);
  1504. if (root) {
  1505. if (check_ref && btrfs_root_refs(&root->root_item) == 0)
  1506. return ERR_PTR(-ENOENT);
  1507. return root;
  1508. }
  1509. root = btrfs_read_fs_root(fs_info->tree_root, location);
  1510. if (IS_ERR(root))
  1511. return root;
  1512. if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
  1513. ret = -ENOENT;
  1514. goto fail;
  1515. }
  1516. ret = btrfs_init_fs_root(root);
  1517. if (ret)
  1518. goto fail;
  1519. path = btrfs_alloc_path();
  1520. if (!path) {
  1521. ret = -ENOMEM;
  1522. goto fail;
  1523. }
  1524. key.objectid = BTRFS_ORPHAN_OBJECTID;
  1525. key.type = BTRFS_ORPHAN_ITEM_KEY;
  1526. key.offset = location->objectid;
  1527. ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
  1528. btrfs_free_path(path);
  1529. if (ret < 0)
  1530. goto fail;
  1531. if (ret == 0)
  1532. set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
  1533. ret = btrfs_insert_fs_root(fs_info, root);
  1534. if (ret) {
  1535. if (ret == -EEXIST) {
  1536. free_fs_root(root);
  1537. goto again;
  1538. }
  1539. goto fail;
  1540. }
  1541. return root;
  1542. fail:
  1543. free_fs_root(root);
  1544. return ERR_PTR(ret);
  1545. }
  1546. static int btrfs_congested_fn(void *congested_data, int bdi_bits)
  1547. {
  1548. struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
  1549. int ret = 0;
  1550. struct btrfs_device *device;
  1551. struct backing_dev_info *bdi;
  1552. rcu_read_lock();
  1553. list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
  1554. if (!device->bdev)
  1555. continue;
  1556. bdi = device->bdev->bd_bdi;
  1557. if (bdi_congested(bdi, bdi_bits)) {
  1558. ret = 1;
  1559. break;
  1560. }
  1561. }
  1562. rcu_read_unlock();
  1563. return ret;
  1564. }
  1565. /*
  1566. * called by the kthread helper functions to finally call the bio end_io
  1567. * functions. This is where read checksum verification actually happens
  1568. */
  1569. static void end_workqueue_fn(struct btrfs_work *work)
  1570. {
  1571. struct bio *bio;
  1572. struct btrfs_end_io_wq *end_io_wq;
  1573. end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
  1574. bio = end_io_wq->bio;
  1575. bio->bi_status = end_io_wq->status;
  1576. bio->bi_private = end_io_wq->private;
  1577. bio->bi_end_io = end_io_wq->end_io;
  1578. kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
  1579. bio_endio(bio);
  1580. }
  1581. static int cleaner_kthread(void *arg)
  1582. {
  1583. struct btrfs_root *root = arg;
  1584. struct btrfs_fs_info *fs_info = root->fs_info;
  1585. int again;
  1586. struct btrfs_trans_handle *trans;
  1587. do {
  1588. again = 0;
  1589. /* Make the cleaner go to sleep early. */
  1590. if (btrfs_need_cleaner_sleep(fs_info))
  1591. goto sleep;
  1592. /*
  1593. * Do not do anything if we might cause open_ctree() to block
  1594. * before we have finished mounting the filesystem.
  1595. */
  1596. if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
  1597. goto sleep;
  1598. if (!mutex_trylock(&fs_info->cleaner_mutex))
  1599. goto sleep;
  1600. /*
  1601. * Avoid the problem that we change the status of the fs
  1602. * during the above check and trylock.
  1603. */
  1604. if (btrfs_need_cleaner_sleep(fs_info)) {
  1605. mutex_unlock(&fs_info->cleaner_mutex);
  1606. goto sleep;
  1607. }
  1608. mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
  1609. btrfs_run_delayed_iputs(fs_info);
  1610. mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
  1611. again = btrfs_clean_one_deleted_snapshot(root);
  1612. mutex_unlock(&fs_info->cleaner_mutex);
  1613. /*
  1614. * The defragger has dealt with the R/O remount and umount,
  1615. * needn't do anything special here.
  1616. */
  1617. btrfs_run_defrag_inodes(fs_info);
  1618. /*
  1619. * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
  1620. * with relocation (btrfs_relocate_chunk) and relocation
  1621. * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
  1622. * after acquiring fs_info->delete_unused_bgs_mutex. So we
  1623. * can't hold, nor need to, fs_info->cleaner_mutex when deleting
  1624. * unused block groups.
  1625. */
  1626. btrfs_delete_unused_bgs(fs_info);
  1627. sleep:
  1628. if (!again) {
  1629. set_current_state(TASK_INTERRUPTIBLE);
  1630. if (!kthread_should_stop())
  1631. schedule();
  1632. __set_current_state(TASK_RUNNING);
  1633. }
  1634. } while (!kthread_should_stop());
  1635. /*
  1636. * Transaction kthread is stopped before us and wakes us up.
  1637. * However we might have started a new transaction and COWed some
  1638. * tree blocks when deleting unused block groups for example. So
  1639. * make sure we commit the transaction we started to have a clean
  1640. * shutdown when evicting the btree inode - if it has dirty pages
  1641. * when we do the final iput() on it, eviction will trigger a
  1642. * writeback for it which will fail with null pointer dereferences
  1643. * since work queues and other resources were already released and
  1644. * destroyed by the time the iput/eviction/writeback is made.
  1645. */
  1646. trans = btrfs_attach_transaction(root);
  1647. if (IS_ERR(trans)) {
  1648. if (PTR_ERR(trans) != -ENOENT)
  1649. btrfs_err(fs_info,
  1650. "cleaner transaction attach returned %ld",
  1651. PTR_ERR(trans));
  1652. } else {
  1653. int ret;
  1654. ret = btrfs_commit_transaction(trans);
  1655. if (ret)
  1656. btrfs_err(fs_info,
  1657. "cleaner open transaction commit returned %d",
  1658. ret);
  1659. }
  1660. return 0;
  1661. }
  1662. static int transaction_kthread(void *arg)
  1663. {
  1664. struct btrfs_root *root = arg;
  1665. struct btrfs_fs_info *fs_info = root->fs_info;
  1666. struct btrfs_trans_handle *trans;
  1667. struct btrfs_transaction *cur;
  1668. u64 transid;
  1669. unsigned long now;
  1670. unsigned long delay;
  1671. bool cannot_commit;
  1672. do {
  1673. cannot_commit = false;
  1674. delay = HZ * fs_info->commit_interval;
  1675. mutex_lock(&fs_info->transaction_kthread_mutex);
  1676. spin_lock(&fs_info->trans_lock);
  1677. cur = fs_info->running_transaction;
  1678. if (!cur) {
  1679. spin_unlock(&fs_info->trans_lock);
  1680. goto sleep;
  1681. }
  1682. now = get_seconds();
  1683. if (cur->state < TRANS_STATE_BLOCKED &&
  1684. (now < cur->start_time ||
  1685. now - cur->start_time < fs_info->commit_interval)) {
  1686. spin_unlock(&fs_info->trans_lock);
  1687. delay = HZ * 5;
  1688. goto sleep;
  1689. }
  1690. transid = cur->transid;
  1691. spin_unlock(&fs_info->trans_lock);
  1692. /* If the file system is aborted, this will always fail. */
  1693. trans = btrfs_attach_transaction(root);
  1694. if (IS_ERR(trans)) {
  1695. if (PTR_ERR(trans) != -ENOENT)
  1696. cannot_commit = true;
  1697. goto sleep;
  1698. }
  1699. if (transid == trans->transid) {
  1700. btrfs_commit_transaction(trans);
  1701. } else {
  1702. btrfs_end_transaction(trans);
  1703. }
  1704. sleep:
  1705. wake_up_process(fs_info->cleaner_kthread);
  1706. mutex_unlock(&fs_info->transaction_kthread_mutex);
  1707. if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
  1708. &fs_info->fs_state)))
  1709. btrfs_cleanup_transaction(fs_info);
  1710. set_current_state(TASK_INTERRUPTIBLE);
  1711. if (!kthread_should_stop() &&
  1712. (!btrfs_transaction_blocked(fs_info) ||
  1713. cannot_commit))
  1714. schedule_timeout(delay);
  1715. __set_current_state(TASK_RUNNING);
  1716. } while (!kthread_should_stop());
  1717. return 0;
  1718. }
  1719. /*
  1720. * this will find the highest generation in the array of
  1721. * root backups. The index of the highest array is returned,
  1722. * or -1 if we can't find anything.
  1723. *
  1724. * We check to make sure the array is valid by comparing the
  1725. * generation of the latest root in the array with the generation
  1726. * in the super block. If they don't match we pitch it.
  1727. */
  1728. static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
  1729. {
  1730. u64 cur;
  1731. int newest_index = -1;
  1732. struct btrfs_root_backup *root_backup;
  1733. int i;
  1734. for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
  1735. root_backup = info->super_copy->super_roots + i;
  1736. cur = btrfs_backup_tree_root_gen(root_backup);
  1737. if (cur == newest_gen)
  1738. newest_index = i;
  1739. }
  1740. /* check to see if we actually wrapped around */
  1741. if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
  1742. root_backup = info->super_copy->super_roots;
  1743. cur = btrfs_backup_tree_root_gen(root_backup);
  1744. if (cur == newest_gen)
  1745. newest_index = 0;
  1746. }
  1747. return newest_index;
  1748. }
  1749. /*
  1750. * find the oldest backup so we know where to store new entries
  1751. * in the backup array. This will set the backup_root_index
  1752. * field in the fs_info struct
  1753. */
  1754. static void find_oldest_super_backup(struct btrfs_fs_info *info,
  1755. u64 newest_gen)
  1756. {
  1757. int newest_index = -1;
  1758. newest_index = find_newest_super_backup(info, newest_gen);
  1759. /* if there was garbage in there, just move along */
  1760. if (newest_index == -1) {
  1761. info->backup_root_index = 0;
  1762. } else {
  1763. info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1764. }
  1765. }
  1766. /*
  1767. * copy all the root pointers into the super backup array.
  1768. * this will bump the backup pointer by one when it is
  1769. * done
  1770. */
  1771. static void backup_super_roots(struct btrfs_fs_info *info)
  1772. {
  1773. int next_backup;
  1774. struct btrfs_root_backup *root_backup;
  1775. int last_backup;
  1776. next_backup = info->backup_root_index;
  1777. last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1778. BTRFS_NUM_BACKUP_ROOTS;
  1779. /*
  1780. * just overwrite the last backup if we're at the same generation
  1781. * this happens only at umount
  1782. */
  1783. root_backup = info->super_for_commit->super_roots + last_backup;
  1784. if (btrfs_backup_tree_root_gen(root_backup) ==
  1785. btrfs_header_generation(info->tree_root->node))
  1786. next_backup = last_backup;
  1787. root_backup = info->super_for_commit->super_roots + next_backup;
  1788. /*
  1789. * make sure all of our padding and empty slots get zero filled
  1790. * regardless of which ones we use today
  1791. */
  1792. memset(root_backup, 0, sizeof(*root_backup));
  1793. info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
  1794. btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
  1795. btrfs_set_backup_tree_root_gen(root_backup,
  1796. btrfs_header_generation(info->tree_root->node));
  1797. btrfs_set_backup_tree_root_level(root_backup,
  1798. btrfs_header_level(info->tree_root->node));
  1799. btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
  1800. btrfs_set_backup_chunk_root_gen(root_backup,
  1801. btrfs_header_generation(info->chunk_root->node));
  1802. btrfs_set_backup_chunk_root_level(root_backup,
  1803. btrfs_header_level(info->chunk_root->node));
  1804. btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
  1805. btrfs_set_backup_extent_root_gen(root_backup,
  1806. btrfs_header_generation(info->extent_root->node));
  1807. btrfs_set_backup_extent_root_level(root_backup,
  1808. btrfs_header_level(info->extent_root->node));
  1809. /*
  1810. * we might commit during log recovery, which happens before we set
  1811. * the fs_root. Make sure it is valid before we fill it in.
