extent-tree.c 291 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/sched.h>
  19. #include <linux/pagemap.h>
  20. #include <linux/writeback.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/sort.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/kthread.h>
  25. #include <linux/slab.h>
  26. #include <linux/ratelimit.h>
  27. #include <linux/percpu_counter.h>
  28. #include "hash.h"
  29. #include "tree-log.h"
  30. #include "disk-io.h"
  31. #include "print-tree.h"
  32. #include "volumes.h"
  33. #include "raid56.h"
  34. #include "locking.h"
  35. #include "free-space-cache.h"
  36. #include "free-space-tree.h"
  37. #include "math.h"
  38. #include "sysfs.h"
  39. #include "qgroup.h"
  40. #undef SCRAMBLE_DELAYED_REFS
  41. /*
  42. * control flags for do_chunk_alloc's force field
  43. * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
  44. * if we really need one.
  45. *
  46. * CHUNK_ALLOC_LIMITED means to only try and allocate one
  47. * if we have very few chunks already allocated. This is
  48. * used as part of the clustering code to help make sure
  49. * we have a good pool of storage to cluster in, without
  50. * filling the FS with empty chunks
  51. *
  52. * CHUNK_ALLOC_FORCE means it must try to allocate one
  53. *
  54. */
  55. enum {
  56. CHUNK_ALLOC_NO_FORCE = 0,
  57. CHUNK_ALLOC_LIMITED = 1,
  58. CHUNK_ALLOC_FORCE = 2,
  59. };
  60. /*
  61. * Control how reservations are dealt with.
  62. *
  63. * RESERVE_FREE - freeing a reservation.
  64. * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
  65. * ENOSPC accounting
  66. * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
  67. * bytes_may_use as the ENOSPC accounting is done elsewhere
  68. */
  69. enum {
  70. RESERVE_FREE = 0,
  71. RESERVE_ALLOC = 1,
  72. RESERVE_ALLOC_NO_ACCOUNT = 2,
  73. };
  74. static int update_block_group(struct btrfs_trans_handle *trans,
  75. struct btrfs_root *root, u64 bytenr,
  76. u64 num_bytes, int alloc);
  77. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  78. struct btrfs_root *root,
  79. struct btrfs_delayed_ref_node *node, u64 parent,
  80. u64 root_objectid, u64 owner_objectid,
  81. u64 owner_offset, int refs_to_drop,
  82. struct btrfs_delayed_extent_op *extra_op);
  83. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  84. struct extent_buffer *leaf,
  85. struct btrfs_extent_item *ei);
  86. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  87. struct btrfs_root *root,
  88. u64 parent, u64 root_objectid,
  89. u64 flags, u64 owner, u64 offset,
  90. struct btrfs_key *ins, int ref_mod);
  91. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  92. struct btrfs_root *root,
  93. u64 parent, u64 root_objectid,
  94. u64 flags, struct btrfs_disk_key *key,
  95. int level, struct btrfs_key *ins);
  96. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  97. struct btrfs_root *extent_root, u64 flags,
  98. int force);
  99. static int find_next_key(struct btrfs_path *path, int level,
  100. struct btrfs_key *key);
  101. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  102. int dump_block_groups);
  103. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  104. u64 num_bytes, int reserve,
  105. int delalloc);
  106. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  107. u64 num_bytes);
  108. int btrfs_pin_extent(struct btrfs_root *root,
  109. u64 bytenr, u64 num_bytes, int reserved);
  110. static noinline int
  111. block_group_cache_done(struct btrfs_block_group_cache *cache)
  112. {
  113. smp_mb();
  114. return cache->cached == BTRFS_CACHE_FINISHED ||
  115. cache->cached == BTRFS_CACHE_ERROR;
  116. }
  117. static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
  118. {
  119. return (cache->flags & bits) == bits;
  120. }
  121. void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
  122. {
  123. atomic_inc(&cache->count);
  124. }
  125. void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
  126. {
  127. if (atomic_dec_and_test(&cache->count)) {
  128. WARN_ON(cache->pinned > 0);
  129. WARN_ON(cache->reserved > 0);
  130. kfree(cache->free_space_ctl);
  131. kfree(cache);
  132. }
  133. }
  134. /*
  135. * this adds the block group to the fs_info rb tree for the block group
  136. * cache
  137. */
  138. static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
  139. struct btrfs_block_group_cache *block_group)
  140. {
  141. struct rb_node **p;
  142. struct rb_node *parent = NULL;
  143. struct btrfs_block_group_cache *cache;
  144. spin_lock(&info->block_group_cache_lock);
  145. p = &info->block_group_cache_tree.rb_node;
  146. while (*p) {
  147. parent = *p;
  148. cache = rb_entry(parent, struct btrfs_block_group_cache,
  149. cache_node);
  150. if (block_group->key.objectid < cache->key.objectid) {
  151. p = &(*p)->rb_left;
  152. } else if (block_group->key.objectid > cache->key.objectid) {
  153. p = &(*p)->rb_right;
  154. } else {
  155. spin_unlock(&info->block_group_cache_lock);
  156. return -EEXIST;
  157. }
  158. }
  159. rb_link_node(&block_group->cache_node, parent, p);
  160. rb_insert_color(&block_group->cache_node,
  161. &info->block_group_cache_tree);
  162. if (info->first_logical_byte > block_group->key.objectid)
  163. info->first_logical_byte = block_group->key.objectid;
  164. spin_unlock(&info->block_group_cache_lock);
  165. return 0;
  166. }
  167. /*
  168. * This will return the block group at or after bytenr if contains is 0, else
  169. * it will return the block group that contains the bytenr
  170. */
  171. static struct btrfs_block_group_cache *
  172. block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
  173. int contains)
  174. {
  175. struct btrfs_block_group_cache *cache, *ret = NULL;
  176. struct rb_node *n;
  177. u64 end, start;
  178. spin_lock(&info->block_group_cache_lock);
  179. n = info->block_group_cache_tree.rb_node;
  180. while (n) {
  181. cache = rb_entry(n, struct btrfs_block_group_cache,
  182. cache_node);
  183. end = cache->key.objectid + cache->key.offset - 1;
  184. start = cache->key.objectid;
  185. if (bytenr < start) {
  186. if (!contains && (!ret || start < ret->key.objectid))
  187. ret = cache;
  188. n = n->rb_left;
  189. } else if (bytenr > start) {
  190. if (contains && bytenr <= end) {
  191. ret = cache;
  192. break;
  193. }
  194. n = n->rb_right;
  195. } else {
  196. ret = cache;
  197. break;
  198. }
  199. }
  200. if (ret) {
  201. btrfs_get_block_group(ret);
  202. if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
  203. info->first_logical_byte = ret->key.objectid;
  204. }
  205. spin_unlock(&info->block_group_cache_lock);
  206. return ret;
  207. }
  208. static int add_excluded_extent(struct btrfs_root *root,
  209. u64 start, u64 num_bytes)
  210. {
  211. u64 end = start + num_bytes - 1;
  212. set_extent_bits(&root->fs_info->freed_extents[0],
  213. start, end, EXTENT_UPTODATE, GFP_NOFS);
  214. set_extent_bits(&root->fs_info->freed_extents[1],
  215. start, end, EXTENT_UPTODATE, GFP_NOFS);
  216. return 0;
  217. }
  218. static void free_excluded_extents(struct btrfs_root *root,
  219. struct btrfs_block_group_cache *cache)
  220. {
  221. u64 start, end;
  222. start = cache->key.objectid;
  223. end = start + cache->key.offset - 1;
  224. clear_extent_bits(&root->fs_info->freed_extents[0],
  225. start, end, EXTENT_UPTODATE, GFP_NOFS);
  226. clear_extent_bits(&root->fs_info->freed_extents[1],
  227. start, end, EXTENT_UPTODATE, GFP_NOFS);
  228. }
  229. static int exclude_super_stripes(struct btrfs_root *root,
  230. struct btrfs_block_group_cache *cache)
  231. {
  232. u64 bytenr;
  233. u64 *logical;
  234. int stripe_len;
  235. int i, nr, ret;
  236. if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
  237. stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
  238. cache->bytes_super += stripe_len;
  239. ret = add_excluded_extent(root, cache->key.objectid,
  240. stripe_len);
  241. if (ret)
  242. return ret;
  243. }
  244. for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
  245. bytenr = btrfs_sb_offset(i);
  246. ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
  247. cache->key.objectid, bytenr,
  248. 0, &logical, &nr, &stripe_len);
  249. if (ret)
  250. return ret;
  251. while (nr--) {
  252. u64 start, len;
  253. if (logical[nr] > cache->key.objectid +
  254. cache->key.offset)
  255. continue;
  256. if (logical[nr] + stripe_len <= cache->key.objectid)
  257. continue;
  258. start = logical[nr];
  259. if (start < cache->key.objectid) {
  260. start = cache->key.objectid;
  261. len = (logical[nr] + stripe_len) - start;
  262. } else {
  263. len = min_t(u64, stripe_len,
  264. cache->key.objectid +
  265. cache->key.offset - start);
  266. }
  267. cache->bytes_super += len;
  268. ret = add_excluded_extent(root, start, len);
  269. if (ret) {
  270. kfree(logical);
  271. return ret;
  272. }
  273. }
  274. kfree(logical);
  275. }
  276. return 0;
  277. }
  278. static struct btrfs_caching_control *
  279. get_caching_control(struct btrfs_block_group_cache *cache)
  280. {
  281. struct btrfs_caching_control *ctl;
  282. spin_lock(&cache->lock);
  283. if (!cache->caching_ctl) {
  284. spin_unlock(&cache->lock);
  285. return NULL;
  286. }
  287. ctl = cache->caching_ctl;
  288. atomic_inc(&ctl->count);
  289. spin_unlock(&cache->lock);
  290. return ctl;
  291. }
  292. static void put_caching_control(struct btrfs_caching_control *ctl)
  293. {
  294. if (atomic_dec_and_test(&ctl->count))
  295. kfree(ctl);
  296. }
  297. #ifdef CONFIG_BTRFS_DEBUG
  298. static void fragment_free_space(struct btrfs_root *root,
  299. struct btrfs_block_group_cache *block_group)
  300. {
  301. u64 start = block_group->key.objectid;
  302. u64 len = block_group->key.offset;
  303. u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
  304. root->nodesize : root->sectorsize;
  305. u64 step = chunk << 1;
  306. while (len > chunk) {
  307. btrfs_remove_free_space(block_group, start, chunk);
  308. start += step;
  309. if (len < step)
  310. len = 0;
  311. else
  312. len -= step;
  313. }
  314. }
  315. #endif
  316. /*
  317. * this is only called by cache_block_group, since we could have freed extents
  318. * we need to check the pinned_extents for any extents that can't be used yet
  319. * since their free space will be released as soon as the transaction commits.
  320. */
  321. u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
  322. struct btrfs_fs_info *info, u64 start, u64 end)
  323. {
  324. u64 extent_start, extent_end, size, total_added = 0;
  325. int ret;
  326. while (start < end) {
  327. ret = find_first_extent_bit(info->pinned_extents, start,
  328. &extent_start, &extent_end,
  329. EXTENT_DIRTY | EXTENT_UPTODATE,
  330. NULL);
  331. if (ret)
  332. break;
  333. if (extent_start <= start) {
  334. start = extent_end + 1;
  335. } else if (extent_start > start && extent_start < end) {
  336. size = extent_start - start;
  337. total_added += size;
  338. ret = btrfs_add_free_space(block_group, start,
  339. size);
  340. BUG_ON(ret); /* -ENOMEM or logic error */
  341. start = extent_end + 1;
  342. } else {
  343. break;
  344. }
  345. }
  346. if (start < end) {
  347. size = end - start;
  348. total_added += size;
  349. ret = btrfs_add_free_space(block_group, start, size);
  350. BUG_ON(ret); /* -ENOMEM or logic error */
  351. }
  352. return total_added;
  353. }
  354. static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
  355. {
  356. struct btrfs_block_group_cache *block_group;
  357. struct btrfs_fs_info *fs_info;
  358. struct btrfs_root *extent_root;
  359. struct btrfs_path *path;
  360. struct extent_buffer *leaf;
  361. struct btrfs_key key;
  362. u64 total_found = 0;
  363. u64 last = 0;
  364. u32 nritems;
  365. int ret;
  366. bool wakeup = true;
  367. block_group = caching_ctl->block_group;
  368. fs_info = block_group->fs_info;
  369. extent_root = fs_info->extent_root;
  370. path = btrfs_alloc_path();
  371. if (!path)
  372. return -ENOMEM;
  373. last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
  374. #ifdef CONFIG_BTRFS_DEBUG
  375. /*
  376. * If we're fragmenting we don't want to make anybody think we can
  377. * allocate from this block group until we've had a chance to fragment
  378. * the free space.
  379. */
  380. if (btrfs_should_fragment_free_space(extent_root, block_group))
  381. wakeup = false;
  382. #endif
  383. /*
  384. * We don't want to deadlock with somebody trying to allocate a new
  385. * extent for the extent root while also trying to search the extent
  386. * root to add free space. So we skip locking and search the commit
  387. * root, since its read-only
  388. */
  389. path->skip_locking = 1;
  390. path->search_commit_root = 1;
  391. path->reada = READA_FORWARD;
  392. key.objectid = last;
  393. key.offset = 0;
  394. key.type = BTRFS_EXTENT_ITEM_KEY;
  395. next:
  396. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  397. if (ret < 0)
  398. goto out;
  399. leaf = path->nodes[0];
  400. nritems = btrfs_header_nritems(leaf);
  401. while (1) {
  402. if (btrfs_fs_closing(fs_info) > 1) {
  403. last = (u64)-1;
  404. break;
  405. }
  406. if (path->slots[0] < nritems) {
  407. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  408. } else {
  409. ret = find_next_key(path, 0, &key);
  410. if (ret)
  411. break;
  412. if (need_resched() ||
  413. rwsem_is_contended(&fs_info->commit_root_sem)) {
  414. if (wakeup)
  415. caching_ctl->progress = last;
  416. btrfs_release_path(path);
  417. up_read(&fs_info->commit_root_sem);
  418. mutex_unlock(&caching_ctl->mutex);
  419. cond_resched();
  420. mutex_lock(&caching_ctl->mutex);
  421. down_read(&fs_info->commit_root_sem);
  422. goto next;
  423. }
  424. ret = btrfs_next_leaf(extent_root, path);
  425. if (ret < 0)
  426. goto out;
  427. if (ret)
  428. break;
  429. leaf = path->nodes[0];
  430. nritems = btrfs_header_nritems(leaf);
  431. continue;
  432. }
  433. if (key.objectid < last) {
  434. key.objectid = last;
  435. key.offset = 0;
  436. key.type = BTRFS_EXTENT_ITEM_KEY;
  437. if (wakeup)
  438. caching_ctl->progress = last;
  439. btrfs_release_path(path);
  440. goto next;
  441. }
  442. if (key.objectid < block_group->key.objectid) {
  443. path->slots[0]++;
  444. continue;
  445. }
  446. if (key.objectid >= block_group->key.objectid +
  447. block_group->key.offset)
  448. break;
  449. if (key.type == BTRFS_EXTENT_ITEM_KEY ||
  450. key.type == BTRFS_METADATA_ITEM_KEY) {
  451. total_found += add_new_free_space(block_group,
  452. fs_info, last,
  453. key.objectid);
  454. if (key.type == BTRFS_METADATA_ITEM_KEY)
  455. last = key.objectid +
  456. fs_info->tree_root->nodesize;
  457. else
  458. last = key.objectid + key.offset;
  459. if (total_found > CACHING_CTL_WAKE_UP) {
  460. total_found = 0;
  461. if (wakeup)
  462. wake_up(&caching_ctl->wait);
  463. }
  464. }
  465. path->slots[0]++;
  466. }
  467. ret = 0;
  468. total_found += add_new_free_space(block_group, fs_info, last,
  469. block_group->key.objectid +
  470. block_group->key.offset);
  471. caching_ctl->progress = (u64)-1;
  472. out:
  473. btrfs_free_path(path);
  474. return ret;
  475. }
  476. static noinline void caching_thread(struct btrfs_work *work)
  477. {
  478. struct btrfs_block_group_cache *block_group;
  479. struct btrfs_fs_info *fs_info;
  480. struct btrfs_caching_control *caching_ctl;
  481. struct btrfs_root *extent_root;
  482. int ret;
  483. caching_ctl = container_of(work, struct btrfs_caching_control, work);
  484. block_group = caching_ctl->block_group;
  485. fs_info = block_group->fs_info;
  486. extent_root = fs_info->extent_root;
  487. mutex_lock(&caching_ctl->mutex);
  488. down_read(&fs_info->commit_root_sem);
  489. if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
  490. ret = load_free_space_tree(caching_ctl);
  491. else
  492. ret = load_extent_tree_free(caching_ctl);
  493. spin_lock(&block_group->lock);
  494. block_group->caching_ctl = NULL;
  495. block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
  496. spin_unlock(&block_group->lock);
  497. #ifdef CONFIG_BTRFS_DEBUG
  498. if (btrfs_should_fragment_free_space(extent_root, block_group)) {
  499. u64 bytes_used;
  500. spin_lock(&block_group->space_info->lock);
  501. spin_lock(&block_group->lock);
  502. bytes_used = block_group->key.offset -
  503. btrfs_block_group_used(&block_group->item);
  504. block_group->space_info->bytes_used += bytes_used >> 1;
  505. spin_unlock(&block_group->lock);
  506. spin_unlock(&block_group->space_info->lock);
  507. fragment_free_space(extent_root, block_group);
  508. }
  509. #endif
  510. caching_ctl->progress = (u64)-1;
  511. up_read(&fs_info->commit_root_sem);
  512. free_excluded_extents(fs_info->extent_root, block_group);
  513. mutex_unlock(&caching_ctl->mutex);
  514. wake_up(&caching_ctl->wait);
  515. put_caching_control(caching_ctl);
  516. btrfs_put_block_group(block_group);
  517. }
  518. static int cache_block_group(struct btrfs_block_group_cache *cache,
  519. int load_cache_only)
  520. {
  521. DEFINE_WAIT(wait);
  522. struct btrfs_fs_info *fs_info = cache->fs_info;
  523. struct btrfs_caching_control *caching_ctl;
  524. int ret = 0;
  525. caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
  526. if (!caching_ctl)
  527. return -ENOMEM;
  528. INIT_LIST_HEAD(&caching_ctl->list);
  529. mutex_init(&caching_ctl->mutex);
  530. init_waitqueue_head(&caching_ctl->wait);
  531. caching_ctl->block_group = cache;
  532. caching_ctl->progress = cache->key.objectid;
  533. atomic_set(&caching_ctl->count, 1);
  534. btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
  535. caching_thread, NULL, NULL);
  536. spin_lock(&cache->lock);
  537. /*
  538. * This should be a rare occasion, but this could happen I think in the
  539. * case where one thread starts to load the space cache info, and then
  540. * some other thread starts a transaction commit which tries to do an
  541. * allocation while the other thread is still loading the space cache
  542. * info. The previous loop should have kept us from choosing this block
  543. * group, but if we've moved to the state where we will wait on caching
  544. * block groups we need to first check if we're doing a fast load here,
  545. * so we can wait for it to finish, otherwise we could end up allocating
  546. * from a block group who's cache gets evicted for one reason or
  547. * another.
  548. */
  549. while (cache->cached == BTRFS_CACHE_FAST) {
  550. struct btrfs_caching_control *ctl;
  551. ctl = cache->caching_ctl;
  552. atomic_inc(&ctl->count);
  553. prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
  554. spin_unlock(&cache->lock);
  555. schedule();
  556. finish_wait(&ctl->wait, &wait);
  557. put_caching_control(ctl);
  558. spin_lock(&cache->lock);
  559. }
  560. if (cache->cached != BTRFS_CACHE_NO) {
  561. spin_unlock(&cache->lock);
  562. kfree(caching_ctl);
  563. return 0;
  564. }
  565. WARN_ON(cache->caching_ctl);
  566. cache->caching_ctl = caching_ctl;
  567. cache->cached = BTRFS_CACHE_FAST;
  568. spin_unlock(&cache->lock);
  569. if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
  570. mutex_lock(&caching_ctl->mutex);
  571. ret = load_free_space_cache(fs_info, cache);
  572. spin_lock(&cache->lock);
  573. if (ret == 1) {
  574. cache->caching_ctl = NULL;
  575. cache->cached = BTRFS_CACHE_FINISHED;
  576. cache->last_byte_to_unpin = (u64)-1;
  577. caching_ctl->progress = (u64)-1;
  578. } else {
  579. if (load_cache_only) {
  580. cache->caching_ctl = NULL;
  581. cache->cached = BTRFS_CACHE_NO;
  582. } else {
  583. cache->cached = BTRFS_CACHE_STARTED;
  584. cache->has_caching_ctl = 1;
  585. }
  586. }
  587. spin_unlock(&cache->lock);
  588. #ifdef CONFIG_BTRFS_DEBUG
  589. if (ret == 1 &&
  590. btrfs_should_fragment_free_space(fs_info->extent_root,
  591. cache)) {
  592. u64 bytes_used;
  593. spin_lock(&cache->space_info->lock);
  594. spin_lock(&cache->lock);
  595. bytes_used = cache->key.offset -
  596. btrfs_block_group_used(&cache->item);
  597. cache->space_info->bytes_used += bytes_used >> 1;
  598. spin_unlock(&cache->lock);
  599. spin_unlock(&cache->space_info->lock);
  600. fragment_free_space(fs_info->extent_root, cache);
  601. }
  602. #endif
  603. mutex_unlock(&caching_ctl->mutex);
  604. wake_up(&caching_ctl->wait);
  605. if (ret == 1) {
  606. put_caching_control(caching_ctl);
  607. free_excluded_extents(fs_info->extent_root, cache);
  608. return 0;
  609. }
  610. } else {
  611. /*
  612. * We're either using the free space tree or no caching at all.
  613. * Set cached to the appropriate value and wakeup any waiters.
  614. */
  615. spin_lock(&cache->lock);
  616. if (load_cache_only) {
  617. cache->caching_ctl = NULL;
  618. cache->cached = BTRFS_CACHE_NO;
  619. } else {
  620. cache->cached = BTRFS_CACHE_STARTED;
  621. cache->has_caching_ctl = 1;
  622. }
  623. spin_unlock(&cache->lock);
  624. wake_up(&caching_ctl->wait);
  625. }
  626. if (load_cache_only) {
  627. put_caching_control(caching_ctl);
  628. return 0;
  629. }
  630. down_write(&fs_info->commit_root_sem);
  631. atomic_inc(&caching_ctl->count);
  632. list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
  633. up_write(&fs_info->commit_root_sem);
  634. btrfs_get_block_group(cache);
  635. btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
  636. return ret;
  637. }
  638. /*
  639. * return the block group that starts at or after bytenr
  640. */
  641. static struct btrfs_block_group_cache *
  642. btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
  643. {
  644. struct btrfs_block_group_cache *cache;
  645. cache = block_group_cache_tree_search(info, bytenr, 0);
  646. return cache;
  647. }
  648. /*
  649. * return the block group that contains the given bytenr
  650. */
  651. struct btrfs_block_group_cache *btrfs_lookup_block_group(
  652. struct btrfs_fs_info *info,
  653. u64 bytenr)
  654. {
  655. struct btrfs_block_group_cache *cache;
  656. cache = block_group_cache_tree_search(info, bytenr, 1);
  657. return cache;
  658. }
  659. static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
  660. u64 flags)
  661. {
  662. struct list_head *head = &info->space_info;
  663. struct btrfs_space_info *found;
  664. flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
  665. rcu_read_lock();
  666. list_for_each_entry_rcu(found, head, list) {
  667. if (found->flags & flags) {
  668. rcu_read_unlock();
  669. return found;
  670. }
  671. }
  672. rcu_read_unlock();
  673. return NULL;
  674. }
  675. /*
  676. * after adding space to the filesystem, we need to clear the full flags
  677. * on all the space infos.
  678. */
  679. void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
  680. {
  681. struct list_head *head = &info->space_info;
  682. struct btrfs_space_info *found;
  683. rcu_read_lock();
  684. list_for_each_entry_rcu(found, head, list)
  685. found->full = 0;
  686. rcu_read_unlock();
  687. }
  688. /* simple helper to search for an existing data extent at a given offset */
  689. int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
  690. {
  691. int ret;
  692. struct btrfs_key key;
  693. struct btrfs_path *path;
  694. path = btrfs_alloc_path();
  695. if (!path)
  696. return -ENOMEM;
  697. key.objectid = start;
  698. key.offset = len;
  699. key.type = BTRFS_EXTENT_ITEM_KEY;
  700. ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
  701. 0, 0);
  702. btrfs_free_path(path);
  703. return ret;
  704. }
  705. /*
  706. * helper function to lookup reference count and flags of a tree block.
  707. *
  708. * the head node for delayed ref is used to store the sum of all the
  709. * reference count modifications queued up in the rbtree. the head
  710. * node may also store the extent flags to set. This way you can check
  711. * to see what the reference count and extent flags would be if all of
  712. * the delayed refs are not processed.
  713. */
  714. int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
  715. struct btrfs_root *root, u64 bytenr,
  716. u64 offset, int metadata, u64 *refs, u64 *flags)
  717. {
  718. struct btrfs_delayed_ref_head *head;
  719. struct btrfs_delayed_ref_root *delayed_refs;
  720. struct btrfs_path *path;
  721. struct btrfs_extent_item *ei;
  722. struct extent_buffer *leaf;
  723. struct btrfs_key key;
  724. u32 item_size;
  725. u64 num_refs;
  726. u64 extent_flags;
  727. int ret;
  728. /*
  729. * If we don't have skinny metadata, don't bother doing anything
  730. * different
  731. */
  732. if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
  733. offset = root->nodesize;
  734. metadata = 0;
  735. }
  736. path = btrfs_alloc_path();
  737. if (!path)
  738. return -ENOMEM;
  739. if (!trans) {
  740. path->skip_locking = 1;
  741. path->search_commit_root = 1;
  742. }
  743. search_again:
  744. key.objectid = bytenr;
  745. key.offset = offset;
  746. if (metadata)
  747. key.type = BTRFS_METADATA_ITEM_KEY;
  748. else
  749. key.type = BTRFS_EXTENT_ITEM_KEY;
  750. ret = btrfs_search_slot(trans, root->fs_info->extent_root,
  751. &key, path, 0, 0);
  752. if (ret < 0)
  753. goto out_free;
  754. if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
  755. if (path->slots[0]) {
  756. path->slots[0]--;
  757. btrfs_item_key_to_cpu(path->nodes[0], &key,
  758. path->slots[0]);
  759. if (key.objectid == bytenr &&
  760. key.type == BTRFS_EXTENT_ITEM_KEY &&
  761. key.offset == root->nodesize)
  762. ret = 0;
  763. }
  764. }
  765. if (ret == 0) {
  766. leaf = path->nodes[0];
  767. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  768. if (item_size >= sizeof(*ei)) {
  769. ei = btrfs_item_ptr(leaf, path->slots[0],
  770. struct btrfs_extent_item);
  771. num_refs = btrfs_extent_refs(leaf, ei);
  772. extent_flags = btrfs_extent_flags(leaf, ei);
  773. } else {
  774. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  775. struct btrfs_extent_item_v0 *ei0;
  776. BUG_ON(item_size != sizeof(*ei0));
  777. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  778. struct btrfs_extent_item_v0);
  779. num_refs = btrfs_extent_refs_v0(leaf, ei0);
  780. /* FIXME: this isn't correct for data */
  781. extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  782. #else
  783. BUG();
  784. #endif
  785. }
  786. BUG_ON(num_refs == 0);
  787. } else {
  788. num_refs = 0;
  789. extent_flags = 0;
  790. ret = 0;
  791. }
  792. if (!trans)
  793. goto out;
  794. delayed_refs = &trans->transaction->delayed_refs;
  795. spin_lock(&delayed_refs->lock);
  796. head = btrfs_find_delayed_ref_head(trans, bytenr);
  797. if (head) {
  798. if (!mutex_trylock(&head->mutex)) {
  799. atomic_inc(&head->node.refs);
  800. spin_unlock(&delayed_refs->lock);
  801. btrfs_release_path(path);
  802. /*
  803. * Mutex was contended, block until it's released and try
  804. * again
  805. */
  806. mutex_lock(&head->mutex);
  807. mutex_unlock(&head->mutex);
  808. btrfs_put_delayed_ref(&head->node);
  809. goto search_again;
  810. }
  811. spin_lock(&head->lock);
  812. if (head->extent_op && head->extent_op->update_flags)
  813. extent_flags |= head->extent_op->flags_to_set;
  814. else
  815. BUG_ON(num_refs == 0);
  816. num_refs += head->node.ref_mod;
  817. spin_unlock(&head->lock);
  818. mutex_unlock(&head->mutex);
  819. }
  820. spin_unlock(&delayed_refs->lock);
  821. out:
  822. WARN_ON(num_refs == 0);
  823. if (refs)
  824. *refs = num_refs;
  825. if (flags)
  826. *flags = extent_flags;
  827. out_free:
  828. btrfs_free_path(path);
  829. return ret;
  830. }
  831. /*
  832. * Back reference rules. Back refs have three main goals:
  833. *
  834. * 1) differentiate between all holders of references to an extent so that
  835. * when a reference is dropped we can make sure it was a valid reference
  836. * before freeing the extent.
  837. *
  838. * 2) Provide enough information to quickly find the holders of an extent
  839. * if we notice a given block is corrupted or bad.
  840. *
  841. * 3) Make it easy to migrate blocks for FS shrinking or storage pool
  842. * maintenance. This is actually the same as #2, but with a slightly
  843. * different use case.
  844. *
  845. * There are two kinds of back refs. The implicit back refs is optimized
  846. * for pointers in non-shared tree blocks. For a given pointer in a block,
  847. * back refs of this kind provide information about the block's owner tree
  848. * and the pointer's key. These information allow us to find the block by
  849. * b-tree searching. The full back refs is for pointers in tree blocks not
  850. * referenced by their owner trees. The location of tree block is recorded
  851. * in the back refs. Actually the full back refs is generic, and can be
  852. * used in all cases the implicit back refs is used. The major shortcoming
  853. * of the full back refs is its overhead. Every time a tree block gets
  854. * COWed, we have to update back refs entry for all pointers in it.
  855. *
  856. * For a newly allocated tree block, we use implicit back refs for
  857. * pointers in it. This means most tree related operations only involve
  858. * implicit back refs. For a tree block created in old transaction, the
  859. * only way to drop a reference to it is COW it. So we can detect the
  860. * event that tree block loses its owner tree's reference and do the
  861. * back refs conversion.
  862. *
  863. * When a tree block is COW'd through a tree, there are four cases:
  864. *
  865. * The reference count of the block is one and the tree is the block's
  866. * owner tree. Nothing to do in this case.
  867. *
  868. * The reference count of the block is one and the tree is not the
  869. * block's owner tree. In this case, full back refs is used for pointers
  870. * in the block. Remove these full back refs, add implicit back refs for
  871. * every pointers in the new block.
  872. *
  873. * The reference count of the block is greater than one and the tree is
  874. * the block's owner tree. In this case, implicit back refs is used for
  875. * pointers in the block. Add full back refs for every pointers in the
  876. * block, increase lower level extents' reference counts. The original
  877. * implicit back refs are entailed to the new block.
  878. *
  879. * The reference count of the block is greater than one and the tree is
  880. * not the block's owner tree. Add implicit back refs for every pointer in
  881. * the new block, increase lower level extents' reference count.
  882. *
  883. * Back Reference Key composing:
  884. *
  885. * The key objectid corresponds to the first byte in the extent,
  886. * The key type is used to differentiate between types of back refs.
  887. * There are different meanings of the key offset for different types
  888. * of back refs.
  889. *
  890. * File extents can be referenced by:
  891. *
  892. * - multiple snapshots, subvolumes, or different generations in one subvol
  893. * - different files inside a single subvolume
  894. * - different offsets inside a file (bookend extents in file.c)
  895. *
  896. * The extent ref structure for the implicit back refs has fields for:
  897. *
  898. * - Objectid of the subvolume root
  899. * - objectid of the file holding the reference
  900. * - original offset in the file
  901. * - how many bookend extents
  902. *
  903. * The key offset for the implicit back refs is hash of the first
  904. * three fields.
  905. *
  906. * The extent ref structure for the full back refs has field for:
  907. *
  908. * - number of pointers in the tree leaf
  909. *
  910. * The key offset for the implicit back refs is the first byte of
  911. * the tree leaf
  912. *
  913. * When a file extent is allocated, The implicit back refs is used.
  914. * the fields are filled in:
  915. *
  916. * (root_key.objectid, inode objectid, offset in file, 1)
  917. *
  918. * When a file extent is removed file truncation, we find the
  919. * corresponding implicit back refs and check the following fields:
  920. *
  921. * (btrfs_header_owner(leaf), inode objectid, offset in file)
  922. *
  923. * Btree extents can be referenced by:
  924. *
  925. * - Different subvolumes
  926. *
  927. * Both the implicit back refs and the full back refs for tree blocks
  928. * only consist of key. The key offset for the implicit back refs is
  929. * objectid of block's owner tree. The key offset for the full back refs
  930. * is the first byte of parent block.
  931. *
  932. * When implicit back refs is used, information about the lowest key and
  933. * level of the tree block are required. These information are stored in
  934. * tree block info structure.
  935. */
  936. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  937. static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
  938. struct btrfs_root *root,
  939. struct btrfs_path *path,
  940. u64 owner, u32 extra_size)
  941. {
  942. struct btrfs_extent_item *item;
  943. struct btrfs_extent_item_v0 *ei0;
  944. struct btrfs_extent_ref_v0 *ref0;
  945. struct btrfs_tree_block_info *bi;
  946. struct extent_buffer *leaf;
  947. struct btrfs_key key;
  948. struct btrfs_key found_key;
  949. u32 new_size = sizeof(*item);
  950. u64 refs;
  951. int ret;
  952. leaf = path->nodes[0];
  953. BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
  954. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  955. ei0 = btrfs_item_ptr(leaf, path->slots[0],
  956. struct btrfs_extent_item_v0);
  957. refs = btrfs_extent_refs_v0(leaf, ei0);
  958. if (owner == (u64)-1) {
  959. while (1) {
  960. if (path->slots[0] >= btrfs_header_nritems(leaf)) {
  961. ret = btrfs_next_leaf(root, path);
  962. if (ret < 0)
  963. return ret;
  964. BUG_ON(ret > 0); /* Corruption */
  965. leaf = path->nodes[0];
  966. }
  967. btrfs_item_key_to_cpu(leaf, &found_key,
  968. path->slots[0]);
  969. BUG_ON(key.objectid != found_key.objectid);
  970. if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
  971. path->slots[0]++;
  972. continue;
  973. }
  974. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  975. struct btrfs_extent_ref_v0);
  976. owner = btrfs_ref_objectid_v0(leaf, ref0);
  977. break;
  978. }
  979. }
  980. btrfs_release_path(path);
  981. if (owner < BTRFS_FIRST_FREE_OBJECTID)
  982. new_size += sizeof(*bi);
  983. new_size -= sizeof(*ei0);
  984. ret = btrfs_search_slot(trans, root, &key, path,
  985. new_size + extra_size, 1);
  986. if (ret < 0)
  987. return ret;
  988. BUG_ON(ret); /* Corruption */
  989. btrfs_extend_item(root, path, new_size);
  990. leaf = path->nodes[0];
  991. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  992. btrfs_set_extent_refs(leaf, item, refs);
  993. /* FIXME: get real generation */
  994. btrfs_set_extent_generation(leaf, item, 0);
  995. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  996. btrfs_set_extent_flags(leaf, item,
  997. BTRFS_EXTENT_FLAG_TREE_BLOCK |
  998. BTRFS_BLOCK_FLAG_FULL_BACKREF);
  999. bi = (struct btrfs_tree_block_info *)(item + 1);
  1000. /* FIXME: get first key of the block */
  1001. memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
  1002. btrfs_set_tree_block_level(leaf, bi, (int)owner);
  1003. } else {
  1004. btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
  1005. }
  1006. btrfs_mark_buffer_dirty(leaf);
  1007. return 0;
  1008. }
  1009. #endif
  1010. static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
  1011. {
  1012. u32 high_crc = ~(u32)0;
  1013. u32 low_crc = ~(u32)0;
  1014. __le64 lenum;
  1015. lenum = cpu_to_le64(root_objectid);
  1016. high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
  1017. lenum = cpu_to_le64(owner);
  1018. low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
  1019. lenum = cpu_to_le64(offset);
  1020. low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
  1021. return ((u64)high_crc << 31) ^ (u64)low_crc;
  1022. }
  1023. static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
  1024. struct btrfs_extent_data_ref *ref)
  1025. {
  1026. return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
  1027. btrfs_extent_data_ref_objectid(leaf, ref),
  1028. btrfs_extent_data_ref_offset(leaf, ref));
  1029. }
  1030. static int match_extent_data_ref(struct extent_buffer *leaf,
  1031. struct btrfs_extent_data_ref *ref,
  1032. u64 root_objectid, u64 owner, u64 offset)
  1033. {
  1034. if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
  1035. btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
  1036. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  1037. return 0;
  1038. return 1;
  1039. }
  1040. static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
  1041. struct btrfs_root *root,
  1042. struct btrfs_path *path,
  1043. u64 bytenr, u64 parent,
  1044. u64 root_objectid,
  1045. u64 owner, u64 offset)
  1046. {
  1047. struct btrfs_key key;
  1048. struct btrfs_extent_data_ref *ref;
  1049. struct extent_buffer *leaf;
  1050. u32 nritems;
  1051. int ret;
  1052. int recow;
  1053. int err = -ENOENT;
  1054. key.objectid = bytenr;
  1055. if (parent) {
  1056. key.type = BTRFS_SHARED_DATA_REF_KEY;
  1057. key.offset = parent;
  1058. } else {
  1059. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  1060. key.offset = hash_extent_data_ref(root_objectid,
  1061. owner, offset);
  1062. }
  1063. again:
  1064. recow = 0;
  1065. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1066. if (ret < 0) {
  1067. err = ret;
  1068. goto fail;
  1069. }
  1070. if (parent) {
  1071. if (!ret)
  1072. return 0;
  1073. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1074. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1075. btrfs_release_path(path);
  1076. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1077. if (ret < 0) {
  1078. err = ret;
  1079. goto fail;
  1080. }
  1081. if (!ret)
  1082. return 0;
  1083. #endif
  1084. goto fail;
  1085. }
  1086. leaf = path->nodes[0];
  1087. nritems = btrfs_header_nritems(leaf);
  1088. while (1) {
  1089. if (path->slots[0] >= nritems) {
  1090. ret = btrfs_next_leaf(root, path);
  1091. if (ret < 0)
  1092. err = ret;
  1093. if (ret)
  1094. goto fail;
  1095. leaf = path->nodes[0];
  1096. nritems = btrfs_header_nritems(leaf);
  1097. recow = 1;
  1098. }
  1099. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1100. if (key.objectid != bytenr ||
  1101. key.type != BTRFS_EXTENT_DATA_REF_KEY)
  1102. goto fail;
  1103. ref = btrfs_item_ptr(leaf, path->slots[0],
  1104. struct btrfs_extent_data_ref);
  1105. if (match_extent_data_ref(leaf, ref, root_objectid,
  1106. owner, offset)) {
  1107. if (recow) {
  1108. btrfs_release_path(path);
  1109. goto again;
  1110. }
  1111. err = 0;
  1112. break;
  1113. }
  1114. path->slots[0]++;
  1115. }
  1116. fail:
  1117. return err;
  1118. }
  1119. static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
  1120. struct btrfs_root *root,
  1121. struct btrfs_path *path,
  1122. u64 bytenr, u64 parent,
  1123. u64 root_objectid, u64 owner,
  1124. u64 offset, int refs_to_add)
  1125. {
  1126. struct btrfs_key key;
  1127. struct extent_buffer *leaf;
  1128. u32 size;
  1129. u32 num_refs;
  1130. int ret;
  1131. key.objectid = bytenr;
  1132. if (parent) {
  1133. key.type = BTRFS_SHARED_DATA_REF_KEY;
  1134. key.offset = parent;
  1135. size = sizeof(struct btrfs_shared_data_ref);
  1136. } else {
  1137. key.type = BTRFS_EXTENT_DATA_REF_KEY;
  1138. key.offset = hash_extent_data_ref(root_objectid,
  1139. owner, offset);
  1140. size = sizeof(struct btrfs_extent_data_ref);
  1141. }
  1142. ret = btrfs_insert_empty_item(trans, root, path, &key, size);
  1143. if (ret && ret != -EEXIST)
  1144. goto fail;
  1145. leaf = path->nodes[0];
  1146. if (parent) {
  1147. struct btrfs_shared_data_ref *ref;
  1148. ref = btrfs_item_ptr(leaf, path->slots[0],
  1149. struct btrfs_shared_data_ref);
  1150. if (ret == 0) {
  1151. btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
  1152. } else {
  1153. num_refs = btrfs_shared_data_ref_count(leaf, ref);
  1154. num_refs += refs_to_add;
  1155. btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
  1156. }
  1157. } else {
  1158. struct btrfs_extent_data_ref *ref;
  1159. while (ret == -EEXIST) {
  1160. ref = btrfs_item_ptr(leaf, path->slots[0],
  1161. struct btrfs_extent_data_ref);
  1162. if (match_extent_data_ref(leaf, ref, root_objectid,
  1163. owner, offset))
  1164. break;
  1165. btrfs_release_path(path);
  1166. key.offset++;
  1167. ret = btrfs_insert_empty_item(trans, root, path, &key,
  1168. size);
  1169. if (ret && ret != -EEXIST)
  1170. goto fail;
  1171. leaf = path->nodes[0];
  1172. }
  1173. ref = btrfs_item_ptr(leaf, path->slots[0],
  1174. struct btrfs_extent_data_ref);
  1175. if (ret == 0) {
  1176. btrfs_set_extent_data_ref_root(leaf, ref,
  1177. root_objectid);
  1178. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  1179. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  1180. btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
  1181. } else {
  1182. num_refs = btrfs_extent_data_ref_count(leaf, ref);
  1183. num_refs += refs_to_add;
  1184. btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
  1185. }
  1186. }
  1187. btrfs_mark_buffer_dirty(leaf);
  1188. ret = 0;
  1189. fail:
  1190. btrfs_release_path(path);
  1191. return ret;
  1192. }
  1193. static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
  1194. struct btrfs_root *root,
  1195. struct btrfs_path *path,
  1196. int refs_to_drop, int *last_ref)
  1197. {
  1198. struct btrfs_key key;
  1199. struct btrfs_extent_data_ref *ref1 = NULL;
  1200. struct btrfs_shared_data_ref *ref2 = NULL;
  1201. struct extent_buffer *leaf;
  1202. u32 num_refs = 0;
  1203. int ret = 0;
  1204. leaf = path->nodes[0];
  1205. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1206. if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1207. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1208. struct btrfs_extent_data_ref);
  1209. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1210. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1211. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1212. struct btrfs_shared_data_ref);
  1213. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1214. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1215. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1216. struct btrfs_extent_ref_v0 *ref0;
  1217. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1218. struct btrfs_extent_ref_v0);
  1219. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1220. #endif
  1221. } else {
  1222. BUG();
  1223. }
  1224. BUG_ON(num_refs < refs_to_drop);
  1225. num_refs -= refs_to_drop;
  1226. if (num_refs == 0) {
  1227. ret = btrfs_del_item(trans, root, path);
  1228. *last_ref = 1;
  1229. } else {
  1230. if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
  1231. btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
  1232. else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
  1233. btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
  1234. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1235. else {
  1236. struct btrfs_extent_ref_v0 *ref0;
  1237. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1238. struct btrfs_extent_ref_v0);
  1239. btrfs_set_ref_count_v0(leaf, ref0, num_refs);
  1240. }
  1241. #endif
  1242. btrfs_mark_buffer_dirty(leaf);
  1243. }
  1244. return ret;
  1245. }
  1246. static noinline u32 extent_data_ref_count(struct btrfs_path *path,
  1247. struct btrfs_extent_inline_ref *iref)
  1248. {
  1249. struct btrfs_key key;
  1250. struct extent_buffer *leaf;
  1251. struct btrfs_extent_data_ref *ref1;
  1252. struct btrfs_shared_data_ref *ref2;
  1253. u32 num_refs = 0;
  1254. leaf = path->nodes[0];
  1255. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1256. if (iref) {
  1257. if (btrfs_extent_inline_ref_type(leaf, iref) ==
  1258. BTRFS_EXTENT_DATA_REF_KEY) {
  1259. ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
  1260. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1261. } else {
  1262. ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
  1263. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1264. }
  1265. } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
  1266. ref1 = btrfs_item_ptr(leaf, path->slots[0],
  1267. struct btrfs_extent_data_ref);
  1268. num_refs = btrfs_extent_data_ref_count(leaf, ref1);
  1269. } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
  1270. ref2 = btrfs_item_ptr(leaf, path->slots[0],
  1271. struct btrfs_shared_data_ref);
  1272. num_refs = btrfs_shared_data_ref_count(leaf, ref2);
  1273. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1274. } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
  1275. struct btrfs_extent_ref_v0 *ref0;
  1276. ref0 = btrfs_item_ptr(leaf, path->slots[0],
  1277. struct btrfs_extent_ref_v0);
  1278. num_refs = btrfs_ref_count_v0(leaf, ref0);
  1279. #endif
  1280. } else {
  1281. WARN_ON(1);
  1282. }
  1283. return num_refs;
  1284. }
  1285. static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
  1286. struct btrfs_root *root,
  1287. struct btrfs_path *path,
  1288. u64 bytenr, u64 parent,
  1289. u64 root_objectid)
  1290. {
  1291. struct btrfs_key key;
  1292. int ret;
  1293. key.objectid = bytenr;
  1294. if (parent) {
  1295. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1296. key.offset = parent;
  1297. } else {
  1298. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1299. key.offset = root_objectid;
  1300. }
  1301. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1302. if (ret > 0)
  1303. ret = -ENOENT;
  1304. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1305. if (ret == -ENOENT && parent) {
  1306. btrfs_release_path(path);
  1307. key.type = BTRFS_EXTENT_REF_V0_KEY;
  1308. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  1309. if (ret > 0)
  1310. ret = -ENOENT;
  1311. }
  1312. #endif
  1313. return ret;
  1314. }
  1315. static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
  1316. struct btrfs_root *root,
  1317. struct btrfs_path *path,
  1318. u64 bytenr, u64 parent,
  1319. u64 root_objectid)
  1320. {
  1321. struct btrfs_key key;
  1322. int ret;
  1323. key.objectid = bytenr;
  1324. if (parent) {
  1325. key.type = BTRFS_SHARED_BLOCK_REF_KEY;
  1326. key.offset = parent;
  1327. } else {
  1328. key.type = BTRFS_TREE_BLOCK_REF_KEY;
  1329. key.offset = root_objectid;
  1330. }
  1331. ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
  1332. btrfs_release_path(path);
  1333. return ret;
  1334. }
  1335. static inline int extent_ref_type(u64 parent, u64 owner)
  1336. {
  1337. int type;
  1338. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1339. if (parent > 0)
  1340. type = BTRFS_SHARED_BLOCK_REF_KEY;
  1341. else
  1342. type = BTRFS_TREE_BLOCK_REF_KEY;
  1343. } else {
  1344. if (parent > 0)
  1345. type = BTRFS_SHARED_DATA_REF_KEY;
  1346. else
  1347. type = BTRFS_EXTENT_DATA_REF_KEY;
  1348. }
  1349. return type;
  1350. }
  1351. static int find_next_key(struct btrfs_path *path, int level,
  1352. struct btrfs_key *key)
  1353. {
  1354. for (; level < BTRFS_MAX_LEVEL; level++) {
  1355. if (!path->nodes[level])
  1356. break;
  1357. if (path->slots[level] + 1 >=
  1358. btrfs_header_nritems(path->nodes[level]))
  1359. continue;
  1360. if (level == 0)
  1361. btrfs_item_key_to_cpu(path->nodes[level], key,
  1362. path->slots[level] + 1);
  1363. else
  1364. btrfs_node_key_to_cpu(path->nodes[level], key,
  1365. path->slots[level] + 1);
  1366. return 0;
  1367. }
  1368. return 1;
  1369. }
  1370. /*
  1371. * look for inline back ref. if back ref is found, *ref_ret is set
  1372. * to the address of inline back ref, and 0 is returned.
