tree_plugin.h 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion (tree-based version)
  3. * Internal non-public definitions that provide either classic
  4. * or preemptible semantics.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, you can access it online at
  18. * http://www.gnu.org/licenses/gpl-2.0.html.
  19. *
  20. * Copyright Red Hat, 2009
  21. * Copyright IBM Corporation, 2009
  22. *
  23. * Author: Ingo Molnar <mingo@elte.hu>
  24. * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
  25. */
  26. #include <linux/delay.h>
  27. #include <linux/gfp.h>
  28. #include <linux/oom.h>
  29. #include <linux/smpboot.h>
  30. #include "../time/tick-internal.h"
  31. #define RCU_KTHREAD_PRIO 1
  32. #ifdef CONFIG_RCU_BOOST
  33. #define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
  34. #else
  35. #define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
  36. #endif
  37. #ifdef CONFIG_RCU_NOCB_CPU
  38. static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
  39. static bool have_rcu_nocb_mask; /* Was rcu_nocb_mask allocated? */
  40. static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
  41. static char __initdata nocb_buf[NR_CPUS * 5];
  42. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  43. /*
  44. * Check the RCU kernel configuration parameters and print informative
  45. * messages about anything out of the ordinary. If you like #ifdef, you
  46. * will love this function.
  47. */
  48. static void __init rcu_bootup_announce_oddness(void)
  49. {
  50. #ifdef CONFIG_RCU_TRACE
  51. pr_info("\tRCU debugfs-based tracing is enabled.\n");
  52. #endif
  53. #if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
  54. pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
  55. CONFIG_RCU_FANOUT);
  56. #endif
  57. #ifdef CONFIG_RCU_FANOUT_EXACT
  58. pr_info("\tHierarchical RCU autobalancing is disabled.\n");
  59. #endif
  60. #ifdef CONFIG_RCU_FAST_NO_HZ
  61. pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
  62. #endif
  63. #ifdef CONFIG_PROVE_RCU
  64. pr_info("\tRCU lockdep checking is enabled.\n");
  65. #endif
  66. #ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
  67. pr_info("\tRCU torture testing starts during boot.\n");
  68. #endif
  69. #if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
  70. pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
  71. #endif
  72. #if defined(CONFIG_RCU_CPU_STALL_INFO)
  73. pr_info("\tAdditional per-CPU info printed with stalls.\n");
  74. #endif
  75. #if NUM_RCU_LVL_4 != 0
  76. pr_info("\tFour-level hierarchy is enabled.\n");
  77. #endif
  78. if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
  79. pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
  80. if (nr_cpu_ids != NR_CPUS)
  81. pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
  82. #ifdef CONFIG_RCU_NOCB_CPU
  83. #ifndef CONFIG_RCU_NOCB_CPU_NONE
  84. if (!have_rcu_nocb_mask) {
  85. zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL);
  86. have_rcu_nocb_mask = true;
  87. }
  88. #ifdef CONFIG_RCU_NOCB_CPU_ZERO
  89. pr_info("\tOffload RCU callbacks from CPU 0\n");
  90. cpumask_set_cpu(0, rcu_nocb_mask);
  91. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
  92. #ifdef CONFIG_RCU_NOCB_CPU_ALL
  93. pr_info("\tOffload RCU callbacks from all CPUs\n");
  94. cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
  95. #endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
  96. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */
  97. if (have_rcu_nocb_mask) {
  98. if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
  99. pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
  100. cpumask_and(rcu_nocb_mask, cpu_possible_mask,
  101. rcu_nocb_mask);
  102. }
  103. cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
  104. pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
  105. if (rcu_nocb_poll)
  106. pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
  107. }
  108. #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
  109. }
  110. #ifdef CONFIG_TREE_PREEMPT_RCU
  111. RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
  112. static struct rcu_state *rcu_state = &rcu_preempt_state;
  113. static int rcu_preempted_readers_exp(struct rcu_node *rnp);
  114. /*
  115. * Tell them what RCU they are running.
  116. */
  117. static void __init rcu_bootup_announce(void)
  118. {
  119. pr_info("Preemptible hierarchical RCU implementation.\n");
  120. rcu_bootup_announce_oddness();
  121. }
  122. /*
  123. * Return the number of RCU-preempt batches processed thus far
  124. * for debug and statistics.
  125. */
  126. long rcu_batches_completed_preempt(void)
  127. {
  128. return rcu_preempt_state.completed;
  129. }
  130. EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);
  131. /*
  132. * Return the number of RCU batches processed thus far for debug & stats.
  133. */
  134. long rcu_batches_completed(void)
  135. {
  136. return rcu_batches_completed_preempt();
  137. }
  138. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  139. /*
  140. * Record a preemptible-RCU quiescent state for the specified CPU. Note
  141. * that this just means that the task currently running on the CPU is
  142. * not in a quiescent state. There might be any number of tasks blocked
  143. * while in an RCU read-side critical section.
  144. *
  145. * Unlike the other rcu_*_qs() functions, callers to this function
  146. * must disable irqs in order to protect the assignment to
  147. * ->rcu_read_unlock_special.
  148. */
  149. static void rcu_preempt_qs(int cpu)
  150. {
  151. struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);
  152. if (rdp->passed_quiesce == 0)
  153. trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
  154. rdp->passed_quiesce = 1;
  155. current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
  156. }
  157. /*
  158. * We have entered the scheduler, and the current task might soon be
  159. * context-switched away from. If this task is in an RCU read-side
  160. * critical section, we will no longer be able to rely on the CPU to
  161. * record that fact, so we enqueue the task on the blkd_tasks list.
  162. * The task will dequeue itself when it exits the outermost enclosing
  163. * RCU read-side critical section. Therefore, the current grace period
  164. * cannot be permitted to complete until the blkd_tasks list entries
  165. * predating the current grace period drain, in other words, until
  166. * rnp->gp_tasks becomes NULL.
  167. *
  168. * Caller must disable preemption.
  169. */
  170. static void rcu_preempt_note_context_switch(int cpu)
  171. {
  172. struct task_struct *t = current;
  173. unsigned long flags;
  174. struct rcu_data *rdp;
  175. struct rcu_node *rnp;
  176. if (t->rcu_read_lock_nesting > 0 &&
  177. (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {
  178. /* Possibly blocking in an RCU read-side critical section. */
  179. rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
  180. rnp = rdp->mynode;
  181. raw_spin_lock_irqsave(&rnp->lock, flags);
  182. smp_mb__after_unlock_lock();
  183. t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
  184. t->rcu_blocked_node = rnp;
  185. /*
  186. * If this CPU has already checked in, then this task
  187. * will hold up the next grace period rather than the
  188. * current grace period. Queue the task accordingly.
  189. * If the task is queued for the current grace period
  190. * (i.e., this CPU has not yet passed through a quiescent
  191. * state for the current grace period), then as long
  192. * as that task remains queued, the current grace period
  193. * cannot end. Note that there is some uncertainty as
  194. * to exactly when the current grace period started.
  195. * We take a conservative approach, which can result
  196. * in unnecessarily waiting on tasks that started very
  197. * slightly after the current grace period began. C'est
  198. * la vie!!!
  199. *
  200. * But first, note that the current CPU must still be
  201. * on line!
  202. */
  203. WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
  204. WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
  205. if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
  206. list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
  207. rnp->gp_tasks = &t->rcu_node_entry;
  208. #ifdef CONFIG_RCU_BOOST
  209. if (rnp->boost_tasks != NULL)
  210. rnp->boost_tasks = rnp->gp_tasks;
  211. #endif /* #ifdef CONFIG_RCU_BOOST */
  212. } else {
  213. list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
  214. if (rnp->qsmask & rdp->grpmask)
  215. rnp->gp_tasks = &t->rcu_node_entry;
  216. }
  217. trace_rcu_preempt_task(rdp->rsp->name,
  218. t->pid,
  219. (rnp->qsmask & rdp->grpmask)
  220. ? rnp->gpnum
  221. : rnp->gpnum + 1);
  222. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  223. } else if (t->rcu_read_lock_nesting < 0 &&
  224. t->rcu_read_unlock_special) {
  225. /*
  226. * Complete exit from RCU read-side critical section on
  227. * behalf of preempted instance of __rcu_read_unlock().
  228. */
  229. rcu_read_unlock_special(t);
  230. }
  231. /*
  232. * Either we were not in an RCU read-side critical section to
  233. * begin with, or we have now recorded that critical section
  234. * globally. Either way, we can now note a quiescent state
  235. * for this CPU. Again, if we were in an RCU read-side critical
  236. * section, and if that critical section was blocking the current
  237. * grace period, then the fact that the task has been enqueued
  238. * means that we continue to block the current grace period.
  239. */
  240. local_irq_save(flags);
  241. rcu_preempt_qs(cpu);
  242. local_irq_restore(flags);
  243. }
  244. /*
  245. * Check for preempted RCU readers blocking the current grace period
  246. * for the specified rcu_node structure. If the caller needs a reliable
  247. * answer, it must hold the rcu_node's ->lock.
  248. */
  249. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  250. {
  251. return rnp->gp_tasks != NULL;
  252. }
  253. /*
  254. * Record a quiescent state for all tasks that were previously queued
  255. * on the specified rcu_node structure and that were blocking the current
  256. * RCU grace period. The caller must hold the specified rnp->lock with
  257. * irqs disabled, and this lock is released upon return, but irqs remain
  258. * disabled.
  259. */
  260. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  261. __releases(rnp->lock)
  262. {
  263. unsigned long mask;
  264. struct rcu_node *rnp_p;
  265. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  266. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  267. return; /* Still need more quiescent states! */
  268. }
  269. rnp_p = rnp->parent;
  270. if (rnp_p == NULL) {
  271. /*
  272. * Either there is only one rcu_node in the tree,
  273. * or tasks were kicked up to root rcu_node due to
  274. * CPUs going offline.
  275. */
  276. rcu_report_qs_rsp(&rcu_preempt_state, flags);
  277. return;
  278. }
  279. /* Report up the rest of the hierarchy. */
  280. mask = rnp->grpmask;
  281. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  282. raw_spin_lock(&rnp_p->lock); /* irqs already disabled. */
  283. smp_mb__after_unlock_lock();
  284. rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
  285. }
  286. /*
  287. * Advance a ->blkd_tasks-list pointer to the next entry, instead
  288. * returning NULL if at the end of the list.
  289. */
  290. static struct list_head *rcu_next_node_entry(struct task_struct *t,
  291. struct rcu_node *rnp)
  292. {
  293. struct list_head *np;
  294. np = t->rcu_node_entry.next;
  295. if (np == &rnp->blkd_tasks)
  296. np = NULL;
  297. return np;
  298. }
  299. /*
  300. * Handle special cases during rcu_read_unlock(), such as needing to
  301. * notify RCU core processing or task having blocked during the RCU
  302. * read-side critical section.
  303. */
  304. void rcu_read_unlock_special(struct task_struct *t)
  305. {
  306. int empty;
  307. int empty_exp;
  308. int empty_exp_now;
  309. unsigned long flags;
  310. struct list_head *np;
  311. #ifdef CONFIG_RCU_BOOST
  312. struct rt_mutex *rbmp = NULL;
  313. #endif /* #ifdef CONFIG_RCU_BOOST */
  314. struct rcu_node *rnp;
  315. int special;
  316. /* NMI handlers cannot block and cannot safely manipulate state. */
  317. if (in_nmi())
  318. return;
  319. local_irq_save(flags);
  320. /*
  321. * If RCU core is waiting for this CPU to exit critical section,
  322. * let it know that we have done so.
  323. */
  324. special = t->rcu_read_unlock_special;
  325. if (special & RCU_READ_UNLOCK_NEED_QS) {
  326. rcu_preempt_qs(smp_processor_id());
  327. if (!t->rcu_read_unlock_special) {
  328. local_irq_restore(flags);
  329. return;
  330. }
  331. }
  332. /* Hardware IRQ handlers cannot block, complain if they get here. */
  333. if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
  334. local_irq_restore(flags);
  335. return;
  336. }
  337. /* Clean up if blocked during RCU read-side critical section. */
  338. if (special & RCU_READ_UNLOCK_BLOCKED) {
  339. t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;
  340. /*
  341. * Remove this task from the list it blocked on. The
  342. * task can migrate while we acquire the lock, but at
  343. * most one time. So at most two passes through loop.