  1812. */
  1813. if (info->fs_root && info->fs_root->node) {
  1814. btrfs_set_backup_fs_root(root_backup,
  1815. info->fs_root->node->start);
  1816. btrfs_set_backup_fs_root_gen(root_backup,
  1817. btrfs_header_generation(info->fs_root->node));
  1818. btrfs_set_backup_fs_root_level(root_backup,
  1819. btrfs_header_level(info->fs_root->node));
  1820. }
  1821. btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
  1822. btrfs_set_backup_dev_root_gen(root_backup,
  1823. btrfs_header_generation(info->dev_root->node));
  1824. btrfs_set_backup_dev_root_level(root_backup,
  1825. btrfs_header_level(info->dev_root->node));
  1826. btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
  1827. btrfs_set_backup_csum_root_gen(root_backup,
  1828. btrfs_header_generation(info->csum_root->node));
  1829. btrfs_set_backup_csum_root_level(root_backup,
  1830. btrfs_header_level(info->csum_root->node));
  1831. btrfs_set_backup_total_bytes(root_backup,
  1832. btrfs_super_total_bytes(info->super_copy));
  1833. btrfs_set_backup_bytes_used(root_backup,
  1834. btrfs_super_bytes_used(info->super_copy));
  1835. btrfs_set_backup_num_devices(root_backup,
  1836. btrfs_super_num_devices(info->super_copy));
  1837. /*
  1838. * if we don't copy this out to the super_copy, it won't get remembered
  1839. * for the next commit
  1840. */
  1841. memcpy(&info->super_copy->super_roots,
  1842. &info->super_for_commit->super_roots,
  1843. sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
  1844. }
  1845. /*
  1846. * this copies info out of the root backup array and back into
  1847. * the in-memory super block. It is meant to help iterate through
  1848. * the array, so you send it the number of backups you've already
  1849. * tried and the last backup index you used.
  1850. *
  1851. * this returns -1 when it has tried all the backups
  1852. */
  1853. static noinline int next_root_backup(struct btrfs_fs_info *info,
  1854. struct btrfs_super_block *super,
  1855. int *num_backups_tried, int *backup_index)
  1856. {
  1857. struct btrfs_root_backup *root_backup;
  1858. int newest = *backup_index;
  1859. if (*num_backups_tried == 0) {
  1860. u64 gen = btrfs_super_generation(super);
  1861. newest = find_newest_super_backup(info, gen);
  1862. if (newest == -1)
  1863. return -1;
  1864. *backup_index = newest;
  1865. *num_backups_tried = 1;
  1866. } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
  1867. /* we've tried all the backups, all done */
  1868. return -1;
  1869. } else {
  1870. /* jump to the next oldest backup */
  1871. newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
  1872. BTRFS_NUM_BACKUP_ROOTS;
  1873. *backup_index = newest;
  1874. *num_backups_tried += 1;
  1875. }
  1876. root_backup = super->super_roots + newest;
  1877. btrfs_set_super_generation(super,
  1878. btrfs_backup_tree_root_gen(root_backup));
  1879. btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
  1880. btrfs_set_super_root_level(super,
  1881. btrfs_backup_tree_root_level(root_backup));
  1882. btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
  1883. /*
  1884. * fixme: the total bytes and num_devices need to match or we should
  1885. * need a fsck
  1886. */
  1887. btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
  1888. btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
  1889. return 0;
  1890. }
  1891. /* helper to cleanup workers */
  1892. static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
  1893. {
  1894. btrfs_destroy_workqueue(fs_info->fixup_workers);
  1895. btrfs_destroy_workqueue(fs_info->delalloc_workers);
  1896. btrfs_destroy_workqueue(fs_info->workers);
  1897. btrfs_destroy_workqueue(fs_info->endio_workers);
  1898. btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
  1899. btrfs_destroy_workqueue(fs_info->endio_repair_workers);
  1900. btrfs_destroy_workqueue(fs_info->rmw_workers);
  1901. btrfs_destroy_workqueue(fs_info->endio_write_workers);
  1902. btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
  1903. btrfs_destroy_workqueue(fs_info->submit_workers);
  1904. btrfs_destroy_workqueue(fs_info->delayed_workers);
  1905. btrfs_destroy_workqueue(fs_info->caching_workers);
  1906. btrfs_destroy_workqueue(fs_info->readahead_workers);
  1907. btrfs_destroy_workqueue(fs_info->flush_workers);
  1908. btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
  1909. btrfs_destroy_workqueue(fs_info->extent_workers);
  1910. /*
  1911. * Now that all other work queues are destroyed, we can safely destroy
  1912. * the queues used for metadata I/O, since tasks from those other work
  1913. * queues can do metadata I/O operations.
  1914. */
  1915. btrfs_destroy_workqueue(fs_info->endio_meta_workers);
  1916. btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
  1917. }
  1918. static void free_root_extent_buffers(struct btrfs_root *root)
  1919. {
  1920. if (root) {
  1921. free_extent_buffer(root->node);
  1922. free_extent_buffer(root->commit_root);
  1923. root->node = NULL;
  1924. root->commit_root = NULL;
  1925. }
  1926. }
  1927. /* helper to cleanup tree roots */
  1928. static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
  1929. {
  1930. free_root_extent_buffers(info->tree_root);
  1931. free_root_extent_buffers(info->dev_root);
  1932. free_root_extent_buffers(info->extent_root);
  1933. free_root_extent_buffers(info->csum_root);
  1934. free_root_extent_buffers(info->quota_root);
  1935. free_root_extent_buffers(info->uuid_root);
  1936. if (chunk_root)
  1937. free_root_extent_buffers(info->chunk_root);
  1938. free_root_extent_buffers(info->free_space_root);
  1939. }
  1940. void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
  1941. {
  1942. int ret;
  1943. struct btrfs_root *gang[8];
  1944. int i;
  1945. while (!list_empty(&fs_info->dead_roots)) {
  1946. gang[0] = list_entry(fs_info->dead_roots.next,
  1947. struct btrfs_root, root_list);
  1948. list_del(&gang[0]->root_list);
  1949. if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
  1950. btrfs_drop_and_free_fs_root(fs_info, gang[0]);
  1951. } else {
  1952. free_extent_buffer(gang[0]->node);
  1953. free_extent_buffer(gang[0]->commit_root);
  1954. btrfs_put_fs_root(gang[0]);
  1955. }
  1956. }
  1957. while (1) {
  1958. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  1959. (void **)gang, 0,
  1960. ARRAY_SIZE(gang));
  1961. if (!ret)
  1962. break;
  1963. for (i = 0; i < ret; i++)
  1964. btrfs_drop_and_free_fs_root(fs_info, gang[i]);
  1965. }
  1966. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  1967. btrfs_free_log_root_tree(NULL, fs_info);
  1968. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  1969. }
  1970. }
  1971. static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
  1972. {
  1973. mutex_init(&fs_info->scrub_lock);
  1974. atomic_set(&fs_info->scrubs_running, 0);
  1975. atomic_set(&fs_info->scrub_pause_req, 0);
  1976. atomic_set(&fs_info->scrubs_paused, 0);
  1977. atomic_set(&fs_info->scrub_cancel_req, 0);
  1978. init_waitqueue_head(&fs_info->scrub_pause_wait);
  1979. fs_info->scrub_workers_refcnt = 0;
  1980. }
  1981. static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
  1982. {
  1983. spin_lock_init(&fs_info->balance_lock);
  1984. mutex_init(&fs_info->balance_mutex);
  1985. atomic_set(&fs_info->balance_running, 0);
  1986. atomic_set(&fs_info->balance_pause_req, 0);
  1987. atomic_set(&fs_info->balance_cancel_req, 0);
  1988. fs_info->balance_ctl = NULL;
  1989. init_waitqueue_head(&fs_info->balance_wait_q);
  1990. }
  1991. static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
  1992. {
  1993. struct inode *inode = fs_info->btree_inode;
  1994. inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
  1995. set_nlink(inode, 1);
  1996. /*
  1997. * we set the i_size on the btree inode to the max possible int.
  1998. * the real end of the address space is determined by all of
  1999. * the devices in the system
  2000. */
  2001. inode->i_size = OFFSET_MAX;
  2002. inode->i_mapping->a_ops = &btree_aops;
  2003. RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
  2004. extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
  2005. BTRFS_I(inode)->io_tree.track_uptodate = 0;
  2006. extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
  2007. BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
  2008. BTRFS_I(inode)->root = fs_info->tree_root;
  2009. memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
  2010. set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
  2011. btrfs_insert_inode_hash(inode);
  2012. }
  2013. static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
  2014. {
  2015. fs_info->dev_replace.lock_owner = 0;
  2016. atomic_set(&fs_info->dev_replace.nesting_level, 0);
  2017. mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
  2018. rwlock_init(&fs_info->dev_replace.lock);
  2019. atomic_set(&fs_info->dev_replace.read_locks, 0);
  2020. atomic_set(&fs_info->dev_replace.blocking_readers, 0);
  2021. init_waitqueue_head(&fs_info->replace_wait);
  2022. init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
  2023. }
  2024. static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
  2025. {
  2026. spin_lock_init(&fs_info->qgroup_lock);
  2027. mutex_init(&fs_info->qgroup_ioctl_lock);
  2028. fs_info->qgroup_tree = RB_ROOT;
  2029. fs_info->qgroup_op_tree = RB_ROOT;
  2030. INIT_LIST_HEAD(&fs_info->dirty_qgroups);
  2031. fs_info->qgroup_seq = 1;
  2032. fs_info->qgroup_ulist = NULL;
  2033. fs_info->qgroup_rescan_running = false;
  2034. mutex_init(&fs_info->qgroup_rescan_lock);
  2035. }
  2036. static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
  2037. struct btrfs_fs_devices *fs_devices)
  2038. {
  2039. int max_active = fs_info->thread_pool_size;
  2040. unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
  2041. fs_info->workers =
  2042. btrfs_alloc_workqueue(fs_info, "worker",
  2043. flags | WQ_HIGHPRI, max_active, 16);
  2044. fs_info->delalloc_workers =
  2045. btrfs_alloc_workqueue(fs_info, "delalloc",
  2046. flags, max_active, 2);
  2047. fs_info->flush_workers =
  2048. btrfs_alloc_workqueue(fs_info, "flush_delalloc",
  2049. flags, max_active, 0);
  2050. fs_info->caching_workers =
  2051. btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
  2052. /*
  2053. * a higher idle thresh on the submit workers makes it much more
  2054. * likely that bios will be send down in a sane order to the
  2055. * devices
  2056. */
  2057. fs_info->submit_workers =
  2058. btrfs_alloc_workqueue(fs_info, "submit", flags,
  2059. min_t(u64, fs_devices->num_devices,
  2060. max_active), 64);
  2061. fs_info->fixup_workers =
  2062. btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
  2063. /*
  2064. * endios are largely parallel and should have a very
  2065. * low idle thresh
  2066. */
  2067. fs_info->endio_workers =
  2068. btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
  2069. fs_info->endio_meta_workers =
  2070. btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
  2071. max_active, 4);
  2072. fs_info->endio_meta_write_workers =
  2073. btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
  2074. max_active, 2);
  2075. fs_info->endio_raid56_workers =
  2076. btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
  2077. max_active, 4);
  2078. fs_info->endio_repair_workers =
  2079. btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
  2080. fs_info->rmw_workers =
  2081. btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
  2082. fs_info->endio_write_workers =
  2083. btrfs_alloc_workqueue(fs_info, "endio-write", flags,
  2084. max_active, 2);
  2085. fs_info->endio_freespace_worker =
  2086. btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
  2087. max_active, 0);
  2088. fs_info->delayed_workers =
  2089. btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
  2090. max_active, 0);
  2091. fs_info->readahead_workers =
  2092. btrfs_alloc_workqueue(fs_info, "readahead", flags,
  2093. max_active, 2);
  2094. fs_info->qgroup_rescan_workers =
  2095. btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
  2096. fs_info->extent_workers =
  2097. btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
  2098. min_t(u64, fs_devices->num_devices,
  2099. max_active), 8);
  2100. if (!(fs_info->workers && fs_info->delalloc_workers &&
  2101. fs_info->submit_workers && fs_info->flush_workers &&
  2102. fs_info->endio_workers && fs_info->endio_meta_workers &&
  2103. fs_info->endio_meta_write_workers &&
  2104. fs_info->endio_repair_workers &&
  2105. fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
  2106. fs_info->endio_freespace_worker && fs_info->rmw_workers &&
  2107. fs_info->caching_workers && fs_info->readahead_workers &&
  2108. fs_info->fixup_workers && fs_info->delayed_workers &&
  2109. fs_info->extent_workers &&
  2110. fs_info->qgroup_rescan_workers)) {
  2111. return -ENOMEM;
  2112. }
  2113. return 0;
  2114. }
  2115. static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