  1373. *
  1374. * if back ref isn't found, *ref_ret is set to the address where it
  1375. * should be inserted, and -ENOENT is returned.
  1376. *
  1377. * if insert is true and there are too many inline back refs, the path
  1378. * points to the extent item, and -EAGAIN is returned.
  1379. *
  1380. * NOTE: inline back refs are ordered in the same way that back ref
  1381. * items in the tree are ordered.
  1382. */
  1383. static noinline_for_stack
  1384. int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
  1385. struct btrfs_root *root,
  1386. struct btrfs_path *path,
  1387. struct btrfs_extent_inline_ref **ref_ret,
  1388. u64 bytenr, u64 num_bytes,
  1389. u64 parent, u64 root_objectid,
  1390. u64 owner, u64 offset, int insert)
  1391. {
  1392. struct btrfs_key key;
  1393. struct extent_buffer *leaf;
  1394. struct btrfs_extent_item *ei;
  1395. struct btrfs_extent_inline_ref *iref;
  1396. u64 flags;
  1397. u64 item_size;
  1398. unsigned long ptr;
  1399. unsigned long end;
  1400. int extra_size;
  1401. int type;
  1402. int want;
  1403. int ret;
  1404. int err = 0;
  1405. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  1406. SKINNY_METADATA);
  1407. key.objectid = bytenr;
  1408. key.type = BTRFS_EXTENT_ITEM_KEY;
  1409. key.offset = num_bytes;
  1410. want = extent_ref_type(parent, owner);
  1411. if (insert) {
  1412. extra_size = btrfs_extent_inline_ref_size(want);
  1413. path->keep_locks = 1;
  1414. } else
  1415. extra_size = -1;
  1416. /*
  1417. * Owner is our parent level, so we can just add one to get the level
  1418. * for the block we are interested in.
  1419. */
  1420. if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
  1421. key.type = BTRFS_METADATA_ITEM_KEY;
  1422. key.offset = owner;
  1423. }
  1424. again:
  1425. ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
  1426. if (ret < 0) {
  1427. err = ret;
  1428. goto out;
  1429. }
  1430. /*
  1431. * We may be a newly converted file system which still has the old fat
  1432. * extent entries for metadata, so try and see if we have one of those.
  1433. */
  1434. if (ret > 0 && skinny_metadata) {
  1435. skinny_metadata = false;
  1436. if (path->slots[0]) {
  1437. path->slots[0]--;
  1438. btrfs_item_key_to_cpu(path->nodes[0], &key,
  1439. path->slots[0]);
  1440. if (key.objectid == bytenr &&
  1441. key.type == BTRFS_EXTENT_ITEM_KEY &&
  1442. key.offset == num_bytes)
  1443. ret = 0;
  1444. }
  1445. if (ret) {
  1446. key.objectid = bytenr;
  1447. key.type = BTRFS_EXTENT_ITEM_KEY;
  1448. key.offset = num_bytes;
  1449. btrfs_release_path(path);
  1450. goto again;
  1451. }
  1452. }
  1453. if (ret && !insert) {
  1454. err = -ENOENT;
  1455. goto out;
  1456. } else if (WARN_ON(ret)) {
  1457. err = -EIO;
  1458. goto out;
  1459. }
  1460. leaf = path->nodes[0];
  1461. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1462. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  1463. if (item_size < sizeof(*ei)) {
  1464. if (!insert) {
  1465. err = -ENOENT;
  1466. goto out;
  1467. }
  1468. ret = convert_extent_item_v0(trans, root, path, owner,
  1469. extra_size);
  1470. if (ret < 0) {
  1471. err = ret;
  1472. goto out;
  1473. }
  1474. leaf = path->nodes[0];
  1475. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1476. }
  1477. #endif
  1478. BUG_ON(item_size < sizeof(*ei));
  1479. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1480. flags = btrfs_extent_flags(leaf, ei);
  1481. ptr = (unsigned long)(ei + 1);
  1482. end = (unsigned long)ei + item_size;
  1483. if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
  1484. ptr += sizeof(struct btrfs_tree_block_info);
  1485. BUG_ON(ptr > end);
  1486. }
  1487. err = -ENOENT;
  1488. while (1) {
  1489. if (ptr >= end) {
  1490. WARN_ON(ptr > end);
  1491. break;
  1492. }
  1493. iref = (struct btrfs_extent_inline_ref *)ptr;
  1494. type = btrfs_extent_inline_ref_type(leaf, iref);
  1495. if (want < type)
  1496. break;
  1497. if (want > type) {
  1498. ptr += btrfs_extent_inline_ref_size(type);
  1499. continue;
  1500. }
  1501. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1502. struct btrfs_extent_data_ref *dref;
  1503. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1504. if (match_extent_data_ref(leaf, dref, root_objectid,
  1505. owner, offset)) {
  1506. err = 0;
  1507. break;
  1508. }
  1509. if (hash_extent_data_ref_item(leaf, dref) <
  1510. hash_extent_data_ref(root_objectid, owner, offset))
  1511. break;
  1512. } else {
  1513. u64 ref_offset;
  1514. ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
  1515. if (parent > 0) {
  1516. if (parent == ref_offset) {
  1517. err = 0;
  1518. break;
  1519. }
  1520. if (ref_offset < parent)
  1521. break;
  1522. } else {
  1523. if (root_objectid == ref_offset) {
  1524. err = 0;
  1525. break;
  1526. }
  1527. if (ref_offset < root_objectid)
  1528. break;
  1529. }
  1530. }
  1531. ptr += btrfs_extent_inline_ref_size(type);
  1532. }
  1533. if (err == -ENOENT && insert) {
  1534. if (item_size + extra_size >=
  1535. BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
  1536. err = -EAGAIN;
  1537. goto out;
  1538. }
  1539. /*
  1540. * To add new inline back ref, we have to make sure
  1541. * there is no corresponding back ref item.
  1542. * For simplicity, we just do not add new inline back
  1543. * ref if there is any kind of item for this block
  1544. */
  1545. if (find_next_key(path, 0, &key) == 0 &&
  1546. key.objectid == bytenr &&
  1547. key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
  1548. err = -EAGAIN;
  1549. goto out;
  1550. }
  1551. }
  1552. *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
  1553. out:
  1554. if (insert) {
  1555. path->keep_locks = 0;
  1556. btrfs_unlock_up_safe(path, 1);
  1557. }
  1558. return err;
  1559. }
  1560. /*
  1561. * helper to add new inline back ref
  1562. */
  1563. static noinline_for_stack
  1564. void setup_inline_extent_backref(struct btrfs_root *root,
  1565. struct btrfs_path *path,
  1566. struct btrfs_extent_inline_ref *iref,
  1567. u64 parent, u64 root_objectid,
  1568. u64 owner, u64 offset, int refs_to_add,
  1569. struct btrfs_delayed_extent_op *extent_op)
  1570. {
  1571. struct extent_buffer *leaf;
  1572. struct btrfs_extent_item *ei;
  1573. unsigned long ptr;
  1574. unsigned long end;
  1575. unsigned long item_offset;
  1576. u64 refs;
  1577. int size;
  1578. int type;
  1579. leaf = path->nodes[0];
  1580. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1581. item_offset = (unsigned long)iref - (unsigned long)ei;
  1582. type = extent_ref_type(parent, owner);
  1583. size = btrfs_extent_inline_ref_size(type);
  1584. btrfs_extend_item(root, path, size);
  1585. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1586. refs = btrfs_extent_refs(leaf, ei);
  1587. refs += refs_to_add;
  1588. btrfs_set_extent_refs(leaf, ei, refs);
  1589. if (extent_op)
  1590. __run_delayed_extent_op(extent_op, leaf, ei);
  1591. ptr = (unsigned long)ei + item_offset;
  1592. end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
  1593. if (ptr < end - size)
  1594. memmove_extent_buffer(leaf, ptr + size, ptr,
  1595. end - size - ptr);
  1596. iref = (struct btrfs_extent_inline_ref *)ptr;
  1597. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  1598. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1599. struct btrfs_extent_data_ref *dref;
  1600. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1601. btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
  1602. btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
  1603. btrfs_set_extent_data_ref_offset(leaf, dref, offset);
  1604. btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
  1605. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1606. struct btrfs_shared_data_ref *sref;
  1607. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1608. btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
  1609. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1610. } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
  1611. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  1612. } else {
  1613. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  1614. }
  1615. btrfs_mark_buffer_dirty(leaf);
  1616. }
  1617. static int lookup_extent_backref(struct btrfs_trans_handle *trans,
  1618. struct btrfs_root *root,
  1619. struct btrfs_path *path,
  1620. struct btrfs_extent_inline_ref **ref_ret,
  1621. u64 bytenr, u64 num_bytes, u64 parent,
  1622. u64 root_objectid, u64 owner, u64 offset)
  1623. {
  1624. int ret;
  1625. ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
  1626. bytenr, num_bytes, parent,
  1627. root_objectid, owner, offset, 0);
  1628. if (ret != -ENOENT)
  1629. return ret;
  1630. btrfs_release_path(path);
  1631. *ref_ret = NULL;
  1632. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1633. ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
  1634. root_objectid);
  1635. } else {
  1636. ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
  1637. root_objectid, owner, offset);
  1638. }
  1639. return ret;
  1640. }
  1641. /*
  1642. * helper to update/remove inline back ref
  1643. */
  1644. static noinline_for_stack
  1645. void update_inline_extent_backref(struct btrfs_root *root,
  1646. struct btrfs_path *path,
  1647. struct btrfs_extent_inline_ref *iref,
  1648. int refs_to_mod,
  1649. struct btrfs_delayed_extent_op *extent_op,
  1650. int *last_ref)
  1651. {
  1652. struct extent_buffer *leaf;
  1653. struct btrfs_extent_item *ei;
  1654. struct btrfs_extent_data_ref *dref = NULL;
  1655. struct btrfs_shared_data_ref *sref = NULL;
  1656. unsigned long ptr;
  1657. unsigned long end;
  1658. u32 item_size;
  1659. int size;
  1660. int type;
  1661. u64 refs;
  1662. leaf = path->nodes[0];
  1663. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1664. refs = btrfs_extent_refs(leaf, ei);
  1665. WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
  1666. refs += refs_to_mod;
  1667. btrfs_set_extent_refs(leaf, ei, refs);
  1668. if (extent_op)
  1669. __run_delayed_extent_op(extent_op, leaf, ei);
  1670. type = btrfs_extent_inline_ref_type(leaf, iref);
  1671. if (type == BTRFS_EXTENT_DATA_REF_KEY) {
  1672. dref = (struct btrfs_extent_data_ref *)(&iref->offset);
  1673. refs = btrfs_extent_data_ref_count(leaf, dref);
  1674. } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
  1675. sref = (struct btrfs_shared_data_ref *)(iref + 1);
  1676. refs = btrfs_shared_data_ref_count(leaf, sref);
  1677. } else {
  1678. refs = 1;
  1679. BUG_ON(refs_to_mod != -1);
  1680. }
  1681. BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
  1682. refs += refs_to_mod;
  1683. if (refs > 0) {
  1684. if (type == BTRFS_EXTENT_DATA_REF_KEY)
  1685. btrfs_set_extent_data_ref_count(leaf, dref, refs);
  1686. else
  1687. btrfs_set_shared_data_ref_count(leaf, sref, refs);
  1688. } else {
  1689. *last_ref = 1;
  1690. size = btrfs_extent_inline_ref_size(type);
  1691. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  1692. ptr = (unsigned long)iref;
  1693. end = (unsigned long)ei + item_size;
  1694. if (ptr + size < end)
  1695. memmove_extent_buffer(leaf, ptr, ptr + size,
  1696. end - ptr - size);
  1697. item_size -= size;
  1698. btrfs_truncate_item(root, path, item_size, 1);
  1699. }
  1700. btrfs_mark_buffer_dirty(leaf);
  1701. }
  1702. static noinline_for_stack
  1703. int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
  1704. struct btrfs_root *root,
  1705. struct btrfs_path *path,
  1706. u64 bytenr, u64 num_bytes, u64 parent,
  1707. u64 root_objectid, u64 owner,
  1708. u64 offset, int refs_to_add,
  1709. struct btrfs_delayed_extent_op *extent_op)
  1710. {
  1711. struct btrfs_extent_inline_ref *iref;
  1712. int ret;
  1713. ret = lookup_inline_extent_backref(trans, root, path, &iref,
  1714. bytenr, num_bytes, parent,
  1715. root_objectid, owner, offset, 1);
  1716. if (ret == 0) {
  1717. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
  1718. update_inline_extent_backref(root, path, iref,
  1719. refs_to_add, extent_op, NULL);
  1720. } else if (ret == -ENOENT) {
  1721. setup_inline_extent_backref(root, path, iref, parent,
  1722. root_objectid, owner, offset,
  1723. refs_to_add, extent_op);
  1724. ret = 0;
  1725. }
  1726. return ret;
  1727. }
  1728. static int insert_extent_backref(struct btrfs_trans_handle *trans,
  1729. struct btrfs_root *root,
  1730. struct btrfs_path *path,
  1731. u64 bytenr, u64 parent, u64 root_objectid,
  1732. u64 owner, u64 offset, int refs_to_add)
  1733. {
  1734. int ret;
  1735. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1736. BUG_ON(refs_to_add != 1);
  1737. ret = insert_tree_block_ref(trans, root, path, bytenr,
  1738. parent, root_objectid);
  1739. } else {
  1740. ret = insert_extent_data_ref(trans, root, path, bytenr,
  1741. parent, root_objectid,
  1742. owner, offset, refs_to_add);
  1743. }
  1744. return ret;
  1745. }
  1746. static int remove_extent_backref(struct btrfs_trans_handle *trans,
  1747. struct btrfs_root *root,
  1748. struct btrfs_path *path,
  1749. struct btrfs_extent_inline_ref *iref,
  1750. int refs_to_drop, int is_data, int *last_ref)
  1751. {
  1752. int ret = 0;
  1753. BUG_ON(!is_data && refs_to_drop != 1);
  1754. if (iref) {
  1755. update_inline_extent_backref(root, path, iref,
  1756. -refs_to_drop, NULL, last_ref);
  1757. } else if (is_data) {
  1758. ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
  1759. last_ref);
  1760. } else {
  1761. *last_ref = 1;
  1762. ret = btrfs_del_item(trans, root, path);
  1763. }
  1764. return ret;
  1765. }
  1766. #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
  1767. static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
  1768. u64 *discarded_bytes)
  1769. {
  1770. int j, ret = 0;
  1771. u64 bytes_left, end;
  1772. u64 aligned_start = ALIGN(start, 1 << 9);
  1773. if (WARN_ON(start != aligned_start)) {
  1774. len -= aligned_start - start;
  1775. len = round_down(len, 1 << 9);
  1776. start = aligned_start;
  1777. }
  1778. *discarded_bytes = 0;
  1779. if (!len)
  1780. return 0;
  1781. end = start + len;
  1782. bytes_left = len;
  1783. /* Skip any superblocks on this device. */
  1784. for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
  1785. u64 sb_start = btrfs_sb_offset(j);
  1786. u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
  1787. u64 size = sb_start - start;
  1788. if (!in_range(sb_start, start, bytes_left) &&
  1789. !in_range(sb_end, start, bytes_left) &&
  1790. !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
  1791. continue;
  1792. /*
  1793. * Superblock spans beginning of range. Adjust start and
  1794. * try again.
  1795. */
  1796. if (sb_start <= start) {
  1797. start += sb_end - start;
  1798. if (start > end) {
  1799. bytes_left = 0;
  1800. break;
  1801. }
  1802. bytes_left = end - start;
  1803. continue;
  1804. }
  1805. if (size) {
  1806. ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
  1807. GFP_NOFS, 0);
  1808. if (!ret)
  1809. *discarded_bytes += size;
  1810. else if (ret != -EOPNOTSUPP)
  1811. return ret;
  1812. }
  1813. start = sb_end;
  1814. if (start > end) {
  1815. bytes_left = 0;
  1816. break;
  1817. }
  1818. bytes_left = end - start;
  1819. }
  1820. if (bytes_left) {
  1821. ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
  1822. GFP_NOFS, 0);
  1823. if (!ret)
  1824. *discarded_bytes += bytes_left;
  1825. }
  1826. return ret;
  1827. }
  1828. int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
  1829. u64 num_bytes, u64 *actual_bytes)
  1830. {
  1831. int ret;
  1832. u64 discarded_bytes = 0;
  1833. struct btrfs_bio *bbio = NULL;
  1834. /* Tell the block device(s) that the sectors can be discarded */
  1835. ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
  1836. bytenr, &num_bytes, &bbio, 0);
  1837. /* Error condition is -ENOMEM */
  1838. if (!ret) {
  1839. struct btrfs_bio_stripe *stripe = bbio->stripes;
  1840. int i;
  1841. for (i = 0; i < bbio->num_stripes; i++, stripe++) {
  1842. u64 bytes;
  1843. if (!stripe->dev->can_discard)
  1844. continue;
  1845. ret = btrfs_issue_discard(stripe->dev->bdev,
  1846. stripe->physical,
  1847. stripe->length,
  1848. &bytes);
  1849. if (!ret)
  1850. discarded_bytes += bytes;
  1851. else if (ret != -EOPNOTSUPP)
  1852. break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
  1853. /*
  1854. * Just in case we get back EOPNOTSUPP for some reason,
  1855. * just ignore the return value so we don't screw up
  1856. * people calling discard_extent.
  1857. */
  1858. ret = 0;
  1859. }
  1860. btrfs_put_bbio(bbio);
  1861. }
  1862. if (actual_bytes)
  1863. *actual_bytes = discarded_bytes;
  1864. if (ret == -EOPNOTSUPP)
  1865. ret = 0;
  1866. return ret;
  1867. }
  1868. /* Can return -ENOMEM */
  1869. int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1870. struct btrfs_root *root,
  1871. u64 bytenr, u64 num_bytes, u64 parent,
  1872. u64 root_objectid, u64 owner, u64 offset)
  1873. {
  1874. int ret;
  1875. struct btrfs_fs_info *fs_info = root->fs_info;
  1876. BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
  1877. root_objectid == BTRFS_TREE_LOG_OBJECTID);
  1878. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  1879. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  1880. num_bytes,
  1881. parent, root_objectid, (int)owner,
  1882. BTRFS_ADD_DELAYED_REF, NULL);
  1883. } else {
  1884. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  1885. num_bytes, parent, root_objectid,
  1886. owner, offset, 0,
  1887. BTRFS_ADD_DELAYED_REF, NULL);
  1888. }
  1889. return ret;
  1890. }
  1891. static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
  1892. struct btrfs_root *root,
  1893. struct btrfs_delayed_ref_node *node,
  1894. u64 parent, u64 root_objectid,
  1895. u64 owner, u64 offset, int refs_to_add,
  1896. struct btrfs_delayed_extent_op *extent_op)
  1897. {
  1898. struct btrfs_fs_info *fs_info = root->fs_info;
  1899. struct btrfs_path *path;
  1900. struct extent_buffer *leaf;
  1901. struct btrfs_extent_item *item;
  1902. struct btrfs_key key;
  1903. u64 bytenr = node->bytenr;
  1904. u64 num_bytes = node->num_bytes;
  1905. u64 refs;
  1906. int ret;
  1907. path = btrfs_alloc_path();
  1908. if (!path)
  1909. return -ENOMEM;
  1910. path->reada = READA_FORWARD;
  1911. path->leave_spinning = 1;
  1912. /* this will setup the path even if it fails to insert the back ref */
  1913. ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
  1914. bytenr, num_bytes, parent,
  1915. root_objectid, owner, offset,
  1916. refs_to_add, extent_op);
  1917. if ((ret < 0 && ret != -EAGAIN) || !ret)
  1918. goto out;
  1919. /*
  1920. * Ok we had -EAGAIN which means we didn't have space to insert and
  1921. * inline extent ref, so just update the reference count and add a
  1922. * normal backref.
  1923. */
  1924. leaf = path->nodes[0];
  1925. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  1926. item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  1927. refs = btrfs_extent_refs(leaf, item);
  1928. btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
  1929. if (extent_op)
  1930. __run_delayed_extent_op(extent_op, leaf, item);
  1931. btrfs_mark_buffer_dirty(leaf);
  1932. btrfs_release_path(path);
  1933. path->reada = READA_FORWARD;
  1934. path->leave_spinning = 1;
  1935. /* now insert the actual backref */
  1936. ret = insert_extent_backref(trans, root->fs_info->extent_root,
  1937. path, bytenr, parent, root_objectid,
  1938. owner, offset, refs_to_add);
  1939. if (ret)
  1940. btrfs_abort_transaction(trans, root, ret);
  1941. out:
  1942. btrfs_free_path(path);
  1943. return ret;
  1944. }
  1945. static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
  1946. struct btrfs_root *root,
  1947. struct btrfs_delayed_ref_node *node,
  1948. struct btrfs_delayed_extent_op *extent_op,
  1949. int insert_reserved)
  1950. {
  1951. int ret = 0;
  1952. struct btrfs_delayed_data_ref *ref;
  1953. struct btrfs_key ins;
  1954. u64 parent = 0;
  1955. u64 ref_root = 0;
  1956. u64 flags = 0;
  1957. ins.objectid = node->bytenr;
  1958. ins.offset = node->num_bytes;
  1959. ins.type = BTRFS_EXTENT_ITEM_KEY;
  1960. ref = btrfs_delayed_node_to_data_ref(node);
  1961. trace_run_delayed_data_ref(node, ref, node->action);
  1962. if (node->type == BTRFS_SHARED_DATA_REF_KEY)
  1963. parent = ref->parent;
  1964. ref_root = ref->root;
  1965. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  1966. if (extent_op)
  1967. flags |= extent_op->flags_to_set;
  1968. ret = alloc_reserved_file_extent(trans, root,
  1969. parent, ref_root, flags,
  1970. ref->objectid, ref->offset,
  1971. &ins, node->ref_mod);
  1972. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  1973. ret = __btrfs_inc_extent_ref(trans, root, node, parent,
  1974. ref_root, ref->objectid,
  1975. ref->offset, node->ref_mod,
  1976. extent_op);
  1977. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  1978. ret = __btrfs_free_extent(trans, root, node, parent,
  1979. ref_root, ref->objectid,
  1980. ref->offset, node->ref_mod,
  1981. extent_op);
  1982. } else {
  1983. BUG();
  1984. }
  1985. return ret;
  1986. }
  1987. static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
  1988. struct extent_buffer *leaf,
  1989. struct btrfs_extent_item *ei)
  1990. {
  1991. u64 flags = btrfs_extent_flags(leaf, ei);
  1992. if (extent_op->update_flags) {
  1993. flags |= extent_op->flags_to_set;
  1994. btrfs_set_extent_flags(leaf, ei, flags);
  1995. }
  1996. if (extent_op->update_key) {
  1997. struct btrfs_tree_block_info *bi;
  1998. BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
  1999. bi = (struct btrfs_tree_block_info *)(ei + 1);
  2000. btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
  2001. }
  2002. }
  2003. static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
  2004. struct btrfs_root *root,
  2005. struct btrfs_delayed_ref_node *node,
  2006. struct btrfs_delayed_extent_op *extent_op)
  2007. {
  2008. struct btrfs_key key;
  2009. struct btrfs_path *path;
  2010. struct btrfs_extent_item *ei;
  2011. struct extent_buffer *leaf;
  2012. u32 item_size;
  2013. int ret;
  2014. int err = 0;
  2015. int metadata = !extent_op->is_data;
  2016. if (trans->aborted)
  2017. return 0;
  2018. if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
  2019. metadata = 0;
  2020. path = btrfs_alloc_path();
  2021. if (!path)
  2022. return -ENOMEM;
  2023. key.objectid = node->bytenr;
  2024. if (metadata) {
  2025. key.type = BTRFS_METADATA_ITEM_KEY;
  2026. key.offset = extent_op->level;
  2027. } else {
  2028. key.type = BTRFS_EXTENT_ITEM_KEY;
  2029. key.offset = node->num_bytes;
  2030. }
  2031. again:
  2032. path->reada = READA_FORWARD;
  2033. path->leave_spinning = 1;
  2034. ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
  2035. path, 0, 1);
  2036. if (ret < 0) {
  2037. err = ret;
  2038. goto out;
  2039. }
  2040. if (ret > 0) {
  2041. if (metadata) {
  2042. if (path->slots[0] > 0) {
  2043. path->slots[0]--;
  2044. btrfs_item_key_to_cpu(path->nodes[0], &key,
  2045. path->slots[0]);
  2046. if (key.objectid == node->bytenr &&
  2047. key.type == BTRFS_EXTENT_ITEM_KEY &&
  2048. key.offset == node->num_bytes)
  2049. ret = 0;
  2050. }
  2051. if (ret > 0) {
  2052. btrfs_release_path(path);
  2053. metadata = 0;
  2054. key.objectid = node->bytenr;
  2055. key.offset = node->num_bytes;
  2056. key.type = BTRFS_EXTENT_ITEM_KEY;
  2057. goto again;
  2058. }
  2059. } else {
  2060. err = -EIO;
  2061. goto out;
  2062. }
  2063. }
  2064. leaf = path->nodes[0];
  2065. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2066. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2067. if (item_size < sizeof(*ei)) {
  2068. ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
  2069. path, (u64)-1, 0);
  2070. if (ret < 0) {
  2071. err = ret;
  2072. goto out;
  2073. }
  2074. leaf = path->nodes[0];
  2075. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2076. }
  2077. #endif
  2078. BUG_ON(item_size < sizeof(*ei));
  2079. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  2080. __run_delayed_extent_op(extent_op, leaf, ei);
  2081. btrfs_mark_buffer_dirty(leaf);
  2082. out:
  2083. btrfs_free_path(path);
  2084. return err;
  2085. }
  2086. static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
  2087. struct btrfs_root *root,
  2088. struct btrfs_delayed_ref_node *node,
  2089. struct btrfs_delayed_extent_op *extent_op,
  2090. int insert_reserved)
  2091. {
  2092. int ret = 0;
  2093. struct btrfs_delayed_tree_ref *ref;
  2094. struct btrfs_key ins;
  2095. u64 parent = 0;
  2096. u64 ref_root = 0;
  2097. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  2098. SKINNY_METADATA);
  2099. ref = btrfs_delayed_node_to_tree_ref(node);
  2100. trace_run_delayed_tree_ref(node, ref, node->action);
  2101. if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  2102. parent = ref->parent;
  2103. ref_root = ref->root;
  2104. ins.objectid = node->bytenr;
  2105. if (skinny_metadata) {
  2106. ins.offset = ref->level;
  2107. ins.type = BTRFS_METADATA_ITEM_KEY;
  2108. } else {
  2109. ins.offset = node->num_bytes;
  2110. ins.type = BTRFS_EXTENT_ITEM_KEY;
  2111. }
  2112. BUG_ON(node->ref_mod != 1);
  2113. if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
  2114. BUG_ON(!extent_op || !extent_op->update_flags);
  2115. ret = alloc_reserved_tree_block(trans, root,
  2116. parent, ref_root,
  2117. extent_op->flags_to_set,
  2118. &extent_op->key,
  2119. ref->level, &ins);
  2120. } else if (node->action == BTRFS_ADD_DELAYED_REF) {
  2121. ret = __btrfs_inc_extent_ref(trans, root, node,
  2122. parent, ref_root,
  2123. ref->level, 0, 1,
  2124. extent_op);
  2125. } else if (node->action == BTRFS_DROP_DELAYED_REF) {
  2126. ret = __btrfs_free_extent(trans, root, node,
  2127. parent, ref_root,
  2128. ref->level, 0, 1, extent_op);
  2129. } else {
  2130. BUG();
  2131. }
  2132. return ret;
  2133. }
  2134. /* helper function to actually process a single delayed ref entry */
  2135. static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
  2136. struct btrfs_root *root,
  2137. struct btrfs_delayed_ref_node *node,
  2138. struct btrfs_delayed_extent_op *extent_op,
  2139. int insert_reserved)
  2140. {
  2141. int ret = 0;
  2142. if (trans->aborted) {
  2143. if (insert_reserved)
  2144. btrfs_pin_extent(root, node->bytenr,
  2145. node->num_bytes, 1);
  2146. return 0;
  2147. }
  2148. if (btrfs_delayed_ref_is_head(node)) {
  2149. struct btrfs_delayed_ref_head *head;
  2150. /*
  2151. * we've hit the end of the chain and we were supposed
  2152. * to insert this extent into the tree. But, it got
  2153. * deleted before we ever needed to insert it, so all
  2154. * we have to do is clean up the accounting
  2155. */
  2156. BUG_ON(extent_op);
  2157. head = btrfs_delayed_node_to_head(node);
  2158. trace_run_delayed_ref_head(node, head, node->action);
  2159. if (insert_reserved) {
  2160. btrfs_pin_extent(root, node->bytenr,
  2161. node->num_bytes, 1);
  2162. if (head->is_data) {
  2163. ret = btrfs_del_csums(trans, root,
  2164. node->bytenr,
  2165. node->num_bytes);
  2166. }
  2167. }
  2168. /* Also free its reserved qgroup space */
  2169. btrfs_qgroup_free_delayed_ref(root->fs_info,
  2170. head->qgroup_ref_root,
  2171. head->qgroup_reserved);
  2172. return ret;
  2173. }
  2174. if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
  2175. node->type == BTRFS_SHARED_BLOCK_REF_KEY)
  2176. ret = run_delayed_tree_ref(trans, root, node, extent_op,
  2177. insert_reserved);
  2178. else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
  2179. node->type == BTRFS_SHARED_DATA_REF_KEY)
  2180. ret = run_delayed_data_ref(trans, root, node, extent_op,
  2181. insert_reserved);
  2182. else
  2183. BUG();
  2184. return ret;
  2185. }
  2186. static inline struct btrfs_delayed_ref_node *
  2187. select_delayed_ref(struct btrfs_delayed_ref_head *head)
  2188. {
  2189. struct btrfs_delayed_ref_node *ref;
  2190. if (list_empty(&head->ref_list))
  2191. return NULL;
  2192. /*
  2193. * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
  2194. * This is to prevent a ref count from going down to zero, which deletes
  2195. * the extent item from the extent tree, when there still are references
  2196. * to add, which would fail because they would not find the extent item.
  2197. */
  2198. list_for_each_entry(ref, &head->ref_list, list) {
  2199. if (ref->action == BTRFS_ADD_DELAYED_REF)
  2200. return ref;
  2201. }
  2202. return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
  2203. list);
  2204. }
  2205. /*
  2206. * Returns 0 on success or if called with an already aborted transaction.
  2207. * Returns -ENOMEM or -EIO on failure and will abort the transaction.
  2208. */
  2209. static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  2210. struct btrfs_root *root,
  2211. unsigned long nr)
  2212. {
  2213. struct btrfs_delayed_ref_root *delayed_refs;
  2214. struct btrfs_delayed_ref_node *ref;
  2215. struct btrfs_delayed_ref_head *locked_ref = NULL;
  2216. struct btrfs_delayed_extent_op *extent_op;
  2217. struct btrfs_fs_info *fs_info = root->fs_info;
  2218. ktime_t start = ktime_get();
  2219. int ret;
  2220. unsigned long count = 0;
  2221. unsigned long actual_count = 0;
  2222. int must_insert_reserved = 0;
  2223. delayed_refs = &trans->transaction->delayed_refs;
  2224. while (1) {
  2225. if (!locked_ref) {
  2226. if (count >= nr)
  2227. break;
  2228. spin_lock(&delayed_refs->lock);
  2229. locked_ref = btrfs_select_ref_head(trans);
  2230. if (!locked_ref) {
  2231. spin_unlock(&delayed_refs->lock);
  2232. break;
  2233. }
  2234. /* grab the lock that says we are going to process
  2235. * all the refs for this head */
  2236. ret = btrfs_delayed_ref_lock(trans, locked_ref);
  2237. spin_unlock(&delayed_refs->lock);
  2238. /*
  2239. * we may have dropped the spin lock to get the head
  2240. * mutex lock, and that might have given someone else
  2241. * time to free the head. If that's true, it has been
  2242. * removed from our list and we can move on.
  2243. */
  2244. if (ret == -EAGAIN) {
  2245. locked_ref = NULL;
  2246. count++;
  2247. continue;
  2248. }
  2249. }
  2250. /*
  2251. * We need to try and merge add/drops of the same ref since we
  2252. * can run into issues with relocate dropping the implicit ref
  2253. * and then it being added back again before the drop can
  2254. * finish. If we merged anything we need to re-loop so we can
  2255. * get a good ref.
  2256. * Or we can get node references of the same type that weren't
  2257. * merged when created due to bumps in the tree mod seq, and
  2258. * we need to merge them to prevent adding an inline extent
  2259. * backref before dropping it (triggering a BUG_ON at
  2260. * insert_inline_extent_backref()).
  2261. */
  2262. spin_lock(&locked_ref->lock);
  2263. btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
  2264. locked_ref);
  2265. /*
  2266. * locked_ref is the head node, so we have to go one
  2267. * node back for any delayed ref updates
  2268. */
  2269. ref = select_delayed_ref(locked_ref);
  2270. if (ref && ref->seq &&
  2271. btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
  2272. spin_unlock(&locked_ref->lock);
  2273. btrfs_delayed_ref_unlock(locked_ref);
  2274. spin_lock(&delayed_refs->lock);
  2275. locked_ref->processing = 0;
  2276. delayed_refs->num_heads_ready++;
  2277. spin_unlock(&delayed_refs->lock);
  2278. locked_ref = NULL;
  2279. cond_resched();
  2280. count++;
  2281. continue;
  2282. }
  2283. /*
  2284. * record the must insert reserved flag before we
  2285. * drop the spin lock.
  2286. */
  2287. must_insert_reserved = locked_ref->must_insert_reserved;
  2288. locked_ref->must_insert_reserved = 0;
  2289. extent_op = locked_ref->extent_op;
  2290. locked_ref->extent_op = NULL;
  2291. if (!ref) {
  2292. /* All delayed refs have been processed, Go ahead
  2293. * and send the head node to run_one_delayed_ref,
  2294. * so that any accounting fixes can happen
  2295. */
  2296. ref = &locked_ref->node;
  2297. if (extent_op && must_insert_reserved) {
  2298. btrfs_free_delayed_extent_op(extent_op);
  2299. extent_op = NULL;
  2300. }
  2301. if (extent_op) {
  2302. spin_unlock(&locked_ref->lock);
  2303. ret = run_delayed_extent_op(trans, root,
  2304. ref, extent_op);
  2305. btrfs_free_delayed_extent_op(extent_op);
  2306. if (ret) {
  2307. /*
  2308. * Need to reset must_insert_reserved if
  2309. * there was an error so the abort stuff
  2310. * can cleanup the reserved space
  2311. * properly.
  2312. */
  2313. if (must_insert_reserved)
  2314. locked_ref->must_insert_reserved = 1;
  2315. locked_ref->processing = 0;
  2316. btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
  2317. btrfs_delayed_ref_unlock(locked_ref);
  2318. return ret;
  2319. }
  2320. continue;
  2321. }
  2322. /*
  2323. * Need to drop our head ref lock and re-aqcuire the
  2324. * delayed ref lock and then re-check to make sure
  2325. * nobody got added.
  2326. */
  2327. spin_unlock(&locked_ref->lock);
  2328. spin_lock(&delayed_refs->lock);
  2329. spin_lock(&locked_ref->lock);
  2330. if (!list_empty(&locked_ref->ref_list) ||
  2331. locked_ref->extent_op) {
  2332. spin_unlock(&locked_ref->lock);
  2333. spin_unlock(&delayed_refs->lock);
  2334. continue;
  2335. }
  2336. ref->in_tree = 0;
  2337. delayed_refs->num_heads--;
  2338. rb_erase(&locked_ref->href_node,
  2339. &delayed_refs->href_root);
  2340. spin_unlock(&delayed_refs->lock);
  2341. } else {
  2342. actual_count++;
  2343. ref->in_tree = 0;
  2344. list_del(&ref->list);
  2345. }
  2346. atomic_dec(&delayed_refs->num_entries);
  2347. if (!btrfs_delayed_ref_is_head(ref)) {
  2348. /*
  2349. * when we play the delayed ref, also correct the
  2350. * ref_mod on head
  2351. */
  2352. switch (ref->action) {
  2353. case BTRFS_ADD_DELAYED_REF:
  2354. case BTRFS_ADD_DELAYED_EXTENT:
  2355. locked_ref->node.ref_mod -= ref->ref_mod;
  2356. break;
  2357. case BTRFS_DROP_DELAYED_REF:
  2358. locked_ref->node.ref_mod += ref->ref_mod;
  2359. break;
  2360. default:
  2361. WARN_ON(1);
  2362. }
  2363. }
  2364. spin_unlock(&locked_ref->lock);
  2365. ret = run_one_delayed_ref(trans, root, ref, extent_op,
  2366. must_insert_reserved);
  2367. btrfs_free_delayed_extent_op(extent_op);
  2368. if (ret) {
  2369. locked_ref->processing = 0;
  2370. btrfs_delayed_ref_unlock(locked_ref);
  2371. btrfs_put_delayed_ref(ref);
  2372. btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
  2373. return ret;
  2374. }
  2375. /*
  2376. * If this node is a head, that means all the refs in this head
  2377. * have been dealt with, and we will pick the next head to deal
  2378. * with, so we must unlock the head and drop it from the cluster
  2379. * list before we release it.
  2380. */
  2381. if (btrfs_delayed_ref_is_head(ref)) {
  2382. if (locked_ref->is_data &&
  2383. locked_ref->total_ref_mod < 0) {
  2384. spin_lock(&delayed_refs->lock);
  2385. delayed_refs->pending_csums -= ref->num_bytes;
  2386. spin_unlock(&delayed_refs->lock);
  2387. }
  2388. btrfs_delayed_ref_unlock(locked_ref);
  2389. locked_ref = NULL;
  2390. }
  2391. btrfs_put_delayed_ref(ref);
  2392. count++;
  2393. cond_resched();
  2394. }
  2395. /*
  2396. * We don't want to include ref heads since we can have empty ref heads
  2397. * and those will drastically skew our runtime down since we just do
  2398. * accounting, no actual extent tree updates.
  2399. */
  2400. if (actual_count > 0) {
  2401. u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
  2402. u64 avg;
  2403. /*
  2404. * We weigh the current average higher than our current runtime
  2405. * to avoid large swings in the average.
  2406. */
  2407. spin_lock(&delayed_refs->lock);
  2408. avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
  2409. fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
  2410. spin_unlock(&delayed_refs->lock);
  2411. }
  2412. return 0;
  2413. }
  2414. #ifdef SCRAMBLE_DELAYED_REFS
  2415. /*
  2416. * Normally delayed refs get processed in ascending bytenr order. This
  2417. * correlates in most cases to the order added. To expose dependencies on this
  2418. * order, we start to process the tree in the middle instead of the beginning
  2419. */
  2420. static u64 find_middle(struct rb_root *root)
  2421. {
  2422. struct rb_node *n = root->rb_node;
  2423. struct btrfs_delayed_ref_node *entry;
  2424. int alt = 1;
  2425. u64 middle;
  2426. u64 first = 0, last = 0;
  2427. n = rb_first(root);
  2428. if (n) {
  2429. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2430. first = entry->bytenr;
  2431. }
  2432. n = rb_last(root);
  2433. if (n) {
  2434. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2435. last = entry->bytenr;
  2436. }
  2437. n = root->rb_node;
  2438. while (n) {
  2439. entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
  2440. WARN_ON(!entry->in_tree);
  2441. middle = entry->bytenr;
  2442. if (alt)
  2443. n = n->rb_left;
  2444. else
  2445. n = n->rb_right;
  2446. alt = 1 - alt;
  2447. }
  2448. return middle;
  2449. }
  2450. #endif
  2451. static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
  2452. {
  2453. u64 num_bytes;
  2454. num_bytes = heads * (sizeof(struct btrfs_extent_item) +
  2455. sizeof(struct btrfs_extent_inline_ref));
  2456. if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
  2457. num_bytes += heads * sizeof(struct btrfs_tree_block_info);
  2458. /*
  2459. * We don't ever fill up leaves all the way so multiply by 2 just to be
  2460. * closer to what we're really going to want to ouse.
  2461. */
  2462. return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
  2463. }
  2464. /*
  2465. * Takes the number of bytes to be csumm'ed and figures out how many leaves it
  2466. * would require to store the csums for that many bytes.
  2467. */
  2468. u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
  2469. {
  2470. u64 csum_size;
  2471. u64 num_csums_per_leaf;
  2472. u64 num_csums;
  2473. csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
  2474. num_csums_per_leaf = div64_u64(csum_size,
  2475. (u64)btrfs_super_csum_size(root->fs_info->super_copy));
  2476. num_csums = div64_u64(csum_bytes, root->sectorsize);
  2477. num_csums += num_csums_per_leaf - 1;
  2478. num_csums = div64_u64(num_csums, num_csums_per_leaf);
  2479. return num_csums;
  2480. }
  2481. int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
  2482. struct btrfs_root *root)
  2483. {
  2484. struct btrfs_block_rsv *global_rsv;
  2485. u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
  2486. u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
  2487. u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
  2488. u64 num_bytes, num_dirty_bgs_bytes;
  2489. int ret = 0;
  2490. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  2491. num_heads = heads_to_leaves(root, num_heads);
  2492. if (num_heads > 1)
  2493. num_bytes += (num_heads - 1) * root->nodesize;
  2494. num_bytes <<= 1;
  2495. num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
  2496. num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
  2497. num_dirty_bgs);
  2498. global_rsv = &root->fs_info->global_block_rsv;
  2499. /*
  2500. * If we can't allocate any more chunks lets make sure we have _lots_ of
  2501. * wiggle room since running delayed refs can create more delayed refs.