  344. */
  345. for (;;) {
  346. rnp = t->rcu_blocked_node;
  347. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  348. smp_mb__after_unlock_lock();
  349. if (rnp == t->rcu_blocked_node)
  350. break;
  351. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  352. }
  353. empty = !rcu_preempt_blocked_readers_cgp(rnp);
  354. empty_exp = !rcu_preempted_readers_exp(rnp);
  355. smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
  356. np = rcu_next_node_entry(t, rnp);
  357. list_del_init(&t->rcu_node_entry);
  358. t->rcu_blocked_node = NULL;
  359. trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
  360. rnp->gpnum, t->pid);
  361. if (&t->rcu_node_entry == rnp->gp_tasks)
  362. rnp->gp_tasks = np;
  363. if (&t->rcu_node_entry == rnp->exp_tasks)
  364. rnp->exp_tasks = np;
  365. #ifdef CONFIG_RCU_BOOST
  366. if (&t->rcu_node_entry == rnp->boost_tasks)
  367. rnp->boost_tasks = np;
  368. /* Snapshot/clear ->rcu_boost_mutex with rcu_node lock held. */
  369. if (t->rcu_boost_mutex) {
  370. rbmp = t->rcu_boost_mutex;
  371. t->rcu_boost_mutex = NULL;
  372. }
  373. #endif /* #ifdef CONFIG_RCU_BOOST */
  374. /*
  375. * If this was the last task on the current list, and if
  376. * we aren't waiting on any CPUs, report the quiescent state.
  377. * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
  378. * so we must take a snapshot of the expedited state.
  379. */
  380. empty_exp_now = !rcu_preempted_readers_exp(rnp);
  381. if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
  382. trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
  383. rnp->gpnum,
  384. 0, rnp->qsmask,
  385. rnp->level,
  386. rnp->grplo,
  387. rnp->grphi,
  388. !!rnp->gp_tasks);
  389. rcu_report_unblock_qs_rnp(rnp, flags);
  390. } else {
  391. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  392. }
  393. #ifdef CONFIG_RCU_BOOST
  394. /* Unboost if we were boosted. */
  395. if (rbmp)
  396. rt_mutex_unlock(rbmp);
  397. #endif /* #ifdef CONFIG_RCU_BOOST */
  398. /*
  399. * If this was the last task on the expedited lists,
  400. * then we need to report up the rcu_node hierarchy.
  401. */
  402. if (!empty_exp && empty_exp_now)
  403. rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
  404. } else {
  405. local_irq_restore(flags);
  406. }
  407. }
  408. #ifdef CONFIG_RCU_CPU_STALL_VERBOSE
  409. /*
  410. * Dump detailed information for all tasks blocking the current RCU
  411. * grace period on the specified rcu_node structure.
  412. */
  413. static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
  414. {
  415. unsigned long flags;
  416. struct task_struct *t;
  417. raw_spin_lock_irqsave(&rnp->lock, flags);
  418. if (!rcu_preempt_blocked_readers_cgp(rnp)) {
  419. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  420. return;
  421. }
  422. t = list_entry(rnp->gp_tasks,
  423. struct task_struct, rcu_node_entry);
  424. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
  425. sched_show_task(t);
  426. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  427. }
  428. /*
  429. * Dump detailed information for all tasks blocking the current RCU
  430. * grace period.
  431. */
  432. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  433. {
  434. struct rcu_node *rnp = rcu_get_root(rsp);
  435. rcu_print_detail_task_stall_rnp(rnp);
  436. rcu_for_each_leaf_node(rsp, rnp)
  437. rcu_print_detail_task_stall_rnp(rnp);
  438. }
  439. #else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
  440. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  441. {
  442. }
  443. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */
  444. #ifdef CONFIG_RCU_CPU_STALL_INFO
  445. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  446. {
  447. pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
  448. rnp->level, rnp->grplo, rnp->grphi);
  449. }
  450. static void rcu_print_task_stall_end(void)
  451. {
  452. pr_cont("\n");
  453. }
  454. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  455. static void rcu_print_task_stall_begin(struct rcu_node *rnp)
  456. {
  457. }
  458. static void rcu_print_task_stall_end(void)
  459. {
  460. }
  461. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  462. /*
  463. * Scan the current list of tasks blocked within RCU read-side critical
  464. * sections, printing out the tid of each.
  465. */
  466. static int rcu_print_task_stall(struct rcu_node *rnp)
  467. {
  468. struct task_struct *t;
  469. int ndetected = 0;
  470. if (!rcu_preempt_blocked_readers_cgp(rnp))
  471. return 0;
  472. rcu_print_task_stall_begin(rnp);
  473. t = list_entry(rnp->gp_tasks,
  474. struct task_struct, rcu_node_entry);
  475. list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
  476. pr_cont(" P%d", t->pid);
  477. ndetected++;
  478. }
  479. rcu_print_task_stall_end();
  480. return ndetected;
  481. }
  482. /*
  483. * Check that the list of blocked tasks for the newly completed grace
  484. * period is in fact empty. It is a serious bug to complete a grace
  485. * period that still has RCU readers blocked! This function must be
  486. * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
  487. * must be held by the caller.
  488. *
  489. * Also, if there are blocked tasks on the list, they automatically
  490. * block the newly created grace period, so set up ->gp_tasks accordingly.
  491. */
  492. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  493. {
  494. WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
  495. if (!list_empty(&rnp->blkd_tasks))
  496. rnp->gp_tasks = rnp->blkd_tasks.next;
  497. WARN_ON_ONCE(rnp->qsmask);
  498. }
  499. #ifdef CONFIG_HOTPLUG_CPU
  500. /*
  501. * Handle tasklist migration for case in which all CPUs covered by the
  502. * specified rcu_node have gone offline. Move them up to the root
  503. * rcu_node. The reason for not just moving them to the immediate
  504. * parent is to remove the need for rcu_read_unlock_special() to
  505. * make more than two attempts to acquire the target rcu_node's lock.
  506. * Returns true if there were tasks blocking the current RCU grace
  507. * period.
  508. *
  509. * Returns 1 if there was previously a task blocking the current grace
  510. * period on the specified rcu_node structure.
  511. *
  512. * The caller must hold rnp->lock with irqs disabled.
  513. */
  514. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  515. struct rcu_node *rnp,
  516. struct rcu_data *rdp)
  517. {
  518. struct list_head *lp;
  519. struct list_head *lp_root;
  520. int retval = 0;
  521. struct rcu_node *rnp_root = rcu_get_root(rsp);
  522. struct task_struct *t;
  523. if (rnp == rnp_root) {
  524. WARN_ONCE(1, "Last CPU thought to be offlined?");
  525. return 0; /* Shouldn't happen: at least one CPU online. */
  526. }
  527. /* If we are on an internal node, complain bitterly. */
  528. WARN_ON_ONCE(rnp != rdp->mynode);
  529. /*
  530. * Move tasks up to root rcu_node. Don't try to get fancy for
  531. * this corner-case operation -- just put this node's tasks
  532. * at the head of the root node's list, and update the root node's
  533. * ->gp_tasks and ->exp_tasks pointers to those of this node's,
  534. * if non-NULL. This might result in waiting for more tasks than
  535. * absolutely necessary, but this is a good performance/complexity
  536. * tradeoff.
  537. */
  538. if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
  539. retval |= RCU_OFL_TASKS_NORM_GP;
  540. if (rcu_preempted_readers_exp(rnp))
  541. retval |= RCU_OFL_TASKS_EXP_GP;
  542. lp = &rnp->blkd_tasks;
  543. lp_root = &rnp_root->blkd_tasks;
  544. while (!list_empty(lp)) {
  545. t = list_entry(lp->next, typeof(*t), rcu_node_entry);
  546. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  547. smp_mb__after_unlock_lock();
  548. list_del(&t->rcu_node_entry);
  549. t->rcu_blocked_node = rnp_root;
  550. list_add(&t->rcu_node_entry, lp_root);
  551. if (&t->rcu_node_entry == rnp->gp_tasks)
  552. rnp_root->gp_tasks = rnp->gp_tasks;
  553. if (&t->rcu_node_entry == rnp->exp_tasks)
  554. rnp_root->exp_tasks = rnp->exp_tasks;
  555. #ifdef CONFIG_RCU_BOOST
  556. if (&t->rcu_node_entry == rnp->boost_tasks)
  557. rnp_root->boost_tasks = rnp->boost_tasks;
  558. #endif /* #ifdef CONFIG_RCU_BOOST */
  559. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  560. }
  561. rnp->gp_tasks = NULL;
  562. rnp->exp_tasks = NULL;
  563. #ifdef CONFIG_RCU_BOOST
  564. rnp->boost_tasks = NULL;
  565. /*
  566. * In case root is being boosted and leaf was not. Make sure
  567. * that we boost the tasks blocking the current grace period
  568. * in this case.
  569. */
  570. raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
  571. smp_mb__after_unlock_lock();
  572. if (rnp_root->boost_tasks != NULL &&
  573. rnp_root->boost_tasks != rnp_root->gp_tasks &&
  574. rnp_root->boost_tasks != rnp_root->exp_tasks)
  575. rnp_root->boost_tasks = rnp_root->gp_tasks;
  576. raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
  577. #endif /* #ifdef CONFIG_RCU_BOOST */
  578. return retval;
  579. }
  580. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  581. /*
  582. * Check for a quiescent state from the current CPU. When a task blocks,
  583. * the task is recorded in the corresponding CPU's rcu_node structure,
  584. * which is checked elsewhere.
  585. *
  586. * Caller must disable hard irqs.
  587. */
  588. static void rcu_preempt_check_callbacks(int cpu)
  589. {
  590. struct task_struct *t = current;
  591. if (t->rcu_read_lock_nesting == 0) {
  592. rcu_preempt_qs(cpu);
  593. return;
  594. }
  595. if (t->rcu_read_lock_nesting > 0 &&
  596. per_cpu(rcu_preempt_data, cpu).qs_pending)
  597. t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
  598. }
  599. #ifdef CONFIG_RCU_BOOST
  600. static void rcu_preempt_do_callbacks(void)
  601. {
  602. rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
  603. }
  604. #endif /* #ifdef CONFIG_RCU_BOOST */
  605. /*
  606. * Queue a preemptible-RCU callback for invocation after a grace period.
  607. */
  608. void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  609. {
  610. __call_rcu(head, func, &rcu_preempt_state, -1, 0);
  611. }
  612. EXPORT_SYMBOL_GPL(call_rcu);
  613. /**
  614. * synchronize_rcu - wait until a grace period has elapsed.
  615. *
  616. * Control will return to the caller some time after a full grace
  617. * period has elapsed, in other words after all currently executing RCU
  618. * read-side critical sections have completed. Note, however, that
  619. * upon return from synchronize_rcu(), the caller might well be executing
  620. * concurrently with new RCU read-side critical sections that began while
  621. * synchronize_rcu() was waiting. RCU read-side critical sections are
  622. * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
  623. *
  624. * See the description of synchronize_sched() for more detailed information
  625. * on memory ordering guarantees.
  626. */
  627. void synchronize_rcu(void)
  628. {
  629. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  630. !lock_is_held(&rcu_lock_map) &&
  631. !lock_is_held(&rcu_sched_lock_map),
  632. "Illegal synchronize_rcu() in RCU read-side critical section");
  633. if (!rcu_scheduler_active)
  634. return;
  635. if (rcu_expedited)
  636. synchronize_rcu_expedited();
  637. else
  638. wait_rcu_gp(call_rcu);
  639. }
  640. EXPORT_SYMBOL_GPL(synchronize_rcu);
  641. static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
  642. static unsigned long sync_rcu_preempt_exp_count;
  643. static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);
  644. /*
  645. * Return non-zero if there are any tasks in RCU read-side critical
  646. * sections blocking the current preemptible-RCU expedited grace period.