  2116. struct btrfs_fs_devices *fs_devices)
  2117. {
  2118. int ret;
  2119. struct btrfs_root *log_tree_root;
  2120. struct btrfs_super_block *disk_super = fs_info->super_copy;
  2121. u64 bytenr = btrfs_super_log_root(disk_super);
  2122. if (fs_devices->rw_devices == 0) {
  2123. btrfs_warn(fs_info, "log replay required on RO media");
  2124. return -EIO;
  2125. }
  2126. log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2127. if (!log_tree_root)
  2128. return -ENOMEM;
  2129. __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
  2130. log_tree_root->node = read_tree_block(fs_info, bytenr,
  2131. fs_info->generation + 1);
  2132. if (IS_ERR(log_tree_root->node)) {
  2133. btrfs_warn(fs_info, "failed to read log tree");
  2134. ret = PTR_ERR(log_tree_root->node);
  2135. kfree(log_tree_root);
  2136. return ret;
  2137. } else if (!extent_buffer_uptodate(log_tree_root->node)) {
  2138. btrfs_err(fs_info, "failed to read log tree");
  2139. free_extent_buffer(log_tree_root->node);
  2140. kfree(log_tree_root);
  2141. return -EIO;
  2142. }
  2143. /* returns with log_tree_root freed on success */
  2144. ret = btrfs_recover_log_trees(log_tree_root);
  2145. if (ret) {
  2146. btrfs_handle_fs_error(fs_info, ret,
  2147. "Failed to recover log tree");
  2148. free_extent_buffer(log_tree_root->node);
  2149. kfree(log_tree_root);
  2150. return ret;
  2151. }
  2152. if (fs_info->sb->s_flags & MS_RDONLY) {
  2153. ret = btrfs_commit_super(fs_info);
  2154. if (ret)
  2155. return ret;
  2156. }
  2157. return 0;
  2158. }
  2159. static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
  2160. {
  2161. struct btrfs_root *tree_root = fs_info->tree_root;
  2162. struct btrfs_root *root;
  2163. struct btrfs_key location;
  2164. int ret;
  2165. BUG_ON(!fs_info->tree_root);
  2166. location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
  2167. location.type = BTRFS_ROOT_ITEM_KEY;
  2168. location.offset = 0;
  2169. root = btrfs_read_tree_root(tree_root, &location);
  2170. if (IS_ERR(root))
  2171. return PTR_ERR(root);
  2172. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2173. fs_info->extent_root = root;
  2174. location.objectid = BTRFS_DEV_TREE_OBJECTID;
  2175. root = btrfs_read_tree_root(tree_root, &location);
  2176. if (IS_ERR(root))
  2177. return PTR_ERR(root);
  2178. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2179. fs_info->dev_root = root;
  2180. btrfs_init_devices_late(fs_info);
  2181. location.objectid = BTRFS_CSUM_TREE_OBJECTID;
  2182. root = btrfs_read_tree_root(tree_root, &location);
  2183. if (IS_ERR(root))
  2184. return PTR_ERR(root);
  2185. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2186. fs_info->csum_root = root;
  2187. location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
  2188. root = btrfs_read_tree_root(tree_root, &location);
  2189. if (!IS_ERR(root)) {
  2190. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2191. set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
  2192. fs_info->quota_root = root;
  2193. }
  2194. location.objectid = BTRFS_UUID_TREE_OBJECTID;
  2195. root = btrfs_read_tree_root(tree_root, &location);
  2196. if (IS_ERR(root)) {
  2197. ret = PTR_ERR(root);
  2198. if (ret != -ENOENT)
  2199. return ret;
  2200. } else {
  2201. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2202. fs_info->uuid_root = root;
  2203. }
  2204. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2205. location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
  2206. root = btrfs_read_tree_root(tree_root, &location);
  2207. if (IS_ERR(root))
  2208. return PTR_ERR(root);
  2209. set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
  2210. fs_info->free_space_root = root;
  2211. }
  2212. return 0;
  2213. }
  2214. int open_ctree(struct super_block *sb,
  2215. struct btrfs_fs_devices *fs_devices,
  2216. char *options)
  2217. {
  2218. u32 sectorsize;
  2219. u32 nodesize;
  2220. u32 stripesize;
  2221. u64 generation;
  2222. u64 features;
  2223. struct btrfs_key location;
  2224. struct buffer_head *bh;
  2225. struct btrfs_super_block *disk_super;
  2226. struct btrfs_fs_info *fs_info = btrfs_sb(sb);
  2227. struct btrfs_root *tree_root;
  2228. struct btrfs_root *chunk_root;
  2229. int ret;
  2230. int err = -EINVAL;
  2231. int num_backups_tried = 0;
  2232. int backup_index = 0;
  2233. int max_active;
  2234. int clear_free_space_tree = 0;
  2235. tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2236. chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
  2237. if (!tree_root || !chunk_root) {
  2238. err = -ENOMEM;
  2239. goto fail;
  2240. }
  2241. ret = init_srcu_struct(&fs_info->subvol_srcu);
  2242. if (ret) {
  2243. err = ret;
  2244. goto fail;
  2245. }
  2246. ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
  2247. if (ret) {
  2248. err = ret;
  2249. goto fail_srcu;
  2250. }
  2251. fs_info->dirty_metadata_batch = PAGE_SIZE *
  2252. (1 + ilog2(nr_cpu_ids));
  2253. ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
  2254. if (ret) {
  2255. err = ret;
  2256. goto fail_dirty_metadata_bytes;
  2257. }
  2258. ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
  2259. if (ret) {
  2260. err = ret;
  2261. goto fail_delalloc_bytes;
  2262. }
  2263. fs_info->btree_inode = new_inode(sb);
  2264. if (!fs_info->btree_inode) {
  2265. err = -ENOMEM;
  2266. goto fail_bio_counter;
  2267. }
  2268. mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
  2269. INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
  2270. INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
  2271. INIT_LIST_HEAD(&fs_info->trans_list);
  2272. INIT_LIST_HEAD(&fs_info->dead_roots);
  2273. INIT_LIST_HEAD(&fs_info->delayed_iputs);
  2274. INIT_LIST_HEAD(&fs_info->delalloc_roots);
  2275. INIT_LIST_HEAD(&fs_info->caching_block_groups);
  2276. spin_lock_init(&fs_info->delalloc_root_lock);
  2277. spin_lock_init(&fs_info->trans_lock);
  2278. spin_lock_init(&fs_info->fs_roots_radix_lock);
  2279. spin_lock_init(&fs_info->delayed_iput_lock);
  2280. spin_lock_init(&fs_info->defrag_inodes_lock);
  2281. spin_lock_init(&fs_info->tree_mod_seq_lock);
  2282. spin_lock_init(&fs_info->super_lock);
  2283. spin_lock_init(&fs_info->qgroup_op_lock);
  2284. spin_lock_init(&fs_info->buffer_lock);
  2285. spin_lock_init(&fs_info->unused_bgs_lock);
  2286. rwlock_init(&fs_info->tree_mod_log_lock);
  2287. mutex_init(&fs_info->unused_bg_unpin_mutex);
  2288. mutex_init(&fs_info->delete_unused_bgs_mutex);
  2289. mutex_init(&fs_info->reloc_mutex);
  2290. mutex_init(&fs_info->delalloc_root_mutex);
  2291. mutex_init(&fs_info->cleaner_delayed_iput_mutex);
  2292. seqlock_init(&fs_info->profiles_lock);
  2293. INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
  2294. INIT_LIST_HEAD(&fs_info->space_info);
  2295. INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
  2296. INIT_LIST_HEAD(&fs_info->unused_bgs);
  2297. btrfs_mapping_init(&fs_info->mapping_tree);
  2298. btrfs_init_block_rsv(&fs_info->global_block_rsv,
  2299. BTRFS_BLOCK_RSV_GLOBAL);
  2300. btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
  2301. BTRFS_BLOCK_RSV_DELALLOC);
  2302. btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
  2303. btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
  2304. btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
  2305. btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
  2306. BTRFS_BLOCK_RSV_DELOPS);
  2307. atomic_set(&fs_info->nr_async_submits, 0);
  2308. atomic_set(&fs_info->async_delalloc_pages, 0);
  2309. atomic_set(&fs_info->async_submit_draining, 0);
  2310. atomic_set(&fs_info->nr_async_bios, 0);
  2311. atomic_set(&fs_info->defrag_running, 0);
  2312. atomic_set(&fs_info->qgroup_op_seq, 0);
  2313. atomic_set(&fs_info->reada_works_cnt, 0);
  2314. atomic64_set(&fs_info->tree_mod_seq, 0);
  2315. fs_info->sb = sb;
  2316. fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
  2317. fs_info->metadata_ratio = 0;
  2318. fs_info->defrag_inodes = RB_ROOT;
  2319. atomic64_set(&fs_info->free_chunk_space, 0);
  2320. fs_info->tree_mod_log = RB_ROOT;
  2321. fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
  2322. fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
  2323. /* readahead state */
  2324. INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
  2325. spin_lock_init(&fs_info->reada_lock);
  2326. fs_info->thread_pool_size = min_t(unsigned long,
  2327. num_online_cpus() + 2, 8);
  2328. INIT_LIST_HEAD(&fs_info->ordered_roots);
  2329. spin_lock_init(&fs_info->ordered_root_lock);
  2330. fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
  2331. GFP_KERNEL);
  2332. if (!fs_info->delayed_root) {
  2333. err = -ENOMEM;
  2334. goto fail_iput;
  2335. }
  2336. btrfs_init_delayed_root(fs_info->delayed_root);
  2337. btrfs_init_scrub(fs_info);
  2338. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2339. fs_info->check_integrity_print_mask = 0;
  2340. #endif
  2341. btrfs_init_balance(fs_info);
  2342. btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
  2343. sb->s_blocksize = 4096;
  2344. sb->s_blocksize_bits = blksize_bits(4096);
  2345. btrfs_init_btree_inode(fs_info);
  2346. spin_lock_init(&fs_info->block_group_cache_lock);
  2347. fs_info->block_group_cache_tree = RB_ROOT;
  2348. fs_info->first_logical_byte = (u64)-1;
  2349. extent_io_tree_init(&fs_info->freed_extents[0], NULL);
  2350. extent_io_tree_init(&fs_info->freed_extents[1], NULL);
  2351. fs_info->pinned_extents = &fs_info->freed_extents[0];
  2352. set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
  2353. mutex_init(&fs_info->ordered_operations_mutex);
  2354. mutex_init(&fs_info->tree_log_mutex);
  2355. mutex_init(&fs_info->chunk_mutex);
  2356. mutex_init(&fs_info->transaction_kthread_mutex);
  2357. mutex_init(&fs_info->cleaner_mutex);
  2358. mutex_init(&fs_info->volume_mutex);
  2359. mutex_init(&fs_info->ro_block_group_mutex);
  2360. init_rwsem(&fs_info->commit_root_sem);
  2361. init_rwsem(&fs_info->cleanup_work_sem);
  2362. init_rwsem(&fs_info->subvol_sem);
  2363. sema_init(&fs_info->uuid_tree_rescan_sem, 1);
  2364. btrfs_init_dev_replace_locks(fs_info);
  2365. btrfs_init_qgroup(fs_info);
  2366. btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
  2367. btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
  2368. init_waitqueue_head(&fs_info->transaction_throttle);
  2369. init_waitqueue_head(&fs_info->transaction_wait);
  2370. init_waitqueue_head(&fs_info->transaction_blocked_wait);
  2371. init_waitqueue_head(&fs_info->async_submit_wait);
  2372. INIT_LIST_HEAD(&fs_info->pinned_chunks);
  2373. /* Usable values until the real ones are cached from the superblock */
  2374. fs_info->nodesize = 4096;
  2375. fs_info->sectorsize = 4096;
  2376. fs_info->stripesize = 4096;
  2377. ret = btrfs_alloc_stripe_hash_table(fs_info);
  2378. if (ret) {
  2379. err = ret;
  2380. goto fail_alloc;
  2381. }
  2382. __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
  2383. invalidate_bdev(fs_devices->latest_bdev);
  2384. /*
  2385. * Read super block and check the signature bytes only
  2386. */
  2387. bh = btrfs_read_dev_super(fs_devices->latest_bdev);
  2388. if (IS_ERR(bh)) {
  2389. err = PTR_ERR(bh);
  2390. goto fail_alloc;
  2391. }
  2392. /*
  2393. * We want to check superblock checksum, the type is stored inside.
  2394. * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
  2395. */
  2396. if (btrfs_check_super_csum(fs_info, bh->b_data)) {
  2397. btrfs_err(fs_info, "superblock checksum mismatch");
  2398. err = -EINVAL;
  2399. brelse(bh);
  2400. goto fail_alloc;
  2401. }
  2402. /*
  2403. * super_copy is zeroed at allocation time and we never touch the
  2404. * following bytes up to INFO_SIZE, the checksum is calculated from
  2405. * the whole block of INFO_SIZE
  2406. */
  2407. memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
  2408. memcpy(fs_info->super_for_commit, fs_info->super_copy,
  2409. sizeof(*fs_info->super_for_commit));
  2410. brelse(bh);
  2411. memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
  2412. ret = btrfs_check_super_valid(fs_info);
  2413. if (ret) {
  2414. btrfs_err(fs_info, "superblock contains fatal errors");
  2415. err = -EINVAL;
  2416. goto fail_alloc;
  2417. }
  2418. disk_super = fs_info->super_copy;
  2419. if (!btrfs_super_root(disk_super))
  2420. goto fail_alloc;
  2421. /* check FS state, whether FS is broken. */
  2422. if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
  2423. set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
  2424. /*
  2425. * run through our array of backup supers and setup
  2426. * our ring pointer to the oldest one
  2427. */
  2428. generation = btrfs_super_generation(disk_super);
  2429. find_oldest_super_backup(fs_info, generation);
  2430. /*
  2431. * In the long term, we'll store the compression type in the super
  2432. * block, and it'll be used for per file compression control.