  2502. */
  2503. if (global_rsv->space_info->full) {
  2504. num_dirty_bgs_bytes <<= 1;
  2505. num_bytes <<= 1;
  2506. }
  2507. spin_lock(&global_rsv->lock);
  2508. if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
  2509. ret = 1;
  2510. spin_unlock(&global_rsv->lock);
  2511. return ret;
  2512. }
  2513. int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
  2514. struct btrfs_root *root)
  2515. {
  2516. struct btrfs_fs_info *fs_info = root->fs_info;
  2517. u64 num_entries =
  2518. atomic_read(&trans->transaction->delayed_refs.num_entries);
  2519. u64 avg_runtime;
  2520. u64 val;
  2521. smp_mb();
  2522. avg_runtime = fs_info->avg_delayed_ref_runtime;
  2523. val = num_entries * avg_runtime;
  2524. if (num_entries * avg_runtime >= NSEC_PER_SEC)
  2525. return 1;
  2526. if (val >= NSEC_PER_SEC / 2)
  2527. return 2;
  2528. return btrfs_check_space_for_delayed_refs(trans, root);
  2529. }
  2530. struct async_delayed_refs {
  2531. struct btrfs_root *root;
  2532. int count;
  2533. int error;
  2534. int sync;
  2535. struct completion wait;
  2536. struct btrfs_work work;
  2537. };
  2538. static void delayed_ref_async_start(struct btrfs_work *work)
  2539. {
  2540. struct async_delayed_refs *async;
  2541. struct btrfs_trans_handle *trans;
  2542. int ret;
  2543. async = container_of(work, struct async_delayed_refs, work);
  2544. trans = btrfs_join_transaction(async->root);
  2545. if (IS_ERR(trans)) {
  2546. async->error = PTR_ERR(trans);
  2547. goto done;
  2548. }
  2549. /*
  2550. * trans->sync means that when we call end_transaciton, we won't
  2551. * wait on delayed refs
  2552. */
  2553. trans->sync = true;
  2554. ret = btrfs_run_delayed_refs(trans, async->root, async->count);
  2555. if (ret)
  2556. async->error = ret;
  2557. ret = btrfs_end_transaction(trans, async->root);
  2558. if (ret && !async->error)
  2559. async->error = ret;
  2560. done:
  2561. if (async->sync)
  2562. complete(&async->wait);
  2563. else
  2564. kfree(async);
  2565. }
  2566. int btrfs_async_run_delayed_refs(struct btrfs_root *root,
  2567. unsigned long count, int wait)
  2568. {
  2569. struct async_delayed_refs *async;
  2570. int ret;
  2571. async = kmalloc(sizeof(*async), GFP_NOFS);
  2572. if (!async)
  2573. return -ENOMEM;
  2574. async->root = root->fs_info->tree_root;
  2575. async->count = count;
  2576. async->error = 0;
  2577. if (wait)
  2578. async->sync = 1;
  2579. else
  2580. async->sync = 0;
  2581. init_completion(&async->wait);
  2582. btrfs_init_work(&async->work, btrfs_extent_refs_helper,
  2583. delayed_ref_async_start, NULL, NULL);
  2584. btrfs_queue_work(root->fs_info->extent_workers, &async->work);
  2585. if (wait) {
  2586. wait_for_completion(&async->wait);
  2587. ret = async->error;
  2588. kfree(async);
  2589. return ret;
  2590. }
  2591. return 0;
  2592. }
  2593. /*
  2594. * this starts processing the delayed reference count updates and
  2595. * extent insertions we have queued up so far. count can be
  2596. * 0, which means to process everything in the tree at the start
  2597. * of the run (but not newly added entries), or it can be some target
  2598. * number you'd like to process.
  2599. *
  2600. * Returns 0 on success or if called with an aborted transaction
  2601. * Returns <0 on error and aborts the transaction
  2602. */
  2603. int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
  2604. struct btrfs_root *root, unsigned long count)
  2605. {
  2606. struct rb_node *node;
  2607. struct btrfs_delayed_ref_root *delayed_refs;
  2608. struct btrfs_delayed_ref_head *head;
  2609. int ret;
  2610. int run_all = count == (unsigned long)-1;
  2611. bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
  2612. /* We'll clean this up in btrfs_cleanup_transaction */
  2613. if (trans->aborted)
  2614. return 0;
  2615. if (root->fs_info->creating_free_space_tree)
  2616. return 0;
  2617. if (root == root->fs_info->extent_root)
  2618. root = root->fs_info->tree_root;
  2619. delayed_refs = &trans->transaction->delayed_refs;
  2620. if (count == 0)
  2621. count = atomic_read(&delayed_refs->num_entries) * 2;
  2622. again:
  2623. #ifdef SCRAMBLE_DELAYED_REFS
  2624. delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
  2625. #endif
  2626. trans->can_flush_pending_bgs = false;
  2627. ret = __btrfs_run_delayed_refs(trans, root, count);
  2628. if (ret < 0) {
  2629. btrfs_abort_transaction(trans, root, ret);
  2630. return ret;
  2631. }
  2632. if (run_all) {
  2633. if (!list_empty(&trans->new_bgs))
  2634. btrfs_create_pending_block_groups(trans, root);
  2635. spin_lock(&delayed_refs->lock);
  2636. node = rb_first(&delayed_refs->href_root);
  2637. if (!node) {
  2638. spin_unlock(&delayed_refs->lock);
  2639. goto out;
  2640. }
  2641. count = (unsigned long)-1;
  2642. while (node) {
  2643. head = rb_entry(node, struct btrfs_delayed_ref_head,
  2644. href_node);
  2645. if (btrfs_delayed_ref_is_head(&head->node)) {
  2646. struct btrfs_delayed_ref_node *ref;
  2647. ref = &head->node;
  2648. atomic_inc(&ref->refs);
  2649. spin_unlock(&delayed_refs->lock);
  2650. /*
  2651. * Mutex was contended, block until it's
  2652. * released and try again
  2653. */
  2654. mutex_lock(&head->mutex);
  2655. mutex_unlock(&head->mutex);
  2656. btrfs_put_delayed_ref(ref);
  2657. cond_resched();
  2658. goto again;
  2659. } else {
  2660. WARN_ON(1);
  2661. }
  2662. node = rb_next(node);
  2663. }
  2664. spin_unlock(&delayed_refs->lock);
  2665. cond_resched();
  2666. goto again;
  2667. }
  2668. out:
  2669. assert_qgroups_uptodate(trans);
  2670. trans->can_flush_pending_bgs = can_flush_pending_bgs;
  2671. return 0;
  2672. }
  2673. int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
  2674. struct btrfs_root *root,
  2675. u64 bytenr, u64 num_bytes, u64 flags,
  2676. int level, int is_data)
  2677. {
  2678. struct btrfs_delayed_extent_op *extent_op;
  2679. int ret;
  2680. extent_op = btrfs_alloc_delayed_extent_op();
  2681. if (!extent_op)
  2682. return -ENOMEM;
  2683. extent_op->flags_to_set = flags;
  2684. extent_op->update_flags = true;
  2685. extent_op->update_key = false;
  2686. extent_op->is_data = is_data ? true : false;
  2687. extent_op->level = level;
  2688. ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
  2689. num_bytes, extent_op);
  2690. if (ret)
  2691. btrfs_free_delayed_extent_op(extent_op);
  2692. return ret;
  2693. }
  2694. static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
  2695. struct btrfs_root *root,
  2696. struct btrfs_path *path,
  2697. u64 objectid, u64 offset, u64 bytenr)
  2698. {
  2699. struct btrfs_delayed_ref_head *head;
  2700. struct btrfs_delayed_ref_node *ref;
  2701. struct btrfs_delayed_data_ref *data_ref;
  2702. struct btrfs_delayed_ref_root *delayed_refs;
  2703. int ret = 0;
  2704. delayed_refs = &trans->transaction->delayed_refs;
  2705. spin_lock(&delayed_refs->lock);
  2706. head = btrfs_find_delayed_ref_head(trans, bytenr);
  2707. if (!head) {
  2708. spin_unlock(&delayed_refs->lock);
  2709. return 0;
  2710. }
  2711. if (!mutex_trylock(&head->mutex)) {
  2712. atomic_inc(&head->node.refs);
  2713. spin_unlock(&delayed_refs->lock);
  2714. btrfs_release_path(path);
  2715. /*
  2716. * Mutex was contended, block until it's released and let
  2717. * caller try again
  2718. */
  2719. mutex_lock(&head->mutex);
  2720. mutex_unlock(&head->mutex);
  2721. btrfs_put_delayed_ref(&head->node);
  2722. return -EAGAIN;
  2723. }
  2724. spin_unlock(&delayed_refs->lock);
  2725. spin_lock(&head->lock);
  2726. list_for_each_entry(ref, &head->ref_list, list) {
  2727. /* If it's a shared ref we know a cross reference exists */
  2728. if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
  2729. ret = 1;
  2730. break;
  2731. }
  2732. data_ref = btrfs_delayed_node_to_data_ref(ref);
  2733. /*
  2734. * If our ref doesn't match the one we're currently looking at
  2735. * then we have a cross reference.
  2736. */
  2737. if (data_ref->root != root->root_key.objectid ||
  2738. data_ref->objectid != objectid ||
  2739. data_ref->offset != offset) {
  2740. ret = 1;
  2741. break;
  2742. }
  2743. }
  2744. spin_unlock(&head->lock);
  2745. mutex_unlock(&head->mutex);
  2746. return ret;
  2747. }
  2748. static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
  2749. struct btrfs_root *root,
  2750. struct btrfs_path *path,
  2751. u64 objectid, u64 offset, u64 bytenr)
  2752. {
  2753. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2754. struct extent_buffer *leaf;
  2755. struct btrfs_extent_data_ref *ref;
  2756. struct btrfs_extent_inline_ref *iref;
  2757. struct btrfs_extent_item *ei;
  2758. struct btrfs_key key;
  2759. u32 item_size;
  2760. int ret;
  2761. key.objectid = bytenr;
  2762. key.offset = (u64)-1;
  2763. key.type = BTRFS_EXTENT_ITEM_KEY;
  2764. ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
  2765. if (ret < 0)
  2766. goto out;
  2767. BUG_ON(ret == 0); /* Corruption */
  2768. ret = -ENOENT;
  2769. if (path->slots[0] == 0)
  2770. goto out;
  2771. path->slots[0]--;
  2772. leaf = path->nodes[0];
  2773. btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
  2774. if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
  2775. goto out;
  2776. ret = 1;
  2777. item_size = btrfs_item_size_nr(leaf, path->slots[0]);
  2778. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  2779. if (item_size < sizeof(*ei)) {
  2780. WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
  2781. goto out;
  2782. }
  2783. #endif
  2784. ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
  2785. if (item_size != sizeof(*ei) +
  2786. btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
  2787. goto out;
  2788. if (btrfs_extent_generation(leaf, ei) <=
  2789. btrfs_root_last_snapshot(&root->root_item))
  2790. goto out;
  2791. iref = (struct btrfs_extent_inline_ref *)(ei + 1);
  2792. if (btrfs_extent_inline_ref_type(leaf, iref) !=
  2793. BTRFS_EXTENT_DATA_REF_KEY)
  2794. goto out;
  2795. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  2796. if (btrfs_extent_refs(leaf, ei) !=
  2797. btrfs_extent_data_ref_count(leaf, ref) ||
  2798. btrfs_extent_data_ref_root(leaf, ref) !=
  2799. root->root_key.objectid ||
  2800. btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
  2801. btrfs_extent_data_ref_offset(leaf, ref) != offset)
  2802. goto out;
  2803. ret = 0;
  2804. out:
  2805. return ret;
  2806. }
  2807. int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
  2808. struct btrfs_root *root,
  2809. u64 objectid, u64 offset, u64 bytenr)
  2810. {
  2811. struct btrfs_path *path;
  2812. int ret;
  2813. int ret2;
  2814. path = btrfs_alloc_path();
  2815. if (!path)
  2816. return -ENOENT;
  2817. do {
  2818. ret = check_committed_ref(trans, root, path, objectid,
  2819. offset, bytenr);
  2820. if (ret && ret != -ENOENT)
  2821. goto out;
  2822. ret2 = check_delayed_ref(trans, root, path, objectid,
  2823. offset, bytenr);
  2824. } while (ret2 == -EAGAIN);
  2825. if (ret2 && ret2 != -ENOENT) {
  2826. ret = ret2;
  2827. goto out;
  2828. }
  2829. if (ret != -ENOENT || ret2 != -ENOENT)
  2830. ret = 0;
  2831. out:
  2832. btrfs_free_path(path);
  2833. if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
  2834. WARN_ON(ret > 0);
  2835. return ret;
  2836. }
  2837. static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
  2838. struct btrfs_root *root,
  2839. struct extent_buffer *buf,
  2840. int full_backref, int inc)
  2841. {
  2842. u64 bytenr;
  2843. u64 num_bytes;
  2844. u64 parent;
  2845. u64 ref_root;
  2846. u32 nritems;
  2847. struct btrfs_key key;
  2848. struct btrfs_file_extent_item *fi;
  2849. int i;
  2850. int level;
  2851. int ret = 0;
  2852. int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
  2853. u64, u64, u64, u64, u64, u64);
  2854. if (btrfs_test_is_dummy_root(root))
  2855. return 0;
  2856. ref_root = btrfs_header_owner(buf);
  2857. nritems = btrfs_header_nritems(buf);
  2858. level = btrfs_header_level(buf);
  2859. if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
  2860. return 0;
  2861. if (inc)
  2862. process_func = btrfs_inc_extent_ref;
  2863. else
  2864. process_func = btrfs_free_extent;
  2865. if (full_backref)
  2866. parent = buf->start;
  2867. else
  2868. parent = 0;
  2869. for (i = 0; i < nritems; i++) {
  2870. if (level == 0) {
  2871. btrfs_item_key_to_cpu(buf, &key, i);
  2872. if (key.type != BTRFS_EXTENT_DATA_KEY)
  2873. continue;
  2874. fi = btrfs_item_ptr(buf, i,
  2875. struct btrfs_file_extent_item);
  2876. if (btrfs_file_extent_type(buf, fi) ==
  2877. BTRFS_FILE_EXTENT_INLINE)
  2878. continue;
  2879. bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
  2880. if (bytenr == 0)
  2881. continue;
  2882. num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
  2883. key.offset -= btrfs_file_extent_offset(buf, fi);
  2884. ret = process_func(trans, root, bytenr, num_bytes,
  2885. parent, ref_root, key.objectid,
  2886. key.offset);
  2887. if (ret)
  2888. goto fail;
  2889. } else {
  2890. bytenr = btrfs_node_blockptr(buf, i);
  2891. num_bytes = root->nodesize;
  2892. ret = process_func(trans, root, bytenr, num_bytes,
  2893. parent, ref_root, level - 1, 0);
  2894. if (ret)
  2895. goto fail;
  2896. }
  2897. }
  2898. return 0;
  2899. fail:
  2900. return ret;
  2901. }
  2902. int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2903. struct extent_buffer *buf, int full_backref)
  2904. {
  2905. return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
  2906. }
  2907. int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  2908. struct extent_buffer *buf, int full_backref)
  2909. {
  2910. return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
  2911. }
  2912. static int write_one_cache_group(struct btrfs_trans_handle *trans,
  2913. struct btrfs_root *root,
  2914. struct btrfs_path *path,
  2915. struct btrfs_block_group_cache *cache)
  2916. {
  2917. int ret;
  2918. struct btrfs_root *extent_root = root->fs_info->extent_root;
  2919. unsigned long bi;
  2920. struct extent_buffer *leaf;
  2921. ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
  2922. if (ret) {
  2923. if (ret > 0)
  2924. ret = -ENOENT;
  2925. goto fail;
  2926. }
  2927. leaf = path->nodes[0];
  2928. bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
  2929. write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
  2930. btrfs_mark_buffer_dirty(leaf);
  2931. fail:
  2932. btrfs_release_path(path);
  2933. return ret;
  2934. }
  2935. static struct btrfs_block_group_cache *
  2936. next_block_group(struct btrfs_root *root,
  2937. struct btrfs_block_group_cache *cache)
  2938. {
  2939. struct rb_node *node;
  2940. spin_lock(&root->fs_info->block_group_cache_lock);
  2941. /* If our block group was removed, we need a full search. */
  2942. if (RB_EMPTY_NODE(&cache->cache_node)) {
  2943. const u64 next_bytenr = cache->key.objectid + cache->key.offset;
  2944. spin_unlock(&root->fs_info->block_group_cache_lock);
  2945. btrfs_put_block_group(cache);
  2946. cache = btrfs_lookup_first_block_group(root->fs_info,
  2947. next_bytenr);
  2948. return cache;
  2949. }
  2950. node = rb_next(&cache->cache_node);
  2951. btrfs_put_block_group(cache);
  2952. if (node) {
  2953. cache = rb_entry(node, struct btrfs_block_group_cache,
  2954. cache_node);
  2955. btrfs_get_block_group(cache);
  2956. } else
  2957. cache = NULL;
  2958. spin_unlock(&root->fs_info->block_group_cache_lock);
  2959. return cache;
  2960. }
  2961. static int cache_save_setup(struct btrfs_block_group_cache *block_group,
  2962. struct btrfs_trans_handle *trans,
  2963. struct btrfs_path *path)
  2964. {
  2965. struct btrfs_root *root = block_group->fs_info->tree_root;
  2966. struct inode *inode = NULL;
  2967. u64 alloc_hint = 0;
  2968. int dcs = BTRFS_DC_ERROR;
  2969. u64 num_pages = 0;
  2970. int retries = 0;
  2971. int ret = 0;
  2972. /*
  2973. * If this block group is smaller than 100 megs don't bother caching the
  2974. * block group.
  2975. */
  2976. if (block_group->key.offset < (100 * 1024 * 1024)) {
  2977. spin_lock(&block_group->lock);
  2978. block_group->disk_cache_state = BTRFS_DC_WRITTEN;
  2979. spin_unlock(&block_group->lock);
  2980. return 0;
  2981. }
  2982. if (trans->aborted)
  2983. return 0;
  2984. again:
  2985. inode = lookup_free_space_inode(root, block_group, path);
  2986. if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
  2987. ret = PTR_ERR(inode);
  2988. btrfs_release_path(path);
  2989. goto out;
  2990. }
  2991. if (IS_ERR(inode)) {
  2992. BUG_ON(retries);
  2993. retries++;
  2994. if (block_group->ro)
  2995. goto out_free;
  2996. ret = create_free_space_inode(root, trans, block_group, path);
  2997. if (ret)
  2998. goto out_free;
  2999. goto again;
  3000. }
  3001. /* We've already setup this transaction, go ahead and exit */
  3002. if (block_group->cache_generation == trans->transid &&
  3003. i_size_read(inode)) {
  3004. dcs = BTRFS_DC_SETUP;
  3005. goto out_put;
  3006. }
  3007. /*
  3008. * We want to set the generation to 0, that way if anything goes wrong
  3009. * from here on out we know not to trust this cache when we load up next
  3010. * time.
  3011. */
  3012. BTRFS_I(inode)->generation = 0;
  3013. ret = btrfs_update_inode(trans, root, inode);
  3014. if (ret) {
  3015. /*
  3016. * So theoretically we could recover from this, simply set the
  3017. * super cache generation to 0 so we know to invalidate the
  3018. * cache, but then we'd have to keep track of the block groups
  3019. * that fail this way so we know we _have_ to reset this cache
  3020. * before the next commit or risk reading stale cache. So to
  3021. * limit our exposure to horrible edge cases lets just abort the
  3022. * transaction, this only happens in really bad situations
  3023. * anyway.
  3024. */
  3025. btrfs_abort_transaction(trans, root, ret);
  3026. goto out_put;
  3027. }
  3028. WARN_ON(ret);
  3029. if (i_size_read(inode) > 0) {
  3030. ret = btrfs_check_trunc_cache_free_space(root,
  3031. &root->fs_info->global_block_rsv);
  3032. if (ret)
  3033. goto out_put;
  3034. ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
  3035. if (ret)
  3036. goto out_put;
  3037. }
  3038. spin_lock(&block_group->lock);
  3039. if (block_group->cached != BTRFS_CACHE_FINISHED ||
  3040. !btrfs_test_opt(root, SPACE_CACHE)) {
  3041. /*
  3042. * don't bother trying to write stuff out _if_
  3043. * a) we're not cached,
  3044. * b) we're with nospace_cache mount option.
  3045. */
  3046. dcs = BTRFS_DC_WRITTEN;
  3047. spin_unlock(&block_group->lock);
  3048. goto out_put;
  3049. }
  3050. spin_unlock(&block_group->lock);
  3051. /*
  3052. * We hit an ENOSPC when setting up the cache in this transaction, just
  3053. * skip doing the setup, we've already cleared the cache so we're safe.
  3054. */
  3055. if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
  3056. ret = -ENOSPC;
  3057. goto out_put;
  3058. }
  3059. /*
  3060. * Try to preallocate enough space based on how big the block group is.
  3061. * Keep in mind this has to include any pinned space which could end up
  3062. * taking up quite a bit since it's not folded into the other space
  3063. * cache.
  3064. */
  3065. num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
  3066. if (!num_pages)
  3067. num_pages = 1;
  3068. num_pages *= 16;
  3069. num_pages *= PAGE_CACHE_SIZE;
  3070. ret = btrfs_check_data_free_space(inode, 0, num_pages);
  3071. if (ret)
  3072. goto out_put;
  3073. ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
  3074. num_pages, num_pages,
  3075. &alloc_hint);
  3076. /*
  3077. * Our cache requires contiguous chunks so that we don't modify a bunch
  3078. * of metadata or split extents when writing the cache out, which means
  3079. * we can enospc if we are heavily fragmented in addition to just normal
  3080. * out of space conditions. So if we hit this just skip setting up any
  3081. * other block groups for this transaction, maybe we'll unpin enough
  3082. * space the next time around.
  3083. */
  3084. if (!ret)
  3085. dcs = BTRFS_DC_SETUP;
  3086. else if (ret == -ENOSPC)
  3087. set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
  3088. btrfs_free_reserved_data_space(inode, 0, num_pages);
  3089. out_put:
  3090. iput(inode);
  3091. out_free:
  3092. btrfs_release_path(path);
  3093. out:
  3094. spin_lock(&block_group->lock);
  3095. if (!ret && dcs == BTRFS_DC_SETUP)
  3096. block_group->cache_generation = trans->transid;
  3097. block_group->disk_cache_state = dcs;
  3098. spin_unlock(&block_group->lock);
  3099. return ret;
  3100. }
  3101. int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
  3102. struct btrfs_root *root)
  3103. {
  3104. struct btrfs_block_group_cache *cache, *tmp;
  3105. struct btrfs_transaction *cur_trans = trans->transaction;
  3106. struct btrfs_path *path;
  3107. if (list_empty(&cur_trans->dirty_bgs) ||
  3108. !btrfs_test_opt(root, SPACE_CACHE))
  3109. return 0;
  3110. path = btrfs_alloc_path();
  3111. if (!path)
  3112. return -ENOMEM;
  3113. /* Could add new block groups, use _safe just in case */
  3114. list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
  3115. dirty_list) {
  3116. if (cache->disk_cache_state == BTRFS_DC_CLEAR)
  3117. cache_save_setup(cache, trans, path);
  3118. }
  3119. btrfs_free_path(path);
  3120. return 0;
  3121. }
  3122. /*
  3123. * transaction commit does final block group cache writeback during a
  3124. * critical section where nothing is allowed to change the FS. This is
  3125. * required in order for the cache to actually match the block group,
  3126. * but can introduce a lot of latency into the commit.
  3127. *
  3128. * So, btrfs_start_dirty_block_groups is here to kick off block group
  3129. * cache IO. There's a chance we'll have to redo some of it if the
  3130. * block group changes again during the commit, but it greatly reduces
  3131. * the commit latency by getting rid of the easy block groups while
  3132. * we're still allowing others to join the commit.
  3133. */
  3134. int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
  3135. struct btrfs_root *root)
  3136. {
  3137. struct btrfs_block_group_cache *cache;
  3138. struct btrfs_transaction *cur_trans = trans->transaction;
  3139. int ret = 0;
  3140. int should_put;
  3141. struct btrfs_path *path = NULL;
  3142. LIST_HEAD(dirty);
  3143. struct list_head *io = &cur_trans->io_bgs;
  3144. int num_started = 0;
  3145. int loops = 0;
  3146. spin_lock(&cur_trans->dirty_bgs_lock);
  3147. if (list_empty(&cur_trans->dirty_bgs)) {
  3148. spin_unlock(&cur_trans->dirty_bgs_lock);
  3149. return 0;
  3150. }
  3151. list_splice_init(&cur_trans->dirty_bgs, &dirty);
  3152. spin_unlock(&cur_trans->dirty_bgs_lock);
  3153. again:
  3154. /*
  3155. * make sure all the block groups on our dirty list actually
  3156. * exist
  3157. */
  3158. btrfs_create_pending_block_groups(trans, root);
  3159. if (!path) {
  3160. path = btrfs_alloc_path();
  3161. if (!path)
  3162. return -ENOMEM;
  3163. }
  3164. /*
  3165. * cache_write_mutex is here only to save us from balance or automatic
  3166. * removal of empty block groups deleting this block group while we are
  3167. * writing out the cache
  3168. */
  3169. mutex_lock(&trans->transaction->cache_write_mutex);
  3170. while (!list_empty(&dirty)) {
  3171. cache = list_first_entry(&dirty,
  3172. struct btrfs_block_group_cache,
  3173. dirty_list);
  3174. /*
  3175. * this can happen if something re-dirties a block
  3176. * group that is already under IO. Just wait for it to
  3177. * finish and then do it all again
  3178. */
  3179. if (!list_empty(&cache->io_list)) {
  3180. list_del_init(&cache->io_list);
  3181. btrfs_wait_cache_io(root, trans, cache,
  3182. &cache->io_ctl, path,
  3183. cache->key.objectid);
  3184. btrfs_put_block_group(cache);
  3185. }
  3186. /*
  3187. * btrfs_wait_cache_io uses the cache->dirty_list to decide
  3188. * if it should update the cache_state. Don't delete
  3189. * until after we wait.
  3190. *
  3191. * Since we're not running in the commit critical section
  3192. * we need the dirty_bgs_lock to protect from update_block_group
  3193. */
  3194. spin_lock(&cur_trans->dirty_bgs_lock);
  3195. list_del_init(&cache->dirty_list);
  3196. spin_unlock(&cur_trans->dirty_bgs_lock);
  3197. should_put = 1;
  3198. cache_save_setup(cache, trans, path);
  3199. if (cache->disk_cache_state == BTRFS_DC_SETUP) {
  3200. cache->io_ctl.inode = NULL;
  3201. ret = btrfs_write_out_cache(root, trans, cache, path);
  3202. if (ret == 0 && cache->io_ctl.inode) {
  3203. num_started++;
  3204. should_put = 0;
  3205. /*
  3206. * the cache_write_mutex is protecting
  3207. * the io_list
  3208. */
  3209. list_add_tail(&cache->io_list, io);
  3210. } else {
  3211. /*
  3212. * if we failed to write the cache, the
  3213. * generation will be bad and life goes on
  3214. */
  3215. ret = 0;
  3216. }
  3217. }
  3218. if (!ret) {
  3219. ret = write_one_cache_group(trans, root, path, cache);
  3220. /*
  3221. * Our block group might still be attached to the list
  3222. * of new block groups in the transaction handle of some
  3223. * other task (struct btrfs_trans_handle->new_bgs). This
  3224. * means its block group item isn't yet in the extent
  3225. * tree. If this happens ignore the error, as we will
  3226. * try again later in the critical section of the
  3227. * transaction commit.
  3228. */
  3229. if (ret == -ENOENT) {
  3230. ret = 0;
  3231. spin_lock(&cur_trans->dirty_bgs_lock);
  3232. if (list_empty(&cache->dirty_list)) {
  3233. list_add_tail(&cache->dirty_list,
  3234. &cur_trans->dirty_bgs);
  3235. btrfs_get_block_group(cache);
  3236. }
  3237. spin_unlock(&cur_trans->dirty_bgs_lock);
  3238. } else if (ret) {
  3239. btrfs_abort_transaction(trans, root, ret);
  3240. }
  3241. }
  3242. /* if its not on the io list, we need to put the block group */
  3243. if (should_put)
  3244. btrfs_put_block_group(cache);
  3245. if (ret)
  3246. break;
  3247. /*
  3248. * Avoid blocking other tasks for too long. It might even save
  3249. * us from writing caches for block groups that are going to be
  3250. * removed.
  3251. */
  3252. mutex_unlock(&trans->transaction->cache_write_mutex);
  3253. mutex_lock(&trans->transaction->cache_write_mutex);
  3254. }
  3255. mutex_unlock(&trans->transaction->cache_write_mutex);
  3256. /*
  3257. * go through delayed refs for all the stuff we've just kicked off
  3258. * and then loop back (just once)
  3259. */
  3260. ret = btrfs_run_delayed_refs(trans, root, 0);
  3261. if (!ret && loops == 0) {
  3262. loops++;
  3263. spin_lock(&cur_trans->dirty_bgs_lock);
  3264. list_splice_init(&cur_trans->dirty_bgs, &dirty);
  3265. /*
  3266. * dirty_bgs_lock protects us from concurrent block group
  3267. * deletes too (not just cache_write_mutex).
  3268. */
  3269. if (!list_empty(&dirty)) {
  3270. spin_unlock(&cur_trans->dirty_bgs_lock);
  3271. goto again;
  3272. }
  3273. spin_unlock(&cur_trans->dirty_bgs_lock);
  3274. }
  3275. btrfs_free_path(path);
  3276. return ret;
  3277. }
  3278. int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
  3279. struct btrfs_root *root)
  3280. {
  3281. struct btrfs_block_group_cache *cache;
  3282. struct btrfs_transaction *cur_trans = trans->transaction;
  3283. int ret = 0;
  3284. int should_put;
  3285. struct btrfs_path *path;
  3286. struct list_head *io = &cur_trans->io_bgs;
  3287. int num_started = 0;
  3288. path = btrfs_alloc_path();
  3289. if (!path)
  3290. return -ENOMEM;
  3291. /*
  3292. * Even though we are in the critical section of the transaction commit,
  3293. * we can still have concurrent tasks adding elements to this
  3294. * transaction's list of dirty block groups. These tasks correspond to
  3295. * endio free space workers started when writeback finishes for a
  3296. * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
  3297. * allocate new block groups as a result of COWing nodes of the root
  3298. * tree when updating the free space inode. The writeback for the space
  3299. * caches is triggered by an earlier call to
  3300. * btrfs_start_dirty_block_groups() and iterations of the following
  3301. * loop.
  3302. * Also we want to do the cache_save_setup first and then run the
  3303. * delayed refs to make sure we have the best chance at doing this all
  3304. * in one shot.
  3305. */
  3306. spin_lock(&cur_trans->dirty_bgs_lock);
  3307. while (!list_empty(&cur_trans->dirty_bgs)) {
  3308. cache = list_first_entry(&cur_trans->dirty_bgs,
  3309. struct btrfs_block_group_cache,
  3310. dirty_list);
  3311. /*
  3312. * this can happen if cache_save_setup re-dirties a block
  3313. * group that is already under IO. Just wait for it to
  3314. * finish and then do it all again
  3315. */
  3316. if (!list_empty(&cache->io_list)) {
  3317. spin_unlock(&cur_trans->dirty_bgs_lock);
  3318. list_del_init(&cache->io_list);
  3319. btrfs_wait_cache_io(root, trans, cache,
  3320. &cache->io_ctl, path,
  3321. cache->key.objectid);
  3322. btrfs_put_block_group(cache);
  3323. spin_lock(&cur_trans->dirty_bgs_lock);
  3324. }
  3325. /*
  3326. * don't remove from the dirty list until after we've waited
  3327. * on any pending IO
  3328. */
  3329. list_del_init(&cache->dirty_list);
  3330. spin_unlock(&cur_trans->dirty_bgs_lock);
  3331. should_put = 1;
  3332. cache_save_setup(cache, trans, path);
  3333. if (!ret)
  3334. ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
  3335. if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
  3336. cache->io_ctl.inode = NULL;
  3337. ret = btrfs_write_out_cache(root, trans, cache, path);
  3338. if (ret == 0 && cache->io_ctl.inode) {
  3339. num_started++;
  3340. should_put = 0;
  3341. list_add_tail(&cache->io_list, io);
  3342. } else {
  3343. /*
  3344. * if we failed to write the cache, the
  3345. * generation will be bad and life goes on
  3346. */
  3347. ret = 0;
  3348. }
  3349. }
  3350. if (!ret) {
  3351. ret = write_one_cache_group(trans, root, path, cache);
  3352. if (ret)
  3353. btrfs_abort_transaction(trans, root, ret);
  3354. }
  3355. /* if its not on the io list, we need to put the block group */
  3356. if (should_put)
  3357. btrfs_put_block_group(cache);
  3358. spin_lock(&cur_trans->dirty_bgs_lock);
  3359. }
  3360. spin_unlock(&cur_trans->dirty_bgs_lock);
  3361. while (!list_empty(io)) {
  3362. cache = list_first_entry(io, struct btrfs_block_group_cache,
  3363. io_list);
  3364. list_del_init(&cache->io_list);
  3365. btrfs_wait_cache_io(root, trans, cache,
  3366. &cache->io_ctl, path, cache->key.objectid);
  3367. btrfs_put_block_group(cache);
  3368. }
  3369. btrfs_free_path(path);
  3370. return ret;
  3371. }
  3372. int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
  3373. {
  3374. struct btrfs_block_group_cache *block_group;
  3375. int readonly = 0;
  3376. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  3377. if (!block_group || block_group->ro)
  3378. readonly = 1;
  3379. if (block_group)
  3380. btrfs_put_block_group(block_group);
  3381. return readonly;
  3382. }
  3383. static const char *alloc_name(u64 flags)
  3384. {
  3385. switch (flags) {
  3386. case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
  3387. return "mixed";
  3388. case BTRFS_BLOCK_GROUP_METADATA:
  3389. return "metadata";
  3390. case BTRFS_BLOCK_GROUP_DATA:
  3391. return "data";
  3392. case BTRFS_BLOCK_GROUP_SYSTEM:
  3393. return "system";
  3394. default:
  3395. WARN_ON(1);
  3396. return "invalid-combination";
  3397. };
  3398. }
  3399. static int update_space_info(struct btrfs_fs_info *info, u64 flags,
  3400. u64 total_bytes, u64 bytes_used,
  3401. struct btrfs_space_info **space_info)
  3402. {
  3403. struct btrfs_space_info *found;
  3404. int i;
  3405. int factor;
  3406. int ret;
  3407. if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
  3408. BTRFS_BLOCK_GROUP_RAID10))
  3409. factor = 2;
  3410. else
  3411. factor = 1;
  3412. found = __find_space_info(info, flags);
  3413. if (found) {
  3414. spin_lock(&found->lock);
  3415. found->total_bytes += total_bytes;
  3416. found->disk_total += total_bytes * factor;
  3417. found->bytes_used += bytes_used;
  3418. found->disk_used += bytes_used * factor;
  3419. if (total_bytes > 0)
  3420. found->full = 0;
  3421. spin_unlock(&found->lock);
  3422. *space_info = found;
  3423. return 0;
  3424. }
  3425. found = kzalloc(sizeof(*found), GFP_NOFS);
  3426. if (!found)
  3427. return -ENOMEM;
  3428. ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
  3429. if (ret) {
  3430. kfree(found);
  3431. return ret;
  3432. }
  3433. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
  3434. INIT_LIST_HEAD(&found->block_groups[i]);
  3435. init_rwsem(&found->groups_sem);
  3436. spin_lock_init(&found->lock);
  3437. found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
  3438. found->total_bytes = total_bytes;
  3439. found->disk_total = total_bytes * factor;
  3440. found->bytes_used = bytes_used;
  3441. found->disk_used = bytes_used * factor;
  3442. found->bytes_pinned = 0;
  3443. found->bytes_reserved = 0;
  3444. found->bytes_readonly = 0;
  3445. found->bytes_may_use = 0;
  3446. found->full = 0;
  3447. found->max_extent_size = 0;
  3448. found->force_alloc = CHUNK_ALLOC_NO_FORCE;
  3449. found->chunk_alloc = 0;
  3450. found->flush = 0;
  3451. init_waitqueue_head(&found->wait);
  3452. INIT_LIST_HEAD(&found->ro_bgs);
  3453. ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
  3454. info->space_info_kobj, "%s",
  3455. alloc_name(found->flags));
  3456. if (ret) {
  3457. kfree(found);
  3458. return ret;
  3459. }
  3460. *space_info = found;
  3461. list_add_rcu(&found->list, &info->space_info);
  3462. if (flags & BTRFS_BLOCK_GROUP_DATA)
  3463. info->data_sinfo = found;
  3464. return ret;
  3465. }
  3466. static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  3467. {
  3468. u64 extra_flags = chunk_to_extended(flags) &
  3469. BTRFS_EXTENDED_PROFILE_MASK;
  3470. write_seqlock(&fs_info->profiles_lock);
  3471. if (flags & BTRFS_BLOCK_GROUP_DATA)
  3472. fs_info->avail_data_alloc_bits |= extra_flags;
  3473. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  3474. fs_info->avail_metadata_alloc_bits |= extra_flags;
  3475. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  3476. fs_info->avail_system_alloc_bits |= extra_flags;
  3477. write_sequnlock(&fs_info->profiles_lock);
  3478. }
  3479. /*
  3480. * returns target flags in extended format or 0 if restripe for this
  3481. * chunk_type is not in progress
  3482. *
  3483. * should be called with either volume_mutex or balance_lock held
  3484. */
  3485. static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
  3486. {
  3487. struct btrfs_balance_control *bctl = fs_info->balance_ctl;
  3488. u64 target = 0;
  3489. if (!bctl)
  3490. return 0;
  3491. if (flags & BTRFS_BLOCK_GROUP_DATA &&
  3492. bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  3493. target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
  3494. } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
  3495. bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  3496. target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
  3497. } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
  3498. bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
  3499. target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
  3500. }
  3501. return target;
  3502. }
  3503. /*
  3504. * @flags: available profiles in extended format (see ctree.h)
  3505. *
  3506. * Returns reduced profile in chunk format. If profile changing is in
  3507. * progress (either running or paused) picks the target profile (if it's
  3508. * already available), otherwise falls back to plain reducing.
  3509. */
  3510. static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
  3511. {
  3512. u64 num_devices = root->fs_info->fs_devices->rw_devices;
  3513. u64 target;
  3514. u64 raid_type;
  3515. u64 allowed = 0;
  3516. /*
  3517. * see if restripe for this chunk_type is in progress, if so
  3518. * try to reduce to the target profile
  3519. */
  3520. spin_lock(&root->fs_info->balance_lock);
  3521. target = get_restripe_target(root->fs_info, flags);
  3522. if (target) {
  3523. /* pick target profile only if it's already available */
  3524. if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
  3525. spin_unlock(&root->fs_info->balance_lock);
  3526. return extended_to_chunk(target);
  3527. }
  3528. }
  3529. spin_unlock(&root->fs_info->balance_lock);
  3530. /* First, mask out the RAID levels which aren't possible */
  3531. for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
  3532. if (num_devices >= btrfs_raid_array[raid_type].devs_min)
  3533. allowed |= btrfs_raid_group[raid_type];
  3534. }
  3535. allowed &= flags;
  3536. if (allowed & BTRFS_BLOCK_GROUP_RAID6)
  3537. allowed = BTRFS_BLOCK_GROUP_RAID6;
  3538. else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
  3539. allowed = BTRFS_BLOCK_GROUP_RAID5;
  3540. else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
  3541. allowed = BTRFS_BLOCK_GROUP_RAID10;
  3542. else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
  3543. allowed = BTRFS_BLOCK_GROUP_RAID1;
  3544. else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
  3545. allowed = BTRFS_BLOCK_GROUP_RAID0;
  3546. flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
  3547. return extended_to_chunk(flags | allowed);
  3548. }
  3549. static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
  3550. {
  3551. unsigned seq;
  3552. u64 flags;
  3553. do {
  3554. flags = orig_flags;
  3555. seq = read_seqbegin(&root->fs_info->profiles_lock);
  3556. if (flags & BTRFS_BLOCK_GROUP_DATA)
  3557. flags |= root->fs_info->avail_data_alloc_bits;
  3558. else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  3559. flags |= root->fs_info->avail_system_alloc_bits;
  3560. else if (flags & BTRFS_BLOCK_GROUP_METADATA)
  3561. flags |= root->fs_info->avail_metadata_alloc_bits;
  3562. } while (read_seqretry(&root->fs_info->profiles_lock, seq));
  3563. return btrfs_reduce_alloc_profile(root, flags);
  3564. }
  3565. u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
  3566. {
  3567. u64 flags;
  3568. u64 ret;
  3569. if (data)
  3570. flags = BTRFS_BLOCK_GROUP_DATA;
  3571. else if (root == root->fs_info->chunk_root)
  3572. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  3573. else
  3574. flags = BTRFS_BLOCK_GROUP_METADATA;
  3575. ret = get_alloc_profile(root, flags);
  3576. return ret;
  3577. }
  3578. int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
  3579. {
  3580. struct btrfs_space_info *data_sinfo;
  3581. struct btrfs_root *root = BTRFS_I(inode)->root;
  3582. struct btrfs_fs_info *fs_info = root->fs_info;
  3583. u64 used;
  3584. int ret = 0;
  3585. int need_commit = 2;
  3586. int have_pinned_space;
  3587. /* make sure bytes are sectorsize aligned */
  3588. bytes = ALIGN(bytes, root->sectorsize);
  3589. if (btrfs_is_free_space_inode(inode)) {
  3590. need_commit = 0;
  3591. ASSERT(current->journal_info);
  3592. }
  3593. data_sinfo = fs_info->data_sinfo;
  3594. if (!data_sinfo)
  3595. goto alloc;
  3596. again:
  3597. /* make sure we have enough space to handle the data first */
  3598. spin_lock(&data_sinfo->lock);
  3599. used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
  3600. data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
  3601. data_sinfo->bytes_may_use;
  3602. if (used + bytes > data_sinfo->total_bytes) {
  3603. struct btrfs_trans_handle *trans;
  3604. /*
  3605. * if we don't have enough free bytes in this space then we need
  3606. * to alloc a new chunk.
  3607. */
  3608. if (!data_sinfo->full) {
  3609. u64 alloc_target;
  3610. data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
  3611. spin_unlock(&data_sinfo->lock);
  3612. alloc:
  3613. alloc_target = btrfs_get_alloc_profile(root, 1);
  3614. /*
  3615. * It is ugly that we don't call nolock join
  3616. * transaction for the free space inode case here.
  3617. * But it is safe because we only do the data space
  3618. * reservation for the free space cache in the
  3619. * transaction context, the common join transaction
  3620. * just increase the counter of the current transaction
  3621. * handler, doesn't try to acquire the trans_lock of
  3622. * the fs.
  3623. */
  3624. trans = btrfs_join_transaction(root);
  3625. if (IS_ERR(trans))
  3626. return PTR_ERR(trans);
  3627. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  3628. alloc_target,
  3629. CHUNK_ALLOC_NO_FORCE);
  3630. btrfs_end_transaction(trans, root);
  3631. if (ret < 0) {
  3632. if (ret != -ENOSPC)
  3633. return ret;
  3634. else {
  3635. have_pinned_space = 1;
  3636. goto commit_trans;
  3637. }
  3638. }
  3639. if (!data_sinfo)
  3640. data_sinfo = fs_info->data_sinfo;
  3641. goto again;
  3642. }
  3643. /*
  3644. * If we don't have enough pinned space to deal with this
  3645. * allocation, and no removed chunk in current transaction,
  3646. * don't bother committing the transaction.
  3647. */
  3648. have_pinned_space = percpu_counter_compare(
  3649. &data_sinfo->total_bytes_pinned,
  3650. used + bytes - data_sinfo->total_bytes);
  3651. spin_unlock(&data_sinfo->lock);
  3652. /* commit the current transaction and try again */
  3653. commit_trans:
  3654. if (need_commit &&
  3655. !atomic_read(&root->fs_info->open_ioctl_trans)) {
  3656. need_commit--;
  3657. if (need_commit > 0)
  3658. btrfs_wait_ordered_roots(fs_info, -1);
  3659. trans = btrfs_join_transaction(root);
  3660. if (IS_ERR(trans))
  3661. return PTR_ERR(trans);
  3662. if (have_pinned_space >= 0 ||
  3663. test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
  3664. &trans->transaction->flags) ||
  3665. need_commit > 0) {
  3666. ret = btrfs_commit_transaction(trans, root);
  3667. if (ret)
  3668. return ret;
  3669. /*
  3670. * make sure that all running delayed iput are
  3671. * done
  3672. */
  3673. down_write(&root->fs_info->delayed_iput_sem);
  3674. up_write(&root->fs_info->delayed_iput_sem);
  3675. goto again;
  3676. } else {
  3677. btrfs_end_transaction(trans, root);
  3678. }
  3679. }
  3680. trace_btrfs_space_reservation(root->fs_info,
  3681. "space_info:enospc",
  3682. data_sinfo->flags, bytes, 1);
  3683. return -ENOSPC;
  3684. }
  3685. data_sinfo->bytes_may_use += bytes;
  3686. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3687. data_sinfo->flags, bytes, 1);
  3688. spin_unlock(&data_sinfo->lock);
  3689. return ret;
  3690. }
  3691. /*
  3692. * New check_data_free_space() with ability for precious data reservation
  3693. * Will replace old btrfs_check_data_free_space(), but for patch split,
  3694. * add a new function first and then replace it.
  3695. */
  3696. int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
  3697. {
  3698. struct btrfs_root *root = BTRFS_I(inode)->root;
  3699. int ret;
  3700. /* align the range */
  3701. len = round_up(start + len, root->sectorsize) -
  3702. round_down(start, root->sectorsize);
  3703. start = round_down(start, root->sectorsize);
  3704. ret = btrfs_alloc_data_chunk_ondemand(inode, len);
  3705. if (ret < 0)
  3706. return ret;
  3707. /*
  3708. * Use new btrfs_qgroup_reserve_data to reserve precious data space
  3709. *
  3710. * TODO: Find a good method to avoid reserve data space for NOCOW
  3711. * range, but don't impact performance on quota disable case.