  647. * If there is no preemptible-RCU expedited grace period currently in
  648. * progress, returns zero unconditionally.
  649. */
  650. static int rcu_preempted_readers_exp(struct rcu_node *rnp)
  651. {
  652. return rnp->exp_tasks != NULL;
  653. }
  654. /*
  655. * return non-zero if there is no RCU expedited grace period in progress
  656. * for the specified rcu_node structure, in other words, if all CPUs and
  657. * tasks covered by the specified rcu_node structure have done their bit
  658. * for the current expedited grace period. Works only for preemptible
  659. * RCU -- other RCU implementation use other means.
  660. *
  661. * Caller must hold sync_rcu_preempt_exp_mutex.
  662. */
  663. static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
  664. {
  665. return !rcu_preempted_readers_exp(rnp) &&
  666. ACCESS_ONCE(rnp->expmask) == 0;
  667. }
  668. /*
  669. * Report the exit from RCU read-side critical section for the last task
  670. * that queued itself during or before the current expedited preemptible-RCU
  671. * grace period. This event is reported either to the rcu_node structure on
  672. * which the task was queued or to one of that rcu_node structure's ancestors,
  673. * recursively up the tree. (Calm down, calm down, we do the recursion
  674. * iteratively!)
  675. *
  676. * Most callers will set the "wake" flag, but the task initiating the
  677. * expedited grace period need not wake itself.
  678. *
  679. * Caller must hold sync_rcu_preempt_exp_mutex.
  680. */
  681. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  682. bool wake)
  683. {
  684. unsigned long flags;
  685. unsigned long mask;
  686. raw_spin_lock_irqsave(&rnp->lock, flags);
  687. smp_mb__after_unlock_lock();
  688. for (;;) {
  689. if (!sync_rcu_preempt_exp_done(rnp)) {
  690. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  691. break;
  692. }
  693. if (rnp->parent == NULL) {
  694. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  695. if (wake) {
  696. smp_mb(); /* EGP done before wake_up(). */
  697. wake_up(&sync_rcu_preempt_exp_wq);
  698. }
  699. break;
  700. }
  701. mask = rnp->grpmask;
  702. raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
  703. rnp = rnp->parent;
  704. raw_spin_lock(&rnp->lock); /* irqs already disabled */
  705. smp_mb__after_unlock_lock();
  706. rnp->expmask &= ~mask;
  707. }
  708. }
  709. /*
  710. * Snapshot the tasks blocking the newly started preemptible-RCU expedited
  711. * grace period for the specified rcu_node structure. If there are no such
  712. * tasks, report it up the rcu_node hierarchy.
  713. *
  714. * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
  715. * CPU hotplug operations.
  716. */
  717. static void
  718. sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
  719. {
  720. unsigned long flags;
  721. int must_wait = 0;
  722. raw_spin_lock_irqsave(&rnp->lock, flags);
  723. smp_mb__after_unlock_lock();
  724. if (list_empty(&rnp->blkd_tasks)) {
  725. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  726. } else {
  727. rnp->exp_tasks = rnp->blkd_tasks.next;
  728. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  729. must_wait = 1;
  730. }
  731. if (!must_wait)
  732. rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
  733. }
  734. /**
  735. * synchronize_rcu_expedited - Brute-force RCU grace period
  736. *
  737. * Wait for an RCU-preempt grace period, but expedite it. The basic
  738. * idea is to invoke synchronize_sched_expedited() to push all the tasks to
  739. * the ->blkd_tasks lists and wait for this list to drain. This consumes
  740. * significant time on all CPUs and is unfriendly to real-time workloads,
  741. * so is thus not recommended for any sort of common-case code.
  742. * In fact, if you are using synchronize_rcu_expedited() in a loop,
  743. * please restructure your code to batch your updates, and then Use a
  744. * single synchronize_rcu() instead.
  745. *
  746. * Note that it is illegal to call this function while holding any lock
  747. * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
  748. * to call this function from a CPU-hotplug notifier. Failing to observe
  749. * these restriction will result in deadlock.
  750. */
  751. void synchronize_rcu_expedited(void)
  752. {
  753. unsigned long flags;
  754. struct rcu_node *rnp;
  755. struct rcu_state *rsp = &rcu_preempt_state;
  756. unsigned long snap;
  757. int trycount = 0;
  758. smp_mb(); /* Caller's modifications seen first by other CPUs. */
  759. snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
  760. smp_mb(); /* Above access cannot bleed into critical section. */
  761. /*
  762. * Block CPU-hotplug operations. This means that any CPU-hotplug
  763. * operation that finds an rcu_node structure with tasks in the
  764. * process of being boosted will know that all tasks blocking
  765. * this expedited grace period will already be in the process of
  766. * being boosted. This simplifies the process of moving tasks
  767. * from leaf to root rcu_node structures.
  768. */
  769. get_online_cpus();
  770. /*
  771. * Acquire lock, falling back to synchronize_rcu() if too many
  772. * lock-acquisition failures. Of course, if someone does the
  773. * expedited grace period for us, just leave.
  774. */
  775. while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
  776. if (ULONG_CMP_LT(snap,
  777. ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  778. put_online_cpus();
  779. goto mb_ret; /* Others did our work for us. */
  780. }
  781. if (trycount++ < 10) {
  782. udelay(trycount * num_online_cpus());
  783. } else {
  784. put_online_cpus();
  785. wait_rcu_gp(call_rcu);
  786. return;
  787. }
  788. }
  789. if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
  790. put_online_cpus();
  791. goto unlock_mb_ret; /* Others did our work for us. */
  792. }
  793. /* force all RCU readers onto ->blkd_tasks lists. */
  794. synchronize_sched_expedited();
  795. /* Initialize ->expmask for all non-leaf rcu_node structures. */
  796. rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
  797. raw_spin_lock_irqsave(&rnp->lock, flags);
  798. smp_mb__after_unlock_lock();
  799. rnp->expmask = rnp->qsmaskinit;
  800. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  801. }
  802. /* Snapshot current state of ->blkd_tasks lists. */
  803. rcu_for_each_leaf_node(rsp, rnp)
  804. sync_rcu_preempt_exp_init(rsp, rnp);
  805. if (NUM_RCU_NODES > 1)
  806. sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));
  807. put_online_cpus();
  808. /* Wait for snapshotted ->blkd_tasks lists to drain. */
  809. rnp = rcu_get_root(rsp);
  810. wait_event(sync_rcu_preempt_exp_wq,
  811. sync_rcu_preempt_exp_done(rnp));
  812. /* Clean up and exit. */
  813. smp_mb(); /* ensure expedited GP seen before counter increment. */
  814. ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
  815. unlock_mb_ret:
  816. mutex_unlock(&sync_rcu_preempt_exp_mutex);
  817. mb_ret:
  818. smp_mb(); /* ensure subsequent action seen after grace period. */
  819. }
  820. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  821. /**
  822. * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
  823. *
  824. * Note that this primitive does not necessarily wait for an RCU grace period
  825. * to complete. For example, if there are no RCU callbacks queued anywhere
  826. * in the system, then rcu_barrier() is within its rights to return
  827. * immediately, without waiting for anything, much less an RCU grace period.
  828. */
  829. void rcu_barrier(void)
  830. {
  831. _rcu_barrier(&rcu_preempt_state);
  832. }
  833. EXPORT_SYMBOL_GPL(rcu_barrier);
  834. /*
  835. * Initialize preemptible RCU's state structures.
  836. */
  837. static void __init __rcu_init_preempt(void)
  838. {
  839. rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
  840. }
  841. /*
  842. * Check for a task exiting while in a preemptible-RCU read-side
  843. * critical section, clean up if so. No need to issue warnings,
  844. * as debug_check_no_locks_held() already does this if lockdep
  845. * is enabled.
  846. */
  847. void exit_rcu(void)
  848. {
  849. struct task_struct *t = current;
  850. if (likely(list_empty(&current->rcu_node_entry)))
  851. return;
  852. t->rcu_read_lock_nesting = 1;
  853. barrier();
  854. t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
  855. __rcu_read_unlock();
  856. }
  857. #else /* #ifdef CONFIG_TREE_PREEMPT_RCU */
  858. static struct rcu_state *rcu_state = &rcu_sched_state;
  859. /*
  860. * Tell them what RCU they are running.
  861. */
  862. static void __init rcu_bootup_announce(void)
  863. {
  864. pr_info("Hierarchical RCU implementation.\n");
  865. rcu_bootup_announce_oddness();
  866. }
  867. /*
  868. * Return the number of RCU batches processed thus far for debug & stats.
  869. */
  870. long rcu_batches_completed(void)
  871. {
  872. return rcu_batches_completed_sched();
  873. }
  874. EXPORT_SYMBOL_GPL(rcu_batches_completed);
  875. /*
  876. * Because preemptible RCU does not exist, we never have to check for
  877. * CPUs being in quiescent states.
  878. */
  879. static void rcu_preempt_note_context_switch(int cpu)
  880. {
  881. }
  882. /*
  883. * Because preemptible RCU does not exist, there are never any preempted
  884. * RCU readers.
  885. */
  886. static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
  887. {
  888. return 0;
  889. }
  890. #ifdef CONFIG_HOTPLUG_CPU
  891. /* Because preemptible RCU does not exist, no quieting of tasks. */
  892. static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
  893. {
  894. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  895. }
  896. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  897. /*
  898. * Because preemptible RCU does not exist, we never have to check for
  899. * tasks blocked within RCU read-side critical sections.
  900. */
  901. static void rcu_print_detail_task_stall(struct rcu_state *rsp)
  902. {
  903. }
  904. /*
  905. * Because preemptible RCU does not exist, we never have to check for
  906. * tasks blocked within RCU read-side critical sections.
  907. */
  908. static int rcu_print_task_stall(struct rcu_node *rnp)
  909. {
  910. return 0;
  911. }
  912. /*
  913. * Because there is no preemptible RCU, there can be no readers blocked,
  914. * so there is no need to check for blocked tasks. So check only for
  915. * bogus qsmask values.
  916. */
  917. static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
  918. {
  919. WARN_ON_ONCE(rnp->qsmask);
  920. }
  921. #ifdef CONFIG_HOTPLUG_CPU
  922. /*
  923. * Because preemptible RCU does not exist, it never needs to migrate
  924. * tasks that were blocked within RCU read-side critical sections, and
  925. * such non-existent tasks cannot possibly have been blocking the current
  926. * grace period.
  927. */
  928. static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
  929. struct rcu_node *rnp,
  930. struct rcu_data *rdp)
  931. {
  932. return 0;
  933. }
  934. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  935. /*
  936. * Because preemptible RCU does not exist, it never has any callbacks
  937. * to check.
  938. */
  939. static void rcu_preempt_check_callbacks(int cpu)
  940. {
  941. }
  942. /*
  943. * Wait for an rcu-preempt grace period, but make it happen quickly.
  944. * But because preemptible RCU does not exist, map to rcu-sched.
  945. */
  946. void synchronize_rcu_expedited(void)
  947. {
  948. synchronize_sched_expedited();
  949. }
  950. EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);
  951. #ifdef CONFIG_HOTPLUG_CPU
  952. /*
  953. * Because preemptible RCU does not exist, there is never any need to
  954. * report on tasks preempted in RCU read-side critical sections during
  955. * expedited RCU grace periods.
  956. */
  957. static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
  958. bool wake)
  959. {
  960. }
  961. #endif /* #ifdef CONFIG_HOTPLUG_CPU */
  962. /*
  963. * Because preemptible RCU does not exist, rcu_barrier() is just
  964. * another name for rcu_barrier_sched().
  965. */
  966. void rcu_barrier(void)
  967. {
  968. rcu_barrier_sched();
  969. }
  970. EXPORT_SYMBOL_GPL(rcu_barrier);
  971. /*
  972. * Because preemptible RCU does not exist, it need not be initialized.