  2433. */
  2434. fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
  2435. ret = btrfs_parse_options(fs_info, options, sb->s_flags);
  2436. if (ret) {
  2437. err = ret;
  2438. goto fail_alloc;
  2439. }
  2440. features = btrfs_super_incompat_flags(disk_super) &
  2441. ~BTRFS_FEATURE_INCOMPAT_SUPP;
  2442. if (features) {
  2443. btrfs_err(fs_info,
  2444. "cannot mount because of unsupported optional features (%llx)",
  2445. features);
  2446. err = -EINVAL;
  2447. goto fail_alloc;
  2448. }
  2449. features = btrfs_super_incompat_flags(disk_super);
  2450. features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
  2451. if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
  2452. features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
  2453. if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
  2454. btrfs_info(fs_info, "has skinny extents");
  2455. /*
  2456. * flag our filesystem as having big metadata blocks if
  2457. * they are bigger than the page size
  2458. */
  2459. if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
  2460. if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
  2461. btrfs_info(fs_info,
  2462. "flagging fs with big metadata feature");
  2463. features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
  2464. }
  2465. nodesize = btrfs_super_nodesize(disk_super);
  2466. sectorsize = btrfs_super_sectorsize(disk_super);
  2467. stripesize = sectorsize;
  2468. fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
  2469. fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
  2470. /* Cache block sizes */
  2471. fs_info->nodesize = nodesize;
  2472. fs_info->sectorsize = sectorsize;
  2473. fs_info->stripesize = stripesize;
  2474. /*
  2475. * mixed block groups end up with duplicate but slightly offset
  2476. * extent buffers for the same range. It leads to corruptions
  2477. */
  2478. if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
  2479. (sectorsize != nodesize)) {
  2480. btrfs_err(fs_info,
  2481. "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
  2482. nodesize, sectorsize);
  2483. goto fail_alloc;
  2484. }
  2485. /*
  2486. * Needn't use the lock because there is no other task which will
  2487. * update the flag.
  2488. */
  2489. btrfs_set_super_incompat_flags(disk_super, features);
  2490. features = btrfs_super_compat_ro_flags(disk_super) &
  2491. ~BTRFS_FEATURE_COMPAT_RO_SUPP;
  2492. if (!(sb->s_flags & MS_RDONLY) && features) {
  2493. btrfs_err(fs_info,
  2494. "cannot mount read-write because of unsupported optional features (%llx)",
  2495. features);
  2496. err = -EINVAL;
  2497. goto fail_alloc;
  2498. }
  2499. max_active = fs_info->thread_pool_size;
  2500. ret = btrfs_init_workqueues(fs_info, fs_devices);
  2501. if (ret) {
  2502. err = ret;
  2503. goto fail_sb_buffer;
  2504. }
  2505. sb->s_bdi->congested_fn = btrfs_congested_fn;
  2506. sb->s_bdi->congested_data = fs_info;
  2507. sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
  2508. sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
  2509. sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
  2510. sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
  2511. sb->s_blocksize = sectorsize;
  2512. sb->s_blocksize_bits = blksize_bits(sectorsize);
  2513. mutex_lock(&fs_info->chunk_mutex);
  2514. ret = btrfs_read_sys_array(fs_info);
  2515. mutex_unlock(&fs_info->chunk_mutex);
  2516. if (ret) {
  2517. btrfs_err(fs_info, "failed to read the system array: %d", ret);
  2518. goto fail_sb_buffer;
  2519. }
  2520. generation = btrfs_super_chunk_root_generation(disk_super);
  2521. __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
  2522. chunk_root->node = read_tree_block(fs_info,
  2523. btrfs_super_chunk_root(disk_super),
  2524. generation);
  2525. if (IS_ERR(chunk_root->node) ||
  2526. !extent_buffer_uptodate(chunk_root->node)) {
  2527. btrfs_err(fs_info, "failed to read chunk root");
  2528. if (!IS_ERR(chunk_root->node))
  2529. free_extent_buffer(chunk_root->node);
  2530. chunk_root->node = NULL;
  2531. goto fail_tree_roots;
  2532. }
  2533. btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
  2534. chunk_root->commit_root = btrfs_root_node(chunk_root);
  2535. read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
  2536. btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
  2537. ret = btrfs_read_chunk_tree(fs_info);
  2538. if (ret) {
  2539. btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
  2540. goto fail_tree_roots;
  2541. }
  2542. /*
  2543. * keep the device that is marked to be the target device for the
  2544. * dev_replace procedure
  2545. */
  2546. btrfs_close_extra_devices(fs_devices, 0);
  2547. if (!fs_devices->latest_bdev) {
  2548. btrfs_err(fs_info, "failed to read devices");
  2549. goto fail_tree_roots;
  2550. }
  2551. retry_root_backup:
  2552. generation = btrfs_super_generation(disk_super);
  2553. tree_root->node = read_tree_block(fs_info,
  2554. btrfs_super_root(disk_super),
  2555. generation);
  2556. if (IS_ERR(tree_root->node) ||
  2557. !extent_buffer_uptodate(tree_root->node)) {
  2558. btrfs_warn(fs_info, "failed to read tree root");
  2559. if (!IS_ERR(tree_root->node))
  2560. free_extent_buffer(tree_root->node);
  2561. tree_root->node = NULL;
  2562. goto recovery_tree_root;
  2563. }
  2564. btrfs_set_root_node(&tree_root->root_item, tree_root->node);
  2565. tree_root->commit_root = btrfs_root_node(tree_root);
  2566. btrfs_set_root_refs(&tree_root->root_item, 1);
  2567. mutex_lock(&tree_root->objectid_mutex);
  2568. ret = btrfs_find_highest_objectid(tree_root,
  2569. &tree_root->highest_objectid);
  2570. if (ret) {
  2571. mutex_unlock(&tree_root->objectid_mutex);
  2572. goto recovery_tree_root;
  2573. }
  2574. ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
  2575. mutex_unlock(&tree_root->objectid_mutex);
  2576. ret = btrfs_read_roots(fs_info);
  2577. if (ret)
  2578. goto recovery_tree_root;
  2579. fs_info->generation = generation;
  2580. fs_info->last_trans_committed = generation;
  2581. ret = btrfs_recover_balance(fs_info);
  2582. if (ret) {
  2583. btrfs_err(fs_info, "failed to recover balance: %d", ret);
  2584. goto fail_block_groups;
  2585. }
  2586. ret = btrfs_init_dev_stats(fs_info);
  2587. if (ret) {
  2588. btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
  2589. goto fail_block_groups;
  2590. }
  2591. ret = btrfs_init_dev_replace(fs_info);
  2592. if (ret) {
  2593. btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
  2594. goto fail_block_groups;
  2595. }
  2596. btrfs_close_extra_devices(fs_devices, 1);
  2597. ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
  2598. if (ret) {
  2599. btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
  2600. ret);
  2601. goto fail_block_groups;
  2602. }
  2603. ret = btrfs_sysfs_add_device(fs_devices);
  2604. if (ret) {
  2605. btrfs_err(fs_info, "failed to init sysfs device interface: %d",
  2606. ret);
  2607. goto fail_fsdev_sysfs;
  2608. }
  2609. ret = btrfs_sysfs_add_mounted(fs_info);
  2610. if (ret) {
  2611. btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
  2612. goto fail_fsdev_sysfs;
  2613. }
  2614. ret = btrfs_init_space_info(fs_info);
  2615. if (ret) {
  2616. btrfs_err(fs_info, "failed to initialize space info: %d", ret);
  2617. goto fail_sysfs;
  2618. }
  2619. ret = btrfs_read_block_groups(fs_info);
  2620. if (ret) {
  2621. btrfs_err(fs_info, "failed to read block groups: %d", ret);
  2622. goto fail_sysfs;
  2623. }
  2624. fs_info->num_tolerated_disk_barrier_failures =
  2625. btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
  2626. if (fs_info->fs_devices->missing_devices >
  2627. fs_info->num_tolerated_disk_barrier_failures &&
  2628. !(sb->s_flags & MS_RDONLY)) {
  2629. btrfs_warn(fs_info,
  2630. "missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
  2631. fs_info->fs_devices->missing_devices,
  2632. fs_info->num_tolerated_disk_barrier_failures);
  2633. goto fail_sysfs;
  2634. }
  2635. fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
  2636. "btrfs-cleaner");
  2637. if (IS_ERR(fs_info->cleaner_kthread))
  2638. goto fail_sysfs;
  2639. fs_info->transaction_kthread = kthread_run(transaction_kthread,
  2640. tree_root,
  2641. "btrfs-transaction");
  2642. if (IS_ERR(fs_info->transaction_kthread))
  2643. goto fail_cleaner;
  2644. if (!btrfs_test_opt(fs_info, SSD) &&
  2645. !btrfs_test_opt(fs_info, NOSSD) &&
  2646. !fs_info->fs_devices->rotating) {
  2647. btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
  2648. btrfs_set_opt(fs_info->mount_opt, SSD);
  2649. }
  2650. /*
  2651. * Mount does not set all options immediately, we can do it now and do
  2652. * not have to wait for transaction commit
  2653. */
  2654. btrfs_apply_pending_changes(fs_info);
  2655. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  2656. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
  2657. ret = btrfsic_mount(fs_info, fs_devices,
  2658. btrfs_test_opt(fs_info,
  2659. CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
  2660. 1 : 0,
  2661. fs_info->check_integrity_print_mask);
  2662. if (ret)
  2663. btrfs_warn(fs_info,
  2664. "failed to initialize integrity check module: %d",
  2665. ret);
  2666. }
  2667. #endif
  2668. ret = btrfs_read_qgroup_config(fs_info);
  2669. if (ret)
  2670. goto fail_trans_kthread;
  2671. /* do not make disk changes in broken FS or nologreplay is given */
  2672. if (btrfs_super_log_root(disk_super) != 0 &&
  2673. !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
  2674. ret = btrfs_replay_log(fs_info, fs_devices);
  2675. if (ret) {
  2676. err = ret;
  2677. goto fail_qgroup;
  2678. }
  2679. }
  2680. ret = btrfs_find_orphan_roots(fs_info);
  2681. if (ret)
  2682. goto fail_qgroup;
  2683. if (!(sb->s_flags & MS_RDONLY)) {
  2684. ret = btrfs_cleanup_fs_roots(fs_info);
  2685. if (ret)
  2686. goto fail_qgroup;
  2687. mutex_lock(&fs_info->cleaner_mutex);
  2688. ret = btrfs_recover_relocation(tree_root);
  2689. mutex_unlock(&fs_info->cleaner_mutex);
  2690. if (ret < 0) {
  2691. btrfs_warn(fs_info, "failed to recover relocation: %d",
  2692. ret);
  2693. err = -EINVAL;
  2694. goto fail_qgroup;
  2695. }
  2696. }
  2697. location.objectid = BTRFS_FS_TREE_OBJECTID;
  2698. location.type = BTRFS_ROOT_ITEM_KEY;
  2699. location.offset = 0;
  2700. fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
  2701. if (IS_ERR(fs_info->fs_root)) {
  2702. err = PTR_ERR(fs_info->fs_root);
  2703. goto fail_qgroup;
  2704. }
  2705. if (sb->s_flags & MS_RDONLY)
  2706. return 0;
  2707. if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
  2708. btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2709. clear_free_space_tree = 1;
  2710. } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
  2711. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
  2712. btrfs_warn(fs_info, "free space tree is invalid");