  3712. */
  3713. ret = btrfs_qgroup_reserve_data(inode, start, len);
  3714. return ret;
  3715. }
  3716. /*
  3717. * Called if we need to clear a data reservation for this inode
  3718. * Normally in a error case.
  3719. *
  3720. * This one will *NOT* use accurate qgroup reserved space API, just for case
  3721. * which we can't sleep and is sure it won't affect qgroup reserved space.
  3722. * Like clear_bit_hook().
  3723. */
  3724. void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
  3725. u64 len)
  3726. {
  3727. struct btrfs_root *root = BTRFS_I(inode)->root;
  3728. struct btrfs_space_info *data_sinfo;
  3729. /* Make sure the range is aligned to sectorsize */
  3730. len = round_up(start + len, root->sectorsize) -
  3731. round_down(start, root->sectorsize);
  3732. start = round_down(start, root->sectorsize);
  3733. data_sinfo = root->fs_info->data_sinfo;
  3734. spin_lock(&data_sinfo->lock);
  3735. if (WARN_ON(data_sinfo->bytes_may_use < len))
  3736. data_sinfo->bytes_may_use = 0;
  3737. else
  3738. data_sinfo->bytes_may_use -= len;
  3739. trace_btrfs_space_reservation(root->fs_info, "space_info",
  3740. data_sinfo->flags, len, 0);
  3741. spin_unlock(&data_sinfo->lock);
  3742. }
  3743. /*
  3744. * Called if we need to clear a data reservation for this inode
  3745. * Normally in a error case.
  3746. *
  3747. * This one will handle the per-indoe data rsv map for accurate reserved
  3748. * space framework.
  3749. */
  3750. void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
  3751. {
  3752. btrfs_free_reserved_data_space_noquota(inode, start, len);
  3753. btrfs_qgroup_free_data(inode, start, len);
  3754. }
  3755. static void force_metadata_allocation(struct btrfs_fs_info *info)
  3756. {
  3757. struct list_head *head = &info->space_info;
  3758. struct btrfs_space_info *found;
  3759. rcu_read_lock();
  3760. list_for_each_entry_rcu(found, head, list) {
  3761. if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
  3762. found->force_alloc = CHUNK_ALLOC_FORCE;
  3763. }
  3764. rcu_read_unlock();
  3765. }
  3766. static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
  3767. {
  3768. return (global->size << 1);
  3769. }
  3770. static int should_alloc_chunk(struct btrfs_root *root,
  3771. struct btrfs_space_info *sinfo, int force)
  3772. {
  3773. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3774. u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
  3775. u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
  3776. u64 thresh;
  3777. if (force == CHUNK_ALLOC_FORCE)
  3778. return 1;
  3779. /*
  3780. * We need to take into account the global rsv because for all intents
  3781. * and purposes it's used space. Don't worry about locking the
  3782. * global_rsv, it doesn't change except when the transaction commits.
  3783. */
  3784. if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
  3785. num_allocated += calc_global_rsv_need_space(global_rsv);
  3786. /*
  3787. * in limited mode, we want to have some free space up to
  3788. * about 1% of the FS size.
  3789. */
  3790. if (force == CHUNK_ALLOC_LIMITED) {
  3791. thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
  3792. thresh = max_t(u64, 64 * 1024 * 1024,
  3793. div_factor_fine(thresh, 1));
  3794. if (num_bytes - num_allocated < thresh)
  3795. return 1;
  3796. }
  3797. if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
  3798. return 0;
  3799. return 1;
  3800. }
  3801. static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
  3802. {
  3803. u64 num_dev;
  3804. if (type & (BTRFS_BLOCK_GROUP_RAID10 |
  3805. BTRFS_BLOCK_GROUP_RAID0 |
  3806. BTRFS_BLOCK_GROUP_RAID5 |
  3807. BTRFS_BLOCK_GROUP_RAID6))
  3808. num_dev = root->fs_info->fs_devices->rw_devices;
  3809. else if (type & BTRFS_BLOCK_GROUP_RAID1)
  3810. num_dev = 2;
  3811. else
  3812. num_dev = 1; /* DUP or single */
  3813. return num_dev;
  3814. }
  3815. /*
  3816. * If @is_allocation is true, reserve space in the system space info necessary
  3817. * for allocating a chunk, otherwise if it's false, reserve space necessary for
  3818. * removing a chunk.
  3819. */
  3820. void check_system_chunk(struct btrfs_trans_handle *trans,
  3821. struct btrfs_root *root,
  3822. u64 type)
  3823. {
  3824. struct btrfs_space_info *info;
  3825. u64 left;
  3826. u64 thresh;
  3827. int ret = 0;
  3828. u64 num_devs;
  3829. /*
  3830. * Needed because we can end up allocating a system chunk and for an
  3831. * atomic and race free space reservation in the chunk block reserve.
  3832. */
  3833. ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
  3834. info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  3835. spin_lock(&info->lock);
  3836. left = info->total_bytes - info->bytes_used - info->bytes_pinned -
  3837. info->bytes_reserved - info->bytes_readonly -
  3838. info->bytes_may_use;
  3839. spin_unlock(&info->lock);
  3840. num_devs = get_profile_num_devs(root, type);
  3841. /* num_devs device items to update and 1 chunk item to add or remove */
  3842. thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
  3843. btrfs_calc_trans_metadata_size(root, 1);
  3844. if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
  3845. btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
  3846. left, thresh, type);
  3847. dump_space_info(info, 0, 0);
  3848. }
  3849. if (left < thresh) {
  3850. u64 flags;
  3851. flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
  3852. /*
  3853. * Ignore failure to create system chunk. We might end up not
  3854. * needing it, as we might not need to COW all nodes/leafs from
  3855. * the paths we visit in the chunk tree (they were already COWed
  3856. * or created in the current transaction for example).
  3857. */
  3858. ret = btrfs_alloc_chunk(trans, root, flags);
  3859. }
  3860. if (!ret) {
  3861. ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
  3862. &root->fs_info->chunk_block_rsv,
  3863. thresh, BTRFS_RESERVE_NO_FLUSH);
  3864. if (!ret)
  3865. trans->chunk_bytes_reserved += thresh;
  3866. }
  3867. }
  3868. static int do_chunk_alloc(struct btrfs_trans_handle *trans,
  3869. struct btrfs_root *extent_root, u64 flags, int force)
  3870. {
  3871. struct btrfs_space_info *space_info;
  3872. struct btrfs_fs_info *fs_info = extent_root->fs_info;
  3873. int wait_for_alloc = 0;
  3874. int ret = 0;
  3875. /* Don't re-enter if we're already allocating a chunk */
  3876. if (trans->allocating_chunk)
  3877. return -ENOSPC;
  3878. space_info = __find_space_info(extent_root->fs_info, flags);
  3879. if (!space_info) {
  3880. ret = update_space_info(extent_root->fs_info, flags,
  3881. 0, 0, &space_info);
  3882. BUG_ON(ret); /* -ENOMEM */
  3883. }
  3884. BUG_ON(!space_info); /* Logic error */
  3885. again:
  3886. spin_lock(&space_info->lock);
  3887. if (force < space_info->force_alloc)
  3888. force = space_info->force_alloc;
  3889. if (space_info->full) {
  3890. if (should_alloc_chunk(extent_root, space_info, force))
  3891. ret = -ENOSPC;
  3892. else
  3893. ret = 0;
  3894. spin_unlock(&space_info->lock);
  3895. return ret;
  3896. }
  3897. if (!should_alloc_chunk(extent_root, space_info, force)) {
  3898. spin_unlock(&space_info->lock);
  3899. return 0;
  3900. } else if (space_info->chunk_alloc) {
  3901. wait_for_alloc = 1;
  3902. } else {
  3903. space_info->chunk_alloc = 1;
  3904. }
  3905. spin_unlock(&space_info->lock);
  3906. mutex_lock(&fs_info->chunk_mutex);
  3907. /*
  3908. * The chunk_mutex is held throughout the entirety of a chunk
  3909. * allocation, so once we've acquired the chunk_mutex we know that the
  3910. * other guy is done and we need to recheck and see if we should
  3911. * allocate.
  3912. */
  3913. if (wait_for_alloc) {
  3914. mutex_unlock(&fs_info->chunk_mutex);
  3915. wait_for_alloc = 0;
  3916. goto again;
  3917. }
  3918. trans->allocating_chunk = true;
  3919. /*
  3920. * If we have mixed data/metadata chunks we want to make sure we keep
  3921. * allocating mixed chunks instead of individual chunks.
  3922. */
  3923. if (btrfs_mixed_space_info(space_info))
  3924. flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
  3925. /*
  3926. * if we're doing a data chunk, go ahead and make sure that
  3927. * we keep a reasonable number of metadata chunks allocated in the
  3928. * FS as well.
  3929. */
  3930. if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
  3931. fs_info->data_chunk_allocations++;
  3932. if (!(fs_info->data_chunk_allocations %
  3933. fs_info->metadata_ratio))
  3934. force_metadata_allocation(fs_info);
  3935. }
  3936. /*
  3937. * Check if we have enough space in SYSTEM chunk because we may need
  3938. * to update devices.
  3939. */
  3940. check_system_chunk(trans, extent_root, flags);
  3941. ret = btrfs_alloc_chunk(trans, extent_root, flags);
  3942. trans->allocating_chunk = false;
  3943. spin_lock(&space_info->lock);
  3944. if (ret < 0 && ret != -ENOSPC)
  3945. goto out;
  3946. if (ret)
  3947. space_info->full = 1;
  3948. else
  3949. ret = 1;
  3950. space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
  3951. out:
  3952. space_info->chunk_alloc = 0;
  3953. spin_unlock(&space_info->lock);
  3954. mutex_unlock(&fs_info->chunk_mutex);
  3955. /*
  3956. * When we allocate a new chunk we reserve space in the chunk block
  3957. * reserve to make sure we can COW nodes/leafs in the chunk tree or
  3958. * add new nodes/leafs to it if we end up needing to do it when
  3959. * inserting the chunk item and updating device items as part of the
  3960. * second phase of chunk allocation, performed by
  3961. * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
  3962. * large number of new block groups to create in our transaction
  3963. * handle's new_bgs list to avoid exhausting the chunk block reserve
  3964. * in extreme cases - like having a single transaction create many new
  3965. * block groups when starting to write out the free space caches of all
  3966. * the block groups that were made dirty during the lifetime of the
  3967. * transaction.
  3968. */
  3969. if (trans->can_flush_pending_bgs &&
  3970. trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
  3971. btrfs_create_pending_block_groups(trans, trans->root);
  3972. btrfs_trans_release_chunk_metadata(trans);
  3973. }
  3974. return ret;
  3975. }
  3976. static int can_overcommit(struct btrfs_root *root,
  3977. struct btrfs_space_info *space_info, u64 bytes,
  3978. enum btrfs_reserve_flush_enum flush)
  3979. {
  3980. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  3981. u64 profile = btrfs_get_alloc_profile(root, 0);
  3982. u64 space_size;
  3983. u64 avail;
  3984. u64 used;
  3985. used = space_info->bytes_used + space_info->bytes_reserved +
  3986. space_info->bytes_pinned + space_info->bytes_readonly;
  3987. /*
  3988. * We only want to allow over committing if we have lots of actual space
  3989. * free, but if we don't have enough space to handle the global reserve
  3990. * space then we could end up having a real enospc problem when trying
  3991. * to allocate a chunk or some other such important allocation.
  3992. */
  3993. spin_lock(&global_rsv->lock);
  3994. space_size = calc_global_rsv_need_space(global_rsv);
  3995. spin_unlock(&global_rsv->lock);
  3996. if (used + space_size >= space_info->total_bytes)
  3997. return 0;
  3998. used += space_info->bytes_may_use;
  3999. spin_lock(&root->fs_info->free_chunk_lock);
  4000. avail = root->fs_info->free_chunk_space;
  4001. spin_unlock(&root->fs_info->free_chunk_lock);
  4002. /*
  4003. * If we have dup, raid1 or raid10 then only half of the free
  4004. * space is actually useable. For raid56, the space info used
  4005. * doesn't include the parity drive, so we don't have to
  4006. * change the math
  4007. */
  4008. if (profile & (BTRFS_BLOCK_GROUP_DUP |
  4009. BTRFS_BLOCK_GROUP_RAID1 |
  4010. BTRFS_BLOCK_GROUP_RAID10))
  4011. avail >>= 1;
  4012. /*
  4013. * If we aren't flushing all things, let us overcommit up to
  4014. * 1/2th of the space. If we can flush, don't let us overcommit
  4015. * too much, let it overcommit up to 1/8 of the space.
  4016. */
  4017. if (flush == BTRFS_RESERVE_FLUSH_ALL)
  4018. avail >>= 3;
  4019. else
  4020. avail >>= 1;
  4021. if (used + bytes < space_info->total_bytes + avail)
  4022. return 1;
  4023. return 0;
  4024. }
  4025. static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
  4026. unsigned long nr_pages, int nr_items)
  4027. {
  4028. struct super_block *sb = root->fs_info->sb;
  4029. if (down_read_trylock(&sb->s_umount)) {
  4030. writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
  4031. up_read(&sb->s_umount);
  4032. } else {
  4033. /*
  4034. * We needn't worry the filesystem going from r/w to r/o though
  4035. * we don't acquire ->s_umount mutex, because the filesystem
  4036. * should guarantee the delalloc inodes list be empty after
  4037. * the filesystem is readonly(all dirty pages are written to
  4038. * the disk).
  4039. */
  4040. btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
  4041. if (!current->journal_info)
  4042. btrfs_wait_ordered_roots(root->fs_info, nr_items);
  4043. }
  4044. }
  4045. static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
  4046. {
  4047. u64 bytes;
  4048. int nr;
  4049. bytes = btrfs_calc_trans_metadata_size(root, 1);
  4050. nr = (int)div64_u64(to_reclaim, bytes);
  4051. if (!nr)
  4052. nr = 1;
  4053. return nr;
  4054. }
  4055. #define EXTENT_SIZE_PER_ITEM (256 * 1024)
  4056. /*
  4057. * shrink metadata reservation for delalloc
  4058. */
  4059. static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
  4060. bool wait_ordered)
  4061. {
  4062. struct btrfs_block_rsv *block_rsv;
  4063. struct btrfs_space_info *space_info;
  4064. struct btrfs_trans_handle *trans;
  4065. u64 delalloc_bytes;
  4066. u64 max_reclaim;
  4067. long time_left;
  4068. unsigned long nr_pages;
  4069. int loops;
  4070. int items;
  4071. enum btrfs_reserve_flush_enum flush;
  4072. /* Calc the number of the pages we need flush for space reservation */
  4073. items = calc_reclaim_items_nr(root, to_reclaim);
  4074. to_reclaim = items * EXTENT_SIZE_PER_ITEM;
  4075. trans = (struct btrfs_trans_handle *)current->journal_info;
  4076. block_rsv = &root->fs_info->delalloc_block_rsv;
  4077. space_info = block_rsv->space_info;
  4078. delalloc_bytes = percpu_counter_sum_positive(
  4079. &root->fs_info->delalloc_bytes);
  4080. if (delalloc_bytes == 0) {
  4081. if (trans)
  4082. return;
  4083. if (wait_ordered)
  4084. btrfs_wait_ordered_roots(root->fs_info, items);
  4085. return;
  4086. }
  4087. loops = 0;
  4088. while (delalloc_bytes && loops < 3) {
  4089. max_reclaim = min(delalloc_bytes, to_reclaim);
  4090. nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
  4091. btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
  4092. /*
  4093. * We need to wait for the async pages to actually start before
  4094. * we do anything.
  4095. */
  4096. max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
  4097. if (!max_reclaim)
  4098. goto skip_async;
  4099. if (max_reclaim <= nr_pages)
  4100. max_reclaim = 0;
  4101. else
  4102. max_reclaim -= nr_pages;
  4103. wait_event(root->fs_info->async_submit_wait,
  4104. atomic_read(&root->fs_info->async_delalloc_pages) <=
  4105. (int)max_reclaim);
  4106. skip_async:
  4107. if (!trans)
  4108. flush = BTRFS_RESERVE_FLUSH_ALL;
  4109. else
  4110. flush = BTRFS_RESERVE_NO_FLUSH;
  4111. spin_lock(&space_info->lock);
  4112. if (can_overcommit(root, space_info, orig, flush)) {
  4113. spin_unlock(&space_info->lock);
  4114. break;
  4115. }
  4116. spin_unlock(&space_info->lock);
  4117. loops++;
  4118. if (wait_ordered && !trans) {
  4119. btrfs_wait_ordered_roots(root->fs_info, items);
  4120. } else {
  4121. time_left = schedule_timeout_killable(1);
  4122. if (time_left)
  4123. break;
  4124. }
  4125. delalloc_bytes = percpu_counter_sum_positive(
  4126. &root->fs_info->delalloc_bytes);
  4127. }
  4128. }
  4129. /**
  4130. * maybe_commit_transaction - possibly commit the transaction if its ok to
  4131. * @root - the root we're allocating for
  4132. * @bytes - the number of bytes we want to reserve
  4133. * @force - force the commit
  4134. *
  4135. * This will check to make sure that committing the transaction will actually
  4136. * get us somewhere and then commit the transaction if it does. Otherwise it
  4137. * will return -ENOSPC.
  4138. */
  4139. static int may_commit_transaction(struct btrfs_root *root,
  4140. struct btrfs_space_info *space_info,
  4141. u64 bytes, int force)
  4142. {
  4143. struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
  4144. struct btrfs_trans_handle *trans;
  4145. trans = (struct btrfs_trans_handle *)current->journal_info;
  4146. if (trans)
  4147. return -EAGAIN;
  4148. if (force)
  4149. goto commit;
  4150. /* See if there is enough pinned space to make this reservation */
  4151. if (percpu_counter_compare(&space_info->total_bytes_pinned,
  4152. bytes) >= 0)
  4153. goto commit;
  4154. /*
  4155. * See if there is some space in the delayed insertion reservation for
  4156. * this reservation.
  4157. */
  4158. if (space_info != delayed_rsv->space_info)
  4159. return -ENOSPC;
  4160. spin_lock(&delayed_rsv->lock);
  4161. if (percpu_counter_compare(&space_info->total_bytes_pinned,
  4162. bytes - delayed_rsv->size) >= 0) {
  4163. spin_unlock(&delayed_rsv->lock);
  4164. return -ENOSPC;
  4165. }
  4166. spin_unlock(&delayed_rsv->lock);
  4167. commit:
  4168. trans = btrfs_join_transaction(root);
  4169. if (IS_ERR(trans))
  4170. return -ENOSPC;
  4171. return btrfs_commit_transaction(trans, root);
  4172. }
  4173. enum flush_state {
  4174. FLUSH_DELAYED_ITEMS_NR = 1,
  4175. FLUSH_DELAYED_ITEMS = 2,
  4176. FLUSH_DELALLOC = 3,
  4177. FLUSH_DELALLOC_WAIT = 4,
  4178. ALLOC_CHUNK = 5,
  4179. COMMIT_TRANS = 6,
  4180. };
  4181. static int flush_space(struct btrfs_root *root,
  4182. struct btrfs_space_info *space_info, u64 num_bytes,
  4183. u64 orig_bytes, int state)
  4184. {
  4185. struct btrfs_trans_handle *trans;
  4186. int nr;
  4187. int ret = 0;
  4188. switch (state) {
  4189. case FLUSH_DELAYED_ITEMS_NR:
  4190. case FLUSH_DELAYED_ITEMS:
  4191. if (state == FLUSH_DELAYED_ITEMS_NR)
  4192. nr = calc_reclaim_items_nr(root, num_bytes) * 2;
  4193. else
  4194. nr = -1;
  4195. trans = btrfs_join_transaction(root);
  4196. if (IS_ERR(trans)) {
  4197. ret = PTR_ERR(trans);
  4198. break;
  4199. }
  4200. ret = btrfs_run_delayed_items_nr(trans, root, nr);
  4201. btrfs_end_transaction(trans, root);
  4202. break;
  4203. case FLUSH_DELALLOC:
  4204. case FLUSH_DELALLOC_WAIT:
  4205. shrink_delalloc(root, num_bytes * 2, orig_bytes,
  4206. state == FLUSH_DELALLOC_WAIT);
  4207. break;
  4208. case ALLOC_CHUNK:
  4209. trans = btrfs_join_transaction(root);
  4210. if (IS_ERR(trans)) {
  4211. ret = PTR_ERR(trans);
  4212. break;
  4213. }
  4214. ret = do_chunk_alloc(trans, root->fs_info->extent_root,
  4215. btrfs_get_alloc_profile(root, 0),
  4216. CHUNK_ALLOC_NO_FORCE);
  4217. btrfs_end_transaction(trans, root);
  4218. if (ret == -ENOSPC)
  4219. ret = 0;
  4220. break;
  4221. case COMMIT_TRANS:
  4222. ret = may_commit_transaction(root, space_info, orig_bytes, 0);
  4223. break;
  4224. default:
  4225. ret = -ENOSPC;
  4226. break;
  4227. }
  4228. return ret;
  4229. }
  4230. static inline u64
  4231. btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
  4232. struct btrfs_space_info *space_info)
  4233. {
  4234. u64 used;
  4235. u64 expected;
  4236. u64 to_reclaim;
  4237. to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
  4238. 16 * 1024 * 1024);
  4239. spin_lock(&space_info->lock);
  4240. if (can_overcommit(root, space_info, to_reclaim,
  4241. BTRFS_RESERVE_FLUSH_ALL)) {
  4242. to_reclaim = 0;
  4243. goto out;
  4244. }
  4245. used = space_info->bytes_used + space_info->bytes_reserved +
  4246. space_info->bytes_pinned + space_info->bytes_readonly +
  4247. space_info->bytes_may_use;
  4248. if (can_overcommit(root, space_info, 1024 * 1024,
  4249. BTRFS_RESERVE_FLUSH_ALL))
  4250. expected = div_factor_fine(space_info->total_bytes, 95);
  4251. else
  4252. expected = div_factor_fine(space_info->total_bytes, 90);
  4253. if (used > expected)
  4254. to_reclaim = used - expected;
  4255. else
  4256. to_reclaim = 0;
  4257. to_reclaim = min(to_reclaim, space_info->bytes_may_use +
  4258. space_info->bytes_reserved);
  4259. out:
  4260. spin_unlock(&space_info->lock);
  4261. return to_reclaim;
  4262. }
  4263. static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
  4264. struct btrfs_fs_info *fs_info, u64 used)
  4265. {
  4266. u64 thresh = div_factor_fine(space_info->total_bytes, 98);
  4267. /* If we're just plain full then async reclaim just slows us down. */
  4268. if (space_info->bytes_used >= thresh)
  4269. return 0;
  4270. return (used >= thresh && !btrfs_fs_closing(fs_info) &&
  4271. !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
  4272. }
  4273. static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
  4274. struct btrfs_fs_info *fs_info,
  4275. int flush_state)
  4276. {
  4277. u64 used;
  4278. spin_lock(&space_info->lock);
  4279. /*
  4280. * We run out of space and have not got any free space via flush_space,
  4281. * so don't bother doing async reclaim.
  4282. */
  4283. if (flush_state > COMMIT_TRANS && space_info->full) {
  4284. spin_unlock(&space_info->lock);
  4285. return 0;
  4286. }
  4287. used = space_info->bytes_used + space_info->bytes_reserved +
  4288. space_info->bytes_pinned + space_info->bytes_readonly +
  4289. space_info->bytes_may_use;
  4290. if (need_do_async_reclaim(space_info, fs_info, used)) {
  4291. spin_unlock(&space_info->lock);
  4292. return 1;
  4293. }
  4294. spin_unlock(&space_info->lock);
  4295. return 0;
  4296. }
  4297. static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
  4298. {
  4299. struct btrfs_fs_info *fs_info;
  4300. struct btrfs_space_info *space_info;
  4301. u64 to_reclaim;
  4302. int flush_state;
  4303. fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
  4304. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  4305. to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
  4306. space_info);
  4307. if (!to_reclaim)
  4308. return;
  4309. flush_state = FLUSH_DELAYED_ITEMS_NR;
  4310. do {
  4311. flush_space(fs_info->fs_root, space_info, to_reclaim,
  4312. to_reclaim, flush_state);
  4313. flush_state++;
  4314. if (!btrfs_need_do_async_reclaim(space_info, fs_info,
  4315. flush_state))
  4316. return;
  4317. } while (flush_state < COMMIT_TRANS);
  4318. }
  4319. void btrfs_init_async_reclaim_work(struct work_struct *work)
  4320. {
  4321. INIT_WORK(work, btrfs_async_reclaim_metadata_space);
  4322. }
  4323. /**
  4324. * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
  4325. * @root - the root we're allocating for
  4326. * @block_rsv - the block_rsv we're allocating for
  4327. * @orig_bytes - the number of bytes we want
  4328. * @flush - whether or not we can flush to make our reservation
  4329. *
  4330. * This will reserve orgi_bytes number of bytes from the space info associated
  4331. * with the block_rsv. If there is not enough space it will make an attempt to
  4332. * flush out space to make room. It will do this by flushing delalloc if
  4333. * possible or committing the transaction. If flush is 0 then no attempts to
  4334. * regain reservations will be made and this will fail if there is not enough
  4335. * space already.
  4336. */
  4337. static int reserve_metadata_bytes(struct btrfs_root *root,
  4338. struct btrfs_block_rsv *block_rsv,
  4339. u64 orig_bytes,
  4340. enum btrfs_reserve_flush_enum flush)
  4341. {
  4342. struct btrfs_space_info *space_info = block_rsv->space_info;
  4343. u64 used;
  4344. u64 num_bytes = orig_bytes;
  4345. int flush_state = FLUSH_DELAYED_ITEMS_NR;
  4346. int ret = 0;
  4347. bool flushing = false;
  4348. again:
  4349. ret = 0;
  4350. spin_lock(&space_info->lock);
  4351. /*
  4352. * We only want to wait if somebody other than us is flushing and we
  4353. * are actually allowed to flush all things.
  4354. */
  4355. while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
  4356. space_info->flush) {
  4357. spin_unlock(&space_info->lock);
  4358. /*
  4359. * If we have a trans handle we can't wait because the flusher
  4360. * may have to commit the transaction, which would mean we would
  4361. * deadlock since we are waiting for the flusher to finish, but
  4362. * hold the current transaction open.
  4363. */
  4364. if (current->journal_info)
  4365. return -EAGAIN;
  4366. ret = wait_event_killable(space_info->wait, !space_info->flush);
  4367. /* Must have been killed, return */
  4368. if (ret)
  4369. return -EINTR;
  4370. spin_lock(&space_info->lock);
  4371. }
  4372. ret = -ENOSPC;
  4373. used = space_info->bytes_used + space_info->bytes_reserved +
  4374. space_info->bytes_pinned + space_info->bytes_readonly +
  4375. space_info->bytes_may_use;
  4376. /*
  4377. * The idea here is that we've not already over-reserved the block group
  4378. * then we can go ahead and save our reservation first and then start
  4379. * flushing if we need to. Otherwise if we've already overcommitted
  4380. * lets start flushing stuff first and then come back and try to make
  4381. * our reservation.
  4382. */
  4383. if (used <= space_info->total_bytes) {
  4384. if (used + orig_bytes <= space_info->total_bytes) {
  4385. space_info->bytes_may_use += orig_bytes;
  4386. trace_btrfs_space_reservation(root->fs_info,
  4387. "space_info", space_info->flags, orig_bytes, 1);
  4388. ret = 0;
  4389. } else {
  4390. /*
  4391. * Ok set num_bytes to orig_bytes since we aren't
  4392. * overocmmitted, this way we only try and reclaim what
  4393. * we need.
  4394. */
  4395. num_bytes = orig_bytes;
  4396. }
  4397. } else {
  4398. /*
  4399. * Ok we're over committed, set num_bytes to the overcommitted
  4400. * amount plus the amount of bytes that we need for this
  4401. * reservation.
  4402. */
  4403. num_bytes = used - space_info->total_bytes +
  4404. (orig_bytes * 2);
  4405. }
  4406. if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
  4407. space_info->bytes_may_use += orig_bytes;
  4408. trace_btrfs_space_reservation(root->fs_info, "space_info",
  4409. space_info->flags, orig_bytes,
  4410. 1);
  4411. ret = 0;
  4412. }
  4413. /*
  4414. * Couldn't make our reservation, save our place so while we're trying
  4415. * to reclaim space we can actually use it instead of somebody else
  4416. * stealing it from us.
  4417. *
  4418. * We make the other tasks wait for the flush only when we can flush
  4419. * all things.
  4420. */
  4421. if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
  4422. flushing = true;
  4423. space_info->flush = 1;
  4424. } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
  4425. used += orig_bytes;
  4426. /*
  4427. * We will do the space reservation dance during log replay,
  4428. * which means we won't have fs_info->fs_root set, so don't do
  4429. * the async reclaim as we will panic.
  4430. */
  4431. if (!root->fs_info->log_root_recovering &&
  4432. need_do_async_reclaim(space_info, root->fs_info, used) &&
  4433. !work_busy(&root->fs_info->async_reclaim_work))
  4434. queue_work(system_unbound_wq,
  4435. &root->fs_info->async_reclaim_work);
  4436. }
  4437. spin_unlock(&space_info->lock);
  4438. if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
  4439. goto out;
  4440. ret = flush_space(root, space_info, num_bytes, orig_bytes,
  4441. flush_state);
  4442. flush_state++;
  4443. /*
  4444. * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
  4445. * would happen. So skip delalloc flush.
  4446. */
  4447. if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
  4448. (flush_state == FLUSH_DELALLOC ||
  4449. flush_state == FLUSH_DELALLOC_WAIT))
  4450. flush_state = ALLOC_CHUNK;
  4451. if (!ret)
  4452. goto again;
  4453. else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
  4454. flush_state < COMMIT_TRANS)
  4455. goto again;
  4456. else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
  4457. flush_state <= COMMIT_TRANS)
  4458. goto again;
  4459. out:
  4460. if (ret == -ENOSPC &&
  4461. unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
  4462. struct btrfs_block_rsv *global_rsv =
  4463. &root->fs_info->global_block_rsv;
  4464. if (block_rsv != global_rsv &&
  4465. !block_rsv_use_bytes(global_rsv, orig_bytes))
  4466. ret = 0;
  4467. }
  4468. if (ret == -ENOSPC)
  4469. trace_btrfs_space_reservation(root->fs_info,
  4470. "space_info:enospc",
  4471. space_info->flags, orig_bytes, 1);
  4472. if (flushing) {
  4473. spin_lock(&space_info->lock);
  4474. space_info->flush = 0;
  4475. wake_up_all(&space_info->wait);
  4476. spin_unlock(&space_info->lock);
  4477. }
  4478. return ret;
  4479. }
  4480. static struct btrfs_block_rsv *get_block_rsv(
  4481. const struct btrfs_trans_handle *trans,
  4482. const struct btrfs_root *root)
  4483. {
  4484. struct btrfs_block_rsv *block_rsv = NULL;
  4485. if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
  4486. (root == root->fs_info->csum_root && trans->adding_csums) ||
  4487. (root == root->fs_info->uuid_root))
  4488. block_rsv = trans->block_rsv;
  4489. if (!block_rsv)
  4490. block_rsv = root->block_rsv;
  4491. if (!block_rsv)
  4492. block_rsv = &root->fs_info->empty_block_rsv;
  4493. return block_rsv;
  4494. }
  4495. static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
  4496. u64 num_bytes)
  4497. {
  4498. int ret = -ENOSPC;
  4499. spin_lock(&block_rsv->lock);
  4500. if (block_rsv->reserved >= num_bytes) {
  4501. block_rsv->reserved -= num_bytes;
  4502. if (block_rsv->reserved < block_rsv->size)
  4503. block_rsv->full = 0;
  4504. ret = 0;
  4505. }
  4506. spin_unlock(&block_rsv->lock);
  4507. return ret;
  4508. }
  4509. static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
  4510. u64 num_bytes, int update_size)
  4511. {
  4512. spin_lock(&block_rsv->lock);
  4513. block_rsv->reserved += num_bytes;
  4514. if (update_size)
  4515. block_rsv->size += num_bytes;
  4516. else if (block_rsv->reserved >= block_rsv->size)
  4517. block_rsv->full = 1;
  4518. spin_unlock(&block_rsv->lock);
  4519. }
  4520. int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
  4521. struct btrfs_block_rsv *dest, u64 num_bytes,
  4522. int min_factor)
  4523. {
  4524. struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  4525. u64 min_bytes;
  4526. if (global_rsv->space_info != dest->space_info)
  4527. return -ENOSPC;
  4528. spin_lock(&global_rsv->lock);
  4529. min_bytes = div_factor(global_rsv->size, min_factor);
  4530. if (global_rsv->reserved < min_bytes + num_bytes) {
  4531. spin_unlock(&global_rsv->lock);
  4532. return -ENOSPC;
  4533. }
  4534. global_rsv->reserved -= num_bytes;
  4535. if (global_rsv->reserved < global_rsv->size)
  4536. global_rsv->full = 0;
  4537. spin_unlock(&global_rsv->lock);
  4538. block_rsv_add_bytes(dest, num_bytes, 1);
  4539. return 0;
  4540. }
  4541. static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
  4542. struct btrfs_block_rsv *block_rsv,
  4543. struct btrfs_block_rsv *dest, u64 num_bytes)
  4544. {
  4545. struct btrfs_space_info *space_info = block_rsv->space_info;
  4546. spin_lock(&block_rsv->lock);
  4547. if (num_bytes == (u64)-1)
  4548. num_bytes = block_rsv->size;
  4549. block_rsv->size -= num_bytes;
  4550. if (block_rsv->reserved >= block_rsv->size) {
  4551. num_bytes = block_rsv->reserved - block_rsv->size;
  4552. block_rsv->reserved = block_rsv->size;
  4553. block_rsv->full = 1;
  4554. } else {
  4555. num_bytes = 0;
  4556. }
  4557. spin_unlock(&block_rsv->lock);
  4558. if (num_bytes > 0) {
  4559. if (dest) {
  4560. spin_lock(&dest->lock);
  4561. if (!dest->full) {
  4562. u64 bytes_to_add;
  4563. bytes_to_add = dest->size - dest->reserved;
  4564. bytes_to_add = min(num_bytes, bytes_to_add);
  4565. dest->reserved += bytes_to_add;
  4566. if (dest->reserved >= dest->size)
  4567. dest->full = 1;
  4568. num_bytes -= bytes_to_add;
  4569. }
  4570. spin_unlock(&dest->lock);
  4571. }
  4572. if (num_bytes) {
  4573. spin_lock(&space_info->lock);
  4574. space_info->bytes_may_use -= num_bytes;
  4575. trace_btrfs_space_reservation(fs_info, "space_info",
  4576. space_info->flags, num_bytes, 0);
  4577. spin_unlock(&space_info->lock);
  4578. }
  4579. }
  4580. }
  4581. static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
  4582. struct btrfs_block_rsv *dst, u64 num_bytes)
  4583. {
  4584. int ret;
  4585. ret = block_rsv_use_bytes(src, num_bytes);
  4586. if (ret)
  4587. return ret;
  4588. block_rsv_add_bytes(dst, num_bytes, 1);
  4589. return 0;
  4590. }
  4591. void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
  4592. {
  4593. memset(rsv, 0, sizeof(*rsv));
  4594. spin_lock_init(&rsv->lock);
  4595. rsv->type = type;
  4596. }
  4597. struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
  4598. unsigned short type)
  4599. {
  4600. struct btrfs_block_rsv *block_rsv;
  4601. struct btrfs_fs_info *fs_info = root->fs_info;
  4602. block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
  4603. if (!block_rsv)
  4604. return NULL;
  4605. btrfs_init_block_rsv(block_rsv, type);
  4606. block_rsv->space_info = __find_space_info(fs_info,
  4607. BTRFS_BLOCK_GROUP_METADATA);
  4608. return block_rsv;
  4609. }
  4610. void btrfs_free_block_rsv(struct btrfs_root *root,
  4611. struct btrfs_block_rsv *rsv)
  4612. {
  4613. if (!rsv)
  4614. return;
  4615. btrfs_block_rsv_release(root, rsv, (u64)-1);
  4616. kfree(rsv);
  4617. }
  4618. void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
  4619. {
  4620. kfree(rsv);
  4621. }
  4622. int btrfs_block_rsv_add(struct btrfs_root *root,
  4623. struct btrfs_block_rsv *block_rsv, u64 num_bytes,
  4624. enum btrfs_reserve_flush_enum flush)
  4625. {
  4626. int ret;
  4627. if (num_bytes == 0)
  4628. return 0;
  4629. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  4630. if (!ret) {
  4631. block_rsv_add_bytes(block_rsv, num_bytes, 1);
  4632. return 0;
  4633. }
  4634. return ret;
  4635. }
  4636. int btrfs_block_rsv_check(struct btrfs_root *root,
  4637. struct btrfs_block_rsv *block_rsv, int min_factor)
  4638. {
  4639. u64 num_bytes = 0;
  4640. int ret = -ENOSPC;
  4641. if (!block_rsv)
  4642. return 0;
  4643. spin_lock(&block_rsv->lock);
  4644. num_bytes = div_factor(block_rsv->size, min_factor);
  4645. if (block_rsv->reserved >= num_bytes)
  4646. ret = 0;
  4647. spin_unlock(&block_rsv->lock);
  4648. return ret;
  4649. }
  4650. int btrfs_block_rsv_refill(struct btrfs_root *root,
  4651. struct btrfs_block_rsv *block_rsv, u64 min_reserved,
  4652. enum btrfs_reserve_flush_enum flush)
  4653. {
  4654. u64 num_bytes = 0;
  4655. int ret = -ENOSPC;
  4656. if (!block_rsv)
  4657. return 0;
  4658. spin_lock(&block_rsv->lock);
  4659. num_bytes = min_reserved;
  4660. if (block_rsv->reserved >= num_bytes)
  4661. ret = 0;
  4662. else
  4663. num_bytes -= block_rsv->reserved;
  4664. spin_unlock(&block_rsv->lock);
  4665. if (!ret)
  4666. return 0;
  4667. ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
  4668. if (!ret) {
  4669. block_rsv_add_bytes(block_rsv, num_bytes, 0);
  4670. return 0;
  4671. }
  4672. return ret;
  4673. }
  4674. int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
  4675. struct btrfs_block_rsv *dst_rsv,
  4676. u64 num_bytes)
  4677. {
  4678. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  4679. }
  4680. void btrfs_block_rsv_release(struct btrfs_root *root,
  4681. struct btrfs_block_rsv *block_rsv,
  4682. u64 num_bytes)
  4683. {
  4684. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  4685. if (global_rsv == block_rsv ||
  4686. block_rsv->space_info != global_rsv->space_info)
  4687. global_rsv = NULL;
  4688. block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
  4689. num_bytes);
  4690. }
  4691. /*
  4692. * helper to calculate size of global block reservation.
  4693. * the desired value is sum of space used by extent tree,
  4694. * checksum tree and root tree
  4695. */
  4696. static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
  4697. {
  4698. struct btrfs_space_info *sinfo;
  4699. u64 num_bytes;
  4700. u64 meta_used;
  4701. u64 data_used;
  4702. int csum_size = btrfs_super_csum_size(fs_info->super_copy);
  4703. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
  4704. spin_lock(&sinfo->lock);
  4705. data_used = sinfo->bytes_used;
  4706. spin_unlock(&sinfo->lock);
  4707. sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  4708. spin_lock(&sinfo->lock);
  4709. if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
  4710. data_used = 0;
  4711. meta_used = sinfo->bytes_used;
  4712. spin_unlock(&sinfo->lock);
  4713. num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
  4714. csum_size * 2;
  4715. num_bytes += div_u64(data_used + meta_used, 50);
  4716. if (num_bytes * 3 > meta_used)
  4717. num_bytes = div_u64(meta_used, 3);
  4718. return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
  4719. }
  4720. static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
  4721. {
  4722. struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
  4723. struct btrfs_space_info *sinfo = block_rsv->space_info;
  4724. u64 num_bytes;
  4725. num_bytes = calc_global_metadata_size(fs_info);
  4726. spin_lock(&sinfo->lock);
  4727. spin_lock(&block_rsv->lock);
  4728. block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
  4729. num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
  4730. sinfo->bytes_reserved + sinfo->bytes_readonly +
  4731. sinfo->bytes_may_use;
  4732. if (sinfo->total_bytes > num_bytes) {
  4733. num_bytes = sinfo->total_bytes - num_bytes;
  4734. block_rsv->reserved += num_bytes;
  4735. sinfo->bytes_may_use += num_bytes;
  4736. trace_btrfs_space_reservation(fs_info, "space_info",
  4737. sinfo->flags, num_bytes, 1);
  4738. }
  4739. if (block_rsv->reserved >= block_rsv->size) {
  4740. num_bytes = block_rsv->reserved - block_rsv->size;
  4741. sinfo->bytes_may_use -= num_bytes;
  4742. trace_btrfs_space_reservation(fs_info, "space_info",
  4743. sinfo->flags, num_bytes, 0);
  4744. block_rsv->reserved = block_rsv->size;
  4745. block_rsv->full = 1;
  4746. }
  4747. spin_unlock(&block_rsv->lock);
  4748. spin_unlock(&sinfo->lock);
  4749. }
  4750. static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
  4751. {
  4752. struct btrfs_space_info *space_info;
  4753. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
  4754. fs_info->chunk_block_rsv.space_info = space_info;
  4755. space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
  4756. fs_info->global_block_rsv.space_info = space_info;
  4757. fs_info->delalloc_block_rsv.space_info = space_info;
  4758. fs_info->trans_block_rsv.space_info = space_info;
  4759. fs_info->empty_block_rsv.space_info = space_info;
  4760. fs_info->delayed_block_rsv.space_info = space_info;
  4761. fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
  4762. fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
  4763. fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
  4764. fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
  4765. if (fs_info->quota_root)
  4766. fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
  4767. fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
  4768. update_global_block_rsv(fs_info);
  4769. }
  4770. static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
  4771. {
  4772. block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
  4773. (u64)-1);
  4774. WARN_ON(fs_info->delalloc_block_rsv.size > 0);
  4775. WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
  4776. WARN_ON(fs_info->trans_block_rsv.size > 0);
  4777. WARN_ON(fs_info->trans_block_rsv.reserved > 0);
  4778. WARN_ON(fs_info->chunk_block_rsv.size > 0);
  4779. WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
  4780. WARN_ON(fs_info->delayed_block_rsv.size > 0);
  4781. WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
  4782. }
  4783. void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
  4784. struct btrfs_root *root)
  4785. {
  4786. if (!trans->block_rsv)
  4787. return;
  4788. if (!trans->bytes_reserved)
  4789. return;
  4790. trace_btrfs_space_reservation(root->fs_info, "transaction",
  4791. trans->transid, trans->bytes_reserved, 0);
  4792. btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
  4793. trans->bytes_reserved = 0;
  4794. }
  4795. /*
  4796. * To be called after all the new block groups attached to the transaction
  4797. * handle have been created (btrfs_create_pending_block_groups()).
  4798. */
  4799. void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
  4800. {
  4801. struct btrfs_fs_info *fs_info = trans->root->fs_info;
  4802. if (!trans->chunk_bytes_reserved)
  4803. return;
  4804. WARN_ON_ONCE(!list_empty(&trans->new_bgs));
  4805. block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
  4806. trans->chunk_bytes_reserved);
  4807. trans->chunk_bytes_reserved = 0;
  4808. }
  4809. /* Can only return 0 or -ENOSPC */
  4810. int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
  4811. struct inode *inode)
  4812. {
  4813. struct btrfs_root *root = BTRFS_I(inode)->root;
  4814. struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
  4815. struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
  4816. /*
  4817. * We need to hold space in order to delete our orphan item once we've
  4818. * added it, so this takes the reservation so we can release it later
  4819. * when we are truly done with the orphan item.
  4820. */
  4821. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  4822. trace_btrfs_space_reservation(root->fs_info, "orphan",
  4823. btrfs_ino(inode), num_bytes, 1);
  4824. return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
  4825. }
  4826. void btrfs_orphan_release_metadata(struct inode *inode)
  4827. {
  4828. struct btrfs_root *root = BTRFS_I(inode)->root;
  4829. u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  4830. trace_btrfs_space_reservation(root->fs_info, "orphan",
  4831. btrfs_ino(inode), num_bytes, 0);
  4832. btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
  4833. }
  4834. /*
  4835. * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
  4836. * root: the root of the parent directory
  4837. * rsv: block reservation
  4838. * items: the number of items that we need do reservation
  4839. * qgroup_reserved: used to return the reserved size in qgroup
  4840. *
  4841. * This function is used to reserve the space for snapshot/subvolume
  4842. * creation and deletion. Those operations are different with the
  4843. * common file/directory operations, they change two fs/file trees
  4844. * and root tree, the number of items that the qgroup reserves is
  4845. * different with the free space reservation. So we can not use
  4846. * the space reseravtion mechanism in start_transaction().