  973. */
  974. static void __init __rcu_init_preempt(void)
  975. {
  976. }
  977. /*
  978. * Because preemptible RCU does not exist, tasks cannot possibly exit
  979. * while in preemptible RCU read-side critical sections.
  980. */
  981. void exit_rcu(void)
  982. {
  983. }
  984. #endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */
  985. #ifdef CONFIG_RCU_BOOST
  986. #include "../locking/rtmutex_common.h"
  987. #ifdef CONFIG_RCU_TRACE
  988. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  989. {
  990. if (list_empty(&rnp->blkd_tasks))
  991. rnp->n_balk_blkd_tasks++;
  992. else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
  993. rnp->n_balk_exp_gp_tasks++;
  994. else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
  995. rnp->n_balk_boost_tasks++;
  996. else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
  997. rnp->n_balk_notblocked++;
  998. else if (rnp->gp_tasks != NULL &&
  999. ULONG_CMP_LT(jiffies, rnp->boost_time))
  1000. rnp->n_balk_notyet++;
  1001. else
  1002. rnp->n_balk_nos++;
  1003. }
  1004. #else /* #ifdef CONFIG_RCU_TRACE */
  1005. static void rcu_initiate_boost_trace(struct rcu_node *rnp)
  1006. {
  1007. }
  1008. #endif /* #else #ifdef CONFIG_RCU_TRACE */
  1009. static void rcu_wake_cond(struct task_struct *t, int status)
  1010. {
  1011. /*
  1012. * If the thread is yielding, only wake it when this
  1013. * is invoked from idle
  1014. */
  1015. if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
  1016. wake_up_process(t);
  1017. }
  1018. /*
  1019. * Carry out RCU priority boosting on the task indicated by ->exp_tasks
  1020. * or ->boost_tasks, advancing the pointer to the next task in the
  1021. * ->blkd_tasks list.
  1022. *
  1023. * Note that irqs must be enabled: boosting the task can block.
  1024. * Returns 1 if there are more tasks needing to be boosted.
  1025. */
  1026. static int rcu_boost(struct rcu_node *rnp)
  1027. {
  1028. unsigned long flags;
  1029. struct rt_mutex mtx;
  1030. struct task_struct *t;
  1031. struct list_head *tb;
  1032. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
  1033. return 0; /* Nothing left to boost. */
  1034. raw_spin_lock_irqsave(&rnp->lock, flags);
  1035. smp_mb__after_unlock_lock();
  1036. /*
  1037. * Recheck under the lock: all tasks in need of boosting
  1038. * might exit their RCU read-side critical sections on their own.
  1039. */
  1040. if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
  1041. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1042. return 0;
  1043. }
  1044. /*
  1045. * Preferentially boost tasks blocking expedited grace periods.
  1046. * This cannot starve the normal grace periods because a second
  1047. * expedited grace period must boost all blocked tasks, including
  1048. * those blocking the pre-existing normal grace period.
  1049. */
  1050. if (rnp->exp_tasks != NULL) {
  1051. tb = rnp->exp_tasks;
  1052. rnp->n_exp_boosts++;
  1053. } else {
  1054. tb = rnp->boost_tasks;
  1055. rnp->n_normal_boosts++;
  1056. }
  1057. rnp->n_tasks_boosted++;
  1058. /*
  1059. * We boost task t by manufacturing an rt_mutex that appears to
  1060. * be held by task t. We leave a pointer to that rt_mutex where
  1061. * task t can find it, and task t will release the mutex when it
  1062. * exits its outermost RCU read-side critical section. Then
  1063. * simply acquiring this artificial rt_mutex will boost task
  1064. * t's priority. (Thanks to tglx for suggesting this approach!)
  1065. *
  1066. * Note that task t must acquire rnp->lock to remove itself from
  1067. * the ->blkd_tasks list, which it will do from exit() if from
  1068. * nowhere else. We therefore are guaranteed that task t will
  1069. * stay around at least until we drop rnp->lock. Note that
  1070. * rnp->lock also resolves races between our priority boosting
  1071. * and task t's exiting its outermost RCU read-side critical
  1072. * section.
  1073. */
  1074. t = container_of(tb, struct task_struct, rcu_node_entry);
  1075. rt_mutex_init_proxy_locked(&mtx, t);
  1076. t->rcu_boost_mutex = &mtx;
  1077. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1078. rt_mutex_lock(&mtx); /* Side effect: boosts task t's priority. */
  1079. rt_mutex_unlock(&mtx); /* Keep lockdep happy. */
  1080. return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
  1081. ACCESS_ONCE(rnp->boost_tasks) != NULL;
  1082. }
  1083. /*
  1084. * Priority-boosting kthread. One per leaf rcu_node and one for the
  1085. * root rcu_node.
  1086. */
  1087. static int rcu_boost_kthread(void *arg)
  1088. {
  1089. struct rcu_node *rnp = (struct rcu_node *)arg;
  1090. int spincnt = 0;
  1091. int more2boost;
  1092. trace_rcu_utilization(TPS("Start boost kthread@init"));
  1093. for (;;) {
  1094. rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
  1095. trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
  1096. rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
  1097. trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
  1098. rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
  1099. more2boost = rcu_boost(rnp);
  1100. if (more2boost)
  1101. spincnt++;
  1102. else
  1103. spincnt = 0;
  1104. if (spincnt > 10) {
  1105. rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
  1106. trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
  1107. schedule_timeout_interruptible(2);
  1108. trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
  1109. spincnt = 0;
  1110. }
  1111. }
  1112. /* NOTREACHED */
  1113. trace_rcu_utilization(TPS("End boost kthread@notreached"));
  1114. return 0;
  1115. }
  1116. /*
  1117. * Check to see if it is time to start boosting RCU readers that are
  1118. * blocking the current grace period, and, if so, tell the per-rcu_node
  1119. * kthread to start boosting them. If there is an expedited grace
  1120. * period in progress, it is always time to boost.
  1121. *
  1122. * The caller must hold rnp->lock, which this function releases.
  1123. * The ->boost_kthread_task is immortal, so we don't need to worry
  1124. * about it going away.
  1125. */
  1126. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1127. {
  1128. struct task_struct *t;
  1129. if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
  1130. rnp->n_balk_exp_gp_tasks++;
  1131. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1132. return;
  1133. }
  1134. if (rnp->exp_tasks != NULL ||
  1135. (rnp->gp_tasks != NULL &&
  1136. rnp->boost_tasks == NULL &&
  1137. rnp->qsmask == 0 &&
  1138. ULONG_CMP_GE(jiffies, rnp->boost_time))) {
  1139. if (rnp->exp_tasks == NULL)
  1140. rnp->boost_tasks = rnp->gp_tasks;
  1141. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1142. t = rnp->boost_kthread_task;
  1143. if (t)
  1144. rcu_wake_cond(t, rnp->boost_kthread_status);
  1145. } else {
  1146. rcu_initiate_boost_trace(rnp);
  1147. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1148. }
  1149. }
  1150. /*
  1151. * Wake up the per-CPU kthread to invoke RCU callbacks.
  1152. */
  1153. static void invoke_rcu_callbacks_kthread(void)
  1154. {
  1155. unsigned long flags;
  1156. local_irq_save(flags);
  1157. __this_cpu_write(rcu_cpu_has_work, 1);
  1158. if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
  1159. current != __this_cpu_read(rcu_cpu_kthread_task)) {
  1160. rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
  1161. __this_cpu_read(rcu_cpu_kthread_status));
  1162. }
  1163. local_irq_restore(flags);
  1164. }
  1165. /*
  1166. * Is the current CPU running the RCU-callbacks kthread?
  1167. * Caller must have preemption disabled.
  1168. */
  1169. static bool rcu_is_callbacks_kthread(void)
  1170. {
  1171. return __this_cpu_read(rcu_cpu_kthread_task) == current;
  1172. }
  1173. #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
  1174. /*
  1175. * Do priority-boost accounting for the start of a new grace period.
  1176. */
  1177. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1178. {
  1179. rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
  1180. }
  1181. /*
  1182. * Create an RCU-boost kthread for the specified node if one does not
  1183. * already exist. We only create this kthread for preemptible RCU.
  1184. * Returns zero if all is well, a negated errno otherwise.
  1185. */
  1186. static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
  1187. struct rcu_node *rnp)
  1188. {
  1189. int rnp_index = rnp - &rsp->node[0];
  1190. unsigned long flags;
  1191. struct sched_param sp;
  1192. struct task_struct *t;
  1193. if (&rcu_preempt_state != rsp)
  1194. return 0;
  1195. if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
  1196. return 0;
  1197. rsp->boost = 1;
  1198. if (rnp->boost_kthread_task != NULL)
  1199. return 0;
  1200. t = kthread_create(rcu_boost_kthread, (void *)rnp,
  1201. "rcub/%d", rnp_index);
  1202. if (IS_ERR(t))
  1203. return PTR_ERR(t);
  1204. raw_spin_lock_irqsave(&rnp->lock, flags);
  1205. smp_mb__after_unlock_lock();
  1206. rnp->boost_kthread_task = t;
  1207. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1208. sp.sched_priority = RCU_BOOST_PRIO;
  1209. sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
  1210. wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
  1211. return 0;
  1212. }
  1213. static void rcu_kthread_do_work(void)
  1214. {
  1215. rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
  1216. rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
  1217. rcu_preempt_do_callbacks();
  1218. }
  1219. static void rcu_cpu_kthread_setup(unsigned int cpu)
  1220. {
  1221. struct sched_param sp;
  1222. sp.sched_priority = RCU_KTHREAD_PRIO;
  1223. sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
  1224. }
  1225. static void rcu_cpu_kthread_park(unsigned int cpu)
  1226. {
  1227. per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
  1228. }
  1229. static int rcu_cpu_kthread_should_run(unsigned int cpu)
  1230. {
  1231. return __this_cpu_read(rcu_cpu_has_work);
  1232. }
  1233. /*
  1234. * Per-CPU kernel thread that invokes RCU callbacks. This replaces the
  1235. * RCU softirq used in flavors and configurations of RCU that do not
  1236. * support RCU priority boosting.
  1237. */
  1238. static void rcu_cpu_kthread(unsigned int cpu)
  1239. {
  1240. unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
  1241. char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
  1242. int spincnt;
  1243. for (spincnt = 0; spincnt < 10; spincnt++) {
  1244. trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
  1245. local_bh_disable();
  1246. *statusp = RCU_KTHREAD_RUNNING;
  1247. this_cpu_inc(rcu_cpu_kthread_loops);
  1248. local_irq_disable();
  1249. work = *workp;
  1250. *workp = 0;
  1251. local_irq_enable();
  1252. if (work)
  1253. rcu_kthread_do_work();
  1254. local_bh_enable();
  1255. if (*workp == 0) {
  1256. trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
  1257. *statusp = RCU_KTHREAD_WAITING;
  1258. return;
  1259. }
  1260. }
  1261. *statusp = RCU_KTHREAD_YIELDING;
  1262. trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
  1263. schedule_timeout_interruptible(2);
  1264. trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
  1265. *statusp = RCU_KTHREAD_WAITING;
  1266. }
  1267. /*
  1268. * Set the per-rcu_node kthread's affinity to cover all CPUs that are
  1269. * served by the rcu_node in question. The CPU hotplug lock is still
  1270. * held, so the value of rnp->qsmaskinit will be stable.
  1271. *
  1272. * We don't include outgoingcpu in the affinity set, use -1 if there is
  1273. * no outgoing CPU. If there are no CPUs left in the affinity set,
  1274. * this function allows the kthread to execute on any CPU.