  2713. clear_free_space_tree = 1;
  2714. }
  2715. if (clear_free_space_tree) {
  2716. btrfs_info(fs_info, "clearing free space tree");
  2717. ret = btrfs_clear_free_space_tree(fs_info);
  2718. if (ret) {
  2719. btrfs_warn(fs_info,
  2720. "failed to clear free space tree: %d", ret);
  2721. close_ctree(fs_info);
  2722. return ret;
  2723. }
  2724. }
  2725. if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
  2726. !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
  2727. btrfs_info(fs_info, "creating free space tree");
  2728. ret = btrfs_create_free_space_tree(fs_info);
  2729. if (ret) {
  2730. btrfs_warn(fs_info,
  2731. "failed to create free space tree: %d", ret);
  2732. close_ctree(fs_info);
  2733. return ret;
  2734. }
  2735. }
  2736. down_read(&fs_info->cleanup_work_sem);
  2737. if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
  2738. (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
  2739. up_read(&fs_info->cleanup_work_sem);
  2740. close_ctree(fs_info);
  2741. return ret;
  2742. }
  2743. up_read(&fs_info->cleanup_work_sem);
  2744. ret = btrfs_resume_balance_async(fs_info);
  2745. if (ret) {
  2746. btrfs_warn(fs_info, "failed to resume balance: %d", ret);
  2747. close_ctree(fs_info);
  2748. return ret;
  2749. }
  2750. ret = btrfs_resume_dev_replace_async(fs_info);
  2751. if (ret) {
  2752. btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
  2753. close_ctree(fs_info);
  2754. return ret;
  2755. }
  2756. btrfs_qgroup_rescan_resume(fs_info);
  2757. if (!fs_info->uuid_root) {
  2758. btrfs_info(fs_info, "creating UUID tree");
  2759. ret = btrfs_create_uuid_tree(fs_info);
  2760. if (ret) {
  2761. btrfs_warn(fs_info,
  2762. "failed to create the UUID tree: %d", ret);
  2763. close_ctree(fs_info);
  2764. return ret;
  2765. }
  2766. } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
  2767. fs_info->generation !=
  2768. btrfs_super_uuid_tree_generation(disk_super)) {
  2769. btrfs_info(fs_info, "checking UUID tree");
  2770. ret = btrfs_check_uuid_tree(fs_info);
  2771. if (ret) {
  2772. btrfs_warn(fs_info,
  2773. "failed to check the UUID tree: %d", ret);
  2774. close_ctree(fs_info);
  2775. return ret;
  2776. }
  2777. } else {
  2778. set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
  2779. }
  2780. set_bit(BTRFS_FS_OPEN, &fs_info->flags);
  2781. /*
  2782. * backuproot only affect mount behavior, and if open_ctree succeeded,
  2783. * no need to keep the flag
  2784. */
  2785. btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
  2786. return 0;
  2787. fail_qgroup:
  2788. btrfs_free_qgroup_config(fs_info);
  2789. fail_trans_kthread:
  2790. kthread_stop(fs_info->transaction_kthread);
  2791. btrfs_cleanup_transaction(fs_info);
  2792. btrfs_free_fs_roots(fs_info);
  2793. fail_cleaner:
  2794. kthread_stop(fs_info->cleaner_kthread);
  2795. /*
  2796. * make sure we're done with the btree inode before we stop our
  2797. * kthreads
  2798. */
  2799. filemap_write_and_wait(fs_info->btree_inode->i_mapping);
  2800. fail_sysfs:
  2801. btrfs_sysfs_remove_mounted(fs_info);
  2802. fail_fsdev_sysfs:
  2803. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  2804. fail_block_groups:
  2805. btrfs_put_block_group_cache(fs_info);
  2806. fail_tree_roots:
  2807. free_root_pointers(fs_info, 1);
  2808. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  2809. fail_sb_buffer:
  2810. btrfs_stop_all_workers(fs_info);
  2811. btrfs_free_block_groups(fs_info);
  2812. fail_alloc:
  2813. fail_iput:
  2814. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  2815. iput(fs_info->btree_inode);
  2816. fail_bio_counter:
  2817. percpu_counter_destroy(&fs_info->bio_counter);
  2818. fail_delalloc_bytes:
  2819. percpu_counter_destroy(&fs_info->delalloc_bytes);
  2820. fail_dirty_metadata_bytes:
  2821. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  2822. fail_srcu:
  2823. cleanup_srcu_struct(&fs_info->subvol_srcu);
  2824. fail:
  2825. btrfs_free_stripe_hash_table(fs_info);
  2826. btrfs_close_devices(fs_info->fs_devices);
  2827. return err;
  2828. recovery_tree_root:
  2829. if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
  2830. goto fail_tree_roots;
  2831. free_root_pointers(fs_info, 0);
  2832. /* don't use the log in recovery mode, it won't be valid */
  2833. btrfs_set_super_log_root(disk_super, 0);
  2834. /* we can't trust the free space cache either */
  2835. btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
  2836. ret = next_root_backup(fs_info, fs_info->super_copy,
  2837. &num_backups_tried, &backup_index);
  2838. if (ret == -1)
  2839. goto fail_block_groups;
  2840. goto retry_root_backup;
  2841. }
  2842. static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
  2843. {
  2844. if (uptodate) {
  2845. set_buffer_uptodate(bh);
  2846. } else {
  2847. struct btrfs_device *device = (struct btrfs_device *)
  2848. bh->b_private;
  2849. btrfs_warn_rl_in_rcu(device->fs_info,
  2850. "lost page write due to IO error on %s",
  2851. rcu_str_deref(device->name));
  2852. /* note, we don't set_buffer_write_io_error because we have
  2853. * our own ways of dealing with the IO errors
  2854. */
  2855. clear_buffer_uptodate(bh);
  2856. btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
  2857. }
  2858. unlock_buffer(bh);
  2859. put_bh(bh);
  2860. }
  2861. int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
  2862. struct buffer_head **bh_ret)
  2863. {
  2864. struct buffer_head *bh;
  2865. struct btrfs_super_block *super;
  2866. u64 bytenr;
  2867. bytenr = btrfs_sb_offset(copy_num);
  2868. if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
  2869. return -EINVAL;
  2870. bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
  2871. /*
  2872. * If we fail to read from the underlying devices, as of now
  2873. * the best option we have is to mark it EIO.
  2874. */
  2875. if (!bh)
  2876. return -EIO;
  2877. super = (struct btrfs_super_block *)bh->b_data;
  2878. if (btrfs_super_bytenr(super) != bytenr ||
  2879. btrfs_super_magic(super) != BTRFS_MAGIC) {
  2880. brelse(bh);
  2881. return -EINVAL;
  2882. }
  2883. *bh_ret = bh;
  2884. return 0;
  2885. }
  2886. struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
  2887. {
  2888. struct buffer_head *bh;
  2889. struct buffer_head *latest = NULL;
  2890. struct btrfs_super_block *super;
  2891. int i;
  2892. u64 transid = 0;
  2893. int ret = -EINVAL;
  2894. /* we would like to check all the supers, but that would make
  2895. * a btrfs mount succeed after a mkfs from a different FS.
  2896. * So, we need to add a special mount option to scan for
  2897. * later supers, using BTRFS_SUPER_MIRROR_MAX instead
  2898. */
  2899. for (i = 0; i < 1; i++) {
  2900. ret = btrfs_read_dev_one_super(bdev, i, &bh);
  2901. if (ret)
  2902. continue;
  2903. super = (struct btrfs_super_block *)bh->b_data;
  2904. if (!latest || btrfs_super_generation(super) > transid) {
  2905. brelse(latest);
  2906. latest = bh;
  2907. transid = btrfs_super_generation(super);
  2908. } else {
  2909. brelse(bh);
  2910. }
  2911. }
  2912. if (!latest)
  2913. return ERR_PTR(ret);
  2914. return latest;
  2915. }
  2916. /*
  2917. * this should be called twice, once with wait == 0 and
  2918. * once with wait == 1. When wait == 0 is done, all the buffer heads
  2919. * we write are pinned.
  2920. *
  2921. * They are released when wait == 1 is done.
  2922. * max_mirrors must be the same for both runs, and it indicates how
  2923. * many supers on this one device should be written.
  2924. *
  2925. * max_mirrors == 0 means to write them all.
  2926. */
  2927. static int write_dev_supers(struct btrfs_device *device,
  2928. struct btrfs_super_block *sb,
  2929. int wait, int max_mirrors)
  2930. {
  2931. struct buffer_head *bh;
  2932. int i;
  2933. int ret;
  2934. int errors = 0;
  2935. u32 crc;
  2936. u64 bytenr;
  2937. if (max_mirrors == 0)
  2938. max_mirrors = BTRFS_SUPER_MIRROR_MAX;
  2939. for (i = 0; i < max_mirrors; i++) {
  2940. bytenr = btrfs_sb_offset(i);
  2941. if (bytenr + BTRFS_SUPER_INFO_SIZE >=
  2942. device->commit_total_bytes)
  2943. break;
  2944. if (wait) {
  2945. bh = __find_get_block(device->bdev, bytenr / 4096,
  2946. BTRFS_SUPER_INFO_SIZE);
  2947. if (!bh) {
  2948. errors++;
  2949. continue;
  2950. }
  2951. wait_on_buffer(bh);
  2952. if (!buffer_uptodate(bh))
  2953. errors++;
  2954. /* drop our reference */
  2955. brelse(bh);
  2956. /* drop the reference from the wait == 0 run */
  2957. brelse(bh);
  2958. continue;
  2959. } else {
  2960. btrfs_set_super_bytenr(sb, bytenr);
  2961. crc = ~(u32)0;
  2962. crc = btrfs_csum_data((const char *)sb +
  2963. BTRFS_CSUM_SIZE, crc,
  2964. BTRFS_SUPER_INFO_SIZE -
  2965. BTRFS_CSUM_SIZE);
  2966. btrfs_csum_final(crc, sb->csum);
  2967. /*
  2968. * one reference for us, and we leave it for the
  2969. * caller
  2970. */
  2971. bh = __getblk(device->bdev, bytenr / 4096,
  2972. BTRFS_SUPER_INFO_SIZE);
  2973. if (!bh) {
  2974. btrfs_err(device->fs_info,
  2975. "couldn't get super buffer head for bytenr %llu",
  2976. bytenr);
  2977. errors++;
  2978. continue;
  2979. }
  2980. memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
  2981. /* one reference for submit_bh */
  2982. get_bh(bh);
  2983. set_buffer_uptodate(bh);
  2984. lock_buffer(bh);
  2985. bh->b_end_io = btrfs_end_buffer_write_sync;
  2986. bh->b_private = device;
  2987. }
  2988. /*
  2989. * we fua the first super. The others we allow
  2990. * to go down lazy.
  2991. */
  2992. if (i == 0) {
  2993. ret = btrfsic_submit_bh(REQ_OP_WRITE,
  2994. REQ_SYNC | REQ_FUA, bh);
  2995. } else {
  2996. ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
  2997. }
  2998. if (ret)
  2999. errors++;
  3000. }
  3001. return errors < i ? 0 : -1;
  3002. }
  3003. /*
  3004. * endio for the write_dev_flush, this will wake anyone waiting
  3005. * for the barrier when it is done
  3006. */
  3007. static void btrfs_end_empty_barrier(struct bio *bio)
  3008. {
  3009. complete(bio->bi_private);
  3010. }
  3011. /*
  3012. * Submit a flush request to the device if it supports it. Error handling is
  3013. * done in the waiting counterpart.
  3014. */
  3015. static void write_dev_flush(struct btrfs_device *device)
  3016. {
  3017. struct request_queue *q = bdev_get_queue(device->bdev);
  3018. struct bio *bio = device->flush_bio;
  3019. if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
  3020. return;
  3021. bio_reset(bio);
  3022. bio->bi_end_io = btrfs_end_empty_barrier;
  3023. bio->bi_bdev = device->bdev;
  3024. bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
  3025. init_completion(&device->flush_wait);
  3026. bio->bi_private = &device->flush_wait;
  3027. submit_bio(bio);
  3028. device->flush_bio_sent = 1;
  3029. }
  3030. /*
  3031. * If the flush bio has been submitted by write_dev_flush, wait for it.