  4847. */
  4848. int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
  4849. struct btrfs_block_rsv *rsv,
  4850. int items,
  4851. u64 *qgroup_reserved,
  4852. bool use_global_rsv)
  4853. {
  4854. u64 num_bytes;
  4855. int ret;
  4856. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  4857. if (root->fs_info->quota_enabled) {
  4858. /* One for parent inode, two for dir entries */
  4859. num_bytes = 3 * root->nodesize;
  4860. ret = btrfs_qgroup_reserve_meta(root, num_bytes);
  4861. if (ret)
  4862. return ret;
  4863. } else {
  4864. num_bytes = 0;
  4865. }
  4866. *qgroup_reserved = num_bytes;
  4867. num_bytes = btrfs_calc_trans_metadata_size(root, items);
  4868. rsv->space_info = __find_space_info(root->fs_info,
  4869. BTRFS_BLOCK_GROUP_METADATA);
  4870. ret = btrfs_block_rsv_add(root, rsv, num_bytes,
  4871. BTRFS_RESERVE_FLUSH_ALL);
  4872. if (ret == -ENOSPC && use_global_rsv)
  4873. ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
  4874. if (ret && *qgroup_reserved)
  4875. btrfs_qgroup_free_meta(root, *qgroup_reserved);
  4876. return ret;
  4877. }
  4878. void btrfs_subvolume_release_metadata(struct btrfs_root *root,
  4879. struct btrfs_block_rsv *rsv,
  4880. u64 qgroup_reserved)
  4881. {
  4882. btrfs_block_rsv_release(root, rsv, (u64)-1);
  4883. }
  4884. /**
  4885. * drop_outstanding_extent - drop an outstanding extent
  4886. * @inode: the inode we're dropping the extent for
  4887. * @num_bytes: the number of bytes we're relaseing.
  4888. *
  4889. * This is called when we are freeing up an outstanding extent, either called
  4890. * after an error or after an extent is written. This will return the number of
  4891. * reserved extents that need to be freed. This must be called with
  4892. * BTRFS_I(inode)->lock held.
  4893. */
  4894. static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
  4895. {
  4896. unsigned drop_inode_space = 0;
  4897. unsigned dropped_extents = 0;
  4898. unsigned num_extents = 0;
  4899. num_extents = (unsigned)div64_u64(num_bytes +
  4900. BTRFS_MAX_EXTENT_SIZE - 1,
  4901. BTRFS_MAX_EXTENT_SIZE);
  4902. ASSERT(num_extents);
  4903. ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
  4904. BTRFS_I(inode)->outstanding_extents -= num_extents;
  4905. if (BTRFS_I(inode)->outstanding_extents == 0 &&
  4906. test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  4907. &BTRFS_I(inode)->runtime_flags))
  4908. drop_inode_space = 1;
  4909. /*
  4910. * If we have more or the same amount of outsanding extents than we have
  4911. * reserved then we need to leave the reserved extents count alone.
  4912. */
  4913. if (BTRFS_I(inode)->outstanding_extents >=
  4914. BTRFS_I(inode)->reserved_extents)
  4915. return drop_inode_space;
  4916. dropped_extents = BTRFS_I(inode)->reserved_extents -
  4917. BTRFS_I(inode)->outstanding_extents;
  4918. BTRFS_I(inode)->reserved_extents -= dropped_extents;
  4919. return dropped_extents + drop_inode_space;
  4920. }
  4921. /**
  4922. * calc_csum_metadata_size - return the amount of metada space that must be
  4923. * reserved/free'd for the given bytes.
  4924. * @inode: the inode we're manipulating
  4925. * @num_bytes: the number of bytes in question
  4926. * @reserve: 1 if we are reserving space, 0 if we are freeing space
  4927. *
  4928. * This adjusts the number of csum_bytes in the inode and then returns the
  4929. * correct amount of metadata that must either be reserved or freed. We
  4930. * calculate how many checksums we can fit into one leaf and then divide the
  4931. * number of bytes that will need to be checksumed by this value to figure out
  4932. * how many checksums will be required. If we are adding bytes then the number
  4933. * may go up and we will return the number of additional bytes that must be
  4934. * reserved. If it is going down we will return the number of bytes that must
  4935. * be freed.
  4936. *
  4937. * This must be called with BTRFS_I(inode)->lock held.
  4938. */
  4939. static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
  4940. int reserve)
  4941. {
  4942. struct btrfs_root *root = BTRFS_I(inode)->root;
  4943. u64 old_csums, num_csums;
  4944. if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
  4945. BTRFS_I(inode)->csum_bytes == 0)
  4946. return 0;
  4947. old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
  4948. if (reserve)
  4949. BTRFS_I(inode)->csum_bytes += num_bytes;
  4950. else
  4951. BTRFS_I(inode)->csum_bytes -= num_bytes;
  4952. num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
  4953. /* No change, no need to reserve more */
  4954. if (old_csums == num_csums)
  4955. return 0;
  4956. if (reserve)
  4957. return btrfs_calc_trans_metadata_size(root,
  4958. num_csums - old_csums);
  4959. return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
  4960. }
  4961. int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
  4962. {
  4963. struct btrfs_root *root = BTRFS_I(inode)->root;
  4964. struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
  4965. u64 to_reserve = 0;
  4966. u64 csum_bytes;
  4967. unsigned nr_extents = 0;
  4968. int extra_reserve = 0;
  4969. enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
  4970. int ret = 0;
  4971. bool delalloc_lock = true;
  4972. u64 to_free = 0;
  4973. unsigned dropped;
  4974. /* If we are a free space inode we need to not flush since we will be in
  4975. * the middle of a transaction commit. We also don't need the delalloc
  4976. * mutex since we won't race with anybody. We need this mostly to make
  4977. * lockdep shut its filthy mouth.
  4978. */
  4979. if (btrfs_is_free_space_inode(inode)) {
  4980. flush = BTRFS_RESERVE_NO_FLUSH;
  4981. delalloc_lock = false;
  4982. }
  4983. if (flush != BTRFS_RESERVE_NO_FLUSH &&
  4984. btrfs_transaction_in_commit(root->fs_info))
  4985. schedule_timeout(1);
  4986. if (delalloc_lock)
  4987. mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
  4988. num_bytes = ALIGN(num_bytes, root->sectorsize);
  4989. spin_lock(&BTRFS_I(inode)->lock);
  4990. nr_extents = (unsigned)div64_u64(num_bytes +
  4991. BTRFS_MAX_EXTENT_SIZE - 1,
  4992. BTRFS_MAX_EXTENT_SIZE);
  4993. BTRFS_I(inode)->outstanding_extents += nr_extents;
  4994. nr_extents = 0;
  4995. if (BTRFS_I(inode)->outstanding_extents >
  4996. BTRFS_I(inode)->reserved_extents)
  4997. nr_extents = BTRFS_I(inode)->outstanding_extents -
  4998. BTRFS_I(inode)->reserved_extents;
  4999. /*
  5000. * Add an item to reserve for updating the inode when we complete the
  5001. * delalloc io.
  5002. */
  5003. if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  5004. &BTRFS_I(inode)->runtime_flags)) {
  5005. nr_extents++;
  5006. extra_reserve = 1;
  5007. }
  5008. to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
  5009. to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
  5010. csum_bytes = BTRFS_I(inode)->csum_bytes;
  5011. spin_unlock(&BTRFS_I(inode)->lock);
  5012. if (root->fs_info->quota_enabled) {
  5013. ret = btrfs_qgroup_reserve_meta(root,
  5014. nr_extents * root->nodesize);
  5015. if (ret)
  5016. goto out_fail;
  5017. }
  5018. ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
  5019. if (unlikely(ret)) {
  5020. btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
  5021. goto out_fail;
  5022. }
  5023. spin_lock(&BTRFS_I(inode)->lock);
  5024. if (extra_reserve) {
  5025. set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
  5026. &BTRFS_I(inode)->runtime_flags);
  5027. nr_extents--;
  5028. }
  5029. BTRFS_I(inode)->reserved_extents += nr_extents;
  5030. spin_unlock(&BTRFS_I(inode)->lock);
  5031. if (delalloc_lock)
  5032. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  5033. if (to_reserve)
  5034. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  5035. btrfs_ino(inode), to_reserve, 1);
  5036. block_rsv_add_bytes(block_rsv, to_reserve, 1);
  5037. return 0;
  5038. out_fail:
  5039. spin_lock(&BTRFS_I(inode)->lock);
  5040. dropped = drop_outstanding_extent(inode, num_bytes);
  5041. /*
  5042. * If the inodes csum_bytes is the same as the original
  5043. * csum_bytes then we know we haven't raced with any free()ers
  5044. * so we can just reduce our inodes csum bytes and carry on.
  5045. */
  5046. if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
  5047. calc_csum_metadata_size(inode, num_bytes, 0);
  5048. } else {
  5049. u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
  5050. u64 bytes;
  5051. /*
  5052. * This is tricky, but first we need to figure out how much we
  5053. * free'd from any free-ers that occured during this
  5054. * reservation, so we reset ->csum_bytes to the csum_bytes
  5055. * before we dropped our lock, and then call the free for the
  5056. * number of bytes that were freed while we were trying our
  5057. * reservation.
  5058. */
  5059. bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
  5060. BTRFS_I(inode)->csum_bytes = csum_bytes;
  5061. to_free = calc_csum_metadata_size(inode, bytes, 0);
  5062. /*
  5063. * Now we need to see how much we would have freed had we not
  5064. * been making this reservation and our ->csum_bytes were not
  5065. * artificially inflated.
  5066. */
  5067. BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
  5068. bytes = csum_bytes - orig_csum_bytes;
  5069. bytes = calc_csum_metadata_size(inode, bytes, 0);
  5070. /*
  5071. * Now reset ->csum_bytes to what it should be. If bytes is
  5072. * more than to_free then we would have free'd more space had we
  5073. * not had an artificially high ->csum_bytes, so we need to free
  5074. * the remainder. If bytes is the same or less then we don't
  5075. * need to do anything, the other free-ers did the correct
  5076. * thing.
  5077. */
  5078. BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
  5079. if (bytes > to_free)
  5080. to_free = bytes - to_free;
  5081. else
  5082. to_free = 0;
  5083. }
  5084. spin_unlock(&BTRFS_I(inode)->lock);
  5085. if (dropped)
  5086. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  5087. if (to_free) {
  5088. btrfs_block_rsv_release(root, block_rsv, to_free);
  5089. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  5090. btrfs_ino(inode), to_free, 0);
  5091. }
  5092. if (delalloc_lock)
  5093. mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
  5094. return ret;
  5095. }
  5096. /**
  5097. * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
  5098. * @inode: the inode to release the reservation for
  5099. * @num_bytes: the number of bytes we're releasing
  5100. *
  5101. * This will release the metadata reservation for an inode. This can be called
  5102. * once we complete IO for a given set of bytes to release their metadata
  5103. * reservations.
  5104. */
  5105. void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
  5106. {
  5107. struct btrfs_root *root = BTRFS_I(inode)->root;
  5108. u64 to_free = 0;
  5109. unsigned dropped;
  5110. num_bytes = ALIGN(num_bytes, root->sectorsize);
  5111. spin_lock(&BTRFS_I(inode)->lock);
  5112. dropped = drop_outstanding_extent(inode, num_bytes);
  5113. if (num_bytes)
  5114. to_free = calc_csum_metadata_size(inode, num_bytes, 0);
  5115. spin_unlock(&BTRFS_I(inode)->lock);
  5116. if (dropped > 0)
  5117. to_free += btrfs_calc_trans_metadata_size(root, dropped);
  5118. if (btrfs_test_is_dummy_root(root))
  5119. return;
  5120. trace_btrfs_space_reservation(root->fs_info, "delalloc",
  5121. btrfs_ino(inode), to_free, 0);
  5122. btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
  5123. to_free);
  5124. }
  5125. /**
  5126. * btrfs_delalloc_reserve_space - reserve data and metadata space for
  5127. * delalloc
  5128. * @inode: inode we're writing to
  5129. * @start: start range we are writing to
  5130. * @len: how long the range we are writing to
  5131. *
  5132. * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
  5133. *
  5134. * This will do the following things
  5135. *
  5136. * o reserve space in data space info for num bytes
  5137. * and reserve precious corresponding qgroup space
  5138. * (Done in check_data_free_space)
  5139. *
  5140. * o reserve space for metadata space, based on the number of outstanding
  5141. * extents and how much csums will be needed
  5142. * also reserve metadata space in a per root over-reserve method.
  5143. * o add to the inodes->delalloc_bytes
  5144. * o add it to the fs_info's delalloc inodes list.
  5145. * (Above 3 all done in delalloc_reserve_metadata)
  5146. *
  5147. * Return 0 for success
  5148. * Return <0 for error(-ENOSPC or -EQUOT)
  5149. */
  5150. int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
  5151. {
  5152. int ret;
  5153. ret = btrfs_check_data_free_space(inode, start, len);
  5154. if (ret < 0)
  5155. return ret;
  5156. ret = btrfs_delalloc_reserve_metadata(inode, len);
  5157. if (ret < 0)
  5158. btrfs_free_reserved_data_space(inode, start, len);
  5159. return ret;
  5160. }
  5161. /**
  5162. * btrfs_delalloc_release_space - release data and metadata space for delalloc
  5163. * @inode: inode we're releasing space for
  5164. * @start: start position of the space already reserved
  5165. * @len: the len of the space already reserved
  5166. *
  5167. * This must be matched with a call to btrfs_delalloc_reserve_space. This is
  5168. * called in the case that we don't need the metadata AND data reservations
  5169. * anymore. So if there is an error or we insert an inline extent.
  5170. *
  5171. * This function will release the metadata space that was not used and will
  5172. * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
  5173. * list if there are no delalloc bytes left.
  5174. * Also it will handle the qgroup reserved space.
  5175. */
  5176. void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
  5177. {
  5178. btrfs_delalloc_release_metadata(inode, len);
  5179. btrfs_free_reserved_data_space(inode, start, len);
  5180. }
  5181. static int update_block_group(struct btrfs_trans_handle *trans,
  5182. struct btrfs_root *root, u64 bytenr,
  5183. u64 num_bytes, int alloc)
  5184. {
  5185. struct btrfs_block_group_cache *cache = NULL;
  5186. struct btrfs_fs_info *info = root->fs_info;
  5187. u64 total = num_bytes;
  5188. u64 old_val;
  5189. u64 byte_in_group;
  5190. int factor;
  5191. /* block accounting for super block */
  5192. spin_lock(&info->delalloc_root_lock);
  5193. old_val = btrfs_super_bytes_used(info->super_copy);
  5194. if (alloc)
  5195. old_val += num_bytes;
  5196. else
  5197. old_val -= num_bytes;
  5198. btrfs_set_super_bytes_used(info->super_copy, old_val);
  5199. spin_unlock(&info->delalloc_root_lock);
  5200. while (total) {
  5201. cache = btrfs_lookup_block_group(info, bytenr);
  5202. if (!cache)
  5203. return -ENOENT;
  5204. if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
  5205. BTRFS_BLOCK_GROUP_RAID1 |
  5206. BTRFS_BLOCK_GROUP_RAID10))
  5207. factor = 2;
  5208. else
  5209. factor = 1;
  5210. /*
  5211. * If this block group has free space cache written out, we
  5212. * need to make sure to load it if we are removing space. This
  5213. * is because we need the unpinning stage to actually add the
  5214. * space back to the block group, otherwise we will leak space.
  5215. */
  5216. if (!alloc && cache->cached == BTRFS_CACHE_NO)
  5217. cache_block_group(cache, 1);
  5218. byte_in_group = bytenr - cache->key.objectid;
  5219. WARN_ON(byte_in_group > cache->key.offset);
  5220. spin_lock(&cache->space_info->lock);
  5221. spin_lock(&cache->lock);
  5222. if (btrfs_test_opt(root, SPACE_CACHE) &&
  5223. cache->disk_cache_state < BTRFS_DC_CLEAR)
  5224. cache->disk_cache_state = BTRFS_DC_CLEAR;
  5225. old_val = btrfs_block_group_used(&cache->item);
  5226. num_bytes = min(total, cache->key.offset - byte_in_group);
  5227. if (alloc) {
  5228. old_val += num_bytes;
  5229. btrfs_set_block_group_used(&cache->item, old_val);
  5230. cache->reserved -= num_bytes;
  5231. cache->space_info->bytes_reserved -= num_bytes;
  5232. cache->space_info->bytes_used += num_bytes;
  5233. cache->space_info->disk_used += num_bytes * factor;
  5234. spin_unlock(&cache->lock);
  5235. spin_unlock(&cache->space_info->lock);
  5236. } else {
  5237. old_val -= num_bytes;
  5238. btrfs_set_block_group_used(&cache->item, old_val);
  5239. cache->pinned += num_bytes;
  5240. cache->space_info->bytes_pinned += num_bytes;
  5241. cache->space_info->bytes_used -= num_bytes;
  5242. cache->space_info->disk_used -= num_bytes * factor;
  5243. spin_unlock(&cache->lock);
  5244. spin_unlock(&cache->space_info->lock);
  5245. set_extent_dirty(info->pinned_extents,
  5246. bytenr, bytenr + num_bytes - 1,
  5247. GFP_NOFS | __GFP_NOFAIL);
  5248. }
  5249. spin_lock(&trans->transaction->dirty_bgs_lock);
  5250. if (list_empty(&cache->dirty_list)) {
  5251. list_add_tail(&cache->dirty_list,
  5252. &trans->transaction->dirty_bgs);
  5253. trans->transaction->num_dirty_bgs++;
  5254. btrfs_get_block_group(cache);
  5255. }
  5256. spin_unlock(&trans->transaction->dirty_bgs_lock);
  5257. /*
  5258. * No longer have used bytes in this block group, queue it for
  5259. * deletion. We do this after adding the block group to the
  5260. * dirty list to avoid races between cleaner kthread and space
  5261. * cache writeout.
  5262. */
  5263. if (!alloc && old_val == 0) {
  5264. spin_lock(&info->unused_bgs_lock);
  5265. if (list_empty(&cache->bg_list)) {
  5266. btrfs_get_block_group(cache);
  5267. list_add_tail(&cache->bg_list,
  5268. &info->unused_bgs);
  5269. }
  5270. spin_unlock(&info->unused_bgs_lock);
  5271. }
  5272. btrfs_put_block_group(cache);
  5273. total -= num_bytes;
  5274. bytenr += num_bytes;
  5275. }
  5276. return 0;
  5277. }
  5278. static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
  5279. {
  5280. struct btrfs_block_group_cache *cache;
  5281. u64 bytenr;
  5282. spin_lock(&root->fs_info->block_group_cache_lock);
  5283. bytenr = root->fs_info->first_logical_byte;
  5284. spin_unlock(&root->fs_info->block_group_cache_lock);
  5285. if (bytenr < (u64)-1)
  5286. return bytenr;
  5287. cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
  5288. if (!cache)
  5289. return 0;
  5290. bytenr = cache->key.objectid;
  5291. btrfs_put_block_group(cache);
  5292. return bytenr;
  5293. }
  5294. static int pin_down_extent(struct btrfs_root *root,
  5295. struct btrfs_block_group_cache *cache,
  5296. u64 bytenr, u64 num_bytes, int reserved)
  5297. {
  5298. spin_lock(&cache->space_info->lock);
  5299. spin_lock(&cache->lock);
  5300. cache->pinned += num_bytes;
  5301. cache->space_info->bytes_pinned += num_bytes;
  5302. if (reserved) {
  5303. cache->reserved -= num_bytes;
  5304. cache->space_info->bytes_reserved -= num_bytes;
  5305. }
  5306. spin_unlock(&cache->lock);
  5307. spin_unlock(&cache->space_info->lock);
  5308. set_extent_dirty(root->fs_info->pinned_extents, bytenr,
  5309. bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
  5310. if (reserved)
  5311. trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
  5312. return 0;
  5313. }
  5314. /*
  5315. * this function must be called within transaction
  5316. */
  5317. int btrfs_pin_extent(struct btrfs_root *root,
  5318. u64 bytenr, u64 num_bytes, int reserved)
  5319. {
  5320. struct btrfs_block_group_cache *cache;
  5321. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  5322. BUG_ON(!cache); /* Logic error */
  5323. pin_down_extent(root, cache, bytenr, num_bytes, reserved);
  5324. btrfs_put_block_group(cache);
  5325. return 0;
  5326. }
  5327. /*
  5328. * this function must be called within transaction
  5329. */
  5330. int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
  5331. u64 bytenr, u64 num_bytes)
  5332. {
  5333. struct btrfs_block_group_cache *cache;
  5334. int ret;
  5335. cache = btrfs_lookup_block_group(root->fs_info, bytenr);
  5336. if (!cache)
  5337. return -EINVAL;
  5338. /*
  5339. * pull in the free space cache (if any) so that our pin
  5340. * removes the free space from the cache. We have load_only set
  5341. * to one because the slow code to read in the free extents does check
  5342. * the pinned extents.
  5343. */
  5344. cache_block_group(cache, 1);
  5345. pin_down_extent(root, cache, bytenr, num_bytes, 0);
  5346. /* remove us from the free space cache (if we're there at all) */
  5347. ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
  5348. btrfs_put_block_group(cache);
  5349. return ret;
  5350. }
  5351. static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
  5352. {
  5353. int ret;
  5354. struct btrfs_block_group_cache *block_group;
  5355. struct btrfs_caching_control *caching_ctl;
  5356. block_group = btrfs_lookup_block_group(root->fs_info, start);
  5357. if (!block_group)
  5358. return -EINVAL;
  5359. cache_block_group(block_group, 0);
  5360. caching_ctl = get_caching_control(block_group);
  5361. if (!caching_ctl) {
  5362. /* Logic error */
  5363. BUG_ON(!block_group_cache_done(block_group));
  5364. ret = btrfs_remove_free_space(block_group, start, num_bytes);
  5365. } else {
  5366. mutex_lock(&caching_ctl->mutex);
  5367. if (start >= caching_ctl->progress) {
  5368. ret = add_excluded_extent(root, start, num_bytes);
  5369. } else if (start + num_bytes <= caching_ctl->progress) {
  5370. ret = btrfs_remove_free_space(block_group,
  5371. start, num_bytes);
  5372. } else {
  5373. num_bytes = caching_ctl->progress - start;
  5374. ret = btrfs_remove_free_space(block_group,
  5375. start, num_bytes);
  5376. if (ret)
  5377. goto out_lock;
  5378. num_bytes = (start + num_bytes) -
  5379. caching_ctl->progress;
  5380. start = caching_ctl->progress;
  5381. ret = add_excluded_extent(root, start, num_bytes);
  5382. }
  5383. out_lock:
  5384. mutex_unlock(&caching_ctl->mutex);
  5385. put_caching_control(caching_ctl);
  5386. }
  5387. btrfs_put_block_group(block_group);
  5388. return ret;
  5389. }
  5390. int btrfs_exclude_logged_extents(struct btrfs_root *log,
  5391. struct extent_buffer *eb)
  5392. {
  5393. struct btrfs_file_extent_item *item;
  5394. struct btrfs_key key;
  5395. int found_type;
  5396. int i;
  5397. if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
  5398. return 0;
  5399. for (i = 0; i < btrfs_header_nritems(eb); i++) {
  5400. btrfs_item_key_to_cpu(eb, &key, i);
  5401. if (key.type != BTRFS_EXTENT_DATA_KEY)
  5402. continue;
  5403. item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
  5404. found_type = btrfs_file_extent_type(eb, item);
  5405. if (found_type == BTRFS_FILE_EXTENT_INLINE)
  5406. continue;
  5407. if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
  5408. continue;
  5409. key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
  5410. key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
  5411. __exclude_logged_extent(log, key.objectid, key.offset);
  5412. }
  5413. return 0;
  5414. }
  5415. /**
  5416. * btrfs_update_reserved_bytes - update the block_group and space info counters
  5417. * @cache: The cache we are manipulating
  5418. * @num_bytes: The number of bytes in question
  5419. * @reserve: One of the reservation enums
  5420. * @delalloc: The blocks are allocated for the delalloc write
  5421. *
  5422. * This is called by the allocator when it reserves space, or by somebody who is
  5423. * freeing space that was never actually used on disk. For example if you
  5424. * reserve some space for a new leaf in transaction A and before transaction A
  5425. * commits you free that leaf, you call this with reserve set to 0 in order to
  5426. * clear the reservation.
  5427. *
  5428. * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
  5429. * ENOSPC accounting. For data we handle the reservation through clearing the
  5430. * delalloc bits in the io_tree. We have to do this since we could end up
  5431. * allocating less disk space for the amount of data we have reserved in the
  5432. * case of compression.
  5433. *
  5434. * If this is a reservation and the block group has become read only we cannot
  5435. * make the reservation and return -EAGAIN, otherwise this function always
  5436. * succeeds.
  5437. */
  5438. static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
  5439. u64 num_bytes, int reserve, int delalloc)
  5440. {
  5441. struct btrfs_space_info *space_info = cache->space_info;
  5442. int ret = 0;
  5443. spin_lock(&space_info->lock);
  5444. spin_lock(&cache->lock);
  5445. if (reserve != RESERVE_FREE) {
  5446. if (cache->ro) {
  5447. ret = -EAGAIN;
  5448. } else {
  5449. cache->reserved += num_bytes;
  5450. space_info->bytes_reserved += num_bytes;
  5451. if (reserve == RESERVE_ALLOC) {
  5452. trace_btrfs_space_reservation(cache->fs_info,
  5453. "space_info", space_info->flags,
  5454. num_bytes, 0);
  5455. space_info->bytes_may_use -= num_bytes;
  5456. }
  5457. if (delalloc)
  5458. cache->delalloc_bytes += num_bytes;
  5459. }
  5460. } else {
  5461. if (cache->ro)
  5462. space_info->bytes_readonly += num_bytes;
  5463. cache->reserved -= num_bytes;
  5464. space_info->bytes_reserved -= num_bytes;
  5465. if (delalloc)
  5466. cache->delalloc_bytes -= num_bytes;
  5467. }
  5468. spin_unlock(&cache->lock);
  5469. spin_unlock(&space_info->lock);
  5470. return ret;
  5471. }
  5472. void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
  5473. struct btrfs_root *root)
  5474. {
  5475. struct btrfs_fs_info *fs_info = root->fs_info;
  5476. struct btrfs_caching_control *next;
  5477. struct btrfs_caching_control *caching_ctl;
  5478. struct btrfs_block_group_cache *cache;
  5479. down_write(&fs_info->commit_root_sem);
  5480. list_for_each_entry_safe(caching_ctl, next,
  5481. &fs_info->caching_block_groups, list) {
  5482. cache = caching_ctl->block_group;
  5483. if (block_group_cache_done(cache)) {
  5484. cache->last_byte_to_unpin = (u64)-1;
  5485. list_del_init(&caching_ctl->list);
  5486. put_caching_control(caching_ctl);
  5487. } else {
  5488. cache->last_byte_to_unpin = caching_ctl->progress;
  5489. }
  5490. }
  5491. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  5492. fs_info->pinned_extents = &fs_info->freed_extents[1];
  5493. else
  5494. fs_info->pinned_extents = &fs_info->freed_extents[0];
  5495. up_write(&fs_info->commit_root_sem);
  5496. update_global_block_rsv(fs_info);
  5497. }
  5498. /*
  5499. * Returns the free cluster for the given space info and sets empty_cluster to
  5500. * what it should be based on the mount options.
  5501. */
  5502. static struct btrfs_free_cluster *
  5503. fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
  5504. u64 *empty_cluster)
  5505. {
  5506. struct btrfs_free_cluster *ret = NULL;
  5507. bool ssd = btrfs_test_opt(root, SSD);
  5508. *empty_cluster = 0;
  5509. if (btrfs_mixed_space_info(space_info))
  5510. return ret;
  5511. if (ssd)
  5512. *empty_cluster = 2 * 1024 * 1024;
  5513. if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
  5514. ret = &root->fs_info->meta_alloc_cluster;
  5515. if (!ssd)
  5516. *empty_cluster = 64 * 1024;
  5517. } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
  5518. ret = &root->fs_info->data_alloc_cluster;
  5519. }
  5520. return ret;
  5521. }
  5522. static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
  5523. const bool return_free_space)
  5524. {
  5525. struct btrfs_fs_info *fs_info = root->fs_info;
  5526. struct btrfs_block_group_cache *cache = NULL;
  5527. struct btrfs_space_info *space_info;
  5528. struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
  5529. struct btrfs_free_cluster *cluster = NULL;
  5530. u64 len;
  5531. u64 total_unpinned = 0;
  5532. u64 empty_cluster = 0;
  5533. bool readonly;
  5534. while (start <= end) {
  5535. readonly = false;
  5536. if (!cache ||
  5537. start >= cache->key.objectid + cache->key.offset) {
  5538. if (cache)
  5539. btrfs_put_block_group(cache);
  5540. total_unpinned = 0;
  5541. cache = btrfs_lookup_block_group(fs_info, start);
  5542. BUG_ON(!cache); /* Logic error */
  5543. cluster = fetch_cluster_info(root,
  5544. cache->space_info,
  5545. &empty_cluster);
  5546. empty_cluster <<= 1;
  5547. }
  5548. len = cache->key.objectid + cache->key.offset - start;
  5549. len = min(len, end + 1 - start);
  5550. if (start < cache->last_byte_to_unpin) {
  5551. len = min(len, cache->last_byte_to_unpin - start);
  5552. if (return_free_space)
  5553. btrfs_add_free_space(cache, start, len);
  5554. }
  5555. start += len;
  5556. total_unpinned += len;
  5557. space_info = cache->space_info;
  5558. /*
  5559. * If this space cluster has been marked as fragmented and we've
  5560. * unpinned enough in this block group to potentially allow a
  5561. * cluster to be created inside of it go ahead and clear the
  5562. * fragmented check.
  5563. */
  5564. if (cluster && cluster->fragmented &&
  5565. total_unpinned > empty_cluster) {
  5566. spin_lock(&cluster->lock);
  5567. cluster->fragmented = 0;
  5568. spin_unlock(&cluster->lock);
  5569. }
  5570. spin_lock(&space_info->lock);
  5571. spin_lock(&cache->lock);
  5572. cache->pinned -= len;
  5573. space_info->bytes_pinned -= len;
  5574. space_info->max_extent_size = 0;
  5575. percpu_counter_add(&space_info->total_bytes_pinned, -len);
  5576. if (cache->ro) {
  5577. space_info->bytes_readonly += len;
  5578. readonly = true;
  5579. }
  5580. spin_unlock(&cache->lock);
  5581. if (!readonly && global_rsv->space_info == space_info) {
  5582. spin_lock(&global_rsv->lock);
  5583. if (!global_rsv->full) {
  5584. len = min(len, global_rsv->size -
  5585. global_rsv->reserved);
  5586. global_rsv->reserved += len;
  5587. space_info->bytes_may_use += len;
  5588. if (global_rsv->reserved >= global_rsv->size)
  5589. global_rsv->full = 1;
  5590. }
  5591. spin_unlock(&global_rsv->lock);
  5592. }
  5593. spin_unlock(&space_info->lock);
  5594. }
  5595. if (cache)
  5596. btrfs_put_block_group(cache);
  5597. return 0;
  5598. }
  5599. int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
  5600. struct btrfs_root *root)
  5601. {
  5602. struct btrfs_fs_info *fs_info = root->fs_info;
  5603. struct btrfs_block_group_cache *block_group, *tmp;
  5604. struct list_head *deleted_bgs;
  5605. struct extent_io_tree *unpin;
  5606. u64 start;
  5607. u64 end;
  5608. int ret;
  5609. if (fs_info->pinned_extents == &fs_info->freed_extents[0])
  5610. unpin = &fs_info->freed_extents[1];
  5611. else
  5612. unpin = &fs_info->freed_extents[0];
  5613. while (!trans->aborted) {
  5614. mutex_lock(&fs_info->unused_bg_unpin_mutex);
  5615. ret = find_first_extent_bit(unpin, 0, &start, &end,
  5616. EXTENT_DIRTY, NULL);
  5617. if (ret) {
  5618. mutex_unlock(&fs_info->unused_bg_unpin_mutex);
  5619. break;
  5620. }
  5621. if (btrfs_test_opt(root, DISCARD))
  5622. ret = btrfs_discard_extent(root, start,
  5623. end + 1 - start, NULL);
  5624. clear_extent_dirty(unpin, start, end, GFP_NOFS);
  5625. unpin_extent_range(root, start, end, true);
  5626. mutex_unlock(&fs_info->unused_bg_unpin_mutex);
  5627. cond_resched();
  5628. }
  5629. /*
  5630. * Transaction is finished. We don't need the lock anymore. We
  5631. * do need to clean up the block groups in case of a transaction
  5632. * abort.
  5633. */
  5634. deleted_bgs = &trans->transaction->deleted_bgs;
  5635. list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
  5636. u64 trimmed = 0;
  5637. ret = -EROFS;
  5638. if (!trans->aborted)
  5639. ret = btrfs_discard_extent(root,
  5640. block_group->key.objectid,
  5641. block_group->key.offset,
  5642. &trimmed);
  5643. list_del_init(&block_group->bg_list);
  5644. btrfs_put_block_group_trimming(block_group);
  5645. btrfs_put_block_group(block_group);
  5646. if (ret) {
  5647. const char *errstr = btrfs_decode_error(ret);
  5648. btrfs_warn(fs_info,
  5649. "Discard failed while removing blockgroup: errno=%d %s\n",
  5650. ret, errstr);
  5651. }
  5652. }
  5653. return 0;
  5654. }
  5655. static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
  5656. u64 owner, u64 root_objectid)
  5657. {
  5658. struct btrfs_space_info *space_info;
  5659. u64 flags;
  5660. if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  5661. if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
  5662. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  5663. else
  5664. flags = BTRFS_BLOCK_GROUP_METADATA;
  5665. } else {
  5666. flags = BTRFS_BLOCK_GROUP_DATA;
  5667. }
  5668. space_info = __find_space_info(fs_info, flags);
  5669. BUG_ON(!space_info); /* Logic bug */
  5670. percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
  5671. }
  5672. static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
  5673. struct btrfs_root *root,
  5674. struct btrfs_delayed_ref_node *node, u64 parent,
  5675. u64 root_objectid, u64 owner_objectid,
  5676. u64 owner_offset, int refs_to_drop,
  5677. struct btrfs_delayed_extent_op *extent_op)
  5678. {
  5679. struct btrfs_key key;
  5680. struct btrfs_path *path;
  5681. struct btrfs_fs_info *info = root->fs_info;
  5682. struct btrfs_root *extent_root = info->extent_root;
  5683. struct extent_buffer *leaf;
  5684. struct btrfs_extent_item *ei;
  5685. struct btrfs_extent_inline_ref *iref;
  5686. int ret;
  5687. int is_data;
  5688. int extent_slot = 0;
  5689. int found_extent = 0;
  5690. int num_to_del = 1;
  5691. u32 item_size;
  5692. u64 refs;
  5693. u64 bytenr = node->bytenr;
  5694. u64 num_bytes = node->num_bytes;
  5695. int last_ref = 0;
  5696. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  5697. SKINNY_METADATA);
  5698. path = btrfs_alloc_path();
  5699. if (!path)
  5700. return -ENOMEM;
  5701. path->reada = READA_FORWARD;
  5702. path->leave_spinning = 1;
  5703. is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
  5704. BUG_ON(!is_data && refs_to_drop != 1);
  5705. if (is_data)
  5706. skinny_metadata = 0;
  5707. ret = lookup_extent_backref(trans, extent_root, path, &iref,
  5708. bytenr, num_bytes, parent,
  5709. root_objectid, owner_objectid,
  5710. owner_offset);
  5711. if (ret == 0) {
  5712. extent_slot = path->slots[0];
  5713. while (extent_slot >= 0) {
  5714. btrfs_item_key_to_cpu(path->nodes[0], &key,
  5715. extent_slot);
  5716. if (key.objectid != bytenr)
  5717. break;
  5718. if (key.type == BTRFS_EXTENT_ITEM_KEY &&
  5719. key.offset == num_bytes) {
  5720. found_extent = 1;
  5721. break;
  5722. }
  5723. if (key.type == BTRFS_METADATA_ITEM_KEY &&
  5724. key.offset == owner_objectid) {
  5725. found_extent = 1;
  5726. break;
  5727. }
  5728. if (path->slots[0] - extent_slot > 5)
  5729. break;
  5730. extent_slot--;
  5731. }
  5732. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  5733. item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
  5734. if (found_extent && item_size < sizeof(*ei))
  5735. found_extent = 0;
  5736. #endif
  5737. if (!found_extent) {
  5738. BUG_ON(iref);
  5739. ret = remove_extent_backref(trans, extent_root, path,
  5740. NULL, refs_to_drop,
  5741. is_data, &last_ref);
  5742. if (ret) {
  5743. btrfs_abort_transaction(trans, extent_root, ret);
  5744. goto out;
  5745. }
  5746. btrfs_release_path(path);
  5747. path->leave_spinning = 1;
  5748. key.objectid = bytenr;
  5749. key.type = BTRFS_EXTENT_ITEM_KEY;
  5750. key.offset = num_bytes;
  5751. if (!is_data && skinny_metadata) {
  5752. key.type = BTRFS_METADATA_ITEM_KEY;
  5753. key.offset = owner_objectid;
  5754. }
  5755. ret = btrfs_search_slot(trans, extent_root,
  5756. &key, path, -1, 1);
  5757. if (ret > 0 && skinny_metadata && path->slots[0]) {
  5758. /*
  5759. * Couldn't find our skinny metadata item,
  5760. * see if we have ye olde extent item.
  5761. */
  5762. path->slots[0]--;
  5763. btrfs_item_key_to_cpu(path->nodes[0], &key,
  5764. path->slots[0]);
  5765. if (key.objectid == bytenr &&
  5766. key.type == BTRFS_EXTENT_ITEM_KEY &&
  5767. key.offset == num_bytes)
  5768. ret = 0;
  5769. }
  5770. if (ret > 0 && skinny_metadata) {
  5771. skinny_metadata = false;
  5772. key.objectid = bytenr;
  5773. key.type = BTRFS_EXTENT_ITEM_KEY;
  5774. key.offset = num_bytes;
  5775. btrfs_release_path(path);
  5776. ret = btrfs_search_slot(trans, extent_root,
  5777. &key, path, -1, 1);
  5778. }
  5779. if (ret) {
  5780. btrfs_err(info, "umm, got %d back from search, was looking for %llu",
  5781. ret, bytenr);
  5782. if (ret > 0)
  5783. btrfs_print_leaf(extent_root,
  5784. path->nodes[0]);
  5785. }
  5786. if (ret < 0) {
  5787. btrfs_abort_transaction(trans, extent_root, ret);
  5788. goto out;
  5789. }
  5790. extent_slot = path->slots[0];
  5791. }
  5792. } else if (WARN_ON(ret == -ENOENT)) {
  5793. btrfs_print_leaf(extent_root, path->nodes[0]);
  5794. btrfs_err(info,
  5795. "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
  5796. bytenr, parent, root_objectid, owner_objectid,
  5797. owner_offset);
  5798. btrfs_abort_transaction(trans, extent_root, ret);
  5799. goto out;
  5800. } else {
  5801. btrfs_abort_transaction(trans, extent_root, ret);
  5802. goto out;
  5803. }
  5804. leaf = path->nodes[0];
  5805. item_size = btrfs_item_size_nr(leaf, extent_slot);
  5806. #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
  5807. if (item_size < sizeof(*ei)) {
  5808. BUG_ON(found_extent || extent_slot != path->slots[0]);
  5809. ret = convert_extent_item_v0(trans, extent_root, path,
  5810. owner_objectid, 0);
  5811. if (ret < 0) {
  5812. btrfs_abort_transaction(trans, extent_root, ret);
  5813. goto out;
  5814. }
  5815. btrfs_release_path(path);
  5816. path->leave_spinning = 1;
  5817. key.objectid = bytenr;
  5818. key.type = BTRFS_EXTENT_ITEM_KEY;
  5819. key.offset = num_bytes;
  5820. ret = btrfs_search_slot(trans, extent_root, &key, path,
  5821. -1, 1);
  5822. if (ret) {
  5823. btrfs_err(info, "umm, got %d back from search, was looking for %llu",
  5824. ret, bytenr);
  5825. btrfs_print_leaf(extent_root, path->nodes[0]);
  5826. }
  5827. if (ret < 0) {
  5828. btrfs_abort_transaction(trans, extent_root, ret);
  5829. goto out;
  5830. }
  5831. extent_slot = path->slots[0];
  5832. leaf = path->nodes[0];
  5833. item_size = btrfs_item_size_nr(leaf, extent_slot);
  5834. }
  5835. #endif
  5836. BUG_ON(item_size < sizeof(*ei));
  5837. ei = btrfs_item_ptr(leaf, extent_slot,
  5838. struct btrfs_extent_item);
  5839. if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
  5840. key.type == BTRFS_EXTENT_ITEM_KEY) {
  5841. struct btrfs_tree_block_info *bi;
  5842. BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
  5843. bi = (struct btrfs_tree_block_info *)(ei + 1);
  5844. WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
  5845. }
  5846. refs = btrfs_extent_refs(leaf, ei);
  5847. if (refs < refs_to_drop) {
  5848. btrfs_err(info, "trying to drop %d refs but we only have %Lu "
  5849. "for bytenr %Lu", refs_to_drop, refs, bytenr);
  5850. ret = -EINVAL;
  5851. btrfs_abort_transaction(trans, extent_root, ret);
  5852. goto out;
  5853. }
  5854. refs -= refs_to_drop;
  5855. if (refs > 0) {
  5856. if (extent_op)
  5857. __run_delayed_extent_op(extent_op, leaf, ei);
  5858. /*
  5859. * In the case of inline back ref, reference count will
  5860. * be updated by remove_extent_backref
  5861. */
  5862. if (iref) {
  5863. BUG_ON(!found_extent);
  5864. } else {
  5865. btrfs_set_extent_refs(leaf, ei, refs);
  5866. btrfs_mark_buffer_dirty(leaf);
  5867. }
  5868. if (found_extent) {
  5869. ret = remove_extent_backref(trans, extent_root, path,
  5870. iref, refs_to_drop,
  5871. is_data, &last_ref);
  5872. if (ret) {
  5873. btrfs_abort_transaction(trans, extent_root, ret);
  5874. goto out;
  5875. }
  5876. }
  5877. add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
  5878. root_objectid);
  5879. } else {
  5880. if (found_extent) {
  5881. BUG_ON(is_data && refs_to_drop !=
  5882. extent_data_ref_count(path, iref));
  5883. if (iref) {
  5884. BUG_ON(path->slots[0] != extent_slot);
  5885. } else {
  5886. BUG_ON(path->slots[0] != extent_slot + 1);
  5887. path->slots[0] = extent_slot;
  5888. num_to_del = 2;
  5889. }
  5890. }
  5891. last_ref = 1;
  5892. ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
  5893. num_to_del);
  5894. if (ret) {
  5895. btrfs_abort_transaction(trans, extent_root, ret);
  5896. goto out;
  5897. }
  5898. btrfs_release_path(path);
  5899. if (is_data) {
  5900. ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
  5901. if (ret) {
  5902. btrfs_abort_transaction(trans, extent_root, ret);
  5903. goto out;
  5904. }
  5905. }
  5906. ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
  5907. num_bytes);
  5908. if (ret) {
  5909. btrfs_abort_transaction(trans, extent_root, ret);
  5910. goto out;
  5911. }
  5912. ret = update_block_group(trans, root, bytenr, num_bytes, 0);
  5913. if (ret) {
  5914. btrfs_abort_transaction(trans, extent_root, ret);
  5915. goto out;
  5916. }
  5917. }
  5918. btrfs_release_path(path);
  5919. out:
  5920. btrfs_free_path(path);
  5921. return ret;
  5922. }
  5923. /*
  5924. * when we free an block, it is possible (and likely) that we free the last
  5925. * delayed ref for that extent as well. This searches the delayed ref tree for
  5926. * a given extent, and if there are no other delayed refs to be processed, it
  5927. * removes it from the tree.
  5928. */
  5929. static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
  5930. struct btrfs_root *root, u64 bytenr)
  5931. {
  5932. struct btrfs_delayed_ref_head *head;
  5933. struct btrfs_delayed_ref_root *delayed_refs;
  5934. int ret = 0;
  5935. delayed_refs = &trans->transaction->delayed_refs;
  5936. spin_lock(&delayed_refs->lock);
  5937. head = btrfs_find_delayed_ref_head(trans, bytenr);
  5938. if (!head)
  5939. goto out_delayed_unlock;
  5940. spin_lock(&head->lock);
  5941. if (!list_empty(&head->ref_list))
  5942. goto out;
  5943. if (head->extent_op) {
  5944. if (!head->must_insert_reserved)
  5945. goto out;
  5946. btrfs_free_delayed_extent_op(head->extent_op);
  5947. head->extent_op = NULL;
  5948. }
  5949. /*
  5950. * waiting for the lock here would deadlock. If someone else has it
  5951. * locked they are already in the process of dropping it anyway
  5952. */
  5953. if (!mutex_trylock(&head->mutex))
  5954. goto out;
  5955. /*
  5956. * at this point we have a head with no other entries. Go
  5957. * ahead and process it.
  5958. */
  5959. head->node.in_tree = 0;
  5960. rb_erase(&head->href_node, &delayed_refs->href_root);
  5961. atomic_dec(&delayed_refs->num_entries);
  5962. /*
  5963. * we don't take a ref on the node because we're removing it from the
  5964. * tree, so we just steal the ref the tree was holding.