  1275. */
  1276. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1277. {
  1278. struct task_struct *t = rnp->boost_kthread_task;
  1279. unsigned long mask = rnp->qsmaskinit;
  1280. cpumask_var_t cm;
  1281. int cpu;
  1282. if (!t)
  1283. return;
  1284. if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
  1285. return;
  1286. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
  1287. if ((mask & 0x1) && cpu != outgoingcpu)
  1288. cpumask_set_cpu(cpu, cm);
  1289. if (cpumask_weight(cm) == 0) {
  1290. cpumask_setall(cm);
  1291. for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
  1292. cpumask_clear_cpu(cpu, cm);
  1293. WARN_ON_ONCE(cpumask_weight(cm) == 0);
  1294. }
  1295. set_cpus_allowed_ptr(t, cm);
  1296. free_cpumask_var(cm);
  1297. }
  1298. static struct smp_hotplug_thread rcu_cpu_thread_spec = {
  1299. .store = &rcu_cpu_kthread_task,
  1300. .thread_should_run = rcu_cpu_kthread_should_run,
  1301. .thread_fn = rcu_cpu_kthread,
  1302. .thread_comm = "rcuc/%u",
  1303. .setup = rcu_cpu_kthread_setup,
  1304. .park = rcu_cpu_kthread_park,
  1305. };
  1306. /*
  1307. * Spawn all kthreads -- called as soon as the scheduler is running.
  1308. */
  1309. static int __init rcu_spawn_kthreads(void)
  1310. {
  1311. struct rcu_node *rnp;
  1312. int cpu;
  1313. rcu_scheduler_fully_active = 1;
  1314. for_each_possible_cpu(cpu)
  1315. per_cpu(rcu_cpu_has_work, cpu) = 0;
  1316. BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
  1317. rnp = rcu_get_root(rcu_state);
  1318. (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
  1319. if (NUM_RCU_NODES > 1) {
  1320. rcu_for_each_leaf_node(rcu_state, rnp)
  1321. (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
  1322. }
  1323. return 0;
  1324. }
  1325. early_initcall(rcu_spawn_kthreads);
  1326. static void rcu_prepare_kthreads(int cpu)
  1327. {
  1328. struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
  1329. struct rcu_node *rnp = rdp->mynode;
  1330. /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
  1331. if (rcu_scheduler_fully_active)
  1332. (void)rcu_spawn_one_boost_kthread(rcu_state, rnp);
  1333. }
  1334. #else /* #ifdef CONFIG_RCU_BOOST */
  1335. static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
  1336. {
  1337. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1338. }
  1339. static void invoke_rcu_callbacks_kthread(void)
  1340. {
  1341. WARN_ON_ONCE(1);
  1342. }
  1343. static bool rcu_is_callbacks_kthread(void)
  1344. {
  1345. return false;
  1346. }
  1347. static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
  1348. {
  1349. }
  1350. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
  1351. {
  1352. }
  1353. static int __init rcu_scheduler_really_started(void)
  1354. {
  1355. rcu_scheduler_fully_active = 1;
  1356. return 0;
  1357. }
  1358. early_initcall(rcu_scheduler_really_started);
  1359. static void rcu_prepare_kthreads(int cpu)
  1360. {
  1361. }
  1362. #endif /* #else #ifdef CONFIG_RCU_BOOST */
  1363. #if !defined(CONFIG_RCU_FAST_NO_HZ)
  1364. /*
  1365. * Check to see if any future RCU-related work will need to be done
  1366. * by the current CPU, even if none need be done immediately, returning
  1367. * 1 if so. This function is part of the RCU implementation; it is -not-
  1368. * an exported member of the RCU API.
  1369. *
  1370. * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
  1371. * any flavor of RCU.
  1372. */
  1373. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1374. int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
  1375. {
  1376. *delta_jiffies = ULONG_MAX;
  1377. return rcu_cpu_has_callbacks(cpu, NULL);
  1378. }
  1379. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1380. /*
  1381. * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
  1382. * after it.
  1383. */
  1384. static void rcu_cleanup_after_idle(int cpu)
  1385. {
  1386. }
  1387. /*
  1388. * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
  1389. * is nothing.
  1390. */
  1391. static void rcu_prepare_for_idle(int cpu)
  1392. {
  1393. }
  1394. /*
  1395. * Don't bother keeping a running count of the number of RCU callbacks
  1396. * posted because CONFIG_RCU_FAST_NO_HZ=n.
  1397. */
  1398. static void rcu_idle_count_callbacks_posted(void)
  1399. {
  1400. }
  1401. #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1402. /*
  1403. * This code is invoked when a CPU goes idle, at which point we want
  1404. * to have the CPU do everything required for RCU so that it can enter
  1405. * the energy-efficient dyntick-idle mode. This is handled by a
  1406. * state machine implemented by rcu_prepare_for_idle() below.
  1407. *
  1408. * The following three proprocessor symbols control this state machine:
  1409. *
  1410. * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
  1411. * to sleep in dyntick-idle mode with RCU callbacks pending. This
  1412. * is sized to be roughly one RCU grace period. Those energy-efficiency
  1413. * benchmarkers who might otherwise be tempted to set this to a large
  1414. * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
  1415. * system. And if you are -that- concerned about energy efficiency,
  1416. * just power the system down and be done with it!
  1417. * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
  1418. * permitted to sleep in dyntick-idle mode with only lazy RCU
  1419. * callbacks pending. Setting this too high can OOM your system.
  1420. *
  1421. * The values below work well in practice. If future workloads require
  1422. * adjustment, they can be converted into kernel config parameters, though
  1423. * making the state machine smarter might be a better option.
  1424. */
  1425. #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
  1426. #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
  1427. static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
  1428. module_param(rcu_idle_gp_delay, int, 0644);
  1429. static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
  1430. module_param(rcu_idle_lazy_gp_delay, int, 0644);
  1431. extern int tick_nohz_active;
  1432. /*
  1433. * Try to advance callbacks for all flavors of RCU on the current CPU, but
  1434. * only if it has been awhile since the last time we did so. Afterwards,
  1435. * if there are any callbacks ready for immediate invocation, return true.
  1436. */
  1437. static bool __maybe_unused rcu_try_advance_all_cbs(void)
  1438. {
  1439. bool cbs_ready = false;
  1440. struct rcu_data *rdp;
  1441. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  1442. struct rcu_node *rnp;
  1443. struct rcu_state *rsp;
  1444. /* Exit early if we advanced recently. */
  1445. if (jiffies == rdtp->last_advance_all)
  1446. return 0;
  1447. rdtp->last_advance_all = jiffies;
  1448. for_each_rcu_flavor(rsp) {
  1449. rdp = this_cpu_ptr(rsp->rda);
  1450. rnp = rdp->mynode;
  1451. /*
  1452. * Don't bother checking unless a grace period has
  1453. * completed since we last checked and there are
  1454. * callbacks not yet ready to invoke.
  1455. */
  1456. if (rdp->completed != rnp->completed &&
  1457. rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
  1458. note_gp_changes(rsp, rdp);
  1459. if (cpu_has_callbacks_ready_to_invoke(rdp))
  1460. cbs_ready = true;
  1461. }
  1462. return cbs_ready;
  1463. }
  1464. /*
  1465. * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
  1466. * to invoke. If the CPU has callbacks, try to advance them. Tell the
  1467. * caller to set the timeout based on whether or not there are non-lazy
  1468. * callbacks.
  1469. *
  1470. * The caller must have disabled interrupts.
  1471. */
  1472. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1473. int rcu_needs_cpu(int cpu, unsigned long *dj)
  1474. {
  1475. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1476. /* Snapshot to detect later posting of non-lazy callback. */
  1477. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1478. /* If no callbacks, RCU doesn't need the CPU. */
  1479. if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
  1480. *dj = ULONG_MAX;
  1481. return 0;
  1482. }
  1483. /* Attempt to advance callbacks. */
  1484. if (rcu_try_advance_all_cbs()) {
  1485. /* Some ready to invoke, so initiate later invocation. */
  1486. invoke_rcu_core();
  1487. return 1;
  1488. }
  1489. rdtp->last_accelerate = jiffies;
  1490. /* Request timer delay depending on laziness, and round. */
  1491. if (!rdtp->all_lazy) {
  1492. *dj = round_up(rcu_idle_gp_delay + jiffies,
  1493. rcu_idle_gp_delay) - jiffies;
  1494. } else {
  1495. *dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
  1496. }
  1497. return 0;
  1498. }
  1499. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1500. /*
  1501. * Prepare a CPU for idle from an RCU perspective. The first major task
  1502. * is to sense whether nohz mode has been enabled or disabled via sysfs.
  1503. * The second major task is to check to see if a non-lazy callback has
  1504. * arrived at a CPU that previously had only lazy callbacks. The third
  1505. * major task is to accelerate (that is, assign grace-period numbers to)
  1506. * any recently arrived callbacks.
  1507. *
  1508. * The caller must have disabled interrupts.
  1509. */
  1510. static void rcu_prepare_for_idle(int cpu)
  1511. {
  1512. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1513. bool needwake;
  1514. struct rcu_data *rdp;
  1515. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1516. struct rcu_node *rnp;
  1517. struct rcu_state *rsp;
  1518. int tne;
  1519. /* Handle nohz enablement switches conservatively. */
  1520. tne = ACCESS_ONCE(tick_nohz_active);
  1521. if (tne != rdtp->tick_nohz_enabled_snap) {
  1522. if (rcu_cpu_has_callbacks(cpu, NULL))
  1523. invoke_rcu_core(); /* force nohz to see update. */
  1524. rdtp->tick_nohz_enabled_snap = tne;
  1525. return;
  1526. }
  1527. if (!tne)
  1528. return;
  1529. /* If this is a no-CBs CPU, no callbacks, just return. */
  1530. if (rcu_is_nocb_cpu(cpu))
  1531. return;
  1532. /*
  1533. * If a non-lazy callback arrived at a CPU having only lazy
  1534. * callbacks, invoke RCU core for the side-effect of recalculating
  1535. * idle duration on re-entry to idle.
  1536. */
  1537. if (rdtp->all_lazy &&
  1538. rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
  1539. rdtp->all_lazy = false;
  1540. rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
  1541. invoke_rcu_core();
  1542. return;
  1543. }
  1544. /*
  1545. * If we have not yet accelerated this jiffy, accelerate all
  1546. * callbacks on this CPU.
  1547. */
  1548. if (rdtp->last_accelerate == jiffies)
  1549. return;
  1550. rdtp->last_accelerate = jiffies;
  1551. for_each_rcu_flavor(rsp) {
  1552. rdp = per_cpu_ptr(rsp->rda, cpu);
  1553. if (!*rdp->nxttail[RCU_DONE_TAIL])
  1554. continue;
  1555. rnp = rdp->mynode;
  1556. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  1557. smp_mb__after_unlock_lock();
  1558. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1559. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  1560. if (needwake)
  1561. rcu_gp_kthread_wake(rsp);
  1562. }
  1563. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1564. }
  1565. /*
  1566. * Clean up for exit from idle. Attempt to advance callbacks based on
  1567. * any grace periods that elapsed while the CPU was idle, and if any
  1568. * callbacks are now ready to invoke, initiate invocation.
  1569. */
  1570. static void rcu_cleanup_after_idle(int cpu)
  1571. {
  1572. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1573. if (rcu_is_nocb_cpu(cpu))
  1574. return;
  1575. if (rcu_try_advance_all_cbs())
  1576. invoke_rcu_core();
  1577. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1578. }
  1579. /*
  1580. * Keep a running count of the number of non-lazy callbacks posted
  1581. * on this CPU. This running counter (which is never decremented) allows
  1582. * rcu_prepare_for_idle() to detect when something out of the idle loop
  1583. * posts a callback, even if an equal number of callbacks are invoked.
  1584. * Of course, callbacks should only be posted from within a trace event
  1585. * designed to be called from idle or from within RCU_NONIDLE().
  1586. */
  1587. static void rcu_idle_count_callbacks_posted(void)
  1588. {
  1589. __this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
  1590. }
  1591. /*
  1592. * Data for flushing lazy RCU callbacks at OOM time.