  3032. */
  3033. static blk_status_t wait_dev_flush(struct btrfs_device *device)
  3034. {
  3035. struct bio *bio = device->flush_bio;
  3036. if (!device->flush_bio_sent)
  3037. return 0;
  3038. device->flush_bio_sent = 0;
  3039. wait_for_completion_io(&device->flush_wait);
  3040. return bio->bi_status;
  3041. }
  3042. static int check_barrier_error(struct btrfs_fs_devices *fsdevs)
  3043. {
  3044. int dev_flush_error = 0;
  3045. struct btrfs_device *dev;
  3046. list_for_each_entry_rcu(dev, &fsdevs->devices, dev_list) {
  3047. if (!dev->bdev || dev->last_flush_error)
  3048. dev_flush_error++;
  3049. }
  3050. if (dev_flush_error >
  3051. fsdevs->fs_info->num_tolerated_disk_barrier_failures)
  3052. return -EIO;
  3053. return 0;
  3054. }
  3055. /*
  3056. * send an empty flush down to each device in parallel,
  3057. * then wait for them
  3058. */
  3059. static int barrier_all_devices(struct btrfs_fs_info *info)
  3060. {
  3061. struct list_head *head;
  3062. struct btrfs_device *dev;
  3063. int errors_wait = 0;
  3064. blk_status_t ret;
  3065. /* send down all the barriers */
  3066. head = &info->fs_devices->devices;
  3067. list_for_each_entry_rcu(dev, head, dev_list) {
  3068. if (dev->missing)
  3069. continue;
  3070. if (!dev->bdev)
  3071. continue;
  3072. if (!dev->in_fs_metadata || !dev->writeable)
  3073. continue;
  3074. write_dev_flush(dev);
  3075. dev->last_flush_error = 0;
  3076. }
  3077. /* wait for all the barriers */
  3078. list_for_each_entry_rcu(dev, head, dev_list) {
  3079. if (dev->missing)
  3080. continue;
  3081. if (!dev->bdev) {
  3082. errors_wait++;
  3083. continue;
  3084. }
  3085. if (!dev->in_fs_metadata || !dev->writeable)
  3086. continue;
  3087. ret = wait_dev_flush(dev);
  3088. if (ret) {
  3089. dev->last_flush_error = ret;
  3090. btrfs_dev_stat_inc_and_print(dev,
  3091. BTRFS_DEV_STAT_FLUSH_ERRS);
  3092. errors_wait++;
  3093. }
  3094. }
  3095. if (errors_wait) {
  3096. /*
  3097. * At some point we need the status of all disks
  3098. * to arrive at the volume status. So error checking
  3099. * is being pushed to a separate loop.
  3100. */
  3101. return check_barrier_error(info->fs_devices);
  3102. }
  3103. return 0;
  3104. }
  3105. int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
  3106. {
  3107. int raid_type;
  3108. int min_tolerated = INT_MAX;
  3109. if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
  3110. (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
  3111. min_tolerated = min(min_tolerated,
  3112. btrfs_raid_array[BTRFS_RAID_SINGLE].
  3113. tolerated_failures);
  3114. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3115. if (raid_type == BTRFS_RAID_SINGLE)
  3116. continue;
  3117. if (!(flags & btrfs_raid_group[raid_type]))
  3118. continue;
  3119. min_tolerated = min(min_tolerated,
  3120. btrfs_raid_array[raid_type].
  3121. tolerated_failures);
  3122. }
  3123. if (min_tolerated == INT_MAX) {
  3124. pr_warn("BTRFS: unknown raid flag: %llu", flags);
  3125. min_tolerated = 0;
  3126. }
  3127. return min_tolerated;
  3128. }
  3129. int btrfs_calc_num_tolerated_disk_barrier_failures(
  3130. struct btrfs_fs_info *fs_info)
  3131. {
  3132. struct btrfs_ioctl_space_info space;
  3133. struct btrfs_space_info *sinfo;
  3134. u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
  3135. BTRFS_BLOCK_GROUP_SYSTEM,
  3136. BTRFS_BLOCK_GROUP_METADATA,
  3137. BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
  3138. int i;
  3139. int c;
  3140. int num_tolerated_disk_barrier_failures =
  3141. (int)fs_info->fs_devices->num_devices;
  3142. for (i = 0; i < ARRAY_SIZE(types); i++) {
  3143. struct btrfs_space_info *tmp;
  3144. sinfo = NULL;
  3145. rcu_read_lock();
  3146. list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
  3147. if (tmp->flags == types[i]) {
  3148. sinfo = tmp;
  3149. break;
  3150. }
  3151. }
  3152. rcu_read_unlock();
  3153. if (!sinfo)
  3154. continue;
  3155. down_read(&sinfo->groups_sem);
  3156. for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
  3157. u64 flags;
  3158. if (list_empty(&sinfo->block_groups[c]))
  3159. continue;
  3160. btrfs_get_block_group_info(&sinfo->block_groups[c],
  3161. &space);
  3162. if (space.total_bytes == 0 || space.used_bytes == 0)
  3163. continue;
  3164. flags = space.flags;
  3165. num_tolerated_disk_barrier_failures = min(
  3166. num_tolerated_disk_barrier_failures,
  3167. btrfs_get_num_tolerated_disk_barrier_failures(
  3168. flags));
  3169. }
  3170. up_read(&sinfo->groups_sem);
  3171. }
  3172. return num_tolerated_disk_barrier_failures;
  3173. }
  3174. int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
  3175. {
  3176. struct list_head *head;
  3177. struct btrfs_device *dev;
  3178. struct btrfs_super_block *sb;
  3179. struct btrfs_dev_item *dev_item;
  3180. int ret;
  3181. int do_barriers;
  3182. int max_errors;
  3183. int total_errors = 0;
  3184. u64 flags;
  3185. do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
  3186. backup_super_roots(fs_info);
  3187. sb = fs_info->super_for_commit;
  3188. dev_item = &sb->dev_item;
  3189. mutex_lock(&fs_info->fs_devices->device_list_mutex);
  3190. head = &fs_info->fs_devices->devices;
  3191. max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
  3192. if (do_barriers) {
  3193. ret = barrier_all_devices(fs_info);
  3194. if (ret) {
  3195. mutex_unlock(
  3196. &fs_info->fs_devices->device_list_mutex);
  3197. btrfs_handle_fs_error(fs_info, ret,
  3198. "errors while submitting device barriers.");
  3199. return ret;
  3200. }
  3201. }
  3202. list_for_each_entry_rcu(dev, head, dev_list) {
  3203. if (!dev->bdev) {
  3204. total_errors++;
  3205. continue;
  3206. }
  3207. if (!dev->in_fs_metadata || !dev->writeable)
  3208. continue;
  3209. btrfs_set_stack_device_generation(dev_item, 0);
  3210. btrfs_set_stack_device_type(dev_item, dev->type);
  3211. btrfs_set_stack_device_id(dev_item, dev->devid);
  3212. btrfs_set_stack_device_total_bytes(dev_item,
  3213. dev->commit_total_bytes);
  3214. btrfs_set_stack_device_bytes_used(dev_item,
  3215. dev->commit_bytes_used);
  3216. btrfs_set_stack_device_io_align(dev_item, dev->io_align);
  3217. btrfs_set_stack_device_io_width(dev_item, dev->io_width);
  3218. btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
  3219. memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
  3220. memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
  3221. flags = btrfs_super_flags(sb);
  3222. btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
  3223. ret = write_dev_supers(dev, sb, 0, max_mirrors);
  3224. if (ret)
  3225. total_errors++;
  3226. }
  3227. if (total_errors > max_errors) {
  3228. btrfs_err(fs_info, "%d errors while writing supers",
  3229. total_errors);
  3230. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3231. /* FUA is masked off if unsupported and can't be the reason */
  3232. btrfs_handle_fs_error(fs_info, -EIO,
  3233. "%d errors while writing supers",
  3234. total_errors);
  3235. return -EIO;
  3236. }
  3237. total_errors = 0;
  3238. list_for_each_entry_rcu(dev, head, dev_list) {
  3239. if (!dev->bdev)
  3240. continue;
  3241. if (!dev->in_fs_metadata || !dev->writeable)
  3242. continue;
  3243. ret = write_dev_supers(dev, sb, 1, max_mirrors);
  3244. if (ret)
  3245. total_errors++;
  3246. }
  3247. mutex_unlock(&fs_info->fs_devices->device_list_mutex);
  3248. if (total_errors > max_errors) {
  3249. btrfs_handle_fs_error(fs_info, -EIO,
  3250. "%d errors while writing supers",
  3251. total_errors);
  3252. return -EIO;
  3253. }
  3254. return 0;
  3255. }
  3256. /* Drop a fs root from the radix tree and free it. */
  3257. void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
  3258. struct btrfs_root *root)
  3259. {
  3260. spin_lock(&fs_info->fs_roots_radix_lock);
  3261. radix_tree_delete(&fs_info->fs_roots_radix,
  3262. (unsigned long)root->root_key.objectid);
  3263. spin_unlock(&fs_info->fs_roots_radix_lock);
  3264. if (btrfs_root_refs(&root->root_item) == 0)
  3265. synchronize_srcu(&fs_info->subvol_srcu);
  3266. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
  3267. btrfs_free_log(NULL, root);
  3268. if (root->reloc_root) {
  3269. free_extent_buffer(root->reloc_root->node);
  3270. free_extent_buffer(root->reloc_root->commit_root);
  3271. btrfs_put_fs_root(root->reloc_root);
  3272. root->reloc_root = NULL;
  3273. }
  3274. }
  3275. if (root->free_ino_pinned)
  3276. __btrfs_remove_free_space_cache(root->free_ino_pinned);
  3277. if (root->free_ino_ctl)
  3278. __btrfs_remove_free_space_cache(root->free_ino_ctl);
  3279. free_fs_root(root);
  3280. }
  3281. static void free_fs_root(struct btrfs_root *root)
  3282. {
  3283. iput(root->ino_cache_inode);
  3284. WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
  3285. btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
  3286. root->orphan_block_rsv = NULL;
  3287. if (root->anon_dev)
  3288. free_anon_bdev(root->anon_dev);
  3289. if (root->subv_writers)
  3290. btrfs_free_subvolume_writers(root->subv_writers);
  3291. free_extent_buffer(root->node);
  3292. free_extent_buffer(root->commit_root);
  3293. kfree(root->free_ino_ctl);
  3294. kfree(root->free_ino_pinned);
  3295. kfree(root->name);
  3296. btrfs_put_fs_root(root);
  3297. }
  3298. void btrfs_free_fs_root(struct btrfs_root *root)
  3299. {
  3300. free_fs_root(root);
  3301. }
  3302. int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
  3303. {
  3304. u64 root_objectid = 0;
  3305. struct btrfs_root *gang[8];
  3306. int i = 0;
  3307. int err = 0;
  3308. unsigned int ret = 0;
  3309. int index;
  3310. while (1) {
  3311. index = srcu_read_lock(&fs_info->subvol_srcu);
  3312. ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
  3313. (void **)gang, root_objectid,
  3314. ARRAY_SIZE(gang));
  3315. if (!ret) {
  3316. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3317. break;
  3318. }
  3319. root_objectid = gang[ret - 1]->root_key.objectid + 1;
  3320. for (i = 0; i < ret; i++) {
  3321. /* Avoid to grab roots in dead_roots */
  3322. if (btrfs_root_refs(&gang[i]->root_item) == 0) {
  3323. gang[i] = NULL;
  3324. continue;
  3325. }
  3326. /* grab all the search result for later use */
  3327. gang[i] = btrfs_grab_fs_root(gang[i]);
  3328. }
  3329. srcu_read_unlock(&fs_info->subvol_srcu, index);
  3330. for (i = 0; i < ret; i++) {
  3331. if (!gang[i])
  3332. continue;
  3333. root_objectid = gang[i]->root_key.objectid;
  3334. err = btrfs_orphan_cleanup(gang[i]);
  3335. if (err)
  3336. break;
  3337. btrfs_put_fs_root(gang[i]);
  3338. }
  3339. root_objectid++;
  3340. }
  3341. /* release the uncleaned roots due to error */
  3342. for (; i < ret; i++) {
  3343. if (gang[i])
  3344. btrfs_put_fs_root(gang[i]);
  3345. }
  3346. return err;
  3347. }
  3348. int btrfs_commit_super(struct btrfs_fs_info *fs_info)
  3349. {
  3350. struct btrfs_root *root = fs_info->tree_root;
  3351. struct btrfs_trans_handle *trans;
  3352. mutex_lock(&fs_info->cleaner_mutex);
  3353. btrfs_run_delayed_iputs(fs_info);
  3354. mutex_unlock(&fs_info->cleaner_mutex);
  3355. wake_up_process(fs_info->cleaner_kthread);
  3356. /* wait until ongoing cleanup work done */
  3357. down_write(&fs_info->cleanup_work_sem);
  3358. up_write(&fs_info->cleanup_work_sem);
  3359. trans = btrfs_join_transaction(root);
  3360. if (IS_ERR(trans))
  3361. return PTR_ERR(trans);
  3362. return btrfs_commit_transaction(trans);
  3363. }
  3364. void close_ctree(struct btrfs_fs_info *fs_info)
  3365. {
  3366. struct btrfs_root *root = fs_info->tree_root;
  3367. int ret;
  3368. set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
  3369. /* wait for the qgroup rescan worker to stop */
  3370. btrfs_qgroup_wait_for_completion(fs_info, false);
  3371. /* wait for the uuid_scan task to finish */
  3372. down(&fs_info->uuid_tree_rescan_sem);
  3373. /* avoid complains from lockdep et al., set sem back to initial state */
  3374. up(&fs_info->uuid_tree_rescan_sem);
  3375. /* pause restriper - we want to resume on mount */
  3376. btrfs_pause_balance(fs_info);
  3377. btrfs_dev_replace_suspend_for_unmount(fs_info);
  3378. btrfs_scrub_cancel(fs_info);
  3379. /* wait for any defraggers to finish */
  3380. wait_event(fs_info->transaction_wait,
  3381. (atomic_read(&fs_info->defrag_running) == 0));
  3382. /* clear out the rbtree of defraggable inodes */
  3383. btrfs_cleanup_defrag_inodes(fs_info);
  3384. cancel_work_sync(&fs_info->async_reclaim_work);
  3385. if (!(fs_info->sb->s_flags & MS_RDONLY)) {
  3386. /*
  3387. * If the cleaner thread is stopped and there are
  3388. * block groups queued for removal, the deletion will be
  3389. * skipped when we quit the cleaner thread.