  5965. */
  5966. delayed_refs->num_heads--;
  5967. if (head->processing == 0)
  5968. delayed_refs->num_heads_ready--;
  5969. head->processing = 0;
  5970. spin_unlock(&head->lock);
  5971. spin_unlock(&delayed_refs->lock);
  5972. BUG_ON(head->extent_op);
  5973. if (head->must_insert_reserved)
  5974. ret = 1;
  5975. mutex_unlock(&head->mutex);
  5976. btrfs_put_delayed_ref(&head->node);
  5977. return ret;
  5978. out:
  5979. spin_unlock(&head->lock);
  5980. out_delayed_unlock:
  5981. spin_unlock(&delayed_refs->lock);
  5982. return 0;
  5983. }
  5984. void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
  5985. struct btrfs_root *root,
  5986. struct extent_buffer *buf,
  5987. u64 parent, int last_ref)
  5988. {
  5989. int pin = 1;
  5990. int ret;
  5991. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  5992. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  5993. buf->start, buf->len,
  5994. parent, root->root_key.objectid,
  5995. btrfs_header_level(buf),
  5996. BTRFS_DROP_DELAYED_REF, NULL);
  5997. BUG_ON(ret); /* -ENOMEM */
  5998. }
  5999. if (!last_ref)
  6000. return;
  6001. if (btrfs_header_generation(buf) == trans->transid) {
  6002. struct btrfs_block_group_cache *cache;
  6003. if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
  6004. ret = check_ref_cleanup(trans, root, buf->start);
  6005. if (!ret)
  6006. goto out;
  6007. }
  6008. cache = btrfs_lookup_block_group(root->fs_info, buf->start);
  6009. if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
  6010. pin_down_extent(root, cache, buf->start, buf->len, 1);
  6011. btrfs_put_block_group(cache);
  6012. goto out;
  6013. }
  6014. WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
  6015. btrfs_add_free_space(cache, buf->start, buf->len);
  6016. btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
  6017. btrfs_put_block_group(cache);
  6018. trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
  6019. pin = 0;
  6020. }
  6021. out:
  6022. if (pin)
  6023. add_pinned_bytes(root->fs_info, buf->len,
  6024. btrfs_header_level(buf),
  6025. root->root_key.objectid);
  6026. /*
  6027. * Deleting the buffer, clear the corrupt flag since it doesn't matter
  6028. * anymore.
  6029. */
  6030. clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
  6031. }
  6032. /* Can return -ENOMEM */
  6033. int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  6034. u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
  6035. u64 owner, u64 offset)
  6036. {
  6037. int ret;
  6038. struct btrfs_fs_info *fs_info = root->fs_info;
  6039. if (btrfs_test_is_dummy_root(root))
  6040. return 0;
  6041. add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
  6042. /*
  6043. * tree log blocks never actually go into the extent allocation
  6044. * tree, just update pinning info and exit early.
  6045. */
  6046. if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
  6047. WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
  6048. /* unlocks the pinned mutex */
  6049. btrfs_pin_extent(root, bytenr, num_bytes, 1);
  6050. ret = 0;
  6051. } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
  6052. ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
  6053. num_bytes,
  6054. parent, root_objectid, (int)owner,
  6055. BTRFS_DROP_DELAYED_REF, NULL);
  6056. } else {
  6057. ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
  6058. num_bytes,
  6059. parent, root_objectid, owner,
  6060. offset, 0,
  6061. BTRFS_DROP_DELAYED_REF, NULL);
  6062. }
  6063. return ret;
  6064. }
  6065. /*
  6066. * when we wait for progress in the block group caching, its because
  6067. * our allocation attempt failed at least once. So, we must sleep
  6068. * and let some progress happen before we try again.
  6069. *
  6070. * This function will sleep at least once waiting for new free space to
  6071. * show up, and then it will check the block group free space numbers
  6072. * for our min num_bytes. Another option is to have it go ahead
  6073. * and look in the rbtree for a free extent of a given size, but this
  6074. * is a good start.
  6075. *
  6076. * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
  6077. * any of the information in this block group.
  6078. */
  6079. static noinline void
  6080. wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
  6081. u64 num_bytes)
  6082. {
  6083. struct btrfs_caching_control *caching_ctl;
  6084. caching_ctl = get_caching_control(cache);
  6085. if (!caching_ctl)
  6086. return;
  6087. wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
  6088. (cache->free_space_ctl->free_space >= num_bytes));
  6089. put_caching_control(caching_ctl);
  6090. }
  6091. static noinline int
  6092. wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
  6093. {
  6094. struct btrfs_caching_control *caching_ctl;
  6095. int ret = 0;
  6096. caching_ctl = get_caching_control(cache);
  6097. if (!caching_ctl)
  6098. return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
  6099. wait_event(caching_ctl->wait, block_group_cache_done(cache));
  6100. if (cache->cached == BTRFS_CACHE_ERROR)
  6101. ret = -EIO;
  6102. put_caching_control(caching_ctl);
  6103. return ret;
  6104. }
  6105. int __get_raid_index(u64 flags)
  6106. {
  6107. if (flags & BTRFS_BLOCK_GROUP_RAID10)
  6108. return BTRFS_RAID_RAID10;
  6109. else if (flags & BTRFS_BLOCK_GROUP_RAID1)
  6110. return BTRFS_RAID_RAID1;
  6111. else if (flags & BTRFS_BLOCK_GROUP_DUP)
  6112. return BTRFS_RAID_DUP;
  6113. else if (flags & BTRFS_BLOCK_GROUP_RAID0)
  6114. return BTRFS_RAID_RAID0;
  6115. else if (flags & BTRFS_BLOCK_GROUP_RAID5)
  6116. return BTRFS_RAID_RAID5;
  6117. else if (flags & BTRFS_BLOCK_GROUP_RAID6)
  6118. return BTRFS_RAID_RAID6;
  6119. return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
  6120. }
  6121. int get_block_group_index(struct btrfs_block_group_cache *cache)
  6122. {
  6123. return __get_raid_index(cache->flags);
  6124. }
  6125. static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
  6126. [BTRFS_RAID_RAID10] = "raid10",
  6127. [BTRFS_RAID_RAID1] = "raid1",
  6128. [BTRFS_RAID_DUP] = "dup",
  6129. [BTRFS_RAID_RAID0] = "raid0",
  6130. [BTRFS_RAID_SINGLE] = "single",
  6131. [BTRFS_RAID_RAID5] = "raid5",
  6132. [BTRFS_RAID_RAID6] = "raid6",
  6133. };
  6134. static const char *get_raid_name(enum btrfs_raid_types type)
  6135. {
  6136. if (type >= BTRFS_NR_RAID_TYPES)
  6137. return NULL;
  6138. return btrfs_raid_type_names[type];
  6139. }
  6140. enum btrfs_loop_type {
  6141. LOOP_CACHING_NOWAIT = 0,
  6142. LOOP_CACHING_WAIT = 1,
  6143. LOOP_ALLOC_CHUNK = 2,
  6144. LOOP_NO_EMPTY_SIZE = 3,
  6145. };
  6146. static inline void
  6147. btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
  6148. int delalloc)
  6149. {
  6150. if (delalloc)
  6151. down_read(&cache->data_rwsem);
  6152. }
  6153. static inline void
  6154. btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
  6155. int delalloc)
  6156. {
  6157. btrfs_get_block_group(cache);
  6158. if (delalloc)
  6159. down_read(&cache->data_rwsem);
  6160. }
  6161. static struct btrfs_block_group_cache *
  6162. btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
  6163. struct btrfs_free_cluster *cluster,
  6164. int delalloc)
  6165. {
  6166. struct btrfs_block_group_cache *used_bg;
  6167. bool locked = false;
  6168. again:
  6169. spin_lock(&cluster->refill_lock);
  6170. if (locked) {
  6171. if (used_bg == cluster->block_group)
  6172. return used_bg;
  6173. up_read(&used_bg->data_rwsem);
  6174. btrfs_put_block_group(used_bg);
  6175. }
  6176. used_bg = cluster->block_group;
  6177. if (!used_bg)
  6178. return NULL;
  6179. if (used_bg == block_group)
  6180. return used_bg;
  6181. btrfs_get_block_group(used_bg);
  6182. if (!delalloc)
  6183. return used_bg;
  6184. if (down_read_trylock(&used_bg->data_rwsem))
  6185. return used_bg;
  6186. spin_unlock(&cluster->refill_lock);
  6187. down_read(&used_bg->data_rwsem);
  6188. locked = true;
  6189. goto again;
  6190. }
  6191. static inline void
  6192. btrfs_release_block_group(struct btrfs_block_group_cache *cache,
  6193. int delalloc)
  6194. {
  6195. if (delalloc)
  6196. up_read(&cache->data_rwsem);
  6197. btrfs_put_block_group(cache);
  6198. }
  6199. /*
  6200. * walks the btree of allocated extents and find a hole of a given size.
  6201. * The key ins is changed to record the hole:
  6202. * ins->objectid == start position
  6203. * ins->flags = BTRFS_EXTENT_ITEM_KEY
  6204. * ins->offset == the size of the hole.
  6205. * Any available blocks before search_start are skipped.
  6206. *
  6207. * If there is no suitable free space, we will record the max size of
  6208. * the free space extent currently.
  6209. */
  6210. static noinline int find_free_extent(struct btrfs_root *orig_root,
  6211. u64 num_bytes, u64 empty_size,
  6212. u64 hint_byte, struct btrfs_key *ins,
  6213. u64 flags, int delalloc)
  6214. {
  6215. int ret = 0;
  6216. struct btrfs_root *root = orig_root->fs_info->extent_root;
  6217. struct btrfs_free_cluster *last_ptr = NULL;
  6218. struct btrfs_block_group_cache *block_group = NULL;
  6219. u64 search_start = 0;
  6220. u64 max_extent_size = 0;
  6221. u64 empty_cluster = 0;
  6222. struct btrfs_space_info *space_info;
  6223. int loop = 0;
  6224. int index = __get_raid_index(flags);
  6225. int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
  6226. RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
  6227. bool failed_cluster_refill = false;
  6228. bool failed_alloc = false;
  6229. bool use_cluster = true;
  6230. bool have_caching_bg = false;
  6231. bool orig_have_caching_bg = false;
  6232. bool full_search = false;
  6233. WARN_ON(num_bytes < root->sectorsize);
  6234. ins->type = BTRFS_EXTENT_ITEM_KEY;
  6235. ins->objectid = 0;
  6236. ins->offset = 0;
  6237. trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
  6238. space_info = __find_space_info(root->fs_info, flags);
  6239. if (!space_info) {
  6240. btrfs_err(root->fs_info, "No space info for %llu", flags);
  6241. return -ENOSPC;
  6242. }
  6243. /*
  6244. * If our free space is heavily fragmented we may not be able to make
  6245. * big contiguous allocations, so instead of doing the expensive search
  6246. * for free space, simply return ENOSPC with our max_extent_size so we
  6247. * can go ahead and search for a more manageable chunk.
  6248. *
  6249. * If our max_extent_size is large enough for our allocation simply
  6250. * disable clustering since we will likely not be able to find enough
  6251. * space to create a cluster and induce latency trying.
  6252. */
  6253. if (unlikely(space_info->max_extent_size)) {
  6254. spin_lock(&space_info->lock);
  6255. if (space_info->max_extent_size &&
  6256. num_bytes > space_info->max_extent_size) {
  6257. ins->offset = space_info->max_extent_size;
  6258. spin_unlock(&space_info->lock);
  6259. return -ENOSPC;
  6260. } else if (space_info->max_extent_size) {
  6261. use_cluster = false;
  6262. }
  6263. spin_unlock(&space_info->lock);
  6264. }
  6265. last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
  6266. if (last_ptr) {
  6267. spin_lock(&last_ptr->lock);
  6268. if (last_ptr->block_group)
  6269. hint_byte = last_ptr->window_start;
  6270. if (last_ptr->fragmented) {
  6271. /*
  6272. * We still set window_start so we can keep track of the
  6273. * last place we found an allocation to try and save
  6274. * some time.
  6275. */
  6276. hint_byte = last_ptr->window_start;
  6277. use_cluster = false;
  6278. }
  6279. spin_unlock(&last_ptr->lock);
  6280. }
  6281. search_start = max(search_start, first_logical_byte(root, 0));
  6282. search_start = max(search_start, hint_byte);
  6283. if (search_start == hint_byte) {
  6284. block_group = btrfs_lookup_block_group(root->fs_info,
  6285. search_start);
  6286. /*
  6287. * we don't want to use the block group if it doesn't match our
  6288. * allocation bits, or if its not cached.
  6289. *
  6290. * However if we are re-searching with an ideal block group
  6291. * picked out then we don't care that the block group is cached.
  6292. */
  6293. if (block_group && block_group_bits(block_group, flags) &&
  6294. block_group->cached != BTRFS_CACHE_NO) {
  6295. down_read(&space_info->groups_sem);
  6296. if (list_empty(&block_group->list) ||
  6297. block_group->ro) {
  6298. /*
  6299. * someone is removing this block group,
  6300. * we can't jump into the have_block_group
  6301. * target because our list pointers are not
  6302. * valid
  6303. */
  6304. btrfs_put_block_group(block_group);
  6305. up_read(&space_info->groups_sem);
  6306. } else {
  6307. index = get_block_group_index(block_group);
  6308. btrfs_lock_block_group(block_group, delalloc);
  6309. goto have_block_group;
  6310. }
  6311. } else if (block_group) {
  6312. btrfs_put_block_group(block_group);
  6313. }
  6314. }
  6315. search:
  6316. have_caching_bg = false;
  6317. if (index == 0 || index == __get_raid_index(flags))
  6318. full_search = true;
  6319. down_read(&space_info->groups_sem);
  6320. list_for_each_entry(block_group, &space_info->block_groups[index],
  6321. list) {
  6322. u64 offset;
  6323. int cached;
  6324. btrfs_grab_block_group(block_group, delalloc);
  6325. search_start = block_group->key.objectid;
  6326. /*
  6327. * this can happen if we end up cycling through all the
  6328. * raid types, but we want to make sure we only allocate
  6329. * for the proper type.
  6330. */
  6331. if (!block_group_bits(block_group, flags)) {
  6332. u64 extra = BTRFS_BLOCK_GROUP_DUP |
  6333. BTRFS_BLOCK_GROUP_RAID1 |
  6334. BTRFS_BLOCK_GROUP_RAID5 |
  6335. BTRFS_BLOCK_GROUP_RAID6 |
  6336. BTRFS_BLOCK_GROUP_RAID10;
  6337. /*
  6338. * if they asked for extra copies and this block group
  6339. * doesn't provide them, bail. This does allow us to
  6340. * fill raid0 from raid1.
  6341. */
  6342. if ((flags & extra) && !(block_group->flags & extra))
  6343. goto loop;
  6344. }
  6345. have_block_group:
  6346. cached = block_group_cache_done(block_group);
  6347. if (unlikely(!cached)) {
  6348. have_caching_bg = true;
  6349. ret = cache_block_group(block_group, 0);
  6350. BUG_ON(ret < 0);
  6351. ret = 0;
  6352. }
  6353. if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
  6354. goto loop;
  6355. if (unlikely(block_group->ro))
  6356. goto loop;
  6357. /*
  6358. * Ok we want to try and use the cluster allocator, so
  6359. * lets look there
  6360. */
  6361. if (last_ptr && use_cluster) {
  6362. struct btrfs_block_group_cache *used_block_group;
  6363. unsigned long aligned_cluster;
  6364. /*
  6365. * the refill lock keeps out other
  6366. * people trying to start a new cluster
  6367. */
  6368. used_block_group = btrfs_lock_cluster(block_group,
  6369. last_ptr,
  6370. delalloc);
  6371. if (!used_block_group)
  6372. goto refill_cluster;
  6373. if (used_block_group != block_group &&
  6374. (used_block_group->ro ||
  6375. !block_group_bits(used_block_group, flags)))
  6376. goto release_cluster;
  6377. offset = btrfs_alloc_from_cluster(used_block_group,
  6378. last_ptr,
  6379. num_bytes,
  6380. used_block_group->key.objectid,
  6381. &max_extent_size);
  6382. if (offset) {
  6383. /* we have a block, we're done */
  6384. spin_unlock(&last_ptr->refill_lock);
  6385. trace_btrfs_reserve_extent_cluster(root,
  6386. used_block_group,
  6387. search_start, num_bytes);
  6388. if (used_block_group != block_group) {
  6389. btrfs_release_block_group(block_group,
  6390. delalloc);
  6391. block_group = used_block_group;
  6392. }
  6393. goto checks;
  6394. }
  6395. WARN_ON(last_ptr->block_group != used_block_group);
  6396. release_cluster:
  6397. /* If we are on LOOP_NO_EMPTY_SIZE, we can't
  6398. * set up a new clusters, so lets just skip it
  6399. * and let the allocator find whatever block
  6400. * it can find. If we reach this point, we
  6401. * will have tried the cluster allocator
  6402. * plenty of times and not have found
  6403. * anything, so we are likely way too
  6404. * fragmented for the clustering stuff to find
  6405. * anything.
  6406. *
  6407. * However, if the cluster is taken from the
  6408. * current block group, release the cluster
  6409. * first, so that we stand a better chance of
  6410. * succeeding in the unclustered
  6411. * allocation. */
  6412. if (loop >= LOOP_NO_EMPTY_SIZE &&
  6413. used_block_group != block_group) {
  6414. spin_unlock(&last_ptr->refill_lock);
  6415. btrfs_release_block_group(used_block_group,
  6416. delalloc);
  6417. goto unclustered_alloc;
  6418. }
  6419. /*
  6420. * this cluster didn't work out, free it and
  6421. * start over
  6422. */
  6423. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  6424. if (used_block_group != block_group)
  6425. btrfs_release_block_group(used_block_group,
  6426. delalloc);
  6427. refill_cluster:
  6428. if (loop >= LOOP_NO_EMPTY_SIZE) {
  6429. spin_unlock(&last_ptr->refill_lock);
  6430. goto unclustered_alloc;
  6431. }
  6432. aligned_cluster = max_t(unsigned long,
  6433. empty_cluster + empty_size,
  6434. block_group->full_stripe_len);
  6435. /* allocate a cluster in this block group */
  6436. ret = btrfs_find_space_cluster(root, block_group,
  6437. last_ptr, search_start,
  6438. num_bytes,
  6439. aligned_cluster);
  6440. if (ret == 0) {
  6441. /*
  6442. * now pull our allocation out of this
  6443. * cluster
  6444. */
  6445. offset = btrfs_alloc_from_cluster(block_group,
  6446. last_ptr,
  6447. num_bytes,
  6448. search_start,
  6449. &max_extent_size);
  6450. if (offset) {
  6451. /* we found one, proceed */
  6452. spin_unlock(&last_ptr->refill_lock);
  6453. trace_btrfs_reserve_extent_cluster(root,
  6454. block_group, search_start,
  6455. num_bytes);
  6456. goto checks;
  6457. }
  6458. } else if (!cached && loop > LOOP_CACHING_NOWAIT
  6459. && !failed_cluster_refill) {
  6460. spin_unlock(&last_ptr->refill_lock);
  6461. failed_cluster_refill = true;
  6462. wait_block_group_cache_progress(block_group,
  6463. num_bytes + empty_cluster + empty_size);
  6464. goto have_block_group;
  6465. }
  6466. /*
  6467. * at this point we either didn't find a cluster
  6468. * or we weren't able to allocate a block from our
  6469. * cluster. Free the cluster we've been trying
  6470. * to use, and go to the next block group
  6471. */
  6472. btrfs_return_cluster_to_free_space(NULL, last_ptr);
  6473. spin_unlock(&last_ptr->refill_lock);
  6474. goto loop;
  6475. }
  6476. unclustered_alloc:
  6477. /*
  6478. * We are doing an unclustered alloc, set the fragmented flag so
  6479. * we don't bother trying to setup a cluster again until we get
  6480. * more space.
  6481. */
  6482. if (unlikely(last_ptr)) {
  6483. spin_lock(&last_ptr->lock);
  6484. last_ptr->fragmented = 1;
  6485. spin_unlock(&last_ptr->lock);
  6486. }
  6487. spin_lock(&block_group->free_space_ctl->tree_lock);
  6488. if (cached &&
  6489. block_group->free_space_ctl->free_space <
  6490. num_bytes + empty_cluster + empty_size) {
  6491. if (block_group->free_space_ctl->free_space >
  6492. max_extent_size)
  6493. max_extent_size =
  6494. block_group->free_space_ctl->free_space;
  6495. spin_unlock(&block_group->free_space_ctl->tree_lock);
  6496. goto loop;
  6497. }
  6498. spin_unlock(&block_group->free_space_ctl->tree_lock);
  6499. offset = btrfs_find_space_for_alloc(block_group, search_start,
  6500. num_bytes, empty_size,
  6501. &max_extent_size);
  6502. /*
  6503. * If we didn't find a chunk, and we haven't failed on this
  6504. * block group before, and this block group is in the middle of
  6505. * caching and we are ok with waiting, then go ahead and wait
  6506. * for progress to be made, and set failed_alloc to true.
  6507. *
  6508. * If failed_alloc is true then we've already waited on this
  6509. * block group once and should move on to the next block group.
  6510. */
  6511. if (!offset && !failed_alloc && !cached &&
  6512. loop > LOOP_CACHING_NOWAIT) {
  6513. wait_block_group_cache_progress(block_group,
  6514. num_bytes + empty_size);
  6515. failed_alloc = true;
  6516. goto have_block_group;
  6517. } else if (!offset) {
  6518. goto loop;
  6519. }
  6520. checks:
  6521. search_start = ALIGN(offset, root->stripesize);
  6522. /* move on to the next group */
  6523. if (search_start + num_bytes >
  6524. block_group->key.objectid + block_group->key.offset) {
  6525. btrfs_add_free_space(block_group, offset, num_bytes);
  6526. goto loop;
  6527. }
  6528. if (offset < search_start)
  6529. btrfs_add_free_space(block_group, offset,
  6530. search_start - offset);
  6531. BUG_ON(offset > search_start);
  6532. ret = btrfs_update_reserved_bytes(block_group, num_bytes,
  6533. alloc_type, delalloc);
  6534. if (ret == -EAGAIN) {
  6535. btrfs_add_free_space(block_group, offset, num_bytes);
  6536. goto loop;
  6537. }
  6538. /* we are all good, lets return */
  6539. ins->objectid = search_start;
  6540. ins->offset = num_bytes;
  6541. trace_btrfs_reserve_extent(orig_root, block_group,
  6542. search_start, num_bytes);
  6543. btrfs_release_block_group(block_group, delalloc);
  6544. break;
  6545. loop:
  6546. failed_cluster_refill = false;
  6547. failed_alloc = false;
  6548. BUG_ON(index != get_block_group_index(block_group));
  6549. btrfs_release_block_group(block_group, delalloc);
  6550. }
  6551. up_read(&space_info->groups_sem);
  6552. if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
  6553. && !orig_have_caching_bg)
  6554. orig_have_caching_bg = true;
  6555. if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
  6556. goto search;
  6557. if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
  6558. goto search;
  6559. /*
  6560. * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
  6561. * caching kthreads as we move along
  6562. * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
  6563. * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
  6564. * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
  6565. * again
  6566. */
  6567. if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
  6568. index = 0;
  6569. if (loop == LOOP_CACHING_NOWAIT) {
  6570. /*
  6571. * We want to skip the LOOP_CACHING_WAIT step if we
  6572. * don't have any unached bgs and we've alrelady done a
  6573. * full search through.
  6574. */
  6575. if (orig_have_caching_bg || !full_search)
  6576. loop = LOOP_CACHING_WAIT;
  6577. else
  6578. loop = LOOP_ALLOC_CHUNK;
  6579. } else {
  6580. loop++;
  6581. }
  6582. if (loop == LOOP_ALLOC_CHUNK) {
  6583. struct btrfs_trans_handle *trans;
  6584. int exist = 0;
  6585. trans = current->journal_info;
  6586. if (trans)
  6587. exist = 1;
  6588. else
  6589. trans = btrfs_join_transaction(root);
  6590. if (IS_ERR(trans)) {
  6591. ret = PTR_ERR(trans);
  6592. goto out;
  6593. }
  6594. ret = do_chunk_alloc(trans, root, flags,
  6595. CHUNK_ALLOC_FORCE);
  6596. /*
  6597. * If we can't allocate a new chunk we've already looped
  6598. * through at least once, move on to the NO_EMPTY_SIZE
  6599. * case.
  6600. */
  6601. if (ret == -ENOSPC)
  6602. loop = LOOP_NO_EMPTY_SIZE;
  6603. /*
  6604. * Do not bail out on ENOSPC since we
  6605. * can do more things.
  6606. */
  6607. if (ret < 0 && ret != -ENOSPC)
  6608. btrfs_abort_transaction(trans,
  6609. root, ret);
  6610. else
  6611. ret = 0;
  6612. if (!exist)
  6613. btrfs_end_transaction(trans, root);
  6614. if (ret)
  6615. goto out;
  6616. }
  6617. if (loop == LOOP_NO_EMPTY_SIZE) {
  6618. /*
  6619. * Don't loop again if we already have no empty_size and
  6620. * no empty_cluster.
  6621. */
  6622. if (empty_size == 0 &&
  6623. empty_cluster == 0) {
  6624. ret = -ENOSPC;
  6625. goto out;
  6626. }
  6627. empty_size = 0;
  6628. empty_cluster = 0;
  6629. }
  6630. goto search;
  6631. } else if (!ins->objectid) {
  6632. ret = -ENOSPC;
  6633. } else if (ins->objectid) {
  6634. if (!use_cluster && last_ptr) {
  6635. spin_lock(&last_ptr->lock);
  6636. last_ptr->window_start = ins->objectid;
  6637. spin_unlock(&last_ptr->lock);
  6638. }
  6639. ret = 0;
  6640. }
  6641. out:
  6642. if (ret == -ENOSPC) {
  6643. spin_lock(&space_info->lock);
  6644. space_info->max_extent_size = max_extent_size;
  6645. spin_unlock(&space_info->lock);
  6646. ins->offset = max_extent_size;
  6647. }
  6648. return ret;
  6649. }
  6650. static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
  6651. int dump_block_groups)
  6652. {
  6653. struct btrfs_block_group_cache *cache;
  6654. int index = 0;
  6655. spin_lock(&info->lock);
  6656. printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
  6657. info->flags,
  6658. info->total_bytes - info->bytes_used - info->bytes_pinned -
  6659. info->bytes_reserved - info->bytes_readonly,
  6660. (info->full) ? "" : "not ");
  6661. printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
  6662. "reserved=%llu, may_use=%llu, readonly=%llu\n",
  6663. info->total_bytes, info->bytes_used, info->bytes_pinned,
  6664. info->bytes_reserved, info->bytes_may_use,
  6665. info->bytes_readonly);
  6666. spin_unlock(&info->lock);
  6667. if (!dump_block_groups)
  6668. return;
  6669. down_read(&info->groups_sem);
  6670. again:
  6671. list_for_each_entry(cache, &info->block_groups[index], list) {
  6672. spin_lock(&cache->lock);
  6673. printk(KERN_INFO "BTRFS: "
  6674. "block group %llu has %llu bytes, "
  6675. "%llu used %llu pinned %llu reserved %s\n",
  6676. cache->key.objectid, cache->key.offset,
  6677. btrfs_block_group_used(&cache->item), cache->pinned,
  6678. cache->reserved, cache->ro ? "[readonly]" : "");
  6679. btrfs_dump_free_space(cache, bytes);
  6680. spin_unlock(&cache->lock);
  6681. }
  6682. if (++index < BTRFS_NR_RAID_TYPES)
  6683. goto again;
  6684. up_read(&info->groups_sem);
  6685. }
  6686. int btrfs_reserve_extent(struct btrfs_root *root,
  6687. u64 num_bytes, u64 min_alloc_size,
  6688. u64 empty_size, u64 hint_byte,
  6689. struct btrfs_key *ins, int is_data, int delalloc)
  6690. {
  6691. bool final_tried = num_bytes == min_alloc_size;
  6692. u64 flags;
  6693. int ret;
  6694. flags = btrfs_get_alloc_profile(root, is_data);
  6695. again:
  6696. WARN_ON(num_bytes < root->sectorsize);
  6697. ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
  6698. flags, delalloc);
  6699. if (ret == -ENOSPC) {
  6700. if (!final_tried && ins->offset) {
  6701. num_bytes = min(num_bytes >> 1, ins->offset);
  6702. num_bytes = round_down(num_bytes, root->sectorsize);
  6703. num_bytes = max(num_bytes, min_alloc_size);
  6704. if (num_bytes == min_alloc_size)
  6705. final_tried = true;
  6706. goto again;
  6707. } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  6708. struct btrfs_space_info *sinfo;
  6709. sinfo = __find_space_info(root->fs_info, flags);
  6710. btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
  6711. flags, num_bytes);
  6712. if (sinfo)
  6713. dump_space_info(sinfo, num_bytes, 1);
  6714. }
  6715. }
  6716. return ret;
  6717. }
  6718. static int __btrfs_free_reserved_extent(struct btrfs_root *root,
  6719. u64 start, u64 len,
  6720. int pin, int delalloc)
  6721. {
  6722. struct btrfs_block_group_cache *cache;
  6723. int ret = 0;
  6724. cache = btrfs_lookup_block_group(root->fs_info, start);
  6725. if (!cache) {
  6726. btrfs_err(root->fs_info, "Unable to find block group for %llu",
  6727. start);
  6728. return -ENOSPC;
  6729. }
  6730. if (pin)
  6731. pin_down_extent(root, cache, start, len, 1);
  6732. else {
  6733. if (btrfs_test_opt(root, DISCARD))
  6734. ret = btrfs_discard_extent(root, start, len, NULL);
  6735. btrfs_add_free_space(cache, start, len);
  6736. btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
  6737. }
  6738. btrfs_put_block_group(cache);
  6739. trace_btrfs_reserved_extent_free(root, start, len);
  6740. return ret;
  6741. }
  6742. int btrfs_free_reserved_extent(struct btrfs_root *root,
  6743. u64 start, u64 len, int delalloc)
  6744. {
  6745. return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
  6746. }
  6747. int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
  6748. u64 start, u64 len)
  6749. {
  6750. return __btrfs_free_reserved_extent(root, start, len, 1, 0);
  6751. }
  6752. static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  6753. struct btrfs_root *root,
  6754. u64 parent, u64 root_objectid,
  6755. u64 flags, u64 owner, u64 offset,
  6756. struct btrfs_key *ins, int ref_mod)
  6757. {
  6758. int ret;
  6759. struct btrfs_fs_info *fs_info = root->fs_info;
  6760. struct btrfs_extent_item *extent_item;
  6761. struct btrfs_extent_inline_ref *iref;
  6762. struct btrfs_path *path;
  6763. struct extent_buffer *leaf;
  6764. int type;
  6765. u32 size;
  6766. if (parent > 0)
  6767. type = BTRFS_SHARED_DATA_REF_KEY;
  6768. else
  6769. type = BTRFS_EXTENT_DATA_REF_KEY;
  6770. size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
  6771. path = btrfs_alloc_path();
  6772. if (!path)
  6773. return -ENOMEM;
  6774. path->leave_spinning = 1;
  6775. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  6776. ins, size);
  6777. if (ret) {
  6778. btrfs_free_path(path);
  6779. return ret;
  6780. }
  6781. leaf = path->nodes[0];
  6782. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  6783. struct btrfs_extent_item);
  6784. btrfs_set_extent_refs(leaf, extent_item, ref_mod);
  6785. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  6786. btrfs_set_extent_flags(leaf, extent_item,
  6787. flags | BTRFS_EXTENT_FLAG_DATA);
  6788. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  6789. btrfs_set_extent_inline_ref_type(leaf, iref, type);
  6790. if (parent > 0) {
  6791. struct btrfs_shared_data_ref *ref;
  6792. ref = (struct btrfs_shared_data_ref *)(iref + 1);
  6793. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  6794. btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
  6795. } else {
  6796. struct btrfs_extent_data_ref *ref;
  6797. ref = (struct btrfs_extent_data_ref *)(&iref->offset);
  6798. btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
  6799. btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
  6800. btrfs_set_extent_data_ref_offset(leaf, ref, offset);
  6801. btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
  6802. }
  6803. btrfs_mark_buffer_dirty(path->nodes[0]);
  6804. btrfs_free_path(path);
  6805. ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
  6806. ins->offset);
  6807. if (ret)
  6808. return ret;
  6809. ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
  6810. if (ret) { /* -ENOENT, logic error */
  6811. btrfs_err(fs_info, "update block group failed for %llu %llu",
  6812. ins->objectid, ins->offset);
  6813. BUG();
  6814. }
  6815. trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
  6816. return ret;
  6817. }
  6818. static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
  6819. struct btrfs_root *root,
  6820. u64 parent, u64 root_objectid,
  6821. u64 flags, struct btrfs_disk_key *key,
  6822. int level, struct btrfs_key *ins)
  6823. {
  6824. int ret;
  6825. struct btrfs_fs_info *fs_info = root->fs_info;
  6826. struct btrfs_extent_item *extent_item;
  6827. struct btrfs_tree_block_info *block_info;
  6828. struct btrfs_extent_inline_ref *iref;
  6829. struct btrfs_path *path;
  6830. struct extent_buffer *leaf;
  6831. u32 size = sizeof(*extent_item) + sizeof(*iref);
  6832. u64 num_bytes = ins->offset;
  6833. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  6834. SKINNY_METADATA);
  6835. if (!skinny_metadata)
  6836. size += sizeof(*block_info);
  6837. path = btrfs_alloc_path();
  6838. if (!path) {
  6839. btrfs_free_and_pin_reserved_extent(root, ins->objectid,
  6840. root->nodesize);
  6841. return -ENOMEM;
  6842. }
  6843. path->leave_spinning = 1;
  6844. ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
  6845. ins, size);
  6846. if (ret) {
  6847. btrfs_free_path(path);
  6848. btrfs_free_and_pin_reserved_extent(root, ins->objectid,
  6849. root->nodesize);
  6850. return ret;
  6851. }
  6852. leaf = path->nodes[0];
  6853. extent_item = btrfs_item_ptr(leaf, path->slots[0],
  6854. struct btrfs_extent_item);
  6855. btrfs_set_extent_refs(leaf, extent_item, 1);
  6856. btrfs_set_extent_generation(leaf, extent_item, trans->transid);
  6857. btrfs_set_extent_flags(leaf, extent_item,
  6858. flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
  6859. if (skinny_metadata) {
  6860. iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
  6861. num_bytes = root->nodesize;
  6862. } else {
  6863. block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
  6864. btrfs_set_tree_block_key(leaf, block_info, key);
  6865. btrfs_set_tree_block_level(leaf, block_info, level);
  6866. iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
  6867. }
  6868. if (parent > 0) {
  6869. BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
  6870. btrfs_set_extent_inline_ref_type(leaf, iref,
  6871. BTRFS_SHARED_BLOCK_REF_KEY);
  6872. btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
  6873. } else {
  6874. btrfs_set_extent_inline_ref_type(leaf, iref,
  6875. BTRFS_TREE_BLOCK_REF_KEY);
  6876. btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
  6877. }
  6878. btrfs_mark_buffer_dirty(leaf);
  6879. btrfs_free_path(path);
  6880. ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
  6881. num_bytes);
  6882. if (ret)
  6883. return ret;
  6884. ret = update_block_group(trans, root, ins->objectid, root->nodesize,
  6885. 1);
  6886. if (ret) { /* -ENOENT, logic error */
  6887. btrfs_err(fs_info, "update block group failed for %llu %llu",
  6888. ins->objectid, ins->offset);
  6889. BUG();
  6890. }
  6891. trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
  6892. return ret;
  6893. }
  6894. int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
  6895. struct btrfs_root *root,
  6896. u64 root_objectid, u64 owner,
  6897. u64 offset, u64 ram_bytes,
  6898. struct btrfs_key *ins)
  6899. {
  6900. int ret;
  6901. BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
  6902. ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
  6903. ins->offset, 0,
  6904. root_objectid, owner, offset,
  6905. ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
  6906. NULL);
  6907. return ret;
  6908. }
  6909. /*
  6910. * this is used by the tree logging recovery code. It records that
  6911. * an extent has been allocated and makes sure to clear the free
  6912. * space cache bits as well
  6913. */
  6914. int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
  6915. struct btrfs_root *root,
  6916. u64 root_objectid, u64 owner, u64 offset,
  6917. struct btrfs_key *ins)
  6918. {
  6919. int ret;
  6920. struct btrfs_block_group_cache *block_group;
  6921. /*
  6922. * Mixed block groups will exclude before processing the log so we only
  6923. * need to do the exlude dance if this fs isn't mixed.
  6924. */
  6925. if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
  6926. ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
  6927. if (ret)
  6928. return ret;
  6929. }
  6930. block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
  6931. if (!block_group)
  6932. return -EINVAL;
  6933. ret = btrfs_update_reserved_bytes(block_group, ins->offset,
  6934. RESERVE_ALLOC_NO_ACCOUNT, 0);
  6935. BUG_ON(ret); /* logic error */
  6936. ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
  6937. 0, owner, offset, ins, 1);
  6938. btrfs_put_block_group(block_group);
  6939. return ret;
  6940. }
  6941. static struct extent_buffer *
  6942. btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
  6943. u64 bytenr, int level)
  6944. {
  6945. struct extent_buffer *buf;
  6946. buf = btrfs_find_create_tree_block(root, bytenr);
  6947. if (!buf)
  6948. return ERR_PTR(-ENOMEM);
  6949. btrfs_set_header_generation(buf, trans->transid);
  6950. btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
  6951. btrfs_tree_lock(buf);
  6952. clean_tree_block(trans, root->fs_info, buf);
  6953. clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
  6954. btrfs_set_lock_blocking(buf);
  6955. set_extent_buffer_uptodate(buf);
  6956. if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
  6957. buf->log_index = root->log_transid % 2;
  6958. /*
  6959. * we allow two log transactions at a time, use different
  6960. * EXENT bit to differentiate dirty pages.
  6961. */
  6962. if (buf->log_index == 0)
  6963. set_extent_dirty(&root->dirty_log_pages, buf->start,
  6964. buf->start + buf->len - 1, GFP_NOFS);
  6965. else
  6966. set_extent_new(&root->dirty_log_pages, buf->start,
  6967. buf->start + buf->len - 1, GFP_NOFS);
  6968. } else {
  6969. buf->log_index = -1;
  6970. set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
  6971. buf->start + buf->len - 1, GFP_NOFS);
  6972. }
  6973. trans->blocks_used++;
  6974. /* this returns a buffer locked for blocking */
  6975. return buf;
  6976. }
  6977. static struct btrfs_block_rsv *
  6978. use_block_rsv(struct btrfs_trans_handle *trans,
  6979. struct btrfs_root *root, u32 blocksize)
  6980. {
  6981. struct btrfs_block_rsv *block_rsv;
  6982. struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
  6983. int ret;
  6984. bool global_updated = false;
  6985. block_rsv = get_block_rsv(trans, root);
  6986. if (unlikely(block_rsv->size == 0))
  6987. goto try_reserve;
  6988. again:
  6989. ret = block_rsv_use_bytes(block_rsv, blocksize);
  6990. if (!ret)
  6991. return block_rsv;
  6992. if (block_rsv->failfast)
  6993. return ERR_PTR(ret);
  6994. if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
  6995. global_updated = true;
  6996. update_global_block_rsv(root->fs_info);
  6997. goto again;
  6998. }
  6999. if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  7000. static DEFINE_RATELIMIT_STATE(_rs,
  7001. DEFAULT_RATELIMIT_INTERVAL * 10,
  7002. /*DEFAULT_RATELIMIT_BURST*/ 1);
  7003. if (__ratelimit(&_rs))
  7004. WARN(1, KERN_DEBUG
  7005. "BTRFS: block rsv returned %d\n", ret);
  7006. }
  7007. try_reserve:
  7008. ret = reserve_metadata_bytes(root, block_rsv, blocksize,
  7009. BTRFS_RESERVE_NO_FLUSH);
  7010. if (!ret)
  7011. return block_rsv;
  7012. /*
  7013. * If we couldn't reserve metadata bytes try and use some from
  7014. * the global reserve if its space type is the same as the global
  7015. * reservation.
  7016. */
  7017. if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
  7018. block_rsv->space_info == global_rsv->space_info) {
  7019. ret = block_rsv_use_bytes(global_rsv, blocksize);
  7020. if (!ret)
  7021. return global_rsv;
  7022. }
  7023. return ERR_PTR(ret);
  7024. }
  7025. static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
  7026. struct btrfs_block_rsv *block_rsv, u32 blocksize)
  7027. {
  7028. block_rsv_add_bytes(block_rsv, blocksize, 0);
  7029. block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
  7030. }
  7031. /*
  7032. * finds a free extent and does all the dirty work required for allocation
  7033. * returns the tree buffer or an ERR_PTR on error.
  7034. */
  7035. struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
  7036. struct btrfs_root *root,
  7037. u64 parent, u64 root_objectid,
  7038. struct btrfs_disk_key *key, int level,
  7039. u64 hint, u64 empty_size)
  7040. {
  7041. struct btrfs_key ins;
  7042. struct btrfs_block_rsv *block_rsv;
  7043. struct extent_buffer *buf;
  7044. struct btrfs_delayed_extent_op *extent_op;
  7045. u64 flags = 0;
  7046. int ret;
  7047. u32 blocksize = root->nodesize;
  7048. bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
  7049. SKINNY_METADATA);
  7050. if (btrfs_test_is_dummy_root(root)) {
  7051. buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
  7052. level);
  7053. if (!IS_ERR(buf))
  7054. root->alloc_bytenr += blocksize;
  7055. return buf;
  7056. }
  7057. block_rsv = use_block_rsv(trans, root, blocksize);
  7058. if (IS_ERR(block_rsv))
  7059. return ERR_CAST(block_rsv);
  7060. ret = btrfs_reserve_extent(root, blocksize, blocksize,
  7061. empty_size, hint, &ins, 0, 0);
  7062. if (ret)
  7063. goto out_unuse;
  7064. buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
  7065. if (IS_ERR(buf)) {
  7066. ret = PTR_ERR(buf);
  7067. goto out_free_reserved;
  7068. }
  7069. if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
  7070. if (parent == 0)
  7071. parent = ins.objectid;
  7072. flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
  7073. } else
  7074. BUG_ON(parent > 0);
  7075. if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
  7076. extent_op = btrfs_alloc_delayed_extent_op();
  7077. if (!extent_op) {
  7078. ret = -ENOMEM;
  7079. goto out_free_buf;
  7080. }
  7081. if (key)
  7082. memcpy(&extent_op->key, key, sizeof(extent_op->key));
  7083. else
  7084. memset(&extent_op->key, 0, sizeof(extent_op->key));
  7085. extent_op->flags_to_set = flags;
  7086. extent_op->update_key = skinny_metadata ? false : true;
  7087. extent_op->update_flags = true;
  7088. extent_op->is_data = false;
  7089. extent_op->level = level;
  7090. ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
  7091. ins.objectid, ins.offset,
  7092. parent, root_objectid, level,
  7093. BTRFS_ADD_DELAYED_EXTENT,
  7094. extent_op);
  7095. if (ret)
  7096. goto out_free_delayed;
  7097. }
  7098. return buf;
  7099. out_free_delayed:
  7100. btrfs_free_delayed_extent_op(extent_op);
  7101. out_free_buf:
  7102. free_extent_buffer(buf);
  7103. out_free_reserved:
  7104. btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
  7105. out_unuse:
  7106. unuse_block_rsv(root->fs_info, block_rsv, blocksize);
  7107. return ERR_PTR(ret);
  7108. }
  7109. struct walk_control {
  7110. u64 refs[BTRFS_MAX_LEVEL];
  7111. u64 flags[BTRFS_MAX_LEVEL];
  7112. struct btrfs_key update_progress;
  7113. int stage;
  7114. int level;
  7115. int shared_level;
  7116. int update_ref;
  7117. int keep_locks;
  7118. int reada_slot;
  7119. int reada_count;
  7120. int for_reloc;
  7121. };
  7122. #define DROP_REFERENCE 1
  7123. #define UPDATE_BACKREF 2
  7124. static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
  7125. struct btrfs_root *root,
  7126. struct walk_control *wc,
  7127. struct btrfs_path *path)
  7128. {
  7129. u64 bytenr;
  7130. u64 generation;
  7131. u64 refs;
  7132. u64 flags;
  7133. u32 nritems;
  7134. u32 blocksize;
  7135. struct btrfs_key key;
  7136. struct extent_buffer *eb;
  7137. int ret;
  7138. int slot;
  7139. int nread = 0;
  7140. if (path->slots[wc->level] < wc->reada_slot) {
  7141. wc->reada_count = wc->reada_count * 2 / 3;
  7142. wc->reada_count = max(wc->reada_count, 2);
  7143. } else {
  7144. wc->reada_count = wc->reada_count * 3 / 2;
  7145. wc->reada_count = min_t(int, wc->reada_count,
  7146. BTRFS_NODEPTRS_PER_BLOCK(root));
  7147. }
  7148. eb = path->nodes[wc->level];
  7149. nritems = btrfs_header_nritems(eb);
  7150. blocksize = root->nodesize;
  7151. for (slot = path->slots[wc->level]; slot < nritems; slot++) {
  7152. if (nread >= wc->reada_count)
  7153. break;
  7154. cond_resched();
  7155. bytenr = btrfs_node_blockptr(eb, slot);
  7156. generation = btrfs_node_ptr_generation(eb, slot);
  7157. if (slot == path->slots[wc->level])
  7158. goto reada;
  7159. if (wc->stage == UPDATE_BACKREF &&
  7160. generation <= root->root_key.offset)
  7161. continue;
  7162. /* We don't lock the tree block, it's OK to be racy here */
  7163. ret = btrfs_lookup_extent_info(trans, root, bytenr,
  7164. wc->level - 1, 1, &refs,
  7165. &flags);
  7166. /* We don't care about errors in readahead. */
  7167. if (ret < 0)
  7168. continue;
  7169. BUG_ON(refs == 0);
  7170. if (wc->stage == DROP_REFERENCE) {
  7171. if (refs == 1)
  7172. goto reada;
  7173. if (wc->level == 1 &&
  7174. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  7175. continue;
  7176. if (!wc->update_ref ||
  7177. generation <= root->root_key.offset)
  7178. continue;
  7179. btrfs_node_key_to_cpu(eb, &key, slot);
  7180. ret = btrfs_comp_cpu_keys(&key,
  7181. &wc->update_progress);
  7182. if (ret < 0)
  7183. continue;
  7184. } else {
  7185. if (wc->level == 1 &&
  7186. (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  7187. continue;
  7188. }
  7189. reada:
  7190. readahead_tree_block(root, bytenr);
  7191. nread++;
  7192. }
  7193. wc->reada_slot = slot;
  7194. }
  7195. /*
  7196. * These may not be seen by the usual inc/dec ref code so we have to
  7197. * add them here.