  1593. */
  1594. static atomic_t oom_callback_count;
  1595. static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);
  1596. /*
  1597. * RCU OOM callback -- decrement the outstanding count and deliver the
  1598. * wake-up if we are the last one.
  1599. */
  1600. static void rcu_oom_callback(struct rcu_head *rhp)
  1601. {
  1602. if (atomic_dec_and_test(&oom_callback_count))
  1603. wake_up(&oom_callback_wq);
  1604. }
  1605. /*
  1606. * Post an rcu_oom_notify callback on the current CPU if it has at
  1607. * least one lazy callback. This will unnecessarily post callbacks
  1608. * to CPUs that already have a non-lazy callback at the end of their
  1609. * callback list, but this is an infrequent operation, so accept some
  1610. * extra overhead to keep things simple.
  1611. */
  1612. static void rcu_oom_notify_cpu(void *unused)
  1613. {
  1614. struct rcu_state *rsp;
  1615. struct rcu_data *rdp;
  1616. for_each_rcu_flavor(rsp) {
  1617. rdp = __this_cpu_ptr(rsp->rda);
  1618. if (rdp->qlen_lazy != 0) {
  1619. atomic_inc(&oom_callback_count);
  1620. rsp->call(&rdp->oom_head, rcu_oom_callback);
  1621. }
  1622. }
  1623. }
  1624. /*
  1625. * If low on memory, ensure that each CPU has a non-lazy callback.
  1626. * This will wake up CPUs that have only lazy callbacks, in turn
  1627. * ensuring that they free up the corresponding memory in a timely manner.
  1628. * Because an uncertain amount of memory will be freed in some uncertain
  1629. * timeframe, we do not claim to have freed anything.
  1630. */
  1631. static int rcu_oom_notify(struct notifier_block *self,
  1632. unsigned long notused, void *nfreed)
  1633. {
  1634. int cpu;
  1635. /* Wait for callbacks from earlier instance to complete. */
  1636. wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
  1637. smp_mb(); /* Ensure callback reuse happens after callback invocation. */
  1638. /*
  1639. * Prevent premature wakeup: ensure that all increments happen
  1640. * before there is a chance of the counter reaching zero.
  1641. */
  1642. atomic_set(&oom_callback_count, 1);
  1643. get_online_cpus();
  1644. for_each_online_cpu(cpu) {
  1645. smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
  1646. cond_resched();
  1647. }
  1648. put_online_cpus();
  1649. /* Unconditionally decrement: no need to wake ourselves up. */
  1650. atomic_dec(&oom_callback_count);
  1651. return NOTIFY_OK;
  1652. }
  1653. static struct notifier_block rcu_oom_nb = {
  1654. .notifier_call = rcu_oom_notify
  1655. };
  1656. static int __init rcu_register_oom_notifier(void)
  1657. {
  1658. register_oom_notifier(&rcu_oom_nb);
  1659. return 0;
  1660. }
  1661. early_initcall(rcu_register_oom_notifier);
  1662. #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
  1663. #ifdef CONFIG_RCU_CPU_STALL_INFO
  1664. #ifdef CONFIG_RCU_FAST_NO_HZ
  1665. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1666. {
  1667. struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
  1668. unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;
  1669. sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
  1670. rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
  1671. ulong2long(nlpd),
  1672. rdtp->all_lazy ? 'L' : '.',
  1673. rdtp->tick_nohz_enabled_snap ? '.' : 'D');
  1674. }
  1675. #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
  1676. static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
  1677. {
  1678. *cp = '\0';
  1679. }
  1680. #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
  1681. /* Initiate the stall-info list. */
  1682. static void print_cpu_stall_info_begin(void)
  1683. {
  1684. pr_cont("\n");
  1685. }
  1686. /*
  1687. * Print out diagnostic information for the specified stalled CPU.
  1688. *
  1689. * If the specified CPU is aware of the current RCU grace period
  1690. * (flavor specified by rsp), then print the number of scheduling
  1691. * clock interrupts the CPU has taken during the time that it has
  1692. * been aware. Otherwise, print the number of RCU grace periods
  1693. * that this CPU is ignorant of, for example, "1" if the CPU was
  1694. * aware of the previous grace period.
  1695. *
  1696. * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
  1697. */
  1698. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1699. {
  1700. char fast_no_hz[72];
  1701. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  1702. struct rcu_dynticks *rdtp = rdp->dynticks;
  1703. char *ticks_title;
  1704. unsigned long ticks_value;
  1705. if (rsp->gpnum == rdp->gpnum) {
  1706. ticks_title = "ticks this GP";
  1707. ticks_value = rdp->ticks_this_gp;
  1708. } else {
  1709. ticks_title = "GPs behind";
  1710. ticks_value = rsp->gpnum - rdp->gpnum;
  1711. }
  1712. print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
  1713. pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
  1714. cpu, ticks_value, ticks_title,
  1715. atomic_read(&rdtp->dynticks) & 0xfff,
  1716. rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
  1717. rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
  1718. fast_no_hz);
  1719. }
  1720. /* Terminate the stall-info list. */
  1721. static void print_cpu_stall_info_end(void)
  1722. {
  1723. pr_err("\t");
  1724. }
  1725. /* Zero ->ticks_this_gp for all flavors of RCU. */
  1726. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1727. {
  1728. rdp->ticks_this_gp = 0;
  1729. rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
  1730. }
  1731. /* Increment ->ticks_this_gp for all flavors of RCU. */
  1732. static void increment_cpu_stall_ticks(void)
  1733. {
  1734. struct rcu_state *rsp;
  1735. for_each_rcu_flavor(rsp)
  1736. __this_cpu_ptr(rsp->rda)->ticks_this_gp++;
  1737. }
  1738. #else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1739. static void print_cpu_stall_info_begin(void)
  1740. {
  1741. pr_cont(" {");
  1742. }
  1743. static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
  1744. {
  1745. pr_cont(" %d", cpu);
  1746. }
  1747. static void print_cpu_stall_info_end(void)
  1748. {
  1749. pr_cont("} ");
  1750. }
  1751. static void zero_cpu_stall_ticks(struct rcu_data *rdp)
  1752. {
  1753. }
  1754. static void increment_cpu_stall_ticks(void)
  1755. {
  1756. }
  1757. #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */
  1758. #ifdef CONFIG_RCU_NOCB_CPU
  1759. /*
  1760. * Offload callback processing from the boot-time-specified set of CPUs
  1761. * specified by rcu_nocb_mask. For each CPU in the set, there is a
  1762. * kthread created that pulls the callbacks from the corresponding CPU,
  1763. * waits for a grace period to elapse, and invokes the callbacks.
  1764. * The no-CBs CPUs do a wake_up() on their kthread when they insert
  1765. * a callback into any empty list, unless the rcu_nocb_poll boot parameter
  1766. * has been specified, in which case each kthread actively polls its
  1767. * CPU. (Which isn't so great for energy efficiency, but which does
  1768. * reduce RCU's overhead on that CPU.)
  1769. *
  1770. * This is intended to be used in conjunction with Frederic Weisbecker's
  1771. * adaptive-idle work, which would seriously reduce OS jitter on CPUs
  1772. * running CPU-bound user-mode computations.
  1773. *
  1774. * Offloading of callback processing could also in theory be used as
  1775. * an energy-efficiency measure because CPUs with no RCU callbacks
  1776. * queued are more aggressive about entering dyntick-idle mode.
  1777. */
  1778. /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
  1779. static int __init rcu_nocb_setup(char *str)
  1780. {
  1781. alloc_bootmem_cpumask_var(&rcu_nocb_mask);
  1782. have_rcu_nocb_mask = true;
  1783. cpulist_parse(str, rcu_nocb_mask);
  1784. return 1;
  1785. }
  1786. __setup("rcu_nocbs=", rcu_nocb_setup);
  1787. static int __init parse_rcu_nocb_poll(char *arg)
  1788. {
  1789. rcu_nocb_poll = 1;
  1790. return 0;
  1791. }
  1792. early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
  1793. /*
  1794. * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
  1795. * grace period.
  1796. */
  1797. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1798. {
  1799. wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
  1800. }
  1801. /*
  1802. * Set the root rcu_node structure's ->need_future_gp field
  1803. * based on the sum of those of all rcu_node structures. This does
  1804. * double-count the root rcu_node structure's requests, but this
  1805. * is necessary to handle the possibility of a rcu_nocb_kthread()
  1806. * having awakened during the time that the rcu_node structures
  1807. * were being updated for the end of the previous grace period.
  1808. */
  1809. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  1810. {
  1811. rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
  1812. }
  1813. static void rcu_init_one_nocb(struct rcu_node *rnp)
  1814. {
  1815. init_waitqueue_head(&rnp->nocb_gp_wq[0]);
  1816. init_waitqueue_head(&rnp->nocb_gp_wq[1]);
  1817. }
  1818. #ifndef CONFIG_RCU_NOCB_CPU_ALL
  1819. /* Is the specified CPU a no-CBs CPU? */
  1820. bool rcu_is_nocb_cpu(int cpu)
  1821. {
  1822. if (have_rcu_nocb_mask)
  1823. return cpumask_test_cpu(cpu, rcu_nocb_mask);
  1824. return false;
  1825. }
  1826. #endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
  1827. /*
  1828. * Enqueue the specified string of rcu_head structures onto the specified
  1829. * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
  1830. * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
  1831. * counts are supplied by rhcount and rhcount_lazy.
  1832. *
  1833. * If warranted, also wake up the kthread servicing this CPUs queues.
  1834. */
  1835. static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
  1836. struct rcu_head *rhp,
  1837. struct rcu_head **rhtp,
  1838. int rhcount, int rhcount_lazy,
  1839. unsigned long flags)
  1840. {
  1841. int len;
  1842. struct rcu_head **old_rhpp;
  1843. struct task_struct *t;
  1844. /* Enqueue the callback on the nocb list and update counts. */
  1845. old_rhpp = xchg(&rdp->nocb_tail, rhtp);
  1846. ACCESS_ONCE(*old_rhpp) = rhp;
  1847. atomic_long_add(rhcount, &rdp->nocb_q_count);
  1848. atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);
  1849. /* If we are not being polled and there is a kthread, awaken it ... */
  1850. t = ACCESS_ONCE(rdp->nocb_kthread);
  1851. if (rcu_nocb_poll || !t) {
  1852. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1853. TPS("WakeNotPoll"));
  1854. return;
  1855. }
  1856. len = atomic_long_read(&rdp->nocb_q_count);
  1857. if (old_rhpp == &rdp->nocb_head) {
  1858. if (!irqs_disabled_flags(flags)) {
  1859. wake_up(&rdp->nocb_wq); /* ... if queue was empty ... */
  1860. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1861. TPS("WakeEmpty"));
  1862. } else {
  1863. rdp->nocb_defer_wakeup = true;
  1864. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1865. TPS("WakeEmptyIsDeferred"));
  1866. }
  1867. rdp->qlen_last_fqs_check = 0;
  1868. } else if (len > rdp->qlen_last_fqs_check + qhimark) {
  1869. wake_up_process(t); /* ... or if many callbacks queued. */
  1870. rdp->qlen_last_fqs_check = LONG_MAX / 2;
  1871. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
  1872. } else {
  1873. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
  1874. }
  1875. return;
  1876. }
  1877. /*
  1878. * This is a helper for __call_rcu(), which invokes this when the normal
  1879. * callback queue is inoperable. If this is not a no-CBs CPU, this
  1880. * function returns failure back to __call_rcu(), which can complain
  1881. * appropriately.
  1882. *
  1883. * Otherwise, this function queues the callback where the corresponding
  1884. * "rcuo" kthread can find it.