  3390. */
  3391. btrfs_delete_unused_bgs(fs_info);
  3392. ret = btrfs_commit_super(fs_info);
  3393. if (ret)
  3394. btrfs_err(fs_info, "commit super ret %d", ret);
  3395. }
  3396. if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
  3397. btrfs_error_commit_super(fs_info);
  3398. kthread_stop(fs_info->transaction_kthread);
  3399. kthread_stop(fs_info->cleaner_kthread);
  3400. set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
  3401. btrfs_free_qgroup_config(fs_info);
  3402. if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
  3403. btrfs_info(fs_info, "at unmount delalloc count %lld",
  3404. percpu_counter_sum(&fs_info->delalloc_bytes));
  3405. }
  3406. btrfs_sysfs_remove_mounted(fs_info);
  3407. btrfs_sysfs_remove_fsid(fs_info->fs_devices);
  3408. btrfs_free_fs_roots(fs_info);
  3409. btrfs_put_block_group_cache(fs_info);
  3410. /*
  3411. * we must make sure there is not any read request to
  3412. * submit after we stopping all workers.
  3413. */
  3414. invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
  3415. btrfs_stop_all_workers(fs_info);
  3416. btrfs_free_block_groups(fs_info);
  3417. clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
  3418. free_root_pointers(fs_info, 1);
  3419. iput(fs_info->btree_inode);
  3420. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3421. if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
  3422. btrfsic_unmount(fs_info->fs_devices);
  3423. #endif
  3424. btrfs_close_devices(fs_info->fs_devices);
  3425. btrfs_mapping_tree_free(&fs_info->mapping_tree);
  3426. percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
  3427. percpu_counter_destroy(&fs_info->delalloc_bytes);
  3428. percpu_counter_destroy(&fs_info->bio_counter);
  3429. cleanup_srcu_struct(&fs_info->subvol_srcu);
  3430. btrfs_free_stripe_hash_table(fs_info);
  3431. __btrfs_free_block_rsv(root->orphan_block_rsv);
  3432. root->orphan_block_rsv = NULL;
  3433. mutex_lock(&fs_info->chunk_mutex);
  3434. while (!list_empty(&fs_info->pinned_chunks)) {
  3435. struct extent_map *em;
  3436. em = list_first_entry(&fs_info->pinned_chunks,
  3437. struct extent_map, list);
  3438. list_del_init(&em->list);
  3439. free_extent_map(em);
  3440. }
  3441. mutex_unlock(&fs_info->chunk_mutex);
  3442. }
  3443. int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
  3444. int atomic)
  3445. {
  3446. int ret;
  3447. struct inode *btree_inode = buf->pages[0]->mapping->host;
  3448. ret = extent_buffer_uptodate(buf);
  3449. if (!ret)
  3450. return ret;
  3451. ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
  3452. parent_transid, atomic);
  3453. if (ret == -EAGAIN)
  3454. return ret;
  3455. return !ret;
  3456. }
  3457. void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
  3458. {
  3459. struct btrfs_fs_info *fs_info;
  3460. struct btrfs_root *root;
  3461. u64 transid = btrfs_header_generation(buf);
  3462. int was_dirty;
  3463. #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  3464. /*
  3465. * This is a fast path so only do this check if we have sanity tests
  3466. * enabled. Normal people shouldn't be marking dummy buffers as dirty
  3467. * outside of the sanity tests.
  3468. */
  3469. if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
  3470. return;
  3471. #endif
  3472. root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3473. fs_info = root->fs_info;
  3474. btrfs_assert_tree_locked(buf);
  3475. if (transid != fs_info->generation)
  3476. WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
  3477. buf->start, transid, fs_info->generation);
  3478. was_dirty = set_extent_buffer_dirty(buf);
  3479. if (!was_dirty)
  3480. percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
  3481. buf->len,
  3482. fs_info->dirty_metadata_batch);
  3483. #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
  3484. if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
  3485. btrfs_print_leaf(fs_info, buf);
  3486. ASSERT(0);
  3487. }
  3488. #endif
  3489. }
  3490. static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
  3491. int flush_delayed)
  3492. {
  3493. /*
  3494. * looks as though older kernels can get into trouble with
  3495. * this code, they end up stuck in balance_dirty_pages forever
  3496. */
  3497. int ret;
  3498. if (current->flags & PF_MEMALLOC)
  3499. return;
  3500. if (flush_delayed)
  3501. btrfs_balance_delayed_items(fs_info);
  3502. ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
  3503. BTRFS_DIRTY_METADATA_THRESH);
  3504. if (ret > 0) {
  3505. balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
  3506. }
  3507. }
  3508. void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
  3509. {
  3510. __btrfs_btree_balance_dirty(fs_info, 1);
  3511. }
  3512. void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
  3513. {
  3514. __btrfs_btree_balance_dirty(fs_info, 0);
  3515. }
  3516. int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
  3517. {
  3518. struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
  3519. struct btrfs_fs_info *fs_info = root->fs_info;
  3520. return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
  3521. }
  3522. static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info)
  3523. {
  3524. struct btrfs_super_block *sb = fs_info->super_copy;
  3525. u64 nodesize = btrfs_super_nodesize(sb);
  3526. u64 sectorsize = btrfs_super_sectorsize(sb);
  3527. int ret = 0;
  3528. if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
  3529. btrfs_err(fs_info, "no valid FS found");
  3530. ret = -EINVAL;
  3531. }
  3532. if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
  3533. btrfs_warn(fs_info, "unrecognized super flag: %llu",
  3534. btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
  3535. if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3536. btrfs_err(fs_info, "tree_root level too big: %d >= %d",
  3537. btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
  3538. ret = -EINVAL;
  3539. }
  3540. if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3541. btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
  3542. btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
  3543. ret = -EINVAL;
  3544. }
  3545. if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
  3546. btrfs_err(fs_info, "log_root level too big: %d >= %d",
  3547. btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
  3548. ret = -EINVAL;
  3549. }
  3550. /*
  3551. * Check sectorsize and nodesize first, other check will need it.
  3552. * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
  3553. */
  3554. if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
  3555. sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3556. btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
  3557. ret = -EINVAL;
  3558. }
  3559. /* Only PAGE SIZE is supported yet */
  3560. if (sectorsize != PAGE_SIZE) {
  3561. btrfs_err(fs_info,
  3562. "sectorsize %llu not supported yet, only support %lu",
  3563. sectorsize, PAGE_SIZE);
  3564. ret = -EINVAL;
  3565. }
  3566. if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
  3567. nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
  3568. btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
  3569. ret = -EINVAL;
  3570. }
  3571. if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
  3572. btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
  3573. le32_to_cpu(sb->__unused_leafsize), nodesize);
  3574. ret = -EINVAL;
  3575. }
  3576. /* Root alignment check */
  3577. if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
  3578. btrfs_warn(fs_info, "tree_root block unaligned: %llu",
  3579. btrfs_super_root(sb));
  3580. ret = -EINVAL;
  3581. }
  3582. if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
  3583. btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
  3584. btrfs_super_chunk_root(sb));
  3585. ret = -EINVAL;
  3586. }
  3587. if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
  3588. btrfs_warn(fs_info, "log_root block unaligned: %llu",
  3589. btrfs_super_log_root(sb));
  3590. ret = -EINVAL;
  3591. }
  3592. if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
  3593. btrfs_err(fs_info,
  3594. "dev_item UUID does not match fsid: %pU != %pU",
  3595. fs_info->fsid, sb->dev_item.fsid);
  3596. ret = -EINVAL;
  3597. }
  3598. /*
  3599. * Hint to catch really bogus numbers, bitflips or so, more exact checks are
  3600. * done later
  3601. */
  3602. if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
  3603. btrfs_err(fs_info, "bytes_used is too small %llu",
  3604. btrfs_super_bytes_used(sb));
  3605. ret = -EINVAL;
  3606. }
  3607. if (!is_power_of_2(btrfs_super_stripesize(sb))) {
  3608. btrfs_err(fs_info, "invalid stripesize %u",
  3609. btrfs_super_stripesize(sb));
  3610. ret = -EINVAL;
  3611. }
  3612. if (btrfs_super_num_devices(sb) > (1UL << 31))
  3613. btrfs_warn(fs_info, "suspicious number of devices: %llu",
  3614. btrfs_super_num_devices(sb));
  3615. if (btrfs_super_num_devices(sb) == 0) {
  3616. btrfs_err(fs_info, "number of devices is 0");
  3617. ret = -EINVAL;
  3618. }
  3619. if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
  3620. btrfs_err(fs_info, "super offset mismatch %llu != %u",
  3621. btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
  3622. ret = -EINVAL;
  3623. }
  3624. /*
  3625. * Obvious sys_chunk_array corruptions, it must hold at least one key
  3626. * and one chunk
  3627. */
  3628. if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
  3629. btrfs_err(fs_info, "system chunk array too big %u > %u",
  3630. btrfs_super_sys_array_size(sb),
  3631. BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
  3632. ret = -EINVAL;
  3633. }
  3634. if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
  3635. + sizeof(struct btrfs_chunk)) {
  3636. btrfs_err(fs_info, "system chunk array too small %u < %zu",
  3637. btrfs_super_sys_array_size(sb),
  3638. sizeof(struct btrfs_disk_key)
  3639. + sizeof(struct btrfs_chunk));
  3640. ret = -EINVAL;
  3641. }
  3642. /*
  3643. * The generation is a global counter, we'll trust it more than the others
  3644. * but it's still possible that it's the one that's wrong.
  3645. */
  3646. if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
  3647. btrfs_warn(fs_info,
  3648. "suspicious: generation < chunk_root_generation: %llu < %llu",
  3649. btrfs_super_generation(sb),
  3650. btrfs_super_chunk_root_generation(sb));
  3651. if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
  3652. && btrfs_super_cache_generation(sb) != (u64)-1)
  3653. btrfs_warn(fs_info,
  3654. "suspicious: generation < cache_generation: %llu < %llu",
  3655. btrfs_super_generation(sb),
  3656. btrfs_super_cache_generation(sb));
  3657. return ret;
  3658. }
  3659. static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
  3660. {
  3661. mutex_lock(&fs_info->cleaner_mutex);
  3662. btrfs_run_delayed_iputs(fs_info);
  3663. mutex_unlock(&fs_info->cleaner_mutex);
  3664. down_write(&fs_info->cleanup_work_sem);
  3665. up_write(&fs_info->cleanup_work_sem);
  3666. /* cleanup FS via transaction */
  3667. btrfs_cleanup_transaction(fs_info);
  3668. }
  3669. static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
  3670. {
  3671. struct btrfs_ordered_extent *ordered;
  3672. spin_lock(&root->ordered_extent_lock);
  3673. /*
  3674. * This will just short circuit the ordered completion stuff which will
  3675. * make sure the ordered extent gets properly cleaned up.