  7198. */
  7199. static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
  7200. struct btrfs_root *root, u64 bytenr,
  7201. u64 num_bytes)
  7202. {
  7203. struct btrfs_qgroup_extent_record *qrecord;
  7204. struct btrfs_delayed_ref_root *delayed_refs;
  7205. qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
  7206. if (!qrecord)
  7207. return -ENOMEM;
  7208. qrecord->bytenr = bytenr;
  7209. qrecord->num_bytes = num_bytes;
  7210. qrecord->old_roots = NULL;
  7211. delayed_refs = &trans->transaction->delayed_refs;
  7212. spin_lock(&delayed_refs->lock);
  7213. if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
  7214. kfree(qrecord);
  7215. spin_unlock(&delayed_refs->lock);
  7216. return 0;
  7217. }
  7218. static int account_leaf_items(struct btrfs_trans_handle *trans,
  7219. struct btrfs_root *root,
  7220. struct extent_buffer *eb)
  7221. {
  7222. int nr = btrfs_header_nritems(eb);
  7223. int i, extent_type, ret;
  7224. struct btrfs_key key;
  7225. struct btrfs_file_extent_item *fi;
  7226. u64 bytenr, num_bytes;
  7227. /* We can be called directly from walk_up_proc() */
  7228. if (!root->fs_info->quota_enabled)
  7229. return 0;
  7230. for (i = 0; i < nr; i++) {
  7231. btrfs_item_key_to_cpu(eb, &key, i);
  7232. if (key.type != BTRFS_EXTENT_DATA_KEY)
  7233. continue;
  7234. fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
  7235. /* filter out non qgroup-accountable extents */
  7236. extent_type = btrfs_file_extent_type(eb, fi);
  7237. if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  7238. continue;
  7239. bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
  7240. if (!bytenr)
  7241. continue;
  7242. num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
  7243. ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
  7244. if (ret)
  7245. return ret;
  7246. }
  7247. return 0;
  7248. }
  7249. /*
  7250. * Walk up the tree from the bottom, freeing leaves and any interior
  7251. * nodes which have had all slots visited. If a node (leaf or
  7252. * interior) is freed, the node above it will have it's slot
  7253. * incremented. The root node will never be freed.
  7254. *
  7255. * At the end of this function, we should have a path which has all
  7256. * slots incremented to the next position for a search. If we need to
  7257. * read a new node it will be NULL and the node above it will have the
  7258. * correct slot selected for a later read.
  7259. *
  7260. * If we increment the root nodes slot counter past the number of
  7261. * elements, 1 is returned to signal completion of the search.
  7262. */
  7263. static int adjust_slots_upwards(struct btrfs_root *root,
  7264. struct btrfs_path *path, int root_level)
  7265. {
  7266. int level = 0;
  7267. int nr, slot;
  7268. struct extent_buffer *eb;
  7269. if (root_level == 0)
  7270. return 1;
  7271. while (level <= root_level) {
  7272. eb = path->nodes[level];
  7273. nr = btrfs_header_nritems(eb);
  7274. path->slots[level]++;
  7275. slot = path->slots[level];
  7276. if (slot >= nr || level == 0) {
  7277. /*
  7278. * Don't free the root - we will detect this
  7279. * condition after our loop and return a
  7280. * positive value for caller to stop walking the tree.
  7281. */
  7282. if (level != root_level) {
  7283. btrfs_tree_unlock_rw(eb, path->locks[level]);
  7284. path->locks[level] = 0;
  7285. free_extent_buffer(eb);
  7286. path->nodes[level] = NULL;
  7287. path->slots[level] = 0;
  7288. }
  7289. } else {
  7290. /*
  7291. * We have a valid slot to walk back down
  7292. * from. Stop here so caller can process these
  7293. * new nodes.
  7294. */
  7295. break;
  7296. }
  7297. level++;
  7298. }
  7299. eb = path->nodes[root_level];
  7300. if (path->slots[root_level] >= btrfs_header_nritems(eb))
  7301. return 1;
  7302. return 0;
  7303. }
  7304. /*
  7305. * root_eb is the subtree root and is locked before this function is called.
  7306. */
  7307. static int account_shared_subtree(struct btrfs_trans_handle *trans,
  7308. struct btrfs_root *root,
  7309. struct extent_buffer *root_eb,
  7310. u64 root_gen,
  7311. int root_level)
  7312. {
  7313. int ret = 0;
  7314. int level;
  7315. struct extent_buffer *eb = root_eb;
  7316. struct btrfs_path *path = NULL;
  7317. BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
  7318. BUG_ON(root_eb == NULL);
  7319. if (!root->fs_info->quota_enabled)
  7320. return 0;
  7321. if (!extent_buffer_uptodate(root_eb)) {
  7322. ret = btrfs_read_buffer(root_eb, root_gen);
  7323. if (ret)
  7324. goto out;
  7325. }
  7326. if (root_level == 0) {
  7327. ret = account_leaf_items(trans, root, root_eb);
  7328. goto out;
  7329. }
  7330. path = btrfs_alloc_path();
  7331. if (!path)
  7332. return -ENOMEM;
  7333. /*
  7334. * Walk down the tree. Missing extent blocks are filled in as
  7335. * we go. Metadata is accounted every time we read a new
  7336. * extent block.
  7337. *
  7338. * When we reach a leaf, we account for file extent items in it,
  7339. * walk back up the tree (adjusting slot pointers as we go)
  7340. * and restart the search process.
  7341. */
  7342. extent_buffer_get(root_eb); /* For path */
  7343. path->nodes[root_level] = root_eb;
  7344. path->slots[root_level] = 0;
  7345. path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
  7346. walk_down:
  7347. level = root_level;
  7348. while (level >= 0) {
  7349. if (path->nodes[level] == NULL) {
  7350. int parent_slot;
  7351. u64 child_gen;
  7352. u64 child_bytenr;
  7353. /* We need to get child blockptr/gen from
  7354. * parent before we can read it. */
  7355. eb = path->nodes[level + 1];
  7356. parent_slot = path->slots[level + 1];
  7357. child_bytenr = btrfs_node_blockptr(eb, parent_slot);
  7358. child_gen = btrfs_node_ptr_generation(eb, parent_slot);
  7359. eb = read_tree_block(root, child_bytenr, child_gen);
  7360. if (IS_ERR(eb)) {
  7361. ret = PTR_ERR(eb);
  7362. goto out;
  7363. } else if (!extent_buffer_uptodate(eb)) {
  7364. free_extent_buffer(eb);
  7365. ret = -EIO;
  7366. goto out;
  7367. }
  7368. path->nodes[level] = eb;
  7369. path->slots[level] = 0;
  7370. btrfs_tree_read_lock(eb);
  7371. btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
  7372. path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
  7373. ret = record_one_subtree_extent(trans, root, child_bytenr,
  7374. root->nodesize);
  7375. if (ret)
  7376. goto out;
  7377. }
  7378. if (level == 0) {
  7379. ret = account_leaf_items(trans, root, path->nodes[level]);
  7380. if (ret)
  7381. goto out;
  7382. /* Nonzero return here means we completed our search */
  7383. ret = adjust_slots_upwards(root, path, root_level);
  7384. if (ret)
  7385. break;
  7386. /* Restart search with new slots */
  7387. goto walk_down;
  7388. }
  7389. level--;
  7390. }
  7391. ret = 0;
  7392. out:
  7393. btrfs_free_path(path);
  7394. return ret;
  7395. }
  7396. /*
  7397. * helper to process tree block while walking down the tree.
  7398. *
  7399. * when wc->stage == UPDATE_BACKREF, this function updates
  7400. * back refs for pointers in the block.
  7401. *
  7402. * NOTE: return value 1 means we should stop walking down.
  7403. */
  7404. static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
  7405. struct btrfs_root *root,
  7406. struct btrfs_path *path,
  7407. struct walk_control *wc, int lookup_info)
  7408. {
  7409. int level = wc->level;
  7410. struct extent_buffer *eb = path->nodes[level];
  7411. u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  7412. int ret;
  7413. if (wc->stage == UPDATE_BACKREF &&
  7414. btrfs_header_owner(eb) != root->root_key.objectid)
  7415. return 1;
  7416. /*
  7417. * when reference count of tree block is 1, it won't increase
  7418. * again. once full backref flag is set, we never clear it.
  7419. */
  7420. if (lookup_info &&
  7421. ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
  7422. (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
  7423. BUG_ON(!path->locks[level]);
  7424. ret = btrfs_lookup_extent_info(trans, root,
  7425. eb->start, level, 1,
  7426. &wc->refs[level],
  7427. &wc->flags[level]);
  7428. BUG_ON(ret == -ENOMEM);
  7429. if (ret)
  7430. return ret;
  7431. BUG_ON(wc->refs[level] == 0);
  7432. }
  7433. if (wc->stage == DROP_REFERENCE) {
  7434. if (wc->refs[level] > 1)
  7435. return 1;
  7436. if (path->locks[level] && !wc->keep_locks) {
  7437. btrfs_tree_unlock_rw(eb, path->locks[level]);
  7438. path->locks[level] = 0;
  7439. }
  7440. return 0;
  7441. }
  7442. /* wc->stage == UPDATE_BACKREF */
  7443. if (!(wc->flags[level] & flag)) {
  7444. BUG_ON(!path->locks[level]);
  7445. ret = btrfs_inc_ref(trans, root, eb, 1);
  7446. BUG_ON(ret); /* -ENOMEM */
  7447. ret = btrfs_dec_ref(trans, root, eb, 0);
  7448. BUG_ON(ret); /* -ENOMEM */
  7449. ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
  7450. eb->len, flag,
  7451. btrfs_header_level(eb), 0);
  7452. BUG_ON(ret); /* -ENOMEM */
  7453. wc->flags[level] |= flag;
  7454. }
  7455. /*
  7456. * the block is shared by multiple trees, so it's not good to
  7457. * keep the tree lock
  7458. */
  7459. if (path->locks[level] && level > 0) {
  7460. btrfs_tree_unlock_rw(eb, path->locks[level]);
  7461. path->locks[level] = 0;
  7462. }
  7463. return 0;
  7464. }
  7465. /*
  7466. * helper to process tree block pointer.
  7467. *
  7468. * when wc->stage == DROP_REFERENCE, this function checks
  7469. * reference count of the block pointed to. if the block
  7470. * is shared and we need update back refs for the subtree
  7471. * rooted at the block, this function changes wc->stage to
  7472. * UPDATE_BACKREF. if the block is shared and there is no
  7473. * need to update back, this function drops the reference
  7474. * to the block.
  7475. *
  7476. * NOTE: return value 1 means we should stop walking down.
  7477. */
  7478. static noinline int do_walk_down(struct btrfs_trans_handle *trans,
  7479. struct btrfs_root *root,
  7480. struct btrfs_path *path,
  7481. struct walk_control *wc, int *lookup_info)
  7482. {
  7483. u64 bytenr;
  7484. u64 generation;
  7485. u64 parent;
  7486. u32 blocksize;
  7487. struct btrfs_key key;
  7488. struct extent_buffer *next;
  7489. int level = wc->level;
  7490. int reada = 0;
  7491. int ret = 0;
  7492. bool need_account = false;
  7493. generation = btrfs_node_ptr_generation(path->nodes[level],
  7494. path->slots[level]);
  7495. /*
  7496. * if the lower level block was created before the snapshot
  7497. * was created, we know there is no need to update back refs
  7498. * for the subtree
  7499. */
  7500. if (wc->stage == UPDATE_BACKREF &&
  7501. generation <= root->root_key.offset) {
  7502. *lookup_info = 1;
  7503. return 1;
  7504. }
  7505. bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
  7506. blocksize = root->nodesize;
  7507. next = btrfs_find_tree_block(root->fs_info, bytenr);
  7508. if (!next) {
  7509. next = btrfs_find_create_tree_block(root, bytenr);
  7510. if (!next)
  7511. return -ENOMEM;
  7512. btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
  7513. level - 1);
  7514. reada = 1;
  7515. }
  7516. btrfs_tree_lock(next);
  7517. btrfs_set_lock_blocking(next);
  7518. ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
  7519. &wc->refs[level - 1],
  7520. &wc->flags[level - 1]);
  7521. if (ret < 0) {
  7522. btrfs_tree_unlock(next);
  7523. return ret;
  7524. }
  7525. if (unlikely(wc->refs[level - 1] == 0)) {
  7526. btrfs_err(root->fs_info, "Missing references.");
  7527. BUG();
  7528. }
  7529. *lookup_info = 0;
  7530. if (wc->stage == DROP_REFERENCE) {
  7531. if (wc->refs[level - 1] > 1) {
  7532. need_account = true;
  7533. if (level == 1 &&
  7534. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  7535. goto skip;
  7536. if (!wc->update_ref ||
  7537. generation <= root->root_key.offset)
  7538. goto skip;
  7539. btrfs_node_key_to_cpu(path->nodes[level], &key,
  7540. path->slots[level]);
  7541. ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
  7542. if (ret < 0)
  7543. goto skip;
  7544. wc->stage = UPDATE_BACKREF;
  7545. wc->shared_level = level - 1;
  7546. }
  7547. } else {
  7548. if (level == 1 &&
  7549. (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
  7550. goto skip;
  7551. }
  7552. if (!btrfs_buffer_uptodate(next, generation, 0)) {
  7553. btrfs_tree_unlock(next);
  7554. free_extent_buffer(next);
  7555. next = NULL;
  7556. *lookup_info = 1;
  7557. }
  7558. if (!next) {
  7559. if (reada && level == 1)
  7560. reada_walk_down(trans, root, wc, path);
  7561. next = read_tree_block(root, bytenr, generation);
  7562. if (IS_ERR(next)) {
  7563. return PTR_ERR(next);
  7564. } else if (!extent_buffer_uptodate(next)) {
  7565. free_extent_buffer(next);
  7566. return -EIO;
  7567. }
  7568. btrfs_tree_lock(next);
  7569. btrfs_set_lock_blocking(next);
  7570. }
  7571. level--;
  7572. BUG_ON(level != btrfs_header_level(next));
  7573. path->nodes[level] = next;
  7574. path->slots[level] = 0;
  7575. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  7576. wc->level = level;
  7577. if (wc->level == 1)
  7578. wc->reada_slot = 0;
  7579. return 0;
  7580. skip:
  7581. wc->refs[level - 1] = 0;
  7582. wc->flags[level - 1] = 0;
  7583. if (wc->stage == DROP_REFERENCE) {
  7584. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
  7585. parent = path->nodes[level]->start;
  7586. } else {
  7587. BUG_ON(root->root_key.objectid !=
  7588. btrfs_header_owner(path->nodes[level]));
  7589. parent = 0;
  7590. }
  7591. if (need_account) {
  7592. ret = account_shared_subtree(trans, root, next,
  7593. generation, level - 1);
  7594. if (ret) {
  7595. btrfs_err_rl(root->fs_info,
  7596. "Error "
  7597. "%d accounting shared subtree. Quota "
  7598. "is out of sync, rescan required.",
  7599. ret);
  7600. }
  7601. }
  7602. ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
  7603. root->root_key.objectid, level - 1, 0);
  7604. BUG_ON(ret); /* -ENOMEM */
  7605. }
  7606. btrfs_tree_unlock(next);
  7607. free_extent_buffer(next);
  7608. *lookup_info = 1;
  7609. return 1;
  7610. }
  7611. /*
  7612. * helper to process tree block while walking up the tree.
  7613. *
  7614. * when wc->stage == DROP_REFERENCE, this function drops
  7615. * reference count on the block.
  7616. *
  7617. * when wc->stage == UPDATE_BACKREF, this function changes
  7618. * wc->stage back to DROP_REFERENCE if we changed wc->stage
  7619. * to UPDATE_BACKREF previously while processing the block.
  7620. *
  7621. * NOTE: return value 1 means we should stop walking up.
  7622. */
  7623. static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
  7624. struct btrfs_root *root,
  7625. struct btrfs_path *path,
  7626. struct walk_control *wc)
  7627. {
  7628. int ret;
  7629. int level = wc->level;
  7630. struct extent_buffer *eb = path->nodes[level];
  7631. u64 parent = 0;
  7632. if (wc->stage == UPDATE_BACKREF) {
  7633. BUG_ON(wc->shared_level < level);
  7634. if (level < wc->shared_level)
  7635. goto out;
  7636. ret = find_next_key(path, level + 1, &wc->update_progress);
  7637. if (ret > 0)
  7638. wc->update_ref = 0;
  7639. wc->stage = DROP_REFERENCE;
  7640. wc->shared_level = -1;
  7641. path->slots[level] = 0;
  7642. /*
  7643. * check reference count again if the block isn't locked.
  7644. * we should start walking down the tree again if reference
  7645. * count is one.
  7646. */
  7647. if (!path->locks[level]) {
  7648. BUG_ON(level == 0);
  7649. btrfs_tree_lock(eb);
  7650. btrfs_set_lock_blocking(eb);
  7651. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  7652. ret = btrfs_lookup_extent_info(trans, root,
  7653. eb->start, level, 1,
  7654. &wc->refs[level],
  7655. &wc->flags[level]);
  7656. if (ret < 0) {
  7657. btrfs_tree_unlock_rw(eb, path->locks[level]);
  7658. path->locks[level] = 0;
  7659. return ret;
  7660. }
  7661. BUG_ON(wc->refs[level] == 0);
  7662. if (wc->refs[level] == 1) {
  7663. btrfs_tree_unlock_rw(eb, path->locks[level]);
  7664. path->locks[level] = 0;
  7665. return 1;
  7666. }
  7667. }
  7668. }
  7669. /* wc->stage == DROP_REFERENCE */
  7670. BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
  7671. if (wc->refs[level] == 1) {
  7672. if (level == 0) {
  7673. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  7674. ret = btrfs_dec_ref(trans, root, eb, 1);
  7675. else
  7676. ret = btrfs_dec_ref(trans, root, eb, 0);
  7677. BUG_ON(ret); /* -ENOMEM */
  7678. ret = account_leaf_items(trans, root, eb);
  7679. if (ret) {
  7680. btrfs_err_rl(root->fs_info,
  7681. "error "
  7682. "%d accounting leaf items. Quota "
  7683. "is out of sync, rescan required.",
  7684. ret);
  7685. }
  7686. }
  7687. /* make block locked assertion in clean_tree_block happy */
  7688. if (!path->locks[level] &&
  7689. btrfs_header_generation(eb) == trans->transid) {
  7690. btrfs_tree_lock(eb);
  7691. btrfs_set_lock_blocking(eb);
  7692. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  7693. }
  7694. clean_tree_block(trans, root->fs_info, eb);
  7695. }
  7696. if (eb == root->node) {
  7697. if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  7698. parent = eb->start;
  7699. else
  7700. BUG_ON(root->root_key.objectid !=
  7701. btrfs_header_owner(eb));
  7702. } else {
  7703. if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
  7704. parent = path->nodes[level + 1]->start;
  7705. else
  7706. BUG_ON(root->root_key.objectid !=
  7707. btrfs_header_owner(path->nodes[level + 1]));
  7708. }
  7709. btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
  7710. out:
  7711. wc->refs[level] = 0;
  7712. wc->flags[level] = 0;
  7713. return 0;
  7714. }
  7715. static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
  7716. struct btrfs_root *root,
  7717. struct btrfs_path *path,
  7718. struct walk_control *wc)
  7719. {
  7720. int level = wc->level;
  7721. int lookup_info = 1;
  7722. int ret;
  7723. while (level >= 0) {
  7724. ret = walk_down_proc(trans, root, path, wc, lookup_info);
  7725. if (ret > 0)
  7726. break;
  7727. if (level == 0)
  7728. break;
  7729. if (path->slots[level] >=
  7730. btrfs_header_nritems(path->nodes[level]))
  7731. break;
  7732. ret = do_walk_down(trans, root, path, wc, &lookup_info);
  7733. if (ret > 0) {
  7734. path->slots[level]++;
  7735. continue;
  7736. } else if (ret < 0)
  7737. return ret;
  7738. level = wc->level;
  7739. }
  7740. return 0;
  7741. }
  7742. static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
  7743. struct btrfs_root *root,
  7744. struct btrfs_path *path,
  7745. struct walk_control *wc, int max_level)
  7746. {
  7747. int level = wc->level;
  7748. int ret;
  7749. path->slots[level] = btrfs_header_nritems(path->nodes[level]);
  7750. while (level < max_level && path->nodes[level]) {
  7751. wc->level = level;
  7752. if (path->slots[level] + 1 <
  7753. btrfs_header_nritems(path->nodes[level])) {
  7754. path->slots[level]++;
  7755. return 0;
  7756. } else {
  7757. ret = walk_up_proc(trans, root, path, wc);
  7758. if (ret > 0)
  7759. return 0;
  7760. if (path->locks[level]) {
  7761. btrfs_tree_unlock_rw(path->nodes[level],
  7762. path->locks[level]);
  7763. path->locks[level] = 0;
  7764. }
  7765. free_extent_buffer(path->nodes[level]);
  7766. path->nodes[level] = NULL;
  7767. level++;
  7768. }
  7769. }
  7770. return 1;
  7771. }
  7772. /*
  7773. * drop a subvolume tree.
  7774. *
  7775. * this function traverses the tree freeing any blocks that only
  7776. * referenced by the tree.
  7777. *
  7778. * when a shared tree block is found. this function decreases its
  7779. * reference count by one. if update_ref is true, this function
  7780. * also make sure backrefs for the shared block and all lower level
  7781. * blocks are properly updated.
  7782. *
  7783. * If called with for_reloc == 0, may exit early with -EAGAIN
  7784. */
  7785. int btrfs_drop_snapshot(struct btrfs_root *root,
  7786. struct btrfs_block_rsv *block_rsv, int update_ref,
  7787. int for_reloc)
  7788. {
  7789. struct btrfs_path *path;
  7790. struct btrfs_trans_handle *trans;
  7791. struct btrfs_root *tree_root = root->fs_info->tree_root;
  7792. struct btrfs_root_item *root_item = &root->root_item;
  7793. struct walk_control *wc;
  7794. struct btrfs_key key;
  7795. int err = 0;
  7796. int ret;
  7797. int level;
  7798. bool root_dropped = false;
  7799. btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
  7800. path = btrfs_alloc_path();
  7801. if (!path) {
  7802. err = -ENOMEM;
  7803. goto out;
  7804. }
  7805. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  7806. if (!wc) {
  7807. btrfs_free_path(path);
  7808. err = -ENOMEM;
  7809. goto out;
  7810. }
  7811. trans = btrfs_start_transaction(tree_root, 0);
  7812. if (IS_ERR(trans)) {
  7813. err = PTR_ERR(trans);
  7814. goto out_free;
  7815. }
  7816. if (block_rsv)
  7817. trans->block_rsv = block_rsv;
  7818. if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
  7819. level = btrfs_header_level(root->node);
  7820. path->nodes[level] = btrfs_lock_root_node(root);
  7821. btrfs_set_lock_blocking(path->nodes[level]);
  7822. path->slots[level] = 0;
  7823. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  7824. memset(&wc->update_progress, 0,
  7825. sizeof(wc->update_progress));
  7826. } else {
  7827. btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
  7828. memcpy(&wc->update_progress, &key,
  7829. sizeof(wc->update_progress));
  7830. level = root_item->drop_level;
  7831. BUG_ON(level == 0);
  7832. path->lowest_level = level;
  7833. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  7834. path->lowest_level = 0;
  7835. if (ret < 0) {
  7836. err = ret;
  7837. goto out_end_trans;
  7838. }
  7839. WARN_ON(ret > 0);
  7840. /*
  7841. * unlock our path, this is safe because only this
  7842. * function is allowed to delete this snapshot
  7843. */
  7844. btrfs_unlock_up_safe(path, 0);
  7845. level = btrfs_header_level(root->node);
  7846. while (1) {
  7847. btrfs_tree_lock(path->nodes[level]);
  7848. btrfs_set_lock_blocking(path->nodes[level]);
  7849. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  7850. ret = btrfs_lookup_extent_info(trans, root,
  7851. path->nodes[level]->start,
  7852. level, 1, &wc->refs[level],
  7853. &wc->flags[level]);
  7854. if (ret < 0) {
  7855. err = ret;
  7856. goto out_end_trans;
  7857. }
  7858. BUG_ON(wc->refs[level] == 0);
  7859. if (level == root_item->drop_level)
  7860. break;
  7861. btrfs_tree_unlock(path->nodes[level]);
  7862. path->locks[level] = 0;
  7863. WARN_ON(wc->refs[level] != 1);
  7864. level--;
  7865. }
  7866. }
  7867. wc->level = level;
  7868. wc->shared_level = -1;
  7869. wc->stage = DROP_REFERENCE;
  7870. wc->update_ref = update_ref;
  7871. wc->keep_locks = 0;
  7872. wc->for_reloc = for_reloc;
  7873. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  7874. while (1) {
  7875. ret = walk_down_tree(trans, root, path, wc);
  7876. if (ret < 0) {
  7877. err = ret;
  7878. break;
  7879. }
  7880. ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
  7881. if (ret < 0) {
  7882. err = ret;
  7883. break;
  7884. }
  7885. if (ret > 0) {
  7886. BUG_ON(wc->stage != DROP_REFERENCE);
  7887. break;
  7888. }
  7889. if (wc->stage == DROP_REFERENCE) {
  7890. level = wc->level;
  7891. btrfs_node_key(path->nodes[level],
  7892. &root_item->drop_progress,
  7893. path->slots[level]);
  7894. root_item->drop_level = level;
  7895. }
  7896. BUG_ON(wc->level == 0);
  7897. if (btrfs_should_end_transaction(trans, tree_root) ||
  7898. (!for_reloc && btrfs_need_cleaner_sleep(root))) {
  7899. ret = btrfs_update_root(trans, tree_root,
  7900. &root->root_key,
  7901. root_item);
  7902. if (ret) {
  7903. btrfs_abort_transaction(trans, tree_root, ret);
  7904. err = ret;
  7905. goto out_end_trans;
  7906. }
  7907. btrfs_end_transaction_throttle(trans, tree_root);
  7908. if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
  7909. pr_debug("BTRFS: drop snapshot early exit\n");
  7910. err = -EAGAIN;
  7911. goto out_free;
  7912. }
  7913. trans = btrfs_start_transaction(tree_root, 0);
  7914. if (IS_ERR(trans)) {
  7915. err = PTR_ERR(trans);
  7916. goto out_free;
  7917. }
  7918. if (block_rsv)
  7919. trans->block_rsv = block_rsv;
  7920. }
  7921. }
  7922. btrfs_release_path(path);
  7923. if (err)
  7924. goto out_end_trans;
  7925. ret = btrfs_del_root(trans, tree_root, &root->root_key);
  7926. if (ret) {
  7927. btrfs_abort_transaction(trans, tree_root, ret);
  7928. goto out_end_trans;
  7929. }
  7930. if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
  7931. ret = btrfs_find_root(tree_root, &root->root_key, path,
  7932. NULL, NULL);
  7933. if (ret < 0) {
  7934. btrfs_abort_transaction(trans, tree_root, ret);
  7935. err = ret;
  7936. goto out_end_trans;
  7937. } else if (ret > 0) {
  7938. /* if we fail to delete the orphan item this time
  7939. * around, it'll get picked up the next time.
  7940. *
  7941. * The most common failure here is just -ENOENT.
  7942. */
  7943. btrfs_del_orphan_item(trans, tree_root,
  7944. root->root_key.objectid);
  7945. }
  7946. }
  7947. if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
  7948. btrfs_add_dropped_root(trans, root);
  7949. } else {
  7950. free_extent_buffer(root->node);
  7951. free_extent_buffer(root->commit_root);
  7952. btrfs_put_fs_root(root);
  7953. }
  7954. root_dropped = true;
  7955. out_end_trans:
  7956. btrfs_end_transaction_throttle(trans, tree_root);
  7957. out_free:
  7958. kfree(wc);
  7959. btrfs_free_path(path);
  7960. out:
  7961. /*
  7962. * So if we need to stop dropping the snapshot for whatever reason we
  7963. * need to make sure to add it back to the dead root list so that we
  7964. * keep trying to do the work later. This also cleans up roots if we
  7965. * don't have it in the radix (like when we recover after a power fail
  7966. * or unmount) so we don't leak memory.
  7967. */
  7968. if (!for_reloc && root_dropped == false)
  7969. btrfs_add_dead_root(root);
  7970. if (err && err != -EAGAIN)
  7971. btrfs_std_error(root->fs_info, err, NULL);
  7972. return err;
  7973. }
  7974. /*
  7975. * drop subtree rooted at tree block 'node'.
  7976. *
  7977. * NOTE: this function will unlock and release tree block 'node'
  7978. * only used by relocation code
  7979. */
  7980. int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
  7981. struct btrfs_root *root,
  7982. struct extent_buffer *node,
  7983. struct extent_buffer *parent)
  7984. {
  7985. struct btrfs_path *path;
  7986. struct walk_control *wc;
  7987. int level;
  7988. int parent_level;
  7989. int ret = 0;
  7990. int wret;
  7991. BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
  7992. path = btrfs_alloc_path();
  7993. if (!path)
  7994. return -ENOMEM;
  7995. wc = kzalloc(sizeof(*wc), GFP_NOFS);
  7996. if (!wc) {
  7997. btrfs_free_path(path);
  7998. return -ENOMEM;
  7999. }
  8000. btrfs_assert_tree_locked(parent);
  8001. parent_level = btrfs_header_level(parent);
  8002. extent_buffer_get(parent);
  8003. path->nodes[parent_level] = parent;
  8004. path->slots[parent_level] = btrfs_header_nritems(parent);
  8005. btrfs_assert_tree_locked(node);
  8006. level = btrfs_header_level(node);
  8007. path->nodes[level] = node;
  8008. path->slots[level] = 0;
  8009. path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
  8010. wc->refs[parent_level] = 1;
  8011. wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
  8012. wc->level = level;
  8013. wc->shared_level = -1;
  8014. wc->stage = DROP_REFERENCE;
  8015. wc->update_ref = 0;
  8016. wc->keep_locks = 1;
  8017. wc->for_reloc = 1;
  8018. wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
  8019. while (1) {
  8020. wret = walk_down_tree(trans, root, path, wc);
  8021. if (wret < 0) {
  8022. ret = wret;
  8023. break;
  8024. }
  8025. wret = walk_up_tree(trans, root, path, wc, parent_level);
  8026. if (wret < 0)
  8027. ret = wret;
  8028. if (wret != 0)
  8029. break;
  8030. }
  8031. kfree(wc);
  8032. btrfs_free_path(path);
  8033. return ret;
  8034. }
  8035. static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
  8036. {
  8037. u64 num_devices;
  8038. u64 stripped;
  8039. /*
  8040. * if restripe for this chunk_type is on pick target profile and
  8041. * return, otherwise do the usual balance
  8042. */
  8043. stripped = get_restripe_target(root->fs_info, flags);
  8044. if (stripped)
  8045. return extended_to_chunk(stripped);
  8046. num_devices = root->fs_info->fs_devices->rw_devices;
  8047. stripped = BTRFS_BLOCK_GROUP_RAID0 |
  8048. BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
  8049. BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
  8050. if (num_devices == 1) {
  8051. stripped |= BTRFS_BLOCK_GROUP_DUP;
  8052. stripped = flags & ~stripped;
  8053. /* turn raid0 into single device chunks */
  8054. if (flags & BTRFS_BLOCK_GROUP_RAID0)
  8055. return stripped;
  8056. /* turn mirroring into duplication */
  8057. if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
  8058. BTRFS_BLOCK_GROUP_RAID10))
  8059. return stripped | BTRFS_BLOCK_GROUP_DUP;
  8060. } else {
  8061. /* they already had raid on here, just return */
  8062. if (flags & stripped)
  8063. return flags;
  8064. stripped |= BTRFS_BLOCK_GROUP_DUP;
  8065. stripped = flags & ~stripped;
  8066. /* switch duplicated blocks with raid1 */
  8067. if (flags & BTRFS_BLOCK_GROUP_DUP)
  8068. return stripped | BTRFS_BLOCK_GROUP_RAID1;
  8069. /* this is drive concat, leave it alone */
  8070. }
  8071. return flags;
  8072. }
  8073. static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
  8074. {
  8075. struct btrfs_space_info *sinfo = cache->space_info;
  8076. u64 num_bytes;
  8077. u64 min_allocable_bytes;
  8078. int ret = -ENOSPC;
  8079. /*
  8080. * We need some metadata space and system metadata space for
  8081. * allocating chunks in some corner cases until we force to set
  8082. * it to be readonly.
  8083. */
  8084. if ((sinfo->flags &
  8085. (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
  8086. !force)
  8087. min_allocable_bytes = 1 * 1024 * 1024;
  8088. else
  8089. min_allocable_bytes = 0;
  8090. spin_lock(&sinfo->lock);
  8091. spin_lock(&cache->lock);
  8092. if (cache->ro) {
  8093. cache->ro++;
  8094. ret = 0;
  8095. goto out;
  8096. }
  8097. num_bytes = cache->key.offset - cache->reserved - cache->pinned -
  8098. cache->bytes_super - btrfs_block_group_used(&cache->item);
  8099. if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
  8100. sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
  8101. min_allocable_bytes <= sinfo->total_bytes) {
  8102. sinfo->bytes_readonly += num_bytes;
  8103. cache->ro++;
  8104. list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
  8105. ret = 0;
  8106. }
  8107. out:
  8108. spin_unlock(&cache->lock);
  8109. spin_unlock(&sinfo->lock);
  8110. return ret;
  8111. }
  8112. int btrfs_inc_block_group_ro(struct btrfs_root *root,
  8113. struct btrfs_block_group_cache *cache)
  8114. {
  8115. struct btrfs_trans_handle *trans;
  8116. u64 alloc_flags;
  8117. int ret;
  8118. again:
  8119. trans = btrfs_join_transaction(root);
  8120. if (IS_ERR(trans))
  8121. return PTR_ERR(trans);
  8122. /*
  8123. * we're not allowed to set block groups readonly after the dirty
  8124. * block groups cache has started writing. If it already started,
  8125. * back off and let this transaction commit
  8126. */
  8127. mutex_lock(&root->fs_info->ro_block_group_mutex);
  8128. if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
  8129. u64 transid = trans->transid;
  8130. mutex_unlock(&root->fs_info->ro_block_group_mutex);
  8131. btrfs_end_transaction(trans, root);
  8132. ret = btrfs_wait_for_commit(root, transid);
  8133. if (ret)
  8134. return ret;
  8135. goto again;
  8136. }
  8137. /*
  8138. * if we are changing raid levels, try to allocate a corresponding
  8139. * block group with the new raid level.
  8140. */
  8141. alloc_flags = update_block_group_flags(root, cache->flags);
  8142. if (alloc_flags != cache->flags) {
  8143. ret = do_chunk_alloc(trans, root, alloc_flags,
  8144. CHUNK_ALLOC_FORCE);
  8145. /*
  8146. * ENOSPC is allowed here, we may have enough space
  8147. * already allocated at the new raid level to
  8148. * carry on
  8149. */
  8150. if (ret == -ENOSPC)
  8151. ret = 0;
  8152. if (ret < 0)
  8153. goto out;
  8154. }
  8155. ret = inc_block_group_ro(cache, 0);
  8156. if (!ret)
  8157. goto out;
  8158. alloc_flags = get_alloc_profile(root, cache->space_info->flags);
  8159. ret = do_chunk_alloc(trans, root, alloc_flags,
  8160. CHUNK_ALLOC_FORCE);
  8161. if (ret < 0)
  8162. goto out;
  8163. ret = inc_block_group_ro(cache, 0);
  8164. out:
  8165. if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
  8166. alloc_flags = update_block_group_flags(root, cache->flags);
  8167. lock_chunks(root->fs_info->chunk_root);
  8168. check_system_chunk(trans, root, alloc_flags);
  8169. unlock_chunks(root->fs_info->chunk_root);
  8170. }
  8171. mutex_unlock(&root->fs_info->ro_block_group_mutex);
  8172. btrfs_end_transaction(trans, root);
  8173. return ret;
  8174. }
  8175. int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
  8176. struct btrfs_root *root, u64 type)
  8177. {
  8178. u64 alloc_flags = get_alloc_profile(root, type);
  8179. return do_chunk_alloc(trans, root, alloc_flags,
  8180. CHUNK_ALLOC_FORCE);
  8181. }
  8182. /*
  8183. * helper to account the unused space of all the readonly block group in the
  8184. * space_info. takes mirrors into account.
  8185. */
  8186. u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
  8187. {
  8188. struct btrfs_block_group_cache *block_group;
  8189. u64 free_bytes = 0;
  8190. int factor;
  8191. /* It's df, we don't care if it's racey */
  8192. if (list_empty(&sinfo->ro_bgs))
  8193. return 0;
  8194. spin_lock(&sinfo->lock);
  8195. list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
  8196. spin_lock(&block_group->lock);
  8197. if (!block_group->ro) {
  8198. spin_unlock(&block_group->lock);
  8199. continue;
  8200. }
  8201. if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
  8202. BTRFS_BLOCK_GROUP_RAID10 |
  8203. BTRFS_BLOCK_GROUP_DUP))
  8204. factor = 2;
  8205. else
  8206. factor = 1;
  8207. free_bytes += (block_group->key.offset -
  8208. btrfs_block_group_used(&block_group->item)) *
  8209. factor;
  8210. spin_unlock(&block_group->lock);
  8211. }
  8212. spin_unlock(&sinfo->lock);
  8213. return free_bytes;
  8214. }
  8215. void btrfs_dec_block_group_ro(struct btrfs_root *root,
  8216. struct btrfs_block_group_cache *cache)
  8217. {
  8218. struct btrfs_space_info *sinfo = cache->space_info;
  8219. u64 num_bytes;
  8220. BUG_ON(!cache->ro);
  8221. spin_lock(&sinfo->lock);
  8222. spin_lock(&cache->lock);
  8223. if (!--cache->ro) {
  8224. num_bytes = cache->key.offset - cache->reserved -
  8225. cache->pinned - cache->bytes_super -
  8226. btrfs_block_group_used(&cache->item);
  8227. sinfo->bytes_readonly -= num_bytes;
  8228. list_del_init(&cache->ro_list);
  8229. }
  8230. spin_unlock(&cache->lock);
  8231. spin_unlock(&sinfo->lock);
  8232. }
  8233. /*
  8234. * checks to see if its even possible to relocate this block group.
  8235. *
  8236. * @return - -1 if it's not a good idea to relocate this block group, 0 if its
  8237. * ok to go ahead and try.
  8238. */
  8239. int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
  8240. {
  8241. struct btrfs_block_group_cache *block_group;
  8242. struct btrfs_space_info *space_info;
  8243. struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
  8244. struct btrfs_device *device;
  8245. struct btrfs_trans_handle *trans;
  8246. u64 min_free;
  8247. u64 dev_min = 1;
  8248. u64 dev_nr = 0;
  8249. u64 target;
  8250. int index;
  8251. int full = 0;
  8252. int ret = 0;
  8253. block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
  8254. /* odd, couldn't find the block group, leave it alone */
  8255. if (!block_group)
  8256. return -1;
  8257. min_free = btrfs_block_group_used(&block_group->item);
  8258. /* no bytes used, we're good */
  8259. if (!min_free)
  8260. goto out;
  8261. space_info = block_group->space_info;
  8262. spin_lock(&space_info->lock);
  8263. full = space_info->full;
  8264. /*
  8265. * if this is the last block group we have in this space, we can't
  8266. * relocate it unless we're able to allocate a new chunk below.
  8267. *
  8268. * Otherwise, we need to make sure we have room in the space to handle
  8269. * all of the extents from this block group. If we can, we're good
  8270. */
  8271. if ((space_info->total_bytes != block_group->key.offset) &&
  8272. (space_info->bytes_used + space_info->bytes_reserved +
  8273. space_info->bytes_pinned + space_info->bytes_readonly +
  8274. min_free < space_info->total_bytes)) {
  8275. spin_unlock(&space_info->lock);
  8276. goto out;
  8277. }
  8278. spin_unlock(&space_info->lock);
  8279. /*
  8280. * ok we don't have enough space, but maybe we have free space on our
  8281. * devices to allocate new chunks for relocation, so loop through our
  8282. * alloc devices and guess if we have enough space. if this block
  8283. * group is going to be restriped, run checks against the target
  8284. * profile instead of the current one.
  8285. */
  8286. ret = -1;
  8287. /*
  8288. * index:
  8289. * 0: raid10
  8290. * 1: raid1
  8291. * 2: dup
  8292. * 3: raid0
  8293. * 4: single
  8294. */
  8295. target = get_restripe_target(root->fs_info, block_group->flags);
  8296. if (target) {
  8297. index = __get_raid_index(extended_to_chunk(target));
  8298. } else {
  8299. /*
  8300. * this is just a balance, so if we were marked as full
  8301. * we know there is no space for a new chunk
  8302. */
  8303. if (full)
  8304. goto out;
  8305. index = get_block_group_index(block_group);
  8306. }
  8307. if (index == BTRFS_RAID_RAID10) {
  8308. dev_min = 4;
  8309. /* Divide by 2 */
  8310. min_free >>= 1;
  8311. } else if (index == BTRFS_RAID_RAID1) {
  8312. dev_min = 2;
  8313. } else if (index == BTRFS_RAID_DUP) {
  8314. /* Multiply by 2 */
  8315. min_free <<= 1;
  8316. } else if (index == BTRFS_RAID_RAID0) {
  8317. dev_min = fs_devices->rw_devices;
  8318. min_free = div64_u64(min_free, dev_min);
  8319. }
  8320. /* We need to do this so that we can look at pending chunks */
  8321. trans = btrfs_join_transaction(root);
  8322. if (IS_ERR(trans)) {
  8323. ret = PTR_ERR(trans);
  8324. goto out;
  8325. }
  8326. mutex_lock(&root->fs_info->chunk_mutex);
  8327. list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
  8328. u64 dev_offset;
  8329. /*
  8330. * check to make sure we can actually find a chunk with enough
  8331. * space to fit our block group in.
  8332. */
  8333. if (device->total_bytes > device->bytes_used + min_free &&
  8334. !device->is_tgtdev_for_dev_replace) {
  8335. ret = find_free_dev_extent(trans, device, min_free,
  8336. &dev_offset, NULL);
  8337. if (!ret)
  8338. dev_nr++;
  8339. if (dev_nr >= dev_min)
  8340. break;
  8341. ret = -1;
  8342. }
  8343. }
  8344. mutex_unlock(&root->fs_info->chunk_mutex);
  8345. btrfs_end_transaction(trans, root);
  8346. out:
  8347. btrfs_put_block_group(block_group);
  8348. return ret;
  8349. }
  8350. static int find_first_block_group(struct btrfs_root *root,
  8351. struct btrfs_path *path, struct btrfs_key *key)
  8352. {
  8353. int ret = 0;
  8354. struct btrfs_key found_key;
  8355. struct extent_buffer *leaf;
  8356. int slot;
  8357. ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
  8358. if (ret < 0)
  8359. goto out;
  8360. while (1) {
  8361. slot = path->slots[0];
  8362. leaf = path->nodes[0];
  8363. if (slot >= btrfs_header_nritems(leaf)) {
  8364. ret = btrfs_next_leaf(root, path);
  8365. if (ret == 0)
  8366. continue;
  8367. if (ret < 0)
  8368. goto out;
  8369. break;
  8370. }
  8371. btrfs_item_key_to_cpu(leaf, &found_key, slot);
  8372. if (found_key.objectid >= key->objectid &&
  8373. found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
  8374. ret = 0;
  8375. goto out;
  8376. }
  8377. path->slots[0]++;
  8378. }
  8379. out:
  8380. return ret;
  8381. }
  8382. void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
  8383. {
  8384. struct btrfs_block_group_cache *block_group;
  8385. u64 last = 0;
  8386. while (1) {
  8387. struct inode *inode;
  8388. block_group = btrfs_lookup_first_block_group(info, last);
  8389. while (block_group) {
  8390. spin_lock(&block_group->lock);
  8391. if (block_group->iref)
  8392. break;
  8393. spin_unlock(&block_group->lock);
  8394. block_group = next_block_group(info->tree_root,
  8395. block_group);
  8396. }
  8397. if (!block_group) {
  8398. if (last == 0)
  8399. break;
  8400. last = 0;
  8401. continue;
  8402. }
  8403. inode = block_group->inode;
  8404. block_group->iref = 0;
  8405. block_group->inode = NULL;
  8406. spin_unlock(&block_group->lock);
  8407. iput(inode);
  8408. last = block_group->key.objectid + block_group->key.offset;
  8409. btrfs_put_block_group(block_group);
  8410. }
  8411. }
  8412. int btrfs_free_block_groups(struct btrfs_fs_info *info)
  8413. {
  8414. struct btrfs_block_group_cache *block_group;
  8415. struct btrfs_space_info *space_info;
  8416. struct btrfs_caching_control *caching_ctl;
  8417. struct rb_node *n;
  8418. down_write(&info->commit_root_sem);
  8419. while (!list_empty(&info->caching_block_groups)) {
  8420. caching_ctl = list_entry(info->caching_block_groups.next,
  8421. struct btrfs_caching_control, list);
  8422. list_del(&caching_ctl->list);
  8423. put_caching_control(caching_ctl);
  8424. }
  8425. up_write(&info->commit_root_sem);
  8426. spin_lock(&info->unused_bgs_lock);
  8427. while (!list_empty(&info->unused_bgs)) {
  8428. block_group = list_first_entry(&info->unused_bgs,
  8429. struct btrfs_block_group_cache,
  8430. bg_list);
  8431. list_del_init(&block_group->bg_list);
  8432. btrfs_put_block_group(block_group);
  8433. }
  8434. spin_unlock(&info->unused_bgs_lock);
  8435. spin_lock(&info->block_group_cache_lock);
  8436. while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
  8437. block_group = rb_entry(n, struct btrfs_block_group_cache,
  8438. cache_node);
  8439. rb_erase(&block_group->cache_node,
  8440. &info->block_group_cache_tree);
  8441. RB_CLEAR_NODE(&block_group->cache_node);
  8442. spin_unlock(&info->block_group_cache_lock);
  8443. down_write(&block_group->space_info->groups_sem);
  8444. list_del(&block_group->list);
  8445. up_write(&block_group->space_info->groups_sem);
  8446. if (block_group->cached == BTRFS_CACHE_STARTED)
  8447. wait_block_group_cache_done(block_group);
  8448. /*
  8449. * We haven't cached this block group, which means we could
  8450. * possibly have excluded extents on this block group.