  1885. */
  1886. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  1887. bool lazy, unsigned long flags)
  1888. {
  1889. if (!rcu_is_nocb_cpu(rdp->cpu))
  1890. return 0;
  1891. __call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
  1892. if (__is_kfree_rcu_offset((unsigned long)rhp->func))
  1893. trace_rcu_kfree_callback(rdp->rsp->name, rhp,
  1894. (unsigned long)rhp->func,
  1895. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1896. -atomic_long_read(&rdp->nocb_q_count));
  1897. else
  1898. trace_rcu_callback(rdp->rsp->name, rhp,
  1899. -atomic_long_read(&rdp->nocb_q_count_lazy),
  1900. -atomic_long_read(&rdp->nocb_q_count));
  1901. return 1;
  1902. }
  1903. /*
  1904. * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
  1905. * not a no-CBs CPU.
  1906. */
  1907. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  1908. struct rcu_data *rdp,
  1909. unsigned long flags)
  1910. {
  1911. long ql = rsp->qlen;
  1912. long qll = rsp->qlen_lazy;
  1913. /* If this is not a no-CBs CPU, tell the caller to do it the old way. */
  1914. if (!rcu_is_nocb_cpu(smp_processor_id()))
  1915. return 0;
  1916. rsp->qlen = 0;
  1917. rsp->qlen_lazy = 0;
  1918. /* First, enqueue the donelist, if any. This preserves CB ordering. */
  1919. if (rsp->orphan_donelist != NULL) {
  1920. __call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
  1921. rsp->orphan_donetail, ql, qll, flags);
  1922. ql = qll = 0;
  1923. rsp->orphan_donelist = NULL;
  1924. rsp->orphan_donetail = &rsp->orphan_donelist;
  1925. }
  1926. if (rsp->orphan_nxtlist != NULL) {
  1927. __call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
  1928. rsp->orphan_nxttail, ql, qll, flags);
  1929. ql = qll = 0;
  1930. rsp->orphan_nxtlist = NULL;
  1931. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1932. }
  1933. return 1;
  1934. }
  1935. /*
  1936. * If necessary, kick off a new grace period, and either way wait
  1937. * for a subsequent grace period to complete.
  1938. */
  1939. static void rcu_nocb_wait_gp(struct rcu_data *rdp)
  1940. {
  1941. unsigned long c;
  1942. bool d;
  1943. unsigned long flags;
  1944. bool needwake;
  1945. struct rcu_node *rnp = rdp->mynode;
  1946. raw_spin_lock_irqsave(&rnp->lock, flags);
  1947. smp_mb__after_unlock_lock();
  1948. needwake = rcu_start_future_gp(rnp, rdp, &c);
  1949. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1950. if (needwake)
  1951. rcu_gp_kthread_wake(rdp->rsp);
  1952. /*
  1953. * Wait for the grace period. Do so interruptibly to avoid messing
  1954. * up the load average.
  1955. */
  1956. trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
  1957. for (;;) {
  1958. wait_event_interruptible(
  1959. rnp->nocb_gp_wq[c & 0x1],
  1960. (d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
  1961. if (likely(d))
  1962. break;
  1963. flush_signals(current);
  1964. trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
  1965. }
  1966. trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
  1967. smp_mb(); /* Ensure that CB invocation happens after GP end. */
  1968. }
  1969. /*
  1970. * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
  1971. * callbacks queued by the corresponding no-CBs CPU.
  1972. */
  1973. static int rcu_nocb_kthread(void *arg)
  1974. {
  1975. int c, cl;
  1976. bool firsttime = 1;
  1977. struct rcu_head *list;
  1978. struct rcu_head *next;
  1979. struct rcu_head **tail;
  1980. struct rcu_data *rdp = arg;
  1981. /* Each pass through this loop invokes one batch of callbacks */
  1982. for (;;) {
  1983. /* If not polling, wait for next batch of callbacks. */
  1984. if (!rcu_nocb_poll) {
  1985. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1986. TPS("Sleep"));
  1987. wait_event_interruptible(rdp->nocb_wq, rdp->nocb_head);
  1988. /* Memory barrier provide by xchg() below. */
  1989. } else if (firsttime) {
  1990. firsttime = 0;
  1991. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1992. TPS("Poll"));
  1993. }
  1994. list = ACCESS_ONCE(rdp->nocb_head);
  1995. if (!list) {
  1996. if (!rcu_nocb_poll)
  1997. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  1998. TPS("WokeEmpty"));
  1999. schedule_timeout_interruptible(1);
  2000. flush_signals(current);
  2001. continue;
  2002. }
  2003. firsttime = 1;
  2004. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2005. TPS("WokeNonEmpty"));
  2006. /*
  2007. * Extract queued callbacks, update counts, and wait
  2008. * for a grace period to elapse.
  2009. */
  2010. ACCESS_ONCE(rdp->nocb_head) = NULL;
  2011. tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
  2012. c = atomic_long_xchg(&rdp->nocb_q_count, 0);
  2013. cl = atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
  2014. ACCESS_ONCE(rdp->nocb_p_count) += c;
  2015. ACCESS_ONCE(rdp->nocb_p_count_lazy) += cl;
  2016. rcu_nocb_wait_gp(rdp);
  2017. /* Each pass through the following loop invokes a callback. */
  2018. trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
  2019. c = cl = 0;
  2020. while (list) {
  2021. next = list->next;
  2022. /* Wait for enqueuing to complete, if needed. */
  2023. while (next == NULL && &list->next != tail) {
  2024. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2025. TPS("WaitQueue"));
  2026. schedule_timeout_interruptible(1);
  2027. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
  2028. TPS("WokeQueue"));
  2029. next = list->next;
  2030. }
  2031. debug_rcu_head_unqueue(list);
  2032. local_bh_disable();
  2033. if (__rcu_reclaim(rdp->rsp->name, list))
  2034. cl++;
  2035. c++;
  2036. local_bh_enable();
  2037. list = next;
  2038. }
  2039. trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
  2040. ACCESS_ONCE(rdp->nocb_p_count) -= c;
  2041. ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
  2042. rdp->n_nocbs_invoked += c;
  2043. }
  2044. return 0;
  2045. }
  2046. /* Is a deferred wakeup of rcu_nocb_kthread() required? */
  2047. static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2048. {
  2049. return ACCESS_ONCE(rdp->nocb_defer_wakeup);
  2050. }
  2051. /* Do a deferred wakeup of rcu_nocb_kthread(). */
  2052. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2053. {
  2054. if (!rcu_nocb_need_deferred_wakeup(rdp))
  2055. return;
  2056. ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
  2057. wake_up(&rdp->nocb_wq);
  2058. trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
  2059. }
  2060. /* Initialize per-rcu_data variables for no-CBs CPUs. */
  2061. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2062. {
  2063. rdp->nocb_tail = &rdp->nocb_head;
  2064. init_waitqueue_head(&rdp->nocb_wq);
  2065. }
  2066. /* Create a kthread for each RCU flavor for each no-CBs CPU. */
  2067. static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
  2068. {
  2069. int cpu;
  2070. struct rcu_data *rdp;
  2071. struct task_struct *t;
  2072. if (rcu_nocb_mask == NULL)
  2073. return;
  2074. for_each_cpu(cpu, rcu_nocb_mask) {
  2075. rdp = per_cpu_ptr(rsp->rda, cpu);
  2076. t = kthread_run(rcu_nocb_kthread, rdp,
  2077. "rcuo%c/%d", rsp->abbr, cpu);
  2078. BUG_ON(IS_ERR(t));
  2079. ACCESS_ONCE(rdp->nocb_kthread) = t;
  2080. }
  2081. }
  2082. /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
  2083. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2084. {
  2085. if (rcu_nocb_mask == NULL ||
  2086. !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
  2087. return false;
  2088. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2089. return true;
  2090. }
  2091. #else /* #ifdef CONFIG_RCU_NOCB_CPU */
  2092. static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  2093. {
  2094. }
  2095. static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
  2096. {
  2097. }
  2098. static void rcu_init_one_nocb(struct rcu_node *rnp)
  2099. {
  2100. }
  2101. static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
  2102. bool lazy, unsigned long flags)
  2103. {
  2104. return 0;
  2105. }
  2106. static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
  2107. struct rcu_data *rdp,
  2108. unsigned long flags)
  2109. {
  2110. return 0;
  2111. }
  2112. static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
  2113. {
  2114. }
  2115. static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
  2116. {
  2117. return false;
  2118. }
  2119. static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
  2120. {
  2121. }
  2122. static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
  2123. {
  2124. }
  2125. static bool init_nocb_callback_list(struct rcu_data *rdp)
  2126. {
  2127. return false;
  2128. }
  2129. #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
  2130. /*
  2131. * An adaptive-ticks CPU can potentially execute in kernel mode for an
  2132. * arbitrarily long period of time with the scheduling-clock tick turned
  2133. * off. RCU will be paying attention to this CPU because it is in the
  2134. * kernel, but the CPU cannot be guaranteed to be executing the RCU state
  2135. * machine because the scheduling-clock tick has been disabled. Therefore,
  2136. * if an adaptive-ticks CPU is failing to respond to the current grace
  2137. * period and has not be idle from an RCU perspective, kick it.
  2138. */
  2139. static void rcu_kick_nohz_cpu(int cpu)
  2140. {
  2141. #ifdef CONFIG_NO_HZ_FULL
  2142. if (tick_nohz_full_cpu(cpu))
  2143. smp_send_reschedule(cpu);
  2144. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2145. }
  2146. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  2147. /*
  2148. * Define RCU flavor that holds sysidle state. This needs to be the
  2149. * most active flavor of RCU.
  2150. */
  2151. #ifdef CONFIG_PREEMPT_RCU
  2152. static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
  2153. #else /* #ifdef CONFIG_PREEMPT_RCU */
  2154. static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
  2155. #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  2156. static int full_sysidle_state; /* Current system-idle state. */
  2157. #define RCU_SYSIDLE_NOT 0 /* Some CPU is not idle. */
  2158. #define RCU_SYSIDLE_SHORT 1 /* All CPUs idle for brief period. */
  2159. #define RCU_SYSIDLE_LONG 2 /* All CPUs idle for long enough. */
  2160. #define RCU_SYSIDLE_FULL 3 /* All CPUs idle, ready for sysidle. */
  2161. #define RCU_SYSIDLE_FULL_NOTED 4 /* Actually entered sysidle state. */
  2162. /*
  2163. * Invoked to note exit from irq or task transition to idle. Note that
  2164. * usermode execution does -not- count as idle here! After all, we want
  2165. * to detect full-system idle states, not RCU quiescent states and grace
  2166. * periods. The caller must have disabled interrupts.
  2167. */
  2168. static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
  2169. {
  2170. unsigned long j;
  2171. /* Adjust nesting, check for fully idle. */
  2172. if (irq) {
  2173. rdtp->dynticks_idle_nesting--;
  2174. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2175. if (rdtp->dynticks_idle_nesting != 0)
  2176. return; /* Still not fully idle. */
  2177. } else {
  2178. if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
  2179. DYNTICK_TASK_NEST_VALUE) {
  2180. rdtp->dynticks_idle_nesting = 0;
  2181. } else {
  2182. rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
  2183. WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
  2184. return; /* Still not fully idle. */
  2185. }
  2186. }
  2187. /* Record start of fully idle period. */
  2188. j = jiffies;
  2189. ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
  2190. smp_mb__before_atomic_inc();
  2191. atomic_inc(&rdtp->dynticks_idle);
  2192. smp_mb__after_atomic_inc();
  2193. WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
  2194. }
  2195. /*
  2196. * Unconditionally force exit from full system-idle state. This is
  2197. * invoked when a normal CPU exits idle, but must be called separately
  2198. * for the timekeeping CPU (tick_do_timer_cpu). The reason for this
  2199. * is that the timekeeping CPU is permitted to take scheduling-clock
  2200. * interrupts while the system is in system-idle state, and of course
  2201. * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
  2202. * interrupt from any other type of interrupt.
  2203. */
  2204. void rcu_sysidle_force_exit(void)
  2205. {
  2206. int oldstate = ACCESS_ONCE(full_sysidle_state);
  2207. int newoldstate;
  2208. /*
  2209. * Each pass through the following loop attempts to exit full
  2210. * system-idle state. If contention proves to be a problem,
  2211. * a trylock-based contention tree could be used here.