  3676. */
  3677. list_for_each_entry(ordered, &root->ordered_extents,
  3678. root_extent_list)
  3679. set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
  3680. spin_unlock(&root->ordered_extent_lock);
  3681. }
  3682. static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
  3683. {
  3684. struct btrfs_root *root;
  3685. struct list_head splice;
  3686. INIT_LIST_HEAD(&splice);
  3687. spin_lock(&fs_info->ordered_root_lock);
  3688. list_splice_init(&fs_info->ordered_roots, &splice);
  3689. while (!list_empty(&splice)) {
  3690. root = list_first_entry(&splice, struct btrfs_root,
  3691. ordered_root);
  3692. list_move_tail(&root->ordered_root,
  3693. &fs_info->ordered_roots);
  3694. spin_unlock(&fs_info->ordered_root_lock);
  3695. btrfs_destroy_ordered_extents(root);
  3696. cond_resched();
  3697. spin_lock(&fs_info->ordered_root_lock);
  3698. }
  3699. spin_unlock(&fs_info->ordered_root_lock);
  3700. }
  3701. static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  3702. struct btrfs_fs_info *fs_info)
  3703. {
  3704. struct rb_node *node;
  3705. struct btrfs_delayed_ref_root *delayed_refs;
  3706. struct btrfs_delayed_ref_node *ref;
  3707. int ret = 0;
  3708. delayed_refs = &trans->delayed_refs;
  3709. spin_lock(&delayed_refs->lock);
  3710. if (atomic_read(&delayed_refs->num_entries) == 0) {
  3711. spin_unlock(&delayed_refs->lock);
  3712. btrfs_info(fs_info, "delayed_refs has NO entry");
  3713. return ret;
  3714. }
  3715. while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
  3716. struct btrfs_delayed_ref_head *head;
  3717. struct btrfs_delayed_ref_node *tmp;
  3718. bool pin_bytes = false;
  3719. head = rb_entry(node, struct btrfs_delayed_ref_head,
  3720. href_node);
  3721. if (!mutex_trylock(&head->mutex)) {
  3722. refcount_inc(&head->node.refs);
  3723. spin_unlock(&delayed_refs->lock);
  3724. mutex_lock(&head->mutex);
  3725. mutex_unlock(&head->mutex);
  3726. btrfs_put_delayed_ref(&head->node);
  3727. spin_lock(&delayed_refs->lock);
  3728. continue;
  3729. }
  3730. spin_lock(&head->lock);
  3731. list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
  3732. list) {
  3733. ref->in_tree = 0;
  3734. list_del(&ref->list);
  3735. if (!list_empty(&ref->add_list))
  3736. list_del(&ref->add_list);
  3737. atomic_dec(&delayed_refs->num_entries);
  3738. btrfs_put_delayed_ref(ref);
  3739. }
  3740. if (head->must_insert_reserved)
  3741. pin_bytes = true;
  3742. btrfs_free_delayed_extent_op(head->extent_op);
  3743. delayed_refs->num_heads--;
  3744. if (head->processing == 0)
  3745. delayed_refs->num_heads_ready--;
  3746. atomic_dec(&delayed_refs->num_entries);
  3747. head->node.in_tree = 0;
  3748. rb_erase(&head->href_node, &delayed_refs->href_root);
  3749. spin_unlock(&head->lock);
  3750. spin_unlock(&delayed_refs->lock);
  3751. mutex_unlock(&head->mutex);
  3752. if (pin_bytes)
  3753. btrfs_pin_extent(fs_info, head->node.bytenr,
  3754. head->node.num_bytes, 1);
  3755. btrfs_put_delayed_ref(&head->node);
  3756. cond_resched();
  3757. spin_lock(&delayed_refs->lock);
  3758. }
  3759. spin_unlock(&delayed_refs->lock);
  3760. return ret;
  3761. }
  3762. static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
  3763. {
  3764. struct btrfs_inode *btrfs_inode;
  3765. struct list_head splice;
  3766. INIT_LIST_HEAD(&splice);
  3767. spin_lock(&root->delalloc_lock);
  3768. list_splice_init(&root->delalloc_inodes, &splice);
  3769. while (!list_empty(&splice)) {
  3770. btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
  3771. delalloc_inodes);
  3772. list_del_init(&btrfs_inode->delalloc_inodes);
  3773. clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
  3774. &btrfs_inode->runtime_flags);
  3775. spin_unlock(&root->delalloc_lock);
  3776. btrfs_invalidate_inodes(btrfs_inode->root);
  3777. spin_lock(&root->delalloc_lock);
  3778. }
  3779. spin_unlock(&root->delalloc_lock);
  3780. }
  3781. static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
  3782. {
  3783. struct btrfs_root *root;
  3784. struct list_head splice;
  3785. INIT_LIST_HEAD(&splice);
  3786. spin_lock(&fs_info->delalloc_root_lock);
  3787. list_splice_init(&fs_info->delalloc_roots, &splice);
  3788. while (!list_empty(&splice)) {
  3789. root = list_first_entry(&splice, struct btrfs_root,
  3790. delalloc_root);
  3791. list_del_init(&root->delalloc_root);
  3792. root = btrfs_grab_fs_root(root);
  3793. BUG_ON(!root);
  3794. spin_unlock(&fs_info->delalloc_root_lock);
  3795. btrfs_destroy_delalloc_inodes(root);
  3796. btrfs_put_fs_root(root);
  3797. spin_lock(&fs_info->delalloc_root_lock);
  3798. }
  3799. spin_unlock(&fs_info->delalloc_root_lock);
  3800. }
  3801. static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  3802. struct extent_io_tree *dirty_pages,
  3803. int mark)
  3804. {
  3805. int ret;
  3806. struct extent_buffer *eb;
  3807. u64 start = 0;
  3808. u64 end;
  3809. while (1) {
  3810. ret = find_first_extent_bit(dirty_pages, start, &start, &end,
  3811. mark, NULL);
  3812. if (ret)
  3813. break;
  3814. clear_extent_bits(dirty_pages, start, end, mark);
  3815. while (start <= end) {
  3816. eb = find_extent_buffer(fs_info, start);
  3817. start += fs_info->nodesize;
  3818. if (!eb)
  3819. continue;
  3820. wait_on_extent_buffer_writeback(eb);
  3821. if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
  3822. &eb->bflags))
  3823. clear_extent_buffer_dirty(eb);
  3824. free_extent_buffer_stale(eb);
  3825. }
  3826. }
  3827. return ret;
  3828. }
  3829. static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  3830. struct extent_io_tree *pinned_extents)
  3831. {
  3832. struct extent_io_tree *unpin;
  3833. u64 start;
  3834. u64 end;
  3835. int ret;
  3836. bool loop = true;
  3837. unpin = pinned_extents;
  3838. again:
  3839. while (1) {
  3840. ret = find_first_extent_bit(unpin, 0, &start, &end,
  3841. EXTENT_DIRTY, NULL);
  3842. if (ret)
  3843. break;
  3844. clear_extent_dirty(unpin, start, end);
  3845. btrfs_error_unpin_extent_range(fs_info, start, end);
  3846. cond_resched();
  3847. }
  3848. if (loop) {
  3849. if (unpin == &fs_info->freed_extents[0])
  3850. unpin = &fs_info->freed_extents[1];
  3851. else
  3852. unpin = &fs_info->freed_extents[0];
  3853. loop = false;
  3854. goto again;
  3855. }
  3856. return 0;
  3857. }
  3858. static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
  3859. {
  3860. struct inode *inode;
  3861. inode = cache->io_ctl.inode;
  3862. if (inode) {
  3863. invalidate_inode_pages2(inode->i_mapping);
  3864. BTRFS_I(inode)->generation = 0;
  3865. cache->io_ctl.inode = NULL;
  3866. iput(inode);
  3867. }
  3868. btrfs_put_block_group(cache);
  3869. }
  3870. void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
  3871. struct btrfs_fs_info *fs_info)
  3872. {
  3873. struct btrfs_block_group_cache *cache;
  3874. spin_lock(&cur_trans->dirty_bgs_lock);
  3875. while (!list_empty(&cur_trans->dirty_bgs)) {
  3876. cache = list_first_entry(&cur_trans->dirty_bgs,
  3877. struct btrfs_block_group_cache,
  3878. dirty_list);
  3879. if (!cache) {
  3880. btrfs_err(fs_info, "orphan block group dirty_bgs list");
  3881. spin_unlock(&cur_trans->dirty_bgs_lock);
  3882. return;
  3883. }
  3884. if (!list_empty(&cache->io_list)) {
  3885. spin_unlock(&cur_trans->dirty_bgs_lock);
  3886. list_del_init(&cache->io_list);
  3887. btrfs_cleanup_bg_io(cache);
  3888. spin_lock(&cur_trans->dirty_bgs_lock);
  3889. }
  3890. list_del_init(&cache->dirty_list);
  3891. spin_lock(&cache->lock);
  3892. cache->disk_cache_state = BTRFS_DC_ERROR;
  3893. spin_unlock(&cache->lock);
  3894. spin_unlock(&cur_trans->dirty_bgs_lock);
  3895. btrfs_put_block_group(cache);
  3896. spin_lock(&cur_trans->dirty_bgs_lock);
  3897. }
  3898. spin_unlock(&cur_trans->dirty_bgs_lock);
  3899. while (!list_empty(&cur_trans->io_bgs)) {
  3900. cache = list_first_entry(&cur_trans->io_bgs,
  3901. struct btrfs_block_group_cache,
  3902. io_list);
  3903. if (!cache) {
  3904. btrfs_err(fs_info, "orphan block group on io_bgs list");
  3905. return;
  3906. }
  3907. list_del_init(&cache->io_list);
  3908. spin_lock(&cache->lock);
  3909. cache->disk_cache_state = BTRFS_DC_ERROR;
  3910. spin_unlock(&cache->lock);
  3911. btrfs_cleanup_bg_io(cache);
  3912. }
  3913. }
  3914. void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
  3915. struct btrfs_fs_info *fs_info)
  3916. {
  3917. btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
  3918. ASSERT(list_empty(&cur_trans->dirty_bgs));
  3919. ASSERT(list_empty(&cur_trans->io_bgs));
  3920. btrfs_destroy_delayed_refs(cur_trans, fs_info);
  3921. cur_trans->state = TRANS_STATE_COMMIT_START;
  3922. wake_up(&fs_info->transaction_blocked_wait);
  3923. cur_trans->state = TRANS_STATE_UNBLOCKED;
  3924. wake_up(&fs_info->transaction_wait);
  3925. btrfs_destroy_delayed_inodes(fs_info);
  3926. btrfs_assert_delayed_root_empty(fs_info);
  3927. btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
  3928. EXTENT_DIRTY);
  3929. btrfs_destroy_pinned_extent(fs_info,
  3930. fs_info->pinned_extents);
  3931. cur_trans->state =TRANS_STATE_COMPLETED;
  3932. wake_up(&cur_trans->commit_wait);
  3933. }
  3934. static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
  3935. {
  3936. struct btrfs_transaction *t;
  3937. mutex_lock(&fs_info->transaction_kthread_mutex);
  3938. spin_lock(&fs_info->trans_lock);
  3939. while (!list_empty(&fs_info->trans_list)) {
  3940. t = list_first_entry(&fs_info->trans_list,
  3941. struct btrfs_transaction, list);
  3942. if (t->state >= TRANS_STATE_COMMIT_START) {
  3943. refcount_inc(&t->use_count);
  3944. spin_unlock(&fs_info->trans_lock);
  3945. btrfs_wait_for_commit(fs_info, t->transid);
  3946. btrfs_put_transaction(t);
  3947. spin_lock(&fs_info->trans_lock);
  3948. continue;
  3949. }
  3950. if (t == fs_info->running_transaction) {
  3951. t->state = TRANS_STATE_COMMIT_DOING;
  3952. spin_unlock(&fs_info->trans_lock);
  3953. /*
  3954. * We wait for 0 num_writers since we don't hold a trans
  3955. * handle open currently for this transaction.
  3956. */
  3957. wait_event(t->writer_wait,
  3958. atomic_read(&t->num_writers) == 0);
  3959. } else {
  3960. spin_unlock(&fs_info->trans_lock);
  3961. }
  3962. btrfs_cleanup_one_transaction(t, fs_info);
  3963. spin_lock(&fs_info->trans_lock);
  3964. if (t == fs_info->running_transaction)
  3965. fs_info->running_transaction = NULL;
  3966. list_del_init(&t->list);
  3967. spin_unlock(&fs_info->trans_lock);
  3968. btrfs_put_transaction(t);
  3969. trace_btrfs_transaction_commit(fs_info->tree_root);
  3970. spin_lock(&fs_info->trans_lock);
  3971. }
  3972. spin_unlock(&fs_info->trans_lock);
  3973. btrfs_destroy_all_ordered_extents(fs_info);
  3974. btrfs_destroy_delayed_inodes(fs_info);
  3975. btrfs_assert_delayed_root_empty(fs_info);
  3976. btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
  3977. btrfs_destroy_all_delalloc_inodes(fs_info);
  3978. mutex_unlock(&fs_info->transaction_kthread_mutex);
  3979. return 0;
  3980. }
  3981. static struct btrfs_fs_info *btree_fs_info(void *private_data)
  3982. {
  3983. struct inode *inode = private_data;
  3984. return btrfs_sb(inode->i_sb);
  3985. }
  3986. static const struct extent_io_ops btree_extent_io_ops = {
  3987. /* mandatory callbacks */
  3988. .submit_bio_hook = btree_submit_bio_hook,
  3989. .readpage_end_io_hook = btree_readpage_end_io_hook,
  3990. /* note we're sharing with inode.c for the merge bio hook */
  3991. .merge_bio_hook = btrfs_merge_bio_hook,
  3992. .readpage_io_failed_hook = btree_io_failed_hook,
  3993. .set_range_writeback = btrfs_set_range_writeback,
  3994. .tree_fs_info = btree_fs_info,
  3995. /* optional callbacks */
  3996. };