  8451. */
  8452. if (block_group->cached == BTRFS_CACHE_NO ||
  8453. block_group->cached == BTRFS_CACHE_ERROR)
  8454. free_excluded_extents(info->extent_root, block_group);
  8455. btrfs_remove_free_space_cache(block_group);
  8456. btrfs_put_block_group(block_group);
  8457. spin_lock(&info->block_group_cache_lock);
  8458. }
  8459. spin_unlock(&info->block_group_cache_lock);
  8460. /* now that all the block groups are freed, go through and
  8461. * free all the space_info structs. This is only called during
  8462. * the final stages of unmount, and so we know nobody is
  8463. * using them. We call synchronize_rcu() once before we start,
  8464. * just to be on the safe side.
  8465. */
  8466. synchronize_rcu();
  8467. release_global_block_rsv(info);
  8468. while (!list_empty(&info->space_info)) {
  8469. int i;
  8470. space_info = list_entry(info->space_info.next,
  8471. struct btrfs_space_info,
  8472. list);
  8473. if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
  8474. if (WARN_ON(space_info->bytes_pinned > 0 ||
  8475. space_info->bytes_reserved > 0 ||
  8476. space_info->bytes_may_use > 0)) {
  8477. dump_space_info(space_info, 0, 0);
  8478. }
  8479. }
  8480. list_del(&space_info->list);
  8481. for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
  8482. struct kobject *kobj;
  8483. kobj = space_info->block_group_kobjs[i];
  8484. space_info->block_group_kobjs[i] = NULL;
  8485. if (kobj) {
  8486. kobject_del(kobj);
  8487. kobject_put(kobj);
  8488. }
  8489. }
  8490. kobject_del(&space_info->kobj);
  8491. kobject_put(&space_info->kobj);
  8492. }
  8493. return 0;
  8494. }
  8495. static void __link_block_group(struct btrfs_space_info *space_info,
  8496. struct btrfs_block_group_cache *cache)
  8497. {
  8498. int index = get_block_group_index(cache);
  8499. bool first = false;
  8500. down_write(&space_info->groups_sem);
  8501. if (list_empty(&space_info->block_groups[index]))
  8502. first = true;
  8503. list_add_tail(&cache->list, &space_info->block_groups[index]);
  8504. up_write(&space_info->groups_sem);
  8505. if (first) {
  8506. struct raid_kobject *rkobj;
  8507. int ret;
  8508. rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
  8509. if (!rkobj)
  8510. goto out_err;
  8511. rkobj->raid_type = index;
  8512. kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
  8513. ret = kobject_add(&rkobj->kobj, &space_info->kobj,
  8514. "%s", get_raid_name(index));
  8515. if (ret) {
  8516. kobject_put(&rkobj->kobj);
  8517. goto out_err;
  8518. }
  8519. space_info->block_group_kobjs[index] = &rkobj->kobj;
  8520. }
  8521. return;
  8522. out_err:
  8523. pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
  8524. }
  8525. static struct btrfs_block_group_cache *
  8526. btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
  8527. {
  8528. struct btrfs_block_group_cache *cache;
  8529. cache = kzalloc(sizeof(*cache), GFP_NOFS);
  8530. if (!cache)
  8531. return NULL;
  8532. cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
  8533. GFP_NOFS);
  8534. if (!cache->free_space_ctl) {
  8535. kfree(cache);
  8536. return NULL;
  8537. }
  8538. cache->key.objectid = start;
  8539. cache->key.offset = size;
  8540. cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
  8541. cache->sectorsize = root->sectorsize;
  8542. cache->fs_info = root->fs_info;
  8543. cache->full_stripe_len = btrfs_full_stripe_len(root,
  8544. &root->fs_info->mapping_tree,
  8545. start);
  8546. set_free_space_tree_thresholds(cache);
  8547. atomic_set(&cache->count, 1);
  8548. spin_lock_init(&cache->lock);
  8549. init_rwsem(&cache->data_rwsem);
  8550. INIT_LIST_HEAD(&cache->list);
  8551. INIT_LIST_HEAD(&cache->cluster_list);
  8552. INIT_LIST_HEAD(&cache->bg_list);
  8553. INIT_LIST_HEAD(&cache->ro_list);
  8554. INIT_LIST_HEAD(&cache->dirty_list);
  8555. INIT_LIST_HEAD(&cache->io_list);
  8556. btrfs_init_free_space_ctl(cache);
  8557. atomic_set(&cache->trimming, 0);
  8558. mutex_init(&cache->free_space_lock);
  8559. return cache;
  8560. }
  8561. int btrfs_read_block_groups(struct btrfs_root *root)
  8562. {
  8563. struct btrfs_path *path;
  8564. int ret;
  8565. struct btrfs_block_group_cache *cache;
  8566. struct btrfs_fs_info *info = root->fs_info;
  8567. struct btrfs_space_info *space_info;
  8568. struct btrfs_key key;
  8569. struct btrfs_key found_key;
  8570. struct extent_buffer *leaf;
  8571. int need_clear = 0;
  8572. u64 cache_gen;
  8573. root = info->extent_root;
  8574. key.objectid = 0;
  8575. key.offset = 0;
  8576. key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
  8577. path = btrfs_alloc_path();
  8578. if (!path)
  8579. return -ENOMEM;
  8580. path->reada = READA_FORWARD;
  8581. cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
  8582. if (btrfs_test_opt(root, SPACE_CACHE) &&
  8583. btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
  8584. need_clear = 1;
  8585. if (btrfs_test_opt(root, CLEAR_CACHE))
  8586. need_clear = 1;
  8587. while (1) {
  8588. ret = find_first_block_group(root, path, &key);
  8589. if (ret > 0)
  8590. break;
  8591. if (ret != 0)
  8592. goto error;
  8593. leaf = path->nodes[0];
  8594. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  8595. cache = btrfs_create_block_group_cache(root, found_key.objectid,
  8596. found_key.offset);
  8597. if (!cache) {
  8598. ret = -ENOMEM;
  8599. goto error;
  8600. }
  8601. if (need_clear) {
  8602. /*
  8603. * When we mount with old space cache, we need to
  8604. * set BTRFS_DC_CLEAR and set dirty flag.
  8605. *
  8606. * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
  8607. * truncate the old free space cache inode and
  8608. * setup a new one.
  8609. * b) Setting 'dirty flag' makes sure that we flush
  8610. * the new space cache info onto disk.
  8611. */
  8612. if (btrfs_test_opt(root, SPACE_CACHE))
  8613. cache->disk_cache_state = BTRFS_DC_CLEAR;
  8614. }
  8615. read_extent_buffer(leaf, &cache->item,
  8616. btrfs_item_ptr_offset(leaf, path->slots[0]),
  8617. sizeof(cache->item));
  8618. cache->flags = btrfs_block_group_flags(&cache->item);
  8619. key.objectid = found_key.objectid + found_key.offset;
  8620. btrfs_release_path(path);
  8621. /*
  8622. * We need to exclude the super stripes now so that the space
  8623. * info has super bytes accounted for, otherwise we'll think
  8624. * we have more space than we actually do.
  8625. */
  8626. ret = exclude_super_stripes(root, cache);
  8627. if (ret) {
  8628. /*
  8629. * We may have excluded something, so call this just in
  8630. * case.
  8631. */
  8632. free_excluded_extents(root, cache);
  8633. btrfs_put_block_group(cache);
  8634. goto error;
  8635. }
  8636. /*
  8637. * check for two cases, either we are full, and therefore
  8638. * don't need to bother with the caching work since we won't
  8639. * find any space, or we are empty, and we can just add all
  8640. * the space in and be done with it. This saves us _alot_ of
  8641. * time, particularly in the full case.
  8642. */
  8643. if (found_key.offset == btrfs_block_group_used(&cache->item)) {
  8644. cache->last_byte_to_unpin = (u64)-1;
  8645. cache->cached = BTRFS_CACHE_FINISHED;
  8646. free_excluded_extents(root, cache);
  8647. } else if (btrfs_block_group_used(&cache->item) == 0) {
  8648. cache->last_byte_to_unpin = (u64)-1;
  8649. cache->cached = BTRFS_CACHE_FINISHED;
  8650. add_new_free_space(cache, root->fs_info,
  8651. found_key.objectid,
  8652. found_key.objectid +
  8653. found_key.offset);
  8654. free_excluded_extents(root, cache);
  8655. }
  8656. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  8657. if (ret) {
  8658. btrfs_remove_free_space_cache(cache);
  8659. btrfs_put_block_group(cache);
  8660. goto error;
  8661. }
  8662. ret = update_space_info(info, cache->flags, found_key.offset,
  8663. btrfs_block_group_used(&cache->item),
  8664. &space_info);
  8665. if (ret) {
  8666. btrfs_remove_free_space_cache(cache);
  8667. spin_lock(&info->block_group_cache_lock);
  8668. rb_erase(&cache->cache_node,
  8669. &info->block_group_cache_tree);
  8670. RB_CLEAR_NODE(&cache->cache_node);
  8671. spin_unlock(&info->block_group_cache_lock);
  8672. btrfs_put_block_group(cache);
  8673. goto error;
  8674. }
  8675. cache->space_info = space_info;
  8676. spin_lock(&cache->space_info->lock);
  8677. cache->space_info->bytes_readonly += cache->bytes_super;
  8678. spin_unlock(&cache->space_info->lock);
  8679. __link_block_group(space_info, cache);
  8680. set_avail_alloc_bits(root->fs_info, cache->flags);
  8681. if (btrfs_chunk_readonly(root, cache->key.objectid)) {
  8682. inc_block_group_ro(cache, 1);
  8683. } else if (btrfs_block_group_used(&cache->item) == 0) {
  8684. spin_lock(&info->unused_bgs_lock);
  8685. /* Should always be true but just in case. */
  8686. if (list_empty(&cache->bg_list)) {
  8687. btrfs_get_block_group(cache);
  8688. list_add_tail(&cache->bg_list,
  8689. &info->unused_bgs);
  8690. }
  8691. spin_unlock(&info->unused_bgs_lock);
  8692. }
  8693. }
  8694. list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
  8695. if (!(get_alloc_profile(root, space_info->flags) &
  8696. (BTRFS_BLOCK_GROUP_RAID10 |
  8697. BTRFS_BLOCK_GROUP_RAID1 |
  8698. BTRFS_BLOCK_GROUP_RAID5 |
  8699. BTRFS_BLOCK_GROUP_RAID6 |
  8700. BTRFS_BLOCK_GROUP_DUP)))
  8701. continue;
  8702. /*
  8703. * avoid allocating from un-mirrored block group if there are
  8704. * mirrored block groups.
  8705. */
  8706. list_for_each_entry(cache,
  8707. &space_info->block_groups[BTRFS_RAID_RAID0],
  8708. list)
  8709. inc_block_group_ro(cache, 1);
  8710. list_for_each_entry(cache,
  8711. &space_info->block_groups[BTRFS_RAID_SINGLE],
  8712. list)
  8713. inc_block_group_ro(cache, 1);
  8714. }
  8715. init_global_block_rsv(info);
  8716. ret = 0;
  8717. error:
  8718. btrfs_free_path(path);
  8719. return ret;
  8720. }
  8721. void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
  8722. struct btrfs_root *root)
  8723. {
  8724. struct btrfs_block_group_cache *block_group, *tmp;
  8725. struct btrfs_root *extent_root = root->fs_info->extent_root;
  8726. struct btrfs_block_group_item item;
  8727. struct btrfs_key key;
  8728. int ret = 0;
  8729. bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
  8730. trans->can_flush_pending_bgs = false;
  8731. list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
  8732. if (ret)
  8733. goto next;
  8734. spin_lock(&block_group->lock);
  8735. memcpy(&item, &block_group->item, sizeof(item));
  8736. memcpy(&key, &block_group->key, sizeof(key));
  8737. spin_unlock(&block_group->lock);
  8738. ret = btrfs_insert_item(trans, extent_root, &key, &item,
  8739. sizeof(item));
  8740. if (ret)
  8741. btrfs_abort_transaction(trans, extent_root, ret);
  8742. ret = btrfs_finish_chunk_alloc(trans, extent_root,
  8743. key.objectid, key.offset);
  8744. if (ret)
  8745. btrfs_abort_transaction(trans, extent_root, ret);
  8746. add_block_group_free_space(trans, root->fs_info, block_group);
  8747. /* already aborted the transaction if it failed. */
  8748. next:
  8749. list_del_init(&block_group->bg_list);
  8750. }
  8751. trans->can_flush_pending_bgs = can_flush_pending_bgs;
  8752. }
  8753. int btrfs_make_block_group(struct btrfs_trans_handle *trans,
  8754. struct btrfs_root *root, u64 bytes_used,
  8755. u64 type, u64 chunk_objectid, u64 chunk_offset,
  8756. u64 size)
  8757. {
  8758. int ret;
  8759. struct btrfs_root *extent_root;
  8760. struct btrfs_block_group_cache *cache;
  8761. extent_root = root->fs_info->extent_root;
  8762. btrfs_set_log_full_commit(root->fs_info, trans);
  8763. cache = btrfs_create_block_group_cache(root, chunk_offset, size);
  8764. if (!cache)
  8765. return -ENOMEM;
  8766. btrfs_set_block_group_used(&cache->item, bytes_used);
  8767. btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
  8768. btrfs_set_block_group_flags(&cache->item, type);
  8769. cache->flags = type;
  8770. cache->last_byte_to_unpin = (u64)-1;
  8771. cache->cached = BTRFS_CACHE_FINISHED;
  8772. cache->needs_free_space = 1;
  8773. ret = exclude_super_stripes(root, cache);
  8774. if (ret) {
  8775. /*
  8776. * We may have excluded something, so call this just in
  8777. * case.
  8778. */
  8779. free_excluded_extents(root, cache);
  8780. btrfs_put_block_group(cache);
  8781. return ret;
  8782. }
  8783. add_new_free_space(cache, root->fs_info, chunk_offset,
  8784. chunk_offset + size);
  8785. free_excluded_extents(root, cache);
  8786. #ifdef CONFIG_BTRFS_DEBUG
  8787. if (btrfs_should_fragment_free_space(root, cache)) {
  8788. u64 new_bytes_used = size - bytes_used;
  8789. bytes_used += new_bytes_used >> 1;
  8790. fragment_free_space(root, cache);
  8791. }
  8792. #endif
  8793. /*
  8794. * Call to ensure the corresponding space_info object is created and
  8795. * assigned to our block group, but don't update its counters just yet.
  8796. * We want our bg to be added to the rbtree with its ->space_info set.
  8797. */
  8798. ret = update_space_info(root->fs_info, cache->flags, 0, 0,
  8799. &cache->space_info);
  8800. if (ret) {
  8801. btrfs_remove_free_space_cache(cache);
  8802. btrfs_put_block_group(cache);
  8803. return ret;
  8804. }
  8805. ret = btrfs_add_block_group_cache(root->fs_info, cache);
  8806. if (ret) {
  8807. btrfs_remove_free_space_cache(cache);
  8808. btrfs_put_block_group(cache);
  8809. return ret;
  8810. }
  8811. /*
  8812. * Now that our block group has its ->space_info set and is inserted in
  8813. * the rbtree, update the space info's counters.
  8814. */
  8815. ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
  8816. &cache->space_info);
  8817. if (ret) {
  8818. btrfs_remove_free_space_cache(cache);
  8819. spin_lock(&root->fs_info->block_group_cache_lock);
  8820. rb_erase(&cache->cache_node,
  8821. &root->fs_info->block_group_cache_tree);
  8822. RB_CLEAR_NODE(&cache->cache_node);
  8823. spin_unlock(&root->fs_info->block_group_cache_lock);
  8824. btrfs_put_block_group(cache);
  8825. return ret;
  8826. }
  8827. update_global_block_rsv(root->fs_info);
  8828. spin_lock(&cache->space_info->lock);
  8829. cache->space_info->bytes_readonly += cache->bytes_super;
  8830. spin_unlock(&cache->space_info->lock);
  8831. __link_block_group(cache->space_info, cache);
  8832. list_add_tail(&cache->bg_list, &trans->new_bgs);
  8833. set_avail_alloc_bits(extent_root->fs_info, type);
  8834. return 0;
  8835. }
  8836. static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
  8837. {
  8838. u64 extra_flags = chunk_to_extended(flags) &
  8839. BTRFS_EXTENDED_PROFILE_MASK;
  8840. write_seqlock(&fs_info->profiles_lock);
  8841. if (flags & BTRFS_BLOCK_GROUP_DATA)
  8842. fs_info->avail_data_alloc_bits &= ~extra_flags;
  8843. if (flags & BTRFS_BLOCK_GROUP_METADATA)
  8844. fs_info->avail_metadata_alloc_bits &= ~extra_flags;
  8845. if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
  8846. fs_info->avail_system_alloc_bits &= ~extra_flags;
  8847. write_sequnlock(&fs_info->profiles_lock);
  8848. }
  8849. int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
  8850. struct btrfs_root *root, u64 group_start,
  8851. struct extent_map *em)
  8852. {
  8853. struct btrfs_path *path;
  8854. struct btrfs_block_group_cache *block_group;
  8855. struct btrfs_free_cluster *cluster;
  8856. struct btrfs_root *tree_root = root->fs_info->tree_root;
  8857. struct btrfs_key key;
  8858. struct inode *inode;
  8859. struct kobject *kobj = NULL;
  8860. int ret;
  8861. int index;
  8862. int factor;
  8863. struct btrfs_caching_control *caching_ctl = NULL;
  8864. bool remove_em;
  8865. root = root->fs_info->extent_root;
  8866. block_group = btrfs_lookup_block_group(root->fs_info, group_start);
  8867. BUG_ON(!block_group);
  8868. BUG_ON(!block_group->ro);
  8869. /*
  8870. * Free the reserved super bytes from this block group before
  8871. * remove it.
  8872. */
  8873. free_excluded_extents(root, block_group);
  8874. memcpy(&key, &block_group->key, sizeof(key));
  8875. index = get_block_group_index(block_group);
  8876. if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
  8877. BTRFS_BLOCK_GROUP_RAID1 |
  8878. BTRFS_BLOCK_GROUP_RAID10))
  8879. factor = 2;
  8880. else
  8881. factor = 1;
  8882. /* make sure this block group isn't part of an allocation cluster */
  8883. cluster = &root->fs_info->data_alloc_cluster;
  8884. spin_lock(&cluster->refill_lock);
  8885. btrfs_return_cluster_to_free_space(block_group, cluster);
  8886. spin_unlock(&cluster->refill_lock);
  8887. /*
  8888. * make sure this block group isn't part of a metadata
  8889. * allocation cluster
  8890. */
  8891. cluster = &root->fs_info->meta_alloc_cluster;
  8892. spin_lock(&cluster->refill_lock);
  8893. btrfs_return_cluster_to_free_space(block_group, cluster);
  8894. spin_unlock(&cluster->refill_lock);
  8895. path = btrfs_alloc_path();
  8896. if (!path) {
  8897. ret = -ENOMEM;
  8898. goto out;
  8899. }
  8900. /*
  8901. * get the inode first so any iput calls done for the io_list
  8902. * aren't the final iput (no unlinks allowed now)
  8903. */
  8904. inode = lookup_free_space_inode(tree_root, block_group, path);
  8905. mutex_lock(&trans->transaction->cache_write_mutex);
  8906. /*
  8907. * make sure our free spache cache IO is done before remove the
  8908. * free space inode
  8909. */
  8910. spin_lock(&trans->transaction->dirty_bgs_lock);
  8911. if (!list_empty(&block_group->io_list)) {
  8912. list_del_init(&block_group->io_list);
  8913. WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
  8914. spin_unlock(&trans->transaction->dirty_bgs_lock);
  8915. btrfs_wait_cache_io(root, trans, block_group,
  8916. &block_group->io_ctl, path,
  8917. block_group->key.objectid);
  8918. btrfs_put_block_group(block_group);
  8919. spin_lock(&trans->transaction->dirty_bgs_lock);
  8920. }
  8921. if (!list_empty(&block_group->dirty_list)) {
  8922. list_del_init(&block_group->dirty_list);
  8923. btrfs_put_block_group(block_group);
  8924. }
  8925. spin_unlock(&trans->transaction->dirty_bgs_lock);
  8926. mutex_unlock(&trans->transaction->cache_write_mutex);
  8927. if (!IS_ERR(inode)) {
  8928. ret = btrfs_orphan_add(trans, inode);
  8929. if (ret) {
  8930. btrfs_add_delayed_iput(inode);
  8931. goto out;
  8932. }
  8933. clear_nlink(inode);
  8934. /* One for the block groups ref */
  8935. spin_lock(&block_group->lock);
  8936. if (block_group->iref) {
  8937. block_group->iref = 0;
  8938. block_group->inode = NULL;
  8939. spin_unlock(&block_group->lock);
  8940. iput(inode);
  8941. } else {
  8942. spin_unlock(&block_group->lock);
  8943. }
  8944. /* One for our lookup ref */
  8945. btrfs_add_delayed_iput(inode);
  8946. }
  8947. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  8948. key.offset = block_group->key.objectid;
  8949. key.type = 0;
  8950. ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
  8951. if (ret < 0)
  8952. goto out;
  8953. if (ret > 0)
  8954. btrfs_release_path(path);
  8955. if (ret == 0) {
  8956. ret = btrfs_del_item(trans, tree_root, path);
  8957. if (ret)
  8958. goto out;
  8959. btrfs_release_path(path);
  8960. }
  8961. spin_lock(&root->fs_info->block_group_cache_lock);
  8962. rb_erase(&block_group->cache_node,
  8963. &root->fs_info->block_group_cache_tree);
  8964. RB_CLEAR_NODE(&block_group->cache_node);
  8965. if (root->fs_info->first_logical_byte == block_group->key.objectid)
  8966. root->fs_info->first_logical_byte = (u64)-1;
  8967. spin_unlock(&root->fs_info->block_group_cache_lock);
  8968. down_write(&block_group->space_info->groups_sem);
  8969. /*
  8970. * we must use list_del_init so people can check to see if they
  8971. * are still on the list after taking the semaphore
  8972. */
  8973. list_del_init(&block_group->list);
  8974. if (list_empty(&block_group->space_info->block_groups[index])) {
  8975. kobj = block_group->space_info->block_group_kobjs[index];
  8976. block_group->space_info->block_group_kobjs[index] = NULL;
  8977. clear_avail_alloc_bits(root->fs_info, block_group->flags);
  8978. }
  8979. up_write(&block_group->space_info->groups_sem);
  8980. if (kobj) {
  8981. kobject_del(kobj);
  8982. kobject_put(kobj);
  8983. }
  8984. if (block_group->has_caching_ctl)
  8985. caching_ctl = get_caching_control(block_group);
  8986. if (block_group->cached == BTRFS_CACHE_STARTED)
  8987. wait_block_group_cache_done(block_group);
  8988. if (block_group->has_caching_ctl) {
  8989. down_write(&root->fs_info->commit_root_sem);
  8990. if (!caching_ctl) {
  8991. struct btrfs_caching_control *ctl;
  8992. list_for_each_entry(ctl,
  8993. &root->fs_info->caching_block_groups, list)
  8994. if (ctl->block_group == block_group) {
  8995. caching_ctl = ctl;
  8996. atomic_inc(&caching_ctl->count);
  8997. break;
  8998. }
  8999. }
  9000. if (caching_ctl)
  9001. list_del_init(&caching_ctl->list);
  9002. up_write(&root->fs_info->commit_root_sem);
  9003. if (caching_ctl) {
  9004. /* Once for the caching bgs list and once for us. */
  9005. put_caching_control(caching_ctl);
  9006. put_caching_control(caching_ctl);
  9007. }
  9008. }
  9009. spin_lock(&trans->transaction->dirty_bgs_lock);
  9010. if (!list_empty(&block_group->dirty_list)) {
  9011. WARN_ON(1);
  9012. }
  9013. if (!list_empty(&block_group->io_list)) {
  9014. WARN_ON(1);
  9015. }
  9016. spin_unlock(&trans->transaction->dirty_bgs_lock);
  9017. btrfs_remove_free_space_cache(block_group);
  9018. spin_lock(&block_group->space_info->lock);
  9019. list_del_init(&block_group->ro_list);
  9020. if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
  9021. WARN_ON(block_group->space_info->total_bytes
  9022. < block_group->key.offset);
  9023. WARN_ON(block_group->space_info->bytes_readonly
  9024. < block_group->key.offset);
  9025. WARN_ON(block_group->space_info->disk_total
  9026. < block_group->key.offset * factor);
  9027. }
  9028. block_group->space_info->total_bytes -= block_group->key.offset;
  9029. block_group->space_info->bytes_readonly -= block_group->key.offset;
  9030. block_group->space_info->disk_total -= block_group->key.offset * factor;
  9031. spin_unlock(&block_group->space_info->lock);
  9032. memcpy(&key, &block_group->key, sizeof(key));
  9033. lock_chunks(root);
  9034. if (!list_empty(&em->list)) {
  9035. /* We're in the transaction->pending_chunks list. */
  9036. free_extent_map(em);
  9037. }
  9038. spin_lock(&block_group->lock);
  9039. block_group->removed = 1;
  9040. /*
  9041. * At this point trimming can't start on this block group, because we
  9042. * removed the block group from the tree fs_info->block_group_cache_tree
  9043. * so no one can't find it anymore and even if someone already got this
  9044. * block group before we removed it from the rbtree, they have already
  9045. * incremented block_group->trimming - if they didn't, they won't find
  9046. * any free space entries because we already removed them all when we
  9047. * called btrfs_remove_free_space_cache().
  9048. *
  9049. * And we must not remove the extent map from the fs_info->mapping_tree
  9050. * to prevent the same logical address range and physical device space
  9051. * ranges from being reused for a new block group. This is because our
  9052. * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
  9053. * completely transactionless, so while it is trimming a range the
  9054. * currently running transaction might finish and a new one start,
  9055. * allowing for new block groups to be created that can reuse the same
  9056. * physical device locations unless we take this special care.
  9057. *
  9058. * There may also be an implicit trim operation if the file system
  9059. * is mounted with -odiscard. The same protections must remain
  9060. * in place until the extents have been discarded completely when
  9061. * the transaction commit has completed.
  9062. */
  9063. remove_em = (atomic_read(&block_group->trimming) == 0);
  9064. /*
  9065. * Make sure a trimmer task always sees the em in the pinned_chunks list
  9066. * if it sees block_group->removed == 1 (needs to lock block_group->lock
  9067. * before checking block_group->removed).
  9068. */
  9069. if (!remove_em) {
  9070. /*
  9071. * Our em might be in trans->transaction->pending_chunks which
  9072. * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
  9073. * and so is the fs_info->pinned_chunks list.
  9074. *
  9075. * So at this point we must be holding the chunk_mutex to avoid
  9076. * any races with chunk allocation (more specifically at
  9077. * volumes.c:contains_pending_extent()), to ensure it always
  9078. * sees the em, either in the pending_chunks list or in the
  9079. * pinned_chunks list.
  9080. */
  9081. list_move_tail(&em->list, &root->fs_info->pinned_chunks);
  9082. }
  9083. spin_unlock(&block_group->lock);
  9084. if (remove_em) {
  9085. struct extent_map_tree *em_tree;
  9086. em_tree = &root->fs_info->mapping_tree.map_tree;
  9087. write_lock(&em_tree->lock);
  9088. /*
  9089. * The em might be in the pending_chunks list, so make sure the
  9090. * chunk mutex is locked, since remove_extent_mapping() will
  9091. * delete us from that list.
  9092. */
  9093. remove_extent_mapping(em_tree, em);
  9094. write_unlock(&em_tree->lock);
  9095. /* once for the tree */
  9096. free_extent_map(em);
  9097. }
  9098. unlock_chunks(root);
  9099. ret = remove_block_group_free_space(trans, root->fs_info, block_group);
  9100. if (ret)
  9101. goto out;
  9102. btrfs_put_block_group(block_group);
  9103. btrfs_put_block_group(block_group);
  9104. ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
  9105. if (ret > 0)
  9106. ret = -EIO;
  9107. if (ret < 0)
  9108. goto out;
  9109. ret = btrfs_del_item(trans, root, path);
  9110. out:
  9111. btrfs_free_path(path);
  9112. return ret;
  9113. }
  9114. struct btrfs_trans_handle *
  9115. btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
  9116. const u64 chunk_offset)
  9117. {
  9118. struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
  9119. struct extent_map *em;
  9120. struct map_lookup *map;
  9121. unsigned int num_items;
  9122. read_lock(&em_tree->lock);
  9123. em = lookup_extent_mapping(em_tree, chunk_offset, 1);
  9124. read_unlock(&em_tree->lock);
  9125. ASSERT(em && em->start == chunk_offset);
  9126. /*
  9127. * We need to reserve 3 + N units from the metadata space info in order
  9128. * to remove a block group (done at btrfs_remove_chunk() and at
  9129. * btrfs_remove_block_group()), which are used for:
  9130. *
  9131. * 1 unit for adding the free space inode's orphan (located in the tree
  9132. * of tree roots).
  9133. * 1 unit for deleting the block group item (located in the extent
  9134. * tree).
  9135. * 1 unit for deleting the free space item (located in tree of tree
  9136. * roots).
  9137. * N units for deleting N device extent items corresponding to each
  9138. * stripe (located in the device tree).
  9139. *
  9140. * In order to remove a block group we also need to reserve units in the
  9141. * system space info in order to update the chunk tree (update one or
  9142. * more device items and remove one chunk item), but this is done at
  9143. * btrfs_remove_chunk() through a call to check_system_chunk().
  9144. */
  9145. map = (struct map_lookup *)em->bdev;
  9146. num_items = 3 + map->num_stripes;
  9147. free_extent_map(em);
  9148. return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
  9149. num_items, 1);
  9150. }
  9151. /*
  9152. * Process the unused_bgs list and remove any that don't have any allocated
  9153. * space inside of them.
  9154. */
  9155. void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
  9156. {
  9157. struct btrfs_block_group_cache *block_group;
  9158. struct btrfs_space_info *space_info;
  9159. struct btrfs_root *root = fs_info->extent_root;
  9160. struct btrfs_trans_handle *trans;
  9161. int ret = 0;
  9162. if (!fs_info->open)
  9163. return;
  9164. spin_lock(&fs_info->unused_bgs_lock);
  9165. while (!list_empty(&fs_info->unused_bgs)) {
  9166. u64 start, end;
  9167. int trimming;
  9168. block_group = list_first_entry(&fs_info->unused_bgs,
  9169. struct btrfs_block_group_cache,
  9170. bg_list);
  9171. list_del_init(&block_group->bg_list);
  9172. space_info = block_group->space_info;
  9173. if (ret || btrfs_mixed_space_info(space_info)) {
  9174. btrfs_put_block_group(block_group);
  9175. continue;
  9176. }
  9177. spin_unlock(&fs_info->unused_bgs_lock);
  9178. mutex_lock(&fs_info->delete_unused_bgs_mutex);
  9179. /* Don't want to race with allocators so take the groups_sem */
  9180. down_write(&space_info->groups_sem);
  9181. spin_lock(&block_group->lock);
  9182. if (block_group->reserved ||
  9183. btrfs_block_group_used(&block_group->item) ||
  9184. block_group->ro ||
  9185. list_is_singular(&block_group->list)) {
  9186. /*
  9187. * We want to bail if we made new allocations or have
  9188. * outstanding allocations in this block group. We do
  9189. * the ro check in case balance is currently acting on
  9190. * this block group.
  9191. */
  9192. spin_unlock(&block_group->lock);
  9193. up_write(&space_info->groups_sem);
  9194. goto next;
  9195. }
  9196. spin_unlock(&block_group->lock);
  9197. /* We don't want to force the issue, only flip if it's ok. */
  9198. ret = inc_block_group_ro(block_group, 0);
  9199. up_write(&space_info->groups_sem);
  9200. if (ret < 0) {
  9201. ret = 0;
  9202. goto next;
  9203. }
  9204. /*
  9205. * Want to do this before we do anything else so we can recover
  9206. * properly if we fail to join the transaction.
  9207. */
  9208. trans = btrfs_start_trans_remove_block_group(fs_info,
  9209. block_group->key.objectid);
  9210. if (IS_ERR(trans)) {
  9211. btrfs_dec_block_group_ro(root, block_group);
  9212. ret = PTR_ERR(trans);
  9213. goto next;
  9214. }
  9215. /*
  9216. * We could have pending pinned extents for this block group,
  9217. * just delete them, we don't care about them anymore.
  9218. */
  9219. start = block_group->key.objectid;
  9220. end = start + block_group->key.offset - 1;
  9221. /*
  9222. * Hold the unused_bg_unpin_mutex lock to avoid racing with
  9223. * btrfs_finish_extent_commit(). If we are at transaction N,
  9224. * another task might be running finish_extent_commit() for the
  9225. * previous transaction N - 1, and have seen a range belonging
  9226. * to the block group in freed_extents[] before we were able to
  9227. * clear the whole block group range from freed_extents[]. This
  9228. * means that task can lookup for the block group after we
  9229. * unpinned it from freed_extents[] and removed it, leading to
  9230. * a BUG_ON() at btrfs_unpin_extent_range().
  9231. */
  9232. mutex_lock(&fs_info->unused_bg_unpin_mutex);
  9233. ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
  9234. EXTENT_DIRTY, GFP_NOFS);
  9235. if (ret) {
  9236. mutex_unlock(&fs_info->unused_bg_unpin_mutex);
  9237. btrfs_dec_block_group_ro(root, block_group);
  9238. goto end_trans;
  9239. }
  9240. ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
  9241. EXTENT_DIRTY, GFP_NOFS);
  9242. if (ret) {
  9243. mutex_unlock(&fs_info->unused_bg_unpin_mutex);
  9244. btrfs_dec_block_group_ro(root, block_group);
  9245. goto end_trans;
  9246. }
  9247. mutex_unlock(&fs_info->unused_bg_unpin_mutex);
  9248. /* Reset pinned so btrfs_put_block_group doesn't complain */
  9249. spin_lock(&space_info->lock);
  9250. spin_lock(&block_group->lock);
  9251. space_info->bytes_pinned -= block_group->pinned;
  9252. space_info->bytes_readonly += block_group->pinned;
  9253. percpu_counter_add(&space_info->total_bytes_pinned,
  9254. -block_group->pinned);
  9255. block_group->pinned = 0;
  9256. spin_unlock(&block_group->lock);
  9257. spin_unlock(&space_info->lock);
  9258. /* DISCARD can flip during remount */
  9259. trimming = btrfs_test_opt(root, DISCARD);
  9260. /* Implicit trim during transaction commit. */
  9261. if (trimming)
  9262. btrfs_get_block_group_trimming(block_group);
  9263. /*
  9264. * Btrfs_remove_chunk will abort the transaction if things go
  9265. * horribly wrong.
  9266. */
  9267. ret = btrfs_remove_chunk(trans, root,
  9268. block_group->key.objectid);
  9269. if (ret) {
  9270. if (trimming)
  9271. btrfs_put_block_group_trimming(block_group);
  9272. goto end_trans;
  9273. }
  9274. /*
  9275. * If we're not mounted with -odiscard, we can just forget
  9276. * about this block group. Otherwise we'll need to wait
  9277. * until transaction commit to do the actual discard.
  9278. */
  9279. if (trimming) {
  9280. spin_lock(&fs_info->unused_bgs_lock);
  9281. /*
  9282. * A concurrent scrub might have added us to the list
  9283. * fs_info->unused_bgs, so use a list_move operation
  9284. * to add the block group to the deleted_bgs list.
  9285. */
  9286. list_move(&block_group->bg_list,
  9287. &trans->transaction->deleted_bgs);
  9288. spin_unlock(&fs_info->unused_bgs_lock);
  9289. btrfs_get_block_group(block_group);
  9290. }
  9291. end_trans:
  9292. btrfs_end_transaction(trans, root);
  9293. next:
  9294. mutex_unlock(&fs_info->delete_unused_bgs_mutex);
  9295. btrfs_put_block_group(block_group);
  9296. spin_lock(&fs_info->unused_bgs_lock);
  9297. }
  9298. spin_unlock(&fs_info->unused_bgs_lock);
  9299. }
  9300. int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
  9301. {
  9302. struct btrfs_space_info *space_info;
  9303. struct btrfs_super_block *disk_super;
  9304. u64 features;
  9305. u64 flags;
  9306. int mixed = 0;
  9307. int ret;
  9308. disk_super = fs_info->super_copy;
  9309. if (!btrfs_super_root(disk_super))
  9310. return 1;
  9311. features = btrfs_super_incompat_flags(disk_super);
  9312. if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
  9313. mixed = 1;
  9314. flags = BTRFS_BLOCK_GROUP_SYSTEM;
  9315. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  9316. if (ret)
  9317. goto out;
  9318. if (mixed) {
  9319. flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
  9320. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  9321. } else {
  9322. flags = BTRFS_BLOCK_GROUP_METADATA;
  9323. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  9324. if (ret)
  9325. goto out;
  9326. flags = BTRFS_BLOCK_GROUP_DATA;
  9327. ret = update_space_info(fs_info, flags, 0, 0, &space_info);
  9328. }
  9329. out:
  9330. return ret;
  9331. }
  9332. int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
  9333. {
  9334. return unpin_extent_range(root, start, end, false);
  9335. }
  9336. /*
  9337. * It used to be that old block groups would be left around forever.
  9338. * Iterating over them would be enough to trim unused space. Since we
  9339. * now automatically remove them, we also need to iterate over unallocated
  9340. * space.
  9341. *
  9342. * We don't want a transaction for this since the discard may take a
  9343. * substantial amount of time. We don't require that a transaction be
  9344. * running, but we do need to take a running transaction into account
  9345. * to ensure that we're not discarding chunks that were released in
  9346. * the current transaction.
  9347. *
  9348. * Holding the chunks lock will prevent other threads from allocating
  9349. * or releasing chunks, but it won't prevent a running transaction
  9350. * from committing and releasing the memory that the pending chunks
  9351. * list head uses. For that, we need to take a reference to the
  9352. * transaction.
  9353. */
  9354. static int btrfs_trim_free_extents(struct btrfs_device *device,
  9355. u64 minlen, u64 *trimmed)
  9356. {
  9357. u64 start = 0, len = 0;
  9358. int ret;
  9359. *trimmed = 0;
  9360. /* Not writeable = nothing to do. */
  9361. if (!device->writeable)
  9362. return 0;
  9363. /* No free space = nothing to do. */
  9364. if (device->total_bytes <= device->bytes_used)
  9365. return 0;
  9366. ret = 0;
  9367. while (1) {
  9368. struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
  9369. struct btrfs_transaction *trans;
  9370. u64 bytes;
  9371. ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
  9372. if (ret)
  9373. return ret;
  9374. down_read(&fs_info->commit_root_sem);
  9375. spin_lock(&fs_info->trans_lock);
  9376. trans = fs_info->running_transaction;
  9377. if (trans)
  9378. atomic_inc(&trans->use_count);
  9379. spin_unlock(&fs_info->trans_lock);
  9380. ret = find_free_dev_extent_start(trans, device, minlen, start,
  9381. &start, &len);
  9382. if (trans)
  9383. btrfs_put_transaction(trans);
  9384. if (ret) {
  9385. up_read(&fs_info->commit_root_sem);
  9386. mutex_unlock(&fs_info->chunk_mutex);
  9387. if (ret == -ENOSPC)
  9388. ret = 0;
  9389. break;
  9390. }
  9391. ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
  9392. up_read(&fs_info->commit_root_sem);
  9393. mutex_unlock(&fs_info->chunk_mutex);
  9394. if (ret)
  9395. break;
  9396. start += len;
  9397. *trimmed += bytes;
  9398. if (fatal_signal_pending(current)) {
  9399. ret = -ERESTARTSYS;
  9400. break;
  9401. }
  9402. cond_resched();
  9403. }
  9404. return ret;
  9405. }
  9406. int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
  9407. {
  9408. struct btrfs_fs_info *fs_info = root->fs_info;
  9409. struct btrfs_block_group_cache *cache = NULL;
  9410. struct btrfs_device *device;
  9411. struct list_head *devices;
  9412. u64 group_trimmed;
  9413. u64 start;
  9414. u64 end;
  9415. u64 trimmed = 0;
  9416. u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
  9417. int ret = 0;
  9418. /*
  9419. * try to trim all FS space, our block group may start from non-zero.
  9420. */
  9421. if (range->len == total_bytes)
  9422. cache = btrfs_lookup_first_block_group(fs_info, range->start);
  9423. else
  9424. cache = btrfs_lookup_block_group(fs_info, range->start);
  9425. while (cache) {
  9426. if (cache->key.objectid >= (range->start + range->len)) {
  9427. btrfs_put_block_group(cache);
  9428. break;
  9429. }
  9430. start = max(range->start, cache->key.objectid);
  9431. end = min(range->start + range->len,
  9432. cache->key.objectid + cache->key.offset);
  9433. if (end - start >= range->minlen) {
  9434. if (!block_group_cache_done(cache)) {
  9435. ret = cache_block_group(cache, 0);
  9436. if (ret) {
  9437. btrfs_put_block_group(cache);
  9438. break;
  9439. }
  9440. ret = wait_block_group_cache_done(cache);
  9441. if (ret) {
  9442. btrfs_put_block_group(cache);
  9443. break;
  9444. }
  9445. }
  9446. ret = btrfs_trim_block_group(cache,
  9447. &group_trimmed,
  9448. start,
  9449. end,
  9450. range->minlen);
  9451. trimmed += group_trimmed;
  9452. if (ret) {
  9453. btrfs_put_block_group(cache);
  9454. break;
  9455. }
  9456. }
  9457. cache = next_block_group(fs_info->tree_root, cache);
  9458. }
  9459. mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
  9460. devices = &root->fs_info->fs_devices->alloc_list;
  9461. list_for_each_entry(device, devices, dev_alloc_list) {
  9462. ret = btrfs_trim_free_extents(device, range->minlen,
  9463. &group_trimmed);
  9464. if (ret)
  9465. break;
  9466. trimmed += group_trimmed;
  9467. }
  9468. mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
  9469. range->len = trimmed;
  9470. return ret;
  9471. }
  9472. /*
  9473. * btrfs_{start,end}_write_no_snapshoting() are similar to
  9474. * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
  9475. * data into the page cache through nocow before the subvolume is snapshoted,
  9476. * but flush the data into disk after the snapshot creation, or to prevent
  9477. * operations while snapshoting is ongoing and that cause the snapshot to be
  9478. * inconsistent (writes followed by expanding truncates for example).
  9479. */
  9480. void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
  9481. {
  9482. percpu_counter_dec(&root->subv_writers->counter);
  9483. /*
  9484. * Make sure counter is updated before we wake up waiters.
  9485. */
  9486. smp_mb();
  9487. if (waitqueue_active(&root->subv_writers->wait))
  9488. wake_up(&root->subv_writers->wait);
  9489. }
  9490. int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
  9491. {
  9492. if (atomic_read(&root->will_be_snapshoted))
  9493. return 0;
  9494. percpu_counter_inc(&root->subv_writers->counter);
  9495. /*
  9496. * Make sure counter is updated before we check for snapshot creation.
  9497. */
  9498. smp_mb();
  9499. if (atomic_read(&root->will_be_snapshoted)) {
  9500. btrfs_end_write_no_snapshoting(root);
  9501. return 0;
  9502. }
  9503. return 1;
  9504. }