  2212. */
  2213. while (oldstate > RCU_SYSIDLE_SHORT) {
  2214. newoldstate = cmpxchg(&full_sysidle_state,
  2215. oldstate, RCU_SYSIDLE_NOT);
  2216. if (oldstate == newoldstate &&
  2217. oldstate == RCU_SYSIDLE_FULL_NOTED) {
  2218. rcu_kick_nohz_cpu(tick_do_timer_cpu);
  2219. return; /* We cleared it, done! */
  2220. }
  2221. oldstate = newoldstate;
  2222. }
  2223. smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
  2224. }
  2225. /*
  2226. * Invoked to note entry to irq or task transition from idle. Note that
  2227. * usermode execution does -not- count as idle here! The caller must
  2228. * have disabled interrupts.
  2229. */
  2230. static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
  2231. {
  2232. /* Adjust nesting, check for already non-idle. */
  2233. if (irq) {
  2234. rdtp->dynticks_idle_nesting++;
  2235. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2236. if (rdtp->dynticks_idle_nesting != 1)
  2237. return; /* Already non-idle. */
  2238. } else {
  2239. /*
  2240. * Allow for irq misnesting. Yes, it really is possible
  2241. * to enter an irq handler then never leave it, and maybe
  2242. * also vice versa. Handle both possibilities.
  2243. */
  2244. if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
  2245. rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
  2246. WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
  2247. return; /* Already non-idle. */
  2248. } else {
  2249. rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
  2250. }
  2251. }
  2252. /* Record end of idle period. */
  2253. smp_mb__before_atomic_inc();
  2254. atomic_inc(&rdtp->dynticks_idle);
  2255. smp_mb__after_atomic_inc();
  2256. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));
  2257. /*
  2258. * If we are the timekeeping CPU, we are permitted to be non-idle
  2259. * during a system-idle state. This must be the case, because
  2260. * the timekeeping CPU has to take scheduling-clock interrupts
  2261. * during the time that the system is transitioning to full
  2262. * system-idle state. This means that the timekeeping CPU must
  2263. * invoke rcu_sysidle_force_exit() directly if it does anything
  2264. * more than take a scheduling-clock interrupt.
  2265. */
  2266. if (smp_processor_id() == tick_do_timer_cpu)
  2267. return;
  2268. /* Update system-idle state: We are clearly no longer fully idle! */
  2269. rcu_sysidle_force_exit();
  2270. }
  2271. /*
  2272. * Check to see if the current CPU is idle. Note that usermode execution
  2273. * does not count as idle. The caller must have disabled interrupts.
  2274. */
  2275. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2276. unsigned long *maxj)
  2277. {
  2278. int cur;
  2279. unsigned long j;
  2280. struct rcu_dynticks *rdtp = rdp->dynticks;
  2281. /*
  2282. * If some other CPU has already reported non-idle, if this is
  2283. * not the flavor of RCU that tracks sysidle state, or if this
  2284. * is an offline or the timekeeping CPU, nothing to do.
  2285. */
  2286. if (!*isidle || rdp->rsp != rcu_sysidle_state ||
  2287. cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
  2288. return;
  2289. if (rcu_gp_in_progress(rdp->rsp))
  2290. WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);
  2291. /* Pick up current idle and NMI-nesting counter and check. */
  2292. cur = atomic_read(&rdtp->dynticks_idle);
  2293. if (cur & 0x1) {
  2294. *isidle = false; /* We are not idle! */
  2295. return;
  2296. }
  2297. smp_mb(); /* Read counters before timestamps. */
  2298. /* Pick up timestamps. */
  2299. j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
  2300. /* If this CPU entered idle more recently, update maxj timestamp. */
  2301. if (ULONG_CMP_LT(*maxj, j))
  2302. *maxj = j;
  2303. }
  2304. /*
  2305. * Is this the flavor of RCU that is handling full-system idle?
  2306. */
  2307. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2308. {
  2309. return rsp == rcu_sysidle_state;
  2310. }
  2311. /*
  2312. * Bind the grace-period kthread for the sysidle flavor of RCU to the
  2313. * timekeeping CPU.
  2314. */
  2315. static void rcu_bind_gp_kthread(void)
  2316. {
  2317. int cpu = ACCESS_ONCE(tick_do_timer_cpu);
  2318. if (cpu < 0 || cpu >= nr_cpu_ids)
  2319. return;
  2320. if (raw_smp_processor_id() != cpu)
  2321. set_cpus_allowed_ptr(current, cpumask_of(cpu));
  2322. }
  2323. /*
  2324. * Return a delay in jiffies based on the number of CPUs, rcu_node
  2325. * leaf fanout, and jiffies tick rate. The idea is to allow larger
  2326. * systems more time to transition to full-idle state in order to
  2327. * avoid the cache thrashing that otherwise occur on the state variable.
  2328. * Really small systems (less than a couple of tens of CPUs) should
  2329. * instead use a single global atomically incremented counter, and later
  2330. * versions of this will automatically reconfigure themselves accordingly.
  2331. */
  2332. static unsigned long rcu_sysidle_delay(void)
  2333. {
  2334. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2335. return 0;
  2336. return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
  2337. }
  2338. /*
  2339. * Advance the full-system-idle state. This is invoked when all of
  2340. * the non-timekeeping CPUs are idle.
  2341. */
  2342. static void rcu_sysidle(unsigned long j)
  2343. {
  2344. /* Check the current state. */
  2345. switch (ACCESS_ONCE(full_sysidle_state)) {
  2346. case RCU_SYSIDLE_NOT:
  2347. /* First time all are idle, so note a short idle period. */
  2348. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
  2349. break;
  2350. case RCU_SYSIDLE_SHORT:
  2351. /*
  2352. * Idle for a bit, time to advance to next state?
  2353. * cmpxchg failure means race with non-idle, let them win.
  2354. */
  2355. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2356. (void)cmpxchg(&full_sysidle_state,
  2357. RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
  2358. break;
  2359. case RCU_SYSIDLE_LONG:
  2360. /*
  2361. * Do an additional check pass before advancing to full.
  2362. * cmpxchg failure means race with non-idle, let them win.
  2363. */
  2364. if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
  2365. (void)cmpxchg(&full_sysidle_state,
  2366. RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
  2367. break;
  2368. default:
  2369. break;
  2370. }
  2371. }
  2372. /*
  2373. * Found a non-idle non-timekeeping CPU, so kick the system-idle state
  2374. * back to the beginning.
  2375. */
  2376. static void rcu_sysidle_cancel(void)
  2377. {
  2378. smp_mb();
  2379. ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
  2380. }
  2381. /*
  2382. * Update the sysidle state based on the results of a force-quiescent-state
  2383. * scan of the CPUs' dyntick-idle state.
  2384. */
  2385. static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
  2386. unsigned long maxj, bool gpkt)
  2387. {
  2388. if (rsp != rcu_sysidle_state)
  2389. return; /* Wrong flavor, ignore. */
  2390. if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
  2391. return; /* Running state machine from timekeeping CPU. */
  2392. if (isidle)
  2393. rcu_sysidle(maxj); /* More idle! */
  2394. else
  2395. rcu_sysidle_cancel(); /* Idle is over. */
  2396. }
  2397. /*
  2398. * Wrapper for rcu_sysidle_report() when called from the grace-period
  2399. * kthread's context.
  2400. */
  2401. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2402. unsigned long maxj)
  2403. {
  2404. rcu_sysidle_report(rsp, isidle, maxj, true);
  2405. }
  2406. /* Callback and function for forcing an RCU grace period. */
  2407. struct rcu_sysidle_head {
  2408. struct rcu_head rh;
  2409. int inuse;
  2410. };
  2411. static void rcu_sysidle_cb(struct rcu_head *rhp)
  2412. {
  2413. struct rcu_sysidle_head *rshp;
  2414. /*
  2415. * The following memory barrier is needed to replace the
  2416. * memory barriers that would normally be in the memory
  2417. * allocator.
  2418. */
  2419. smp_mb(); /* grace period precedes setting inuse. */
  2420. rshp = container_of(rhp, struct rcu_sysidle_head, rh);
  2421. ACCESS_ONCE(rshp->inuse) = 0;
  2422. }
  2423. /*
  2424. * Check to see if the system is fully idle, other than the timekeeping CPU.
  2425. * The caller must have disabled interrupts.
  2426. */
  2427. bool rcu_sys_is_idle(void)
  2428. {
  2429. static struct rcu_sysidle_head rsh;
  2430. int rss = ACCESS_ONCE(full_sysidle_state);
  2431. if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
  2432. return false;
  2433. /* Handle small-system case by doing a full scan of CPUs. */
  2434. if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
  2435. int oldrss = rss - 1;
  2436. /*
  2437. * One pass to advance to each state up to _FULL.
  2438. * Give up if any pass fails to advance the state.
  2439. */
  2440. while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
  2441. int cpu;
  2442. bool isidle = true;
  2443. unsigned long maxj = jiffies - ULONG_MAX / 4;
  2444. struct rcu_data *rdp;
  2445. /* Scan all the CPUs looking for nonidle CPUs. */
  2446. for_each_possible_cpu(cpu) {
  2447. rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
  2448. rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
  2449. if (!isidle)
  2450. break;
  2451. }
  2452. rcu_sysidle_report(rcu_sysidle_state,
  2453. isidle, maxj, false);
  2454. oldrss = rss;
  2455. rss = ACCESS_ONCE(full_sysidle_state);
  2456. }
  2457. }
  2458. /* If this is the first observation of an idle period, record it. */
  2459. if (rss == RCU_SYSIDLE_FULL) {
  2460. rss = cmpxchg(&full_sysidle_state,
  2461. RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
  2462. return rss == RCU_SYSIDLE_FULL;
  2463. }
  2464. smp_mb(); /* ensure rss load happens before later caller actions. */
  2465. /* If already fully idle, tell the caller (in case of races). */
  2466. if (rss == RCU_SYSIDLE_FULL_NOTED)
  2467. return true;
  2468. /*
  2469. * If we aren't there yet, and a grace period is not in flight,
  2470. * initiate a grace period. Either way, tell the caller that
  2471. * we are not there yet. We use an xchg() rather than an assignment
  2472. * to make up for the memory barriers that would otherwise be
  2473. * provided by the memory allocator.
  2474. */
  2475. if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
  2476. !rcu_gp_in_progress(rcu_sysidle_state) &&
  2477. !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
  2478. call_rcu(&rsh.rh, rcu_sysidle_cb);
  2479. return false;
  2480. }
  2481. /*
  2482. * Initialize dynticks sysidle state for CPUs coming online.
  2483. */
  2484. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2485. {
  2486. rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
  2487. }
  2488. #else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2489. static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
  2490. {
  2491. }
  2492. static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
  2493. {
  2494. }
  2495. static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
  2496. unsigned long *maxj)
  2497. {
  2498. }
  2499. static bool is_sysidle_rcu_state(struct rcu_state *rsp)
  2500. {
  2501. return false;
  2502. }
  2503. static void rcu_bind_gp_kthread(void)
  2504. {
  2505. }
  2506. static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
  2507. unsigned long maxj)
  2508. {
  2509. }
  2510. static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
  2511. {
  2512. }
  2513. #endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  2514. /*
  2515. * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
  2516. * grace-period kthread will do force_quiescent_state() processing?
  2517. * The idea is to avoid waking up RCU core processing on such a
  2518. * CPU unless the grace period has extended for too long.
  2519. *
  2520. * This code relies on the fact that all NO_HZ_FULL CPUs are also
  2521. * CONFIG_RCU_NOCB_CPU CPUs.
  2522. */
  2523. static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
  2524. {
  2525. #ifdef CONFIG_NO_HZ_FULL
  2526. if (tick_nohz_full_cpu(smp_processor_id()) &&
  2527. (!rcu_gp_in_progress(rsp) ||
  2528. ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
  2529. return 1;
  2530. #endif /* #ifdef CONFIG_NO_HZ_FULL */
  2531. return 0;
  2532. }